

University of South-Eastern Norway
Faculty of Technology, Natural Sciences, and Maritime Sciences

-
Master Thesis in Systems Engineering with Embedded Systems

Department of Science and Industry Systems
June 10, 2021

Victor Johan HANSEN

An Infrared Small Target Detection System for UAVs

iii

Abstract

This thesis is concerned with the task of assisting search and rescue missions by discov-
ering missing people through the use of unmanned aerial vehicles and infrared imag-
ing cameras. Early discovery of a victim is critical and can significantly improve their
chances of survival. The thermal radiation emitted by a missing person is referred to as
a heat signature and appear brighter than its surroundings in infrared images. Further,
infrared imaging cameras are well suited for detection of heat signatures in dark and
cloudy conditions. The task of detecting heat signatures is referred to as infrared small
target detection. The motivation for this work is to demonstrate the potential value of
infrared small target detection in search and rescue missions. This work presents and
compares a deep learning approach, and a low-rank and sparse matrix decomposition
approach for the task of infrared small target detection. Additionally, research and
testing were conducted in order to develop a framework tailored to unmanned aerial
vehicles. The resulting infrared small target detection system is capable of detecting
heat signatures in images with complex backgrounds. The test results unequivocally
demonstrate that an infrared small target detection method based on deep learning is
preferable.

v

Acknowledgements
Above all, I need to express to Professor António L. L. Ramos at the University of
South-Eastern Norway (USN) my sincere appreciation for his guidance and encour-
agement. I am grateful for his suggestion of this subject, which I have enjoyed working
on and have gained a great deal of knowledge from.
I would also like to express my profound gratitude to Professor José A. Apolinário Jr.
from the Military Institute of Engineering (IME), Brazil, for sharing his valuable in-
sights and timely feedback that helped improving this manuscript.
The collaboration with Professor Apolinário Jr. was made possible owing to the Bra-
nortech project (https://app.cristin.no/projects/show.jsf?id=2488728), a col-
laboration between USN and the Norwegian University of Science and Technology
(NTNU), plus IME and the Federal University of Rio de Janeiro (UFRJ) in Brazil. This
project is co-funded by the Norwegian Agency for International Cooperation and Qual-
ity Enhancement in Higher Education (Diku) and the Coordination for the Improve-
ment of Higher Education Personnel (CAPES), Brazil.

And, I have to thank my fellow students at the University of South-Eastern Norway
(USN), especially D. Kazokas and B. Karna for their wise counsel and encouragement.
A special thanks to Y. Dai for giving me the permission to use the Single-frame InfraRed
Small Target (SIRST) dataset.
Finally, I would like to express my appreciation to my partner, and my immediate
family for their encouragement and support during the writing of this thesis.

Victor Johan Hansen
Kongsberg, Norway, June 10, 2021

https://app.cristin.no/projects/show.jsf?id=2488728

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Problem . 2
1.2 Proposal . 2
1.3 Scope . 3
1.4 Outline . 3

2 Background 5
2.1 Unmanned Aerial Vehicles . 5
2.2 Search and Rescue . 5
2.3 Infrared Imaging . 6
2.4 Generic Object Detection . 7
2.5 Artificial Neural Networks . 9

2.5.1 Softmax . 10
2.5.2 Loss Functions . 11
2.5.3 Gradient Descent . 11
2.5.4 Backpropagation . 11

2.6 Convolutional Neural Networks . 12
2.6.1 Layers . 12

3 Object Detection 15
3.1 Meta-architectures and Feature Extractors 15
3.2 Feature Pyramid Networks . 15
3.3 Infrared Small Target Detection . 17

3.3.1 Infrared Small Target Detection Methods 17
3.4 Low-Rank and Sparse Matrix Decomposition 18

3.4.1 Infrared Patch-Image Model . 18

4 Methodology 21
4.1 IR Small Target Dataset Analysis . 21
4.2 Data-driven Approach . 23

4.2.1 Residual Neural Network (ResNet) 24
4.2.2 Modified ResNet . 25
4.2.3 CenterNet . 26

4.3 Training the Data-driven Method . 27
4.3.1 Training Configuration . 28

4.4 Model-driven Approach . 30
4.5 Evaluation Metrics . 32

viii

4.6 Testing . 34

5 Results and Discussion 37
5.1 Test Results . 37

5.1.1 Analysis of the Model-driven Methods 40
5.1.2 Analysis of the Data-driven Methods 43

5.2 General Discussion of the Proposed System 46
5.2.1 Determining Size of Heat Signatures 46
5.2.2 Computation Offloading . 47

6 Conclusion and Future Work 49
6.1 Conclusion . 49
6.2 Future Work . 49

A Inexact Augmented Lagrange Multiplier (IALM) 51

B Accelerated Proximal Gradient (APG) 53

Bibliography 55

ix

List of Figures

1.1 Feature map created by convolving an image with weights extracted
from the modified ResNet used in this thesis. The two dots in the right
part of the image are heat signatures, also known as IR small targets. . . 1

2.1 This diagram of the electromagnetic spectrum depicts types of electro-
magnetic radiation and their corresponding wavelengths. 6

2.2 Left-hand coordinate system used for representing a grayscale image
matrix. 8

2.3 A multilayer perceptron. 9
2.4 An artificial neuron. 10

3.1 A feature pyramid network. {C2, · · · , Cn} are feature maps created by a
feature extractor, {M2, · · · ,Mn} are merged feature maps, and {P2, · · · , Pn}
are the final feature maps. 16

3.2 HOG feature descriptor on IR small target image. (a) Raw image from
the SIRST dataset [12]. Image courtesy of Yimian Dai, College of Elec-
tronic and Information Engineering, Nanjing University of Aeronautics
and Astronautics, Nanjing, China. (b) HOG descriptors of original image. 17

4.1 Samples from the modified SIRST dataset. (a) – (c) contains IR small
targets. (d) – (f) contains no IR small targets. 22

4.2 Residual blocks. The blocks are equivalent, where the figure to the right
is a compressed version. 24

4.3 ResNet50 architecture. 25
4.4 (a) Peaks in heatmap of two key-points. (b) Predicting object size from

key-points. 26
4.5 Training results of CenterNet with ResNet50-FPN. The original ResNet50

obtains a loss L ≈ 0.15, and the modified ResNet50 obtains a L ≈ 0.3. . . 29
4.6 Proposed model-driven method based on the IPI model. 30
4.7 Different post-processing methods of target-patch. The white rectangles

are ground truth bounding boxes. (a) – (b) obtained using median filter.
(c) – (d) obtained using 10th percentile filter. (e) – (f) obtained using
mean filter. 31

4.8 Pixel values of IR small target after being processed by the model-driven
method. 32

5.1 Final test results showing the average frames per second (FPS) of the
proposed methods. 38

x

5.2 Predictions performed by proposed methods. Red boxes represent the
ground truth targets. Green boxes represent predictions. (a) – (c) raw im-
ages from the dataset. (d) – (f) obtained using MD-v1. (g) – (i) obtained
using MD-v2. (j) – (l) obtained using DD-v1-05. (m) – (o) obtained using
DD-v1-03. (p) – (r) obtained using DD-v2-05. (s) – (u) obtained using
DD-v2-03. 39

5.3 Predictions made by model-driven methods showing false positive pre-
dictions on true negative images. (a) – (c) negative images randomly
selected from the dataset. (d) – (f) obtained using MD-v1. (g) – (i) ob-
tained using MD-v2. 40

5.4 RPCA-PCP via IALM on negative images. Peaks in the surface plots
correspond to brighter pixels. (a) – (b) negative image from the dataset.
(c) – (d) obtained using original MD-v2. (e) – (f) obtained using MD-v2
with a patch size = 50× 50, and a stride = 9. 41

5.5 Different model-driven methods. The peaks in the surface plots repre-
sent brighter pixel values. (a) – (b) positive image from the dataset. (c)
– (d) obtained using MD-v1 (50× 50, stride = 9). (e) – (f) obtained using
MD-v1. (g) – (h) obtained using MD-v2. 42

5.6 Performance of DD-v1-03 and DD-v2-03. (a) – (c) obtained using DD-
v1-03. (d) – (f) obtained using DD-v2-03. 43

5.7 Performance of DD-v1-03 and DD-v2-03. (a) – (c) obtained using DD-
v1-03. (d) – (f) obtained using DD-v2-03. 44

5.8 Comparison of DD-v1-03 and DD-v2-03 in terms of recall, MCC, nIoU,
and Fβ . 44

5.9 Surface plot of feature map from the modified ResNet50. The peak rep-
resents an IR small target. 45

5.10 Computing the real-world size of a heat signature from an image. (a) Im-
age frame. (b) World frame. 46

5.11 Simplified edge and cloud computing. 47

xi

List of Tables

2.1 Types of electromagnetic radiation and their respective blackbody tem-
perature and wavelength range. 7

2.2 Activation functions. 10

4.1 Augmented SIRST dataset. 22
4.2 Object detection models from TensorFlow 2 Detection Model Zoo. The

speed is the average inference time required for a single image. 23
4.3 Shapes of modified ResNet. 26
4.4 Cloud GPU platform [38] specifications used for training data-driven

methods. 28
4.5 Pipeline values used for training the data-driven method. 29
4.6 Hardware test specifications used for testing data-driven and model-

driven methods. 35
4.7 Model-driven methods and their parameters. 35
4.8 Abbreviations for data-driven methods. 35

5.1 Results from evaluating the data-driven and model-driven methods. . . 37
5.2 normalised IoU (nIoU) of the best performing data- and model-driven

methods, and the best performing methods from [13] and [12]. 37
5.3 Average time (in seconds) used for processing a single image. 38

xiii

List of Abbreviations

APG Accelerated proximal gradient
ASIC Application-specific integrated circuit
CNN Convolutional neural network
CPU Central processing unit
CUDA Compute Unified Device Architecture
FPGA Field-programmable gate array
FPN Feature pyramid network
FPR False positive rate
FPS Frames per second
GPS Global positioning system
GPU Graphics processing unit
HOG Histogram of oriented gradients
IALM Inexact augmented Lagrange multiplier
IoU Intersection over union
IPI Infrared patch-image
IR Infrared
MCC Matthews correlation coefficient
PCP Principal component pursuit
PCA Principal component analysis
ResNet Residual neural network
RISC Reduced instruction set computer
RPCA Robust principal component analysis
SIRST Single-frame infrared small target
SVD Singular value decomposition
SVM Support vector machine
UAV Unmanned aerial vehicle

xv

List of Symbols

x Scalar
x Vector
X Matrix
X∗ Complex conjugate transpose
‖X‖∞ Uniform norm, defined as max |Xij|
‖X‖∗ Nuclear norm, the sum of singular values of X
‖X‖1 `1 norm, defined as Σij |Xij|
‖X‖2 `2 or spectral norm, the largest singular value of X

‖X‖F Frobenius norm, defined as
√

Σij |Xij|2

∇ Gradient operator
∩ Intersection
∪ Union
⊂ Proper subset
∨ Logical disjunction, also known as OR
bxc Floor function, defined as bxc = max {m ∈ Z | m ≤ x}

1

Chapter 1

Introduction

In recent years, the use of unmanned aerial vehicles (UAVs) in search and rescue mis-
sions has gained interest [2, 39, 46, 48]. As of 2020, over 500 missing people have been
located by UAVs, according to data collected by DJI [15], a leading company in com-
mercial UAVs. The 500th rescue took place in the United States of America, when a
police officer used a UAV fitted with an infrared (IR) imaging camera (also known as
a thermal imaging camera) to detect a missing person in a dark field. After looking
for the person on the ground without any luck, the officer launched a UAV, which
discovered the person in only four minutes.

Norwegian police located a missing person using a similar technique [18]. Animals
in the area made the search difficult due to their human resemblance in terms of ther-
mal radiation, necessitating three battery swaps for the UAV. The police discovered
the person in an area a search party had already approached without noticing the per-
son. Generally, a search and rescue mission is limited by time, area coverage, and cost.
Other limitations include the availability of human resources, e.g., UAV pilots, and the
pilot’s mental state and visual perception, which could be exhausted and inattentive
from staring at a monitor for hours.

The two dots in the right part of Fig. 1.1 are heat signatures, also known as IR small
targets.

FIGURE 1.1: Feature map created by convolving an image with weights extracted
from the modified ResNet used in this thesis. The two dots in the right part of
the image are heat signatures, also known as IR small targets.

2 Chapter 1. Introduction

An IR small target can be defined [12] as having a total size of less than 0.15% of an
image. For example, an IR small target can occupy a 9× 9 window in an image with a
height and width of 256× 256 px.

UAVs are usually operated by a pilot. However, autonomous UAVs [1, 24, 34, 55]
equipped with thermal imaging cameras are becoming common for applications such
as search and rescue missions, by locating people or human-related objects. Further,
the use of automated object detection in search and rescue missions can reduce human
errors, such as overlooking certain details. Errors are likely to occur if a person has
to monitor a video stream for hours. This could lead to the missing person not being
found. Compared to automated object detection, human operators have the advantage
of understanding the context of a video, and to recognise where to search based on pre-
vious experiences. However, it is difficult to detect crucial details in a high-definition
video, and the human eye could potentially be focusing only on a small section of the
video frame. The task of detecting missing victims is particularly challenging since
parts of the victim might be exceedingly small, and sometimes blend in with the sur-
roundings.

1.1 Problem

Time is critical in natural disasters such as avalanches, flooding, and earthquakes;
hence, using autonomous UAVs to discover any human activity can save lives. Res-
cuing a victim starts with locating the victim as quickly as possible. To increase the
likelihood of a victim’s survival, object detection techniques should be researched and
deployed to automatically detect humans and items related to human activity.

UAVs equipped with IR imaging cameras could be effective at detecting humans
in low light situations since they do not need to use any external light sources. IR
imaging [13, 59, 63] is used in civilian and military applications due to the ability to
operate in dark, cloudy and smoke-covered areas. Therefore, making it suitable and
widely used in scenarios involving surveillance of distant targets. However, if a search
and rescue team is in a situation where they need to find a human in a tropical climate,
the IR imaging camera might not be as effective due to the possibility of the target’s
heat signature (i.e., the thermal radiation emitted by the target) blending in with the
surroundings. Challenges will also occur if the target is covered by an object which
blocks thermal radiation, or when there are multiple, disturbing heat sources present.

1.2 Proposal

This thesis will focus on researching the use of object detection techniques, and IR
imaging to detect IR small targets in remote areas. The goal is to develop a UAV-
mounted system which detects IR small targets captured by an IR imaging camera. The
system will assist in narrowing down a search area. The combination of IR and colour
imaging can provide a fast search time in remote areas (e.g., in the ocean surface) since
an IR small target will be distinguishable from its surroundings, i.e., the target will be
brighter than the local background. The system is intended to complement search and
rescue missions and will not replace ground-level search.

The contributions of this thesis are as follows:

1.3. Scope 3

• Investigating various methods for IR small target detection.

• Design of an IR small target detection framework, which shall reduce the need
for UAV pilots, and assist search and rescue personnel.

• Evaluation and comparison of different IR small target detection methods on IR
images.

1.3 Scope

The system proposed in this thesis is intended to be mounted on a UAV with limited
battery capacity and limited payload (e.g., 1 kg), and will likely be based on single-
board computers. Typical single-board computers have limited computational power
due to their RISC-based CPUs (e.g., ARM) with low clock speeds, and their reliance
on SD cards for data storage. A single-board computer’s GPU is usually incapable
of meeting the requirements of machine learning algorithms. Further, single-board
computers equipped with adequate GPUs will increase the power consumption, thus
reducing the UAV’s total flight time.

