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Abstract

Due to the increasing consumption of electrical load and growth in the use of sensitive devices connected
to power grid, Power quality (PQ) has become a subject of interest. PQ disturbances (PQDs) that
affect voltage or current in the power system, may introduce some technical problems; hence, detection
and mitigation of these PQDs are necessary. Recently, several techniques and methods for PQ analysis
have been developed. Since most of the PQ events are non- stationary, proper time-frequency analysis
techniques are required that can accurately identify and analyze events and disturbance in the power
system. One of the recently developed tools that can be used for decomposition and analysis of any
complex signal, is the Empirical Mode Decomposition (EMD) method. It is an adaptive time-frequency
method for analyzing transient, nonlinear, and non-stationary signals.

In this thesis the EMD, Short Time Fourier Transform (STFT) and Continuous Wavelet Transform
(CWT) are studied and applied to analyze a PQ event related to single phase low voltage power grid.
Then their effectiveness and performance are evaluated. The STFT can provide the time–frequency
domain information, but a compromise between time and frequency resolution has to be established
because it is using a fixed window. To overcome this shortcoming, the CWT is used which utilizes
variable sized windowing technique in order to maintain time and frequency resolution simultaneously.
The WT yields high frequency resolution but low time resolution in the low frequency components,
while low frequency resolution but high time resolution in the high frequency components. It needs to
select a certain wavelet as primary function. Moreover, it encounters difficultly in noisy conditions.

The EMD decomposes the signal into a sum of intrinsic oscillatory components, known as Intrinsic
Mode Functions (IMFs). Each IMF has different frequency components, which are extracted through
sifting processes in a way from the highest frequency to the lowest. Once the IMFs are obtained, the
Hilbert Transform (HT) can then be applied to calculate the instantaneous frequency and amplitude of
each IMF. The combination of the EMD and the HT is known as the Hilbert–Huang Transform (HHT).
The EMD is a fully data-driven signal analysis method which does not need any a priori defined basis
function. The empirical nature of EMD presents the advantage over other signal analysis methods.
Although EMD has demonstrated to be an effective method for analyzing non-stationary signals, it
experiences some shortcomings. Mode mixing is one of the major problem to the EMD method. In
order to overcome the mode mixing issue, a noise-assisted data analysis method referred to as the
Ensemble EMD (EEMD) is implemented. The added white noise will be averaged out with sufficient
number of trials; the only persistent part that survives the averaging process is the component of the
original signal.
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Chapter 1

Introduction

The electrical power consumption has been increased in the last few years due to increasing amount
of electronic equipment. All electronic equipment will affect the power consumption by the way in
which they are in use or standby. Electronic equipment which we use daily at home or at the office,
are connected to the electric power grid continuously or during charging via regulated power supplies.
Switched Mode Power Supplies (SMPS) are also becoming more popular due to continuous development
in power electric and digital electronics. These SMPS use switching technology that reduces their
weight, energy losses and size. However, they produce harmonics and high-frequency disturbances,
which cause electromagnetic compatibility problems for the power grid and neighboring equipment
connected to it. Power electronic devices produce harmonics due to their switching operations [2, 3].
Harmonics are distorted electrical waveforms that cause disturbances into electrical system. They flow
into the electrical system as a result of nonlinear electronic switching devices and generate wasteful
heat. The input current that contains a power frequency component of 50 Hz or 60 Hz also contains
harmonic components with frequencies equal to integer multiple of the fundamental frequency [4]. The
issue is non-sinusoidal current of inverters and rectifiers. Rectifiers only draw current pulses from the
grid in a small time interval around the maximum amplitude of the voltage waveform. This tends
to flatten the tops of the waveform, which means that the waveform contains harmonic components.
The harmonic distortion of the current leads to harmonic components in the supply voltage. In a
power grid, interference and unwanted currents or voltages that generate noise is one of the important
factors affecting the Power System (PS) signal for a synchronous phasor measurement [5]. The voltage
waveform on the power grid should ideally be sinusoidal, but in practice it is polluted by voltage spikes
from lightning, industry, the power supplies in nearby equipment, radio frequency noise, etc. Noise
on the power grid can leak into sensitive electronic apparatus via power supply. Modern electronic
equipment is not only sensitive to voltage disturbances, it also causes disturbances for other customers.
The increased use of converter driven equipment has led to a large growth of PQ disturbances (PQDs).

1.1 Power Quality

Power Quality (PQ) is the delivery of reliable and uninterrupted supply of electricity to the consumers
[6,7]. It is related not only to the performance of equipment but also to the possibility of measuring and
quantifying the performance of the power system. Over the last few years, the traditional framework
of PS has been changed, and the electrical system can be handled as complex entity. The electricity
industry is evolving into a distributed and competitive industry in which market demands drive the
price of electricity and reduce the net cost due to increased competition. The change is related to the
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deregulation of the electricity industry. This deregulation (privatization and liberalization) process has
led to an increased need for quality indicators. Customers are getting more information on the voltage
quality as they expect, and demanding the acceptable reliability and quality ranges [8]. Therefore, the
responsibility of supplying a better quality of power is important for the power utility companies in
order to fulfill customer’s satisfaction and gain optimal profits for the company. On the other side, the
increasing utilization of high technology devices has contributed to generation of PQD in the power
grid. PQ has been defined as a combination of voltage quality and current quality. Voltage quality is
how the network affects the customer or the load, and it is concerned with deviations of the actual
voltage from the ideal voltage. Current quality is how the customer or load affects the network, and it
is the equivalent definition for the current [1]. A simple and easy solution is to define the ideal voltage
as a sinusoidal voltage waveform with constant frequency and amplitude equal to their nominal value.
Voltage and current quality concern all deviations from the ideal voltage and current wave forms,
respectively, the ideal waveform being a completely sinusoidal waveform of constant frequency and
amplitude.

1.2 Motivation

The end users or electrical power consumers expect that electrical power service provider deliver
optimal electricity which is undistorted sinusoidal rated voltage and current continuously at normal
frequency (e.g. 50 Hz or 60 Hz). However, large penetration of electronic controllers and devices as
well as development of the distributed generation and electric power industry lead to more demand on
the quality of electric power [9]. Therefore, PQ is becoming an important and challenging issue due to
enormous utilities of electronic equipment which introduce PQD, such as voltage variations, flicker,
waveform distortion, transient, etc. [10]. Any voltage, current and/or frequency deviations that cause
failure or malfunctioning to customers’ equipment can be defined as a PQ problem. Power systems,
especially distribution systems, have numerous non-linear loads, which affect the quality of power
significantly. Apart from non-linear loads like capacitor, motor starting and switching, and unusual
faults could also inflict PQ. Many problems can arise from poor PQ, especially in today’s complex PS
such as false operation of modern control systems.
PQD cover a broad range of frequency with significantly different magnitude variations which can be
non-stationary. Thus, suitable techniques and algorithms are required to identify and analyze these
events. Analysis of the PQ signal in distribution systems are important tasks for maintaining power
distributed network. As most of the disturbances are non-stationary and transitory in nature [11]
it requires advanced tools and techniques for the analysis of PQD. There are various methods and
algorithms used for PQD analysis, each has pros and cons. Fourier Transform (FT) is a simple
and good method for periodic signals to convert from the time domain to frequency domain based
on assumption that the signal is linear and stationary. It does not provide information about how
frequency of signal is changing with respect to time [12]. On the other hand, majority signals in real
environments are non-linear and non-periodic, and multiple advanced techniques have been designed to
analyze them. Short-Time Fourier Transform (STFT) and Wavelet Transform (WT) are methods for
analyzing stationary and non-stationary but linear signals. To deal with non-periodic and non-linear
signals, a fully data-driven, self-adaptive and unsupervised signal decomposition method is required.
Hence, Empirical Mode Decomposition (EMD) is one of the methods that can attain the required
conditions. This method is used to analyze non-periodic and non-linear signals in an efficient manner,
and we can analyze the signal in time and frequency domain simultaneously The data is assumed that
consists of multiple intrinsic modes of oscillations. Each of these modes which are called Intrinsic
Mode Function (IMF) [13], added together make up the original signal. EMD also satisfies the perfect
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reconstruction property, for instance superimposing all extracted IMFs together with the residual slow
trend reconstructs the original signal without information loss or distortion [14]. The empirical nature
of EMD offers the advantage over other empirical signal decomposition techniques like Empirical Matrix
Factorization (EMF) [15] of not being constrained by conditions which often only apply approximately.

1.3 Scope

The work within the thesis focuses on investigating the methodology and implementation of Empirical
Mode Decomposition (EMD) to the PQ signals, and compare its effectiveness and performance with
other methods for non-stationary analysis approaches. The aim is to detect and analyze PQDs. There
are numerous sources of PQD that cause deviation to sinusoidal waveform of voltage or current in the
PS. EMD is used to decompose the analysed non-stationary signal into intrinsic oscillation components
called Intrinsic Mode Functions (IMF) which are amplitude and frequency modulated. EMD is more
effective algorithm than Fourier-based analysis to analyze signals originating from non-stationary as
well as non-linear processes. It might therefore bring out new aspects of power grid pollution. The
work will consist of algorithmic study and simulations in Matlab program, but real data obtained from
laboratory experiments will also be analysed.
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Chapter 2

Power Quality Problems

A PQ problem is manifested as a non-standard voltage, current or frequency that results in failure
or mis-operation of end user’s equipment [16–18]. The main causes of PQ problems can be natural
or man-made. The natural causes of poor PQ are mainly faults, lightening and weather conditions
which are generally transient in nature. While, the man-made causes are usually related to loads or
system operations which result in both transient and steady-state types of PQ problems [7, 19, 20].
The causes of PQ problems related to the loads are nonlinear loads such as saturating transformers
and other electrical machines, or loads with solid-state controllers such as PC power supplies, TVs,
Uninterruptible Power Supplies (UPSs), arc furances, etc. The causes related to system operations
are switching of transformers, capacitors, feeders, and heavy loads [21]. Switched capacitors can
affect the PQ by generating over voltages caused by high inrush currents when closing or possible
re-strike immediately after opening. Also, when mechanical switch is opened, it requires a five-minute
discharge time delay before re-energizing [22]. PQ problems can be related to the voltage and current
quality issue. Voltage quality concerns the effect of supply voltage on equipment, and the current
quality concerns the effect of equipment current on the system [23]. Some of the voltage related PQ
problems at the point of common coupling where various loads are connected, are voltage variations
and waveform distortions. These problems exist in the supply system because of various disturbances
in the system or the presence of various nonlinear loads such as adjustable speed drives, furnaces and
UPSs. Meanwhile, PQ problems related to the current are unbalanced currents, harmonic currents,
reactive power burden, etc. which cause noise, failure of capacitor banks, losses in the distribution
system and electric machines, Over voltages and excessive current, signal interference and so on. PQ
problems may also consist of a combination of both voltage- and current-based PQ problems in the
system that affect the performance of numerous loads and other equipment in the power grid.

PQ problems affect directly or indirectly all concerned utilities, customers, and manufacturers in terms
of major financial losses caused by equipment damage, wastage of raw material, interruption of process,
loss of important data, production loss, etc. Some PQ problems affect protection systems and result in
malfunctioning of protective devices, and interrupt many operations and processes in the industries
and other systems. These problems also affect many types of measuring instruments and analyzing
of the various quantities such as current, voltage, power, and energy. Furthermore, the monitoring
systems are affected by these problems in many important, critical, emergency and costly equipment.
Thus, the interest in the PQ has been exponentially growing recently, and some of the main reasons
are as follows:

• Equipment has become more sensitive to voltage quality disturbances, production processes
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have become less tolerant of improper operation of equipment, and companies have become less
tolerant of production halt. The main factors are voltage dips and short interruptions.

• High-frequency transients also causes equipment malfunction. Equipment produces more current
disturbances than it used to do. Both low and high power equipment is increasingly powered by
simple power electronic converters which produce a broad spectrum of distortion.

• Equipment produces more current disturbances than it used to do. Both high- and low power
equipment are increasingly powered by simple power electronic converters that produce a wide
spectrum of distortion

• The effect of PQ disturbances to other important appliances such as telecommunication network,
TVs, computers, metering, and protection systems.

• Embedded generation and renewable sources of energy create new PQ problems, such as voltage
fluctuations, variations and waveform distortion [1]. Most interfaces with renewable sources of
energy are sensitive to voltage disturbances.

• Energy-efficient equipment is also a significant source of PQ disturbances. Adjustable-speed
drives and energy-saving lamps are both important sources of waveform distortion and are also
sensitive to certain types of PQ disturbances.

• Similar to other kinds of environmental pollution such as air, the pollution of power networks
with PQ problems has also become an environmental issue a long with other consequences in
addition to financial issues [21].

Power distribution systems ideally should provide customers with an uninterrupted flow of energy
at smooth sinusoidal voltage at the contracted magnitude level and frequency [24], but in practice,
distribution systems have nonlinear loads which affects the purity of waveform of power supply. A
momentary disturbance for sensitive electronic devices causes frequency deviations which results in
interrupted power flow, scrambled data, unexpected plant shutdowns and equipment failure.

2.1 PQ disturbance

As described, PQ is concerned with deviations of the voltage and current from its ideal value. Any
deviation of voltage or current from their ideal waveforms is a PQ phenomenon or disturbance. It can
be a current disturbance a or voltage disturbance, but it is often not possible to distinguish between
them [1]. Any change in current gives a change in voltage and vice versa. To distinguish be-tween
voltage and current disturbances, we use the cause as a scale for distinction between them. Volt-age
disturbances originate in the power network that potentially affect the customers. while current
disturbances originate with a customer, potentially affect the network. However, this classification is
not accurate; as instance, starting a large induction motor leads to an over current. Viewed from the
network this is clearly a current disturbance. In the meanwhile, the resulting voltage dip is a voltage
disturbance for a neighboring customer, but for the network operator this is a current disturbance.
For PQ issues it is very common that one underlying event, for instance motor start in this case,
leads to different disturbances for different customers or at different locations. This complication
of distinguishing between volt-age and current disturbances is one of the reasons that the PQ term
is mainly used, so our definition of PQ considers more disturbances than those that are normally
considered part of PQ, such as frequency variations and disunity power factor.

There are many PQ disturbances parameters however, some of them that are still of interest today
are [3]:
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• Inter-harmonic: A frequency component of a periodic quantity that is not an integer multiple of
the frequency at which the supply system is operating (for example, a 190-Hz component). The
main sources of inter-harmonic waveform distortion are static frequency converters, induction
furnaces, and arcing devices. It is generally the result of frequency conversion and is often not
constant as it varies with load [25].

• Transients from opening and closing of breakers and other switch gear

• Supply voltage imbalance that creates substantial problems to electrical machines due to negative
sequence currents, noise, torque pulsation, vibration, rotor heating, etc.

• Voltage interruption: The disappearance of the supply voltage on one or more phases

• Electromagnetic disturbance: Any electromagnetic phenomenon that may be superimposed on a
wanted signal and degrade the performance of a device, a piece of equipment, or a system

• Over-Voltage due to lightning strokes: Over voltages can be generated by lightning currents
flowing along ground conductor paths.

• Light flicker due to fast voltage fluctuations from fast load variations

• Frequency fluctuations due to unbalance between power production and consumption

• Waveform distortion (often referred to as harmonics)

PQ disturbances are often classified into variations and events. Variations are either transient or
steady-state disturbances that require continuous measurements over a long period of time. While,
events are sudden with a beginning and an ending that are measured with a triggering function. Such
disturbances pertain to abnormalities in the system voltages or currents due to faults or some abnormal
operations, where steady- state variations refer to Root Mean Square (RMS) deviations from their
nominal quantities or harmonics. It is not always easy to make distinction between variations and
events. For example, if we consider changes in the voltage magnitude as a PQ disturbance, it may be
considered a voltage dip as an extreme case of a voltage magnitude variation. A unique way of defining
events is by the triggering that is required to start their recording, but variations do not need triggering.
The difference between a voltage (magnitude) variation and voltage dip is in the triggering. A voltage
dip has a specific starting and ending instant, although not always uniquely defined. Both voltage dips
and voltage variations use the RMS voltage as their basic measurement quantity. Nevertheless, for the
further processing of voltage variations all values are important, whereas for the further processing
of voltage dips only the RMS values below a certain threshold are considered. From classical power
engineering point of view, the measurement of variations is similar to measurement of the energy
consumption (continuous), whereas the measurement of events is similar to the functioning of a
protection relay (triggered).

2.2 PQ Variations

PQ variations are slowly changing parameters such as power, voltage magnitude, frequency, harmonics,
flicker, imbalance, etc. A typical example of variation is the variation of the PS frequency with nominal
value of 50 Hz but the actual value always differs from nominal value by up to about 1 Hz [1]. The
frequency can be measured at any moment in time and a value will be obtained. The issues when
measuring PQ variations include extracting the characteristics (in this example, the frequency from
the sampled voltage or current waveform), statistics to quantify the performance of the supply at
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one location, and statistics to quantify the performance of a whole system. The origin of some PQ
variations is described in the consecutive sections.

