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Abstract 

System level testing generally lacks coverage due to cost 

of performing realistic tests on the “system as a whole”. 

This lack in test coverage gives rise to seemingly 

emergent behaviour at system level. The interactions 

between multiple sub-systems lead to “the whole being 

greater than the sum of its parts”, which is a famous 

saying dated back to the time of the Greek philosopher 

Aristotle. Either we should test more extensively at 

system level, or we should test smarter. The company 

needs to validate its current test regime to see if the 

current way of testing detects the emergent behaviours 

in question. We seek to validate the company’s system 

integration test regime to see if it can detect a given set 

of emergent behaviours. This paper aims to find the 

probabilities of detecting specified types of emergent 

behaviour in the way the company performs system 

integration testing today and compare that to alternative 

test regimes. A model is set-up to find the probabilities 

of the emergent behaviour types in the different test 

regimes, and to simulate the corresponding detection 

rates and related uncertainties. The results show that the 

company could benefit from changing to an alternative 

test regime, which has higher probability of detecting a 

given set of unwanted behaviours emerging through 

system integration testing. 

Keywords:     Bayes’ theorem, emergent behaviour, 

experimental design, statistical inference, system 

integration testing. 

1 Introduction 

System level testing generally lacks coverage due to cost 

of performing realistic tests on the “system as a whole”. 

This lack in test coverage gives rise to seemingly 

emergent behaviour at system level. The interactions 

between multiple sub-systems lead to “the whole being 

greater than the sum of its parts”, which is a famous 

saying dated back to the time of the Greek philosopher 

Aristotle. Either we should test more extensively at 

system level, or we should test smarter. The company 

needs to validate its current test regime to see if the 

current way of testing detects the emergent behaviours 

in question.  

This paper looks at how well the system-level test 

regime detects unwanted behaviours for an autonomous 

underwater vehicle (AUV) that uses a camera to capture 

images of the current seabed.  

We seek to validate the company’s system integration 

test regime’s ability to detect a given set of emergent 

behaviours. This paper aims to find the probabilities of 

detecting specified types of emergent behaviour in the 

way the company performs system integration testing 

today and compare that to alternative test regimes.   

1.1 Problem Statement 

The company performs system integration testing based 

on manual operations, which is a bottleneck for them to 

ensure mature and robust products (Haugen and 

Mansouri, 2020). 

Analysts in the company do not have enough time to 

analyse all available test results from performed test 

executions / simulations. Roughly, system domain 

experts analyse 10% of test results on average. About 

80% of tests analysed contain no errors. Around 20% of 

tests with errors detected include behaviour-related 

errors (Kjeldaas et al., 2021). Illustration in Figure 1. 

Analysis:          

 

Errors: 

 

Behaviour errors: 

Figure 1. Portion of tests with detected behaviour related 

errors. 

We believe the company tests too many “sunny day” 

scenarios compared to “rainy day” scenarios. This test 

strategy fails to trigger the system’s inherent emergent 

behaviours to the extent that we can collect enough data 

on them through testing to perform effective analyses of 

these behaviour issues.  

The AUV uses available map data to plan missions. 

The map data varies in quality, which may give 

problems for the accuracy of the planning functionality. 

Map areas lacking data works as tripwires for the 
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planning system and could cause the planning to fail if 

it is not possible to avoid these areas, ref. Figure 2.  

 

Figure 2. Principle sketch of issue with lacking (black 

areas) map data. 

The AUV plans route segments within available fuel 

limit, including departure from -and arrival to the 

mothership. Complex ocean currents yield large fuel 

calculation error margins. Reaching fuel point of no 

return forces the AUV to abandon mission and return to 

mothership, ref. Figure 3.  

 

Figure 3. Principle sketch of issue with complex ocean 

currents (Cenedese and Gordon, 2021). 

The height information available of the seabed have 

varying uncertainty, which is a critical factor for the 

AUV’s ability to capture seabed images of sufficient 

quality. To ensure desired quality in the photograph of a 

given area, the AUV needs a minimum number of 

pictures of the same area. If the slope of a ridge is too 

steep, the AUV does not have time to photograph the 

slope with sufficient quality, or photograph it at all, 

without special considerations in planning the route, ref. 

Figure 4.  

 

 

Figure 4. Principle sketch of issue with steep ridges. 

