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A B S T R A C T   

This study presents a novel approach to forecast freight rates in container shipping by integrating soft facts in the 
form of measures originating from surveys among practitioners asked about their sentiment, confidence or 
perception about present and future market development. As a base case, an autoregressive integrated moving 
average (ARIMA) model was used and compared the results with multivariate modelling frameworks that could 
integrate exogenous variables, that is, ARIMAX and Vector Autoregressive (VAR). We find that incorporating the 
Logistics Confidence Index (LCI) provided by Transport Intelligence into the ARIMAX model improves forecast 
performance greatly. Hence, a sampling of sentiments, perceptions and/or confidence from a panel of practi
tioners active in the maritime shipping market contributes to an improved predictive power, even when 
compared to models that integrate hard facts in the sense of factual data collected by official statistical sources. 
While investigating the Far East to Northern Europe trade route only, we believe that the proposed approach of 
integrating such judgements by practitioners can improve forecast performance for other trade routes and 
shipping markets, too, and probably allows detection of market changes and/or economic development notably 
earlier than factual data available at that time.   

1. Introduction 

In maritime shipping, freight rates as a price to be paid for movement 
of cargo tend to be very volatile as it is highly dependent on the interplay 
between supply of available transport capacity and demand for transport 
service (Stopford, 2008). Freight rates are at the core of the shipping 
business as success and failure of shipping companies largely depend of 
it. Depending on the ownership structure of ship fleet between cargo 
owner and ship owner, the fluctuations in freight rate characterizes 
shipping risk. With growing ship fleet of cargo owners, their risk in
creases, while growing hire from the spot market increases ship owners’ 
risk (Stopford, 2008). The nature of this business makes it necessary to 
negotiate and fix transport contracts (often forward freight agreements) 
between shippers, carriers and/or other transport and logistics service 
providers involved therein well in advance to ensure a smooth cargo 
flow. In addition, momentary decisions in the shipping market such 
chartering a ship, often taken over the course of a week, are highly 
dependent on the freight rate prediction. Further, purchase, selling, 
newbuilding and scrapping decisions taken by shipowners are also 

highly dependent of freight rates (Jeon, Duru, & Yeo, 2020). Hence, a 
good prediction of future freight rate development is of utmost impor
tance to ensure a well informed and profitable decision making for major 
players involved in the planning and execution of cargo movements. 

Long time, the Baltic Dry Index (BDI) compiled every working day by 
the Baltic Exchange (2021) was regarded to be the dominant market 
indicator when it comes on freight rate developments in maritime 
shipping (Karamperidis, Jackson, & Mangan, 2013). But due to an ever- 
increasing degree of containerization in seaborne cargo, similar freight 
rate indexing dedicated to the container shipping industry became 
demanding. Therefore in 1998, the China Containerized Freight Index 
(CCFI) and later on the Shanghai Containerized Freight Index (SCFI) 
were established by the Shanghai Stock Exchange (SSE, 2021) to fill this 
gap (Xin, 2000). Although in the meantime other container freight 
indices were issued like the World Container Index (WCI) by Drewry 
(2021), or the Ningbo Containerized Freight Index (NCFI) by the Ningbo 
Shipping Exchange (Baltic Exchange, 2021), the Freightos Baltic Global 
Container Index (FBX) promoted by the Baltic Exchange (2021) and 
recently the Xeneta Shipping Index (XSI) by the freight benchmarking 
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platform Xeneta (2021), only CCFI and SCFI got increased attention by 
academia so far (Chen, Rytter, Jiang, Nielsen, & Jensen, 2017; Hsiao, 
Chou, & Wu, 2014; Munim & Schramm, 2017; Nielsen, Jiang, Rytter, & 
Chen, 2014; Yifei, Dali, & Yanagita, 2018; Yin & Shi, 2018). 

When it comes on forecasting container freight rates, autoregressive 
integrated moving average modelling (ARIMA) works well (Nielsen 
et al., 2014) and it can reflect Gross Rate Increase (GRI) patterns 
executed by carriers (Munim & Schramm, 2017), which was indeed a 
recurrent feature especially on the Far East – Europe trade lane between 
2008 and 2013 (Chen et al., 2017). Nevertheless, in the end, ARIMA is a 
myopic sort of forecasting technique, as it does not take well-known 
external influencing factors to freight rate formation like supply of 
shipping capacity, demand for freight service or bunker price level into 
consideration. Meanwhile, Munim and Schramm (2017) found that 
ARIMA is appropriate for out-sample forecast of container freight rates, 
and Munim and Schramm (2020) concluded that it is even better than 
VAR with supply and demand as exogenous variables while performing 
out-sample forecasts. However, the purpose of this study is exploring 
further possibilities to include external influences into ARIMA models in 
case of CCFI and SCFI, which are at the same time useful for nowcasting 
purposes. 

According to Lahiri and Monokrousos (2013), nowcasting is regar
ded as “[…] the task of predicting the present, the very recent past, and 
the very near future […]”, which needs timely available data. However, 
this poses a real challenge in container shipping, as most market infor
mation can be only collected with significant time lag, which tradi
tionally led consultancies to stick on quarterly data when it comes on 
observing market development (Drewry, 2021; MDS Transmodal, 
2021). However, recent improvement in data collection methodology 
allows now gathering a wide range of certain factual data beside 
container freight rate indices in form of data on a monthly basis as 
follows:  

• Alphaliner (2021) constantly monitors container fleet structure, 
vessel deployment, liner service development and terminal activities 
to report it on a weekly to monthly basis and offers a TOP 100 list of 
container shipping operators updated daily as a special feature.  

• Clarkson (2021) observes container fleet structure, too, and further 
delivers transactional data covering the whole lifecycle of a vessel 
from its ordering at a shipyard over chartering, purchase to scrap
ping published on a regular basis in their weekly to quarterly 
container shipping market reports.  

• CTS (2021) focus on aggregated container volumes and price index 
data per trade lane as reported by a panel of carriers and ports on 
monthly basis.  

• SeaIntel (2021) constantly examines liner service development and 
provides aggregated figures concerning port-to-port schedule reli
ability of carriers on monthly basis.  