2.2.1 Voltage Frequency Variations

Power frequency variations are defined as the deviation of the power system fundamental frequency
from its specified nominal value (e.g., 50 or 60 Hz). The power system frequency is related to the
rotational speed of the generators supplying the system [1]. While the electricity cannot be stored, a
balance between power generation and consumption (load) should be maintained. If the balance is
violated, a power deviation will occur that will cause the system frequency deviation from its nominal
value. Normally this frequency variation is very small, so its impact on end-user equipment is negligible,
except some cases such as arc-furnace that both voltage and current show significant fluctuations.
Since fluctuations are more severe in the current, it contains a spectrum of harmonics.

The frequency of the voltage is the repetition rate of the voltage waveform at a specific location. The
voltage frequency is often very close to the frequency of the system. That is to say that the frequency
assumed to be the same anywhere in the system, only during system instabilities the frequency can vary
notably between different locations. Examples of measured frequency variations are shown in figures
below. Figure 2.1a depicts a 1 min average frequency during a 48 hour period, whereas Figure 2.1b
shows the spread in frequency during each 1 min interval. There are different patterns in variations
both at longer and at shorter time scales, in different systems which are related to the size of the
system and to the control methods used. As previously stated, there is no any concern of the frequency
variations in the system presented here.

(a) (b)

Figure 2.1: Frequency variations measured during a two-day period: (a) 1 min average frequency value,
(b) Frequency variation range [1] (by permission).

In every country, a standardized frequency value called Nominal frequency(fN ) is decided by the
design and the operating characteristics of the main components in their power system. The fN is 50
Hz in Europe, Australia and most Asian countries, whilst 60 Hz in most parts of America. During
normal operation, the frequency variation between a strict interval within a range of 50 Hz ±1% (i.e.
49.5 ... 50.5 Hz) [26] is allowed. This Frequency Variation Interval (FVI) is defined by every national
transmission system operator, and it varies between different synchronous areas. For example, in the
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Nordic area the normal frequency band (allowed FVI) is 49.9 – 50.1 Hz [27–31]. In serious contingency
critical situations, the frequencies may be over the range of the normal operating conditions, but they
must be within the range of the lowest to the highest critical frequencies which are indicated by Grid
Codes [32–36]. The frequency variations for residential customers equipment connected to the low
voltage grid is +4% and −6% [37] which for a 50 Hz system corresponds to 47 - 52 Hz. This is a wide
and critical frequency range in European countries so it can reflect the technical differences between
the transmission grids [38,39]. If the system frequency reaches 47.5 Hz or 51.5 Hz, the operation of the
interconnected network is at its limit and generators will be disconnected automatically. Table 2.1
indicates the allowed FVI for normal operation and critical situations in some countries with fN of 50
Hz.

Table 2.1: Frequency Variation Interval (FVI) under normal operation and critical condition.

Country Normal operation FVI Critical condition FVI
Great Britain 49.5 – 50.5 Hz 47.0 – 52.0 Hz
Germany 49.5 – 50.5 Hz 47.0 – 52.0 Hz
France 49.5 – 50.5 Hz 47.0 – 52.0 Hz
Belgium 49.5 – 50.5 Hz 47.0 – 52.0 Hz
Austria 49.5 – 50.5 Hz 47.5 – 51.5 Hz
Poland 49.5 – 50.5 Hz 47.0 – 52.0 Hz
Romania 49.5 – 50.5 Hz 47.0 – 52.0 Hz
Australia 49.75 – 50.25 Hz 47.0 – 52.0/55.0 Hz
Ireland 49.8 – 50.2 Hz 47.0 – 52.0 Hz
China 49.8 – 50.2 Hz 48.0 – 51.0 Hz
Denmark 49.9 – 50.1 Hz 47.5 – 51.0 Hz
Norway 49.9 – 50.1 Hz 47.5 – 51.5 Hz
Italy 49.9 – 50.1 Hz 47.5 – 51.5 Hz

The size of the frequency shift and its duration depend on the load characteristics and the response of
the generation control system to load changes. To attain power frequency control the rotor speed of
generator should be regulated to synchronize with the grid frequency. The principle is to compare the
measured frequency with the fN . When the measured frequency is higher than the fN , it indicates a
surplus of rotational energy in the system. To mitigate this, the generator reduces its active power
output. Further precisely, the mechanical input to the turbine generator is reduced.

2.2.2 Voltage Magnitude Variations

The voltage magnitude variation is increase or decrease of the voltage magnitude due to variation of
the total load of a distribution system or part of it, actions of transformer tap changers or switching
of capacitor banks or reactors [40,41]. The actions of transformer tap changer and capacitor banks
switching can normally be traced back to load variations as well. Hence, the voltage magnitude
variations are mainly due to load variations which follow a daily pattern [42]. Moreover, fast variation
of the voltage magnitude is referred to voltage fluctuation.

The magnitude of the voltage in the system is different for each location, so it requires a separate
measurement for every location in the system. The voltage variations can affect the performance and
lifetime of the equipment. Some examples of voltage variations effect are as follows:

• Over voltage will increase the risk of insulation failure, and in a long term it effects system
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Figure 2.2: Voltage magnitude variation of a three phase electric power.

components such as transformers and cables, also for end-user equipment such as motors.

• In induction motors, under voltages will affect starting torque. When the starting torque is
reduced, it may increase the time needed to accelerate the motor. In some cases the motor
may not accelerate at all. Over voltages will increase starting torque, decrease power factor and
increase starting current that causes greater voltage drop in the supply system and increases the
voltage.

• The energy input and consequently the heat output of resistance heaters vary approximately as
the square of the voltage, e.g. a 10% drop in voltage will cause approximately 20% drop in heat
output.

• Voltage variation affects light output and lifetime of incandescent lamps significantly. Light
output of fluorescent lamps vary approximately in direct proportion to the applied voltage [43].
Compared to the incandescent lamps, the lifetime of fluorescent lamps is less affected by voltage
variation [1].

• Electronic equipment are sensitive to the voltage variation. They may perform less efficient due
to under voltage. The equipment will also be more sensitive to voltage dips.

There is distinction between single-phase measurements and three-phase measurements. Anyway, in
this thesis the single-phase measurements are considered, so the voltage magnitude is extracted by
using the waveform of only one phase. This may be a phase voltage or a line voltage; however, the
calculations for phase voltages and line voltages are the same. To model the effect of a certain load on
the voltage, the power system is represented through a Thevenin source in Figure 2.3, consists of an
ideal voltage source (E, the no-load voltage) and a constant impedance ( Z the source impedance) which
are not physical quantities. However, the values can often be approximated by physical quantities, for
instance, the impedance of a transformer and the voltage on primary side of the transformer.

2.2.3 Voltage Unbalance

When voltages of a three-phase system are not identical in magnitude or the phase differences between
them are not exactly 120 degrees, voltage unbalance occurs [44, 45]. Voltage unbalance is mainly
due to unbalance in the load currents and unbalance in the supplying network. Current unbalance
in low-voltage networks is due to the load diversity. The load unbalance is partially due to the



CHAPTER 2. POWER QUALITY PROBLEMS 10

Figure 2.3: Thevenin equivalent of the power grid.

natural variation between single-phase loads in the three-phases and partially due to large individual
single-phase loads. Variation over time of individual loads implies that there would never be perfect
balance between the load currents even if the loads are equally distributed over the three-phases. This
issue is mainly in low voltage networks; however, in medium and higher voltage networks where loads
are usually three-phase, the voltage unbalance can be the result of capacitor bank anomalies, such as
a blown fuse in one phase of a three-phase bank. In addition to unbalanced load currents, balanced
current flowing through unbalanced impedances also cause voltage unbalance.

Three-phase transmission system is balanced as the vectors of voltage and the magnitude of current
in all phases are equal and spaced 120° apart [46]. When a single-phase load is connected to such a
balanced system, unequal voltage drops occur in different phases that cause unbalance in the power
system. The percentage value of the voltage unbalance can be calculated as [47,48]:

Vu = 100
Vdmax
Vavg

(2.1)

Where Vu is voltage unbalance as percentage, Vdmax maximum voltage deviation from average voltage
and Vavg average voltage.

The unbalance can also be derived from the magnitude of connected load and the utility system fault
level:

Vu = 100
SL
SSC

(2.2)

where SL is line to line load in VA, and SSC three-phase short circuit fault level in VA.

Unbalanced voltages cause a flow of negative sequence currents in the three-phase equipment connected
to the electric power network. The currents magnitude can be as:

I2 = 100
Vu
Zu

(2.3)

where I2 is negative sequence current as percentage and Z2 equipment negative sequence impedance as
percentage.

In a three-phase system, the voltages are not exactly balanced even in normal operation. A set of
three-phase voltages contains three components, called symmetrical components [49]; zero-sequence
voltage, positive-sequence voltage, and negative-sequence voltage. The positive-sequence voltage is the
amount of voltage contributing to the power flow from generators to motors. The negative-sequence
voltage is an indication of the amount of unbalance in the system. The negative sequence unbalance



CHAPTER 2. POWER QUALITY PROBLEMS 11

due to a single-phase load is equal to the ratio between the apparent power of the load and the fault
level of the supply. Even if a feeder supplies identical loads equally spread over the phases, a negative
sequence current will result. Three-phase equipment that are normally connected phase to phase
(or phase to neutral without ground connection, in motor start case) will be affected only by the
negative-sequence. The three-phases of an overhead transmission line have slightly different inductances
and capacitances resulting in a coupling between positive- and negative-sequence voltages and currents.
The zero-sequence voltage does not cause any change in load currents, so normally it is not considered
in characterizing the voltage unbalance. The presence of zero-sequence voltage indicates a connection
to earth, and it is a measure for the amount of current not returning through the phase conductors.

The voltage unbalance has recently become a major concern for PQ due to its effects on the load and the
source. For instance, nonlinear loads such as static converters fed from unbalanced supplies, produce
uncharacteristic low frequency harmonics, which increase the ratings of filters, switches, etc [50]. AC
electric machines, when supplied by unbalanced voltage sources, generate large negative sequence
current components due to the low negative sequence impedance, which increase the machine losses
and reduce the net torque [51] Voltage unbalance leads to unbalanced currents (over currents) for
three-phase equipment such as rectifiers and rotating machines. It could become a concern for the
connection of induction and synchronous generators to low- and medium voltage networks.

2.2.4 Voltage Fluctuations and Flicker

Voltage fluctuations are cyclical variations of the voltage envelope or a series of random voltage changes
of up to ±10% of the nominal value [22, 44, 52]. Voltage fluctuations affect the performance of the
equipment and cause instability of the internal currents and voltages of electronic equipment. When
the voltage level falls outside of this range, a device may not be able to start or operate fairly. It may
malfunction or may be damaged. Frequency fluctuations outside tolerance value of ±5% are usually
unsafe for equipment which are considered to be sensitive to voltage level or fluctuations [53]. There
should be a balance between power generation and power demand or load. The frequency tends to
drop from nominal value if demand is more than generation, and if demand is less then the frequency
increases. Thus, change or disconnection of of large load, also fault on transmission line or turning
on/off of large generator in the power grid may result in frequency fluctuations.

The main source of voltage fluctuation are Industrial loads such as arc furnaces, resistance welders,
start-up of drives, etc. Loads that consume large amounts of power, for instance arc furnaces, change the
currents at many different time scales. They are typically connected directly to the transmission system
and cause light flicker over large areas. Step voltage changes due to the connection or disconnection
of large loads or capacitor banks can also cause voltage fluctuations that can affect many consumers.
Some domestic equipment can cause voltage fluctuations is refrigerator. When pump starts to circulate
the cooling liquid a voltage drop occurs. Loads for which the current varies rapidly and continuously,
will cause voltage variations.

The voltage fluctuation which sometimes called voltage flicker, is a series of non-periodic phenomena
with smaller amplitude and faster continuous variation in voltage magnitude [54]. It is the ratio of the
voltage difference between two adjacent steady-state voltages separated by at least one voltage variation
characteristic to the nominal voltage. The main result of voltage flicker is light flicker, the fluctuations
in the frequency range 1 to 20 Hz which is a visual phenomenon perceived by eyes. Flicker intensity is
a quantity used to quantify voltage fluctuation and light flicker. The value of intensity quantity is an
objective measure of the severity of the light flicker due to a certain voltage fluctuation. for a standard
incandescent lamp, the flicker severity equal to 1 corresponds to a severity level that is experienced
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as uncomfortable by 95% of persons [55]. We can deal with the flicker intensity as a variation, just
like voltage magnitude variation. It can be plotted as a function of time, and probability density and
distribution functions can be obtained. There are also some other loads that will be negatively affected
by fast fluctuations in the voltage amplitude at their terminals, for example, accelerating or decelerating
moments for motors, fdefecting electronic equipment and components for telecommunication and so on
that the fluctuation of the supply voltage passes through to their electronic parts [56]. An example of
small voltage fluctuations that cause problems other than light flicker is small speed variations in the
motor driving a weaving machine that results small color variations in the final cloth.

2.3 Waveform Distortion

A steady-state deviation from an ideal sine wave of power frequency is defined as waveform distortion
[22, 44, 57]. It includes all deviations of the voltage or current waveform from the ideal sine wave.
According to this definition, waveform distortion concerns the voltage quality and current quality.
However, variations in magnitude and frequency cannot be considered as waveform distortion. Since
the voltage quality is how the network affects the customer or the load, and current quality is how
the customer or load affects the network; distorted voltages which are typically created by generators,
affect the customer equipment and distorted currents results from loads affect the network components.
Anyway, in some cases such as capacitor banks, voltage distortion also affects network components.
Transformer voltage and current distortions may lead to additional heating, increase in audible noise
and cause additional losses. However, the current distortion has more effect because the current
distortion is higher than the voltage. There are five primary types of waveform distortion [58].

DC Offset: Offsetting of a signal from zero is DC offset, and it is the presence of a DC voltage or
current in an AC power system. Main source of DC offset in the power systems can be an asymmetry
of electronic power converters or geomagnetic disturbance. Incandescent light bulb life extenders may
consist of diodes that reduce the rms voltage supplied to the light bulb by half-wave rectification.
The Direct Current flow in transformers cause magnetic saturation, increased heating and loss of
transformer life. DC current may also cause the electrolytic erosion of grounding electrodes and other
connectors.

Harmonics: Harmonics are sinusoidal voltages or currents with frequencies that are integer multiples of
the nominal frequency at which the supply system operates. Harmonic occurrence is due to increased
use of nonlinear loads which cause sine waveform distortion. The total distorted waveform will be
a combination of the fundamental frequency sine wave and the various harmonics, so any distorted
waveform can be decomposed into a sum of the fundamental frequency and the harmonics, and can be
written as [6, 44]:

y(t) = YDC +

n∑
h=2

Yh
√

2 cos(hωt− Φh), (2.4)

where Y is sinusoidal component (voltage or current), h is the harmonic order, ω is angular frequency
(2π × 50Hz), and Φ is phase shift for the hth harmonic. The value of n for a continuous signal is ∞,
but for a discrete signal it is determined by the sample frequency which the highest frequency in a
discrete signal is half of the sample frequency. Fourier methods can be used for analyzing harmonic
distortion [59]. It is much easier to determine the system resonance to an input that is sinusoidal.
Harmonic distortion levels are described by the complete harmonic spectrum with magnitudes and
phase angles of each individual harmonic component. The Total Harmonic Distortion (THD) is the
most common measure of harmonic content. It is a measure of the effective value of the harmonic
components of a distorted waveform in both current and voltage waves, but it usually refers to voltage
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waveform distortions. Meanwhile, it is not a good measure of heat generation in transformers because it
can not calculate core losses accurately. The THD is the rms of the harmonics expressed in percentage
of the fundamental component:

THD =
1

V1

√√√√ ∞∑
h=2

Vh
2. (2.5)

Nonlinear loads and power electronic controllers are the major source of harmonics. Some negative
effects of harmonics are

• Extra losses and heating in rotating machines, transformers and capacitors

• Overvoltages due to resonance

• Interference with ripple control systems used in Demand Side Management (DSM)

• Noise on telephone lines which cause communications interference

Interharmonics: The voltage or current waveform also contains frequency components that are not
a multiple integer of the PS frequency. To measure interharmonics we need to measure waveform
over a longer period rather than one cycle. The main sources of interharmonics are static frequency
converters, cycloconverters, induction furnaces and arcing devices. Interharmonics can affect power
line carrier signaling and cause visual flicker in display devices such as cathode ray tubes. Harmonic
distortion is a wide subject and will be discussed in a separate section.

