
c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

On the adoption of static analysis for software

security assessment–A case study of an

open-source e-government project

Anh Nguyen-Duc

a , ∗, Manh Viet Do

b , Quan Luong Hong

b , Kiem Nguyen

Khac

c , Anh Nguyen Quang

d

a University of South Eastern Norway, Norway
b MQ ICT SOLUTIONS, Viet Nam

c Hanoi University of Science and Technology, Viet Nam

d University of Transport and Communications, Viet Nam

a r t i c l e i n f o

Article history:

Received 13 January 2021

Revised 18 June 2021

Accepted 9 September 2021

Available online 20 September 2021

Keyword:

Security testing

Software vulnerability

SAST

Case studies

Experiments

Combined SAST tools

empirical study

e-government

a b s t r a c t

Static Application Security Testing (SAST) is a popular quality assurance technique in soft-

ware engineering. However, integrating SAST tools into industry-level product development

for security assessment poses various technical and managerial challenges. In this work, we

reported results from a case study of adopting SAST as a part of a human-driven security

assessment process in an open-source e-government project. We described how SASTs are

selected, evaluated, and combined into a novel approach and adopted by security experts

for software security assessment. The approach was preliminarily evaluated using semi-

structured interviews. Our results show that while some SAST tools out-perform others, it is

possible to achieve better performance by combining more than one SAST tools. The com-

bined approach has the potential to aid the security assessment process for open-source

software.

© 2021 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Software vulnerabilities continue to be the major security
threats to software-intensive systems. Vulnerability is defined
as a quality attribute of a software system that could be ac-
cidentally triggered or intentionally exploited and result in a
security failure (Source code security analysis tool functional
specification version 1.0 2007). One of the vulnerability dis-
covery techniques is a static analysis of source code, which
∗ Corresponding author.
E-mail addresses: angu@usn.no (A. Nguyen-Duc), dovietmanh@mqso

Hong), kiem.nguyenkhac@hust.edu.vn (K. Nguyen Khac), anhnq@utc.e
https://doi.org/10.1016/j.cose.2021.102470
0167-4048/© 2021 The Authors. Published by Elsevier Ltd. This is an ope
(http://creativecommons.org/licenses/by/4.0/)
investigate the written source code and hence can be applied
in the life cycle, does not require the system to be executable.
Static application security testing tools (SATs) play an impor-
tant role to ensure the product meets the quality require-
ments (Chess and McGraw, 2004). Tools for static analysis have
rapidly evolved in the last decade, from a simple lexical anal-
ysis to a set of much more comprehensive and complex anal-
ysis techniques. Various SAST tools have been proposed to fa-
cilitate the automatic detection of vulnerabilities in continu-
lutions.vn (M.V. Do), luong.hong.quan@mqsolutions.vn (Q. Luong
du.vn (A. Nguyen Quang).

n access article under the CC BY license

https://doi.org/10.1016/j.cose.2021.102470
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102470&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:angu@usn.no
mailto:dovietmanh@mqsolutions.vn
mailto:luong.hong.quan@mqsolutions.vn
mailto:kiem.nguyenkhac@hust.edu.vn
mailto:anhnq@utc.edu.vn
https://doi.org/10.1016/j.cose.2021.102470
http://creativecommons.org/licenses/by/4.0/

2 c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0

o
v
r

m
a
(
t
i
t
o
r
i
t
P

2

r
t
a
c
o
e
s
t
d

t
w
c
i
i
t
i
i
o

t
p
t
v
c

w
t
g

g
g
S
G
a
S
b
S
p

2

2

S
i
(
c
r
r

t
b
p
t

n
v
v
S
g
n
p
o

O
i
d
t

m

d
t
t
w
a
g
t
e
o
v
i

S
u
d

1 https://nvd.nist.gov/.
2 https://cve.mitre.org/.
3 https://cwe.mitre.org/.
us software development. Not all tools are the same, so de-
elopers need to decide how they can benefit from using the
ight set of tools for their projects.

While SAST has been commercialized becomes a com-
on element in software development environment, they are

lso known to generate misleading (or irrelevant) warnings
 Aloraini et al., 2019 ; Pashchenko, 2017). Given this limita-
ion, the selection of an appropriate tool based on empir-
cal grounds becomes extremely important from an indus-
rial perspective. The combination of different SAST tools
r the combination of these tools with other types of secu-
ity testing techniques could help to increase its applicabil-
ty in real-world projects. Yet, we only find a few compara-
ive empirical studies (Okun et al., 2013 ; Aloraini et al., 2019 ;
ashchenko, 2017 ; Baca et al., 2013 ; Hofer, 2010 ; Okun et al.,
012). Most of these studies base on the test data and do not
eflect the adoption of this type of tools in a real-world con-
ext.In the scope of our research, we are interested in practical
spects of SAST applications: (1) which type of security issues
an actually be detected by SASTs, (2) what is the practical use
f multiple tools to achieve the best performance. This knowl-
dge will not only help practitioners to take informed deci-
ions when selecting the tool(s) to use, but also tool providers
o enhance them and improve the level of support provided to
evelopers.

