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Abstract
Optimal foraging models predict that individual animals will optimize net energy gain 
by intensifying forage activity and/or reducing forage energy cost. Then, the free 
distribution model predicts an animal's distribution in a patchy landscape will match 
the distribution of the resources. If not modified by other factors, such patterns may 
be expected to be particularly explicit in variable and extreme, forage-limited, and 
patchy environments, notably alpine and Arctic environments during winter. The 
large ungulate wild mountain reindeer (Rangifer tarandus tarandus) surviving in such 
environments is used as a model during the forage-limited winter season. The largest 
wild reindeer area in Western Europe (Hardangervidda, 8130 km2) is actively man-
aged to sustain 10,000–12,000 wild reindeer. Since 2001, 104 different individuals 
have been GPS-tracked at 3-hr intervals. In winter, mountain reindeer may either 
choose to seek out and forage in patchy snow-free habitats, typically on top of wind-
blown ridges, or use energy-demanding digging through the snow to reach ground 
forage (cratering). We use late April satellite data from Landsat 5 and 8 (30 × 30 m), 
airborne laser scanning subsampling (processed to 1 × 1 m grid), and topographic 
information (1 m resolution) derived from digital aerial photographs (0.25 × 0.25 m 
resolution) to delineate snow-free patches, constituting less than 694 km2. By over-
laying recorded wild reindeer GPS positions winters 2001–2017 (188,942 positions), 
we document a strong positive selection for snow-free patches, which were used 
about four times more frequently than expected from a “random walk” model. On a 
daily basis, the preference for snow-free areas was slightly stronger in the evenings. 
In the sustainable management of wild mountain reindeer, the area of snow-free 
patches is an important predictor of winter forage availability and important winter 
source areas. It may be derived from remote sensing data.
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1  | INTRODUC TION

In a world of limited foraging resources, animals may enhance 
their fitness by intensified foraging to increase energy gain and/
or reduce foraging cost. Optimal foraging theory, with focus on 
patchy environments, predicts that foraging behaviors optimize 
net energy gain, the resulting gain per unit food exceeding the loss 
(MacArthur & Pianka, 1966; Perry & Pianka, 1997; Pyke, 1984). As 
a corollary, the ideal free distribution (IFD) model predicts that the 
distribution of an organism between resource sites should match 
the distribution of the resources (Fretwell & Lucas,  1970; Křivan 
et al., 2008; Sutherland, 1983). The distribution of organisms may 
however be less extreme than the distribution of the resource, that 
is, modified by organism discrimination constraints, competitive 
interactions, competitive asymmetries, and travel between sites 
(Abrahams, 1986; Calsbeek & Sinervo, 2002; Kennedy & Gray, 1993) 
or simply haphazard choices, and shift toward an ideal despotic 
distribution. The presence of at least elements of these theories in 
animal distributions and behaviors have been demonstrated across 
a variety of animal groups (DeAngelis, 2018; Perry & Pianka, 1997; 
Pyke, 1984), and as may be expected, the theories have diversified 
over time with empirical data from diverse groups and environments 
(Arditi & Dacorogna, 1988; Robinson & Wilson, 1998; Ward, 1992). 
Fluctuating and extreme environments present particular chal-
lenges: Environmental persistence should profoundly influence be-
haviors when animals have to deal with such variability and maximize 
their survival (Higginson et al., 2012).

High-latitude alpine and Arctic ecosystems are highly variable and 
harsh environments, across seasons and years, with low productivity 
and patchy foraging habitats, particularly during the extremely long 
winter season. A surprisingly large animal that survives in these envi-
ronments is the cold-adapted reindeer Rangifer tarandus L. (caribou in 
North America), the most widely distributed mammalian herbivore in 
these northern ecosystems (Skogland,  1983, 1984). Reindeer live in 
herds, are almost constantly in motion, graze extensively, and exhibit 
some of the longest ungulate migrations known, because of the typi-
cally low forage production and patchy distribution of high-quality veg-
etation resources in high-altitude environments (Falldorf et al., 2014; 
Hansen et al., 2009; Johnson et al., 2001). Although summer conditions 
and opportunities for fat storage may set preconditions, it is the ex-
treme winter which is the typically critical survival period, when forag-
ing resources are patchy and limited, depending on snow and ice cover, 
in particular for the mountain reindeer (Rangifer tarandus tarandus L.). 
Reindeer movements tend to be less and more regular than during 
other seasons (Strand et al., 2006), and potential diel rhythmicity may 
be attenuated (Arnold et al., 2018; Loe et al., 2007). Many reindeer pop-
ulations live in environments where they need to take the cost of dig-
ging in situ feeding craters in the snow (Fancy & White, 1985), typically 
to a depth 50–70 cm or less, depending on snow conditions (Fancy & 
White, 1985; LaPerriere & Lent, 1977; Skogland, 1978), to reach plant 
cover (Ferguson et al., 2001; Hansen et al., 2010; Kumpula et al., 2004). 
Reindeer try to reduce energetic cost when digging for food in winter 
by avoiding areas with deep or hard snow (Skogland, 1984). Here, we 