• Container port throughput statistics are also available on monthly 
basis and these are used to make the RWI/ISL Container Throughput 
Index (ISL, 2021) with a coverage of 60% worldwide container trade 
activity.  

• Navigation statistics from Suez Canal (SCA, 2021) or activity reports 
from Panama Canal (PCA, 2021) as the main bottlenecks in maritime 
shipping are compiled and published after the end of each month.  

• Product prices for bunker fuel as a major cost component of running 
vessels are summarized in e.g. Monthly Oil Market Review (OPEC, 
2021), with some other providers like Bunkerworld (2021) deliv
ering daily spot market prices. 

Alternatively, soft facts obtained by a rating, survey or poll collecting 
sentiments, perceptions and/or confidence (or shortly SPC) from a panel 
of practitioners active in the container shipping market on a regular 
basis can be employed. This includes a variety of leading indicators 
outlined in further detail in Section 2, which probably allows detection 
of market changes and/or economic development much earlier than the 

aforementioned hard facts being at best coincident if not just slightly 
lagging indicators, as they are all measures collected from present or 
past times (Karamperidis et al., 2013). Therefore, it was attempted to 
forecast container freight rates for the Far East to Northern Europe trade 
route, incorporating soft facts into time series forecasting to scrutinize 
whether it improves forecast performance. 

The remainder of the paper is as follows: Firstly, in Section 2, a se
lection of such SPC indices that may be relevant in our context of 
container shipping are reviewed. Section 3 outlines procedure of data 
sampling followed by a brief description of our forecast methodology. 
Results from subsequent empirical analysis including a comparison of 
forecast performance of ARIMA, ARIMAX and VAR models in this 
context are presented in Section 4 before concluding in Section 5. 

2. Sentiment, perception or confidence indices 

Before starting with a review of potentially useful survey based SPC 
indices it is worthwhile to have a brief look on the underlying termi
nologies. Table 1 shows exemplary definitions for the three terms in 
focus which imply a subtle ordering from simple ‘feelings’ over ‘opinion’ 
to ‘belief’ of someone having ‘faith’, ‘trust’ or being ‘certain’ what is held 
or expressed about something. Insofar, SPC indices typically rely on soft 
facts and measures gathered from individuals asked merely grand 
questions about their recent past, present or near future. 

Employment of such SPC indices is common in finance (e.g. mea
surement of investor sentiment, c.f. Brown & Cliff, 2004; Baker & 
Wurgler, 2006, 2007; Schmeling, 2009; Baker, Wurgler, & Yuan, 2012; 
Huang et al., 2014, 2015; Sibley, Wang, Xing, & Zhang, 2016; Mascio & 
Fabozzi, 2019), real estate (e.g. the Architecture Billing Index (ABI), c.f. 
Machato & Nanda, 2016), manufacturing (e.g. the Purchasing Man
agers’ Index (PMI), c.f. Lindsey & Pavur, 2005; Cho & Ogwang, 2006, 
2008; Lahiri & Monokrousos, 2013) or service sector (e.g. the Non- 
Manufacturing Index (NMI), c.f. Cho & Ogwang, 2007; Lahiri & Mon
okrousos, 2013) as a whole. Common to all of them is that they try to 
capture tacit market knowledge from survey panel respondents, which 
may be incorporated in hard fact measures available later on. Regarding 
maritime shipping, at least some of these aforementioned rather general 
SPC indices like investor sentiment (Papapostolou et al., 2014, 2016), 
PMI (Heij and Knapp, 2014) or a composite climate index (Chen, Lu, Lu, 
& Luo, 2015) were already employed. But when it comes on prediction 
of container freight rate development, no such approach is known to the 
authors. 

Given that a recent review of indices used in the maritime logistics 
sector by Karamperidis et al. (2013) based on a selection of peer- 
reviewed journals and trade press resulted in only two PMI indices 

Table 1 
Definitions of sentiment, perception and confidence.  

Terminology Derived from Definition 

Sentiment Sentiment (fr.) “A general feeling, attitude, or opinion 
about something” (Cambridge dictionary, 
2021) 

Sentire (lat.) ‘feel’ “A view or opinion that is held or 
expressed” (Oxford living dictionary, 
2021). 

Perception Percipere (lat.) 
‘seize, understand’ 

“The ability to see, hear, or become aware 
of something through the senses” (Oxford 
living dictionary, 2021). 
“A belief or opinion, often held by many 
people and based on how things seem” ( 
Cambridge dictionary, 2021) 

Confidence Confidere (lat.) ‘have 
full trust’ 

“The feeling or belief that one can have 
faith in or rely on someone or something.” ( 
Oxford living dictionary, 2021) 
“The quality of being certain of your 
abilities or of having trust in people, plans, 
or the future” (Cambridge dictionary, 
2021).  
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and the European Freight Forwarding Index (EFFI) by Danske Bank 
Markets, a simple internet research with Google employing keywords 
like “logistics”, “maritime”, “transport”, “shipping” in connection with 
“sentiment”, “confidence”, “perception” and “index” was done to find 
viable candidates for further treatment. The logic behind this rather 
unstructured sampling approach was that such SPC indices are more 
acknowledged among practitioners and their main source of information 
is trade press media, which recently migrated more and more into the 
internet with a strong online presence due to their usual spatially 
dispersed readership. At the same time, such SPC indices are usually 
promoted online by their initiators via press releases and regular 
newsletters, which again can be found by simple internet research with 
Google. Whenever there was a hit, further inquiry was undergone to find 
out more details about the SPC index. Results of our efforts are sum
marized in Appendix A along the dimensions of official name (and 
abbreviation), initiator, data sampling approach, measures raised (and 
their scope), periodicity of publication and horizon. 