We investiaged the SASTs in a concrete case study about
he developmentof an open-source solution for secured soft-
are repositories in an e-government system. The repository

onsists of open-source software to be used in all computers
n the e-government system. Vulnerability assessment is an

mportant element of the secured software repository, ensure
hat all software will go through a security analysis before go-
ng further to end-users. In this project, SAST tools are exper-
mented with and adopted to assist vulnerability assessment
f open source software.

This paper reports our experience with adopting SAST

ools in an e-government project through a research-driven

rocess. We proposed three Research Questions (RQs) to guide
he development of this paper. Firstly, we would like to in-
estigate the state-of-the-art SAST tools and the ability to
ombine them in detecting software vulnerabilities. Secondly,
e explore an industrial experience that adopted a combina-

ion of SAST tools in supporting security assessment in an e-
overnment project.

• RQ1. Which SAST tool has the best performance against
the Juliet Test suite?

• RQ2. Is the performance of SAST increased when combin-
ing different tools?

• RQ3: How SAST tools can support security assessment ac-
tivities in an open-source e-government project?

The contribution of this paper as follows:

• An overview of state-of-the-art SAST tools and their appli-
cations

• An experiment that evaluates the performance of these
tools

• An in-depth case study about the adoption of SAST tools
in e-government projects.
The paper is organized as follows. Section 2 presents back-
rounds about software security, SAST, and security in e-
overnment sectors. Section 3 describes our case study of
OREG – Secured Open source-software Repository for E-
overnment. Two main research components of the projects
re presented in this paper, an experiment with different
AST tools in Section 4 and a qualitative evaluation of a com-
ined SAST approach for supporting security assessment in

ection 5 . After that, Section 6 discusses the experience in this
aper, and Section 7 concludes the paper.

. Background

.1. Software security and vulnerabilities

oftware security is “the idea of engineering software so that
t continues to function correctly under malicious attack”
 McGraw and Potter, 2004). Software security is always asso-
iated with the products and data is protected, the skills and

esources of adversaries, and the costs of potential assurance
emedies (Felderer et al., 2016 ; McGraw and Potter, 2004). In
his research, we looked for software vulnerability, which can

e defined as defects or weaknesses in software design, im-
lement or operation management and can be used to break
hrough security policies (Dowd et al., 2007).

Vulnerability databases record structured instances of vul-
erabilities with their potential consequences. It helps de-
elopers and testers be aware of and keep track of existing
ulnerabilities in their developing systems (Ghaffarian and

hahriari, 2017). Many of the databases are the results of a
lobal effort by communities to leverage the existing large
umber of diverse real-world vulnerabilities. Security ex-
erts and communities maintain different databases and tax-
nomies of vulnerabilities, for instance, CVE, CWE NPD, MFSA,
WASP, and Bugzilla. National Vulnerability Database (NVD) 1

s the database operated by the US National Institute of Stan-
ards and Technology that stores vulnerable information in

he form of security checklists, security related software flaws,
isconfigurations, product names, and impact metrics.
Common Vulnerabilities and Exposures (CVE) 2 is the

ataset is a publically available dictionary for vulnerabilities
o allow for a more consistent and concise use of security
erminology. In addition to the CVE entry, the vulnerability
ill also be classified in a set of Common Weakness Enumer-

tion (CWE) 3 categories. The CWE provides a common lan-
uage to describe software security weaknesses and classifies
hem based on their reported weaknesses. For instance, a cat-
gory cross-site scripting (XSS) describes vulnerabilities that
ccur when form input is taken from a user and not properly
alidated, hence, allowing for malicious code to be injected

nto a web browser and subsequently displayed to end-users.
QL-Injection is another common type of vulnerability, where
ser input is not correctly validated and directly inserted in a
atabase query. A path manipulation type occurs when users

https://nvd.nist.gov/
https://cve.mitre.org/
https://cwe.mitre.org/

c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0 3

Table 1 – CWE categories and examples (Oyetoyan et al.,
2018).

Class Id Weakness class
Example Weakness (CWE
Entry)

W321 Authentication and
Access Control

CWE-259: Use of Hard-coded
Password

W322 Buffer Handling
(C/C ++ only)

CWE-121: Stack-based Buffer
Overflow

W323 Code Quality CWE-561: Dead Code
W324 Control Flow

Management
CWE-483: Incorrect Block
Delimitation

W325 Encryption and
Randomness

CWE-328: Reversible One-Way
Hash

W326 Error Handling CWE-252: Unchecked Return Value
W327 File Handling CWE-23: Relative Path Traversal
W328 Information Leaks CWE-534: Information Exposure

Through Debug Log Files
Initialization and
Shutdown

CWE-404: Improper Resource
Shutdown or Release

W329 Injection CWE-134: Uncontrolled Format
String

W3210 Malicious Logic CWE-506: Embedded Malicious
Code

W3211 Number Handling CWE-369: Divide by Zero
W3212 Pointer and

Reference Handling
CWE-476: NULL Pointer
Dereference

can view files or folders outside of those intended by the ap-
plication. Buffer handling vulnerability allows users to exceed
the buffer’s bounds which can result in attacks ranging from
writing instructions to gaining full system access or control.
The overview of different CWE categories is given in Table 1 .
We will use CWE categories to address the type of vulnerabil-
ities that SASTs can detected in this study.