explore if reindeer may extend this behavior into an alternative for-
aging strategy. In particular in exposed mountain areas, reindeer may 
choose to travel, taking the relatively low energetic cost of locomotion, 
depending on snow conditions (Fancy & White, 1987), and preferably 
forage on exposed, wind-blown, snow-free habitats on elevated ridges. 
Such habitats favor slow-growing ground lichen in particular (Odland & 
Munkejord, 2008b; Odland et al., 2018). Therefore, we hypothesize that 
mountain reindeer in winter exhibit a strong preference for snow-free 
areas, clustered within relatively short distances. If so, such areas may 
be an important predictor of reindeer area use and carrying capacity 
in winter. Snow-free areas may be identified from remote sensing data 
(e. g., Härer et al., 2018) and may constitute important source habitats 
to be sustained in reindeer management.

Here, we combine accurate GPS positioning with remote sens-
ing techniques to test the hypothesis that wild reindeer will, for en-
ergetic reasons, select to forage on snow-free areas and according 
to the IFD theory be more frequently associated with snow-free 
patches than alternative areas.

2  | METHODS AND MATERIAL S

2.1 | Study area

The alpine Hardangervidda (about 10,000 km2, mostly 1,100–1,300 
meter above sea level) in southern Norway is the largest mountain 
plateau in Europe and harbors the last remaining wild mountain 
reindeer in Western Europe (Figure  1) (Gaare & Skogland,  1975; 
Østbye et  al.,  1975; Wielgolasky & Kjelvik,  1973). Although other 
wild reindeer populations are fragmented because of anthropo-
genic activities, the Hardangervidda population still maintains a 
near-natural seasonal migration pattern, largely determined by for-
aging resource distribution (Falldorf,  2013; Nilsen & Strand,  2017; 
Strand, 2009; Strand et al., 2006). A dominant west (oceanic)–east 
(continental) climate gradient, geology, and topography combine to 
generate strong vegetation mosaic patterns. By altitude, the low al-
pine zone stretches from the tree line (ca. 1,100 m.a.s.l.) and about 
300 m upwards. Areas higher than ca. 1,400 m.a.s.l. belong to the 
mid-alpine zone (Moen, 1999). The vegetation is dominated by per-
ennial species with less than 10% of therophytes. Of the approxi-
mately 130 vascular species found in the low-medium alpine areas, 
hemicryptophytes make up more than 50%. Total live biomass of 
vascular plants and cryptogams may be 300–700  g  m−2. Although 
Hardangervidda is classified as tundra, there is no permafrost, one 
reason being the stable and relatively thick snow cover during the 
long winter (Østbye et  al.,  1975). Typically, maximum snow depth 
(expressed as mm water equivalent) may decrease from more than 
2,000 mm in the west to 100–250 mm in the east (http://www.senor​
ge.no/index.html?p=senor​geny&st=snow), but with substantial var-
iation, depending mainly on topography and wind. Snow is blown 
away from exposed sites and redistributed to terrain depressions 
and lee-sides. The relatively stable prevailing wind directions gener-
ate larger-scale snow distribution patterns (Sturm & Wagner, 2010), 