Some areas of this work had to be given less focus than others, and a complete
and working physical prototype was not possible to create due to limitations during
this thesis, such as budget, time, and lack of access to proper hardware. As a result,
hardware and physical components are not prioritised, and this thesis will not focus
on UAV path planning, or the communication between the UAV and the ground con-
trol station. However, a discussion on computation offloading can be found in Sec-
tion 5.2.2. Additionally, it is assumed that the end-user of this system has the correct
permissions to obtain information from the area of operation using IR imaging cam-
eras, or other sensors.

1.4 Outline

The remainder of this thesis is organised in the following manner. Chapter 2 describes
the basic concepts of UAVs, search and rescue, IR imaging, object detection and deep
learning to equip the reader with the technical knowledge required to fully understand
this work. Chapter 3 provides a literature review on related works on IR small target
detection, and briefly introduces the problems and solutions associated with IR small
target detection, as well as state-of-the-art deep learning-based object detection meth-
ods, and low-rank and sparse matrix decomposition methods. Chapter 4 provides
an analysis of the IR small target image dataset, and discusses two proposed system
architectures. Further, this chapter describes the evaluation metrics in greater detail
and outlines the testing process. Chapter 5 provides the test results of the proposed
methods and discusses the test results and the performance of the proposed system
architecture. Finally, Chapter 6 presents the conclusion and summarises the results of
the proposed system. It discusses various future directions for IR small target detec-
tion research, as well as additional opportunities for further optimising the proposed
system.

5

Chapter 2

Background

This chapter contains the key concepts which are needed for understanding the topics
discussed at a later stage in this thesis.

2.1 Unmanned Aerial Vehicles

The last few years have witnessed an increased interest in unmanned aerial vehicles
(UAVs), particularly commercial UAVs. When referring to a UAV, most envision a
quadcopter, which is a helicopter with four rotors. This thesis considers a system that
will be designed for multi-rotor UAVs (e.g., a quadcopter) as well as other vertical
take-off and landing UAVs. In comparison to helicopters, UAVs require less traffic
management, are less expensive to operate, are easy to deploy, offer a high degree
of design flexibility, and can be equipped with a wide range of sensors. Moreover,
UAVs can access confined spaces that helicopters cannot, as well as areas deemed haz-
ardous to humans. Additionally, UAVs can be designed to operate in adverse weather
conditions such as high winds, rain, or cold temperatures. Further, UAVs provide a
bird’s-eye view of the search area. This grants a significant advantage to the search
and rescue team and reduces the time required to locate a missing person. However,
due to their restricted battery capacity, UAVs have a limited range.

This thesis assumes that the UAV uses an autonomous path planning algorithm to
navigate from a ground control station to a search area specified by GPS coordinates.
Search and rescue missions conducted in areas far away from the ground control sta-
tion will require a long battery life, and possibly on-board processing due to the data
communication being out of range. This is discussed in greater detail in Section 5.2.2.

2.2 Search and Rescue

Search and rescue operations encompass both the search for missing people and assis-
tance to those in need. Search and rescue missions can be performed by humans with
the assistance of certain animals (e.g., dogs), in a variety of climates. There are several
methods for locating victims, such as using ground penetrating radar [39] to search for
victims concealed beneath a layer of snow, or by using dogs to detect human presence
in forests. This thesis will outline a system to be used with UAVs to aid in the search
portion of search and rescue missions at sea, air, and land. The rescue procedure, such
as retrieving a person from the sea, will not be discussed.

6 Chapter 2. Background

2.3 Infrared Imaging

The system proposed in this thesis will analyse image frames captured by an IR imag-
ing camera attached to a UAV, where the UAV is intended to fly at low heights above
ground level, as the height above ground level is inversely proportional to the number
of pixels covering the target. In aerial IR images [13, 59], the IR targets occupy just
a few pixels on the imaging plane due to the long imaging distance. As a result, the
captured heat signature is likely to be weak. This makes the target difficult to recog-
nise, as it lacks obvious shape, size, and texture characteristics. In general, IR imaging
cameras have a lower image resolution than colour imaging cameras, which results in
insufficient image information to classify a detected object. An appropriate solution to
this problem is to use IR and colour imaging cameras in combination. A UAV fitted
with an IR imaging camera can detect heat signatures from greater heights, then fly
towards the detected heat source, where a colour imaging camera equipped with an
external light source can classify whether the object is a human or not.

The electromagnetic spectrum is illustrated in Fig 2.1.

Increasing wavelength

Gamma ray X-ray Ultraviolet Visible IR Microwave Radio

Increasing frequency

FIGURE 2.1: This diagram of the electromagnetic spectrum depicts types of elec-
tromagnetic radiation and their corresponding wavelengths.

An important law in the realm of IR imaging and specifically thermal imaging
is Wien’s displacement law [57]. This law was discovered by the German physicist
Wilhelm Wien, and essentially states that an object of high temperature emits strong
thermal radiation at short wavelengths λ:

λmax =
b

T
, (2.1)

where b is Wien’s displacement constant b ≈ 2.898× 10−3 m ·K, and T is the temper-
ature. Objects with a temperature exceeding 0 K emit electromagnetic radiation. The
amount of emitted radiation is determined by the object’s temperature. A blackbody [57]
is a perfect emitter which absorbs all types of electromagnetic radiation that hits it and
is able to emit more radiation than any other object or surface for a given T and λ. A
human body emits IR radiation, but cannot be considered as a blackbody. Clothing
reduces the skin temperature of a human body, thus causing the body to emit less ra-
diation. IR imaging cameras in the long-wave IR spectral band are suited for detecting
radiation emitted by humans. Commercial IR imaging cameras operate in the spectral
band or wavelengths [57] shown in Table 2.1. The entire IR spectral band ranges from
700 nm to 1 mm, but only a small range of the IR spectrum is used for IR imaging.

2.4. Generic Object Detection 7

TABLE 2.1: Types of electromagnetic radiation and their respective blackbody
temperature and wavelength range.

Spectral band Wavelength (λ) Blackbody temperature (T)
Ultraviolet (UV) 0.01 nm – 0.4 µm 7245 K – 289 800 K
Visible light (VIS) 0.4 µm – 0.7 µm 4140 K – 7245 K
Short-wave IR 0.9 µm – 1.7 µm 1705 K – 3220 K
Mid-wave IR 3 µm – 5 µm 580 K – 966 K
Long-wave IR 8 µm – 14 µm 207 K – 362 K

It is worth noting that any IR transmission [57] in the mid-wave IR and long-wave
IR spectral ranges can be totally quelled by a 1 mm thick layer of water. Mid-wave
IR and long-wave IR cameras [57] are popularly known as thermal imaging cameras
because they are capable of detecting radiation emitted by objects with a low surface
temperature, e.g., room temperature (i.e. 25 °C). These cameras detect IR radiation
and produce a thermal image, which can be used to determine the surface tempera-
tures. Thus, there is no need for an external light source to detect an object. Short-
wave IR imaging [57], on the other hand, is comparable to imaging in the visible (VIS)
spectral range. Short-wave IR detects scattered radiation coming from external light
sources, such as reflected sunlight. Standard short-wave IR cameras are unable to de-
termine object temperature at room-temperature, as short-wave IR radiation is negligi-
ble at temperatures below 100 °C. Thermal radiation can be detected using short-wave
IR imaging cameras at temperatures greater than 300 °C. Depending on the technol-
ogy [42], IR cameras can see in dark and low visibility conditions, such as fog, rain,
and snow. High-resolution IR imaging cameras are prohibitively expensive, and not
widely available to the general public. The commercially available thermal imaging
cameras typically generate low-resolution images, making them less suitable for IR
small target detection.

2.4 Generic Object Detection

Object detection can be defined as the process of locating and classifying objects of in-
terest in images. Machine learning, and specifically deep learning, have made tremen-
dous strides in recent years in the fields of computer vision and object detection. The
current state-of-the-art object detectors are based on neural networks, especially, con-
volutional neural networks (CNNs) [27, 42, 67], as the traditional machine learning
methods with hand-crafted features cannot achieve comparable results.

In order to perform object detection, it is necessary to first recognise and represent
various objects by extracting visual semantic features from digital images. A digital
image can be represented as an m×n matrix of pixels (x, y, u), where (x, y) denotes the
location of each pixel, and u denotes the value at that location [25]. For representing
locations within the image matrix, a left-hand coordinate system is used, as illustrated
in Fig. 2.2. To maintain consistency and reduce complexity, this work will primarily
consider 8-bit grayscale images when referring to an image. An 8-bit grayscale image
holds pixel values ranging from 0 to 255, with 0 representing the colour black, and 255
representing a completely white pixel.

8 Chapter 2. Background

0 2 4 6 8 10
x

0

2

4

6

8

10

y

FIGURE 2.2: Left-hand coordinate system used for
representing a grayscale image matrix.

Prior to the acclaimed CNNs, object detection relied on low-level feature-based
methods. Some of the traditional methods used for object detection in images or videos
mentioned in [2, 6, 63, 66, 67] include the scale-invariant feature transform (SIFT) [33]
descriptor, the Viola-Jones cascade object detector [56], histograms of oriented gradi-
ents (HOG) [14], and local binary patterns [45]. These methods are based on domain-
specific feature extractors and perform well on specialised detection tasks. For ex-
ample, HOG can be used to extract line features [6]. Over time, the performance of
these traditional object detectors plateaued, especially in recent years, as large datasets
containing images with high intra-class variability makes the design of hand-crafted
feature extractors a tedious task.

A classifier is required to distinguish an object from other categories or simply from
the background, and to organise the features of an object. Acceptable performance can
be achieved by combining a feature extractor (e.g., HOG) with a classifier [64]. Machine
learning-based classification [35] involves training a system to produce an appropriate
response y to a given input x, where y ∈ {1, . . . , C}, with C denoting the number of
categories or classes. C = 2 is referred to as a binary classification, i.e., y ∈ {0, 1}.

Supervised learning aims to build an algorithm or model which learns from a
dataset {(xi, yi)} containing training data xi and labels yi, by extracting useful pat-
terns and making predictions. The goal is to train a model that is robust to new input
data. In a supervised learning style, the training dataset contains the desired solu-
tions, which are often referred to as labels. These labels are used to correct the system’s
predictions, specifically to quantify the loss L(y, ŷ) (also known as error or cost) be-
tween the desired solution y and the prediction ŷ. Examples of supervised learning
algorithms [21] used for classification are logistic regression, support vector machine
(SVM), k-nearest neighbour, decision tree, naive Bayes, and neural networks. Many
traditional object detection algorithms [61] utilise a sliding window algorithm to iden-
tify and locate objects within image frames. Each image frame is scanned using a
sliding window of size w × h. Then classification is performed in the region covered
by the sliding window. This is a computationally inefficient method since it requires

2.5. Artificial Neural Networks 9

an exhaustive search. Additionally, the sliding window’s size will need to be adjusted
to accommodate detection of small, medium, and large objects.

2.5 Artificial Neural Networks

Deep learning implements machine learning through artificial neural networks. An
artificial neural network is suitable for processing substantial amounts of labelled data
since the network becomes more accurate the more data it is being trained on. The
artificial neural network consists of an input layer, several hidden layers, and an output
layer. A common artificial neural network is the feed-forward network or multi-layer
perceptron [21] shown in Fig. 2.3, which learns key features or patterns by adjusting
its internal weights w.

Hidden layers
Input layer

Output layer

FIGURE 2.3: A multilayer perceptron.

A weight w(k)
i is an adjustable value given to the connection between a neuron in

layer a(k−1) and a neuron in the next layer a(k). The weights specify how strong the
connections between the neurons are. The output of a(k) depends on the values of w(k),
which can be positive or negative. To produce a prediction or output ŷ, the input x
to the network multiplied with the weight w(1) flows through a feed-forward network.
The input values propagate to the hidden layers of the network, then the hidden layers’
output values are forwarded to the output layer which produces a prediction ŷ.

A perceptron, shown in Fig. 2.4, is an artificial neuron (e.g., a neuron in one of the
hidden layers) which can learn over time by reinforcing the weights which lead to the
desired output.

10 Chapter 2. Background

FIGURE 2.4: An artificial neuron.

A perceptron’s output ŷ is given by the following expression:

ŷ = f
(
a(k)

(
w(k+1)

)ᵀ
+ b(k+1)

)
, (2.2)

where the bias b(k+1) affects learning by giving certain neurons more or less attention.
The weights and biases will hereinafter collectively be referred to as θ. The function f
in Equation (2.2) can be any activation function [50] from Table 2.2. The operation in
Equation (2.2) is implemented by the artificial neural network’s dense layer [51].

TABLE 2.2: Activation functions.

Name Function
Rectified Linear Unit (ReLU) max {0, x}
Sigmoid σ(x) = 1

1+e−x

tanh tanh(x) = ex−e−x
ex+e−x

Swish xσ(βx) = x
1+e−βx

Dropout [4, 21], can be used to regularise a neural network, i.e., to reduce the impact of
a neuron by randomly removing it from the network’s layers. This prevents overfitting,
and results in a less computationally expensive network.

2.5.1 Softmax

The final hidden layer outputs a collection of scores z. To interpret these scores, the
softmax function shown in Equation (2.3) can be used:

softmax(z)i =
exp(zi)∑n
j=1 exp(zj)

. (2.3)

Softmax [21] converts the final prediction scores into a probability distribution over
all the possible output classes. Additionally, softmax [61] can be used as a classifier
instead of SVM.

2.5. Artificial Neural Networks 11

2.5.2 Loss Functions

The loss function L(y, ŷ) (alternatively called the cost or error function) estimates the
difference between the predicted output ŷ and the desired output y. A low loss indi-
cates an accurate artificial neural network. The following are various types of loss [61]
and associated loss functions:

• The classification loss represents the difference between the predicted class and
the ground truth class. Common classification loss functions include hinge loss,
cross-entropy loss, and Huber loss.

• Localisation loss represents the difference between an object’s predicted location
and its ground truth location. Well-known localisation loss functions include
mean squared error and mean absolute error.

2.5.3 Gradient Descent

Gradient descent [21] is a technique for minimising a function f(x). A new point xn+1

where f has a lower value is obtained by taking small steps γ in the opposite direction
of the gradient:

xn+1 = xn − γ∇f(xn), (2.4)

where γ is known as the learning rate. According to Goodfellow et al. [21], a low learn-
ing rate can lead to a stagnant training loss. A large learning rate will cause oscillations
and an increase in training loss. It is standard practice to begin with a low learning rate
and gradually increase it. Gradient descent is used by artificial neural networks to min-
imise and possibly find the minimum of the loss function, i.e., L = 0, by discovering
the optimal parameters θ. The first loss is calculated after initialising the weights with
random values. Then xn+1 should be a point where the loss function decrease as much
as possible. The final θ preferably yields the function’s global minimum. However, it
is possible to move in a direction that leads to a local minimum.