Notching: A periodic voltage disturbance introduced by power converters when current is commutated
from one phase to another during normal operation. During notching, the line voltage will be reduced
by a momentary short circuit that exist between the two commutating phases. Notching can result in
multiple zero voltage crossing which can cause digital clocks to run fast as their design is based on two
crossing per cycle. Notching can be analyzed by Fourier series as it is a steady state phenomenon, that
gives the harmonic spectrum of the affected voltage. However, notching is treated as a special case as
the frequency components associated with notching can be high and outside the range of measuring
equipment normally used for harmonic analysis. Notching can be characterized by its depth (average
depth of the line voltage notch from the sinusoidal waveform at the fundamental frequency), width
(the duration of the commutation process), area (the product of notch depth and width ) and position
where notch occurs on the sinusoidal waveform.

Noise: Defined as unwanted electrical signals with broadband spectral content less than 200 kHz [60]
superimposed on the power system voltage or current in phase conductors, or found on neutral
conductors or signal lines. The main sources of noise are power electronic devices, control circuits,
loads with solid-state rectifiers and switching power supplies. Noise disturbs electronic devices such as
microcomputer and programmable controllers. Using filters, isolation transformers and line conditioners
can mitigate the noise problem.

2.3.1 Transients

Transients in the power system are undesirable and short duration voltage or current event that produce
distortions [25,44]. Transient component is the component of voltage and current due to the transition
between two steady states within a limited duration [1]. Their main characteristic components are
amplitude, rise time, amplitude spectral density, duration, frequency of occurrence and capability of
energy delivery. Transients are associated with disturbances caused by faults, load variations, switching
operations or lightning strikes. They can have effects on system performance or cause failures to
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the power equipment. The term surge is often considered synonymous with transient. Transient can
cause two types of stress in power network; Overvoltages, which can cause insulation breakdown or
flash-overs (insulation failure through air) and overcurrents, which can damage power equipment due
to excessive heat dissipation. Based on their origin, transients can be external (atmospheric) such
as lightning, or internal (switching actions) such as switching operations, faults and load variations.
Further, transients can be impulsive or oscillatory in terms of wave shape of a current or voltage [61].

Impulsive transients are sudden frequency change in the steady-state condition of voltage, current, or
both that are unidirectional in polarity. They are basically described by their rise and decay times,
for instance, a 1.2 × 50 µs 2 kV impulsive transient nominally rises from zero to its peak value of
2 kV in 1.2 µs and then decays to half its peak value in 50 µs [62]. Lightning is the most common
cause of impulsive transients which happens within a short duration between 0.1 µs and 1.0 ms [63].
It can strike any place in the power system and produce lightning surge currents that can flow from
the power system into the loads, and may cause flash-overs of the utility lines and damage equipment.
To protect the system equipment and loads against these surges, lightning arresters are used which
provide an easy pass to earth for the lightning surges. The impulsive transients shape for the reason of
high frequencies can be changed quickly by circuit components and may have different characteristics
when viewed from different parts of the power grid [61].

Oscillatory transients Are sudden frequency change in the steady-state condition of voltage, current, or
both that includes both positive and negative polarity values. An oscillatory transient includes voltage
or current that its instantaneous value changes the polarity very quickly. Transients are described by
their spectral content, duration, and magnitude [58,60] as shown in Table 2.2.

Table 2.2: Typical characteristics of transients .

Categories Spectral content Duration Voltage magnitude
Impulsive transients:
Nanosecond 5 ns rise < 50 ns
Microsecond 1 µs rise 50 ns - 1 ms
Millisecond 0.1 ms rise > 1 ms
Oscillatory transients:
Low frequency < 5 kHz 0.3 - 50 ms 0 - 4 pu
Medium frequency 5 - 500 kHz 20 µs 0 - 8 pu
High frequency < 0.5 - 5 MHz 5 µs 0 - 4 pu

Medium-frequency transients can also be due to the system response to an impulsive transient. Back
to back capacitor energization causes oscillatory transient currents in the tens of kilo Hertz, and cable
switching causes oscillatory voltage transients in the same frequency range.

Low frequency transients are often occur on utility sub-transmission and distribution systems. Their
most common cause is capacitor bank energization, that usually results in an oscillatory voltage
transient with a primary frequency generally between 300 and 900 Hz. The peak magnitude is normally
1.3 to 1.5 pu with a duration of between 0.5 and 3 cycles, but in some cases it can be reached up
to 2 pu [61]. Oscillatory transients below 300 Hz of principal frequencies, generally associated with
ferroresonance and transformer energization, can also occur on the distribution system when the system
responds by resonating with low frequency components in the transformer inrush current or when
unusual conditions result in ferroresonance. High frequency transients are mainly the result of a local
system response to an impulsive transient.
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Chapter 3

Classical Methods and Analysis

3.1 Fourier Transform

Generally speaking, the intention of any transform is to change the domain of a signal from one variant
to another in order to investigate specific properties. There are two equations which deal with the
changes between time and frequency domains; The analysis equation which takes a function in its time
domain and converts it into a frequency domain, and the synthesis equation which takes a function in
its frequency domain and brings it back to the time domain.

Fourier Transform (FT) is one of the most commonly used techniques in periodic and linear time-
invariant signal analysis to change the time domain to the frequency domain. It is bijective, which
means that there is a one-to-one correspondence between the functions from time to frequency domains
and vice versa. FT decomposes any signal into a series of sinusoidal functions. Sinusoidal functions are
unique in meaning that they contain a clear physical meaning in terms of frequency. For example if we
have a signal which is a combination of two signals z(t) = x(t) + y(t), the FT can decomposes it to
its constituent frequencies and the original signals (x(t) and y(t)) can be recovered. It decomposes a
signal into different frequencies, same as a prism that refract light up into different component colors.
FT is widely used not only in signal processing/analysis but also in image analysis eg. edge detection,
image filtering, image reconstruction, and image compression. The analysis equation or FT of a signal
x(t) in its time domain is defined as [64,65]:

X(ω) =

∫ ∞
−∞

x(t)e−jωtdt, (3.1)

where X(ω) represents frequency domain. For going back to time domain from frequency domain and
recover the the signal x(t), Inverse Fourier transform (IFT) or synthesis equation is used:

x(t) =
1

2π

∫ ∞
−∞

X(ω)ejωtdω. (3.2)

The relation between the time domain and frequency domain of a signal established by FT can be
writen as x(t)↔ X(ω), where the double-headed arrow represents the bijective characteristic of the
mapping. While the Fourier series exists for all periodic functions, the FT only exists for signals that
are absolutely integrable, i.e. the integral of the absolute value over the range -∞ to +∞ must be
finite, that is:
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lim
τ→∞

∫ τ

−τ
|x(t)| dt <∞. (3.3)

Impulse function is an important function that leads to mathematical difficulties. From mathematics
point of view the impulse is not a function because it is not defined at the point of application, but in
signal processing impulse function or the Dirac delta function is used frequently and the difficulties
can be handled by the concept of generalized functions.

FT is a very common used technique that can be used in many engineering, science and technology
applications. This transform method has several important properties which are useful for signal
processing applications. These properties can be used to determine the FT of a signal without the
need to apply the analysis or synthesis equations [66,67]. Convolution theorem 1 which allows us to
break problems apart into manageable pieces, is very useful [68].

FT preserves amplitude, frequency and phase information of the signal to transform the signal into
frequency domain. Preserving phase information by FT means that the signal can transformed back
from frequency domain to time domain. FT is a powerful analytical method, generally applicable
for linear systems, but inadequate for non-linear and non-stationary signals. The signal cannot be
analyzed simultaneously in both time and frequency domain by using FT because it represents the
signal’s overall frequency content and does not contain any information showing how frequency changes
over time [69–71]. This is the main drawback of FT for analyzing non-linear and non-periodic signals
in the time domain.

3.1.1 The Discrete Fourier Transform (DFT)

Fourier series play an important role in the analysis of continuous-time signals. In many cases we have
to calculate the Fourier integral or coefficients on the basis of a given sampling of the signal. Therefore,
a transformation is required to transform a discrete-time signal or sampling directly into the frequency
domain. This transformation is called discrete transform. For getting periodic discrete-time signals we
need to sample a periodic continuous-time signal with period T using a sampling frequency ωs = Nω0,

where N is an integer and N > 0, and ω0 = 2π/T is the fundamental frequency of signal f(t).

The Discrete Fourier Transform (DFT) of x(n) is defined by [72,73]

X(k) =

N−1∑
n=0

x(n)e−j2πkn/N , for k = 0, 1, 2, ..., N − 1. (3.4)

The summation in Equation (3.4) is performed over N samples of x(n).

To find the relation between the DFT and FT of discrete-time signals, we consider a discrete-time
signal x(n) with limited time duration which is not zero only within 0 ≤ n ≤ N0 − 1.

The DFT is considered as samples of the FT of discrete-time signals in frequency taken at ∆ω = 2π/N ,
which is corresponding to N frequency samples [74] within the period −π ≤ ω < π. Since we have
X(k) = X(ej2πk/N ) and ω = k∆ω = 2πk/N ,

X(k) = X(ejω). (3.5)

The relation between the DFT and the Fourier series coefficients is [12]: X(k) = TXk. We can recover
1The FT of a convolution is the point-wise product of Fourier transforms, and the Fourier transform of the point-wise

product of two functions is the convolution of the FT of each one of the two functions.
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a periodic discrete-time signal x(n) from its spectrum X(k) through Inverse Discrete Fourier Transform
(IDFT):

x(n) =
1

N

N−1∑
k=0

X(k)ej2πkn/N , for n = 1, 2, ..., N − 1. (3.6)

The DFT formula is used to calculate N complex-valued coefficients from a length N real or complex-
valued signal. It can calculate the frequency spectrum of a signal. DFT has similar properties
to the Fourier transform of continuous-time signals. Another similarity with the Fourier theory of
continuous-time signals is the convolution product, which is called cyclical convolution in the case
of periodic discrete-time signals. There are several ways to calculate DFT. Fast Fourier Transform
(FFT) is another approach for calculating the DFT. While FFT produces the same result as the other
methods, it significantly reduces the computation time [75]. If we want to calculate a DFT of signal on
the N point, it would need to perform N2 operations, while the FFT reduces the number of operations
needed for the same N point data set from N2 to Nlog2(N). In other words, the FFT is N/log2(N)

faster than the DFT.

3.1.2 The Short-time Fourier transform (STFT)

The FT provides frequency information which is the average of the entire time domain. However, we
don’t know when these frequencies occur in the transform. To retrieve this hidden time information,
Dennis Gabor introduced the short-time Fourier transform (STFT) which is also known as time
dependent Fourier transform [76]. The STFT is one of the most common methods for spectral analysis
of time-varying signals that preserves both time and frequency information of signals. The basic idea
behind STFT is to apply the FT to a portion of the original signal obtained by sliding window function
w(t) that will localize and truncate the analyzed signal x(t) .

In analyzing non-stationary voltage and current disturbance data, estimating the frequency contents
of data as a function of time is one of the main interests. For power system disturbances especially
for short-duration events, it requires some nontrivial methods to describe precisely the amplitude
and phase-angle jump as a function of time. To extract such information, a suitable way is to apply
time–frequency signal decomposition where the time-evolved signal components are obtained in different
frequency bands. Among many other methods, discrete STFT is a time–frequency decomposition
method which is used for the time–frequency decomposition of non-stationary signals, since the use
of Fourier transform alone is not adequate. For a signal x(n), the complex signal component in the
frequency band at time instant n can be obtained from the discrete STFT, defined as [77]

X(ejω, n) =

∞∑
m=−∞

w(m) x(n−m)e−jωm, ω ∈ {−π, π}, (3.7)

where w(n) is a window function that selects a section of finite length R from the input sequence
x(m). The main purpose of the window is to select a reasonably stationary segment which is called
short time stable from the input sequence by using sliding window function, instead of considering the
entire signal, then apply the DFT [78]. Hence, the faster changes of input sequence with time, requires
the shorter window in order to ensure an approximately stationary segment. The STFT depends
upon the length, size and shape of window function. The width of the window function determines
the sufficient time or frequency resolution [79–81], i.e, a narrow window (short segment) provides
good time resolution, but poor frequency resolution, whereas long segments provide good frequency
resolution, but poor time resolution. There is also leakage risk when dividing the signal into smaller
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parts (sub-windows). Smaller windows result in higher leakage in the lower frequencies.

Discretizing the frequency variable to ω = (2π/N)k, for k = 0, 1, ..., N − 1, allow us to compute the
spectra corresponding to each of the length N input sequences as a DFT, which can be computed
very effectively by means of a Fast Fourier Transform algorithm. In order to simplify the Equation
(3.7), since the term j(2π/N) is constant we define the notation WN = ej(2π/N) and replace the
X(ej(2π/N)k, n) with the short hand notation X(k, n):

X(k, n) =

N−1∑
m=0

w(m) x(n−m)W km
N , k = 0, 1, 2, ..., N − 1. (3.8)

The STFT can be considered as a special case of Discrete Time Fourier Transform (DTFT) which is
usually implemented by employing a DFT with a sliding window as follows:

[X(0) X(1) ... X(N−1)] = DFTN [x(n−L+1)w(0) x(n−L+2)w(1) ... x(n)w(L−1)], (3.9)

where N is the number of frequency bands, n indicates the time, and DFTN indicates the N -point
DFT, and L = N often used. However, if L < N is selected, then the windowed data in the right side
of (3.9) should first pad zeros to the length N before applying the DFT.

The DTFT and DFT are defined for steady state where the frequency spectrum is periodic, with period
2 π or equivalently fs (the sample frequency). They are based on global time-domain information and
compute only a single spectrum. Whereas, the STFT computes the frequency spectrum from several
segments utilizing the windowing technique that moves the time-window along the time-axis to select
another length N section, and compute another DFT. Thereafter the time-window is moving again
and computes next DFTs [1].

The window function tapers down the input segments towards each end, similarly to the windows used
to reduce spectral leakage. In order to compensate the loss of data and reduce artefacts caused by
the windowing, the input segments are allowed to overlap with 0 < K < N samples which gives more
points in the time domain, without any impact on time or frequency resolution. So the window is
advanced by L = N −K + 1 samples for each new time-frame. Hence, the time index must be modified
to n = lL, where L = N −K [82]:

X(k, lL) =

N−1∑
m=0

w(m) x(lL−m)W km
N , k = 0, 1, 2, ..., N − 1. (3.10)

The larger overlap K results less frequency spectrum changes from one time-frame to the next. The
output of the STFT X(k, lL) is a function of both time and frequency, so the STFT spectrum retains
both time and frequency information.

The problem that the standard FT can analyze only in the frequency domain rather than the time
domain is solved by STFT; however, it has also shortcoming because the resolution of STFT is
determined by a fixed windowed function whose form and shape don’t change. So, we need to choose
a different windowed function in order to change the resolution. STFT is effective for analyzing
segment-wise stationary signals or approximate-stationary signals, but non-stationary signals that
change dramatically, require high time resolution. STFT cannot balance the demand of both time
resolution and frequency resolution. For a non-stationary signal analysis to reflect local time-varying
spectrum features of the signal, we need a method that can realize time-frequency localization.
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3.1.3 The Spectrogram

A spectrogram is the squared magnitude of the STFT [83]. It is a visual representation of the STFT’s
spectrum which has three dimensional quantity. The vertical y-axis represents frequency, horizontal
x-axis represents the time, and the ammplitude will be normal to the page represented by colors. The
spectrogram will be used to estimate the evolution of a nonstationary signal frequency along time. It
utilises successive windowed Fourier analysis in which the window moves along several positions of
the signal over time. In Matlab, an application called Signal Analyzer computes the spectrogram. To
construct the spectrogram of a signal, below steps are followed:

• Divide the signal into possibly overlapping segments with equal-length which must be short
enough that the signal’s frequency content does not change significantly within a segment.

• Window each segment and compute its spectrum to get the STFT.

• Display the power of each spectrum segment-by-segment in decibels. Then outline the magnitudes
side-by-side as an image with magnitude-dependent color map.

In Signal Analyzer, the length of the segments and the amount of overlap between adjoining segments
can be controlled using Time Resolution and Overlap. By default, the length of segment is chosen as a
length based on the entire length of the signal, and overlap will be 50 %. The Signal Analyzer sets the
time resolution as [N/d] samples, where N is the signal length and d is a divisor which depends on N ;
The longer signal (more samples), the greater divisor which increases by the power of 2.