http://www.senorge.no/index.html?p=senorgeny&st=snow
http://www.senorge.no/index.html?p=senorgeny&st=snow
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although snow precipitation and thickness may vary from year to 
year. Together with low temperatures, this is the main factor dic-
tating development of vegetation communities in alpine areas. On 
oligotrophic, dry, wind-blown ridges maximum snow cover is often 
less than 50  cm. Such areas are typically dominated by lichens 
(Dahl, 1956) and known as lichen heaths. Lichen-dominated heaths 
mainly develop on soil more than ca. 15 cm deep and with soil frost 
sum higher than 200, which is typical for snow-free patches on 
ridges (Odland et al., 2018). The average lichen biomass of such sites 
may vary from 200–800 gm−2 or more in ungrazed areas to below 
100 gm−2 or less in grazed areas (Odland et al., 2014). Lichen con-
stitute the most important forage for wild mountain reindeer during 
winter on Hardangervidda (Falldorf, 2013; Gaare & Skogland, 1975; 
Skogland, 1984). With declining altitude, vegetation grades to scat-
tered graminoids and dwarf shrubs and then to areas with more, 
higher vegetation, which parallels the snow-layer duration gradient 
(Odland & Munkejord, 2008a; Odland et al., 2014).

Natural predators have been extinct from the area since late 
1800s, with the exception of golden eagle (Aquila chrysaetos) and an 
occasional wolverine (Gulo gulo), and the population is regulated by 
hunting, with historically varying population densities (Bjerketvedt 

et al., 2014). In winter, the reindeer migrate to the central and eastern 
areas with less snow precipitation (Figure 1) (Kastdalen, 2011; Strand 
et al., 2006). However, two tongues of land, in total area 656 km2 in 
the northern and eastern parts of Hardangervidda (Figure 1), are not 
or rarely used in winter by reindeer, due to the presence of roads and 
cabins which act as semi-barriers. These areas were excluded from 
the analyses. Since 2001, reindeer on Hardangervidda have been 
fitted with GPS transmitters, currently providing one of the largest 
datasets of ungulate positioning (Strand et al., 2015).

2.2 | Reindeer positioning

GPS tracking of reindeer on the Hardangervidda was conducted 
2001-2017, with 8–10 females being marked annually (no mark-
ing in 2006) (Strand et  al.,  2006, 2015). Permits for capture and 
sampling and including ethical considerations were acquired from 
the Norwegian Food Safety Authority (FOTS: ID 15116, license # 
19/20935). Females are chosen because their behavior is more rep-
resentative of the herd and translates more directly into population 
demography (Strand, 2009; Strand et al., 2015). Using a helicopter, 

F I G U R E  1   Spatial distribution of GPS mountain reindeer winter (December-April) positions (n = 188,942) 2001–2017 on Hardangervidda, 
south-central Norway, with a west–east climate gradient from oceanic to continental, that is, high to low precipitation. Solid line delineate 
the wild reindeer area (8,130 km2). Inset: location in Norway
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groups of reindeer were identified and an arbitrarily selected female 
was immobilized with medetomidin/ketamine 12/120  mg 3  ml ar-
rows fired from a Danarms℗ CO2 air rifle into the animal's thigh. 
Blood, hair, and tissue samples were collected and a radio/GPS 
unit attached to a drop-off collar was fitted. Temperature, pulse, 
respiration, and blood O2 were monitored during the operation. 
Constriction was avoided by fitting collars with four (male) finger-
widths of slack and the presence of a cotton weak zone. Although 
designed to drop off in response to a radio signal, most collars 
dropped off spontaneously within two years. A position signal was 
sent every 3 hr for up to 3 years (the battery life). The position time 
series used here (2001–2017) consisted of 188 942 winter positions 
(December-April) out of a total of 609 350 positions throughout the 
years from 104 reindeer (Figure 1) (for details see Strand et al., 2006, 
2011, 2015). Frequent signals facilitated analysis of potential diurnal 
patterns in spatial positions.

2.3 | Analyses

In an use-versus-available study design (Manly et al., 2002), we ex-
plored if availability of snow-free areas influenced reindeer position 
choice.