2.2. Static application security testing (SAST)s

Security testing is known as a process intended to reveal flaws
in the security mechanisms of an information system that
protect data and maintain functionality as intended. There are
two major types of security testing, i.e. static testing and dy-
namic testing. Static Application Security Testing (SAST) uti-
lizes a static code analysis tool to analyze source code to iden-
tify potential vulnerabilities or software faults. Different from
dynamic approaches, SAST examines source code without ex-
ecuting it, and yields result by checking the code structure,
the sequences of statements, and how variable values are pro-
cessed throughout the different function calls. Common tech-
niques using in SAST tools include:

1 Syntactic analysis such as calling insecure API functions or
using insecure configuration options. An example of this
category would be an analysis of Java programs that call to
java.util.random (which does not provide a cryptographi-
cally secure random generator).

2 Semantic analysis that requires an understanding of the
program semantics such as the data flow or control flow of
a program. This analysis starts by representing the source
code by an abstract model (e.g., call graph, control-flow
graph, or UML class/sequence diagram). An example of this
class would be a check for direct data-flows from a user
form input to a SQL statement (indicating a potential SQL
Injection vulnerability).

As SAST tools work as a white box testing and does not
actually run the source code, a reported vulnerability from the
tool might not necessarily be an actual one. This can because
of two reasons:

• The source code is secure (true negative)
• The source code has a vulnerability but it is not reported

by the tools (false negative).
• For each correct finding from the tool, a human expert is

necessary to decide:
• If the finding represents a vulnerability, i.e., a weakness

that can be exploited by an attacker (true positive), and,
thus, needs to be fixed.

• If the finding cannot be exploited by an attacker (false pos-
itive) and, thus, does not need to be fixed.

Research about SAST tools is not new. The Center for As-
sured Software (CAS) developed a benchmark test suite with
“good code” and “faulted code” across different languages to
evaluate the performance of static analysis tools (Okun et al.,
2012). They assessed five commercial SAST tools and reported
the highest recall score of 0.67 and the highest precision score
of 0.45. Dıaz and Bermejo compared the performance of nine
SAST tools, including commercial ones, and found an aver-
age recall value of 0.527 and average precision value of 0.7
(Okun et al., 2013). Charest investigated four different SAST
tools in detecting a class of CWE using the Juliet test suite
(Charest and Wu, 2016). The best observed performance in
terms of recall was 0.46 for CWE89 with an average precision
of 0.21. Baca et al. evaluated the use of a commercial SAST
tool and found it is difficult to apply in an industrial setting
(Baca et al., 2013). In his case, the process of correcting false
positive findings leads to additional vulnerability in the ex-
isting secure source code. Hofer conduced few experiments
and found that different SAST tools detected different kinds of
weaknesses (Hofer, 2010). In this research, we will analyze the
effectiveness of seven different SAST tools. Different from pre-
vious research, we also investigate the performance of com-
bining these tools.

2.3. Security concerns in e-Government

e-Government is commonly conceptualized as governments’
use of information technologies combined with organiza-
tional change to improve the structures and operations of
government (Field et al., 2003). The implementation of e-
government is expected to help governments deliver ser-
vices and transform relations with citizens, businesses, and
different units in public sectors (Grönlund, 2001). In con-
trast to developed countries where e-government is well-
established, there are many challenges for e-government in
developing countries, such as an inadequate digital infras-
tructure, a lack of skills and competencies for design, imple-
mentation, use, and management of e-government systems,
and a lack of trust in the security and privacy of the systems

4 c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0

Fig. 1 – An overview of the research (green boxes) and development (grey boxes) process.

(
T

f
p
g
m
f
a
S
p
m
(

A
t
s

i
(
s
s

e
c
g

S
t

3

3

V
n
f
t
t
t
e
t
w
t
(

a
t

a
s
o
p
o
2
p

T
m
w
a
r
e
b
w
i
t
s

c
p
p
s
t
w
s
f
a
t
m
(

3

S
a

F
a
s

r
m

 Twizeyimana and Andersson, 2019 ; Nkohkwo and Islam, 2013 ;
wizeyimana, 2017).

Security and privacy threats are always major concerns
or e-government, such as cyberspace identity thefts and

rivacy violations (Twizeyimana and Andersson, 2019). If e-
overnment systems are not well secured, security attacks
ay harm e-government systems at any time, leading to dif-

erent types of financial, psychological and personal dam-
ges. Commonly reported security attacks include Denial of
ervice (DoS) attacks, unauthorised network access, theft of
ersonal information, online financial fraud, website deface-
ent, application-layer attacks such as cross-site scripting

XSS), and penetration attacking (Bélanger and Carter, 2008).
lshehri emphasized that privacy and security must be pro-

ected to increase the user’s trust while using e-government
ervices (Alshehri and Drew, 2010).

Security measures in an e-government system can be
mplemented at physical, technical, or management levels
 Bélanger and Carter, 2008). As a software engineering re-
earch, we focused on the technical part of security mea-
ure. Firewalls, intrusion detection and prevention software,
ncryption, and secure networks are the most common se-
urity measures that have been implemented to secure e-
overnment agencies against cyber threats (Carlos et al., 2012).
AST is a part of the vulnerability assessment system, belongs
o the intrusion detection and prevention measures.