3.2 Wavelet Transform

Wavelet transform (WT) is a great tool for signal analysis in both the time and frequency domain at
the same time. It was developed as an alternative to the STFT to overcome problems related to its
frequency and time resolution properties. Unlike STFT which uses fixed window width, the WT uses a
windowing technique with variable window size. If the width of the window can vary with frequency so
that the window always covers the same number of periods, the time localization would be enabled to
be sharper for more rapidly varying signals. This leads to the idea of a family of analyzing waveforms
constructed from translations and dilations of a prototype waveform called mother wavelet or simply a
wavelet Ψ(t), for which Ψ ∈ L2(R) satisfies the admissibility condition [84,85]

∫∞
−∞Ψ(t)dt = 0. This

means that Ψ must be an oscillatory function with zero mean and non zero-frequency component. The
wavelet is thus defined as [86–88]

Ψa,b(t) =
1√
|a|

Ψ

(
t− b
a

)
, a, b ∈ R, a 6= 0, (3.11)

where a is the scaling (or dilation) parameter that measures the degree of compression or scale, and b
is the translation parameter which determines the time location of the wavelet. If |a| < 1, the wavelet
(3.11) is the compressed version of the mother wavelet which corresponds mainly to higher frequencies,
and time-widths of wavelets are adapted to their frequencies. This is the main advantages in signal
processing and time-frequency signal analysis. Generally, the solution is rough in the time domain, but
good in the frequency domain . Furthermore, by decreasing the scale a, the time domain decreases
which leads to the finer time resolution, whereas the frequency domain increases (the frequency
resolution becomes coarser). The expansion of a function x(t) in terms of wavelets defined as Wavelet
Transform:

W (a, b) =

∫ ∞
−∞

x(t)Ψa,b(t)dt. (3.12)
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WT compared with STFT, yields an adaptable time–frequency window, i.e. the window becomes
automatically narrower when observes a high-frequency signal, and becomes wider when observes a
low-frequency signal. The resolutions is varied with scale, so that a high frequency resolution is best
at low frequencies, whereas a high time resolution is best at high frequencies. Therefore, there is
trade-off between frequency resolution and time resolution which is known as time-frequency uncertainty
principle, i.e., increasing the frequency resolution decreases the time resolution, and vice versa.

In the WT, both the time domain and frequency domain can be localized; the time domain via
translations of the mother wavelet, and the frequency (scale) domain via dilations. The wavelet is
irregular in shape and compactly supported, which is a suitable tool for analyzing transient signals.
The compact support means, when a wavelet is multiplied with a signal which is windowed by the
wavelet, only the part of the signal that is covered by the wavelet will be extracted. The compactly
supported characteristic enables temporal localization of a signal features, while the irregularity makes
it appropriate for the analysis of signals with discontinuities or sharp changes. On the power system,
its main application in the field of analyzing and processing transient signals include analysis of power
quality disturbance signals, noise reduction of electric signals, power equipment fault diagnosis, data
compression, relay protection, and fault location [89]. There are both continuous WT (CWT) and
discrete WT (DWT); however, in this thesis the CWT will be discussed.

3.2.1 Continuous Wavelet Transform (CWT)

The CWT method was modified as alternative way to solve a resolution problem from the STFT. The
width of the window can change with changes made to each spectral component. The CWT of signal
x(t) is defined as

W (a, b) =

∫ ∞
−∞

x(t)
1√
|a|

Ψ∗
(
t− b
a

)
dt = 〈x(t),Ψa,b(t)〉 (3.13)

where a and b are real-valued, Ψ is the mother wavelet, and ∗ denotes a conjugation. The input x(t)

is a time-continuous signal and the basis function Ψ(t) (bandpass signal) is a continuous function.
Referring to Equation (3.11), the CWT formula can be written on the more compact form:

W (a, b) =

∫ ∞
−∞

x(t)Ψ∗a,b(t)dt. (3.14)

The scale parameter a stretches or compresses the wavelet along the time axis, and the position
parameter b determines the time domain center of the analysis of x(t). It represents time-shift
(translation) along the time axis, in a similar manner to moving the window along the time-axis in the
STFT. This transform produces a time-scale rather than the time-frequency signal representation.

To establish a relationship between the WT and the STFT, we will choose the basic wavelet Ψ(t) in
the form

Ψ(t) = w(t)e−jωt (3.15)

where w(t) is a window function and ω is a constant frequency. Substituting (3.15) into (3.13) turns
out a CWT form suitable for a direct comparison with the STFT [12].

W (a, b) =

∫ ∞
−∞

x(t)
1√
|a|
w∗
(
t− b
a

)
e−jω

t−b
a dt. (3.16)

The CWT could be considered as a kind of analysis of signal x(t) that uses a set of wavelets with
different analysis widths, which adopt themselves to change the analysis resolutions according to
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different frequency scopes requirements.
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Chapter 4

The Empirical Mode Decomposition
and Hilbert Huang Transform

In the power systems, signal oscillations are essentially non-linear and non-stationary. Therefore,
selecting methodology for analyzing such signals is a challenging task [90]. The Fourier analysis is
the primary method for analysis of data since it was introduced, and continues to be widely used for
the analysis due to its intrinsic ability and simplicity. The main restrictions of this method is the
linearity, and the data be precisely periodic or stationary, otherwise erroneous result can be obtained.
Since most of PQ signals are non-stationary, Fourier transform methods are not applicable for this
purpose. An adaptive method for analyzing non-linear and non-stationary signals is the Hilbert
Huang Transform (HHT) which is an empirically based data analysis method. High time resolution
is the main advantage of the HHT method over other PQ decomposition methods. In addition, it
provides intuitive visual information of the frequency and amplitudes contained in the signal. The
HHT consists of two processes [91]: The key part, Empirical Mode Decomposition (EMD) is applied
to decompose a signal to obtain the signal components called Intrinsic Mode Functions (IMFs) [92]
which have meaningful instantaneous frequencies and amplitudes. Once the IMFs are obtained, the
Hilbert Transform (HT) process is then applied to each IMF to obtain the instantaneous frequencies,
amplitudes and phases. The combination of the EMD and HT which is introduced as HHT provides a
novel time-frequency-energy representation of a given signal.

4.1 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a method that handles both non-linear and non-stationary
data. This method which was developed by Norden E. Huang et al. 1998 [93], is an empirical nonlinear
analysis tool for complex, non-stationary signals. EMD can be applied in many engineering fields,
such as PQ analysis, geophysical and seismic signals analysis, signal and image processing, financial
applications, mechanical fault diagnosis, etc. This method decomposes any non-stationary time series
into a finite set of oscillatory components represented as IMFs. The principle of this method is to
empirically identify these intrinsic oscillatory modes by their characteristic time scales in the signal,
and then decompose the signal accordingly. The instantaneous energy associated with various time
scales is identified by decomposition in order to extract the IMFs. The instantaneous frequency then
can be calculated from the IMFs by using the Hilbert Transform to localize any event by time and by
frequency.
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4.1.1 Intrinsic Mode Functions (IMFs)

As mentioned, the EMD decomposes a signal into IMFs. Each IMF resulting from EMD process has to
satisfy the following conditions [94]:

(a) In the complete data set, the number of extrema and the number of zero-crossings must
either equal or differ at most by one.

(b) The mean value of the envelope defined by local maxima and minima must be zero.

The second condition implies that an IMF is stationary which simplifies its analysis. However, an
IMF may have amplitude modulation as well as changing frequency. A signal that satisfies the IMF
conditions allows instantaneous frequency and amplitude to be clearly defined. The number of IMFs
varies from signal to signal.

4.1.2 Sifting process

The EMD algorithm extracts the IMFs through a process called sifting process [95]. Most of the
riding waves, i.e. oscillations with no zero crossing between extrema, can be eliminated through sifting
process. The sifting process starts to separate the signal x(t) into the fine-scale oscillation h(t) which
is the first IMF and the residual r(t) that may replace the original signal to go through the next sifting
process. The process will be repeated iteratively as long as the residue signal to be processed have at
least 3 extremas for which the scale has become very large, then the EMD process is completed. The
last waveform remaining from the process is not an IMF, but it is the trend of the original signal.

The sifting process could be described as follows:

1. Identify the local maxima points and local minima poinnts of the given signal x(t).

2. Connect the maxima points using cubic splines to obtain the upper envelope emax(t). Similarly,
connect the minima points to obtain the lower envelope emin(t).

3. Calculate the mean as average of upper and lower envelopes, m(t) = 1/2[emax(t) + emin(t)].

4. Extract the local oscillation mode, h(t) = x(t)−m(t).

5. If h(t) does not satisfy the criteria to be an IMF, repeat steps (1) to (3) by setting x(t) = h(t)

until the criteria for an IMF is satisfied.

6. Calculate the residue ri(t) = x(t)− hi(t) and check if ri(t) is a monotonic function; if it is not,
repeat the overall process by setting x(t) = ri(t) and increase i by one. However, if ri(t) is a
monotonic function, the process is completed.

Figure 4.1 depicts how the sifting process could be executed on the signal x(t) from step (1) to step
(3) in order to identify the mean as average of upper and lower envelopes. In step (5), an appropriate
stopping criterion avoids over-improving h(t) which can lead to significant information loss [96, 97]. In
the practical implementation, the stop criterion should be taken in consideration in order to get ideal
components. The stop criterion for h(t) is to judge whether it is an IMF or not. However, in realistic
implementation it is not easy to keep the mean equal to zero. The sifting process (IMF extraction)
ends when the range of the envelopes mean m(t) is lower than 1% (0.001) of hi (candidate IMF).
Iteration process ends when the residue r(t) is 10 % or lower of the x(t). Stop rule makes the sifting
process stop when the absolute values of the candidate IMFs are smaller than tolerance level tol, i.e.
|hi(t)| < tol for all t. We have to determine stop a criterion sifting process in order to guarantee that
the IMF components retain enough physical sense of both amplitude and frequency modulations. This
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Figure 4.1: Illustration of sifting process from step 1 to 3 to identify the mean m(t).

Figure 4.2: Flow chart of EMD process.

can be accomplished by limiting the size of the standard deviation (SD), which is computed from the
two consecutive sifting result as [98,99],

SD =

T∑
t=0

|h1(k−1)(t)− h1k(t)|2

h21(k−1)(t)
< tol. (4.1)

During the sifting process, the first IMF contains the highest frequency components of the signal.
Thereafter, the subsequent IMFs contain progressively lower frequency components existed in the
original signal. If we obtain n orthogonal IMFs during the sifting process, the original signal may be
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reconstructed as

x(t) =

n∑
i=1

hi(t) + rn(t), (4.2)

where hi(t) is IMF and rn(t) is the last residual. The extracted IMFs are symmetric and have a
unique local frequency; however, different IMFs do not exhibit the same frequency at the same time. A
flowchart shown in Figure 4.2 is describing the process of the EMD algorithm.

To demonstrate how the sifting process of EMD algorithm works for IMF extraction, consider a signal
x(t) shown in Equation 4.3 and Figure 4.3 consisting of four components of frequencies 1 Hz, 10 Hz,
15 Hz and 20 Hz, sampled for 1 second.

x(t) = 0.3 t+ sin(
π

2
10t) + sin(2π15t) + cos(5π20t). (4.3)

Figure 4.3: The signal x(t) composed of four different signals from 5 Hz to 20 Hz frequencies.

Figure 4.4: The signal x(t) is decomposed into its IMF components and residual, using the EMD algorithm.

Applying the EMD algorithm, the signal x(t) is decomposed into 3 IMFs and a residual as shown in
Figure 4.4. The IMFs contain different frequencies as they are decreasing from first IMF to the last;
i.e. the first IMF1 has the highest frequency and the last has the lowest. After IMF3 the remaining
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residual is a constant or monotonic function that can not be decomposed further.

4.2 Hilbert Transform

After the IMFs have been extracted Hilbert transform (HT) is applied on each IMF to calculate the
instantaneous frequency. The HT of a function x(t) is defined as:

H[x(t)] =
1

π

∞∫
−∞

P
x(τ)

t− τ
dτ, (4.4)

where P indicates the Cauchy principal value.

The HT of a real signal x is an analytic signal z = x + j ∗ y, where x is the original signal and the
imaginary part j ∗ y is a version of x with a phase shifted by π/2. Note that the Hilbert transformed
signal x has the same frequency and amplitude as the original signal x. The analytic signal can be
used to determine the instantaneous frequency, amplitude and phase of the original data. For a given
signal x(t), the analytic signal z(t) is defined as:

z(t) = x(t) +H[x(t)] = x+ jy = a(t)ejθ(t). (4.5)

For a pure sinusoid, the instantaneous frequency, amplitude and phase are constant. The analytic
signal of a pure cosine wave contains its sine version, e.g. the analytic signal of x(t) = A cos(ωt+ θ) is
presented as

z(t) = A cos(ωt+ θ) + j A sin(ωt+ θ) = Aejω(t)+θ. (4.6)

The instantaneous frequency ω(t), amplitude a(t) and phase θ(t) of the z(t) can be calculated as
follows:

ω(t) =
dθ

dt
, (4.7)

a(t) =
√
x2 + y2 (4.8)

and
θ(t) = arctan

(y
x

)
. (4.9)

The advantages of HT for PQ signal analysis can be listed as follow:

• The HT can represent the instantaneous frequency and amplitude of a measured signal, so it
solves a typical demodulation problem.

• In comparison to the Fourier analysis, which assumes that a signal is a sum of a number of sine
waves, the HT allows a complex demodulation analysis of the form of a single but modulated
sine wave.

After implementing the HT on each IMF component, the original signal can be presented as the real
part R in the following form [91]:

x(t) = R


n∑
j=1

aj(t) exp

[
i

∫
ωj(t)dt

] . (4.10)

This equation represents the HHT, where aj(t) indicates the instantaneous amplitude and ωj(t) the
instantaneous frequency of the jth IMF, with j = 1,..., n and n denotes the total number of IMFs.
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Figure 4.5: Flow chart of HHT.

Notice that the residue rn has been omitted because it is either a monotonic function or a constant.
Equation 4.10 gives both the frequency and amplitude of each component as functions of time, while
the same data expanded in a Fourier representation would contain both aj and ωj as constants. With
the IMF expansion, the amplitude and the frequency modulations are also separated, therefore, in the
Fourier expansion the limitation of the fixed frequency and constant amplitude has been overcome with
a variable frequency and amplitude representation. This time-frequency distribution of the amplitude is
designated as the Hilbert amplitude spectrum H(ω, t), or simply Hilbert spectrum. With this definition,
we can also define the marginal spectrum h(ω) as

h(ω) =

∫ T

0

H(ω, t) dt, (4.11)

where T is the length of the window of signal analysis. The marginal spectrum defines the total
amplitude (or energy) contribution from each frequency value. In the example below, the Hilbert
spectrum of an arbitrary signal is demonstrated. Signal x(t) represented in Equation 4.12 is composed
of two sine waves comprise different frequencies of 15 Hz and 40 Hz within time duration of 4 seconds.

x(t) =

sin(2π15t) : 0 < t ≤ 2

sin(2π40t) : 2 < t ≤ 4
(4.12)

In Figure 4.6 a magnified view of the signal x(t) from Equation 4.12 depicts how the frequency changes
after 2 second, but we do not know the frequency range. In order to get the frequency information,
the Hilbert spectrum and Fourier transform of the signal is represented in Figure 4.7 and Figure 4.8.

The Fourier transform represents the signal in the frequency domain. In the FT the frequencies
contained in the signal are obtained, however, the time information is missing and there is no idea of
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Figure 4.6: The synthetic signal x(t) with instantaneous frequency

Figure 4.7: Fast Fourier Transform of signal x(t).

Figure 4.8: Hilbert spectrum of signal x(t) indicates frequency changing time.

signal duration and the time of frequency change. Whereas in Hilbert spectrum, the signal frequency
is clearly showed in respect of time. According to the signal specification, the frequency is low in
beginning and rises after indicated time spot, and in addition, the frequency change time is visible. Some
frequency oscillation in the starting and ending of Hilbert spectrum is due to Gibbs phenomenon [93].
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4.3 Analysis of power quality disturbance

A composite signal s(t) containing harmonics and transient presented below is considered to be analyzed
using time-frequency analysis methods [79].

s(t) =

sin(2π50t) + 0.4sin(2π200t) : 0 ≤ t < 0.3s

sin(2π500t)e(−30(t−0.1)) : 0.1 ≤ t < 0.16s
(4.13)

The signal is composed of various frequencies and has a duration of 0.3 s long. As shown in Figure 4.9,
an oscillatory transient is superimposed on it with period of 60 ms which decays exponentially over
time.

Figure 4.9: The synthetic signal s(t) contains transient.