Characterizing them according to the presence of practitioners active 
in container shipping markets included in their data sampling approach, 
three main groups can be identified: (1) maritime shipping sector, (2) 
transport and logistics service provider sector, and (3) shippers. Firstly, 
the Shanghai Shipping Prosperity Index (CSPI) and the Shipping Con
fidence Survey (SCS) clearly show a focus on certain actors originated in 
the maritime shipping sector – namely vessel owners, brokers, man
agers, charterers, operators and professional advisors. Secondly, the 
survey panels of the China Logistics Prosperity Index (CLPI), the Euro
pean Freight Forwarding Index (EFFI) as well as the SCI Barometer (SCI) 
predominantly consists of transport and logistics service providers. 
Thirdly, the BVL Logistics Indicator (LI) as well as the Prognos/ZEW 
Transportmarkt Barometer (TMB) run sophisticated panels with trans
port and logistics service providers as well as shippers in order to pro
vide insights from both sides of the market. Finally, the Logistics 
Manager’s Index (LMI) as well as the Logistics Confidence Index (LCI) 
stick on an open online survey panel with the majority of respondents 
being transport, logistics and/or supply chain managers employed at 
shippers. Accordingly, their scope is different: CSPI and SCS try to catch 
trends in the maritime shipping sector, whereas the remainder want to 
offer a broader view of current transport and logistics market de
velopments with EFFI, TMB, and LCI providing sub-indices dedicated to 
maritime shipping even for certain trade lanes. From a spatial point of 
view, (1) SCS, EFFI, and LCI regularly report a high amount of re
spondents from European countries, (2) the survey panels of LI, TMB and 
SCI are dedicated to Germany, CSPI and CLPI to China and LMI aims at 
USA/North America. 

Regarding their usability in the context of our work, both CSPI and 
SCS take reference to measures that could be helpful to indicate freight 
rates development in tanker, dry bulk and container business, but their 
relevance for forecasting of freight rate development is rather limited 
especially due to their quarterly periodicity of release. Furthermore, LI, 
TMB, SCI as well as LMI can be ruled out as they turn out to be too much 
country-specific, so that in the end, CLPI, EFFI and LCI seem to be useful 
for our purpose: (1) the CLPI reflects current business volume of Chinese 
logistics companies as a main origin of containerized cargo nowadays, 
(2) EFFI refers to cargo volumes handled by European freight forward
ing companies quite dominant in the sector (c.f. Transport Topics, 
2020), and (3) LCI asks panelists for current and expected cargo volumes 
e.g. on the Asia to Europe trade lane. Following common market 
structure mechanics in maritime shipping (Stopford, 2008), one would 
expect that growing (diminishing) volumes of containerized cargo 
should come along with raising (falling) freight rates with some delay as 
all three SPC indices render transport activities usually organized by 
logistics service providers and/or freight forwarding companies. Un
fortunately, fully access the EFFI data was not available and so the 
following analysis proceeds with CLPI and LCI concerning volume of 
cargo transported by sea. 

3. Data and methodology 

3.1. Data sampling 

Based on container trade volume, the Far East to Europe trade route 
ranks second worldwide with 15.5 million TEUs traded in 2017 
(UNCTAD, 2017). Monthly container freight rate time series data (both 
CCFI and SCFI) for this route for September 2012 to June 2017 from one 
of most renowned shipping databases, Clarksons (2021), was taken. 
Moreover, two different SPC indices — CLPI (i.e. business confidence 
index) and LCI (i.e. current and expected volumes on Asia to Europe 
trade lane), were used as exogenous variables and their monthly time 
series data were collected from FBIC (2021) and TI (2021), respectively. 
Whereas the CLPI deals with current vs. past month business volume of 
Chinese logistics companies, LCI covers respondent’s confidence about 
sea transport volumes on current and 6 months outlook period. 

The lagged values of CLPI and LCI are used when forecasting future 
values of CCFI and SCFI. The values of CLPI and LCI for a particular time 
period are reported well in advance. For example, the LCI six-months 
outlook is published 6 months ahead of a particular month. Hence, 
future freight rates cannot influence the CLPI and LCI indices. One may 
argue that past freight rates might influence the CLPI and LCI. However, 
CLPI and LCI are based on perceptions of executives which are typically 
based on many factors including supply and demand development in the 
market. Thus, such indices can be used as exogenous variable when 
forecasting future freight rates. 

The resulting monthly time series data is shown in Fig. 1. Descriptive 
statistics of the data are presented in Table 2 along with normality test 
according to Jarque and Bera (1980). As values of this J-B test of all 
variables are well above the 0.05 significance level, normality of the 
time series can be confirmed. 

3.2. Stationarity check 

Similar to any forecast modelling study, the dataset was divided into 
an in-sample (training) and an out-sample (testing) period. As a rule of 
thumb, about 90% of the sample was included in the training sample and 
10% in the test sample. Table 3 presents the training and testing samples 
for each of the variables. To check stationarity of time series the PP test 
procedure by Phillips and Perron (1988) was used, both in natural log 
levels and in first difference log operator. While the CLPI is already 
stationary in log levels, all other variables are stationary in the first 
difference log operator. As stationarity of data is a perquisite for 
autoregressive forecast modelling, now we can proceed with the forecast 
models. 

3.3. Granger causality tests 

Granger causality test (Granger, 1969) has been used by researchers 
(Kavussanos & Nomikos, 2003; Alizadeh, 2013; Li et al., 2018) to 
examine casual relationships between maritime variables. Similar to 

Fig. 1. Monthly time series data.  
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Alizadeh (2013), the causal relationships between the freight indices 
and sentiment indices has been investigated through the VAR frame
work. The VAR model defined in Eq. (3) was used to test causal asso
ciations. The granger causality test results are presented in Table 4, with 
two significant results at 5% statistical significance level, namely CCFI 
granger causes CLPI and SCFI granger causes LCI current. This indicates 
some degree of associations among freight indices and sentiment 
indices. 

3.4. Forecast models 

Based on the discussion in Section 2, three forecast models were 
chosen, namely ARIMA (Munim & Schramm, 2017), ARIMAX (Chen, 
Meersman, & van de Voorde, 2012) and VAR (Chen et al., 2012; Munim 
& Schramm, 2020) due to their proven usefulness in container shipping 
freight rate forecasting. While the ARIMA model solely relies on his
torical data of an endogenous variable, the ARIMAX is an ARIMA model 
of an endogenous variable incorporating additional explanatory exog
enous variables. Similarly, VAR can incorporate multiple variables at a 
time for autoregressive modelling. All models are briefly described 
below. 