. Research methodology

.1. Research context

ietnam is prioritizing e-government as a central pillar of the
ational digital transformation strategy to increase digital in-

rastructure, solutions, and capacity in government, indus-
ry, and society. During the last few decades, several initia-
ives have been implemented at regional and national levels
o increase the digital capacity of the government, provide
-services to some extent, develop IT infrastructure and in-
egrate national information systems and database. Aligned

ith the national strategy, a government-funded project, en-
itled “Secured Open source-software Repository for E-Government
SOREG) ” has been conducted. It is note that the project is
mong several funded R&D projects towards the implemen-
ation of the whole e-government systems in a large-scale.

Aligned with the e-government policy, the development
nd security assurance of an open-source repository is neces-
ary. The repository will serve for ca. 2.8 million government
fficers. Therefore, the security aspect is of high priority. The
roject was funded by the Ministry of Science and Technology
f Vietnam from Nov-2018 to Oct-2020. The initiated budget is
00,000 Eur. The project team includes 23 key members who
articipate in project planning, implementation, and closure.
he main objectives of SOREG are (1) proposal and develop-
ent of a prototype of a community-driven open-source soft-
are repository, (2) development and validation of a security

ssessment approach using SAST and DAST tools. The secu-
ity assessment module focuses on software vulnerability. The
xpectation is that the module can detect existing vulnera-
ilities from dependent components, such as libraries, frame-
orks, plug-ins, and other software modules. Issues with X-

njections, e.g. SQL injection, LDAP injection should be de-
ected at a practical rate. Other types of vulnerabilities as de-
cribed in CWE should also be covered at an acceptable level.

The project was led by a domestic software company so-
alled MQ Solution. We participated in the project with both

assive and participant observation. The first author of the pa-
er participated in the project as a researcher, and is respon-
ible for the plan and conducting an experiment with SAST

ools. The research design was conducted and the experiment
as carried on without affecting the original project plan. The

econd, third, and fourth authors of the paper directly per-
ormed the experiment following a predetermined design and

lso participated in developing different software modules in

he projects. The first part of SOREG with literature review and

arket research has been partly reported in our previous work
 Nguyen Duc and Chirumamilla, 2019).

.2. Research design

ince the project involves both research and development
ctivities, we will only focus on the research-relevant parts.
ig. 1 describes the research process leading to the selection

nd evaluation of SAST tools in supporting vulnerability as-
essment in SOREG. In the scope of this work, we focus on the
esearch activity; hence, the open-source repository develop-

ent is not mentioned (represented as a grey box). We also

c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0 5

Table 2 – A list of popular SAST tools by the end of 2018.

Tool name Description

SonarQube Scans source code for more than 20 languages
for Bugs, Vulnerabilities, and Code Smells

Infer Or “Facebook Infer”, static check for C, C ++ ,
Objective-C and Java, work for iOS and Android

IntelliJ IDEA integrated development environment (IDE)
written in Java, support multiple languages

VCG an automated code security review tool that
handles C/C ++ , Java, C#, VB and PL/SQL

Huntbug A Java bytecode static analyzer tool based on
Procyon Compiler tools aimed to supersede the
FindBugs

PMD A cross-language static code analyzer
Spotbug A static analysis for Java code, a successor of

FindBugs

5 https://fbinfer.com/.
exclude the research and development of Dynamic Applica-
tion Security Testing (DAST) and the integration of DAST and
SAST tools in this paper (the other two grey boxes in Fig. 1).

This paper reports a part of the case study with two parts,
an experiment that investigates SAST tools with a test suite
and a qualitative evaluation of the proposed SAST solution.
When the project had started, we conducted an ad hoc litera-
ture review to understand the research area of software secu-
rity testing and particularly SAST and DAST tools. After that,
as a feasibility analysis, we selected a set of SAST tools and
conducted an experiment to evaluate the possibility of com-
bining SAST tools. A development activity follows with the
architectural design of the integrated SAST solution and pro-
totype development. After that, we conducted a preliminary
evaluation of the prototype with expert interviews.

We described which SAST tools are selected (Section 4.1),
the test suite to compare them (Section 4.2), the evaluation
metric (Section 4.3), and the experiment result (Section 4.4).
We briefly describe the outcome of the integrated SAST solu-
tion (Section 4.5) in this paper. The analysis of semi-structured
interviews is shown in Section 5.

All software submitted to the repository must go through
a vulnerability assessment, as shown in Fig. 2 . The assess-
ment module includes two parts (1) tools including both DAST
and SAST tools, and (2) experts as moderators. The experts re-
ceived reported results from tools and decide the vulnerability
level of the inputted software. If the software passes the check,
it will be published in the repository and available to all users.
Otherwise, the software will be sent back to the submitters
and not accepted for publishing.

3.3. The selected SAST tools

The literature review on SAST and experts’ opinions are the
two main inputs for selecting SAST tools. We gathered seven
tools that attract both research and practitioners by the time
the research project was conducted (end of October 2018). The
list of the tools is summarized in Table 2 .