The signal is decomposed and analyzed by STFT, CWT and HHT. Figure 4.10 represents the STFT
spectrum referred to as a spectrogram, magnitude Scalogram plotted by CWT and Hilbert spectrum of
the the signal. Now one can observes the frequency components which are consist of 50 Hz, 200 Hz and
500 Hz, depicted in all plots. In the spectrogram Figure 4.10 (a), the transient period and its effect
on the other frequencies are not represented distinctly. The Scalogram in Figure 4.10 (b) depicts the
transient event along with the signal magnitude more accurately. The transient start and end time is
clear and the components magnitude are distinct. Nevertheless, the frequency resolution is coarse, so
it is difficult to identify the exact frequency value. The Hilbert Spectrum in Figure 4.10 (c) represents
the transient event, time and effect on other frequency components very precisely. Additionally, the
frequency resolution is very high, so the components are precisely distinguishable.

The EMD method is applied to decompose the signal into intrinsic oscillatory components (IMFs).
The result of decomposition illustrated in Figure 4.11 depicts three IMFs and residual extracted from
the synthetic signal. Most frequency content lies in the first three mode of oscillations (IMFs) [100].
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Figure 4.10: Frequency components of signal s(t): (a) spectrogram using STFT , (b) CWT magnitude
scalogram and (c) Hilbert Spectrum.

Figure 4.11: Decomposition of synthetic signal using EMD. The first plot on the top is the data, the
following 3 plots are the IMFs and the last one is the residue.
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Once the IMFs are obtained the Hilbert transform is used to obtain the associated instantaneous
frequency and amplitude as shown in Figure 4.12. In the decomposition process by EMD, the highest

Figure 4.12: Instantaneous frequency and amplitude of: (a) IMF1, (b) IMF2, (c) IMF3, obtained by HHT.

frequency component of the signal will be captured by IMF1, the next highest frequency component
will be captured by IMF2 and so on. Additionally, the waveform in the IMF consists of three segments.
Segment 1 starts from 0s to to 0.1s, segment 2 from 0.1s to 0.18s and segment 3 from 0.18s to 0.3s.
The IMF1 captures the highest frequency component of each segment, i.e. 200 Hz at segment 1, 500
Hz at segment 2 and 200 Hz at segment 3. The waveform of IMF1 and the associated instantaneous
frequency and amplitude are shown in Figure 4.12(a). Thereafter, IMF2 captures the lower frequency
component of each segment; 50 Hz at segment 1, 200 Hz at segment 2 and 50 Hz at the last segment
as shown in Figure 4.12(b). IMF3 captures the lowest frequency component of each segment. Since
there is no lower than 50 Hz frequency in the signal, no segment with frequency lower than 50 Hz
is detected. In Figure 4.12(a) the exponential sinusoidal waveform which indicates the transient, is
captured in second segment of IMF1. Also the instantaneous amplitude of IMF1 shows a waveform
decays exponentially in segment 2.
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4.3.1 Evaluation and Discussion

For PQ analysis of a non-linear and non-stationary signal affected by a disturbance three time-frequency
analysis algorithms are implemented and evaluated; The Fourier Transform, Wavelet Transform and
Hilbert Transform. For this purpose, the synthetic signal s(t) with fundamental frequency of 50 Hz is
considered as illustrated in Figure 4.9.

In order to analyse non-stationary signals, FT encounters limitation for frequency analysis over time.
Although this limitation is solved by the improved version of FT, ST FT, there is still deficiency in using
this method for non-stationary signals analysis because STFT has a fixed resolution which is determined
by a fixed windowed function whose form and shape don’t vary. Looking at the Figure 4.10(a), it
can be seen that the PQ disturbance is not well localized in the Spectrogram plot. It is difficult to
understand when exactly the transient started and ended. The frequency range also spread widely.
Power level of the frequencies present in the signal is indicated by varying colors according to the color
code bar on the right. Let’s see what will happen when we reduce the windowing size of the function
used in the Spectrogram. As seen in Figure 4.13 reducing the size of the window enhances the time
resolution, but on the other hand degrade the frequency resolution and the frequency values are not
precisely determined. To increase frequency resolution, the width of the window function should be
enlarged, but consequently, it affects the time resolution. That is to say, it is showing the trade-off
between the time and frequency resolutions. The STFT cannot balance the demand of both time
resolution and frequency resolution. The time and frequency uncertainty of the events is still high.
Additionally, one can not evaluate the amplitude of the component signals.

Figure 4.13: Frequency spectrum of signal s(t) using STFT with enhanced time resolution.

Let us apply the Wavelet Transform (WT) to analyze the signal. The WT based on windowing
technique with variable-sized regions is a useful method for spectral analysis of signals. Therefore,
its time-frequency resolution is better than the STFT. The Continuous Wavelet Transform (CWT)
will help to obtain a joint time-frequency analysis of the signal. In Matlab, cwt function is used
for this purpose which uses Morse wavelets by default if we don’t specify which wavelet to be used.
CWT function determines the minimum and maximum scales for analysis automatically based on the
wavelet’s energy spread. The magnitude of the wavelet coefficients returned by the function are color



CHAPTER 4. THE EMPIRICAL MODE DECOMPOSITION AND HILBERT HUANG TRANSFORM 33

coded. As seen in Figure 4.10(b), the time-frequency visualization is enhanced in Scalogram by CWT.
Now the transient event is well localized in time and frequency and the magnitude or amplitude of the
component signals can be evaluated according to the color cod bar on the right of the plot. The white
dashed lines denote the Cone Of Influence (COI). The gray shaded area outside of dashed lines indicates
the affected area by edge-effect artifacts in the scalogram. The effects in the scalogram arise from areas
where the stretched wavelets extend beyond the edges of the observation interval. The wavelet will be
compressed when facing high frequency according to the scale parameter to capture high frequency
components and will be expanded to capture low frequency components of the signal. It is why the
shaded region is observed expanded at the bottom and shrinks upwards, as the frequency rises upward
on the vertical axis. The unshaded region inside dashed lines, represents a reliable time-frequency
information of the signal, while the shaded region outside the dashed lines the information would be
considered suspectedly due to the potential edge effects.

The CWT, however, still has shortcoming in the adaptivity since the mother function has to be chosen
prior to the analysis. It yields good time resolution but poor frequency resolution at high frequencies,
and good frequency resolution but poor time resolution at low frequencies. It is effective specifically
when the signal has low frequency components for long duration and high frequency components for
short durations. Even though wavelets simplify by the sectioning the signal and the application of
localized form of spectral analysis, the Inconsistency of wavelet shapes as basis functions introduces
some intricacy and a wide variety of analysis results. We also notice that the small deviations of
frequencies are not distinguishable and the frequency representation shows like a stationary behavior.

Now the The HHT method will be considered. This method is a well-suited technique for analyzing
stationary and non-stationary signals which requires no prior assumption of the signal, so it is adaptive
to any unknown signals. The method is especially effective for decomposing non-stationary signals
that spectral content changes with respect to time, and often found in power quality waveforms. HHT
contains two processes; first the EMD is used to decompose the signal to be analyzed into IMFs which
have meaningful instantaneous frequencies and amplitudes. During the decomposition, the IMFs are
extracted from the highest frequency component to the lowest, I.e. the first IMF holds the highest
frequency and the last IMF holds the lowest one. When a composite signal is decomposed into IMFs,
Hilbert transform is applied to each IMF in order to extract the instantaneous frequency and amplitude.
As depicted in Figure 4.10(c), the Hilbert spectrum with higher time-frequency resolution can reflect
all frequency components of the signal s(t) and give a clear view of these components changing over
time. Thus, the local information of the signal, such as instantaneous frequency, can be observed
precisely. Table 4.1 indicates a comparative summary of Fourier, wavelet and HHT analyses [101].

Table 4.1: Comparison of power quality spectral analysis techniques.

Feature STFT CWT HHT
Basis Priori Priori Adaptive
Nonlinear No No Yes
Nonstationary No Yes Yes
High frequencies discovering Medium High Very high
Spectrum resolution Low Medium High
Visual representation Poor Good Good
Processing time requirement Low Medium High
Theoretical base Theory Theory Empirical
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4.3.2 Mode mixing problem

Although the EMD has been proposed as an adaptive time–frequency data analysis method for
non-stationary signals, it still suffers some deficiencies [102]. One of its major deficiency is the
frequent appearance of mode mixing which is often due to the signal containing close frequency
components [103] or a consequence of signal intermittency. The intermittence that causes serious
aliasing in the time–frequency distribution, also obscures the physical meaning of individual IMF.
Mode mixing is defined as a single IMF either consisting of oscillations of dramatically disparate scales,
or a component of a similar scale residing in different IMFs [104].

Since EMD is adaptive to extrema distribution and uses the extrema information to separate intrinsic
oscillatory modes, changes in extrema locations and values due to some disturbance may lead to
significantly different results in which the extracted modes sometimes appear unexpected. References
[91, 103] describe the sifting process to identify the extrema in the case of mode mixing in more
details. To illustrate the mode mixing problem of the EMD algorithm, a simulated synthetic signal
x(t) = sin(t) + 0.1 sin(20t) is considered. The signal contains a fundamental sinusoidal wave of low
frequency with unit amplitude, and intermittent oscillations of high frequency that exists only during
certain time spans as shown in Figure 4.14. Decomposing the signal performing EMD, it is observed
that the obtained two IMFs are distorted significantly. As seen in the figure, the IMF 1 is a mixture
of both the low frequency fundamental wave and the high frequency intermittent oscillations. The
IMFs are also affected at both ends. Thus, both IMFs obtained through EMD process, fail to reveal
the characteristics of the signal x(t) accurately. When the mode mixing problem occurs, an IMF can
cease to have physical meaning by itself, suggesting erroneously that there may be different physical
processes represented in a mode. In this example, the mode mixing is due to signal intermittency. This

Figure 4.14: The decomposition result using EMD: the input signal x(t) = sin(t) + 0.1 sin(20t) plotted in
the top panel, IMF 1 in the middle and IMF 2 in the bottom panel.

implies that the EMD results can be sensitive to noise contained in signal. If the decomposition is
insensitive to noise of small finite amplitude and can bear little quantitative (no qualitative) change, the
decomposition would be usually considered robust. Otherwise, the decomposition would be unstable
and the EMD may not be reliable. To overcome the mode mixing issue, a noise-assisted data analysis
(NADA) technique, referred to as the Ensemble EMD (EEMD), is proposed. This method defines the
true IMFs as the mean of an ensemble of trials in which each trial consists of the decomposition results
of the signal and a normally distributed white noise with a finite amplitude.



CHAPTER 4. THE EMPIRICAL MODE DECOMPOSITION AND HILBERT HUANG TRANSFORM 35

4.4 Ensemble Empirical Mode Decomposition(EEMD)

EEMD, a noise-assisted data analysis method proposed by Wu and Huang et al. 2009 [104], represents
an improvement over the EMD. It defines the true IMF components as the mean of an ensemble of
trials, each consists of the signal plus a distributed white noise of finite amplitude. In this approach,
ensemble of white noise-added signal is sifted, and the mean is treated as final true result. The white
noise with finite, but not infinitesimal, amplitude is applied to force the ensemble to extrude all
possible solutions in the sifting process. It provides a uniform reference frame in the time–frequency
space. Therefore, the added noise collates the portion of the signal of comparable scale in one IMF.
The EEMD principle is that the added white noise would populate the whole time–frequency space
uniformly. When signal is added to this uniformly distributed white noise background, the components
of signal of different scales are automatically projected onto proper scales of reference established by
the white noise.

In the decomposition process, the added noise is averaged out with sufficient number of trials, so the
only persistent part that survives the averaging process is the component of the original data, which is
then treated as the true and more physical meaningful result. Since different white noises are added
to the signal in each trial in the decomposition process, each individual trial may produce very noisy
results. However, the noise in each separate trial is different, so it can be decreased or even completely
canceled out in the ensemble mean of enough trials. The ensemble mean is then treated as the true
physical result because the only persistent part will be the signal as more and more trials are added in
the ensemble. The EEMD method has higher time-frequency resolution ratio to decompose complex
disturbances and extract characteristic value. It does not require preset basis function. Therefore, it is
not only suitable for stationary signals, but also for non-stationary signals. The concept of EEMD is
based on following observations [91]:

1. A collection of white noise cancels each other out in a time-space ensemble mean; therefore, only
the signal can survive and persist in the final noise-added signal ensemble mean.

2. White noise of finite magnitude is required to force the ensemble to exhaust all possible solutions;
it makes the different scale signals reside in the corresponding IMFs, and render the resulting
ensemble mean more meaningful.

3. The decomposition with true and physically meaningful result is not the one without noise; it is
designated to be the ensemble mean of a large number of trails consisting of the noise-added
signal.

Based on the principle and observations above, the EEMD algorithm contains the following steps:

1. Add a white noise series with the given amplitude to the signal being analyzed, i.e.

xm(t) = x(t) + nm(t), (4.14)

where xm(t) represents the noise-added signal of the mth trial, and nm(t) indicates the mth
added white noise series.

2. Decompose the noise-added signal xm(t) into IMFs using the EMD method.

3. Repeat Step (1) and Step (2) again and again, but with different white noise series each time.

4. Calculate the ensemble means of corresponding IMFs of the decompositions as the final result.

Figure 4.15 illustrates the decomposition process by EEMD [105].
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Figure 4.15: Flow chart of EEMD.

To perform the EEMD method, the number of ensembles and amplitude of the added white noise
are two considerable parameters. The amplitude of noise is not necessarily small, but the ensemble
number of the trials has to be large in order to cancel out the added noise. Equation 4.15 represents
the relationship among the amplitude of added white-noise, the ensemble number and the effect of the
added white noise [104]:

e =
a√
M
, (4.15)

where a is the amplitude of the added noise, M is the number of ensembles and e is the final standard
deviation of error, which is defined as the difference between the input signal and the corresponding
IMFs.

The EEMD will be effective if the amplitude of added noise is not too small because it introduces
the change of extrema that the EMD relies on. Furthermore, by increasing the number of ensembles,
the effect of the added noise can be reduced to a quite small even negligible level. To illustrate the
performance of EEMD the example in Figure 4.14 is used. As described in the previous section, the
EMD method is unable to accurately decompose composite signals that are mixture of intermittent
high frequency oscillations residing on a low-frequency sinusoidal signal. To overcome this issue, the
EEMD is implemented and the decomposition result is shown in Figure 4.16. This time the signal is
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decomposed into the components accurately. The plot reveals fundamental signal in panel IMF 5, and
intermittent signal in IMF 3 panel. As illustrated, the mode mixing problem of EMD is eliminated
significantly by the EEMD method. This demonstrates that the EEMD can extract the oscillating
modes more accurate and is not influenced by mode mixing. Thus, the EMD improves the capability
of extracting signals in the data and represents a major improvement of the EMD method.

Figure 4.16: Decomposition result using EEMD, The input synthetic signal x(t) = sin(t) + 0.1 sin(20t) is
plotted in the top panel, the fundamental signal in the bottom panel and the intermittent signal in the
middle panel IMF3.
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Chapter 5

Analysis of Power Grid Data

In the previous chapter the data analysis algorithms have been applied on the simulated synthetic
signal. The signal has been decomposed and analyzed using the STFT, CWT and EMD methods. In
this chapter a real-world data related to power quality will be analyzed by those methods. The aim of
the analysis is to detect time-variant frequency content and localize in the affected signal. Then the
time-frequency data analysis methods are utilized to discover PQ disturbance such as transient and
exhibit it on time-frequency plots.

The dataset is provided by the Federal University of Technology Paraná in Brazil [106]. It is a recording
from an experiment in Laboratory for Innovation and Technology (LIT) in Embedded Systems. The
dataset was conceived and engineered to provide data for evaluation and development of Non-Intrusive
Load Monitoring (NILM) System, and is available to the public interested in research in NILM as well
as other topics. The data is composed of voltage and current waveforms collected in a real environment
on a variety of single and multiple loads. The loads were connected to a single-phase 127 V power
grid with fundamental frequency of 60 Hz in the lab, and had been switched on and off individually
to generate PQ samples. The aggregated data has duration of about two hours which is very large.
Therefore, they have segmented and converted it to binary format in order to reduce its size, in addition
Matlab scripts are provided to convert the data to .mat files. The dataset used for the thesis work
is further segmented to a 2 second time span from 726 s to 728 s where a prominent PQ event has
occurred as can be seen in Figure 5.1.
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Figure 5.1: Current waveform of an AC power single-phase with 60 Hz fundamental frequency.

Looking at the corresponding voltage waveform of the circuit, we notice that the voltage is also
affected when the load connected to the grid is switched on. Figure 5.2 depicts the current and voltage
waveforms in the same plot. As seen, the voltage magnitude fluctuates simultaneously with the current
magnitude when transient occurs. The fact that the transient distorted the current waveform much

Figure 5.2: Voltage and Current waveform of an AC power showing magnitude variation when a load is
switched on.

more severe than the voltage transient is normal for many electronic loads. Such a load contains a
small capacitor at the grid side of the power supply, for example, as part of an EMC filter. A small
amplitude with fast oscillation in voltage will lead to a large variation in current. The prominent
distorted current waveform clearly indicates the presence of electronic load [1].