The performance of a machine learning algorithm is measured by its ability to min-
imise the training loss and to minimise the difference between the training and test
loss. These two factors correspond to machine learning’s two primary difficulties [21]:
underfitting and overfitting. When a model fails to achieve a small loss on the training
data, it is said to be underfitting. If the difference between the training and test loss
becomes excessive, the model is overfitting. Deterministic gradient methods use all
the available samples in the dataset simultaneously when training the network, which
results in a high computational cost. However, most deep learning algorithms use
stochastic gradient descent [21]. Stochastic gradient descent uses a fixed number of
samples from the dataset called a minibatch or batch size. This helps reduce the com-
putational cost.

2.5.4 Backpropagation

Backpropagation [21] is a technique for determining the gradient, and it is used in
conjunction with another method, e.g., stochastic gradient descent, to facilitate learn-
ing with this gradient. Backpropagation is not limited to artificial neural networks; it
is able to estimate the derivatives of most functions. In brief, backpropagation is an

12 Chapter 2. Background

algorithm which trains an artificial neural network by propagating the loss L back to-
wards the input layers, and updates the internal parameters θ, thereby strengthening
the connections which yields a low loss. This is repeated on the condition that the loss
decreases.

2.6 Convolutional Neural Networks

For automatic object detection, deep learning methods, particularly convolutional neu-
ral networks (CNN), are preferred. A CNN is an artificial neural network that is pri-
marily used for image classification and object detection. The CNNs are superior to
feature extractors such as SIFT and HOG [2] but consume more processing power. The
CNN takes an input image and propagates it through multiple hidden layers, return-
ing a probability vector for each class in the process. A CNN’s initial layers are capable
of extracting simple patterns such as lines and arches. As the network grows deeper,
the succeeding layers combine features of previous layers to create more complex pat-
terns. Then, these features are combined into an object resembling the input image’s
object.

CNNs are essentially classifiers that perform unsupervised feature extraction, in
which the network learns by adjusting internal weights based on the assumed impor-
tance of certain features. The complexity of training a CNN increases proportionally
with the number of hidden layers, as there are more weights to adjust and more fea-
ture extraction to perform. For example, if a single input neuron to the CNN is a pixel
from a grayscale image (i.e., an image with a single colour channel) with a resolution
of 512 × 512 px. Then the CNN will receive 512 × 512 × 1 input neurons. As a re-
sult, training CNNs on high-resolution images will be excessively costly in terms of
computational resources required.

2.6.1 Layers

Further, a CNN requires several convolutional layers, several pooling-layers, and a
fully connected layer.

Convolutional layers [21] are used to extract features from input images. This is
accomplished by sliding a kernel matrix (also known as a filter) over an image with
a specified stride, i.e., moving the kernel matrix across an image from left to right for
each step. Additional features are obtained by performing the spatial convolutional
operation shown in Equation (2.5) on the input image using several different kernel
matrices. This is similar to traditional feature extraction, which involves manipulating
an input image in order to extract corners or lines. The output from the 2D convolu-
tional layer is a feature map.

x(t) ∗ w(t) :=

∫ ∞
−∞

x(τ)w(t− τ)dτ. (2.5)

Here, x is the input data andw the kernel. Some machine learning software libraries [21],
e.g., TensorFlow, implement cross-correlation as shown in Equation (2.6) and refer to

2.6. Convolutional Neural Networks 13

it as convolution.

(D ∗K)(i, j) =
∑
m

∑
n

D(i+m, j + n)K(m,n), (2.6)

where D is an input image, and K is a kernel.

The pooling layer is utilised for lowering the computational cost of a network by
downsampling (i.e., reducing the size of) feature maps while retaining their main in-
formation. The various types of pooling include maximum, average, and sum-pooling.
Max-pooling distributes the largest value of a 2×2 filter moved from left to right across
a feature map in the following manner:4 1 2

9 4 5
6 7 8

 2×2−−−−−−−−→
MAX POOLING

[
9 5
9 8

]
. (2.7)

Whereas average pooling calculates the average value for each 2× 2 filter moved over
a feature map as follows: 4 1 2

9 4 5
6 7 8

 2×2−−−−−−−−→
AVG. POOLING

[
4.5 3
6.5 6

]
. (2.8)

The fully-connected layer is usually the last layer of the network. This layer enables
classification by linking the feature maps of the previous layers in order to create a
vector of predictions for each class. This vector can be used by the softmax function to
generate the final prediction results.

This chapter has briefly introduced the fields of IR imaging, object detection, deep
learning and CNNs. The research area of CNN-based object detection is advancing
rapidly, with new papers being published daily. The next chapter will discuss object
detection methods with an emphasis on the detection of small objects, in addition, the
task of extracting an IR small target from a noisy background image will be addressed.

15

Chapter 3

Object Detection

3.1 Meta-architectures and Feature Extractors

Object detection methods based on Convolutional Neural Network (CNN) are typi-
cally composed of a feature extractor and a meta-architecture. The meta-architectures
can be divided into one-stage and two-stage models. One-stage models [36, 62, 66]
such as YOLO [40] and Single Shot MultiBox Detector (SSD) [32] require only one quick
pass through the network to estimate the class and location of all objects in an image.
Consequently, they are faster and simpler than two-stage models.

A two-stage model [62], such as Faster R-CNN [41], must generate region propos-
als before the detector can make any predictions. For now, two-stage architectures
are considerably slower than the one-stage architectures but achieve better prediction
accuracy.

The accuracy of an object detector depends heavily on the feature extractor [67].
Some meta-architectures were initially introduced with a certain feature extractor. How-
ever, the meta-architecture can be detached from the initial feature extractor, allowing
the meta-architecture, with some adjustments, to work with any feature extractor. The
feature extractor has a profound effect [22] on the object detector’s speed (i.e., the time
required to detect objects in an image). According to [61], 90% of computations and
memory usage in a CNN-based architecture arises from the feature extractor.

3.2 Feature Pyramid Networks

Lin et al. proposed the feature pyramid network (FPN) [28] in 2017. FPN takes an
image as input and returns proportionally scaled feature maps at multiple levels. A
bottom-up pathway, a top-down pathway, and lateral connections as shown in Fig. 3.1
are used to create a pyramid. The combination of feature maps in an FPN creates new
feature maps with high- and low-level features at different resolutions. Where the
low-resolution feature maps contain the high-level features. Further, the FPN operates
separately from the network’s feature extractor.

16 Chapter 3. Object Detection

Bottom-up pathway

Top-down pathway

Lateral connections

FIGURE 3.1: A feature pyramid network. {C2, · · · , Cn} are feature maps created by a
feature extractor, {M2, · · · ,Mn} are merged feature maps, and {P2, · · · , Pn} are the final
feature maps.

Several deep learning-based object detectors [67] perform detection at the top layer
of the network. While the deeper layers of a CNN are useful for classification, they
are ineffective at object localisation. FPNs [28] employ a top-down design with lateral
connections for creating high-level feature maps at all sizes. The FPN makes improve-
ments in object detection at assorted sizes because the forward propagation in a feature
extractor inherently builds a feature pyramid. The bottom-up pathway of the FPN is
created by the model’s feature extractor (e.g., ResNet), which extracts features at sev-
eral scales, followed by a down-scaling step. One pyramid level for each stage of the
feature extractor is created, and the final layer from each stage is used as feature maps
in the bottom-up pathway, as they contain the strongest features. The lateral connec-
tions merge the feature maps (C) from the bottom-up pathway with the top-down
pathway. Fig. 3.1 shows how a top-down feature map (M) is created by upsampling
a smaller top-down feature map by a scale of two. Then, this upsampled top-down
feature map is summed with a bottom-up map of the same scale. C is first convolved
with a 1 × 1 kernel to reduce channel depth. The first top-down feature map Mn is
created by adding a 1 × 1 convolution layer to Cn. The final set of feature maps (P)
are created by adding a 3× 3 kernel to each M . Lin et al. states that C1 is not included
in the pyramid due to its large memory size. Comparing FPN in Fast R-CNN with
the baseline Fast R-CNN, the FPN method improves small object average precision by
2.1% [28].

3.3. Infrared Small Target Detection 17

3.3 Infrared Small Target Detection

Due to their size, IR small targets commonly does not exhibit any prominent features
which could help classify them. However, an IR image model can be formulated as [20,
31]:

fD = fL + fS + fN , (3.1)

which states that the original image fD is composed of a background layer fL, a target
layer fS , and a noise layer fN . As already stated, an IR small target [12] can be defined
as an object having a total size of less than 0.15% of an image. This implies that an ob-
ject detection method relying on a sliding window algorithm, e.g., a traditional object
detector, will be quite slow at locating IR small targets.

In long-wave IR images, the combination of a feature extractor such as HOG and a
machine learning-based classifier such as SVM is non-successful [63], as low resolution
and poor contrast influences the performance. HOG depends on feature descriptors
based on the local gradients of an image, which is obtained from the edges or contrast
changes within an image. This will not yield satisfactory results in IR images, as shown
in Fig. 3.2(b).

(a) (b)

FIGURE 3.2: HOG feature descriptor on IR small target image. (a) Raw image from the
SIRST dataset [12]. Image courtesy of Yimian Dai, College of Electronic and Informa-
tion Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
(b) HOG descriptors of original image.

3.3.1 Infrared Small Target Detection Methods

The field of IR small target detection has been dominated by model-driven methods.
One of the best performing [12] non-learning model-driven methods using low rank
and sparse matrix decomposition is the infrared patch-image (IPI) model [20]. This
method is described in Section 3.4.1.

CNNs, specifically FPNs, outperform non-learning model-driven methods [13], in-
dicating that learning from data can lead to high accuracy in IR small target detection.
However, the majority of CNNs learn high-level features by downsampling the feature
maps. As a result, the IR small targets become engulfed by the background features in
the deepest layers. To ensure adequate detection results, a specialised network design
is required [12, 13]. While calibrating a pre-trained network can help with the problems
created by training the feature extractor on general classification images (i.e., colour
images), such as the Common Objects in Context (COCO) [9] dataset, the IR images

18 Chapter 3. Object Detection

are significantly different, and the fine-tuning has a negligible effect on performance.
As a result, it is not advised [59] to use pre-trained networks (i.e., transfer learning) for
the task of IR small target detection, but rather to train the CNN’s weights from zero
using only IR small target images. In addition, feature maps at different scales are im-
portant for generic datasets which contain large, medium, and small objects. However,
these feature maps are unnecessary when the network is only utilised for detection of
IR small targets.

Meta-architectures such as Faster R-CNN and YOLO only use the last layer’s fea-
ture map to localise objects and make predictions. These models are ineffective at
localising small objects due to the absence of low-level features [6] at the last layer.
The Single Shot MultiBox Detector is also not adept at detecting small objects [61]. The
problem of detecting small objects can be alleviated by using a more fitting feature ex-
tractor (e.g., ResNet) [64]. According to [17], the main drawback of employing a CNN
for the task of IR small target detection is that feature learning will become particu-
larly challenging, as an IR small target generally does not have any prominent shape.
Further, it is difficult to extract features from low resolution images, and the IR small
targets may disappear in the deep layers of a network due to their small size. Dai et
al. [13] states that a prediction map of high resolution is crucial for detecting IR small
targets, and thus propose the attentional local contrast network (ALCNet). ALCNet
achieves better results than the completely data- and model-driven methods on the
SIRST dataset (the dataset is discussed in Section 4.1), indicating that when detecting
IR small targets, one should prioritise combining CNNs with domain-specific knowl-
edge, e.g., methods for measuring local contrast. To conserve small targets and extract
feature maps, ALCNet employs a modified ResNet as its feature extractor.

Wang et al. [59] suggests restricting the number of downsampling operations, thus
gaining a sufficiently large feature map which conserves features of the IR small tar-
gets. Further, Wang et al. employs residual connections to mitigate the network’s
degradation problem. This results in higher object detection accuracy. The degradation
problem and residual connections are discussed in Section 4.2.1.

3.4 Low-Rank and Sparse Matrix Decomposition

Low-rank and sparse matrix decomposition methods [58] try to separate an image into
a foreground component S and a background component L. A sparse matrix [4] has
a considerable majority of elements equal to zero. Thus, the IR small targets are often
the non-zero values in the sparse matrix, making them easily identifiable. A low-rank
matrix [4] has a small number of linearly independent rows and columns compared
to the matrix’s size. The background patch of an IR image has a low rank, and the IR
small targets of the foreground are sparse when compared to the background.

3.4.1 Infrared Patch-Image Model

Evaluation of a model-driven method is quite straightforward because it does not re-
quire any training data. The IR patch image (IPI) model proposed by Gao et al. [20] is
an example of a model-driven method. The IPI model is a technique for IR small tar-
get detection based on low-rank and sparse matrix decomposition, which is capable of
producing accurate results even when confronted with extremely complex scenes [58].

3.4. Low-Rank and Sparse Matrix Decomposition 19

However, background edges, corners, or blobs infiltrate the sparse matrix, resulting
in multiple discrepancies that the IPI model could treat as targets. In the IPI model,
image patches from an IR image are rearranged using a sliding window to form a data
matrix D. D is then decomposed into a low-rank matrix L and a sparse matrix S using
the robust principal component analysis (RPCA) algorithm in conjunction with princi-
pal component pursuit (PCP) [5]. Principal component analysis (PCA) [4] is a widely
used technique for dimensionality reduction in situations where one needs to isolate
the core of a dataset. The aim of PCA is to fit an ellipsoid to a dataset, with each axis of
the ellipsoid representing a principal component, and the axis size indicating the amount
of variance.

Continuing with the IPI model, D can be decomposed into two components:

D = L + S. (3.2)

PCP can recover L and S from D by solving the following optimisation problem [20],
i.e., finding the L and S that minimises the following expression:

min
L,S

(‖L‖∗ + λ ‖S‖1) , subject to D = L + S. (3.3)

However, this decomposition does not consider the noise N within the image, i.e.:

D = L + S + N. (3.4)

Thus, the following problem needs to be solved [20]:

min
L,S

(
‖L‖∗ + λ ‖S‖1 +

1

2µ
‖D− L− S‖2F

)
, (3.5)

where µ and λ are positive-valued parameters. The problem in Equation (3.5) can be
solved through accelerated proximal gradient (APG) described in Algorithm 1.

Algorithm 1 RPCA-PCP via APG [20, 30].

Require: IR patch-image matrix D ∈ Rm×n, λ.
1: L0 = L−1 = 0; S0 = S−1 = 0; t0 = t−1 = 1; µ̄ > 0; η = 0.99;
2: while not converged do
3: YL

k = Lk + tk−1−1
tk

(Lk − Lk−1).
4: YS

k = Sk + tk−1−1
tk

(Sk − Sk−1).
5: GL

k = YL
k − 1

2
(YL

k + YS
k −D).

6: (U,Σ,V) = svd(GL
k).

7: Lk+1 = USµk
2

[Σ] V∗.
8: GS

k = YS
k − 1

2
(YL

k + YS
k −D).

9: Sk+1 = Sλµk
2

[
GS
k

]
.

10: tk+1 =
1+
√

4t2k+1

2
, µk+1 = max(ηµk, µ̄).

11: k ← k + 1.
12: end while
13: return Sk. . Return the sparse matrix

20 Chapter 3. Object Detection

Gao et al. [20] use µ0 = σ2, µ̄ = 0.05σ4, and λ = 1√
max(m,n)

, where σ2 and σ4 are the

2nd and 4th largest singular values from the singular value decomposition (SVD) of
D. And S is the soft-thresholding operator [30]:

Sε [x]
.
=

x− ε, if x > ε,

x+ ε, if x < −ε,
0, otherwise.