SonarQube 4 is one of the most common open-source static
code analysis tools for measuring quality aspects of source
4 www.sonarqube.org.
code, including vulnerability. SonarQube implements two fun-
damental approaches to check for issues in source code: (1)
syntax trees and API basics and (2) semantic APIs. The code
analyzer parses the given source code file and produces the
syntax tree. The structure is used to clarify the problem as
well as determine the strategy to use when analyzing a file.
In addition to enforcing rules based on data provided by the
syntax tree, SonarQube provides more information through
a semantic representation of the source code. However, this
model currently only works with Java source code. This se-
mantic model provides information regarding each symbol
manipulated. Using the API, Sonar has built-in several pop-
ular and proven tools available in the open-source commu-
nity. These tools, through the implementation of standardized
testing source code, consider possible errors and errors, each
in their own opinion. The nature of checks ranges from small
styles, for example detecting unwanted gaps, to more com-
plex spaces that are more prone to potential errors, such as
variables that cannot qualify checks result in null references.

Infer ,5 also referred to as "Facebook Infer", is a static code
analysis tool developed by an engineering team at Facebook
along with an open-source community. It cover multiple lan-
uages, such as Java, C, C ++ , and Objective-C, and is deployed
at Facebook in the analysis of its Android and iOS apps.
Its foundation is theories of formal verification of software
(Churchill et al., al., Sergio). Infer uses a technique called bi-
abduction to perform a compositional program analysis that
interprets program procedures independently of their callers
(https). Common quality checks include null pointer excep-
tions, resource leaks, annotation reachability, missing lock
guards, and concurrency race conditions in Android and Java
code. It checks for null pointer problems, memory leaks, cod-
ing conventions, and unavailable API’s in C, C ++ and Objective
C. It is claimed that this enables Infer to scale to large code-
bases and to run quickly on code-changes in an incremen-
tal fashion, while still performing an inter-procedural analy-
sis that reasons across procedure boundaries (Calcagno et al.,
2015).

Intellij IDEA

6 is a static code analysis feature that provides
an on-the-fly code check when using Intellij development en-
vironment. Various inconsistencies, probable bugs, redundan-
cies, spec violations, etc. are highlighted in the editor right
while you are typing. After IntelliJ IDEA has indexed a source
code folder, it claims to produce a fast and intelligent experi-
ence by giving relevant suggestions in every context, i.e. intel-
ligent quick-fixes and on-the-fly code analysis.

VCG

7 is an automated code security review tool that han-
dles C/C ++ , Java, C#, VB and PL/SQL. In addition to performing
some more complex analysis it has a portable and expandable
configuration that allows users to add any bad functions (or
other text). It provides a nice visualization (for the entire code-
base and for individual files) showing relative proportions of
code, whitespace, comments, "ToDo" style comments and bad
code. It also searches intelligently to identify buffer overflows
and signed/unsigned comparisons.
6 https://www.jetbrains.com.
7 https://security.web.cern.ch/recommendations/en/codetools/

vcg.shtml.

http://www.sonarqube.org
https://fbinfer.com/
https://www.jetbrains.com
https://security.web.cern.ch/recommendations/en/codetools/vcg.shtml

6 c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0

Fig. 2 – An overview of the open source software repository.

o
f
b

g

u

J

A

P

f
p

3

D

T
B

Huntbug 8 is a open source Java static analyzer tool based

n Procyon Compiler Tools which aims at outperforming the
amous tool FindBugs. The analysis applied by the tool is
ased on detecting bug patterns.

PMD

9 is a source code analyzer. It finds common pro-
ramming flaws like unused variables, empty catch blocks,
nnecessary object creation, and so forth. It supports Java,

avaScript, Salesforce.com Apex and Visualforce, PLSQL,
pache Velocity, XML, XSL. Similar to SonarQube or Huntbug,
MD operates using a set of rules.
8 https://github.com/amaembo/huntbugs.
9 https://pmd.github.io/.

n
b
a
w

SpotBugs 10 is a program that uses static analysis to look
or bugs in Java code. SpotBugs checks for more than 400 bug
atterns.

.4. The test suite

ifferent benchmark test suites exist for testing security tools.
wo popular examples are the Juliet test suite and OWASP
enchmark. We decided to use the Juliet test suite because it is
ot only limited to the top 10 vulnerabilities as of the OWASP
enchmark dataset. In addition, the test suite is designed for
ll ranges of weaknesses and not only limited to web-based

eaknesses. One of the goals for developing the Juliet test
10 https://spotbugs.github.io/.

https://github.com/amaembo/huntbugs
https://pmd.github.io/
https://spotbugs.github.io/

c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0 7

suite was to enable open dataset for empirical research. The
test suite has been popular among software and security en-
gineering research (Oyetoyan et al.; Díaz and Bermejo, 2013 ;
Velicheti et al., 2014 ; Oyetoyan et al., 2018). The latest version
(ver 1.3) comprises 64,099 test cases in C/C ++ and 28,881 test
cases in Java.11 It is fair to focus on these two programming
languages due to the dominance of them in SOREG’s source
code.

3.5. Evaluation metrics

There exist a massive amount of research evaluating software
quality models and tools and the performance metrics have
been “de facto” standard in software engineering research. We
reported the following metrics for each SAST (Oyetoyan et al.,
2018 ; Okun et al., 2013):

• True Positive (TP): The number of findings where the tool
correctly reports the flaw that is the target of the test case.

• False Positive (FP): The number of findings where the tool
reports a flaw with a type that is the target of the test case,
but the flaw is reported in non-flawed code.

• False Negative (FN): This is not a tool result. A false negative
result is added for each test case for which there is no true
positive.