Considering the time domain representation of the signal, we can see a distinct signal variation at
around 726.6 s. However, the event characteristic such as frequency cannot be identified at the time
domain representation. Therefore, we need time-frequency analysis methods for further investigation.
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5.1 Data analysis using STFT

In this section the PQ signal related to the dataset will be analysed using the short-time Fourier
transform (STFT). The STFT which is a sequence of Fourier transforms of a windowed signal provides
both the time and frequency information for situations in which frequency components of a signal vary
over time. The time and frequency resolution is controlled by the size of window, however, there is
a trade-off between frequency and time resolution. That is to say that by choosing a narrow-width
window we obtain good resolution in the time domain but a poor resolution in the frequency domain,
and vice versa. spectrogram is a visual representation of the spectrum of signal frequencies over time in
STFT. The spectrogram of the current signal is shown in Figure 5.3 choosing a narrower window size.

Figure 5.3: Time-frequency representation of the current signal using STFT, (a) spectrogram obtained by
Hamming window with a shorter segment length of 120 samples, (b) magnified view of rectangle area.

The figures depict frequency contents of the signal. It also provides information about when the
frequency changes happened or an event occurred with respect to time. Nevertheless, there is an issue
that one can not identify the exact frequency even if the frequency spectrum is zoomed in, still it can
be observed in a wide range as can be seen in the Figure 5.3(b). We can only estimate the frequencies
range, also some close frequencies are mixed and spread on the range. Moreover, it is hard to recognize
the frequency magnitude before and after transient. The transient can be observed explicitly, however,
one cannot distinguish harmonics in this figure. Although the frequency resolution can be increased
by selecting a longer window segment, on the other hand it will affect the time resolution As seen in
Figure 5.4. Now the frequency resolution is improved and the frequency components such as odd order
harmonics are distinct, yet the time resolution is impaired. The frequency can be identified but it is
not very well localized. So, the exact time of frequency changes are not identifiable, and any change in
the signal components will be observed on the width of the whole window segment. One of the issue
in the spectrogram is that some short oscillations or small changes in the time domain will not be
captured by the wider window segment. Additionally, the limit of transient frequency is not specified
as it exceeds over 7 kHz.

By defining the window size, the frequency or time resolution can be maintained. The shorter the
window size the better time resolution but the poor frequency resolution. And contrarily, the longer
the window segment, the better frequency resolution but the coarser time resolution is obtained.
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Figure 5.4: Time-frequency plot of the current signal using STFT with wider window size; (a) spectrogram
obtained by Hamming window in which the signal is divided into eight segments, (b) magnified view of
rectangle area.

5.2 Data analysis using CWT

The main shortcoming of STFT is using the fixed window that cannot afford good localization both
in time and frequency domains simultaneously. So, there is always trade off between the time and
frequency resolution. To overcome the insufficiency of the STFT, Continuous Wavelet Transform
(CWT) is used. The CWT favorable for analyzing transient behavior, rapidly changing frequencies,
and slowly varying behavior. The aim of CWT is to decompose signals according to the basis functions
to provide good resolution both in frequency and time domains.

As described in the chapter 3, the CWT in which data analysis is based on a basis function or wavelet
Ψ, compares the signal to shifted and compressed or stretched versions of the wavelet. Stretching or
compressing a function is related to dilation or scaling parameter. At lower (small) scale, the wavelet
is compressed which has higher frequency, therefore the fast oscillations or high frequencies could be
captured. While at higher (long) scale when the wavelet is stretched and its frequency is low, the
lower frequencies will be captured. The time domain localization is related to translation or position
parameter at which the wavelet is sliding along the time axis. To visualize the Wavelet coefficients, the
scalogram is used. For spectral analysis of a current waveform, the CWT is applied and its scalogram
is shown in Figure 5.5. As can be seen in the scalogram we have a clear view of the signal spectrum.
Both the time and frequency resolution are maintained and power density is also well represented
by color map according to the magnitude color bar on the right. Thus, we can easily evaluate the
signal magnitude before and after the event when a load is connected to the grid. In Figure 5.6 both
the original current waveform and the scalogram obtained by CWT are plotted for the purpose of
illustration of transient effect and current magnitude variation. As can be seen the current amplitude
at any point can be identified simply. The effect and power level of the transient is evident as well.
Furthermore, a frequency component of the signal at third harmonic can be observed after the event,
whereas this cannot be identified easily in spectrogram using a short window length.
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Figure 5.5: Time-frequency representation of the current signal using CWT with Morse wavelet.

Figure 5.6: Transient event and the current magnitude variation.
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5.3 Data analysis using HHT

The Hilbert Huang Transform (HHT) is a suitable method for analyzing stationary and non-stationary
signals. This method is adaptive which requires no initial assumption of the signal. The HHT consists
of two processes; First the Empirical Mode Decomposition (EMD) is used to decompose the signal
to obtain the signal components represented in the Intrinsic Mode Functions (IMFs). The amplitude
information of the IMFs can be evaluated in this process, but for acquiring the frequency information
next process is required. Hence, the HTT can be applied to to the extracted IMFs in order to obtain
instantaneous frequencies which can then be calculated to localize any event by time and frequency
information.

5.3.1 EMD application

In this section the EMD is applied to decompose the data into its oscillatory components, then HTT is
used to analyze the signal components. As described previously, the EMD which is the key part of the
HHT method, can be used as a powerful tool for analyzing transient and nonlinear and non-stationary
signals. It can decompose any complicated data into a finite and often small number of components
based on the local characteristic time scale of the data. The components known as IMFs, form a
complete and nearly orthogonal basis for the original signal. The IMFs are extracted through a
sifting process in the EMD algorithm. Sifting is used iteratively to separate different oscillatory riding
components of the signal, starting with the fastest and ending with the slowest component. The IMFs
contain frequencies ranging from the highest to the lowest ones of the signal. The original signal can
be recovered by adding all the IMFs. Applying the EMD method on the current signal, 9 IMFs and a
residual are obtained as shown in the Figure 5.7.

The signal is decomposed into different oscillatory components (IMFs). The plot reveals the transient
event and other oscillations with their magnitudes. Looking closely at the plot, IMF 1 exhibits
the characteristic of transient, and IMF 4 the characteristic of original signal. However, there are
fluctuating instantaneous frequency and amplitude which implicates that the IMF contains mixed
frequency component due to the mode mixing issue.The computed IMFs can be used by HTT to obtain
the instantaneous frequency and amplitude information as shown in the Figure 5.8. The plot reveals
frequency components around 7 kHz and the current amplitude around 60 A in the first IMF. The
lower frequency components with the corresponding lower amplitudes are plotted in the following
IMFs. IMF 1 depicts the characteristic of amplitude at the transient event, and IMF 4 represents the
instantaneous amplitude of original signal. However, it is not yet easy to understand the frequency
characteristics.

In order to get a better perception of the instantaneous frequencies of IMFs, we use the Hilbert
Spectrum of each IMF. As already mentioned, IMF 1 and IMF 4 carry estimated information of the
signal components. Since the first IMF contains the highest frequency, it is assumed to contain the
transient, and IMF 4 carries the fundamental frequency (60 Hz) with oscillations around it before and
after transient event.
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Figure 5.7: Decomposition of the signal performing EMD. The top panel indicates the original data,
following panels are the IMFs, the last panel depicts the residue.

Figure 5.9: Hilbert spectrum of IMF1 (left) and IMF5 magnified (right).
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Figure 5.8: Instantaneous frequency at the top, and instantaneous amplitude at the bottom for each IMF.

5.3.2 EEMD application

In the previous section the power grid data was decomposed into 10 IMFs performing the EMD
algorithm. The result demonstrated a relatively improvement, however, it is not optimal. There still
exists some difficulties in the extracted features of the signal due to some phenomenon. As mentioned
in section 4.3.2, one of the major shortcoming of EMD is the effect of mode mixing. This phenomenon
occurs when the oscillations with disparate time scales are preserved in one IMF, or the oscillations
with the same time scale are sifted into different IMFs. To overcome this drawback, a noise-assisted
EMD algorithm, referred to ensemble empirical mode decomposition (EEMD) is proposed. EEMD
provides a better scale separation capability than the standard EMD method. The EEMD consists of
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adding different series of white noise into the signal in several trials. The added white noises spread
uniformly over the entire time-frequency space. So, the processed signal seems to be a projection
over white noise background. Since the added noise is different in each trial, the resulting IMFs don’t
exhibit any correlation with the corresponding IMFs from one trial to another. The results achieved
by performing the EEMD depend on the choice of the ensemble number and the amplitude of added
noise. If the number of trials is adequate, the added noise can be eliminated by ensemble averaging
of the obtained IMFs related to the different trials. For our work, different number of ensemble and
amplitude of added noise are used. The ensemble numbers are selected from 100 to 5000, while the
standard deviation of the added noise selected from 0.05 to 0.3. By increasing the number of ensemble
while reducing the amplitude of noise, smoother components are obtained. Figure 5.10 illustrates the
decomposition result of EEMD algorithm. It can be seen that the IMF 1 to 3 exhibit characteristic of
transient, IMF 4 shows characteristic of signal after event, and IMF 5 before event.

Figure 5.10: Decomposition of the signal performing EEMD with noise amplitude standard deviation of
0.1 and 5000 ensembles. The top panel indicates the original data, following panels are the IMFs.

For an enhanced presentation of the signal characteristic by instantaneous amplitude and frequency
the HHT is performed on IMF 1, IMF 4 and IMF 5 as can be seen in Figure 5.11 and Figure 5.12.

The Hilbert spectrum of IMF 4 that is zoomed in, depicts the lower frequency contents of the signal.
Frequency contents before event which are of lower magnitude, can not be clearly seen because of the
color map.
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Figure 5.11: Instantaneous amplitude of the signal. Transient amplitude captured in IMF1 in the top
panel, amplitude of the signal after event in the middle panel and amplitude after event in bottom panel.

Figure 5.12: Hilbert spectrum of: (a) all IMFs, (b) IMF 4 magnified.
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Chapter 6

Discussion

In this chapter we discuss the effectiveness and shortcoming of different techniques for analysis of
Power Quality (PQ) problems. There are several PQ events as described in Chapter 2. Transients
are common events in the grid that contain a damped oscillation with frequencies ranging from few
hundred hertz up to the megahertz. High-frequency transients may be more dangerous that may cause
damage to equipment. The origin of transients are switching transients, lightning, and other faults.
In this thesis however the switching transients which is a common PQ event at the power consumer
end is considered. The switching transients originates in the grid due to energizing of capacitor banks.
Transients at equipment terminals could be due to switched mode power supplies.

To help identify PQ problems, measuring instruments are required to collect data. The PQ data for this
work is generated in the Laboratory for Innovation and Technology (LIT) in University of Technology
Paraná in Brazil. The original signal which was recorded in a real environment. It is composed of
voltage and current waveforms with fundamental frequency of 60 Hz and mains voltage of 127 V.
Since most of the PQ disturbances (PQDs) are non-linear and non- stationary, proper time-frequency
analysis methods are required to decompose the data and identify the PQD.

In the previous chapter three different time-frequency analysis methods have been applied to the PQ
signal. All of them demonstrated that they are capable of detecting the PQ event. However, there
are some pros and cons when utilizing these methods for individual task. Although basic Fourier
Transform is limited to stationary signals, the STFT can be used for non-stationary signal analysis. Its
main drawback is that it has a fixed resolution which depends on the chosen window size. Therefore,
there is trade off between time and frequency resolution. Enhancing resolution in the time domain
will cost resolution in the frequency domain, and vice versa. As illustrated in Figure 5.3, the STFT
detected the event in the time series and decomposed the signal into its frequency components. It
yielded good time domain localization, consequently lost the frequency resolution. Choosing a wider
window size in Figure 5.4 however enhanced the frequency resolution, on the other hand degraded the
time resolution. So, the STFT failed to maintain time and frequency resolution simultaneously.

Alternatively, the Wavelet Transform overcomes the time-frequency resolution shortcoming of the
STFT by using scaled and dilated versions of the basis function. As it has been seen in Figure 5.5
the transient event is exhibited very clearly by scalogram using CWT. The method yielded a better
overview of the signal components and evaluated as favorable tool for analyzing transient behavior,
and sudden and slow transition positions. Nonetheless, the CWT is not adaptive; i.e. we shall choose
a suitable wavelet in different scenarios. Additionally, it is not good for computing instantaneous
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frequencies in details.

Lastly, the EMD which is a data driven technique considered a well suited for PQ signal analysis. As it
does not require initial assumption of the signal, it is adaptive to any unknown signals. Furthermore,
applying the HHT to the extracted components provided details on instantaneous frequency and
amplitude. We observed small oscillations around the fundamental frequency component in IMF
4 in the Hilbert spectrum. Although this method is most suitable for decomposing nonstationary
signals, yet it suffers some shortcomings such as mode mixing issue when it is applied to a signal
that contains relatively high level of noise. The noise content of the signal which usually has high
frequency might mix with a high frequency component of the signal in the same IMF. As it can be
seen in the Figure 5.7, IMF 3 and IMF 4 indicate fluctuating frequency and amplitude which implies
that the IMFs contain mixed frequency signal. Consequently, applying Hilbert Transform on these
IMFs will produce unsatisfactory results. To resolve the mode mixing problem, the ensemble EMD
(EEMD) which is an extended version of EMD, can be used. (EEMD) defines the true IMFs as the
mean of an ensemble of trials. Each trial consists of the decomposition results (components) of the
signal plus a normally distributed white noise that has a constant standard deviation. The EEMD
utilizes the statistical characteristics of noise. It contributes to perturb the signal and enable the EMD
algorithm to come across a wide range of possible solutions. EEMD mimics a controlled and repeated
experiment to produce an ensemble mean for a nonstationary data as the true answer. The added
noise in the EEMD decomposition process helps to separate different scales from the input data that
actually should not contribute to IMFs. Thus, EEMD can be regarded as a genuine noise assisted data
analysis method which is effective in extracting intrinsic scales in a dataset.

Although EEMD alleviates the mode mixing issue, it consums too much time because of the large
number of sifting iterations required to achieve the decomposition. Moreover, we might notice that
the EMD or EEMD could not extract the harmonics components of the signal explicitly, even though
there exist harmonics after the event. Taking the FFT of the signal can expose the harmonics clearly.
As it can be seen in Figure 6.1, the prominent harmonics observed are 120 Hz, 180 Hz, 240 Hz and 300
Hz. Accordingly, comparing the EMD with the STFT and CWT in term of computational cost and
regarding evaluating the amplitude of the harmonic components, the EMD is no longer a best choice.

Figure 6.1: Fast Fourier Transform of the current waveform represents frequency components.

Table 6.1 represents the temporal computational cost comparison among the forementioned data
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analysis techniques to extract the current waveform signal components. The signal is 2 s long and
contains 30769 samples. The algorithms have been executed on a PC Core i5, CPU @ 1.60 GHz,
RAM 8 GB. The mentioned computational time for EEMD in the table was calculated for 100 trials.
However, choosing higher numbers of ensemble require more time to compute the IMFs, e.g., 5000
ensembles (in our case) require around 650 seconds to execute the EEMD.

Table 6.1: Temporal computation cost of methods for the data analysis. Executing the EEMD takes longer
time which depends on number of ensembles. The calculated time mentioned for EEMD is for 100 trails,
however, higher numbers of ensembles require longer time.

Executed on PC Core i5, CPU @ 1.60 GHz, RAM 8 GB

Data analysis algorithm STFT CWT EMD EEMD
Computational duration (s) 0.03 0.67 0.09 10.03 (100 trails)

Computation with plot (s) 0.65 1.96 2.36 10.77
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Chapter 7

Conclusion

Recently, Power Quality (PQ) issue has become a major concern since poor PQ can influence the
power grid and cause failure or malfunction to sensitive electrical equipment. In this thesis, the
PQ disturbances and techniques for their analysis are investigated. Three different methods that
are suitable for analyzing non-stationary signals, have been carried out, and their effectiveness and
performance are discussed. As a real PQ signal, a low voltage power grid data containing voltage and
current waveforms, has been analyzed.

