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A B S T R A C T   

Groundwater salinization is considered as a major environmental problem in worldwide coastal areas, influencing 
ecosystems and human health. However, an accurate prediction of salinity concentration in groundwater remains 
a challenge due to the complexity of groundwater salinization processes and its influencing factors. In this study, 
we evaluate state-of-the-art machine learning (ML) algorithms for predicting groundwater salinity and identify its 
influencing factors. We conducted a study for the coastal multi-layer aquifers of the Mekong River Delta (Viet
nam), using a geodatabase of 216 groundwater samples and 14 conditioning factors. We compared the predictive 
performances of different ML techniques, i.e., the Random Forest Regression (RFR), the Extreme Gradient Boosting 
Regression (XGBR), the CatBoost Regression (CBR), and the Light Gradient Boosting Regression (LGBR) models. 
The model performance was assessed by using root-mean-square error (RMSE), coefficient of determination (R2), 
the Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The results show that the CBR 
model has the highest performance with both training (R2 = 0.999, RMSE = 29.90) and testing datasets (R2 =

0.84, RMSE = 205.96, AIC = 720.60, and BIC = 751.04). Ten of the 14 influencing factors, including the distance 
to saline sources, the depth of screen well, the groundwater level, the vertical hydraulic conductivity, the oper
ation time, the well density, the extraction capacity, the thickness of the aquitard, the distance to fault, and the 
horizontal hydraulic conductivity are the most important factors for groundwater salinity prediction. The results 
provide insights for policymakers in proposing remediation and management strategies for groundwater salinity 
issues in the context of excessive groundwater exploitation in coastal lowland regions. Since the human-induced 
influencing factors have significantly influenced groundwater salinization, urgent actions should be taken into 
consideration to ensure sustainable groundwater management in the coastal areas of the Mekong River Delta.  
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1. Introduction 

As high yield, good quality, easy extraction, and operation at 
acceptable prices, groundwater has become a primary freshwater 
resource for approximately two billion people, and it accounts for 
around one-third of the total water withdrawal worldwide (Aeschbach- 
Hertig and Gleeson, 2012; Famiglietti, 2014). However, many coastal 
areas across the world are experiencing freshwater scarcity due to 
seawater intrusion into the surface water system. Therefore, ground
water in these regions has become an alternative freshwater source for 
drinking, industries and agriculture (Behera et al., 2019; Kagabu et al., 
2011; Kaur et al., 2020; Mohanty and Rao, 2019; Singh et al., 2018). 
Despite its essential role, groundwater resource is highly vulnerable to 
overexploitation, seawater intrusion, climate change, and sea-level rise 
(Akbari et al., 2020; Ferguson and Gleeson, 2012; Singh, 2015). Saline 
groundwater in coastal aquifers may originate from paleo-seawater 
intrusion (Delsman et al., 2014; Gossel et al., 2010; Larsen et al., 
2017), modern seawater intrusion (Yechieli et al., 2019), leaking brines 
from oil fields (Chekirbane et al., 2014), and irrigation return flows 
(Foster et al., 2018). High salinity concentration in water could have 
severe impacts on ecosystems (Korres et al., 2019; Ma et al., 2019; 
Radanielson et al., 2018; Velasco et al., 2019) and could cause many 
health-related problems (Akter, 2019; Nahian et al., 2018; Park and 
Kwock, 2015; Rahaman et al., 2020; Shammi et al., 2019; Vineis et al., 
2011). For example, exceeding salinity in irrigated water may reduce 
crop yields (Korres et al., 2019; Parvin et al., 2019; Radanielson et al., 
2018); a high intake of salinity causes more stress on the development of 
organisms in fresh ecosystems (Velasco et al., 2019). Meanwhile, using 
drinking water with high salinity leads to an increase of hypertension 
(Shammi et al., 2019; Vineis et al., 2011), coronary heart disease (Park 
and Kwock, 2015; Rahaman et al., 2020), and chronic kidney disease 
(Naser et al., 2017; Rahaman et al., 2020). Thus, insights into salinity 
intrusion mechanisms and providing a reliable prediction of ground
water salinity are crucial for providing an adequate water source for 
diverse sectors and human health protection (Carretero et al., 2013; Gejl 
et al., 2020; Kaur et al., 2020; Larsen et al., 2017). 

There are several methods to investigate salinization processes in 
coastal aquifers, e.g., physical experiments, physically-based models, 
and data-driven prediction models (Boluda-Botella et al., 2008; Crestani 
et al., 2019; Guo et al., 2019; Rajaee et al., 2019; Robinson et al., 2018; 
Yadav et al., 2018; Yousefi et al., 2020; Yu et al., 2019). Physical ex
periments provide an understanding of saltwater movement processes 
by measuring solute concentration in a specific period (Crestani et al., 
2019). This method is often combined with physical-based models to 
gain a better understanding of saltwater movement (Boluda-Botella 
et al., 2008; Guo et al., 2019; Yu et al., 2019). Although physical ex
periments are useful to understand seawater intrusion processes in a 
short period, these techniques are only applied to investigate a simple 
process of seawater intrusion while the processes of seawater intrusion, 
in reality, is very complex (Badaruddin et al., 2017; Yu and Michael, 
2019). Physically-based models (e.g., MODFLOW, MT3DMS, SEAWAT, 
FEMWATER) are alternatives to examine seawater intrusion into coastal 
multi-aquifers systems in the context of human activities and climate 
change. In recent decades, physically-based models have been widely 
used for modelling groundwater dynamics and seawater intrusion into 
coastal aquifers (Abdelhamid et al., 2016; Lal and Datta, 2019; Mah
moodzadeh and Karamouz, 2019; Stein et al., 2019; Voss and Souza, 
1987; Yu and Michael, 2019). These models are based on a detailed 
process description (e.g., Richards and convection–dispersion equa
tions) and can provide a mechanistic understanding of physical pro
cesses not only at a small scale but also at a regional scale (Larsen et al., 
2017; Pham and Tsai, 2016). The applications of such models, however, 
are not always possible because they often require extensive input data 
and computational demand. Therefore, many researchers have devel
oped and applied machine learning methods for groundwater studies 
because these methods require fewer input data and computational time 