2.3.1 | Geomatics analyses

Snow-free patches were first identified and delineated by using sat-
ellite data from Landsat 5 and 8 with 30 × 30 m resolution. Within 
the time window late April, when snow cover typically is most ex-
tensive (Kohler et  al.,  2006; Lawrence & Slater,  2010), we found 
six acquisitions covering the whole study area and with close to 
cloud-free conditions (0%–4% clouds). Based on daily estimates of 
snow depth in a 1 km grid (http://www.senor​ge.no/about​Xgeo.html) 
(Saloranta,  2012; Strand et  al.,  2006), we estimated annual mean 
snow depths (at April 25th) for the central study area (Figure 2). Two 

years (2005, 2018) had snow depths close to normal, two years less 
than normal (2009, 2019), and two years more than normal (2007, 
2015) (Figure 2). On average, they likely represent the typical snow 
situation, with the six used years having the same mean snow depth 
as the 30 years average, that is, 131 cm on 25 April.

Initially, we used the snow mask produced by the Unites States 
Geological Survey (USGS) and included in the Landsat surface re-
flectance products, to represent snow-free areas within the study 
area. For control, outputs were compared with fieldwork and inde-
pendent data provided by high-resolution airborne laser scanning 
(ALS) subsampling within the study area (processed to 1 × 1 m grid, 
see below), and visual inspection of plant communities derived from 
4-channel, 25 cm resolution aerial photographs (community struc-
ture derived from an adjacent southern mountain area (Figures 1, 3; 
Brattefjell-Vindeggen) (Hjeltnes et al., 2017; Lunetta & Lyon, 2004; 
Paul et al., 2016)). ALS data were from a subsample consisting of six 
500 m wide, uniformly spaced, east–west transects (Figure 3), which 
were flown in September 2008 (ground level) and April (snow sur-
face) 2008 and 2009 (Melvold & Skaugen, 2017).

The global USGS snow mask, based on a threshold value from 
spectral bands, did not identify snow-free areas sufficiently well 
for our purpose, a result also seen for other European areas (Härer 
et al., 2018). Therefore, we developed a local snow-fraction model 
based on the 1  ×  1  m grid ALS data with each pixel classified as 
snow-free or snow-covered and align these with the corresponding 
30 m Landsat grid to derive the aggregate snow-fraction for each 
30 × 30 m pixel within the subsampled transects, and ranging from 
0, no snow cover 1 × 1 m ALS pixel within the 30 m Landsat unit, 
to 1, all ALS pixels snow-covered. The ALS intensity image from 
the 2009 data (acquired April 21–24, 2008 acquisitions were more 
spread out in time, April 3–21, and with more snow than normal, 
Figure 2), indicated a snow depth threshold value of 35 cm or less for 
classifying a 1 × 1 m ALS pixel as snow-free, as such pixels were iden-
tified as “black,” that is, snow-free. To predict snow cover in these 
subsampled 30 × 30 m Landsat pixels from Landsat data, we used 
the mean value of the Normalized-Difference Snow Index (NDSI) 

F I G U R E  2   Snow depths (cm) on central Hardangervidda 1980–2019. The 6 years with dark color provided cloud-free (<4%) Landsat 
satellite images for analysis of snow-free patches

http://www.senorge.no/aboutXgeo.html
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across the six available Landsat scenes. The mean value showed 
a stronger correlation to the ALS-based snow-fraction estimates 
than any of the single scenes (2009 data; Pearson correlation co-
efficient R  =  −0.72). From the six Landsat scenes combined with 
a 1 m digital elevation model (DEM) (Hingee et al., 2016), we also 
derived the geomorphometric indices Topographic Position Index 
(TPI) (Newman et al., 2018; window size 30 m), slope, and hill-shade 
(depending on illumination angle and direction), averaged to fit the 
Landsat 30 meter grid size. However, only TPI was kept as the sec-
ond predictor to model the response snow cover. TPI had the higher 
correlation to the response (R = −0.41). Slope and hill-shade did not 
improve the model and were dropped from further analyses. Based 
on the calibrated NDSI and TPI predictors, we modeled snow cover 
for all Landsat pixels across the study area. Because of a curvilin-
ear relationship for both the NDSI and TPI predictors with the ALS-
estimated snow-free pixel fraction, and a threshold effect for the 
TPI, models were developed using flexible algorithms like generalized 
additive models (GAM) (Wood, 2018) and the machine learning algo-
rithms Cubist (Kuhn et al., 2012), Xtreme Gradient boosting (Chen 