The ARMA (p,q) model by Box and Jenkins (1970) has two parts: 
autoregressive (AR) and moving average (MA). When the endogenous 
variable is stationary at first difference, it can be modelled as first dif
ference log operator, which is the integrated (d = 1) part. The AR part 
models the relationship between value of an endogenous variable at 
time t with its value at a previous date (t − i). The MA part models the 
relationship between value of a variable at time t with its error terms at a 
previous date (t − i). The ARIMA (p,1,q) model can be presented by the 
Eq. (1) as follows: 

∆yt =
∑p

i=1
∅i∆yt− i +

∑q

i=1
θiεt− i + εt (1) 

Here, yt is the container shipping freight rate at time t; thus, ∆yt = yt 
− yt− 1. ∅i is the coefficient of ∆yt− i; θi is the coefficient of error terms at 
time t − 1, εt− i; and εt is the error term at time t. 

The ARMAX model was first time tested by Bierens (1987) and 
Franses (1991) treated the ARMAX model as an extension of the ARMA 
model. An ARIMAX (p,1,q,x) model with first difference log operator can 
be presented by the Eq. (2) as follows: 

∆yt =
∑p

i=1
∅i∆yt− i +

∑X

k=1
βkxt +

∑q

i=1
θiεt− i + εt (2) 

Here, X is the number of explanatory exogenous variables; xt is a X x 
1 vector of exogenous variables at time t, and βk is a 1 x X vector of 
parameters. 

VAR models are stochastic in nature and useful to capture linear 
interdependencies among multiple variables. VAR is exclusive than 
ARIMAX in a sense that it allows more than one variable in the autor
egressive process. Using VAR, the associations among values of a vari
able at time t, with its value and other exploratory variable’s value at a 
previous time period (t − i) can be modelled. Eq. (3) represents a VAR 
model with a vector of m x m variables as follows: 

∆yt = α+
∑p

i=1
φi∆yt− i + εt (3) 

Here, ∆yt is a m x m vector of variables in first difference; α is a m x 1 
vector of constants; φi is a time-invariant m x m matrix of the coefficients 
of ∆yt− i; and p refers to the number of autoregressive lags. 

4. Empirical analysis 

Following the stationarity test results, first difference log operator of 
CCFI and SCFI were taken before proceeding with forecast modelling 
using ARIMA and ARIMAX. Autocorrelation function (ACF) and partial 
autocorrelation function (PACF) of both series are reported in Appendix 
C. It might be noted that the static forecast approach was employed due 
to its practical relevance. Another issue to mention is that ARIMA model 
selection was based on lowest Akaike Information Criterion (AIC) and 
Phillip-Perron (PP) test results for stationarity. For ARIMAX, models 
were re-estimated incorporating soft facts (namely LCI and CLPI), but 
using the same ARIMA order identified in the ARIMA model estimations. 
Thus, forecasting results from ARIMA models and ARIMAX models with 

Table 2 
Descriptive statistics.  

Variables N Mean Std. dev. Min. Max. J-B test 

CCFI: FE to EU 58 1166.57 279.86 635.02 1635.23 3.87 (0.14) 
SCFI: FE to EU 58 916.41 316.03 223.50 1659.40 1.08 (0.58) 
CLPI 53 0.55 0.02 0.50 0.59 1.80 (0.41) 
LCI Current 58 51.80 7.44 36.10 66.50 2.03 (0.36) 
LCI Outlook 58 60.31 6.16 47.10 70.60 2.32 (0.31) 

For J-B test, P-values in parenthesis, P > 0.05 indicates normality of time series. 
All time series are monthly September 2012 to June 2017, except for CLPI, 
which started on February 2013. 

Table 3 
Sample definition and unit root test for stationarity.  

Variables In-sample Out-sample 

Time series PP-test (log 
level) 

PP-test (1st 
diff. log) 

Time series 

CCFI: FE to 
EU 

Sep 2012–Dec 
2016 

− 8.47 − 32.20*** Jan 2017–Jun 
2017 

SCFI: FE to 
EU 

Sep 2012–Dec 
2016 

− 16.49 − 42.17*** Jan 2017–Jun 
2017 

CLPI Feb 2013–Dec 
2016 

− 21.54* − 44.80*** Jan 2017–Jun 
2017 

LCI Current Sep 2012–Dec 
2016 

− 7.28 − 34.89*** Jan 2017–Jun 
2017 

LCI 
Outlook 

Sep 2012–Dec 
2016 

− 8.00 − 32.15*** Jan 2017–Jun 
2017 

+P < 0.10, *P < 0.05, **P < 0.01, ***P < 0.001; for PP-test, P < 0.05 indicates 
stationarity of time series. 

Table 4 
Granger causality test results.  

Hypothesis F-statistics (P- 
value), constant 

F-statistics (P- 
value), trend 

Remarks 

CLPI granger causes 
CCFI 

0.350 (0.705) 0.331 (0.719) Not 
supported 

CCFI granger causes 
CLPI 

3.097 (0.050) 3.088 (0.050) Supported 

LCI Current granger 
causes CCFI 

0.013 (0.987) 0.004 (0.996) Not 
supported 

CCFI granger causes 
LCI Current 

1.952 (0.147) 1.873 (0.159) Not 
supported 

LCI Outlook granger 
causes CCFI 

0.026 (0.975) 0.024 (0.977) Not 
supported 

CCFI granger causes 
LCI Outlook 

0.649 (0.525) 0.691 (0.504) Not 
supported 

CLPI granger causes 
SCFI 

0.780 (0.462) 0.772 (0.465) Not 
supported 

SCFI granger causes 
CLPI 

0.993 (0.374) 1.006 (0.370) Not 
supported 

LCI Current granger 
causes SCFI 

1.282 (0.282) 1.322 (0.272) Not 
supported 

SCFI granger causes 
LCI Current 

4.224 (0.017) 4.107 (0.019) Supported 

LCI Outlook granger 
causes SCFI 

1.161 (0.318) 1.137 (0.325) Not 
supported 

SCFI granger causes 
LCI Outlook 

1.313 (0.274) 1.345 (0.265) Not 
supported 

Note that in the granger causality test, first differenced version of all variables 
was used for stationarity. 
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soft facts can directly compared. The employed forecasting approach is 
demonstrated in Fig. 2. 