while providing comparable results (Sajedi-Hosseini et al., 2018). 
In recent years, machine learning methods have been proven as 

promising tools for estimating groundwater levels (Chen et al., 2020; 
Rahman et al., 2020a; Sahoo et al., 2017), mapping potential ground
water recharge (Pourghasemi et al., 2020), assessing groundwater 
vulnerability (Moazamnia et al., 2020; Moghaddam et al., 2020) and 
predicting groundwater quality (Li et al., 2020; Liu et al., 2017; Rahmati 
et al., 2019). For instance, Kopsiaftis et al. (2019) applied the Gaussian 
process regression (GPR), the regression trees (RT), and the Support 
Vector Machine regression (SVR) models to predict the extension of 
seawater intrusion in a coastal area. The result showed that the GPR 
model had a better predictive power compared to those obtained by the 
RT and the SVR techniques. Yadav et al. (2018) tested different data- 
based models, including the artificial neural network (ANN), the SVR, 
the genetic programming (GP), and the extreme learning machine (ELM) 
algorithms to develop three-dimensional, density-dependent flow and 
transport processes in a coastal aquifer system. It was concluded that the 
SVR model provided the most accurate prediction compared to other 
models. Lal and Datta (2019) illustrated the capacity of the GPR model 
in estimating density-dependent saltwater intrusion processes and pre
dicting salinity concentrations in an exemplary coastal aquifer system. 
Robinson et al. (2018) applied the random forests regression (RFR) al
gorithm to optimize calibration using image-based mapping seawater 
intrusion. Recently, the ensemble-based learning techniques such as the 
extreme gradient boosting regression (XGBR), the CatBoost Regression 
(CBR), and the Light Gradient Boosting Regression (LGBR) algorithms 
have shown the advancement in dealing with non-linear processes, 
providing the high potentiality in predicting natural phenomena. For 
instance, the XGBR model has illustrated as the highly accurate pre
diction model for environmental indicators such as streamflow (Ni et al., 
2020; Yu et al., 2020), forest above-ground biomass estimation (Pham 
et al., 2020a, 2020b), solar radiation (Fan et al., 2018), and air pollution 
(Chen et al., 2019; Pan et al., 2019). More recently, the CBR model 
developed by the Yandex Company (Liudmila Prokhorenkova et al., 
2017) has demonstrated as a potential tool for accurately predicting 
different environmental indicators (Dev and Eden, 2019; Huang et al., 
2019; Matsuzaka et al., 2020; Zhang et al., 2020). Likewise, the LGBR 
model has performed well in predicting different environmental in
dicators, such as evapotranspiration and temperature (Fan et al., 2019; 
Gong et al., 2020). The abovementioned studies demonstrated that 
machine learning techniques are highly flexible ability to handle com
plex non-linear environmental problems; however, the model perfor
mance of different ML models varies widely, depending on selected 
algorithms, influencing factors, and targeted predictors. Therefore, it is 
necessary to evaluate different algorithms in combination with various 
influencing factors to choose an appropriate machine learning model for 
specific environmental indicators. 

Groundwater salinization in coastal areas, which reflects both past 
and present seawater intrusion processes in coastal aquifers, is generally 
caused by the direct movement of seawater into fresh-aquifers (Han and 
Currell, 2018; Larsen et al., 2017). Besides, saline groundwater in 
coastal aquifers shows a spatial heterogeneity, depending on geological 
features, aquifer properties, hydrological processes (Shi et al., 2020), 
and especially human activities (Scharping et al., 2018; Walther et al., 
2020). This leads to a significant challenge to an accurate prediction of 
groundwater salinity and the identification of its influencing factors. 
This study aims to (1) evaluate the potential application of the novel 
ensemble-based machine learning techniques (XGBR, CBR, and LGBR) 
to predict groundwater salinity in comparison with the most widely used 
algorithms (RFR), (2) to improve model prediction using feature selec
tion functions, and (3) to investigate whether the machine learning 
approaches could provide a physically-sound understanding of salinity 
intrusion mechanisms in coastal aquifers. To the best of our knowledge, 
the current study is the first time in which the RF, the XGB, the CBR, and 
the LGBR machine learning algorithms were evaluated to select the most 
suitable data-driven model for accurately predicting groundwater 
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salinization and identifying its influencing factors in a coastal multi- 
aquifer system. In this study, the Mekong Delta (MD), Vietnam, which 
was taken as a representative case study, is one of the most vulnerable 
coastal areas exposed to integrated impacts of human activities and 
climatic variation (Binh et al., 2020; Shrestha et al., 2016; Tran et al., 
2020). 