et  al.,  2015), and Random forest (Breiman,  2001), included in the 
R package Caret (Kuhn & Johnson, 2013). To avoid using reference 
data highly skewed toward snow-covered areas, random selection 
was used to extract approximately the same number of data points 
for each group of 10% percent increase in fraction of snow cover. 
Model performances were evaluated with five-fold cross-validation 
repeated five times (25 resamples), and for all models, the R² values 
were between 65.5% and 66.6%. To increase model robustness, we 
averaged results across the two best models (Cubist and Gradient). 
The snow-fraction model also facilitated alternative scenarios with 
increasingly strict threshold values for classifying an area as “snow-
free,” and for relevant comparisons, we used 80%, 50%, and 30% 
coverage of 1 × 1 m snow-free ALS pixels within a Landsat 30 m grid 
cell to consider it as snow-free.

Manual control with a Landsat-based vegetation map (Mossing 
et al., 2009) indicated that a few, large, low-altitude patches along 
the outer south-east margins of the reindeer area, and not, or rarely, 
used by reindeer (Figure 1), were misclassified as snow-free because 
of the light signal from the stems of the dense tree line birch forest. 

F I G U R E  3   Spatial distribution of delineated snow-free patches (red color, defined as 50% or more snow-free areas within a pixel, 
n = 771,180) on Hardangervidda, south-central Norway, based on Landsat satellite images (30 × 30 m resolution) and the Normalized-
Difference Snow Index and Topographic Position Index, modeled with data from ALS subsampling (1 × 1 m grid within the blue 500 m wide 
transects). Dotted lines indicate two areas not used by reindeer and not included in the analyses. Solid line delineate the wild reindeer area
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These patches, constituting 6.9% of the snow-free patch area, were 
excluded from analyses.

2.4 | Statistical analyses

Spatial data for available habitat, that is, snow-free areas and 
habitat use by reindeer, that is, GPS positions, were combined 
and analyzed using the software ArcPro 2.5 (ESRI,  2011) for 
spatial overlay data and R v. 3.5 (R Core Team,  2014) for fur-
ther statistical analyses, in particular the “raster” package 
(Hijmans, 2020).). The map of snow-free areas was overlaid with 
reindeer GPS positions during winter (December–April) and ana-
lyzed for two scenarios with contrasting spatial resolution. First, 
snow-free areas, as estimated from Landsat data, were over-
laid with all GPS positions in the reindeer area. Second, from 
the ALS subsample within transects we explored potential daily 
differences in habitat use, comparing day (sunrise +1 hr. to sun-
set −1 hr.), evening (sunset ±1 hr.), night (sunset +1hr. to sunrise 
−1  hr.), and morning (sunrise ±1  hr.) positions. We also devel-
oped Resource Selection Probability Functions (RSPF) sensu 
Lele (2009) and Lele et  al.  (2013) for more detailed analysis of 
biologically plausible predictors of reindeer positions, using the 
R package ResourceSelection (logistic model, cloglog link) (Lele 
et al., 2019). In addition to estimating the binary variable snow-
free areas (or not), the ALS data also facilitated estimation of 
additional, continuous predictor variables. Plausible predictors 
explored were snow depth (SNOW; cm), distance to snow-free 
areas (DIST; within ALS transects: m to nearest median-sized 
snow-free area (1,800 m2), else: m to 30 × 30 m pixel more than 
30 % snow-free as estimated by Landsat data), lichen cover 
(LICHEN; %, 30  ×  30  m pixel) (Mossing et  al.,  2009), elevation 
(DEM and DEM2, quadratic term to reflect that reindeer may pre-
fer areas located within the middle of the used elevation range), 
TPI (30  ×  30  m pixel, calculated from a DEM with 1  m resolu-
tion and 30 m window size) and X-coordinate (XCOORD; proxy 
for east–west climate gradient). Predictors were standardized 
before analyses, by subtracting the mean and dividing by the 
standard deviation (Schielzeth, 2010). Availability was modeled 
by 34,202 randomly selected 1 × 1 m ALS pixels within transects 
(all pixels numbered, random numbers selected). Reindeer had 
used 3 653 such pixels. Because GPS positioning accuracy may 
deviate by a few meters, but, if present, no more than 5–6  m 
(Falldorf,  2013; Jung et  al.,  2018), we ran analyses with a 5  m 
buffer zone for each GPS position, selecting the 1  ×  1  m pixel 
with the lowest snow depth within that buffer zone as animal 
position. Akaike information criterion (AIC) was used to com-
pare the relative fit of the different models tested (Akaike, 1974; 
Burnham & Anderson, 2002), exercising caution in interpretation 
if models included additional parameters, but were within 2 AIC 
units of the top-ranking model (Arnold, 2010). Predictors used in 
the analysis were not strongly correlated (R < 0.38 and variance 
inflation factor < 2) (Harrison et al., 2018).