ARIMA and ARIMAX model estimation parameters for CCFI and SCFI 
are presented in Tables 5 and 6, respectively. In both tables, M1 is the 
ARIMA model as a base case, M2 is the ARIMAX model with LCI current 
data, M3 is the ARIMAX model with both LCI current and outlook data, 
and M4 is the ARIMAX model with CLPI. The LCI current and outlook 
have significant (at 5% level) influence on the CCFI index FE to EU 
container freight rate, but not on the SCFI index. 

For estimated model diagnostic, normality of residuals are checked 
using the J-B test (Jarque & Bera, 1980), autocorrelation of residuals are 
checked using the L-B test (Ljung & Box, 1978), and ARCH effect is 
tested using the L-B test on the squared residuals. For the estimated 
ARIMA and ARIMAX models, as reported in Tables 5 and 6, the P-values 
of the reported tests are not statistically significant at 5% level. Hence, 
the diagnostic check requirements are met. 

For VAR modelling, three models following the same logic as in 
ARIMAX were considered. In the first VAR model (M5), only LCI current 
is taken as exogenous variable, in the second one (M6) both LCI current 
and 6 months outlook as exogenous variable, and in the final one (M7) 
CLPI as exogenous variable. As stationarity of all variables have been 
confirmed earlier at first difference log operator, for the selection of 
appropriate VAR model, first existence of co-integration equation using 
Johansen co-integration test (Johansen, 1991) considering two lags 
suggested by the Hannan-Quinn (HQ) and Schwarz criterion (SC, Lüt
kepohl, 1985) was checked. However, at 5% statistical significance, no 
evidence was found for co-integrating equations among the variables. 
Thus, proceeding with VAR models (instead of vector error correction 
models) with two lags, VAR model parameters for both CCFI and SCFI 
data are presented in Tables 7 and 8, respectively. 

Based on the estimated VAR results, CLPI and LCI does not influence 
the CCFI and SCFI. Similar to ARIMA group models, residuals are 
examined for normality, autocorrelation and ARCH effects. Except for 
M5 and M6 in Table 7, all VAR models reported in Tables 7 and 8 
indicate normality of residuals, no autocorrelation and ARCH effect 
among residuals. 

In addition to in-sample forecast, the out-sample forecast of 
container freight rate for the FE to EU trade route on both CCFI and SCFI 
indices were performed using the estimated parameters presented in 
Tables 5– 8. Three measures were adopted, namely root mean square 
error (RMSE), mean absolute percent error (MAPE) and mean absolute 
scaled error (MASE) to benchmark forecast accuracy of competing 
models. Equations to calculate these accuracy measures are outlined in 
Appendix B. All three measures for comparison were used, because 
RMSE and MAPE can be misleading depending on the out-sample fore
cast horizon. Thus, Hyndman and Koehler (2006) suggested using MASE 
when comparing different forecast models. 

In-sample forecast performances of the final seven forecast models 
M1–M7 are presented in Table 9. Considering average values, M3 (i.e. 
ARIMAX with LCI current and outlook as exogenous variables) clearly 
outperforms all others. For CCFI container freight rate, the same forecast 
model M3 stands out. However, in the case of SCFI this obtained mixed 
results, as M3 is the best in terms of RMSE, M2 in MAPE and M4 in 
MASE. 

Similarly, out-sample forecast performances of the five competing 

models are presented in Table 10. Considering the average values, in 
terms of RMSE and MAPE, M4 (i.e. ARIMAX with CLPI as an exogenous 
variable) outperform others. In terms of MASE, M2 (i.e. ARIMAX model 
with LCI current as an exogenous variable) is the best, while looking at 
average values. For CCFI, again the same model, M2, stands out. How
ever, for SCFI, M4 is the best in terms of MAPE and MASE, but M1 in 
terms of RMSE. Finally, it has to be noted, that all three VAR models M5, 
M6 and M7 never outperformed the myopic ARIMA model approach of 
M1. At the same time, all exogenous variables were statistically non- 
significant to a 5% level as shown in Tables 7 and 8. This gives a Fig. 2. Forecasting framework integrating soft facts as exogenous variables.  

Table 5 
ARIMA and ARIMAX model parameters for CCFI data.  

ARIMA(p,d,q) and 
ARIMAX(p,d,q,x) 
model parameters 

M1: 
ARIMA 
(3,1,0) 

M2: 
ARIMAX 
(3,1,0,x1) 

M3: ARIMAX 
(3,1,0,x1,x2) 

M4: 
ARIMAX 
(3,1,0,x3) 

AR1 0.209 
(0.138) 

0.131 
(0.142) 

0.0379 
(0.146) 

0.217 
(0.144) 

AR2 − 0.240 
(0.135) +

− 0.232 
(0.135)+

− 0.227 
(0.130)+

− 0.230 
(0.149) 

AR3 − 0.232 
(0.136) +

− 0.195 
(0.138) 

− 0.294 
(0.140)* 

− 0.230 
(0.143) 

LCI Current – 0.513 
(0.166)** 

0.531 
(0.158)*** 

– 

LCI Outlook – – 0.634 
(0.222)** 

– 

CLPI – – – − 0.167 
(0.342) 

AIC − 105.62 − 112.33 − 117.9 − 90.25 
BIC − 97.89 – – – 
Log likelihood – 61.16 64.95 50.12 
Residual 

diagnostics:     
L-B test (lag 10) 3.896 5.447 7.316 2.709 
Res.2 L-B test (lag 
10) 

10.625 7.742 16.921 11.066 

J-B test 1.041 1.811 2.563 1.088 

+P < 0.10, *P < 0.05, **P < 0.01, ***P < 0.001, standard error in parenthesis. 
M1 is the base ARIMA model, M2 is the ARIMAX model with LCI current data, 
M3 is the ARIMAX model with both LCI current and 6 months outlook data, M4 
is the ARIMAX model with CLPI. 