2. Study area and data preparation 

2.1. Description of the study area 

The Mekong Delta (MD) is located in the Lower Mekong Basin, which 
is one of the most important deltas for national and regional food se
curity and biodiversity conservation (Ha et al., 2018). However, this 
delta has been facing severe water scarcity due to seawater intrusion and 
water pollution, especially in the coastal region where most of the 
freshwater demand depending on groundwater sources (Hamer et al., 
2020; Tran et al., 2020). The study area is located in the southeastern 

region of the Mekong Delta (MD), Vietnam (Fig. 1). It covers an area of 
3,312 km2 with the elevation ranging from 0.5 to 2.5 m above the mean 
sea level. 

The study area borders the Hau River to the Northwest and the East 
Vietnam Sea to the Southwest. This study site has approximately 1.20 
million people, most of whom depend on agriculture for their liveli
hoods, contributing to 42% of the total GDP of the province. Agriculture 
and aquaculture lands are the dominant land use types, accounting for 
84.8% (276,690 ha of the total area), which includes rice fields 
(52.98%), aquaculture (19.7%), orchards (15.5%), lands of other 
vegetable types (6.8%), and other types of land use (5.1%) (Data source: 
Decision No.108/NQ-CP of the Government 2018). Groundwater in the 
area is a dominant source of water for domestic, industrial, and agri
cultural activities, and the long-term extraction of groundwater has 
resulted in a groundwater level depletion in irrigated regions (Mind
erhoud et al., 2018). Groundwater salinization has been identified as 
one of the most significant threats to the sustainable development of the 
region (Tran et al., 2020). The extent of groundwater salinization in the 

Fig. 1. Location of the study area and sampling wells.  
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study area has recently increased due to the rapid increase in ground
water demand (Minderhoud et al., 2017; Nam et al., 2019). The study 
area has a dense river system with a direct connection to the sea. The 
hydrological regime of the study area is complex and strongly influenced 
by the flow regime of the Mekong river and tidal fluctuation (Binh et al., 
2020). The study area is in a tropical monsoon climate region with two 
distinct seasons, the dry season (May to November) and the rainy season 
(December to April). The annual average rainfall is about 1,772 mm 
with substantial seasonal variations, in which approximately 85% of the 
annual rainfall occurs during the rainy season. The study area has also 
been recognized as one of the most vulnerable regions to climate change 
and sea-level rise in the world (Dang et al., 2018; Shrestha et al., 2016; 
Smajgl et al., 2015). 

The hydrogeological setting of the study area is characterized by a 
multi-layered aquifer system, formed between the Miocene and Holo
cene epoch (Hung Van et al., 2019; Wagner et al., 2012). Groundwater 
in the Pleistocene aquifers is the primary source of drinking water 
because these aquifers have high yield and good-quality water compared 
to other aquifers (An et al., 2018). In this study, we aim at predicting 
salinity concentration in the middle and lower Pleistocene aquifers and 
identifying the main influencing factors of this process. 

2.2. Data preparation 

A total of 216 groundwater samples was collected from the Pleisto
cene aquifers during both the rainy and the dry seasons between 2013 
and 2018. On-site measurements were conducted to obtain physical 
parameters such as groundwater temperature (T ◦C), pH, dissolved ox
ygen (DO), and electrical conductivity (EC), using the HANNA portable 
instruments (Hanna Instruments Inc. 2015). Chloride concentration in 
groundwater samples was analyzed by using Ion Liquid Chromatog
raphy (Shimadzu Co. Ltd., Japan) at the University of Tsukuba, Japan. 
Fourteen influencing factors were prepared (Table 1) based on a 
geological map, a drainage network, and in-situ data from the study area 
(Fig. 2). 

3. Methodology 

3.1. Machine learning models 

3.1.1. Random forest (RF) 
RF is a well-known ML method, which has been widely applied for 

both classification and regression problems based on the ensemble of 
decision trees (Breiman, 2001). A decision tree is a top-down tree-like 
structure, in which each non-leaf node is a test, each branch is an 
outcome of the test, and each leaf node is a decision. Regression with a 
single decision tree may result in overfitting (high variance) and de
pends on the distribution of training sets. A large number of decorrelated 
decision trees can form a random forest, which then can reduce the 
variance and boost model performance (Criminisi, 2011). The procedure 
forming RF is as follows: (1) n random subsets (called “bootstrapped 
subsets”) are sampled from a training dataset, and this process is based 
on a random selection of features of the dataset. A subset may contain 
overlapped data in other subsets; (2) n decision trees are built using 
these n bootstrapped subsets (Fig. 1). The number of trees n is decided by 
using either cross-validation or out-of-bag (OOB) error methods. A 
detailed description of the statistical formulation of the RF algorithm 
can be found in Breiman (2001). 