3  | RESULTS

The total area of the Hardangervidda reindeer area considered avail-
able to reindeer is 7474 km2, excluding one northern and one eastern 
land tongue not, or rarely, used by reindeer (Figure 1).

Snow-free areas for the alternative threshold values of 80 %, 
50 %, and 30 % (snow-free fraction per 30 × 30 m Landsat pixel), 
were estimated to cover, respectively 107  km² (1.4 %), 694 km² 
(9.4 %), and 1,344  km² (18.0 %) (Figures  2, 3) of the total area 
in a winter with “average” snow conditions (Figure  2). The size 
distribution of these snow-free areas (Figures  3, 4) for the two 
stricter thresholds (80 %: n  =  37,344; 50 %: n  =  110,113) was 
skewed with a strong dominance of small, clustered patches 
(median  =  1,800  m2) (Figure  4). Between-patch distance was 
typically short (median  =  90  m, 64 % ≤ 100  m) (Figure  4). On 
a large spatial scale, the reindeer winter GPS positions generally 
reflected the overall distribution of snow-free or near snow-
free areas (Figures  1, 3, 5). Across the winters, mountain rein-
deer exhibit a strong preference for snow-free areas. In total, 
56,378 reindeer positions were on snow-free areas as estimated 
by remote sensing, and with a 50 % threshold value, that is, 

F I G U R E  4   Inter-patch Euclidean distances (top), and size 
distribution of delineated snow-free patches (bottom) on 
Hardangervidda, for 50 % or more snow-free areas within a 
Landsat satellite image pixel (30 m × 30 m resolution), controlled 
by ALS subsampling (1 × 1 m grid) and digital aerial photographs 
(0.25 × 0.25 m resolution)
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(56,378/188,942)*100 = 29.8 %, which is three times more than 
expected if reindeer used winter areas proportionately (17,383 
positions expected; Odds Ratio  =  4.20 (95% CI 4.1206–4.2755, 
p  <  .0001)). For the stricter analysis based on an 80 % thresh-
old value, the preference for snow-free patches was even stron-
ger. An estimated 11,597 reindeer positions were on snow-free 
patches, which is more than four times more than expected if 
reindeer used these winter areas proportionately (2,645 positions 
expected; Odds Ratio = 4.61 (95% CI 4.4132–4.8069, p < .0001)). 
Correspondingly, for the more relaxed 30 % threshold value, the 
preference was not as strong, but still clearly significant (87,340 
reindeer positions, that is, (87,340/188,942)*100 = 46.2 %, and 
2.6 times more than expected by proportionate use (33,976 po-
sitions expected; Odds Ratio  =  3.92 (95% CI 3.8628–3.9791, 
p < .0001)).

The detailed ALS and RSPF analyses corroborated this pattern. 
Within the six 500  m wide ALS transects, GPS-positioned wild 
mountain reindeer exhibited a strong probability of selecting no or 