The traditional Fourier transform (FT) is reported to have difficulties to analyze non - stationary
signals, because it cannot provide the signal information in the time-frequency representation. However,
short time FT (STFT) can be applied as time-frequency analysis method with a fixed resolution
depends on the fixed window size which is chosen priorly. One of its main disadvantages is that
it cannot maintain time resolution and resolution frequency concurrently. By choosing the size of
window, resolution can be enhanced either in the frequency domain or in time domain. Enhancing
resolution in the frequency domain degrades resolution in the time domain, and vice versa. The
Wavelet transform (WT) outperforms the STFT in term of the time-frequency resolution and yields
an enhanced visual presentation of the signal components. It is designed to analyze the signal using
windowing technique with variable-sized segment; therefore, it yields better resolution than the STFT.
Continuous WT (CWT) is a favorable tool for analyzing transient behavior. It can provide a more
informative time-frequency representation in a situation when the signal is corrupted by transients,
whereas the STFT does not have the capability to localize transients to the same degree as the CWT. It
is important to be able to localize these transients in addition to characterizing oscillatory components
in the signal. However, when using the CWT we shall choose a suitable wavelet in different scenarios.
Additionally, it is not good for computing instantaneous frequencies in details. Nevertheless, the CWT
has difficulty in the adaptivity since the mother function has to be chosen prior to the analysis.

Empirical Mode Decomposition (EMD) and Hilbert spectrum (HS) analysis has demonstrated to be
an effective time–frequency analysis method. The Hilbert–Huang transform (HHT) consists of two
processes: First the EMD is executed to decompose a signal adaptively into a finite number of intrinsic
mode functions (IMFs). Once the IMFs are obtained, the HT is applied to obtain instantaneous
frequency and amplitude. A better perception of a signal component is achieved by visual inspection,
so the visual representation obtained by the Hilbert spectrum is a notable quality of HHT over other
mentioned techniques, in which the frequency and amplitude variation can be inspected visually in
more detail.
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The EMD is well suited for analyzing stationary and non-stationary signals and requires no initial
assumption of the signal; thus, it is adaptive to any unknown signals. The methods is most suitable
for decomposing non-stationary signals often found in PQ waveforms. One of the major drawbacks of
EMD method is the phenomenon of mode mixing. It occurs when either a single IMF consisting of
components of widely disparate scales, or a component of a similar scale residing in different IMFs.
This problem can be alleviated by using ensemble EMD (EEMD). This algorithm works by creating
an ensemble of white noise-added signal from the original data. The EMD is applied to each of these
signals to produce an ensemble of IMFs which are then averaged to obtain the final IMF which is
treated as the true and more physical meaningful answer. Although, the EEMD has been considered
to be effective in resolving the mode mixing issues of the noisy signals, it consumes too much time
because of the large number of sifting iterations required to achieve the decomposition. It takes even
longer time if the number of ensembles increase. Moreover, the EMD/HHT accuracy is degraded when
calculating the oscillations of small magnitudes.

In summary, comparing the EMD with the STFT and CWT in term of computational cost and
regarding evaluating frequency components of small amplitude, the STFT and CWT outperform
the EMD. However, window length, overlap, and basis wavelet parameters restrict the resolution of
STFT and CWT; hence, predefined decomposition bases render these two methods less suitable for
non-stationary signal analysis. Whereas the EMD with combination of the HT has an important role
in signal analysis application by obtaining the instantaneous frequency and amplitude of the IMFs.
Even with the mentioned limitations, experiences indicate that the results obtained by the HHT are
consistently better than most of the other methods.
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Appendix

Matlab codes

MATLAB codes used for the thesis work is presents below. A very useful reference for Matlb
programming for students and researchers could be the book; "Digital signal processing with matlab
examples, volume 1: signals and data, filtering, non-stationary signals, modulation" [107]. Additionally,
references [108] is related to the EEMD function code, and [109] for electrical power data and converting
the data from binary to Matlab file (.mat) format.



% Author: Jan Ali 

% Master in Systems Engineering with Embedded Systems 

% University of South-Eastern Norway - Kongsberg Campus 

% Faculty of Technology, Natural Sciences, and Maritime Sciences 

% https://www.usn.no 

 

% Power Grid Noise Analysis 

 

Generate a synthetic non-stationary signal 

% This is a simple code to generate a synthetic signal containing transient 

% and harmonics. 

% Last edited: 2nd Feb. 2021 

 

% Clear the workspace and command window, and close the existing plots 

clc 

clear 

close all 

 

fs = 3000;   % sampling frequency 

t = linspace(0,0.3,1000);  % time vector 

 

% Unit steps: 

ut1=t>=0;   % unitsetp1 takes 1 only when t is greater than equal to 0 

ut2=t>=0.1; % unitsetp2 takes 1 only when t is greater than equal to 0.1 

ut3=t>=0.18;% unitsetp3 takes 1 only when t is greater than equal to 0.18 

ut4=t>=0.3; % unitsetp4 takes 1 only when t is greater than equal to 0.3 

 

t1=ut1-ut2; % t1 takes 1 only when 0<=t<0.1 

t2=ut2-ut3; % t2 takes 1 only when 0.1<=t<0.18 

t3=ut3-ut4; % t2 takes 1 only when 0.18<=t<0.3 

 

% Signal segments: 

s1 = sin(2*pi*50*t) + 0.2*sin(2*pi*200*t); 

s2 = sin(2*pi*50*t) + 0.2*sin(2*pi*200*t) + sin(2*pi*500*t).*exp(-30*(t-0.1)); 

s3 = sin(2*pi*50*t) + 0.2*sin(2*pi*200*t); 

 

% Composite signal: 

s = s1.*t1 + s2.*t2 + s3.*t3; % combining signal segments 

 

plot(t, s); % plot signal in respect to time 

title('Synthetic signal');      % set title for the plot 

xlabel('Time (s)');             % set lable for x axis 

ylabel('Amplitude (A)');        % set y axis lable 

 

% Alternative for combining signal segments: 

s = s1.*(t>=0 & t<0.1) + s2.*(t>=0.1 & t<0.18) + s3.*(t>=0.18 & t<0.3); 

 

 

 

 

61



Load the dataset 

% Following code is used to load, segment and plot an electrical power current waveform 

% which is generated in the Laboratory for Innovation and Technology (LIT) 

% in University of Technology Paraná in Brazil. the waveform is of 900 s 

% length, but a segment of 2 s is selected from 726 s to 728 s 

% where a prominent PQ event has occurred. 

% https://pessoal.dainf.ct.utfpr.edu.br/douglasrenaux/LIT_Dataset/index.html 

% 

% Author: Jan Ali 

% Last edited: 10 th Apr. 2021 

 

clc 

clear 

close all 

 

load('LIT_Dataset\Matlab_Data\Natural\7\7H2A2B2C2K2F2D2\Waveform70001.mat'); 

fs = 15384; % sampling frequency 

x = iHall(length(iHall)/900*726:length(iHall)/900*728); 

% Select part of signal (current waveform ) where transient occured 

t = (0:length(x)-1)/fs; % segment time 

t = t + 726; % segment time offset (in this case segment is from 276 s to 278 s) 

 

% Plotting the data against the related time interval 

 

plot(t,x, 'b', 'LineWidth', 0.8); 

xlabel('Time (s)','FontSize',12); ylabel('Amplitude (A)'); 

v = vGrid(length(vGrid)/6300*5083:length(vGrid)/6300*5093); % select corresponding  

% voltage signal 

hold on; 

yyaxis right; 

plot(t, v); 

title('AC voltage and current waveform'); 

ylabel('Voltage (V)'); 

legend('Current)','Voltage'); 

hold off; 

 

Fast Fourier Transform (FFT) 

% This code performs fft to present the the signal (x) in the frequency domain  

% Author: Jan Ali  

% Last edit: 24th Jan. 2021 

 

fs = 15384;             % sampling frequency 

ts = 1/fs;              % sampling period 

t = 0:ts:0.3-ts;        % time vector 

n = length(x);          % length of signal 

nf = 2^nextpow2(n);     % define a new signal length as the next power of 2   

ff = fft(x, nf);        % compute the fft 

sf = ff(1:nf/2);        % eliminate the symmetry 

sf = sf/max(sf);        % normalize DFT Sample points 

xf = fs*(0:nf/2 -1)/nf; % assign x axis to frequency 
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plot(xf, abs(sf)); 

xlabel('Frequency (Hz)'); ylabel('Normalized Amplitude'); 

title('Frequency domain signal'); 

 

Short Time Fourier Transform (STFT) 

% This code executes the stft and plots the spectrogram.  

% spectrogram(x,window,noverlap,nfft,fs) 

% window: divides the signal into segments, default is Hamming  window 

% noverlap: No of overlap, samples of overlap between adjoining segments,  

% default is 50% overlap between contiguous segments 

% nfft: NFFT sampling points to calculate the DFT 

% fs: sample rate  

 

% Author: Jan Ali 

% Last edited: 28. Apr. 2021 

 

[s,f,t] = spectrogram(x,120,100,120,fs); 

% Output the STFT of the input signal, cyclical frequencies 

% and time instants at which the spectrogram is computed 

 

spectrogram(x,120,100,120,fs,'yaxis'); % plot the spectrogram 

t = linspace(0,2,length(t)) + 726; 

ax = newplot; % assign new plot 

surf(t,f/1e3,20*log10(abs(s)),'edgecolor','none'); % areate surface plot 

view(0,90); % shading interp; 

axis tight; 

cb = colorbar(ax); % color bar for power distribution indication 

cb.Label.String = 'Power(db)'; 

title('Spectrogram') 

xlabel('Time (s)','FontSize',14), ylabel('Frequency (kHz)'); 

 

% Using the default values of the preceding optional arguments for 

% a wider window segment to enhance frequency resolution: 

spectrogram(x,[],[],[],fs,'yaxis') 

 

Calculating the power spectrum density (psd) 

% This code performs fft function and computes the psd of signal (s)  

% to outputs as Power/Frequency (dB/Hz 

 

% Author: Jan Ali 

% Last edited: 7th Mar. 2021 

 

N= length(s); 

xdft = fft(s); 

xdft = xdft(1:N/2+1); 

psdx = (1/(fs*N)) * abs(xdft).^2; 

psdx(2:end-1) = 2*psdx(2:end-1); 

freq = 0:fs/length(x):fs/2; 

plot(freq,10*log10(psdx)) 
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grid on 

title('Periodogram Using FFT') 

xlabel('Frequency (Hz)') 

ylabel('Power/Frequency (dB/Hz)') 

 

Continuous Wavelet Transform (CWT) 

% This is the Matlab builtin function for cwt 

% to decompose the signal and output its components. 

% Author: Jan Ali 

% Last edited: 12th Mar. 2021 

 

[wt,perd,coi] = cwt(x,fs); % Output the WT, 

% time periods, and cone of influence 

% by specifying sampling frequency 

 

[cfs,frq] = cwt(x); % Obtain the wavelet coefficients and frequencies 

 

% Create frequency ticks and tick labels in powers of 2: 

[minf,maxf] = cwtfreqbounds(numel(x),600); 

 

cwt(x,fs) % plot scalogram 

% Determine the minimum and maximum wavelet bandpass frequencies: 

t = linspace(0,2,length(cfs)) + 726; 

ax = newplot; 

surf(ax,t,f,abs(cfs)); 

view(0,90); shading interp; 

ax.YScale = 'log'; 

ax.YDir = 'normal'; 

axis tight 

cb = colorbar(ax); 

cb.Label.String = 'Magnitude'; 

hold on 

plot(ax,t,coi,'w--'); 

xlabel('Time (s)'); 

ylabel('Frequency (Hz)'); 

set(findobj(gcf,'type','axes'), 'FontSize',12); 

 

% Compare computational efficiency: 

tic; cfs = cwt(x); toc % calculate computed time using cwt 

tic; cfs = wt(fb,x); toc  % calculate computed time using filber bank 

 

Hilbert Huang Transform (HHT) 

% This is the Matlab builtin emd program performing the 

% Empirical Mode Decomposition algorithm for IMF extraction 

% 

% Author: Jan Ali 

% Last edited: 12th Mar. 2021 

 

 

64



% Implement EMD to the current waveform to extract IMFs and residue: 

 

[imf,residual,info] = emd(x,'Interpolation','pchip','Display',1); 

% imf: Matrix (NxM) of IMF components 

%Current IMF  |  #Sift Iter  |  Relative Tol  |  Stop Criterion Hit 

%      1      |        3     |      0.18644   |  SiftMaxRelativeTolerance 

%      2      |        3     |     0.044223   |  SiftMaxRelativeTolerance 

%      3      |        2     |      0.18689   |  SiftMaxRelativeTolerance 

%      4      |        1     |      0.15219   |  SiftMaxRelativeTolerance 

%      5      |        2     |      0.06122   |  SiftMaxRelativeTolerance 

%      6      |        2     |     0.085096   |  SiftMaxRelativeTolerance 

%      7      |        2     |     0.078174   |  SiftMaxRelativeTolerance 

%      8      |        2     |      0.01957   |  SiftMaxRelativeTolerance 

%      9      |        2     |     0.066682   |  SiftMaxRelativeTolerance 

%Decomposition stopped because maximum number of intrinsic mode functions was extracted. 

 

emd(x); % execute emd and plot the signal components 

 

% Assign time axis according to the actual time interval: 

ds = 30769; % data samples 

a=(726:2/10:728); % corresponding ticks for 2 s 

xticks(0:ds/10:ds); % X ticks 

xlabel('Time','FontSize',14); 

% yticks([m n]) % in case of tick y axis, m and n are numbers 

 

% Applying HHT to IMF: 

hht(imf,fs); 

 

% For better view, limit the frequency range: 

hht(imf,fs,'FrequencyLimits',[0 5500]); 

 

% Align time axis: 

a = linspace(726,728,11); % Cutomize the xticklabels 

ax = gca; %fetches handle to EMD plot 

ax.XLim(1) = 0; %adjusting x-axis to start from 0 

ax.XTickLabel = num2cell(a); 

 

% Instantaneous frequencies of over all IMFs: 

instfreq(x,fs,'Method','hilbert'); 

Performing the Hilbert transform on the IMF1 to IMF9 

ht1=hilbert(imf(:,1)); 

ht2=hilbert(imf(:,2)); 

ht3=hilbert(imf(:,3)); 

ht4=hilbert(imf(:,4)); 

ht5=hilbert(imf(:,5)); 

ht6=hilbert(imf(:,6)); 

ht7=hilbert(imf(:,7)); 

ht8=hilbert(imf(:,8)); 

ht9=hilbert(imf(:,9)); 
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Calculating the instantaneous amplitudes (envelope) 

inst_amp2 = abs(ht1); 

inst_amp1 = abs(ht2); 

inst_amp3 = abs(ht3); 

inst_amp4 = abs(ht4); 

inst_amp5 = abs(ht5); 

inst_amp6 = abs(ht6); 

inst_amp7 = abs(ht7); 

inst_amp8 = abs(ht8); 

inst_amp9 = abs(ht9); 

Calculating the instantaneous frequencies 

inst_f1 = diff(unwrap(angle(ht1)))/(1/fs*2*pi); 

inst_f2 = diff(unwrap(angle(ht2)))/(1/fs*2*pi); 

inst_f3 = diff(unwrap(angle(ht3)))/(1/fs*2*pi); 

inst_f4 = diff(unwrap(angle(ht4)))/(1/fs*2*pi); 

inst_f5 = diff(unwrap(angle(ht5)))/(1/fs*2*pi); 

inst_f6 = diff(unwrap(angle(ht6)))/(1/fs*2*pi); 

inst_f7 = diff(unwrap(angle(ht7)))/(1/fs*2*pi); 

inst_f8 = diff(unwrap(angle(ht8)))/(1/fs*2*pi); 

inst_f9 = diff(unwrap(angle(ht9)))/(1/fs*2*pi); 

Plot the IMFs and their Instantaneous frequencies and amplitudes 

% IMF1 

subplot(3,1,1), plot(t,imf(:,1),'LineWidth', 0.8); 

title('IMF1'), ylabel('Amplitude'); 

 

subplot(3,1,2), plot(t(1:(length(t)-1)), inst_f1,'LineWidth', 0.8); 

title('Instantaneous frequency'), ylabel('Freq. (Hz)'); 

 

subplot(3,1,3), plot(t,inst_amp1,'LineWidth', 0.8); 

title('Instantaneous amplitude'), ylabel('Amplitude'); 

xlabel('Time (s)'); 

set(findobj(gcf,'type','axes'), 'FontSize',14); 

 

% IMF2 

subplot(3,1,1), plot(t,imf(:,2),'LineWidth', 0.8); 

title('IMF2'), ylabel('Amplitude'); 

 

subplot(3,1,2), plot(t(1:(length(t)-1)), inst_f2,'LineWidth', 0.8); 

title('Instantaneous frequency'), ylabel('Freq. (Hz)'); 

 

subplot(3,1,3), plot(t,inst_amp2,'LineWidth', 0.8); 

title('Instantaneous amplitude'), ylabel('Amplitude'), xlabel('Time (s)'); 

set(findobj(gcf,'type','axes'), 'FontSize',14); 

 