3.1.2. Extreme gradient boosting (XGB) 
XGB is an ensemble-machine learning algorithm that is based on 

decision trees (Friedman, 2001). However, a boosting model constructs 
the “forest” of decision trees sequentially, or one decision tree can be 
built on learning experience inherited from previous trees (Chen and 
Guestrin, 2016; Johnson et al., 2018). The second tree focuses on the 
cases in which the first tree gives a poor prediction, and this learning 

process is repeated much time in such a way that the combination of 
these trees can better capture the relationship between predictands and 
predictors. Gradient boosting is a form of boosting models in which 
weak prediction cases are assessed if they contribute to minimize the 
overall lost function (also called the prediction error) (Lim and Chi, 
2019). An ensemble can be considered as highly valuable if the added 
decision tree built for this case can significantly reduce the prediction 
error while no change in the error implicates a no value case; thus, only 
useful decision trees are kept. This may give the XGB model advantages 
in handling complex problems such as quantifying saline concentration 
in groundwater since data measurement in the underground environ
ment may contain many exceptional cases. Note that model parameters 
control the learning efficiency of each machine learning algorithm, and 
in the case of the XGB model, they include three groups: tree-specific, 
boosting, and different metrics. The selection of these model parame
ters is a challenging task and depends on user experience while this 
process does not always return in an optimum set of parameters. Thus, 
we employed a grid-search algorithm with five-fold cross-validation for 
hyperparameter tuning to improve the accuracy of the XGB model. 

3.1.3. CatBoost (CB) 
CB is a novel ensemble-based learning algorithm and can be applied 

for either the categorical or numerical data types in the multi-task of 
regression, ranking, binary and multiclass classification (Liudmila Pro
khorenkova et al., 2017). The name of CatBoost was combined from 
“category” and “boosting”, giving a description of the algorithm in 
processing category data. The CB algorithm, which uses an efficient 
preprocessing of categorized data, is Target-Based with prior statistics 
(TBS) and helps to reduce target leakage. The CB model implements 
ordered boosting, a permutation driven boosting method, to avoid 
overfitting (by adjusting a low learning rate) for small datasets. This ML 
technique uses the oblivious decision tree with the same splitting criteria 
applied across the entire tree, and this decision tree is different from the 
asymmetric tree in the XGB or LGB algorithms. The algorithm is 
remarkably faster compared to other models in the training speed 
because it can be supported by Graphical Processing Unit (GPU), and it is 
robust and requires fewer hyperparameters to be tuned. 

Table 1 
Geospatial data sources used for the salinity prediction in this research.  

No. Explanatory Variables Abbreviation Unit Sources 

1 Distance to saline 
sources 

DTS km DONRE 

2 Depth of screen well DSW km DONRE 
3 Groundwater level GWL m.a.m. 

s.l 
This study 

4 Vertical hydraulic 
conductivity 

VHC m/d DWRPIS 2010 

5 Operation time of well OOW year DONRE 
6 Well density WED well/ 

km2 
DONRE 

7 Extraction capacity EXC m3/d DONRE 
8 Thickness of aquitard TOA m DONRE 
9 Distance to fault DTF km DONRE 
10 Horizontal hydraulic 

conductivity 
HHC m/d Pumping test, 

DWRPIS 2010 
11 Distance to the sea DTS km Drainage network, 

Vietnam Map 2008 
12 Distance to hydraulic 

window 
DHW km Drainage network, 

Vietnam Map 2008 
13 Extraction density EXD m3/ 

km3 
Drainage network, 
Vietnam Map 2008 

14 Soil type ST  DONRE 

DONRE: Department of Natural Resources and Environment, Soc Trang Prov
ince, Vietnam. 
DWRPIS: Division of Water Resources Planning and Investigation in South of 
Vietnam. 
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Fig. 2. Influencing factors of groundwater salinization: (a) distance to sea; (b) distance to hydraulic window; (c) distance to fault; (d) distance to saline sources; (e) 
depth of screen well; (f) horizontal hydraulic conductivity (Kh), (g) vertical hydraulic conductivity (Kv); (h) thickness of aquitard; (i) operation time; (j) well density; 
(k) extraction density; (l) extraction capacity; (m) groundwater level; and (n) soil type. 
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Fig. 2. (continued). 
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3.1.4. Light gradient boosting (LGB) 
The LGB algorithm is an innovative machine learning (ML) that was 

initially released in 2017 (Ke et al., 2017). This algorithm is designed for 
a variety of tasks, including regression, binary classification, multiclass 
classification, and lambda classification. This technique is a decision 
tree-based algorithm with the gradient boosting machine inside. It is, 
however, different from other ML decision tree-based algorithms in 
growing the tree vertically (leaf-wise). The LGB algorithm selects the 
leaf with a maximum delta loss rather than horizontally (level-wise). To 
improve the model accuracy, LGB uses two novel gradient boosting 
techniques, i.e., Gradient-Based One-Side Sampling (GOSS) and Drop
outs meet Multiple Additive Regression Tree (DART), which can handle 
complexity in computation and large datasets. The LGB model is pro
posed to be highly efficient for breakneck training speed and low 
memory demand. The algorithm, however, comes with a hundred of 
parameters that need to be tuned and maybe overfitted with small 
datasets. 

3.2. General approach 

Our first goal was to investigate the applicability of machine learning 

models in predicting groundwater salinization concentration in the 
MRD, Vietnam. For this purpose, we evaluated and compared the four 
machine learning models. The model was then improved with the 
optimal conditioning factors by using a feature selection process. The 
overall computational framework is illustrated in Fig. 3. 