• Blank (Incidental flaws): This represents tool’s result where
none of the types above apply. More specifically, either the
tool’s result is not in a test case file or the tool’s result is
not associated with the test case in which it is reported.

• Recall = TP / (TP + FN)
• Precision = TP / (TP + FP)
• F1 Score = 2 (Recall x Precision)/ (Recall + Precision)

It is possible to have both TP and FP in a test file. In this case,
our SAST is not sophisticated enough to discriminate for in-
stance when the data source is hardcoded and therefore does
not need to be sanitized. We adopt the “strict” metrics defined
by CAS (Velicheti et al., 2014) as they truly reflect a real-world
situation.

4. Results

The answers to RQ1 to RQ3 are described in Sections 4.1 ,
4.2 and 4.3 correspondingly.

4.1. RQ1. Which SAST tool has the best performance
against the Juliet test suite?

We report the evaluation results of the seven tools on Juliet
Test Suite v1.3. as shown in Table 3 . Looking at the number of
outputs from each tool, Intellij is on top of the list with 37.694
reported issues. PMD is in the second place with 37.405 re-
ported issues and after that Sonarqube finds 28.875 reported
issues. To measure the accuracy of the tools, we calculated the
F1 score as shown in Table 3 . The top three most accurate tools
in our experiment are Intellij, PMD, and Sonarqube accord-
ingly. The successors of FindBugs, i.e. Huntbugs and Spotbugs
11 https://samate.nist.gov/SARD/testsuite.php.

detect a small number of issues, showing their limited capac-
ity in a software security area. Infer, the SAST promoted by
Facebook finds only 428 issues from our test suite.

False Positives are also of our concern since this is one of
the main barriers to adopt SAST tools in industrial projects
(Oyetoyan et al., 2018). This reflects the value of precisions.
The rank of SAST is a bit different here, as Sonarqube has the
best precision value (0,6), following by VCG (0,59) and Intellij
(0,57).

Answer to RQ1 : Sonarqube has the best precision score of

0.6. Intellij has the best F1 score of 0.69. For a single CWE

class, the best achieved F1 score is from PMD for the error

handling class.

We looked into details how each tool performs regarding
CWE categories. Table 4 reports the F1 score of the seven tools
across our 12 weakness categories.

• Authentication and Authorization include vulnerabilities
relating to unauthorised access to a system. Intellij IDEA
has the best F1 score of 0.53 and followed by Sonar Qube
with 0.26. Overall the ability to detect issues with SAST
tools in this category is quite limited.

• Code quality includes Issues not typically security related
but could lead to performance and maintenance issues. In-
tellij IDEA has the best F1 score of 0.83 and followed by PMD
with 0.79. Sonar Qube has an F1 score of 0.63, which is in
third place. Other tools are not able to detect any issues
in this category. This can be explained by the comprehen-
siveness of SAST tools, since tools such as SonarQube and
Intellij cover not only vulnerabilities but also many other
types of concerns, e.g. code smells, bugs, and hot spots

• Control Flow Management explores issues of sufficiently
managing source code control flow during execution, cre-
ating conditions in which the control flow can be modified
in unexpected ways. PMD has the best F1 score of 0.69 and
followed by Sonarqube with an F1 score of 0.62.

• Encryption and Randomness refer to a weak or improper
usage of encryption algorithms. Intellij IDEA has the best
F1 score of 0.53 and followed by Sonar Qube with an F1
score of 0.26. Overall the ability to detect issues with SAST
tools in this category is quite limited.

• Error Handling includes failure to handle errors properly
that could lead to unexpected consequences. PMD has the
best F1 score of 0.84 and followed by Intellij IDEA with an
F1 score of 0.73.

• File Handling includes checks for proper file handling dur-
ing read and write operations to a file on the hard-disk. In-
tellij IDEA has the best F1 score of 0.7 and followed by PMD
with an F1 score of 0.63. Sonarqube works not so well with
this category as its F1 score is only 0.35.

• Information Leaks contains vulnerabilities about exposing
sensitive information to an actor that is not explicitly au-
thorized to have access to that information. SonarQube has
the best F1 score of 0.67 and followed by Intellij IDEA and
PMD with similar scores.

https://samate.nist.gov/SARD/testsuite.php

8 c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0

Table 3 – Evaluation results of SAST tools against Juliet 3.1. Testsuite.

Tool No. Detections TP FP FN Recall Precision F1-Score

Sonarqube 28,875 9381 6216 17,321 0.35 0.6 0.44
Infer 428 1564 1364 45,768 0.03 0.53 0.06
Intellij 37,694 52,276 40,026 8502 0.86 0.57 0.69
VCG 8143 8900 6164 38,053 0.19 0.59 0.29
PMD 37,405 12,094 10,389 8791 0.58 0.54 0.56
Huntbugs 2677 1873 2138 43,519 0.04 0.47 0.07
SpotBug 624 347 313 45,572 0.01 0.53 0.02

Table 4 – Evaluation results of SAST tools across different CWE categories.