The AUV uses an acoustic positioning system (APS) to 

keep on track with the planned route. If the AUV APS 

information is lost due to some interferences, the AUV 

drifts from its planned route depending on the inertial 

navigation system (INS) and terrain correlation, ref. 

Figure 5.  

 

Figure 5. Principle sketch of issue with navigation drift. 

The company assumes the AUV system is complicated 

and even complex. Complex systems are understood 

only in retrospect and do not usually repeat, while 

complicated systems can be understood by reductionism 

and detailed analysis. The company assumes that the 

AUV system exhibits weak emergence, and potentially 

strong emergence. Strong emergence is unpredictable 

and inconsistent in simulations, while weak emergence 

is predictable and consistently reproducible in 

simulations (Mittal et al., 2018). 

1.2 Methods 

The company uses the Changing One Single Thing at a 

time (COST) or Only one Factor At a Time (OFAT) 

model (Montgomery, 2017). We use the COST/OFAT 

principle for the first test regime in this paper.  

For the second test regime, we use a two-level full 

factorial design (Dunn, 2021) and (Montgomery, 2017). 
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For the third test regime, we use an optimum design 

for maximizing the probability of detecting the 

emergent behaviours in question.  
We seek to answer the following research questions: 

• How well is the company able to detect a given 

set of emergent behaviours? 

• What is the probability of the company 

detecting a given set of emergent behaviours in 

the current company test regime? 

• How much can the company increase the 

detection of a given set of emergent behaviours 

in an alternative test regime? 

1.3 Literature Review 

The Only one Factor At a Time (OFAT) method consists 

of selecting a starting point, or baseline set of levels, for 

each factor, and then successively varying each factor 

over its range with the other factors held constant at the 

baseline level (Montgomery, 2017). 

For a two-level full factorial design, we run the 

complete set of 2k experiments, where k is the number 

of factors and 2 is the number of levels for each factor. 

The results of the experiments we use to quantify the 

importance of each factor. Indeed, for this purpose, 

linear regression models, considering both the single 

factor and two-factor effects are used in this paper. For 

example, in the case of two factor model, the following 

fitted regression model can be used to determine the 

importance of each factor (Dunn, 2021). 

𝑦 = 𝛽0 + 𝛽𝐴𝑥𝐴 + 𝛽𝐵𝑥𝐵 + 𝛽𝐴𝐵𝑥𝐴𝐵 (1) 

In the following, the total probability is calculated based 

on the inclusion-exclusion principle when the different 

emergent behaviours are independent but not disjoint 

events. We calculate the total probability by formulas 

regarding different number of factors (Allenby and 

Slomson, 2010): 

𝑃(𝐴 + 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴, 𝐵) (2) 

𝑃(𝐴 + 𝐵 + 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶)

− 𝑃(𝐴, 𝐵) − 𝑃(𝐴, 𝐶)

− 𝑃(𝐵, 𝐶) + 𝑃(𝐴, 𝐵, 𝐶) 

(3) 

𝑃(𝐴1 + 𝐴2 … + 𝐴𝑛)

= ∑ 𝑃(𝐴𝑖) − ∑ 𝑃(𝐴𝑖, 𝐴𝑗)

𝑖<𝑗

𝑛

𝑖=1

+ ∑ 𝑃(𝐴𝑖 , 𝐴𝑗 , 𝐴𝑘) + ⋯

𝑖<𝑗<𝑘

+ (−1)𝑛−1 ∑ 𝑃(𝐴1, 𝐴2 … , 𝐴𝑛)

𝑖<⋯<𝑛

 

(4) 

The union of a four-factor probability is illustrated in 

Figure 6. 

The Bayes’ theorem is expressed as 

𝑃(𝑋|𝑌, 𝐼) =
𝑃(𝑌|𝑋, 𝐼) 𝑃(𝑋|𝐼)

𝑃(𝑌|𝐼)
 (5) 

where X is our hypothesis, Y is our data, and I is relevant 

available information. The various terms in Bayes’ 

theorem have formal names. The quantity on the far 

right, 𝑃(𝑋|𝐼), is called the prior probability; it represents 

our state of knowledge (or ignorance) about the truth of 

the hypothesis before we have analysed the current data.  