3.2.1. Data preprocessing 
The accumulation of salinity in groundwater is a complex process 

because of different influencing factors (Kanagaraj et al., 2018; Mahl
knecht et al., 2017). Thus, the influencing factors for groundwater 
salinization prediction are selected by analyzing characteristics of 
seawater intrusion processes into fresh coastal aquifers (Han and Cur
rell, 2018; Tran et al., 2019). In the Pleistocene aquifers, groundwater 
salinity originates from (1) downward or upward leakage of paleo-saline 
water (Chatton et al., 2016; Khaska et al., 2013), (2) halite dissolution in 
the topsoil layers (Blasco et al., 2019; Walter et al., 2017), (3) seawater 
intrusion (Han and Currell, 2018; Kanagaraj et al., 2018), and (4) irri
gation return flow (Essaid and Caldwell, 2017; Lapworth et al., 2017; 
Tweed et al., 2018). The downward or upward leakages of paleo-saline 
water, which are related to aquifer properties, are further incorporated 
into the soil properties influencing factors. Furthermore, the thicknesses 

Fig. 2. (continued). 

Fig. 3. The proposed modelling framework used in this study.  
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of aquitards, the distance to hydraulic windows, the distance to faults, 
and the hydraulic conductivity could also affect the leaking rate 
(Elmahdy and Mohamed, 2013). Also, other geographical variables such 
as the distance from main rivers, the distance to drainage, and the 
drainage density are widely considered as the influencing factors to 
groundwater salinity (Winkel et al., 2008). Halite dissolution depends 
on salt rock/sediment properties and horizontal hydraulic conductivity. 
Variables which represent the impacts of human activities on ground
water salinity in the study area consist of the groundwater level, the 
extraction capacity, the well density, the extraction density, and the 
operation time. The severity of seawater intrusion may also depend on 
the distance to saline sources to faults (Yechieli et al., 2019). The 
interaction between these four processes results in a complex saliniza
tion process in the study area (Tran et al., 2020). In this study, the 216 
groundwater samples (each sample consists of fourteen variables) from 
the middle and lower Pleistocene aquifers were used (Table 1). The 
measured Cl− concentration is assigned as a dependent variable, and the 
fourteen influencing factors are set as independent variables. 

3.2.2. Model configuration and evaluation 

3.2.2.1. Machine learning (ML) model hyper-parameter tuning. The ML 
models consist of various hyper-parameters that should be tuned before 
the implementation to attain the best model performance. In this study, 
we tuned the hyper-parameters of selected ML models using a grid 
search function with five-fold cross-validation in Scikit-learn packages 
(Pedregosa et al., 2012). During the grid search processing, several 
combinations of the model’s hyper-parameters were considered and 
tested until reaching a minimum RMSE score. The grid search returned 
the best combination of hyper-parameters for each ML model. 

3.2.2.2. Model configuration and training. The configuration and the 
training phases of the four ML models are conducted in Python version 
3.7. The 216 groundwater samples were randomly divided into a 
training dataset (70%) and a testing dataset (30%) to evaluate model 
performance by using the Scikit-learn packages (Pham et al., 2020a). 
The hyperparameter of the four ML models (RFR, XGBR, CBR, and 
LGBR) was tuned by using a grid search function with five-fold cross- 
validation in Scikit-learn packages (Table 2). Then, the model with the 
highest predictive performance (i.e., the highest R2 and the lowest 
RMSE, AIC, and BIC values) in both the training and the testing phases 
was selected. Once the best model is determined, we employed the 
selected model to predict salinity concentration (Chloride in mg/L) in 
each well location. 

3.2.2.3. Performance assessment. The performance criteria used for 
evaluating model performance depend on the output variables of each 
model, e.g., categorical or continuous variable (Tien Bui et al., 2016). 
Performance criteria such as the root-mean-square error (RMSE, Eq. (1)) 

and the coefficient of determination (R2, Eq. (2)), were used in this study 
for evaluating the models with continuous output values. Moreover, the 
Taylor diagram was used to compare the predictive performance of the 
models (Rahman et al., 2020b; Taylor, 2001). Each performance crite
rion indicates specific information regarding predictive performance 
efficiency (Li et al., 2016; Tien Bui et al., 2018). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(ye
i − ym

i )
2

N

√

(1)  

R2 =
∑N

i=1(y
e
i − ye)×(ym

i − ym))
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(y
e
i − ye)

2
√

× (ym
i − ym)

2
(2)  

where ye
i and ym

i are predicted and measured chloride (Cl− ) concentra
tion in observation i, respectively, and N is the number of observations, 
and yeand ym are the mean values of predicted Chloride (Cl− ) and 
measured Chloride (Cl− ), respectively. Higher values of R2 are preferred, 
i.e., closing to 1 means better model performance, and the regression 
line fits the training/testing data well. Conversely, the lower values of 
RMSE indicates better model performances. 

Also, the Akaike Information Criterion (AIC) (Akaike, 1974) and the 
Bayesian Information Criterion (BIC) (Stone, 1979) were used in this 
study to select the best model for predicting groundwater salinity. AIC is 
a technique based on the sample fit to estimate the likelihood of a model 
to predict or estimate values (Burnham and Anderson, 2004). Mean
while, the BIC measures the trade-off between model fit and complexity 
of the model. The lowest AIC and BIC values among models reveal the 
best model (Pham et al., 2017; Vrieze, 2012). The AIC and BIC values of 
a model are estimated by using the following Equations: 

AIC = 2k − 2log(L) (3)  

BIC = 2log(n)k − 2ln(L) (4)  

where k is the number of independent variables (k = 14, Fig. 2), L is the 
value of the likelihood, and n is the number of recorded measurements. 