CWE Class Sonar Quebe Infer Intellij IDEA VCG PMD Huntbugs Spotbugs

Authentication and Access Control 0.26 0.17 0.53 0.19 0.25 0.07 0
Code quality 0.63 0 0.83 0 0.79 0 0
Control Flow Management 0.38 0 0.69 0.28 0.65 0 0
Encryption and Randomness 0.62 0 0.6 0.15 0.68 0 0
Error Handling 0.64 0 0.73 0 0.84 0 0
File Handling 0.35 0 0.7 0.23 0.63 0.07 0
Information Leaks 0.67 0 0.62 0.45 0.63 0 0
Initialization and Shutdown 0.16 0 0.73 0.39 0.72 0 0
X-Injection 0.51 0 0.72 0.36 0.68 0.15 0.04
Malicious Logic 0.79 0.02 0.8 0.08 0.6 0 0
Number Handling 0.29 0.12 0.56 0.17 0.29 0 0
Pointer and Reference Handling 0.23 0 0.71 0.21 0.75 0 0

4
c

W
d

t
f
g
c
n
p
c
t

f
e
v
S
S

F
i
b
i

• Initialization and Shutdown concern improper initializing
and shutting down of resources. We see that IntelliJ IDEA

has the best F1 score of 0.73 and followed by PMD with an

F1 score of 0.72.
• X-Injection: a malicious code injected in the network

which fetched all the information from the database to the
attacker. This is probably one of the most important types
of vulnerability. In this category, IntelliJ IDEA is the most ac-
curate tool with an F1 score of 0.72 followed by PMD (0.68)
and Sonar Qube (0.51)

• Malicious Logic concerns the Implementation of a pro-
gram that performs an unauthorised or harmful action (e.g.
worms, backdoors). This is also a very important type of
vulnerability and probably among the most common ones.
In this category, IntelliJ IDEA is the most accurate tool with

an F1 score of 0.8 followed by Sonar Qube (0.79) and PMD

(0.6)
• Number Handling include issues with incorrect calcula-

tions, number storage, and conversion weaknesses. Intellij
IDEA has the best F1 score of 0.56 and followed by PMD and

Sonar Qube with the same F1 score of 0.29.
• Pointer and Reference Handling issues, for example, the

program obtains a value from an untrusted source, con-
verts this value to a pointer, and dereferences the resulting
pointer. PMD has the best F1 score of 0.75 and followed by
PMD and Intellij IDEA with the same F1 score of 0.71.

.2. RQ2 is the performance of SAST increased when

ombining different tools?

e also investigated if combining various SAST tools can pro-
uce better performance. We run the combination of two,
hree, and four SAST tools and compare them against our per-
ormance metrics. Table 5 presents our results in three cate-
ories (1) the combination that gives the best F1 score, (2) the
ombination that gives the best precision, and (3) the combi-
ation that produces the largest number of outputs. We re-
orted again the result with IntelliJ IDEA as a benchmark for
omparison. There are several worth-noticing assumption for
his experiment:

• Firstly, we look for a tool or a set of tools that are practi-
cally useful. There is no interest in developing a new tool
or extending a tool for better performance.

• Secondly, tools are treated as black boxes. Hence all the ag-
gregation was done at the scanning result level. We wrote
glue code that gathers all result files from different SASTs
and combined these tools by aggregating the result files.
The aggregation process is described in the workflow in

Fig. 3 . All the evaluation metrics, including TP, FP, TN, FN,
Recall, Precision and F-score are recalculated basing on the
aggregated files F_final (Fig. 3)

The result shows that it is possible to increase some per-
ormance metrics by combining different SAST tools. How-
ver, there are none of the combinations can produce the best
alue for all performance metrics. Interestingly, we see that
onarqube appears in all best combinations, even though the
AST does not perform the best among single SAST tools.
rom Table 5 , we can say that the 5-tools combination includ-
ng SonarQube, Inteliji, VCG, Infer and SpotBug would proba-
ly give the best outcome in all of our metrics. However, this
s beyond our experiment.

c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0 9

Fig. 3 – The work-flow of the tool aggregation process.

10 c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0

Table 5 – The effectiveness of combining various SAST tools.

Tool TP FP FN Recall Precision F-score
No of
outputs

Evaluation

criteria

Sonarqube + Inteliji 65,927 49,518 2199 0,97 0,57 0,72 43,997 Best F-Score
Sonarqube + SpotBug 9722 6544 17,296 0,36 0,62 0,45 28,900 Best

Precision
Sonarqube + Inteliji + VCG + Infer 73,811 55,692 2095 0,97 0,57 0,72 44,101 Largest

amount of
outputs

Inteliji IDEA 52,276 40,026 8502 0,86 0,57 0,69 37,694

4

T
o
(

a
v

S
t
w

t
s
p
i
a
s
s

g
i
g
D
w

4
a
p

S
h
i
t
t
f
p
m
s
i
l

b
t
a
e
a
e
a

Answer to RQ2 : Combining SAST tools does give a better

performance than of a single SAST, and this depends on

the performance metrics

.3. The integrated SAST tools solution

he experiment produces an input for the design and devel-
pment of the SAST module in the security assessment part

as shown in Fig. 2) of the project. We present only briefly the
rchitectural decisions that are taken and some architectural
iews of the solution.

From practical aspects, there are several requirements for
AST modules from the repository development and opera-
ion team. The team emphasized five criteria while working
ith SAST tools:

1 Result accuracy. SAST modules should scan within a lim-
ited timeframe and its output compared against a test ap-
plication for which the results are known a-priori. The de-
velopment team emphasizes the importance of False Pos-
itives (TPs). It is an active research on the effectiveness of
SAST, however, many SAST tools have been used in prac-
tice.