This is modified by the experimental measurements 

through the likelihood function, or 𝑃(𝑌|𝑋, 𝐼), and yields 

the posterior probability, 𝑃(𝑋|𝑌, 𝐼), representing our 

state of knowledge about the truth of the hypothesis in 

the light of the data. In a sense, Bayes’ theorem 

encapsulates the process of learning. The denominator 

is often simply a normalization constant (not depending 

explicitly on the hypothesis). In some situations, like in 

model selection, this term plays a crucial role. For that 

reason, it is sometimes given the special name of 

evidence (Sivia and Skilling, 2006). 

 

Figure 6. Inclusion-exclusion illustrated by a Venn 

diagram for four sets (Concept Draw, 2021). 

2 Design of Experiment 

This paper explores the probabilities and detections of a 

given set of emergent behaviours in different test 

regimes, the current company test regime and two other 

alternatives.  

2.1 Data 

We select a set of emergent behaviour types for study in 

this paper. The emergent behaviour types are: 

• F1: Planning failure [0...1] 

• F2: Fuel exceeded [0...1] 

• F3: Photo quality degradation [0...1] 

• F4: Photo coverage deviation [0...1] 

• G: Any emergent behaviour [0…1] 
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For the purpose of this study, we have focused our 

efforts on a set of four dichotomous variables, which can 

take only two possible values (low and high). These are:  

• A: Navigation quality [Low, High] 

• B: Map delta height [Low, High] 

• C: Real world environmental delta [Low, High] 

• D: Map quality [Low, High] 

Further, based on previous experience with comparable 

systems, we have selected a set of probabilities for this 

study. Accordingly, based on expert knowledge within 

the company, the probabilities of the emergent 

behaviours are assumed to be [%]: 

• 𝑃(𝐹1) = 0.15 

• 𝑃(𝐹2) = 1.25 

• 𝑃(𝐹3) = 1.88 

• 𝑃(𝐹4) = 0.31 

• 𝑃(𝐺) = 3.59 

Moreover, based on the available data in the company’s 

database, we will assume the following [%]: 

• 𝑃(𝐷|𝐹1) = 10 

• 𝑃(𝐷′|𝐹1) = 90 

• 𝑃(𝐶|𝐹2) = 55 

• 𝑃(𝐵𝐷|𝐹3) = 25 

• 𝑃(𝐵𝐷′|𝐹3) = 75 

• 𝑃(𝐴′|𝐹4) = 100 
• 𝑃(𝐷) = 98 

• 𝑃(𝐷′) = 2 

• 𝑃(𝐶) = 10 

• 𝑃(𝐵𝐷) = 18 

• 𝑃(𝐵𝐷′) = 2 

• 𝑃(𝐴′) = 1 
In general, we are interested in the probabilities for the 

different emergent behaviours at different factor levels. 

For example, we are interested in probability of 

planning failure (F1) under the condition that the map 

quality is high (D). That is, we are interested in 

𝑃(𝐹1|𝐷). This probability can be calculated using the 

Bayes’ theorem (5), 

𝑃(𝐹1|𝐷) =
𝑃(𝐷|𝐹1)𝑃(𝐹1)

𝑃(𝐷)
=

10 ∗ 0.15

98
= 1.5 ∗ 10−2 

The probabilities [%] of other emergent behaviours can 

similarly be calculated 

• 𝑃(𝐹1|𝐷′) = 6.75 

• 𝑃(𝐹2|𝐶) = 6.88 

• 𝑃(𝐹3|𝐵𝐷) = 2.6 

• 𝑃(𝐹3|𝐵𝐷′) = 70.31 

• 𝑃(𝐹4|𝐴′) = 31.25 

2.2 Test Regime 1 

The test regime 1 is the current company test regime and 

is the baseline for comparison with the other alternative 

test regimes. There are 16 possible combinations, using 

two values for 4 parameters. However, the company 

does not test all 16 cases. The principle is to start with a 

reference case and add cases with level-change in only 

one factor at a time as compared to the reference. This 

COST/OFAT principle makes it easier to analyse the 

effect of the level-change in one factor. Table 1 shows 

the company’s selected test case types. Test case type 1 

is the reference experiment type, and to reduce the 

number of test set-ups the company re-uses this as much 

as possible to verify system requirements. The company 

uses the test case types 2-5 to analyse the impact of the 

factors C, B, BD, and A, respectively. 

Table 1. Scenario factor levels for test regime 1.  