(3.6)

However, RPCA-PCP via APG requires a significant amount of time to converge (i.e.,
over 6 min for a single IR small target image when tested on the machine detailed in Ta-
ble 4.6). Fortunately, several algorithms exist for solving PCP [3]. A PCP solver known
as the inexact augmented Lagrangian method (IALM) is at least 5× faster than APG.
IALM is described in detail in Section 4.4.

Singular value decomposition (SVD) [4] is used by Algorithm 1 and IALM. SVD is
employed to decompose an m× n data matrix D into unitary1 matrices which contain
information on the column U and row V∗ space of D, including a diagonal matrix Σ
as shown in Equation (3.7).

D = UΣV∗ = u1σ1v
∗
1 + u2σ2v

∗
2 + umσmv

∗
m, (3.7)

where U is an m×m matrix, Σ is an m×n matrix, and V∗ is an n×n matrix. The diag-
onal entries of Σ are known as the singular values of the data matrix D, and indicate
the importance of U and V. The number of non-zero singular values is equal to the
rank of D, i.e., a low-rank matrix has a small number of singular values. For example,
a repeating background in an image has a low rank. However, since the rank(D) = m
at most, the SVD of D yields:

D = ÛΣ̂V∗, (3.8)

where Û and Σ̂ are the first m columns of U, and first m ×m block of Σ, respectively.
This is known as economy SVD and can be implemented in Python using the NumPy
library function [10] shown in Listing 3.1. Economy SVD [4] is suited for matrices with
a significantly larger number of columns than rows.

1 import numpy
2 U, Sigma , V = numpy . l i n a l g . svd (matrix , f u l l _ m a t r i c e s =Fa l se)

LISTING 3.1: NumPy library function for implementing economy SVD in Python.

1A unitary matrix is defined as X∗X = XX∗ = I, where I is the identity matrix.

21

Chapter 4

Methodology

This chapter outlines the methods used to collect and analyse the image dataset em-
ployed in this work. The methods used to develop the system, and the rationale for se-
lecting these methods are discussed. In this work, two different methodologies for de-
tection of IR small targets are proposed and tested, a data-driven CNN-based method
and a model-driven method using low-rank and sparse matrix decomposition. Fur-
ther, this chapter details the testing process.

4.1 IR Small Target Dataset Analysis

A dataset of IR small target images is required to train the data-driven method, and test
both the model- and data-driven methods. However, there are few publicly available
datasets of IR small targets. The datasets for IR small target detection that exist are not
easily accessible and contain a small number of samples. The primary reason for this
is that IR imaging cameras are expensive and not widely available to the public. As
a result, creating a dataset of thermal (i.e., long-wave IR) images is an expensive and
time-consuming task for those without access to an IR imaging camera.

The single-frame IR small target (SIRST) dataset [11], which contains 427 short-wave
IR and mid-wave IR images, is used for training and testing the proposed methods.
Short-wave IR and mid-wave IR are suited for objects with temperatures in the range
300 °C to 3000 °C. However, the final system is designed to utilise long-wave IR im-
ages, which is suited for targets with temperatures in the range −70 °C to 90 °C. In IR
images, hot objects will consist of white pixels, and cold objects will appear as black
pixels. Images in the SIRST dataset have a width and height ranging from 150 px to
440 px. The sample size of the dataset was increased since the model will perform
better with more samples and because transfer learning cannot be utilised. Further,
scarcity or low variance in the training data will result in a model that performs poorly
on new data. The dataset was augmented with 642 images by manipulating the origi-
nal images. The images were mirrored around their x-axis, rotated 90◦ clockwise, and
modified by shifting an image horizontally and zooming in on specific areas. Also, the
brightness of the images was adjusted. This resulted in 210 images which did not con-
tain any targets. For example the images shown in Fig. 4.1(d), 4.1(e) and 4.1(f). These
images will be used as negatives for testing the final methods. The original SIRST
dataset does not include any negative samples.

The content of the new, augmented SIRST dataset is listed in Table 4.1. As suggested
by Goodfellow et al. [21], about 80% of the positive samples in the dataset is used for
training and 20% is used for validation and testing.

22 Chapter 4. Methodology

TABLE 4.1: Augmented SIRST dataset.

Stage Number of images Number of objects
Training 855 1030
Testing 214 268
Negative 210 0
Total 1279 1298

Fig. 4.1 shows an excerpt from the dataset. It is obvious that the targets shown in
Fig. 4.1(a), 4.1(b) and 4.1(c) are dim and absorbed by the noisy background. Certain
targets are difficult for humans to discover as they require one to perform a focused
and thorough search and consider whether they are a target or just noise. In short, the
classification task of IR small target detection is binary [12], and as most of the targets
in the images lack any definite features, all of them are placed into a general class called
"Target".

(a) (b) (c)

(d) (e) (f)

FIGURE 4.1: Samples from the modified SIRST dataset. (a) – (c) contains IR small targets. (d) –
(f) contains no IR small targets.

The new dataset is labelled using the annotation tool LabelImg [29]. A rectan-
gular box is drawn around each object discovered in the dataset. These boxes are
known as ground truth bounding boxes. The annotations are saved as XML files in the
PASCAL VOC format as shown in Listing 4.1. The XML files are then converted into
the TensorFlow record format [54], which are binary files optimised for TensorFlow.

4.2. Data-driven Approach 23

1 <annotat ion>
2 < f o l d e r > d a t a s e t</ f o l d e r >
3 <fi lename>img . png</fi lename>
4 <path>/ d a t a s e t /img . png</path>
5 . . .
6 < s i z e > < ! −−Image s i z e −−>
7 <width>202</width>
8 <height>289</height>
9 <depth>1</depth>

10 </ s i z e >
11 . . .
12 < o b j e c t >
13 <name>Target</name> < ! −−Object c l a s s −−>
14 . . .
15 <bndbox> < ! −−Bounding box: o b j e c t l o c a t i o n −−>
16 <xmin>90</xmin>
17 <ymin>135</ymin>
18 <xmax>109</xmax>
19 <ymax>152</ymax>
20 </bndbox>
21 </ o b j e c t >
22 </annotat ion>

LISTING 4.1: Annotated dataset sample in PASCAL VOC format.

4.2 Data-driven Approach

Numerous CNN models are available online, and it is difficult to differentiate between
them. A model from the TensorFlow 2 Detection Model Zoo [49] is selected to be the data-
driven method, as these models are readily available. A model with a good trade-off
between accuracy and speed (i.e., inference time for a single image) is desired. Table 4.2
shows an excerpt from the TensorFlow Model Zoo. Based on the proposals from the
literature review, the final choice fell on CenterNet ResNet50 V1 FPN (512× 512). This
model achieves an accuracy of 31.2% mAP (mean average precision) on the COCO
dataset at an average speed of 27 ms per image. A model with a higher accuracy can be
deployed if edge computing is utilised, see Section 5.2.2 for a discussion on local and
edge processing.

TABLE 4.2: Object detection models from TensorFlow 2 Detection
Model Zoo. The speed is the average inference time required for a sin-
gle image.

Model Speed COCO mAP
CenterNet MobileNetV2 FPN 512× 512 6 ms 23.4%
CenterNet ResNet50 V1 FPN 512× 512 27 ms 31.2%
CenterNet ResNet50 V2 512× 512 27 ms 29.5%
EfficientDet D2 768× 768 67 ms 41.8%

Further, results from [65] show that, on a 512× 512 px input image, CenterNet with
ResNet18 achieves 28.1% COCO mAP at 7 ms per image frame, which amounts to 142

24 Chapter 4. Methodology

FPS. On the same test, YOLOv3 with Darknet-53 achieved a 33% COCO AP (average
precision) at 20 FPS.

4.2.1 Residual Neural Network (ResNet)

Having a deep network is desirable, as a deeper network can learn more features.
However, as the network gets deeper, there may be instances where the accuracy sat-
urates and then rapidly decreases. This is known as degradation [61]. Also, a deeper
network leads to more parameters, which results in a more resource intensive model.
As a solution to this problem, ResNet [23] introduced the residual block as shown in
Fig. 4.2.

+

ReLU

ReLU

FIGURE 4.2: Residual blocks. The blocks are equivalent, where the
figure to the right is a compressed version.

The residual block takes the outputF(x) of one or more layers and combines it with
a shortcut connection containing the value x which is feeding those layers. Since the
module prevents degradation, the network’s depth can increase, and the accuracy will
improve over time. Results from [23] show that the effect of the residual connections
increases proportionally with the number of layers.

ResNet uses batch normalisation [21] right after each convolution. Batch normali-
sation is a dynamic reparameterisation technique that was instigated by the challenges
of training deep networks. The gradient (from gradient descent) specifies how each
parameter of a layer should be updated if the other layers in the network remain un-
changed. However, all layers are updated concurrently, and this might lead to un-
wanted outcomes since the gradient assumes that the functions in other layers stay
unchanged. Batch normalisation effectively simplifies the process of synchronising the
updates in multiple layers and can be introduced to the network’s input and hidden
layers.

ResNet with FPN achieves a 2−3% increase in accuracy as compared to the original
ResNet [36]. A ResNet with 50 layers is shown in Fig. 4.3.

4.2. Data-driven Approach 25

 Conv, 512 Conv, 128 Conv, 256

 Conv, 64

MaxPooling

AveragePooling

Fully-connected

FIGURE 4.3: ResNet50 architecture.

4.2.2 Modified ResNet

The ResNet50 V1 FPN (512× 512) is used as the object detector’s feature extractor. The
SIRST dataset contains images that are smaller than the original 512×512 px input size
to the network. Thus, instead of upscaling the input images to 512 × 512 px, which
would distort them, they are resized to 224 × 224 px. This is also performed for the
original ResNet50.

Based on suggestions amassed from the literature review, the downsampling oper-
ations of the feature extractor is reduced to improve the detection of small objects. To
achieve satisfactory results in terms of accuracy, the depth of the ResNet is maintained
at 50 layers. The first convolutional layer of the original ResNet50 has a stride of 2, a
kernel size of 7, and a padding of 3. The downsampling is reduced by changing the
stride from 2 to 1 in the first convolutional layer, as shown in Listing 4.2.

1 # f i l e : tensorf low/python/keras/ a p p l i c a t i o n s / r e s n e t . py
2 x = l a y e r s . Conv2D(6 4 , 7 , s t r i d e s =1 , # o r i g i n a l s t r i d e s =2
3 use_bias=use_bias , name= ’ conv1_conv ’) (x)

LISTING 4.2: Excerpt from a Python implementation of ResNet [53]:
Reducing stride of the first convolutional layer.

26 Chapter 4. Methodology

The output shape after a spatial convolutional operation can be found by the fol-
lowing expression [16]:

o =

⌊
i+ 2p− k

s

⌋
+ 1, (4.1)

where i is the input square shape, k is the square kernel size, p is the padding, and s is
the stride. The output shape of the first convolutional layer becomes:

o =

⌊
224 + 2(3)− 7

1

⌋
+ 1 = 224, i.e., 224× 224. (4.2)

The shapes of the modified ResNet50 are listed in Table 4.3. Notice in Fig. 4.3, the out-
put shape of the original ResNet’s last convolutional layer "Conv, 512" has an output
shape of 7× 7.

TABLE 4.3: Shapes of modified ResNet.

Layer Input shape Output shape
Conv, 64 224× 224 224× 224
Max. pool 224× 224 112× 112
Conv, 128 112× 112 56× 56
Conv, 256 56× 56 28× 28
Conv, 512 28× 28 14× 14

4.2.3 CenterNet

CenterNet [65] is a keypoint-based object detector, which means that it represents an
object as a single point in the centre of its bounding box. Other object properties, such
as size and dimension, are obtained by moving from the centre location towards the
bounding box’s outline, as illustrated in Fig. 4.4(b).

(a) (b)

FIGURE 4.4: (a) Peaks in heatmap of two key-points. (b) Predicting object
size from key-points.

First, an input image D of width W and height H is fed into a feature extractor
(e.g. ResNet) in order to create a key-point heatmap Ŷ ∈ [0, 1]

W
R
×H
R
×C , in which R is

4.3. Training the Data-driven Method 27

the stride, and C is the number of classes. Peaks in the heatmap shown in Fig. 4.4(a)
are mapped as object centre points P̂ . The objects bounding box size is inferred from
the centre points. Inference is performed in a single forward-pass, where the predic-
tion Ŷx,y,c = 1 represents a detected key-point, and Ŷx,y,c = 0 corresponds to the back-
ground. CenterNet uses the classification loss function shown in Equation (4.3) termed
penalty reduced logistic focal loss, with α = 2.0 and β = 4.0.

L =
−1

N

∑
xyc

(

1− Ŷxyc
)α

log
(
Ŷxyc

)
, if Yxyc = 1,

(1− Yxyc)β
(
Ŷxyc

)α
log
(

1− Ŷxyc
)
, otherwise,

(4.3)

where N is the number of key-points in D.
CenterNet does not employ sliding windows or non-maximum suppression. Non-
maximum suppression is a post-processing method which retains only the proposed
bounding boxes (also known as anchor boxes) with the most confident prediction
scores, while suppressing adjacent and overlapping bounding boxes with lower scores.

4.3 Training the Data-driven Method

A prototype of the data-driven method was implemented using the Python program-
ming language and the machine learning library TensorFlow. Python was selected
as the preferred programming language as it is a simple language suitable for rapid
software development, and has an extensive number of libraries, documentation, and
examples readily available. TensorFlow is an open-source machine learning library de-
veloped by Google in C++, Python and CUDA, which allows users to create, train, and
make use of neural network models. Several APIs are available, with the Python API
being the most comprehensive and stable. In TensorFlow, a computational graph of
edges and nodes is used to build a deep learning model [37]. The edges represent data
in the form of tensors (i.e., multi-dimensional arrays), and the nodes perform opera-
tions on the tensors (e.g., multiplications). The TensorFlow Object Detection API [52] was
utilised in this thesis to modify and train the CenterNet ResNet50 V1 FPN 512 × 512,
as well as perform inference on images from the SIRST dataset.

Training CNNs relies a great deal on matrix multiplications, which can be per-
formed in parallel. GPUs are well-suited for this type of computation, as their ar-
chitecture allows for 100× greater speed than CPUs at this task [37]. TensorFlow code
is optimised for GPU execution using CUDA and cuDNN (CUDA Deep Neural Net-
work library). Additionally, neural network models can be trained in parallel across
GPU clusters using TensorFlow, thus providing greater amounts of available memory.
This accelerates the training process and enables the creation of deeper networks.

Specifications of the machine used for training the data-driven methods are found
in Table 4.4.

28 Chapter 4. Methodology

TABLE 4.4: Cloud GPU platform [38] specifications used
for training data-driven methods.

Specifications
OS Ubuntu 18.04 LTS
CPU Intel® Xeon® E5-2623 v4 @ 2.6 GHz
GPU NVIDIA® Quadro® P5000 (16 GB)
RAM 30 GB
TensorFlow 2.1.0

4.3.1 Training Configuration

The data-driven models are trained from scratch. Unnecessary dataset augmentation
methods are removed from the training pipeline (i.e., a file describing the training con-
figuration). This includes methods for adjusting the hue, contrast, saturation, and
brightness. Furthermore, the network’s input shape was reduced from 512 × 512 px
to 224× 224 px as mentioned earlier.