Since the influencing factors for predicting groundwater salinization 
have significantly different ranges, normalization was used to convert 
the values of numeric columns into a scale from 0 to 1 by using the 
following equation (Tien Bui et al., 2012; Wang and Huang, 2009): 

xn =
xo − xmin

xmax − xmin
(5)  

where xn and xo represent the normalized and original data, 
respectively,xmax and xmin are the max and min original values, respec
tively. 

3.2.2.4. Feature importance. The feature importance (variable impor
tance) in ensemble-based decision tree algorithms is calculated by using 
the variable-importance approach (Dorogush et al., 2018; Prokhor
enkova et al., 2018). In this approach, the model first searches for a 
candidate subset of variables from all variables with the grid search 
approach. The CBR model ranks the variables in descending order of 
their importances based on the root-mean-square error (RMSE), mean 
absolute error (MAE), and the coefficient of determination (R2). Then, a 
certain number of the least important variables are removed and the 
remaining variables form a variable subset. In this paper, the search/ 
selection iterations were terminated when R2 of the prediction model of 
the subset did not improve the performance with the testing dataset. In 
the final step, the selected variable subset was validated (in this case, by 
the 5-fold CV approach). Catboost Algorithms calculates variable 
importance using the below equation (Kang et al., 2019): 

Table 2 
Hyper-parameters of selected models.  

Random Forest Extreme Gradient Boost 

Bootstrap True Booster Gbtree 

Max depth 10 Gamma 5 
Max features 3 Learning rate 0.01 
Min sample leaf 4 Max depth 10 
Min sample split 9 Min child weight 1 
Number of trees 50 Number of trees 100  

LightGBM CatBoost 

Boosting type Dart Depth 7 
Learning rate 0.1 Learning rate 0.209 
Max depth − 1 Number of trees 100 
Number of leaves 10   
Number of trees 50    
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FI =
∑n

tree,leafsF
(v1− avr)2

.c1 + (v2− avr)2
.c2

avr =
v1.c1 + v2.c2

c1 + c2

(6)  

where FI is feature importance; c1 and c2 are the total weights of objects 
in the left and right leaves, respectively. This weight is equal to the 
number of objects in each leaf if weights are not specified for the dataset; 
and v1 and v2 represent the formula values in the left and right leaves, 
respectively. Calculating the modeling and generated variable impor
tance of the CBR model was implemented in Python by using the library 
available at https://catboost.ai/docs/. 

3.2.3. Mapping groundwater salinity and salinity-affected population 
Firstly, we predicted chloride concentration and created a chloride 

map with a grid size of 300 × 300 m using the best-trained machine 
learning model (CB model) with the selected hyper-parameters and the 
top ten important variables. Secondly, the predictive chloride map was 
reclassified by using the drinking water standard from the World Health 
Organization (WHO) with five classes, including very low (Cl− < 250 
mg/L), low (250 < Cl− < 500 mg/L), moderate (500 < Cl− < 1,000 mg/ 
L), high (1,000 < Cl− < 2,500 mg/L), and extreme high (>2,500 mg/L). 
Thirdly, the salinity-affected area for each class of salinity concentration 
in groundwater was calculated by using the shoelace formula in ArcGIS 
10.3 (Braden, 1986; Langenheim et al., 2017). Finally, the numbers of 
people within each area affected by salinity were estimated from the 
salinity-affected areas and population density. 

4. Results and discussion 

4.1. Model performance evaluation and comparison 

The results in Table 3 show the goodness-of-fit and predictive per
formance of the four ML models in terms of the RMSE and R2 metrics. In 
this study, the predictive models for groundwater salinization were 
constructed by using the training dataset and validated by using the 
testing dataset, drawing upon a total of 216 observation wells and the 14 
variables. The goodness-of-fit indices show that the CBR model had the 
highest predictive performance, followed by the XGBR model. 
Conversely, the RFR and the LGBR models had the lowest performance 
to predict the chloride variations in the study site. 

In the training phase, the CBR model has a better prediction of 
groundwater-salinity concentrations (RMSE = 29.90, R2 = 0.99) than 
those of the XGBR model (RMSE = 336.90, R2 = 0.66), the LGBMR 
model (RMSE = 485.95, R2 = 0.29), and the RFR model (RMSE =
445.35, R2 = 0.40). Although the goodness-of-fit performance reveals 
how well the model fits the training samples, it does not present the 
prediction and generalization capability of models (Rahmati et al., 
2019). The predictive performance in the testing phase reflects how well 
the model can provide an accurate prediction (Table 3). 

The results show that the CBR model had the highest predictive 
performance with the testing set (RMSE = 205.96, R2 = 0.84), and the 
metrics were significantly better than those of the XGBR model (RMSE 
= 323.18, R2 = 0.62), the LGBR model (RMSE = 472.89, R2 = 0.19), and 
the RFR model (RMSE = 442.91, R2 = 0.29). The visualization of the ML 
models’ performance done by using the Taylor diagram also confirmed 

these results (Fig. 4). 
The predicted values from the CBR and the XGBR models had higher 

correlations and lower RMSE with the observed chloride concentrations 
as compared to the LGBR and the RFR models. Besides, the AIC and the 
BIC values indicated a statistically significant difference between the 
four ML models (Table 3). Although we have considered various influ
encing factors to provide the accurate prediction of groundwater salinity 
in a coastal area of the MRD, the processes of seawater intrusion into 
fresh aquifers depend not only on natural variations but also on human 
activities. 