Test Case Type A B C D # Runs 

1 + - - + 245 

2 + - + + 6 

3 + + - + 60 

4 + + - - 6 

5 - - - + 3 

 

2.3 Test Regime 2  

The test regime 2 is the first alternative test regime, 

which is also known as two-level full factorial 

experiment. The two-level full factorial design has four 

factors with two levels, which gives 24 = 16 

experiments. Table 2 shows the experiment set-up for 

test regime 2 with the yield for each test case type based 

on expert opinion that we choose for this study. The 

yield is the total number of emergent behaviour 

detections in 20 runs per test case type. Further, in the 

test regime 2, each test case is run equal number of 

times. For the purpose of comparison, we choose the 

total number of runs to be the same for both test regime 

1 and 2. 

Table 2. Scenario factor levels for test regime 2, full 

factorial design.  

Test Case Type A B C D Yield # Runs 

1 - - - - 8 20 

2 + - - - 1 20 

3 - + - - 22 20 

4 + + - - 15 20 

5 - - + - 9 20 

6 + - + - 3 20 

7 - + + - 23 20 

8 + + + - 17 20 

9 - - - + 6 20 

10 + - - + 0 20 

11 - + - + 7 20 

12 + + - + 1 20 

13 - - + + 8 20 

14 + - + + 1 20 

15 - + + + 8 20 

16 + + + + 2 20 
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2.3.1 Effect of Experiment Factors 

One way to find the effect of each factor on yield is by 

conducting a regression analysis based on the test 

results. In the case of the test regime 2, the Equation (1) 

has 16 parameters. The first coefficient being the 

average of all the yield values, while the other 

coefficients represent the effects of the different factors 

and factor interactions. Estimating the parameters with 

respect to the observed yield, results in the following 

relation with only six non-zero coefficients, 

𝑦 = 8.14 − 3.13𝑥𝐴 + 3.65𝑥𝐵 + 0.69𝑥𝐶 − 4.06𝑥𝐷

− 3.39𝑥𝐵𝐷 

 

Figure 7. Magnitude of the effect of the factors. 

The coefficient −3.13𝑥𝐴 of factor A means that A at 

high level has a negative effect on the detection of the 

emergent behaviour. The coefficients are calculated for 

one step, but the regression model uses two steps from 

low to high. Therefore, the test regime 2 gives on 

average 6.25 more detections of any emergent behaviour 

type on a test case run 20 times with factor A at low level 

compared to high level. We can see the calculated factor 

coefficients in a Pareto plot (see Figure 7). Factor D has 

the highest impact on the detection of emergent 

behaviour among the main factors, while factor C has 

the lowest impact. The only active two-factor 

interaction is BD. 

2.4 Test Regime 3  

The test regime 3 is the second alternative test regime 

and is designed to optimize the detection of the given 

emergent behaviour types. The optimum way of 

detecting the emergent behaviours in question is to run 

the test case type(s) which have the highest probability 

of detecting the different emergent behaviour types. The 

probabilities for the different emergent behaviours were 

calculated based on Bayes’ theorem in Section 2.1. 

From Table 3 we see that test case type number 7 is 

the optimal test case type for triggering all emergent 

behaviour types. In the test regime 3, one runs only the 

case type number 7. However, the number of replicates 

is the same as the total number of tests run in other test 

regimes. 

Table 3. Scenario factor levels and probabilities [%] for 

test regime 3, optimizing test design. 

Test 

Case 

Type 

A B C D F1 F2 F3 F4 

1 - - - - 6.75 0 0 31.25 

2 + - - - 6.75 0 0 0 

3 - + - - 6.75 0 70.31 31.25 

4 + + - - 6.75 0 70.31 0 

5 - - + - 6.75 6.88 0 31.25 

6 + - + - 6.75 6.88 0 0 

7 - + + - 6.75 6.88 70.31 31.25 

8 + + + - 6.75 6.88 70.31 0 

9 - - - + 0.015 0 0 31.25 

10 + - - + 0.015 0 0 0 

11 - + - + 0.015 0 2.6 31.25 

12 + + - + 0.015 0 2.6 0 

13 - - + + 0.015 6.88 0 31.25 

14 + - + + 0.015 6.88 0 0 

15 - + + + 0.015 6.88 2.6 31.25 

16 + + + + 0.015 6.88 2.6 0 

 