low-snow depth areas (Figure  5), with a rapidly increasing prefer-
ence for snow depths less than 1 m, and shorter distances to snow-
free areas. On a finer temporal scale, the preference for snow-free 
patches was somewhat stronger in the evenings (sunset ±1  hr.), 
particularly for the 80 % threshold (70 % more observations than 
expected; 50 % threshold: 26 % more observations; 30 % threshold: 
20 % more observations). No clear pattern emerged for other times 
of day or night. In all tested Resource Selection Probability Function 
(RSPF) models (Table  1), snow depth and closeness to snow-free 
areas were strongly significant predictors (p < .0001). The best and 
full RSPF model (Table 1), included distance to snow-free area (co-
efficient  =  −0.46 (17 %), SE  =  0.040, p  <  .0001) and snow depth 
(coefficient = −0.35 (13 %), SE = 0.041, p <  .0001), together with 
X-coordinate (coefficient  =  0.77 (29 %), SE  =  0.0030, p  <  .0001), 
elevation2 (coefficient = −0.31 (11 %), SE = 0.025, p <  .0001), and 
elevation (coefficient = 0.27 (10 %), SE = 0.032, p < .0001), TPI (co-
efficient  =  0.18 (7 %), SE  =  0.024, p  <  .0001) lichen cover (coef-
ficient = 0.11 (4 %), SE = 0.026, p =  .0001), and interaction snow 
depth*lichen (coefficient  =  −0.23 (9 %), SE  =  0.034, p  <  .0001). 
Still, there was additional variation not covered by this best model 
(Hosmer-Lemeshow goodness-of-fit; X2 = 69.01., df = 8, p < .0001).

4  | DISCUSSION

4.1 | Reindeer foraged on snow-free areas

The results clearly indicate that, where the choice is available, wild 
mountain reindeer exhibit a preference for snow-free or snow-poor 
habitat areas in winter. For the large dataset used here, the rein-
deer distributed themselves in much more close association with 
snow-free patches that would be expected from a “random walk” 
model, that is, use in proportion to availability. In wintertime, wild 
reindeer individuals on Hardangervidda spend most of their time 
foraging (Skogland, 1984). Reindeer may seek out snow-free forage 
patches or alternatively dig through the snow to reach forage (“cra-
tering”), which presumably has a substantial energetic cost (Fancy 

F I G U R E  5   Predicted probabilities by the best Resource 
Selection Probability Function (relative) for no or low-snow depth 
(top) and distance to snow-free areas (bottom) for GPS-positioned 
wild reindeer (n = 3,653) in subsampled ALS transects, on 
Hardangervidda, south-central Norway. Line based on snow depth 
as mean of 2008 and 2009

TA B L E  1   The tested RSPF models ranked by AIC

Rank Predictors full model—removed AIC ∆AIC

1 DIST + SNOW + XCOORD + 
DEM2 + DEM + TPI + LICHEN + 
SNOW:LICHEN

72,103.0 0

2 -	 TPI 72,162.9 47.7

3 -	 SNOW 72,249.2 146.2

4 -	 LICHEN 72,202.5 200.5

5 -	 DIST 72,420.6 317.6

6 -	 DEM/DEM2 72,464.5 361.5

7 -	 XCOORD 73,274.1 1,171.1

Note: ∆AIC = the difference between AIC for the model of concern 
compared to the best-ranked model.
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& White, 1985). Optimal foraging favors the strategy alternative of 
foraging on snow-free patches, given relatively low travel distances 
between patches, as documented here, and the high energetic ef-
ficiency of locomotion in reindeer (Fancy & White, 1987). Moreover, 
patches were many and small, and mainly located in areas with over-
all low-snow depths, which also offer opportunities for “cratering” 
at the edges of and between patches. However, “cratering” may be 
less energetically efficient also because of the limited potential net 
energy gain associated with the small vegetation area uncovered by 
cratering, but depending on snow conditions (Helle, 1984; Kumpula 
et  al., 2004; LaPerriere & Lent, 1977; Pruitt, 1959). When given a 
choice, snow-free patches offer much larger and easily available 
vegetation. Even though lichen biomass in snow-covered areas is 
typically greater—up to 800  g/m2 or more—(Kumpula et  al.,  2011; 
Odland et al., 2014), while that of exposed, snow-free patches may 
be down to 100 g/m2 or less if grazed, this may be offset by the lim-
ited ground area uncovered by cratering.