% IMF3 

subplot(3,1,1), plot(t,imf(:,3),'LineWidth', 0.8); 

title('IMF3'), ylabel('Amplitude'); 
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subplot(3,1,2), plot(t(1:(length(t)-1)), inst_f3,'LineWidth', 0.8); 

title('Instantaneous frequency'), ylabel('Freq. (Hz)'); 

 

subplot(3,1,3), plot(t,inst_amp3,'LineWidth', 0.8); 

title('Instantaneous amplitude'), ylabel('Amplitude'), xlabel('Time (s)'); 

set(findobj(gcf,'type','axes'), 'FontSize',14); 

 

% IMF4 

subplot(3,1,1), plot(t,imf(:,4),'LineWidth', 0.8); 

title('IMF4'); ylabel('Amplitude'); 

 

subplot(3,1,2), plot(t(1:(length(t)-1)), inst_f4,'LineWidth', 0.8); 

title('Instantaneous frequency'), ylabel('Freq. (Hz)'); 

 

subplot(3,1,3), plot(t,inst_amp4,'LineWidth', 0.8); 

title('Instantaneous amplitude'), ylabel('Amplitude'), xlabel('Time (s)'); 

set(findobj(gcf,'type','axes'), 'FontSize',14); 

 

% IMF5 

subplot(3,1,1), plot(t,imf(:,5),'LineWidth', 0.8); 

title('IMF5'), ylabel('Amplitude'); 

 

subplot(3,1,2), plot(t(1:(length(t)-1)), inst_f5,'LineWidth', 0.8); 

title('Instantaneous frequency'), ylabel('Freq. (Hz)'); 

 

subplot(3,1,3), plot(t,inst_amp5,'LineWidth', 0.8); 

title('Instantaneous amplitude'), ylabel('Amplitude'), xlabel('Time (s)'); 

set(findobj(gcf,'type','axes'), 'FontSize',14); 

 

% IMF6 

subplot(3,1,1), plot(t,imf(:,6),'LineWidth', 0.8); 

title('IMF6'), ylabel('Amplitude'); 

 

subplot(3,1,2), plot(t(1:(length(t)-1)), inst_f6,'LineWidth', 0.8); 

title('Instantaneous frequency'), ylabel('Freq. (Hz)'); 

 

subplot(3,1,3), plot(t,inst_amp6,'LineWidth', 0.8); 

title('Instantaneous amplitude'), ylabel('Amplitude'), xlabel('Time (s)'); 

set(findobj(gcf,'type','axes'), 'FontSize',14); 

 

% IMF7 

subplot(3,1,1), plot(t,imf(:,7),'LineWidth', 0.8); 

title('IMF7'); ylabel('Amplitude'); 

 

subplot(3,1,2), plot(t(1:(length(t)-1)), inst_f7,'LineWidth', 0.8); 

title('Instantaneous frequency'), ylabel('Freq. (Hz)'); 

 

subplot(3,1,3), plot(t,inst_amp7,'LineWidth', 0.8); 

title('Instantaneous amplitude'), ylabel('Amplitude'), xlabel('Time (s)'); 

set(findobj(gcf,'type','axes'), 'FontSize',14); 

 

% IMF8 

subplot(3,1,1), plot(t,imf(:,8),'LineWidth', 0.8); 

title('IMF8'), ylabel('Amplitude'); 
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subplot(3,1,2), plot(t(1:(length(t)-1)), inst_f8,'LineWidth', 0.8); 

title('Instantaneous frequency'), ylabel('Freq. (Hz)'); 

 

subplot(3,1,3), plot(t,inst_amp8,'LineWidth', 0.8); 

title('Instantaneous amplitude'), ylabel('Amplitude'), xlabel('Time (s)'); 

set(findobj(gcf,'type','axes'), 'FontSize',14); 

 

% IMF9 

subplot(3,1,1), plot(t,imf(:,9),'LineWidth', 0.8); 

title('IMF9'), ylabel('Amplitude'); 

 

subplot(3,1,2), plot(t(1:(length(t)-1)), inst_f9,'LineWidth', 0.8); 

title('Instantaneous frequency'), ylabel('Freq. (Hz)'); 

 

subplot(3,1,3), plot(t,inst_amp9,'LineWidth', 0.8); 

title('Instantaneous amplitude'), ylabel('Amplitude'), xlabel('Time (s)'); 

set(findobj(gcf,'type','axes'), 'FontSize',14); 

 

Ensemble empirical mode decomposition 

% This is the eemd function to implement the 

% Ensemble Empirical Mode Decomposition: 

% a noise-assisted data analysis method. 

% Author: Neil Po-Nan Li. 

% Cited in the "Reference" section. 

% Writen: 17th Nov. 2014 

% Edited: Jan Ali 

% Last edited: 28th Mar. 2021 

 

function [modes] = eemd(y, imf, NR, Nstd) 

 

stdy = std(y); 

if stdy < 0.01 

    stdy = 1; 

end 

y = y ./ stdy; 

siz = length(y); 

modes = zeros(siz,imf); 

 

for k = 1:NR 

    disp(['Ensemble number #' num2str(k)]); 

    wn = (randn(1,siz).*Nstd)'; 

    y1 = y + wn; 

    y2 = y - wn; 

    modes = modes + emd(y1,'MaxNumIMF',imf); 

    if Nstd > 0 && NR > 1 

       modes = modes + emd(y2,'MaxNumIMF',imf); 

    end 

end 

 

modes = modes .*stdy./(NR); 

if Nstd > 0 && NR > 1 
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   modes = modes./2; 

end 

 

end 

 

%% INPUT: 

%   y: Inputted data; 

%   Nstd: ratio of the standard deviation of the added noise and that of Y; 

%   NE: Ensemble number for the EEMD 

 

load('LIT_Dataset\Matlab_Data\Natural\7\7H2A2B2C2K2F2D2\Waveform70001.mat'); 

fs = 15384; % sampling frequency 

t = (0:length(y)-1)/fs + 726; % Time 

y = iHall(length(iHall)/900*726:length(iHall)/900*728); % Select part of signal (current 

waveform ) %    where transient occured 

 

imf = 9;                      % number of IMF 

NR = 5000;                    % number of ensembles of EEMD   

        % For each ensemble different white noise is added with the 

signal 

Nstd = 0.2;                   % standard deviation of the added noise 

 

modes = eemd(y, imf, NR, Nstd); % Output IMFs using eemd function 

 

subplot(10,1,1,'align'), plot(t, x,'b'); 

ylabel('Signal'); 

title('EEMD Decomposition','fontsize', 14); 

 

for i=1:9 

subplot(10,1,1+i,'align'), plot(t, IMF(:,i),'LineWidth',0.7); 

y_titre = sprintf('IMF%d',i); 

   ylabel(y_titre); 

set(gca,'XColor', [0.37,0.37,0.37],'YColor', [0.30,0.30,0.30]); 

end 

 

xlabel('Time (s)','Color','k', 'fontsize', 14); 

set(gca,'XColor','k','fontsize', 14) 

 

tic;  %   Calculate processing time 

modes = eemd(y, 9, 5000, 0.2); 

toc 

Elapsed time is 192.775861 seconds.  

 

Selecting Power Quality (PQ) data 

%   This MATLAB script is used to select dataset among subsets 

%   Author: Bruna Molinari, Douglas Renaux (2020) 

%   Cited in the "Reference" section. 

% 

 

function [loads] = ChoiceOfLoads(subset) 
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    if(strcmp(subset,'Synthetic')) 

 

        loads_1 =  

["1A0";"1B0";"1C0";"1D0";"1E0";"1F0";"1G0";"1H0";"1I0";"1J0";"1K0";"1L0";"1M0"; ... 

 "1N0";"1O0";"1P0";"1Q0";"1R0";"1S0";"1T0";"1U0";"1V0";"1W0";"1X0";"1Y0";"1Z0"]; 

 

        loads_2 = 

["2A0B0";"2A0H0";"2A0L0";"2A0M0";"2A0N0";"2A0Q0";"2B0A0";"2B0H0";"2B0L0";"2B0M0";... 

                   

"2B0N0";"2B0Q0";"2H0A0";"2H0B0";"2H0L0";"2H0M0";"2H0N0";"2H0Q0";"2L0A0";"2L0B0";... 

                   

"2L0H0";"2L0M0";"2L0N0";"2L0Q0";"2M0A0";"2M0B0";"2M0H0";"2M0L0";"2M0N0";"2M0Q0";... 

                   

"2N0A0";"2N0B0";"2N0H0";"2N0L0";"2N0M0";"2N0Q0";"2Q0A0";"2Q0B0";"2Q0H0";"2Q0L0";... 

                   "2Q0M0";"2Q0N0"]; 

 

        loads_3 = 

["3B0K0D0";"3D0Q0I0";"3D0Q0N0";"3D0Y0S0";"3E0N0Q0";"3H0P0W0";"3M0R0W0";"3M0R0X0";... 

                   

"3M0W0I0";"3N0S0I0";"3P0U0Z0";"3P0Z0H0";"3Q0K0B0";"3Q0X0E0";"3R0E0S0";"3S0E0Y0";... 

                   

"3S0I0Y0";"3T0Q0N0";"3T0V0M0";"3U0N0Z0";"3U0R0Y0";"3U0T0H0";"3V0D0M0";"3V0H0X0";... 

                   

"3V0M0Q0";"3W0E0H0";"3W0E0T0";"3W0I0Z0";"3X0D0P0";"3X0N0R0";"3Y0P0U0";"3Y0T0E0";... 

                   "3Z0P0V0"]; 

 

        loads_8 = 

["8D0G0P0Q0M0N0H0E0";"8D0M0S0G0H0N0R0E0";"8E0P0I0M0N0H0W0Y0";"8I0E0H0D0M0N0U0Z0";... 

                   "8Q0H0N0M0P0E0I0V0";"8X0E0H0I0M0P0N0D0"]; 

 

        loads = sort([loads_1; loads_2; loads_3; loads_8]); 

 

   

elseif(strcmp(subset,'Sim_Ideal')||strcmp(subset,'Sim_Induct')||strcmp(subset,'Sim_Induc

t_Harmo')... 

          

||strcmp(subset,'Sim_Induct_Harmo_SNR_10')||strcmp(subset,'Sim_Induct_Harmo_SNR_30')... 

          ||strcmp(subset,'Sim_Induct_Harmo_SNR_60')) 

 

        loads_1 = 

["1A0";"1B0";"1C0";"1D0";"1E0";"1F0";"1G0";"1H0";"1I0";"1J0";"1K0";"1L0";"1M0"; ... 

                   

"1N0";"1O0";"1P0";"1Q0";"1R0";"1S0";"1T0";"1U0";"1V0";"1W0";"1X0";"1Y0";"1Z0"; ... 

                   "1A1";"1B1"]; 

 

        loads_2 = 

["2Y0G0";"2O0S0";"2Y0X0";"2S0D0";"2J0G0";"2K0X0";"2Z0G0";"2A1J0";"2F0I0";"2R0M0"; ... 

                   

"2J0W0";"2I0O0";"2Y0E0";"2V0U0";"2K0B0";"2A0B0";"2N0T0";"2A1F0";"2P0M0";"2A0K0"; ... 

                   

"2D0V0";"2Q0O0";"2E0Q0";"2H0R0";"2T0U0";"2N0C0";"2F0Y0";"2E0W0";"2P0A1";"2C0L0"]; 

 

        loads_3 = 

["3T0P0W0";"3Y0F0J0";"3M0A1E0";"3X0B0J0";"3F0L0Z0";"3D0Y0G0";"3K0P0D0";"3I0G0Q0";... 
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"3X0A1S0";"3K0O0U0";"3Z0X0V0";"3H0Q0A0";"3K0I0E0";"3F0U0C0";"3Q0M0S0";"3T0R0A0";... 

                   

"3B0I0N0";"3D0L0V0";"3U0A1E0";"3J0C0P0";"3W0L0C0";"3H0N0B1";"3M0O0B1";"3Y0N0B1";... 

                   "3R0Z0W0";"3S0H0R0";"3T0B0G0";"3G0O0V0";"3J0V0R0";"3A0Q0K0"]; 

 

        loads_4 = 

["4Z0A0M0J0";"4M0X0I0T0";"4N0A0E0S0";"4A1E0V0P0";"4F0T0G0W0";"4H0X0E0B1"; ... 

                   

"4C0P0R0N0";"4L0B0Q0Z0";"4V0Z0F0B1";"4G0D0O0L0";"4M0Y0W0I0";"4S0B1V0U0"; ... 

                   

"4H0Q0P0N0";"4Y0H0I0C0";"4X0R0M0P0";"4B0R0O0S0";"4O0A1F0C0";"4D0B0W0L0"; ... 

                   

"4G0X0Q0T0";"4A1B1E0D0";"4A0C0N0Z0";"4Y0N0A1Q0";"4U0O0J0D0";"4Q0H0B0S0"; ... 

                   

"4G0L0R0I0";"4U0K0R0Z0";"4M0A0I0K0";"4Y0F0V0K0";"4H0K0T0J0";"4W0U0J0F0"]; 

 

        loads_5 = 

["5W0Z0I0Q0K0";"5H0U0K0V0B1";"5O0Z0E0D0P0";"5L0U0V0T0H0";"5O0C0A1D0Q0"; ... 

                   

"5N0F0M0J0B0";"5A1H0I0R0N0";"5W0X0Z0A0U0";"5R0A1N0L0T0";"5G0N0X0O0U0"; ... 

                   

"5A1G0H0Q0C0";"5R0B1S0W0X0";"5V0T0Y0O0A0";"5D0Z0M0L0F0";"5P0R0A0B1I0"; ... 

                   

"5B0S0F0D0E0";"5E0F0B0P0G0";"5P0S0M0N0K0";"5D0J0G0V0W0";"5F0I0Q0K0E0"; ... 

                   

"5A1C0B1K0Y0";"5R0P0B0T0B1";"5S0B0W0X0Y0";"5Y0V0N0E0J0";"5D0A0Y0H0Z0"; ... 

                   

"5J0M0Q0A0U0";"5P0X0J0L0B0";"5W0R0I0E0C0";"5B1O0S0Y0G0";"5L0M0T0U0C0"]; 

 

        loads = sort([loads_1; loads_2; loads_3; loads_4; loads_5]); 

 

    elseif strcmp(subset,'Natural') 

        loads = ["7H2A2B2C2K2F2D2"]; 

    else 

        disp('Subset not avaiable yet') 

        loads = 0; 

    end 

end 

 

Converting binary data to Matlab file format (LIT_bin2mat.m) 

%   This MATLAB script is used to extract binary data from the LIT-Dataset 

%   RAW_Data files and construct MATLAB arrays from this data for further 

%   processing. MATLAB arrays are saved in .mat files. 

%   Author: Bruna Molinari, Douglas Renaux (2020) 

%   Cited in the "Reference" section. 

%   Edited by Jan Ali, last edited: 16th Apr. 2021 

 

% 1 - Select a subset: 

% Type = char array 

%  Options = 

%                    º 'Natural' 
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%                    º 'Synthetic' 

%                    º 'Sim_Ideal' 

%                    º 'Sim_Induct' 

%                    º 'Sim_Induct_Harmo' 

%                    º 'Sim_Induct_Harmo_SNR_10' 

%                    º 'Sim_Induct_Harmo_SNR_30' 

%                    º 'Sim_Induct_Harmo_SNR_60' 

 

 subset = 'Natural'; 

 

% 2 - Build list of loads for this subset 

loads_set = ChoiceOfLoads(subset); 

 

% 3 - Reference directory and search path 

 

r_dir = fileparts(mfilename('fullpath')); 

 

cd(r_dir) 

cd('C:\Users\latif\OneDrive\Documents\MATLAB\Examples\R2020a\matlab\LIT_Dataset') 

 

addpath(genpath(pwd)) 

 

 

% 4 - Number of loads to change the files 

L = length(loads_set); 

file_offset_in_loadset = 0; 

current_numLoads = "1"; 

 

% 5- Loop for all loads in load set 

for n = 1:L 

 

    % Determines the amount of strokes (angle variation) in each 

    % acquisition. 

    [n_t, numLoads] = NumberOfTraces(subset, loads_set(n,:)); 

    if ~ strcmp(current_numLoads,numLoads) 

        current_numLoads = numLoads; 

        file_offset_in_loadset = 0; 

    end 

 

    for trace = n_t 

        % Create one .mat for each database file 

        if strcmp(subset,'Natural') 

            if (false == CreateStructLIT_nat(subset, loads_set(n,:), trace, 

file_offset_in_loadset)) 

                break; 

            end 

        else 

            CreateStructLIT(subset, loads_set(n,:), trace, file_offset_in_loadset); 

        end 

    end 

    file_offset_in_loadset = file_offset_in_loadset + length(n_t); 

end 

Published with MATLAB® R2020b 
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