3 Results 

In this section the capability of the different test regimes 

in detecting any given emergent behaviour types is 

evaluated. The emergent behaviour type F1 has a single 

factor dependency in D. The formula for finding the 

probability of emergent behaviour type F1 in test regime 

1, follows from the application of the marginalisation 

and product rule of the probability theory (Sivia and 

Skilling, 2006): 

𝑃(𝐹1|𝑇1) = 𝑃(𝐹1, 𝐷|𝑇1) + 𝑃(𝐹1, 𝐷′|𝑇1)

= 𝑃(𝐹1|𝐷, 𝑇1)𝑃(𝐷|𝑇1)
+ 𝑃(𝐹1|𝐷’, 𝑇1)𝑃(𝐷’|𝑇1) 

(6) 

Further note that 

𝑃(𝐷′|𝑇1) = 1 − 𝑃(𝐷|𝑇1) (7) 

thus 

𝑃(𝐹1|𝑇1) = 𝑃(𝐹1|𝐷′, 𝑇1)

+ (𝑃(𝐹1|𝐷, 𝑇1)𝑃(𝐷|𝑇1)

− 𝑃(𝐹1|𝐷′, 𝑇1))𝑃(𝐷|𝑇1) 

(8) 

and hence 
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𝑃(𝐹1|𝑇1)

𝑃(𝐹1|𝐷′, 𝑇1)
= 1

− (1

−
𝑃(𝐹1|𝐷, 𝑇1)

𝑃(𝐹1|𝐷′, 𝑇1)
) 𝑃(𝐷|𝑇1) 

(9) 

Since the detection of the emergent behaviours depends 

only on the factors, then  𝑃(𝐹1|𝐷′, 𝑇1) = 𝑃(𝐹1|𝐷′). 
The specific probabilities like 𝑃(𝐹1|𝐷′) are determined 

based on the abovementioned method in Section 2.1. We 

can then use a more general formula where we can 

separate the physical processes that we cannot control 

from the test set-up that we can control. The formula for 

finding the probability of emergent behaviour type F1 in 

test regime 1 is then: 

𝑃(𝐹1|𝑇1)

𝑃(𝐹1|𝐷′)
= 1 − (1 −

𝑃(𝐹1|𝐷)

𝑃(𝐹1|𝐷′)
) 𝑃(𝐷|𝑇1) (10) 

Using the results in Section 2.1 we get: 

𝑃(𝐹1|𝑇1) = (1 − (1 −
0.015

6.75
) ∗ 98) ∗ 6.75 = 0.15 

Note that we have a generalized formula where we can 

replace T1 with T2 or T3. Indeed, on the right-hand side 

of the Equation (10), the choice of test regime only 

changes 𝑃(𝐷|𝑇1). On the left-hand side, the 

denominator is fixed, which means that the change on 

the right-hand side can only affect 𝑃(𝐹1|𝑇1). 

Consequently, we can then calculate the lower and 

upper bounds for detecting the emergent behaviour 

types by setting 𝑃(𝐷|𝑇1) = 0 and 𝑃(𝐷|𝑇1) = 1, ref. 

Table 5. The same principle applies to all emergent 

behaviour types with a single factor dependency (F1 and 

D, F2 and C, F4 and A) in the different test regimes (T1, 

T2, and T3). 

The emergent behaviour type F3 has a two-factor 

dependency in BD. Although the final formula is 

different, it is also derived from the sum and product 

rule of the probabilities. Indeed, the formula for the 

probability of emergent behaviour type F3 in test regime 

1 is: 

𝑃(𝐹3|𝑇1) = 𝑃(𝐹3, 𝐵𝐷|𝑇1) + 𝑃(𝐹3, 𝐵𝐷′|𝑇1)
+ 𝑃(𝐹3, 𝐵′𝐷|𝑇1)
+ 𝑃(𝐹3, 𝐵′𝐷′|𝑇1) 

(11) 

Further note that: 

𝑃(𝐹3, 𝐵𝐷|𝑇1) = 𝑃(𝐹3|𝐵𝐷, 𝑇1)𝑃(𝐵𝐷|𝑇1) (12) 

𝑃(𝐹3, 𝐵𝐷′|𝑇1) = 𝑃(𝐹3|𝐵𝐷′, 𝑇1)𝑃(𝐵𝐷′|𝑇1) (13) 