4.2 | Resource selection predictors

The best RSPF model was obtained including the predictors snow 
depth, distance to snow-free areas, topographic position at a local 
scale (30 m window), elevation, X-coordinate, and lichen cover. This 
lends support to our main result, the preference for snow-free or 
snow-poor habitat areas in winter. Indeed, elevated, exposed, wind-
blown ridges provide habitats that favor slow-growing ground lichen 
(Odland & Munkejord,  2008b; Odland et  al.,  2018). Such habitats 
are found more frequently going east on Hardangervidda, because 
of the climate gradient (Figures  1, 3) (Gaare & Skogland,  1975; 
Moe, 1995; Skartveit et al., 1975), which the X-coordinate is a proxy 
for. The drier climate to the east likely also results in less packed 
snow and ice/crust layers. We are not aware of similar studies of 
the effect of snow-free patches on reindeer foraging in Europe, nor 
on barren-ground caribou in North America. Notably, also barren-
ground caribou show a preponderance of lichen in their winter diet 
(Åhman et al., 2018; Joly & Cameron, 2018; Joly et al., 2015; Thomas 
& Hervieux,  1986), and forage preferentially where snow cover is 
softer, lighter, and thinner (e.g., less than 50–60 cm) (Miller, 2000; 
Pruitt, 1959).

Reindeer are seasonal animals accumulating energy reserves in 
summer, and living mainly off these reserves in winter (e. g., Åhman 
et  al.,  2018). Lichen, which was a significant predictor in the best 
RSPF model, is used preferentially as winter maintenance forage. 
Although reindeer seem to favor the carbohydrate-rich lichen (Danell 
et al., 1994; Hansen et al., 2010; Vistnes & Nellemann, 2008), which 
also happens to be relatively easy to differentiate and monitor by re-
mote sensing (Kastdalen, 2011; Mossing et al., 2009), its importance 
should not be overstressed. When available, free-living reindeer may 
eat a mixture of lichens, mosses, and vascular plants such as shrubs 
and graminoids in winter (Mathiesen et al., 2000; Skogland, 1984; 
Storeheier et al., 2002), and select for medium to high-quality forage 

rather than low-digestible high-biomass forage (Hansen et al., 2010). 
Warenberg (1982) found that many plants growing in snow-poor 
habitats have green buds in winter. Chemical analysis indicates rel-
atively high contents of crude protein and minerals in these plants 
in winter (Storeheier et al., 2002), which would be of great benefit 
to reindeer. Availability of snow-free areas may be more important 
than availability of lichen.

4.3 | Identification of snow-free areas by remote 
sensing techniques

From the satellite images, we estimated area of snow-free patches 
to about 1.4 resp. 9.3 % of total area. These estimates are compara-
ble with previous estimates, based on other methods (Bjerketvedt 
et al., 2012; Hesjedal, 1975; Jordhøy & Strand, 2009). These previous 
estimates are similar to our higher (50 % threshold value) estimate, 
but markedly higher than our stricter 80 % threshold value. Our esti-
mate did not include the now unused northern and the eastern land 
tongues, the latter which, in particular, holds substantial potential 
winter forage areas (Jordhøy & Strand, 2009). Many of the smaller 
snow-free patches may consist of exposed rocks, less suitable habi-
tat for winter forage. Lichen-dominated heaths are more often found 
on the somewhat larger, exposed ridges (Hesjedal,  1975; Odland 
et al., 2018). These areas would have no or little snow cover across 
a wide range of snow-fall conditions and would thus be consistently 
important source forage habitats. The reduced area estimates and 
stronger preference ratios with increasingly strict model thresholds 
likely reflect this ecological feature. Exposed ridges may be particu-
larly important in winters with much snow. Estimates of snow-free 
patches, particularly for the more relaxed model assumptions, will 
be affected by the annually varying snow precipitation, criteria for 
when a pixel should be classified as snow-free, and at which time in 
winter/spring available Landsat scenes are recorded, the transition 
between snow accumulation and snow melt being very dynamic.

5  | CONCLUSION

Selection for snow-free habitats by wild reindeer during the 
commonly extreme winter conditions appears to conform well 
with ecological theory, that is, optimal net energy gain forag-
ing and ideal free distribution (e. g. Křivan et  al.,  2008; Perry & 
Pianka,  1997; Pyke,  1984). Such behaviors may be modified by 
risk (Bernstein et al., 1988; Lima, 2002; Moody et al., 1996), but, 
since there is no predation of significance, risk is virtually absent 
for wild reindeer in the investigated area. Snow-free and low-
snow depth areas may be important predictors of available for-
age that should be considered in sustainable mountain reindeer 
management. Such areas may be source habitats during winter 
that cannot easily be replaced and are therefore important to pro-
tect from anthropogenic disturbance, land use, and development. 
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Conveniently, snow-free and low-snow depth areas may be identi-
fied using remote sensing data.
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