The learning rate determines how fast the network learns. Goodfellow et al. [21]
states that a high learning rate increases the training loss, while a low learning rate
increases the risk of a slow training process, which potentially could get stuck at a high
training loss. First, an initial learning rate, i.e., the warmup learning rate, is selected,
then it is gradually increased. As shown in Listing 4.3, the default learning rate method
for the chosen model is a cosine learning rate decay.

1 l e a r n i n g _ r a t e {
2 cos ine_decay_ learn ing_ra te {
3 l e a r n i n g _ r a t e _ b a s e : 0 .001
4 t o t a l _ s t e p s : 250000
5 warmup_learning_rate: 0 .00025
6 warmup_steps: 5000
7 }
8 }

LISTING 4.3: Pipeline learning rate configuration for
CenterNet ResNet50 V1 FPN.

When training a CNN, it is desirable to find and use hyperparameters that min-
imise the training loss as much as possible. But this is not feasible with constraints
such as insufficient hardware, and limited time. Methods such as grid search and ran-
dom grid search can be used to find the optimal hyperparameters [21]. Grid search
is an inefficient method which tests every combination of hyperparameters and selects
the best performing parameters. Whereas the random grid search randomly selects hy-
perparameters and picks the best performing parameters. However, some of these al-
gorithms require hyperparameters of their own, which makes this a futile process. For
the sake of simplicity, the original hyperparameters shown in Table 4.5 will be used, as
these are commonly fine-tuned by the model’s developers. These hyperparameters are
used for both the modified and the original ResNet50-based methods.

4.3. Training the Data-driven Method 29

TABLE 4.5: Pipeline values used for train-
ing the data-driven method.

Pipeline values
Warmup learning rate 2.5× 10−4

Base learning rate 0.001
Batch size 64 / 32
Warmup steps 5000
Max. number of boxes 100

The batch size [21] is the number of training-samples from the dataset used in a
single forward-pass. Typically, the batch size is less than the total number of training
samples in the dataset. A large batch size consumes more memory and thus represents
a constraint. The batch size is frequently a power of two, typically between 25 to 28. A
batch size of 1 enables the network to generalise well to new data samples (i.e., test-
samples). This requires a small learning rate, which lengthens the training process.

The data-driven method based on the original ResNet uses a batch size of 64. The
modified ResNet uses a batch size of 32 since the GPU resources became exhausted, i.e.,
out of memory. The training is stopped when the loss is stagnating. The training of the
modified ResNet50 was stopped when the total training loss reached approximately
0.3, requiring significantly more steps than the original ResNet50, which had a training
loss of approximately 0.15, as illustrated in Fig. 4.5. If the training process is prolonged,
the model is likely to overfit the training data. Both original and modified versions of
ResNet50 have a size of 111.7 MB.

0 500 1000 1500 2000 2500 3000 3500 4000
Step

0.00
0.15
0.30

0.50

1.00

1.50

2.00

2.50

3.00

L
os

s
(L

)

Original ResNet50

Modified ResNet50

FIGURE 4.5: Training results of CenterNet with ResNet50-FPN. The orig-
inal ResNet50 obtains a loss L ≈ 0.15, and the modified ResNet50 obtains
a L ≈ 0.3.

30 Chapter 4. Methodology

4.4 Model-driven Approach

The proposed model-driven method shown in Fig. 4.6 is based on the IPI model [20]
and RPCA-PCP via IALM [30].

Patch image
matrix

Input image

RPCA-PCP via
IALM

Sparse matrix

Target image

Sliding window

Reconstruct
image

FIGURE 4.6: Proposed model-driven method based on the IPI model.

IALM is listed in Algorithm 2 and is at least 5× faster than APG (Listed in Algo-
rithm 1) and has a higher precision [3].

Algorithm 2 RPCA-PCP via IALM [30].

Require: IR patch-image matrix D ∈ Rm×n, λ, compute J(D).
1: Y0 = D

J(D)
; S0 = 0;µ0 = 1.25

‖D‖2
;

2: while not converged do
3: (U,Σ,V) = svd(D− Sk + µ−1k Yk).
4: Lk+1 = USµ−1

k
[Σ] V∗.

5: Sk+1 = Sλµ−1
k

[
D− Lk+1 + µ−1k Yk

]
.

6: Yk+1 = Yk + µk (D− Lk+1 − Sk+1).
7: Update µk to µk+1.
8: k ← k + 1.
9: end while

10: return Sk. . Return the sparse matrix

In Algorithm 2, J(D) = max (‖D‖2 , λ−1 ‖D‖∞), and µk+1 is given by:

µk+1 =

{
ρµk, if µk

‖Sk+1−Sk‖F
‖D‖F

< ε2,

µk, otherwise,
(4.4)

where ε2 = 10−5. However, this approach is slow. A faster approach [47] which yield
equally satisfactory results is to let µk+1 = min(ρµk, µ̄), where µ̄ = 107µk, and ρ = 1.6.

4.4. Model-driven Approach 31

Further, the convergence criterion (also known as the stopping criterion) is defined
as:

‖D− Lk − Sk‖F
‖D‖F

< ε1, (4.5)

where the tolerance ε1 = 10−7 originally [30]. However, it was discovered that ε1 = 10−2

gives decent results, at a much faster rate.
The original IPI model [20] post-processes the reconstructed target image with a

median filter. Various post-processing methods are illustrated in Fig. 4.7. The best
results are obtained using the median and 10th percentile filters. By comparing the
surface plot of the median filter in Fig. 4.7(b) to the surface plot of the 10th percentile
filter in Fig. 4.7(d), it is clear that the 10th percentile method reduces the intensity of
the most prominent noise. The median filter, on the other hand, has a lower total
amount of low-level noise. The mean filter shown in Fig. 4.7(e) performs similarly to
the median filter, but the noise is more intense with the mean filter.

(a) (b)

(c) (d)

(e) (f)

FIGURE 4.7: Different post-processing methods of target-patch. The white rect-
angles are ground truth bounding boxes. (a) – (b) obtained using median filter.
(c) – (d) obtained using 10th percentile filter. (e) – (f) obtained using mean filter.

32 Chapter 4. Methodology

The model-driven methods will utilise the median filter. Further, pixels with values
greater than a predefined threshold in the resulting post-processed target image are
then considered to be IR small targets. For instance, pixels with a value greater than
150 in Fig. 4.8 can be considered part of an IR small target.

0 3 4 4 2 0 0 1 5 2 2 2 0 0 3 0 2 1 1 1
0 0 0 1 0 0 3 5 1 3 3 1 0 0 1 1 1 1 1 1
4 0 3 25 39 40 36 22 0 2 3 0 0 0 0 0 1 1 1 1
1 4 28 90 129 129 109 68 11 5 4 3 1 1 0 1 0 0 1 1
1 21 70 165 219 207 167 102 24 4 2 4 0 0 0 0 0 0 1 1
1 28 91 197 255 240 182 107 29 2 1 4 0 0 0 0 1 1 1 1
0 13 65 145 194 181 122 61 26 4 5 6 1 3 3 2 3 3 2 1
1 0 33 79 110 106 62 28 15 1 3 1 0 1 0 1 4 4 3 1
0 1 6 22 36 31 13 3 6 0 3 2 0 0 0 0 0 4 5 3
2 1 0 1 6 4 0 0 1 0 3 3 15 8 1 6 1 0 2 2
1 2 0 0 4 3 1 2 2 0 6 12 39 47 54 57 17 12 0 2
1 3 0 0 0 1 0 0 4 2 1 0 59 119 157 153 78 45 11 3
2 6 6 2 0 0 2 4 1 4 0 0 74 156 219 234 135 70 15 1
0 0 2 1 1 2 2 1 1 1 3 9 66 147 221 239 147 69 7 0
4 2 0 0 1 2 2 0 4 0 0 0 36 117 181 170 115 44 16 1
0 0 2 3 0 0 1 2 1 0 1 2 19 69 110 99 59 18 10 0
1 1 1 1 1 1 1 1 1 2 4 2 6 25 38 33 8 6 2 0
1 1 1 1 1 1 1 1 3 3 4 3 2 8 10 5 3 1 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 2 2 0 0 1 1 0 3 3 3 2 2

FIGURE 4.8: Pixel values of IR small target after being
processed by the model-driven method.

4.5 Evaluation Metrics

This section describes the evaluation process for the proposed methods. For evaluation
of the methods, the modified SIRST dataset mentioned in Section 4.1 is used.

In the context of search and rescue, it is more undesirable to miss an actual target than
to make a false prediction. As a result, the evaluation metrics cannot be as straight-
forward as determining the accuracy. That is, missing a target should have a greater
impact on the final score than incorrectly detecting an object that is not a target. For the
model-driven method, the sparse matrix is the prediction. The centre of a predicted
target will be the location of pixels with a value higher than a certain threshold. This
method does not use the rectangular values of the ground truth bounding box GTbbx,
but a circle with a small radius. The centre GTbbxc coordinates are converted from a
rectangle to a circle by computing the centre (xc, yc) of each GTbbx:

GTbbxc = (xc, yc) =

(
xmax − xmin

2
,
ymax − ymin

2

)
, (4.6)

where xmax, xmin, ymax, and ymin represent the corners of a bounding box. The accuracy
of the model-driven methods is measured by checking if the centre of the GTbbxc inter-
sects with the centre of the predicted target ŷc.

For object detection methods similar to the data-driven method it is common to calcu-
late the overlap between the ground truth bounding box and the predicted bounding
box ŷbbx using intersection over union (IoU), as shown in Equation (4.7). However, IoU

4.5. Evaluation Metrics 33

does not work well for the proposed methods, as the ground truth boxes are signifi-
cantly smaller than the predicted boxes. When a predicted box is located in the same
area as a ground truth box, the predicted box generally has a larger size, and this yields
a poor IoU.

IoU =
|ŷbbx ∩GTbbx|
|ŷbbx ∪GTbbx|

(4.7)

A more suitable metric proposed by Dai et al. [13] for data-driven and model-driven
methods is the normalised IoU:

nIoU =
TP

T + P − TP
, (4.8)

where P is the number of true positive and false negative predictions, i.e., P = TP +
FN , and T is the number of ground truth samples in the training data.

Additionally, the following basic outcomes, true positive (TP), false positive (FP),
false negative (FN), and true negative (TN) are recorded after testing each method.
A prediction is classified as true positive if the method correctly predicts the existence
of an object. To deem a prediction to be true positive, the predicted location must be
within proximity of the ground truth location. This includes the situations where the
predicted bounding box and the ground truth bounding box are proper subsets of one
another, i.e., GTbbx ⊂ ŷbbx ∨ ŷbbx ⊂ GTbbx.

A false positive prediction occurs when the method incorrectly predicts the exis-
tence of an object. This includes the prediction of an object in a location which is not
within a proximity of the ground truth bounding box. Next, a prediction is classified
as false negative when the method incorrectly predicts that an object does not exist.
Lastly, a true negative prediction is when the method correctly predicts that a target
does not exist. The above-mentioned conditions can be used to calculate the evalua-
tion metrics listed below:

• Precision, also known as positive predictive value (PPV) [35] measures the per-
centage of correct detections. Namely, a measure of how many of the predicted
targets correspond to ground truth targets. The precision is given by the follow-
ing equation:

PPV =
TP

TP + FP
. (4.9)

• Recall, also known as true positive rate (TPR) [35], is a measure of how many
true positives the system truly detected. In other words, the number of ground
truth targets detected. The recall is given by the following equation:

TPR =
TP

TP + FN
. (4.10)

• The false positive rate (FPR), also known as false alarm rate [35] is given by the
following equation:

FPR =
FP

FP + TN
. (4.11)

A lower FPR score implies better performance.

34 Chapter 4. Methodology

Another metric is the F-score, e.g., the F1 score [35], which is the harmonic mean of
precision and recall:

F1 = 2
PPV × TPR
PPV + TPR

; (4.12)

however, because F1 equally weights the importance of recall and precision, it is prefer-
able to use Fβ [43] to give recall a β× greater impact than precision:

Fβ =
(1 + β2)(PPV)(TPR)

β2PPV + TPR
, (4.13)

for the proposed system, it is preferable to select β = 2, as the recall value is more
critical for evaluating the proposed methods.

Another applicable metric is the Matthews correlation coefficient (MCC), which
returns a value between −1 and 1:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (4.14)

The modified SIRST dataset is unbalanced, as it contains 268 positive samples and
210 negative samples. Chicco and Jurman [8] recommend using the MCC rather than
the F1 or accuracy (ACC) when evaluating predictions from a binary classifier, since
ACC and F1 can produce inaccurate results when applied to unbalanced datasets.
ACC is defined as the following:

ACC =
TP + TN

TP + TN + FP + FN
. (4.15)

MCC can resolve this issue by assimilating the imbalance. MCC assigns a high
score to a classifier that performs well on all four conditions (i.e., TP , FN , TN , and
FP). A score of 1 indicates that all predictions are correct, −1 indicates that all predic-
tions are incorrect, and a score of 0 means that the classifier behaves as if the predictions
were randomly produced.

The proposed methods should have a low amount of false negative predictions and a
high amount of true positive predictions. According to the above-mentioned metrics,
this equates to a high recall, a high Fβ , and a high MCC. Additionally, the methods
should have a high nIoU score, as this is the metric used to measure performance on
the SIRST dataset.

The processing time, also known as inference time, is the time a method spends on
making a prediction from an unseen image. The inference time required for a single
image can be converted into frames per second (FPS). For example, if a method pro-
cesses a single image in 100 ms, this translates to 1/100 frames per ms, or 100 FPS.

4.6 Testing

The modified SIRST dataset was used for experimental evaluation. The dataset has 210
negative images, and 214 positive images containing 268 IR small targets. The model-
and data-driven approaches were compared to the best performing methods from [13]

4.6. Testing 35

and [12] in terms of nIoU on the SIRST dataset, which are the infrared patch-image (IPI)
model [20], attentional local contrast network (ALCNet) [13], and asymmetric contex-
tual modulation with U-Net (ACM-U-Net) [12]. All testing of the methods proposed
in this thesis were conducted on the machine specified in Table 4.6.

TABLE 4.6: Hardware test specifications used for testing
data-driven and model-driven methods.

Specifications
OS macOS Big Sur 11.2.3
CPU Intel® Core i5 @ 2.7 GHz
GPU Intel® Iris Graphics 6100 (1536 MB)
RAM 8 GB (1867 MHz DDR3)
TensorFlow 2.4.1

The model-driven methods are evaluated by adjusting the parameters shown in
Table 4.7. The tolerance ε1 is required by the stopping criterion. If the value of the
stopping criterion is below ε1 the solution of RPCA-PCP via IALM has converged.
The iteration parameter is used to forcibly stop IALM if it has not converged. Further,
adjacent pixels with a value above the threshold produce an IR small target. A high
threshold removes false positives, but it could also exclude true positive predictions.

TABLE 4.7: Model-driven methods and their parameters.

Abbreviation Tolerance (ε1) Iterations Stride Patch size Threshold
MD-v1 0.1 500 20 80 150
MD-v2 0.01 1000 20 80 150

According to [20], a patch size of 80 × 80 and a sliding step or stride of 14 in the
sliding window produces acceptable results. However, a stride of 20 was selected for
MD-v1 and MD-v2 as this decreases the required computational time. If the patch size
exceeds 80× 80, performance degrades. When the IR small targets are small, a smaller
stride is recommended.