Table 6 
ARIMA and ARIMAX model parameters for SCFI data.  

ARIMA(p,d,q) and 
ARIMAX(p,d,q,x) 
model parameters 

M1: 
ARIMA 
(3,1,0) 

M2: 
ARIMAX 
(3,1,0,x1) 

M3: 
ARIMAX 
(3,1,0,x1,x2) 

M4: 
ARIMAX 
(3,1,0,x3) 

AR1 − 0.146 
(0.129) 

− 0.188 
(0.128) 

− 0.191 
(0.128) 

− 0.154 
(0.135) 

AR2 − 0.224 
(0.124)+

− 0.244 
(0.123)* 

− 0.255 
(0.124)* 

− 0.241 
(0.131)+

AR3 − 0.369 
(0.125)** 

− 0.394 
(0.124)** 

− 0.399 
(0.124)** 

− 0.381 
(0.133)** 

LCI Current – 0.797 
(0.547) 

0.826 
(0.548) 

– 

LCI Outlook – – 0.386 
(0.773) 

– 

CLPI – – – − 0.605 
(1.164) 

AIC 19.56 19.56 21.31 24.19 
BIC 27.28 – – – 
Log likelihood – − 4.78 − 4.66 − 7.09 
Residual 

diagnostics:     
L-B test (lag 10) 4.059 5.412 5.817 3.590 
Res.2 L-B test (lag 
10) 

5.656 3.054 3.632 4.124 

J-B test 3.375 2.346 2.112 2.328 

+P < 0.10, *P < 0.05, **P < 0.01, ***P < 0.001. M1 is the base ARIMA model, 
M2 is the ARIMAX model with LCI current data, M3 is the ARIMAX model with 
both LCI current and 6 months outlook data, M4 is the ARIMAX model with 
CLPI. 
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strong indication that neither CPLI nor LCI follow an autoregressive 
process, and so panelists of these SPC indices may not necessarily look 
on trends of past developments when they make their assessment about 
present or very near future market activity. 

Furthermore, in Table 11, to benchmark our findings against factual 
data, two ARIMAX models using factual data as exogenous variables 
were estimated and compared their forecast performance with best 
models from Table 10. Among the ARIMAX models with factual data, 
one was estimated using total export volume in TEU from Far East (x4) 
and another using transport volume in TEUs for the FE to EU route (x5) 
published by CTS (2021) with 1 month lag. As can be seen in Table 11, 
overall, ARIMAX models with SPC indices outperforms models with 
factual data. 

5. Conclusions 

This study assess the performance of ARIMA, ARIMAX and VAR 
models integrating soft facts in form of measures about sentiments, 
perceptions and/or confidence about past, present and/or future market 
activity as exogenous variables to forecast CCFI and SCFI. CCFI and SCFI 
are well-established container freight rates indexes for the Far East to 
Northern Europe trade route. In extant literature, it is well established 
that ARIMA models perform well in forecasting container shipping 
freight rate (Munim & Schramm, 2017, 2020), despite it is a quite 
myopic sort of forecasting technique. 

This study shows that adopting an ARIMAX approach to incorporate 
such soft facts like LCI into ARIMA models greatly improves forecast 
performance compared to a conventional ARIMA model as the base case 
and we believe that this approach should be useful to forecast container 
freight rates on other trade lanes, too. Given that all VAR models were 
outperformed even by the base case ARIMA model with LCI as well as 
CPLI being statistically non-significant in M5, M6 and M7, it seems to be 

Table 7 
VAR model parameters for CCFI data.  

VAR(p) model 
parameters 

M5: VAR(2) M6: VAR(2) M7: VAR(2) 

Intercept 0.5657 (0.3860) 0.8739 (0.5428) 0.6883 (0.4263) 
CCFI1 1.1867 

(0.1661)*** 
1.2378 
(0.1774)*** 

1.179 (0.1547)*** 

CCFI2 − 0.2428 (0.1612) − 0.2484 (0.1742) − 0.2604 
(0.1536)+

CLPI1 – – 0.0383 (0.4300) 
CLPI2 – – 0.1664 (0.4280) 
LCI Current1 − 0.0608 (0.2206) − 0.1474 (0.2282) – 
LCI Current2 0.0157 (0.2112) 0.1369 (0.2264) – 
LCI Outlook1 – − 0.4098 (0.3193) – 
LCI Outlook2 – 0.2236 (0.3054) – 
HQ (2) − 1.028838e+01 − 1.624501e+01 − 1.184674e+01 
SC (2) − 9.973879e+00 − 1.561601e+01 − 1.150848e+01 
AIC − 522.133 − 835.496 − 516.794 
BIC − 503.013 − 795.344 − 498.728 
Residual 

diagnostics:    
L-B test (lag 
10) 

18.708* 19.387* 13.403 

Res.2 L-B test 
(lag 10) 

17.052+ 14.370 9.963 

J-B test 0.180 0.456 0.238 
Result of 

Johansen co- 
integration test 
at 5% 
significance 
level 

No co-integrating 
equation exists. 

No co-integrating 
equation exists. 

No co-integrating 
equation exists. 

+P < 0.10, *P < 0.05, **P < 0.01, ***P < 0.001. M5 is considering LCI current as 
exogenous variable, M6 with both LCI current and 6 months outlook as exoge
nous variable, and M7 with CLPI as exogenous variable. 

Table 8 
VAR model parameters for SCFI data.  