4.2. Feature selection 

In the study area, among the original fourteen factors, the ten most 
important factors were selected. They (with the variable importance 
index) are the distance from saline sources (20.67), the deep of screen 
well (15.61), the groundwater level (14.02), the vertical hydraulic 
conductivity (10.30), the operation time of well (6.68), the well density 
(5.59), the extraction capacity (5.04), the thickness of aquitards (4.88), 
the distance to fault (4.38), and the horizontal hydraulic conductivity 
(4.14) (Fig. 5). The results reveal that groundwater salinization depends 
not only on the hydrogeological features (distance to saline sources, 
depth of screen well, vertical and horizontal hydraulic conductivities, 
and thickness of aquitard) but also groundwater extraction practices 
(groundwater level, operation time of well, extraction capacity, and well 
density). 

These influencing factors also play an essential role in the trans
portation processes of other solutes such as arsenic, fluoride, and nitrate 
in groundwater (Podgorski et al., 2018; Ransom et al., 2017; Winkel 
et al., 2008). The hydrogeological features influence the leakage rate of 
saline groundwater from shallow to deeper aquifers (Hung Van et al., 
2019) while groundwater exploitation activities exacerbate ground
water salinization (An et al., 2018). The result may also suggest that 
saline groundwater leaking from upper layers to lower layers is a 
dominant process, resulting in an increase of chloride concentration in 
groundwater of the study area. Hydraulically, an increased hydraulic 
gradient due to groundwater depletion coupled with high vertical hy
draulic conductivity, the thin and discontinuous aquitard layer, and 
high-density gradients cause an increase of vertical flow rates (Ma et al., 
2015). The similar findings which were also observed in other coastal 
aquifers in the world (Cary et al., 2015; Chatton et al., 2016; Delsman 
et al., 2014) indicated the strong influences of groundwater over
exploitation on seawater intrusion in coastal aquifers (Han et al., 2015; 
Larsen et al., 2017; Yechieli et al., 2019; Yu and Michael, 2019). The 
other important influencing factors have variable importance values 
from 3.0 (distance to the sea) to 0.42 (soil properties). It is noted that 
these indicators have lower values (<4.0), indicating less contribution to 
groundwater salinization processes. Meanwhile, the CBR model with the 
ten selected influencing factors (variable importance value > 4.0) pro
duced a better prediction with RMSE = 193.51 and R2 = 0.86. This result 
may suggest that paleo-saline groundwater salinization is the main 
process of increasing salinity concentration in this study while direct 
seawater intrusion from the sea to coastal aquifers is not dominant. 

4.3. Mapping groundwater salinity 

Since the CBR model has the most accurate performance in this 
study, we selected this model to map salinity concentration in the 
coastal multi-aquifers of the MRD. The result shows that the main 
salinity-affected region extends from the seaside to the central areas 
(Fig. 6). 

The prediction results are consistent with the salinity observations in 
the study area reported in Tran et al. (2020). Accordingly, the high 
chloride concentrations which exceed the limit in the WHO drinking 
water standard (Cl− > 250 mg/L) are predicted in the areas with paleo- 
saline sources, high extraction rates, and significant groundwater level 

Table 3 
Model performance for chloride prediction.  

Model Training Testing  

R2 RMSE R2 RMSE AIC BIC 

RFR  0.40  445.35  0.29  442.91  820.13  850.58 
XGBR  0.66  336.90  0.62  323.18  779.16  809.60 
CBR  0.99  29.90  0.84  205.96  720.60  751.04 
LGBMR  0.29  485.95  0.19  472.89  828.65  859.09  
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depletion. Regions severely affected by saltwater include the coastal 
estuary, the land along the river, and the central areas where the chlo
ride concentrations in wells elevate to over 2,000 mg/L. It is noted that 
low chloride concentrations (Cl− < 250 mg/L) in groundwater are 
predicted in coastal areas, even the production wells being located near 
the shoreline (<2 km) and being at − 10.5 m below the mean sea level 
(m.a.m.s.l). This prediction result is also consistent with the observed 
data reported in other studies (Hoang and Bäumle, 2019; Tran et al., 
2020). This could be explained by the geological and hydrogeological 
features in the VMD in which deep aquifers are covered by thick clay 
layers extending far from the shoreline (Hung Van et al., 2019). Similar 
observations were found in many coastal lowland areas in the world, 
such as in China (Han and Currell, 2018), in Thailand (Xiong et al., 
2020), in India (Dhakate et al., 2020; Kumar et al., 2020), in Bangladesh 

(Datta et al., 2020; Seddique et al., 2019; Xiong et al., 2020), in Mexico 
(Mahlknecht et al., 2017; Mora et al., 2020), in Tunisia (Souid et al., 
2018; Telahigue et al., 2018), in Brazil (Cary et al., 2015; Gomes et al., 
2019), in the EU (Giménez-Forcada, 2014; Kazakis et al., 2016; Tela
higue et al., 2020), and North America (Bond and Bredehoeft, 1987; 
Goebel et al., 2017). In contrast, in the central areas - far from the Sea 
(approximately 40 km inland), relatively high chloride concentration 
was predicted to be consistent with measured chloride concentration at 
the same locations. In these cases, salinity sources were trapped in these 
areas a long time ago due to rapid sea-level rise during the Holocene 
period (Delsman et al., 2014; Hung Van et al., 2019; Larsen et al., 2017). 
Besides, different density between saline groundwater at shallow aqui
fers and freshwater in deep aquifers often causes the movement of 
salinity downward (Ma et al., 2015). However, this process depends on 

Fig. 4. Comparison of model’s performances using the Taylor diagram.  