The score threshold Sth is the only adjustable parameter when evaluating the data-
driven methods. The score threshold discards predictions which have a confidence
score less than Sth. Table 4.8 contains abbreviations used for the various data-driven
methods.

TABLE 4.8: Abbreviations for data-driven methods.

Abbreviation Feature extractor Score threshold (Sth)
DD-v1-03 Original ResNet50 0.3
DD-v1-05 Original ResNet50 0.5
DD-v2-03 Modified ResNet50 0.3
DD-v2-05 Modified ResNet50 0.5

37

Chapter 5

Results and Discussion

This chapter summarises the results and discusses the significance of the results in light
of the research proposal.

5.1 Test Results

All results from evaluating the data-driven and model-driven methods on the modified
SIRST dataset are shown in Table 5.1.

TABLE 5.1: Results from evaluating the data-driven and model-driven methods.

MD-v1 MD-v2 DD-v2-03 DD-v2-05 DD-v1-03 DD-v1-05
Recall 0.610 0.711 0.885 0.722 0.904 0.800
FPR 0.386 0.733 0.038 0.010 0.086 0.038
Precision 0.585 0.345 0.966 0.990 0.926 0.963
MCC 0.224 -0.024 0.842 0.720 0.817 0.760
Fβ 0.604 0.586 0.900 0.763 0.908 0.828
nIoU 0.397 0.328 0.772 0.561 0.774 0.650

The best performing data-driven and model-driven methods in terms of nIoU are
DD-v1-03 and MD-v1, respectively. As shown in Table 5.2, these two are compared
with the best performing methods from [13] and [12].

TABLE 5.2: normalised IoU (nIoU) of the best performing data- and model-
driven methods, and the best performing methods from [13] and [12].

MD-v1 IPI ALCNet ACM-U-Net DD-v1-03
nIoU 0.397 0.607 0.728 0.731 0.774

The preliminary findings from Table 5.2 suggest that DD-v1-03 (nIoU = 0.774) out-
performs ACM-U-Net (nIoU = 0.731) and ALCNet (nIoU = 0.728). This is perhaps
not surprising as ACM-U-Net [12] uses a ResNet with 26 layers, and ALCNet [13] uses
a ResNet with 20 layers, thus achieving a lower nIoU than DD-v1-03 and DD-v2-03
(nIoU = 0.772). However, there are systematic differences in the setup used for test-
ing the methods. And it is possible that the proposed data-driven methods achieve a
higher nIoU as they are trained on the augmented SIRST dataset which contains more
samples. It is therefore misleading to state that DD-v1-03 outperforms the methods in
Table 5.2.

38 Chapter 5. Results and Discussion

TABLE 5.3: Average time (in seconds) used for processing a single image.

MD-v1 MD-v2 DD-v2-03 DD-v2-05 DD-v1-03 DD-v1-05
Avg. time [s] 4.98 5.04 0.85 0.8 0.2 0.2

The average FPS of the proposed methods is depicted in Fig. 5.1. The FPS was cal-
culated using the average processing time required for a single image, which is listed
in Table 5.3. The DD-v1 methods are clearly the fastest methods with an average speed
above 4 FPS. The FPS of the methods from Table 5.2 were not included because they
were tested on different hardware, and their results are not comparable to the methods
proposed in this thesis.

0 2 4 6 8 10
FPS

MD-v1

MD-v2

DD-v2-03

DD-v2-05

DD-v1-03

DD-v1-05

0.2

0.2

1.18

1.29

4.26

4.76

FIGURE 5.1: Final test results showing the average
frames per second (FPS) of the proposed methods.

A set of predictions performed by the proposed methods are shown in Fig. 5.2.
Further, Fig. 5.2(k) demonstrates that DD-v1-05 is the only method to miss the clearly
visible target in Fig. 5.2(b). None of the methods are able to detect all five IR small
targets in Fig. 5.2(a). However, four IR small targets were detected by MD-v2 and
DD-v1-03, as shown in Fig. 5.2(g) and 5.2(m), respectively.

5.1. Test Results 39

(a) (b) (c)

(d) MD-v1 (e) MD-v1 (f) MD-v1

(g) MD-v2 (h) MD-v2 (i) MD-v2

(j) DD-v1-05 (k) DD-v1-05 (l) DD-v1-05

(m) DD-v1-03 (n) DD-v1-03 (o) DD-v1-03

(p) DD-v2-05 (q) DD-v2-05 (r) DD-v2-05

(s) DD-v2-03 (t) DD-v2-03 (u) DD-v2-03

FIGURE 5.2: Predictions performed by proposed methods. Red boxes represent the ground
truth targets. Green boxes represent predictions. (a) – (c) raw images from the dataset. (d) –
(f) obtained using MD-v1. (g) – (i) obtained using MD-v2. (j) – (l) obtained using DD-v1-05.
(m) – (o) obtained using DD-v1-03. (p) – (r) obtained using DD-v2-05. (s) – (u) obtained using
DD-v2-03.

40 Chapter 5. Results and Discussion

5.1.1 Analysis of the Model-driven Methods

As expected, and demonstrated in Table 5.1, the model-driven methods are inaccurate
when compared to the data-driven methods. MD-v1 (Fβ = 0.604, MCC = 0.224, pre-
cision = 0.585) outperforms MD-v2 (Fβ = 0.586, MCC = −0.024, precision = 0.345) in
terms of Fβ , MCC and precision. In comparison to MD-v1, MD-v2 performs a metic-
ulous decomposition, which may account for the low precision value, i.e., the large
amount of false positive predictions. Compared to a single false positive prediction by
MD-v1 as shown in Fig. 5.3(f), MD-v2 makes numerous false positive predictions in all
images, as shown in Fig. 5.3(g), 5.3(h) and 5.3(i). The original images of Fig. 5.3 do not
contain any IR small targets.

(a) (b) (c)

(d) MD-v1 (e) MD-v1 (f) MD-v1

(g) MD-v2 (h) MD-v2 (i) MD-v2

FIGURE 5.3: Predictions made by model-driven methods showing false positive predictions
on true negative images. (a) – (c) negative images randomly selected from the dataset. (d) –
(f) obtained using MD-v1. (g) – (i) obtained using MD-v2.

Using a patch size of 50 and a stride equal to 9 results in a significantly low pre-
cision, i.e., many false positive predictions, as illustrated in Fig. 5.4(f). The correct
prediction for the original image shown in Fig. 5.4(a) should be true negative. Both the
original MD-v2 (patch size = 80, stride = 20) shown in Fig. 5.4(c), and the MD-v2 with
a patch size of 50 and stride of 9 shown in Fig. 5.4(e) make several false positive predic-
tions. However, MD-v2 with a reduced patch size and stride extracts too much noise
from the image. In addition, a low patch size and stride results in a longer processing
time.

5.1. Test Results 41

(a) (b)

(c) MD-v2 (80× 80, 20) (d) MD-v2 (80× 80, 20)

(e) MD-v2 (50× 50, 9) (f) MD-v2 (50× 50, 9)

FIGURE 5.4: RPCA-PCP via IALM on negative images. Peaks in the surface plots cor-
respond to brighter pixels. (a) – (b) negative image from the dataset. (c) – (d) obtained
using original MD-v2. (e) – (f) obtained using MD-v2 with a patch size = 50×50, and
a stride = 9.

As previously stated, the original SIRST dataset is devoid of negative samples. The
false positive rate of MD-v1 (FPR = 0.386) and MD-v2 (FPR = 0.733) indicate that
the model-driven methods generate a large amount of false positive predictions on
negative images. This could be the reason MD-v1 (nIoU = 0.397) and MD-v2 (nIoU =
0.328) achieve a lower nIoU than the original IPI model (nIoU = 0.607), which has not
been tested on negative samples.

To conclude, the MD-v1 and MD-v2 cannot compete with the data-driven methods
in terms of accuracy. In addition, MD-v1 and MD-v2 have an excessive computational
time, with an average speed of 0.2 FPS. The lengthy computation time is primarily
caused by the sliding window and singular value decomposition. Additional param-
eter adjustments, for example adjusting the tolerance and patch-size could have been
investigated, but the lengthy computational time rendered the effort inefficient. The
model-driven methods are however effective at identifying targets in complex environ-
ments, as shown in Fig. 5.5. Fig. 5.5(g) demonstrates how adept MD-v2 is at removing
noise and extracting the five IR small targets.

42 Chapter 5. Results and Discussion

(a) (b)

(c) MD-v1 (50× 50, 9) (d) MD-v1 (50× 50, 9)

(e) MD-v1 (80× 80, 20) (f) MD-v1 (80× 80, 20)

(g) MD-v2 (80× 80, 20) (h) MD-v2 (80× 80, 20)

FIGURE 5.5: Different model-driven methods. The peaks in the surface plots repre-
sent brighter pixel values. (a) – (b) positive image from the dataset. (c) – (d) obtained
using MD-v1 (50 × 50, stride = 9). (e) – (f) obtained using MD-v1. (g) – (h) obtained
using MD-v2.

5.1. Test Results 43

5.1.2 Analysis of the Data-driven Methods

As illustrated in Table 5.1, all data-driven methods have a high precision and a low
false positive rate, with the best scores going to DD-v2-05 (precision = 0.990, FPR =
0.010). A Sth of 0.3 results in a higher recall, MCC, Fβ and nIoU. Note that a Sth
less than 0.3 will introduce additional false positive predictions. The Sth equal to 0.5
discards some of the false predictions, however, it reduces not only the false positive
predictions, but also true positive predictions. Further, a high Sth increases the amount
of false negative predictions. This is not desirable, as the system should aim at detect-
ing all potential targets.

DD-v1-03 (Fβ = 0.908, MCC = 0.817, recall = 0.904) and DD-v2-03 (Fβ = 0.900,
MCC = 0.842, recall = 0.885) are the most accurate methods. As illustrated in Fig. 5.6(a),
5.6(d), 5.6(c) and 5.6(f), DD-v1-03 is more confident than DD-v2-03. Fig. 5.6(b) further
demonstrates the performance of DD-v1-03 to that of DD-v2-03 shown in Fig. 5.6(e),
where DD-v2-03 misidentifies a cloud as a target.

(a) DD-v1-03 (b) DD-v1-03 (c) DD-v1-03

(d) DD-v2-03 (e) DD-v2-03 (f) DD-v2-03

FIGURE 5.6: Performance of DD-v1-03 and DD-v2-03. (a) – (c) obtained using DD-v1-03. (d)
– (f) obtained using DD-v2-03.

DD-v2-03 has a marginally lower Fβ than DD-v1-03, but as illustrated in Fig. 5.7,
DD-v2-03 clearly performs better than DD-v1-03 on the selected images. The targets
vary in size from small, as shown in Fig. 5.7(b), to medium, as shown in Fig. 5.7(c).
Also, Fig. 5.6(c), in which DD-v1-03 is able to detect all targets, depicts a scene simi-
lar to those shown in Fig. 5.7(a) and 5.7(b). However, the reasons for why DD-v2-03
outperforms DD-v1-03 in these images remain unclear.

44 Chapter 5. Results and Discussion

(a) DD-v1-03 (b) DD-v1-03 (c) DD-v1-03

(d) DD-v2-03 (e) DD-v2-03 (f) DD-v2-03

FIGURE 5.7: Performance of DD-v1-03 and DD-v2-03. (a) – (c) obtained using DD-v1-03. (d)
– (f) obtained using DD-v2-03.

Fig. 5.8 summarise the similarities between DD-v1-03 and DD-v2-03. DD-v2-03 has
the highest MCC score, DD-v1-03 has the highest nIoU, recall, Fβ , and it is faster.
When considering the average time required to process a single image, it is clear that
DD-v1-03 is the most appropriate approach for IR small target detection.

nIoU

Fβ

MCC

TPR

0.7

0.8

0.9

DD-v2-03

DD-v1-03

FIGURE 5.8: Comparison of DD-v1-03 and DD-v2-03 in
terms of recall, MCC, nIoU, and Fβ .

There is no statistically significant difference between the modified and original
ResNet50 in terms of performance. This might be caused by the fact that the modified
ResNet50 was not downsampled sufficiently, or alternatively, the original ResNet50

5.1. Test Results 45

already had suitable feature map sizes. Further reduction of the downsampling oper-
ations results in a slower system. As shown in Table 5.3, the modified ResNet models
(i.e., DD-v2-03 and DD-v2-05) run slower due to the increased parameter count caused
by the reduced downsampling.

Further, the modified ResNet was trained with a batch size of 32, which is likely
why the training process is slower than the training of the original ResNet. A low
batch size should result in a model that generalises well to previously unobserved
data. However, there are no significant differences between using a batch size of 64 or
32 in terms of accuracy.

DD-v1-03 operates at approximately 4 FPS. However, this is not comparable to run-
ning object detection on a continuous video stream. That is, the system might be able
to process four image frames per second on average, but not achieve the same results
on a live video stream as the CPU usage will become exceedingly high due to the need
for decoding and processing of the incoming video in addition to running inference
on the individual frames of the video stream. The FPS would be higher if the methods
were deployed on a GPU-equipped machine.

The high accuracy of the data-driven methods could be the result of using the Center-
Net meta-architecture with the ResNet feature extractor. CenterNet appears to perform
well at the task of IR small target detection as it extracts peaks from keypoint heatmaps
generated by ResNet. A surface plot of a feature map from the modified ResNet50 is
shown in Fig. 5.9. The peak representing the IR small target is clearly visible.

FIGURE 5.9: Surface plot of feature map from the modified
ResNet50. The peak represents an IR small target.

46 Chapter 5. Results and Discussion

5.2 General Discussion of the Proposed System

What should the system do when a target or multiple targets are detected? Further,
how can the location of a target be determined? These questions have to be answered.
Henceforth, it is assumed the location of a given target is known. The location of the
target could be dispatched to the search and rescue team.

It is not recommended for the UAV to approach the predicted target, as this con-
sumes a significant amount of battery power. The proposed system is likely best suited
for the search of IR small targets at great heights above ground level.

Another challenge is to define how the system should behave in response to previously
predicted targets. The system could register specific GPS positions. For example, the
system notifies the ground crew that a target might be located at position P (x, y, z).
Then, the system ignores predicted targets that fall within a certain radius of P . Also,
the system should ignore heat signatures coming from the ground crew.

5.2.1 Determining Size of Heat Signatures

The heat signature of, e.g., a boat could be 10× larger than a human. It is therefore
desired to translate the pixel size of a heat signature to its real-world size. If an object
has a height hobjD in an image (D) with the width and height (wD × hD) as shown
in Fig. 5.10(a). And the image was captured from a distance dobjW orthogonal to the
object as shown in Fig. 5.10(b). Then, in order to determine the object’s height (hobjW)
in a real-world frame (W), the following relationship [19] is obtained:

hobjW =
dobjW ×

(
hs×hobjD

hD

)
FL

, (5.1)

where FL is the camera’s focal length, and hs is the camera’s sensor height. Both param-
eters are measured in millimetres. However, the size might not be correctly determined
from this equation with different angles between the UAV and the heat signature. As
the size of the object could become warped. In addition, the IR small target might be-
long to a small part of the actual object, i.e., the rest of the target is hidden behind a
layer which blocks thermal radiation.

Target

Image frame

(a)

UAV

Target

(b)

FIGURE 5.10: Computing the real-world size of a heat signature from an
image. (a) Image frame. (b) World frame.