VAR(p) model 
parameters 

M5: VAR(2) M6: VAR(2) M7: VAR(2) 

Intercept 1.6301 
(1.2238) 

2.5961 (1.8305) 2.2160 
(1.0925)* 

SCFI1 0.8219 
(0.1528)*** 

0.8292 (0.1528)*** 0.7964 
(0.1564)*** 

SCFI2 − 0.0718 
(0.1582) 

− 0.0103 (0.1616) − 0.0941 
(0.1544) 

CLPI1 – – 1.6436 
(1.4264) 

CLPI2 – – − 1.2560 
(1.4309) 

LCI Current1 − 0.2776 
(0.7114) 

− 0.5331 (0.7228) – 

LCI Current2 0.2902 
(0.6511) 

0.7067 (0.6998) – 

LCI Outlook1 – − 1.6232 (1.0507) – 
LCI Outlook2 – 1.1206 (0.9986) – 
HQ (2) − 7.434 − 1.352441e+01 − 8.785 
SC (2) − 7.120 − 1.289541e+01 − 8.447 
AIC − 396.707 − 707.247 − 408.516 
BIC − 377.587 − 667.095 − 390.449 
Residual diagnostics:    
L-B test (lag 10) 8.550 8.721 7.831 
Res.2 L-B test (lag 10) 8.609 7.214 6.692 
J-B test 1.987 0.353 0.806 
Result of Johansen 

co-integration test 
at 5% significance 
level 

No co- 
integrating 
equation exists. 

No co-integrating 
equation exists. 

No co- 
integrating 
equation exists. 

+P < 0.10, *P < 0.05, **P < 0.01, ***P < 0.001. M5 is considering LCI current as 
exogenous variable, M6 with both LCI current and 6 months outlook data as 
exogenous variables, and M7 with CLPI as exogenous variable. 

Table 9 
In-sample forecast performance.  

Forecast model CCFI: FE-EU SCFI: FE-EU Average 

M1 ARIMA(3,1,0) ARIMA(3,1,0)  
RMSE 0.078 0.267 0.173 
MAPE 0.911 2.849 1.880 
MASE 0.919 0.808 0.864 

M2 ARIMAX(3,1,0,x1) ARIMAX(3,1,0,x1)  
RMSE 0.072 0.262 0.167 
MAPE 0.845 2.871 1.858 
MASE 0.852 0.814 0.833 

M3 ARIMAX(3,1,0,x1,x2) ARIMAX(3,1,0,x1,x2)  
RMSE 0.067 0.261 0.164 
MAPE 0.794 2.876 1.835 
MASE 0.803 0.816 0.810 

M4 ARIMAX(3,1,0,x3) ARIMAX(3,1,0,x3)  
RMSE 0.080 0.278 0.179 
MAPE 0.936 3.069 2.003 
MASE 0.902 0.803 0.853 

M5 VAR (2) VAR (2)  
RMSE 0.083 0.281 0.182 
MAPE 0.949 3.328 2.139 
MASE 0.958 0.945 0.952 

M6 VAR (2) VAR (2)  
RMSE 0.081 0.273 0.177 
MAPE 0.947 3.350 2.149 
MASE 0.957 0.957 0.957 

M7 VAR (2) VAR (2)  
RMSE 0.086 0.289 0.188 
MAPE 0.972 3.439 2.206 
MASE 0.940 0.903 0.922 

M1 is the base case ARIMA model, M2 is the ARIMAX model with LCI current 
data, M3 is the ARIMAX model with both LCI current and 6 months outlook data, 
M4 is the ARIMAX model with CLPI; VAR models: M5 is considering LCI current 
as exogenous variable, M6 with both LCI current and 6 months outlook data as 
exogenous variables, and Model 7 with CLPI as exogenous variable. 
Bold indicates best performance. 
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that panelists do not necessarily look on the past when they assess 

market activity in the future. Moreover, M1 including the two LCI in
dexes from Transport Intelligence assessing current volume develop
ment and outlook 6 months ahead on trade lane level delivered superior 
forecast performance. 

The findings of this study have significant implications for the 
shipping business literature. It provides evidence on the relevance of soft 
facts as forms of sentiments, perceptions and/or confidence. Using soft 
facts improve overall forecasting performance of freight rates in com
parison to univariate modelling. Hence, such indices should be 
continued as a standard practice. As the study mainly estimated next- 
month freight rate forecasts in a recursive horizon, shipowners and 
cargo owners can implement the best performing models when fore
casting freight rates for decision making within a month horizon. CCFI 
and SCFI indexes are often utilized in forward freight agreements and 
the party with improved forecast are likely to have minimal risk. 

Unfortunately, no data is available after August 2017 and probably a 
simple reason for this is that the data sampling procedure was not in line 
with the General Data Protection Regulation (EU) 2016/679. However, 
given the ongoing trend of digitization and digitalization of the maritime 
shipping industry, it cannot denied that future research employing real- 
time data originating from container booking platforms or terminal 
operation systems as well as a constant tracking of container vessels via 
their automatic identification system (AIS) transceivers or container 
shipment movements via their container identification system according 
to ISO 6346:1995 may help to improve further predictability of 
container shipping freight rates. In addition, due to growing implication 
of container freight indices in hedging shipping risks, future studies 
should analyze not only return but also volatility of container freight 
rates. 
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Appendix A. Indices of sentiment, perception and confidence  

Name/abbreviation Initiator Data sampling approach Measures raised Scope of 
measures 

Periodicity Horizon Link 

BVL Logistics 
Indicator (LI) 

German Logistics 
Association (BVL), 
ifo Institute 

Panel of 4000 companies in 
the transport, logistics and 
forwarding, manufacturing, 
wholesale or retail business 

Business sentiment Service 
providers vs 
shippers in 
Germany 

Monthly since 
2005 

Current and 
next 6 
months 

BVL 
(2021) 

(continued on next page) 

Table 10 
Out-sample forecast performance.  