Fig. 5. Variable importance (%) of influencing factors for groundwater salinity prediction.  

D.A. Tran et al.                                                                                                                                                                                                                                 



Ecological Indicators 127 (2021) 107790

11

the concentration of salinity at specific locations, the thickness of the 
aquitard, vertical and horizontal hydraulic conductivity, which has been 
illustrated by variable importance assessment. 

The CBR model provides a prediction of salinity-affected area 
(Table 4) which the extreme salinity (>1000 mg/L) area is 43.23 km2 

(1.31%) while the moderate salinity (500 < Cl− < 1,000 mg/L) area is 
285.25 km2 (8.61%). In addition, the prediction result shows that 
moderate to high salinity-affected areas are distributed heterogeneously 
in the study area. For example, profoundly salinity-affected sites were 
found not only along the coast but also in the central part of the province 
(Fig. 6), indicating complex groundwater salinization processes in the 
accumulative impacts of different factors, as found in Fig. 5. 

It is noted that approximately 1,632.21 km2 (49.28%) have low 
chloride concentration (Cl− < 250 mg/L) located far from the paleo- 
saline sources and high groundwater level. This indicates that these 
influencing factors play an essential role in increasing chloride con
centrations in groundwater. Our findings are in-line with recent studies 
(An et al., 2018; Nam et al., 2019), demonstrating the capability of the 
CBR model in predicting chloride concentration in coastal regions. 

4.4. Estimation of the salinity-affected population 

Population in the study area distributed unevenly, urban areas in the 
central and coastal regions have high population density with a 
maximum of 6,120 people/km2. High population density distributes in 
central and the coastal regions may increase risks of groundwater 
salinity to water users because high salinity concentration was observed 

in these areas (Fig. 7). 
As shown in Table 4, approximately half of the population in the 

study area (629,360 people) was using inadequate groundwater sources 
with salinity higher than the limit (<250 mg/L) of the WHO drinking 
water standard. Meanwhile, nearly 10% of the total population 
(124,123 people) might be influenced by water with moderate to high 
salinity concentration (500–2,500 mg/L). It was noted that although 
very high salinity (>2,500 mg/L) is located in a small area (2.82 km2), it 
may significantly influence a large number of people due to massive 
groundwater exploitation in dense population areas such as central and 
coastal cities. Moreover, the number of people facing freshwater short
ages are likely to increase shortly because of climate change-induced 
sea-level rise. 

5. Concluding remarks 

This study is the first attempt to evaluate and compare the four state- 
of-the-art ML algorithms (RFR, XGBR, CBR, and LGBR) for accurately 
estimating groundwater salinity in the coastal multi-aquifers of the MD. 
The novel ML algorithm, namely, the CBR model along with the three 
well-known ML algorithms (LGBR, XGBR, and RFR) were trained and 
tested with the 14 influencing factors from the coastal multi-aquifers in 
the Mekong Delta, Vietnam. The results showed that the CBR model 
achieved satisfactory accuracy in the testing set (RMSE = 205.96, R2 =

0.84) for estimating the salinity concentrations in coastal aquifers of the 
Mekong Delta. The CBR model offered the best accurate prediction and 
stability among the four ML algorithms, while the LGBR model had the 
lowest accuracy. 

A more accurate prediction obtained by using the optimal features 
through the variable importance selection function in the CBR algorithm 
shows a similar result for training (RMSE = 26.51, R2 = 0.99) and testing 
(RMSE = 193.51, R2 = 0.86) with ten influencing factors, including the 
distance to saline sources, the depth of screen well, the groundwater 
level, the vertical hydraulic conductivity, the operation time, the well 
density, the extraction capacity, the thickness of aquitard, the distance 
to fault, and the horizontal hydraulic conductivity. 

The groundwater salinity generalized from the CBR model is 
consistent with the measured data. Spatial distribution of salinity has a 
good correlation to the distance to saline sources, the depth of screen 
well, the groundwater level, and the vertical hydraulic conductivity. 
This indicates that the risk of groundwater salinization in the study area 

Fig. 6. Prediction of chloride concentration (mg/L) in the study area by using 
the CBR model. 

Table 4 
Predictive results of affected area and population following five classes of 
salinity concentration in groundwater.  

Magnitude Very 
low 

Low Moderate High Very 
high 

Salinity (mg/ 
L) 

<250 250–500 500–1000 1000–2500 >2500 

Area (km2) 1632.21 1348.5 285.25 43.23 2.82 
In percentage 

(%) 
49.28% 40.72% 8.61% 1.31% 0.09% 

People 670,640 505,237 106,872 16,195 1055 
In percentage 

(%) 
51.59% 38.86% 8.22% 1.25% 0.08%  Fig. 7. Spatial distribution of predicted Chloride and population density in the 

study area. 
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depends significantly on both the pumping activities and the aquifer 
properties. Overall, as an ensemble-based boosting algorithm, the CBR 
technique made significant improvement in overall accuracy, stability 
and computational cost compared to those of the RFR, the XGBR and the 
LGBR models. Therefore, we conclude that the CBR model shows the 
high potential applications for salinity estimation in coastal multi- 
aquifers of the Mekong Delta, Vietnam. The effectiveness of the pro
posed model developed in this work should be tested and compared in 
other parts of the world with similar geographic and hydrographical 
conditions. 
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