5.2. General Discussion of the Proposed System 47

5.2.2 Computation Offloading

CNNs are great object detectors. However, their computational cost results in slow in-
ference on single-board computers and other computationally constrained embedded
devices. Due to obvious physical and power constraints, the system proposed in this
thesis will have limited on-board computational power. To accelerate intensive tasks
(e.g., deep learning inference), cloud computing can be used. This is referred to as com-
putation offloading [26]. This requires the transfer of images or video from the UAV to
the edge, and then to the cloud, as illustrated in Fig. 5.11. Then, the required compu-
tations are carried out in the cloud, and the results are relayed back to the UAV. This
is a difficult task that likely results in unacceptable latency [7], i.e., the time interval
between transferring data from the UAV to the cloud and receiving a response will be
lengthy. Another issue arises if the number of UAVs connected to the edge increases,
forcing the UAVs to share bandwidth, thus reducing the upload speed of data to the
edge. However, the UAVs could be more selective about the type of data they upload.
As an example, assume a UAV which only uploads images after entering a designated
search area. Further, if the UAV remains in the same area, it will only upload a new
image every other second. This could aid in the reduction of bandwidth usage and
energy consumption.

End Edge Cloud

FIGURE 5.11: Simplified edge and cloud computing.

Edge computing could be used to address several of these issues. With edge com-
puting, a collection of computing devices brings the capability to solve computation-
ally intensive tasks closer to the UAVs, thereby reducing latency [7]. However, the
computers located at the edge may be insufficient to perform real-time (e.g., more than
20 FPS) inference due to restricted memory and processing power. Devices with lim-
ited computational resources can benefit from specially designed CNN models that
prioritise speed over accuracy. Some of the methods for optimising and compressing
CNN models listed by Chen and Ran [7] are:

• Parameter quantisation, which converts floating-point numbers to integers with
a small bit width, thereby avoiding slow computations. This increases the speed
of each computation but decreases the precision and accuracy of the model.

• Parameter pruning, which eliminates superfluous parameters (e.g., parameters
with values close to 0).

• And knowledge distillation, which is a technique where a small network imi-
tates a powerful one. This is accomplished by training a small network on the
powerful network’s predictions.

48 Chapter 5. Results and Discussion

Further, hardware such as GPUs, FPGAs and ASICs can help accelerate the deep
learning inference compared to using CPUs. It is recommended [60] to employ an
FPGA (field-programmable gate array) rather than a GPU when running deep learn-
ing inference at the edge. Compared to GPUs and CPUs, FPGAs are more energy
efficient and easier to reconfigure [7]. However, deep learning libraries for FPGAs are
not as prevalent or optimised as they are for GPUs. Moreover, it is possible to optimise
the computational time by implementing parts of the software in C or C++ instead of
Python.

49

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis investigates the detection of IR small targets. The use of autonomous UAVs,
IR imaging, and object detection to assist search and rescue missions has tremendous
potential. A literature review was conducted with a focus on IR imaging, search and
rescue with UAVs, general object detection, deep learning-based object detection, and
IR small target detection. The literature review led to the discovery of two distinct
methodologies, a model-driven approach based on low-rank and sparse matrix de-
composition which employs RPCA-PCP via IALM, and a deep learning-based data-
driven approach using CenterNet with ResNet. The primary limitation of this thesis
was the absence of a substantial dataset. Test results indicate that the proposed system
is effective at detecting IR small targets. As expected, the data-driven approach out-
performed the model-driven approach. Although accurate, the data-driven methods
are slow. Training the data-driven methods on additional IR small target samples will
further improve their accuracy.

The IR small target detection system’s detailed mechanism remains incomplete, as
much work remains to be done. A special emphasis should be placed on the validation
of the proposed system in real-world scenarios. The results of this thesis establish un-
equivocally that CNN-based object detection methods are highly accurate at IR small
target detection. Conclusively, the proposed system has the potential to make a signif-
icant impact by assisting search and rescue missions.

6.2 Future Work

Several areas are worth investigating further. The proposed system should be thor-
oughly tested on images and video captured by a long-wave IR imaging camera at
various heights above ground level. Further, research on local processing vs. edge
processing and cloud computing should be conducted. When the system requires an
instantaneous response, local processing is preferred, allowing the search to be per-
formed in remote areas where cellular network coverage is limited. Edge computing
and computation offloading is preferred when the UAV can connect to a high-speed
network. Further, one should perform an investigation into how the system should
operate if the UAV connection is lost.

Other critical areas to investigate include determining how to obtain the location
of the detected IR small target and deciding how to proceed when a target or multiple
targets are detected. The UAV’s height above ground level must be measured as this

50 Chapter 6. Conclusion and Future Work

distance is required for the IR small target size computation in Equation (5.1). Possibly,
a radar altimeter or a laser rangefinder can measure this distance.

Meta-architectures and feature extractors will continue to improve in performance.
Adding a colour imaging camera and external lighting to the system could aid in target
classification. The detection of humans and objects associated with human activity at
a lower altitude will further help in narrowing down the location of a missing person.
In addition, methods for target tracking should be investigated as they could further
improve the system’s ability to localise missing victims and allow the system to focus
on a single target if needed.

Search and rescue with airborne optical sectioning is an intriguing approach to de-
tecting victims hidden beneath a forest canopy. Targets on the ground are nearly in-
visible in some cases because their heat signatures are heavily obscured by trees. In
these extremely complex scenarios, simply thresholding the heat signature will not
help detect the IR small target. Schedl et al. [44] propose a synthetic aperture imaging
technique to solve this problem. Images from colour and thermal imaging cameras
recorded above a forest structure are registered and integrated to remove obstructions
such as trees and other foliage. This method improves the visibility of heat signatures
coming from hidden targets by combining images captured from a variety of different
viewpoints. The resulting images gives a clear view of the ground hidden beneath the
treetops.

A valuable addition to the proposed system would be a method that enables the
detection of targets covered by a radiant barrier, i.e., a material which blocks thermal
radiation. This could perhaps be a sub-system based on ground-penetrating radar.

51

Appendix A

Inexact Augmented Lagrange
Multiplier (IALM)

The following Python implementation of the RPCA-PCP via IALM method is based on
[30] and [47].

1 " " "
2 I n e x a c t augmented Lagrange m u l t i p l i e r (IALM)
3 " " "
4

5 import numpy as np
6 from numpy import l i n a l g
7 from md_utils import shr inking
8

9

10 def jay_func (y_mat , lambd) :
11 " " "
12 implements
13 J (D) = max(norm_ { 2 } (D) , lambda ^(−1) *norm_ { i n f } (D))
14 " " "
15 re turn max(l i n a l g . norm (y_mat , 2) , np . dot (np . r e c i p r o c a l (lambd) ,

l i n a l g . norm (y_mat , np . i n f)))
16

17

18 def rpca_ialm (data_mat , lmbda , max_iter , t o l) :
19 " " "
20 Required input :
21 D − (m x n) data matrix
22 lambda − weight of sparse e r r o r
23

24 Adjustable parameters :
25 t o l − t o l e r a n c e f o r stopping c r i t e r i o n (DEFAULT=1e −2)
26 max_iter − maximum number of i t e r a t i o n s (DEFAULT=1000)
27

28 Return :
29 s_hat − es t imate of S
30 " " "
31

32 d_norm = l i n a l g . norm (data_mat)
33 l_k = np . zeros (data_mat . shape)
34 s_k = np . zeros (data_mat . shape)
35 y_k = data_mat/jay_func (data_mat , lmbda)
36 mu_k = 1.25/ l i n a l g . norm (data_mat , 2)
37 mu_bar = mu_k*1 e7
38 rho = 1 . 6
39

52 Appendix A. Inexact Augmented Lagrange Multiplier (IALM)

40 # Solving RPCA−PCP via IALM
41 converged = k = 0
42 while converged == 0 :
43 U, sigm , v = l i n a l g . svd (data_mat −s_k+np . r e c i p r o c a l (mu_k) * y_k ,
44 f u l l _ m a t r i c e s =Fa l se) # economy SVD
45 sigm = np . diag (sigm)
46 l_kp1 = np . dot (U, shr inking (sigm , np . r e c i p r o c a l (mu_k)))
47 l_kp1 = np . dot (l_kp1 , v)
48 shr = data_mat −l_kp1+np . dot (np . r e c i p r o c a l (mu_k) , y_k)
49 s_kp1 = shr inking (shr , lmbda *np . r e c i p r o c a l (mu_k))
50 mu_k = min (mu_k* rho , mu_bar)
51 k = k+1
52 l_k = l_kp1
53 s_k = s_kp1
54

55 s t o p _ c r i t e r i o n = l i n a l g . norm (data_mat −l_k −s_k , ’ f r o ’) /d_norm
56 i f (converged == 0 and k >= max_iter) or s t o p _ c r i t e r i o n < t o l :
57 converged = 1
58 s_hat = s_k
59 re turn s_hat

53

Appendix B

Accelerated Proximal Gradient (APG)

The following Python implementation of RPCA-PCP via accelerated proximal gradient
is based on [20] and [30].

1 " " "
2 Accelerated Proximal Gradient (APG)
3 " " "
4

5 from math import s q r t
6 import numpy as np
7 from numpy import l i n a l g
8 from md_utils import shr inking
9

10

11 def rpca_apg (data_mat , lmbda , max_iter , t o l) :
12 " " "
13 Required input :
14 D − (m x n) data matrix
15 lambda − weight of sparse e r r o r
16

17 Adjustable parameters :
18 t o l − t o l e r a n c e f o r stopping c r i t e r i o n (DEFAULT=1e −6)
19 max_iter − maximum number of i t e r a t i o n s (DEFAULT=1000)
20

21 Return :
22 s_hat − es t imate of S
23 " " "
24 U_i , sigm_i , v_i = l i n a l g . svd (data_mat , f u l l _ m a t r i c e s =Fa l se)
25 l_k = l_m1 = np . zeros (data_mat . shape)
26 s_k = s_m1 = np . zeros (data_mat . shape)
27 t_k = t_m1 = 1
28

29 mu_k = sigm_i [1]
30 mu_bar = 0 . 0 5 * sigm_i [3]
31 e ta = 0 . 9 9
32

33 # Solving RPCA−PCP via APG
34 converged = k = 0
35 while converged == 0 :
36 y_k_l = l_k + ((t_m1 − 1)/t_k) * (l_k − l_m1)
37 y_k_s = s_k + ((t_m1 − 1)/t_k) * (s_k − s_m1)
38 g_k_l = y_k_l − (1/2) * (y_k_l + y_k_s − data_mat)
39 U, sigm , v = l i n a l g . svd (g_k_l , f u l l _ m a t r i c e s =Fa l se)
40 sigm = np . diag (sigm)
41 l_kp1 = np . dot (U, shr inking (sigm , mu_k/2))
42 l_kp1 = np . dot (l_kp1 , v)
43 g_k_s = y_k_s −(1/2) * (y_k_l + y_k_s − data_mat)

54 Appendix B. Accelerated Proximal Gradient (APG)

44 g_k_s = np . squeeze (np . asarray (g_k_s))
45 s_kp1 = shr inking (g_k_s , lmbda *mu_k/2)
46 t_kp1 = 0 . 5 * (1 + s q r t (1 + 4* t_k * t_k))
47 temp = l_kp1+s_kp1−y_k_l −y_k_s
48 s_kp1_l = 2 * (y_k_l −l_kp1) +temp
49 s_kp1_s = 2 * (y_k_s −s_kp1) +temp
50 mu_k = max(mu_k* eta , mu_bar)
51 k = k+1
52 t_m1 = t_k
53 t_k = t_kp1
54 l_m1 = l_k
55 s_m1 = s_k
56 l_k = l_kp1
57 s_k = s_kp1
58 s t o p p i n g _ c r i t e r i o n = l i n a l g . norm ([s_kp1_l , s_kp1_s]) /(2*max(1 ,

l i n a l g . norm ([l_kp1 , s_kp1])))
59 i f (s t o p p i n g _ c r i t e r i o n <= t o l) or \
60 (converged == 0 and k >= max_iter) :
61 converged = 1
62 s_hat = s_k
63 re turn s_hat

55

Bibliography

[1] R.D. Arnold, H. Yamaguchi, and T. Tanaka. “Search and rescue with autonomous
flying robots through behavior-based cooperative intelligence”. In: Int J Human-
itarian Action 3.18 (2018). DOI: 10.1186/s41018-018-0045-4.

[2] Mesay Bejiga et al. “A Convolutional Neural Network Approach for Assisting
Avalanche Search and Rescue Operations with UAV Imagery”. In: Remote Sensing
9 (2017), p. 100. DOI: 10.3390/rs9020100.

[3] Thierry Bouwmans et al. “Decomposition into low-rank plus additive matrices
for background/foreground separation: A review for a comparative evaluation
with a large-scale dataset”. In: Computer Science Review 23 (Feb. 2017), 1–71. ISSN:
1574-0137. DOI: 10.1016/j.cosrev.2016.11.001.

[4] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Ma-
chine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.
DOI: 10.1017/9781108380690.

[5] Emmanuel J. Candès et al. Robust Principal Component Analysis? 2009. arXiv: 0912.
3599.

[6] G. Chen et al. “A Survey of the Four Pillars for Small Object Detection: Mul-
tiscale Representation, Contextual Information, Super-Resolution, and Region
Proposal”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems (2020),
pp. 1–18. ISSN: 2168-2232. DOI: 10.1109/TSMC.2020.3005231.

[7] Jiasi Chen and Xukan Ran. “Deep Learning With Edge Computing: A Review”.
In: Proceedings of the IEEE 107.8 (2019), pp. 1655–1674. DOI: 10.1109/JPROC.
2019.2921977.

[8] Davide Chicco and Giuseppe Jurman. “The advantages of the Matthews correla-
tion coefficient (MCC) over F1 score and accuracy in binary classification evalua-
tion”. In: BMC Genomics 21.1 (2020), p. 6. ISSN: 1471-2164. DOI: 10.1186/s12864-
019-6413-7.

[9] COCO - Common Objects in Context. Feb. 2021. URL: https://cocodataset.
org/.

[10] The SciPy community. numpy.linalg.svd. Jan. 2021. URL: https://numpy.org/
doc/stable/reference/generated/numpy.linalg.svd.html.

[11] Yimian Dai. YimianDai/sirst. 2021. URL: https://github.com/YimianDai/
sirst.

[12] Yimian Dai et al. “Asymmetric Contextual Modulation for Infrared Small Target
Detection”. In: IEEE Winter Conference on Applications of Computer Vision, WACV
2021. 2021.

[13] Yimian Dai et al. Attentional Local Contrast Networks for Infrared Small Target De-
tection. 2020. arXiv: 2012.08573 [cs.CV].

https://doi.org/10.1186/s41018-018-0045-4
https://doi.org/10.3390/rs9020100
https://doi.org/10.1016/j.cosrev.2016.11.001
https://doi.org/10.1017/9781108380690
https://arxiv.org/abs/0912.3599
https://arxiv.org/abs/0912.3599
https://doi.org/10.1109/TSMC.2020.3005231
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://cocodataset.org/
https://cocodataset.org/
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
https://github.com/YimianDai/sirst
https://github.com/YimianDai/sirst
https://arxiv.org/abs/2012.08573

56 Bibliography

[14] Navneet Dalal and Bill Triggs. “Histograms of Oriented Gradients for Human
Detection”. In: International Conference on Computer Vision & Pattern Recognition
(CVPR ’05). Vol. 1. IEEE Computer Society, June 2005, pp. 886–893. DOI: 10.
1109/CVPR.2005.177.