Forecast model CCFI: FE-EU SCFI: FE-EU Average 

M1 ARIMA(3,1,0) ARIMA(3,1,0)  
RMSE 0.071 0.049 0.060 
MAPE 0.704 0.616 0.660 
MASE 0.732 0.198 0.465 

M2 ARIMAX(3,1,0,x1) ARIMAX(3,1,0,x1)  
RMSE 0.047 0.078 0.063 
MAPE 0.553 0.841 0.697 
MASE 0.574 0.271 0.423 

M3 ARIMAX(3,1,0,x1,x2) ARIMAX(3,1,0,x1,x2)  
RMSE 0.051 0.082 0.067 
MAPE 0.612 0.845 0.729 
MASE 0.635 0.272 0.454 

M4 ARIMAX(3,1,0,x3) ARIMAX(3,1,0,x3)  
RMSE 0.068 0.051 0.060 
MAPE 0.691 0.559 0.625 
MASE 0.718 0.179 0.449 

M5 VAR (2) VAR (2)  
RMSE 0.072 0.057 0.065 
MAPE 0.792 0.747 0.770 
MASE 0.920 0.241 0.581 

M6 VAR (2) VAR (2)  
RMSE 0.083 0.120 0.102 
MAPE 0.812 1.483 1.148 
MASE 1.081 0.478 0.780 

M7 VAR (2) VAR (2)  
RMSE 0.065 0.069 0.067 
MAPE 0.741 0.614 0.678 
MASE 0.743 0.187 0.465 

M1 is the base case ARIMA model, M2 is the ARIMAX model with LCI current 
data, M3 is the ARIMAX model with both LCI current and 6 months outlook data, 
M4 is the ARIMAX model with CLPI; VAR models: M5 is considering LCI current 
as exogenous variable, M6 with both LCI current and 6 months outlook data as 
exogenous variables, and M7 with CLPI as exogenous variable. 
Bold indicates best performance. 

Table 11 
Selected out-sample forecast performance comparison.  

Forecast model CCFI: FE-EU SCFI: FE-EU Average 

Best model from Table 10 ARIMA(3,1,0, 
x1) 

ARIMA(3,1,0, 
x3)  

RMSE 0.047 0.051 0.049 
MAPE 0.553 0.559 0.556 
MASE 0.574 0.179 0.376 

ARIMAX with far east export 
volume 

ARIMA(3,1,0, 
x4) 

ARIMA(3,1,0, 
x4)  

RMSE 0.071 0.060 0.066 
MAPE 0.747 0.644 0.696 
MASE 0.777 0.207 0.492 

ARIMAX with FE-EU transp. 
volume 

ARIMA(3,1,0, 
x5) 

ARIMA(3,1,0, 
x5)  

RMSE 0.078 0.047 0.063 
MAPE 0.805 0.621 0.713 
MASE 0.838 0.199 0.519 

Bold indicates best performance. 
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(continued ) 

Name/abbreviation Initiator Data sampling approach Measures raised Scope of 
measures 

Periodicity Horizon Link 

China Logistics 
Prosperity Index 
(CLPI) 

Fung Business 
Intelligence (FBIC) 

Survey among a 
representative panel of 
logistics companies 

Business volume but 
further KPIs reported 

Logistics sector 
in China 

Monthly since 
2013 

Previous 
and current 
month 

FBIC 
(2021) 

European Freight 
Forwarding Index 
(EFFI) 

Danske Bank 
Markets 

Survey among a sample of 
European freight forwarding 
companies 

Volumes present in 
comparison to 2 months 
before/after 

Sea/air/road 
mode of 
transport, 
several 
European 
countries 

Monthly since 
2009 

Current and 
next 2 
months 

n.a. 

Logistics Manager’s 
Index (LMI) 

ASU, Rudgers, PSU, 
UNR, CSU in 
conjunction with 
CSCMP 

Open survey among North 
American logistics executives 

Inventory, warehousing, 
transportation 

Shippers from 
USA/North 
America 

Bimonthly since 
2016, monthly 
since 2018 

Next 12 
months 

ASU 
(2021) 

Prognos/ZEW 
Transportmarkt 
Barometer (TMB) 

Centre for European 
Economic Research 
(ZEW), Prognos 

Panel of 200–300 experts of 
shippers and transport 
industry from Germany 

Development of transport 
volume and prices 

Road/rail/sea/ 
air mode of 
transport at 
Germany 

Quarterly Q2/ 
2005–Q2/2016 

Next 6 
months 

ZEW 
(2021) 

SCI Barometer (SCI) SCI Consulting Panel survey of about 200 
representative companies 
from logistics sector 

Business climate, 
(perceived) price 
development, and other 
questions 

Logistics sector 
in Germany 

Monthly since 06/ 
2003 

Last, 
current and 
next 3 
months 

SCI 
(2021) 

Shanghai Shipping 
Prosperity Index 
(CSPI) 

Shanghai 
International 
Shipping Institute 
(SISI) 

Panel of executives from the 
maritime shipping industry 
in China 

Judgement of current 
production and operation 
of their companies and 
prediction of forthcoming 
development 

Tanker/bulk/ 
container as well 
as ports sector 

Quarterly since 
Q4/2009 (but 
data collection on 
monthly basis) 

Current and 
next month 

SISI 
(2021) 

Stifel/TI Logistics 
Confidence Index 
(LCI) 

Stifel, now 
Transport 
Intelligence (TI) 

Open accessible survey Volume development on 
trade lanes from/to Europe 
to/from Asia and North 
America 

Air/Sea 
transport on 
certain trade 
lanes 

Monthly 02/ 
2012–08/2017 

Current and 
in 6 months 

TI 
(2021) 

Shipping Confidence 
Survey (SCS) 

Moore Stephens 
(now BDO), backed 
by UK Chamber of 
Shipping 

Panel of managers from the 
maritime industry with 
worldwide coverage, but 
respondents mostly from UK/ 
Europe 

Perception about business 
KPI, major investments, 
and development of freight 
rates 

Tanker/bulk/ 
container sector 

Quarterly since 
05/2008 

Next 12 
months 

BDO 
(2021)  

Appendix B. Forecast accuracy measures 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

t=1
(dt − yt)

2

√

(4)  

MAPE =
100

n
∑n

t=1

⃒
⃒
⃒
⃒
(dt − yt)

dt

⃒
⃒
⃒
⃒ (5)  

MASE = mean

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

et

1
n− 1

∑n

t=2

⃒
⃒
⃒
⃒
⃒
yt − yt− 1

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(6) 

Here, et is the forecast error calculated as(dt − yt), dt is the actual container freight rate at time t, yt is the forecasted freight rate at time t, n is the 
total number of observations and yt − yt− 1 is the forecast error of the naïve forecast. 

Appendix C. ACF and PACF diagrams 
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Fig. B1. CCFI autocorrelation analysis.   
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Fig. B2. SCFI autocorrelation analysis.  
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