𝑃(𝐹3, 𝐵′𝐷|𝑇1) = 𝑃(𝐹3|𝐵′𝐷, 𝑇1)𝑃(𝐵′𝐷|𝑇1) (14) 

𝑃(𝐹3, 𝐵′𝐷′
|𝑇1) = 𝑃(𝐹3|𝐵′𝐷′

, 𝑇1)𝑃(𝐵′𝐷′
|𝑇1) (15) 

thus 

𝑃(𝐹3|𝑇1)

𝑃(𝐹3|𝐵𝐷′, 𝑇1) + 𝑃(𝐹3|𝐵′𝐷′, 𝑇1)

=
𝑃(𝐹3|𝐵𝐷, 𝑇1)

𝑃(𝐹3|𝐵𝐷′, 𝑇1) + 𝑃(𝐹3|𝐵′𝐷′, 𝑇1)
𝑃(𝐵𝐷|𝑇1)

+
𝑃(𝐹3|𝐵𝐷′, 𝑇1)

𝑃(𝐹3|𝐵𝐷′, 𝑇1) + 𝑃(𝐹3|𝐵′𝐷′, 𝑇)
𝑃(𝐵𝐷′|𝑇1)

+
𝑃(𝐹3|𝐵′𝐷, 𝑇1)

𝑃(𝐹3|𝐵𝐷′, 𝑇1) + 𝑃(𝐹3|𝐵′𝐷′, 𝑇1)
𝑃(𝐵′𝐷|𝑇1)

+
𝑃(𝐹3|𝐵′𝐷′, 𝑇1)

𝑃(𝐹3|𝐵𝐷′, 𝑇1) + 𝑃(𝐹3|𝐵′𝐷′, 𝑇1)
𝑃(𝐵′𝐷′|𝑇1) 

(16) 

Given the information: 

𝑃(𝐹3|𝐵′𝐷, 𝑇1) = 𝑃(𝐹3|𝐵′𝐷′, 𝑇1) = 𝑃(𝐵′𝐷|𝑇1)
= 𝑃(𝐵′𝐷′|𝑇1) = 0 

Furthermore, using the results in Section 2.1 we get:  

𝑃(𝐹3|𝑇1) = (
2.6

70.31
∗ 18 + 2) ∗ 70.31 = 1.87 

The same principle applies to all other test regimes (T2, 

and T3). See Table 4 for the complete set of probabilities 

from the model. 

Table 4. Calculated probabilities [%] for emergent 

behaviour types. 

 TR1 TR2 TR3 

F1 0.15 3.38 6.75 

F2 0.69 3.44 6.88 

F3 1.87 18.29 70.31 

F4 0.31 15.62 31.25 

G 3 36.84 89.17 

 

We see from Table 4 and Table 5 that test regime 3 is at 

the upper bound and are the optimum way of testing to 

maximize detection of the emergent behaviour types. 

The total (G) is calculated using the inclusion-exclusion 

principle for the probability (Allenby and Slomson, 

2010). The optimum test regime for detecting the given 

set of emergent behaviours has a probability of ~89% of 

detecting any given emergent behaviour, while the 

current test regime has only probability of ~3%. The test 

regime 3 can be used as the baseline in order to evaluate 

the capabilities of the other test regimes (see Table 5). 

Test regime 2 is detecting about half of the given 

emergent behaviours compared to Test Regime 3, while 

the test regime 1 is barely detecting any emergent 

behaviours at all. 

Table 5. Calculated lower and upper bounds and relative 

frequencies for emergent behaviour types. 

% Lower 

bound 

Upper 

bound 
TR1 TR2 TR3 

F1 0.15 6.75 2.22 50.1 100 

F2 0 6.88 10 50 100 

F3 0 70.31 2.67 26.01 100 
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% Lower 

bound 

Upper 

bound 
TR1 TR2 TR3 

F4 0 31.25 1 50 100 

G 0.15 89.17 3.37 41.31 100 
 

The probabilities in Table 4  can be used to answer many 

questions related to emergent behaviours. For example, 

if one chooses a test regime consisting of n runs, how 

many emergent failures of different types are expected 

to be detected? For each run, the probability of detecting 

a failure, say F1 in test regime 1, is 𝑃(𝐹1|𝑇1). In each 

run, one either detects F1 or not. Moreover, since the 

runs are independent, then the probability of detecting k 

failures of type F1, follows a binomial distribution (n, 

p), for which 𝑃 = 𝑃(𝐹1|𝑇1).  In Figure 8, we have 

simulated the probabilities for the detections of the 

different failures for the aforementioned three test 

regimes in 320 runs to find the detection rates of the 

emergent behaviours and the related uncertainties. 
 