[15] DJI. DJI Counts More Than 500 People Rescued By Drones Around The World. Dec.
2020. URL: https://www.dji.com/newsroom/news/dji-counts-more-than-
500-people-rescued-by-drones-around-the-world.

[16] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. 2018. arXiv: 1603.07285 [stat.ML].

[17] Houzhang Fang et al. “Infrared Small Target Detection with Total Variation and
Reweighted `1 Regularization”. In: Mathematical Problems in Engineering 2020 (Jan.
2020), pp. 1–19. DOI: 10.1155/2020/1529704.

[18] Jan Frantzen. Savnet eldre kvinne funnet av dronepilot: Nå redder droner liv i Norge.
Apr. 2020. URL: https://www.uasnorway.no/savnet-funnet-av-dronepilot-
na-redder-droner-liv-ogsa-i-norge.

[19] Wayne Fulton. Calculate Distance or Size of an Object in a photo image. URL: https:
//www.scantips.com/lights/subjectdistance.html.

[20] Chenqiang Gao et al. “Infrared Patch-Image Model for Small Target Detection in
a Single Image”. In: Image Processing, IEEE Transactions on 22.12 (2013), pp. 4996–
5009.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. URL: http://www.deeplearningbook.org.

[22] Austen Groener, Gary Chern, and Mark Pritt. “A Comparison of Deep Learning
Object Detection Models for Satellite Imagery”. In: 2019 IEEE Applied Imagery Pat-
tern Recognition Workshop (AIPR) (Oct. 2019). DOI: 10.1109/aipr47015.2019.
9174593.

[23] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.
03385 [cs.CV].

[24] P. Iob et al. “Avalanche Rescue with Autonomous Drones”. In: 2020 IEEE 7th
International Workshop on Metrology for AeroSpace (MetroAeroSpace). 2020, pp. 319–
324. DOI: 10.1109/MetroAeroSpace48742.2020.9160116.

[25] Reinhard Klette. Concise computer vision: An Introduction into Theory and Algo-
rithms. Springer-Verlag London, 2014. DOI: 10.1007/978-1-4471-6320-6.

[26] Anis Koubaa et al. “DeepBrain: Experimental Evaluation of Cloud-Based Com-
putation Offloading and Edge Computing in the Internet-of-Drones for Deep
Learning Applications”. In: Sensors 20.18 (2020). ISSN: 1424-8220. DOI: 10.3390/
s20185240.

[27] C. Kyrkou and T. Theocharides. “EmergencyNet: Efficient Aerial Image Classifi-
cation for Drone-Based Emergency Monitoring Using Atrous Convolutional Fea-
ture Fusion”. In: IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 13 (2020), pp. 1687–1699. DOI: 10.1109/JSTARS.2020.2969809.

[28] Tsung-Yi Lin et al. Feature Pyramid Networks for Object Detection. 2017. arXiv:
1612.03144 [cs.CV].

https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://www.dji.com/newsroom/news/dji-counts-more-than-500-people-rescued-by-drones-around-the-world
https://www.dji.com/newsroom/news/dji-counts-more-than-500-people-rescued-by-drones-around-the-world
https://arxiv.org/abs/1603.07285
https://doi.org/10.1155/2020/1529704
https://www.uasnorway.no/savnet-funnet-av-dronepilot-na-redder-droner-liv-ogsa-i-norge
https://www.uasnorway.no/savnet-funnet-av-dronepilot-na-redder-droner-liv-ogsa-i-norge
https://www.scantips.com/lights/subjectdistance.html
https://www.scantips.com/lights/subjectdistance.html
http://www.deeplearningbook.org
https://doi.org/10.1109/aipr47015.2019.9174593
https://doi.org/10.1109/aipr47015.2019.9174593
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/MetroAeroSpace48742.2020.9160116
https://doi.org/10.1007/978-1-4471-6320-6
https://doi.org/10.3390/s20185240
https://doi.org/10.3390/s20185240
https://doi.org/10.1109/JSTARS.2020.2969809
https://arxiv.org/abs/1612.03144

Bibliography 57

[29] Tzuta Lin. tzutalin/labelImg. 2021. URL: https://github.com/tzutalin/labelImg.

[30] Zhouchen Lin, Minming Chen, and Yi Ma. The Augmented Lagrange Multiplier
Method for Exact Recovery of Corrupted Low-Rank Matrices. 2010. arXiv: 1009.5055.

[31] Hong-Kang Liu, Lei Zhang, and Hua Huang. “Small Target Detection in Infrared
Videos Based on Spatio-Temporal Tensor Model”. In: IEEE Transactions on Geo-
science and Remote Sensing 58.12 (2020), pp. 8689–8700. DOI: 10.1109/TGRS.
2020.2989825.

[32] Wei Liu et al. SSD: Single Shot MultiBox Detector. 2015. arXiv: 1512.02325.

[33] D. G. Lowe. “Object recognition from local scale-invariant features”. In: Proceed-
ings of the Seventh IEEE International Conference on Computer Vision. Vol. 2. 1999,
pp. 1150–1157. DOI: 10.1109/ICCV.1999.790410.

[34] Eleftherios Lygouras et al. “Unsupervised Human Detection with an Embedded
Vision System on a Fully Autonomous UAV for Search and Rescue Operations”.
In: Sensors 19.16 (2019). ISSN: 1424-8220. DOI: 10.3390/s19163542.

[35] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[36] Nhat-Duy Nguyen et al. “An Evaluation of Deep Learning Methods for Small
Object Detection”. In: Journal of Electrical and Computer Engineering 2020 (Apr.
2020), pp. 1–18. DOI: 10.1155/2020/3189691.

[37] Bo Pang, Erik Nijkamp, and Ying Nian Wu. “Deep Learning With TensorFlow:
A Review”. In: Journal of Educational and Behavioral Statistics 45.2 (2020), pp. 227–
248. DOI: 10.3102/1076998619872761.

[38] Paperspace. Instance Types. 2021. URL: https://docs.paperspace.com/gradient/
instances/instance-types.

[39] Maria Gaia Pensieri, Mauro Garau, and Pier Matteo Barone. “Drones as an In-
tegral Part of Remote Sensing Technologies to Help Missing People”. In: Drones
4.2 (2020). ISSN: 2504-446X. DOI: 10.3390/drones4020015.

[40] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018.
arXiv: 1804.02767 [cs.CV].

[41] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. 2016. arXiv: 1506.01497 [cs.CV].

[42] Stamatios Samaras et al. “Deep Learning on Multi Sensor Data for Counter UAV
Applications—A Systematic Review”. In: Sensors 19.22 (2019). ISSN: 1424-8220.
DOI: 10.3390/s19224837.

[43] Yutaka Sasaki. The truth of the F-measure. Oct. 2007. URL: https://www.researchgate.
net/publication/268185911_The_truth_of_the_F-measure.

[44] David C. Schedl, Indrajit Kurmi, and Oliver Bimber. “Search and rescue with air-
borne optical sectioning”. In: Nature Machine Intelligence 2.12 (Nov. 2020), 783–790.
ISSN: 2522-5839. DOI: 10.1038/s42256-020-00261-3.

[45] Caroline Silva, Thierry Bouwmans, and Carl Frélicot. “An eXtended Center-Symmetric
Local Binary Pattern for Background Modeling and Subtraction in Videos”. In:
International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications, VISAPP 2015. Berlin, Germany, Mar. 2015. DOI: 10.5220/
0005266303950402.

https://github.com/tzutalin/labelImg
https://arxiv.org/abs/1009.5055
https://doi.org/10.1109/TGRS.2020.2989825
https://doi.org/10.1109/TGRS.2020.2989825
https://arxiv.org/abs/1512.02325
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.3390/s19163542
https://doi.org/10.1155/2020/3189691
https://doi.org/10.3102/1076998619872761
https://docs.paperspace.com/gradient/instances/instance-types
https://docs.paperspace.com/gradient/instances/instance-types
https://doi.org/10.3390/drones4020015
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1506.01497
https://doi.org/10.3390/s19224837
https://www.researchgate.net/publication/268185911_The_truth_of_the_F-measure
https://www.researchgate.net/publication/268185911_The_truth_of_the_F-measure
https://doi.org/10.1038/s42256-020-00261-3
https://doi.org/10.5220/0005266303950402
https://doi.org/10.5220/0005266303950402

58 Bibliography

[46] Mario Silvagni et al. “Multipurpose UAV for search and rescue operations in
mountain avalanche events”. In: Geomatics, Natural Hazards and Risk 8.1 (2017),
pp. 18–33. DOI: 10.1080/19475705.2016.1238852.

[47] Qiang Siwei. qiangsiwei/tensor_tools/algorithms/rpca/IALM/inexact_alm_rpca.m. Dec.
2015. URL: https://github.com/qiangsiwei/tensor_tools/blob/master/
algorithms/rpca/IALM/inexact_alm_rpca.m.

[48] Jingxuan Sun et al. “A Camera-Based Target Detection and Positioning UAV Sys-
tem for Search and Rescue (SAR) Purposes”. In: Sensors 16.11 (2016). ISSN: 1424-
8220. DOI: 10.3390/s16111778.

[49] TensorFlow. TensorFlow 2 Detection Model Zoo. Sept. 2020. URL: https://github.
com/tensorflow/models/blob/master/research/object_detection/

g3doc/tf2_detection_zoo.md.

[50] TensorFlow. TensorFlow Core v2.4.1 API for Python - Module: tf.keras.activations.
Mar. 2021. URL: https://www.tensorflow.org/api_docs/python/tf/
keras/activations.

[51] TensorFlow. TensorFlow Core v2.4.1 API for Python - tf.keras.layers.Dense. Mar. 2021.
URL: https://www.tensorflow.org/api_docs/python/tf/keras/layers/
Dense.

[52] TensorFlow. TensorFlow Object Detection API. May 2021. URL: https://github.
com/tensorflow/models/tree/master/research/object_detection.

[53] Tensorflow. tensorflow/resnet.py. Mar. 2021. URL: https://github.com/tensorflow/
tensorflow / blob / master / tensorflow / python / keras / applications /

resnet.py.

[54] TensorFlow. TFRecord and tf.train.Example - TensorFlow Core. Apr. 2021. URL: https:
//www.tensorflow.org/tutorials/load_data/tfrecord.

[55] Yulun Tian et al. “Search and rescue under the forest canopy using multiple
UAVs”. In: The International journal of robotics research 39.10-11 (2020), pp. 1201–
1221. ISSN: 0278-3649.

[56] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. 2001.

[57] M. Vollmer and K.P. Möllmann. Infrared Thermal Imaging: Fundamentals, Research
and Applications. Wiley, Feb. 2018. ISBN: 978-3-527-41351-5.

[58] Huan Wang, Manshu Shi, and Hong Li. “Infrared dim and small target detec-
tion based on two-stage U-skip context aggregation network with a missed-
detection-and-false-alarm combination loss”. In: Multimedia Tools and Applica-
tions 79.47 (2020), pp. 35383–35404. ISSN: 1573-7721. DOI: 10.1007/s11042-019-
7643-z.

[59] K. Wang et al. “Detection of Infrared Small Targets Using Feature Fusion Convo-
lutional Network”. In: IEEE Access 7 (2019), pp. 146081–146092. DOI: 10.1109/
ACCESS.2019.2944661.

[60] Xiaofei Wang et al. “Convergence of Edge Computing and Deep Learning: A
Comprehensive Survey”. In: IEEE Communications Surveys & Tutorials 22.2 (2020),
869–904. ISSN: 2373-745X. DOI: 10.1109/comst.2020.2970550.

https://doi.org/10.1080/19475705.2016.1238852
https://github.com/qiangsiwei/tensor_tools/blob/master/algorithms/rpca/IALM/inexact_alm_rpca.m
https://github.com/qiangsiwei/tensor_tools/blob/master/algorithms/rpca/IALM/inexact_alm_rpca.m
https://doi.org/10.3390/s16111778
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://www.tensorflow.org/api_docs/python/tf/keras/activations
https://www.tensorflow.org/api_docs/python/tf/keras/activations
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/applications/resnet.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/applications/resnet.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/applications/resnet.py
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://doi.org/10.1007/s11042-019-7643-z
https://doi.org/10.1007/s11042-019-7643-z
https://doi.org/10.1109/ACCESS.2019.2944661
https://doi.org/10.1109/ACCESS.2019.2944661
https://doi.org/10.1109/comst.2020.2970550

Bibliography 59

[61] Youzi Xiao et al. “A review of object detection based on deep learning”. In: Mul-
timedia Tools and Applications 79.33 (Sept. 2020), pp. 23729–23791. ISSN: 1573-7721.
DOI: 10.1007/s11042-020-08976-6.

[62] Yunyang Xiong et al. MobileDets: Searching for Object Detection Architectures for
Mobile Accelerators. 2020. arXiv: 2004.14525 [cs.CV].

[63] Huaizhong Zhang et al. “A novel infrared video surveillance system using deep
learning based techniques”. In: Multimedia tools and applications 77.20 (2018), pp. 26657–
26676. ISSN: 1573-7721.

[64] Zhong-Qiu Zhao et al. Object Detection with Deep Learning: A Review. 2019. arXiv:
1807.05511 [cs.CV].

[65] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as Points. 2019.
arXiv: 1904.07850 [cs.CV].

[66] Haidi Zhu et al. A Review of Video Object Detection: Datasets, Metrics and Methods.
2020. DOI: 10.3390/app10217834.

[67] Zhengxia Zou et al. Object Detection in 20 Years: A Survey. 2019. arXiv: 1905.
05055.

https://doi.org/10.1007/s11042-020-08976-6
https://arxiv.org/abs/2004.14525
https://arxiv.org/abs/1807.05511
https://arxiv.org/abs/1904.07850
https://doi.org/10.3390/app10217834
https://arxiv.org/abs/1905.05055
https://arxiv.org/abs/1905.05055

	Abstract
	Acknowledgements
	Introduction
	Problem
	Proposal
	Scope
	Outline

	Background
	Unmanned Aerial Vehicles
	Search and Rescue
	Infrared Imaging
	Generic Object Detection
	Artificial Neural Networks
	Softmax
	Loss Functions
	Gradient Descent
	Backpropagation

	Convolutional Neural Networks
	Layers

	Object Detection
	Meta-architectures and Feature Extractors
	Feature Pyramid Networks
	Infrared Small Target Detection
	Infrared Small Target Detection Methods

	Low-Rank and Sparse Matrix Decomposition
	Infrared Patch-Image Model

	Methodology
	IR Small Target Dataset Analysis
	Data-driven Approach
	Residual Neural Network (ResNet)
	Modified ResNet
	CenterNet

	Training the Data-driven Method
	Training Configuration

	Model-driven Approach
	Evaluation Metrics
	Testing

	Results and Discussion
	Test Results
	Analysis of the Model-driven Methods
	Analysis of the Data-driven Methods

	General Discussion of the Proposed System
	Determining Size of Heat Signatures
	Computation Offloading

	Conclusion and Future Work
	Conclusion
	Future Work

	Inexact Augmented Lagrange Multiplier (IALM)
	Accelerated Proximal Gradient (APG)
	Bibliography