 

Figure 8. The probabilities of detections of emergent behaviours in different test regimes. Each row, from top to bottom, 

corresponds to a given test regime, T1, T2 and T3, respectively.  Each column corresponds to a given failure type.  In the 

present case the total number of simulated runs is 320.

4 Discussion 

The company should increase the test analysis coverage 

at system level in their projects. The current test analysis 

coverage is in-sufficient to detect all emergent 

behaviour types of the system under test. The company 

cannot increase the test analysis coverage without 

automating the test result analysis. The test result 

analysis is the main bottleneck of the test system, and it 

is therefore crucial to make the analysis work more 

efficient. 

For the company to stay competitive in the future 

underwater industry market they need to be able to run 

projects faster and run more projects in parallel. The 

automation of test result analysis is necessary to make 

the transition from the current test system to the desired 

future test system. 

For the company not to have latent undesired 

emergent behaviour in their products, the test analysis 

needs to detect these with high enough probabilities. 

The test regime needs to change in the direction of 

triggering more of the emergent behaviour types of the 

system and trigger them with higher probabilities. The 

company will have better data to perform analysis of the 

emergent behaviours if the test regime triggers all 

emergent behaviour types of the system sufficient times 

in different scenarios. The company can get more 

insight into why the emergent behaviour types are 

triggered through deductive logic (Sivia and Skilling, 

2006), and decide if they can do something to prevent or 

reduce the unwanted behaviours or the unwanted 

effects.  

A combination of the different test regimes analysed 

in this paper may be the best approach for the company 

to deal with this problem of emergent behaviours. Test 

regime 3 triggers most emergent behaviours but does 

not see the effect of different settings. Test regime 3 

satisfies the need to detect emergent behaviours by 

triggering emergent behaviours in about 89% of the 

tests. Test regime 2 sees the effect of different settings 

but does not trigger as much emergent behaviours as test 

regime 3. Test regime 2 also satisfies the need to detect 

emergent behaviours by triggering emergent behaviours 

in about 37% of the tests. Test regime 1 only sees the 

effect of a limited set of different settings and does not 

trigger as much emergent behaviours as either of the 
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other two alternatives. We consider Test regime 1 not 

satisfactory for detection of the emergent behaviours in 

question. Since it is only capable of detecting emergent 

behaviours in about 3% of the tests. 

If we are to select only a few “rainy day” scenarios to 

complement “sunny day” verification testing, we should 

choose test cases with factor C at high level to ensure 

the test regime will detect the emergent behaviour type 

F2. This is the least probable behaviour to detect, based 

on the effect of factors found in Section 2.3.1. We 

should further include some test cases with factor B at 

high level, factor A at low level, and factor D at low 

level. 

In all statistical inference, we use an idealized model 

to approximate a real-world process that interests us 

(Lambert, 2018). The model for exploring probabilities 

in this paper is no exception, leaving some residual risk 

for the operational phase of the product. 

5 Conclusion 

The results show that the company could benefit from 

changing to an alternative test regime, which has higher 

probability of detecting a given set of unwanted 

behaviours emerging through system integration testing. 

The current test regime does not sufficiently trigger the 

emergent behaviours explored in this paper, but an 

alternative test regime indicates that the company 

should be able to sufficiently detect the given set of 

emergent behaviours. 

6 Further Work 

The company must perform further analysis to find the 

optimum test regime to meet all the requirements 

considering the different needs from integration, 

verification, and validation testing. 
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Notations 

Table 6. Nomenclature.  

Notation Description 

[0…1] Not present (0) or present (1) 

A Factor A at high level [+] 

A’ Factor A at low level [-] 

𝛽𝐴 Coefficient of factor A 

F1 Emergent behaviour type 1 

G Any emergent behaviour type 
P(A) Probability of factor A at high level 

P(A’) Probability of factor A at low level 

P(AB) Probability of both factor A and B at 

high level 

P(F1) Probability of emergent behaviour 

type 1 

T1 Test regime 1 
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