2 Simplicity. Scanning and visualizing the result should be
straightforward so that users without security background

can also operate with or without manual documents. Scan-
ning source code should not require the user to perform

excessive operations to start running the tool.
3 Vulnerability coverage. We focused on the ability to detect

different categories in the CWE database. Besides, detec-
tion of common vulnerabilities as identified by other in-
dustry standards such as OWASP Top 10 or SANS is desir-
able. Since the vulnerability taxonomy and ratings differ
by each SAST vendor, it is necessary to receive from each

SAST vendor their list and normalize them one against the
other for a true vulnerability coverage comparison.

4 Supports multiple languages. Ensure that the SAST tool
supports the popular programming languages such as Java
and C ++ . It should also have a possibility to support
emerging technologies as these may prove to be significant
in the long run. For example, mobile or updated develop-
ment languages (e.g. Android, Objective C, Ruby on Rails)

5 Customizability. The ability to adapt the scan results to dif-
ferent output format and integrate to different business
logics. Each organization uses its’ own framework for ac-
cessing databases and so the SAST tool must be customiz-
able to the proprietary code. This capability also eliminates
false positives that occur due to the custom code and the
organization’s business logic

Especially, when looking at the focus on FP, simplicity and

he ability to customize, the development team had decided to
elect the combination of SonarQube and SpotBug as the most
ractical solution with SAST tools. The further development

ncludes a spotbug plugin to a community-version SonarQube
nd a new SonarQube widget to customize the scanning re-
ult. The logical view and development view of the integrated

olution is shown in Fig. 4 .
The overall architecture of modules of SAST tools inte-

rated into SonarQube is presented in Fig. 5 . The blue boxes
ncludes the aggregator that produces and process the aggre-
ated result files F_finals, the configuration elements for AST

ev Plugin and the user interface using HTML template in

idgets.

.4. RQ3: how SAST tools can support security
ssessment activities in an open-source e-government
roject?

emi-structured interviews were conducted with four stake-
olders in the project. The profile of the interviewee is given

n Table 6 . The same interview guideline was used, including
hree main sections (1) Questions regarding the usability of
he tool, (2) Questions regarding the usefulness of the tools
or vulnerability assessment, and (3) Questions regarding the
erformance of the tools. The interviews ranged from 20 to 30
ins in total. We did note-taking during the interviews and

ummarized them into three main themes. It is noted that all
nterviews were done in Vietnamese, so the quotes are trans-
ated into English.

Perceptions about the usability of the SAST tools : there has
een a consensus among interviewees about the usability of
he tool. The user interface has been continuously improved

nd the final version has been tested with different stakehold-
rs in the project. Before the tool’s effectiveness can be evalu-
ted, it is practically important that it can be accessed and op-
rable by targeted users. Some feedback about the interfaces
re:

• “The user interface is lean and intuitive! ” (P04)
• “I think the web interface looks good. It is easy to use and for me

all the key features are visible. I do not need any manual docu-
ments to work with this tool ” (P02)

c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0 11

Fig. 4 – The logical view and development view of an integrated SAST solution.

Table 6 – Profiles of interviewees.

Interview No. Title Role in the project
Familiar with software
security (from 1 to 5)

P01 Project manager Lead the project from planning to completion. Coordinating
vulnerability assessment modules with the repository

2

P02 Security expert Representative of an expert user of a pilot organization 5
P03 System operator Representative of a system operator in the pilot

organization
4

P04 Project developer A developer of the repository 3

Perceptions about the performance of the SAST tools : the
performance of the tools originally refers to the technical ca-
pacity of the tools against real-world applications. Our inter-
viewee highlighted the importance of showing the possibility
of capture vulnerabilities across different categories of weak-
ness:

• “SonarQube has a wide range of test coverage. The adopted ver-
sion inherited this from the community version and covers differ-
ent types of vulnerabilities. It is important to be aware of different
possible threats to our repository ” (P03)

We also see that performance is interpreted as a practical
performance, that is the tools should be an indicator of se-
curity level and can be integrated into other ways of security
assessment:

• “The experiments show that the effectiveness of top 3 SAST tools
does not differ much from each other. Then we care about how
difficult it is and how much time it takes to develop and integrate
the selected SAST tools to our repository. The proposed architec-
ture looks great and integral into the overall system.” (P04)

• “Testing SAST tools is an important step that giving us confi-
dence in adopting the right tool in the next step. Performance and
coverage are important insights for expert teams to decide the
security level of software apps ” (P01)

Perceptions about the usefulness of the SAST tools : in the
nutshell, it seems that the automated tools will not be fully au-
tomatically operated in this project. The tools are perceived as
useful as a complementary means to assess security. It should
be combined with another type of security testing, i.e. DAST
and other types of security assessment to give a triangulated
result.

• “SAST or even the combination of SAST tools and DASTs and
other automated tools are not sufficient to ensure a safe soft-
ware repository. I think the tools play important roles as inputs
for expert teams who operate and manage security aspects of the
repository .” (P03)

• “I think the tool has a good potential! I am looking forward to see-
ing how DASTs and SAST tools can be combined in this project ”
(P02)

Answer to RQ3: SAST tools should be used towards a prac-

tical performance and in the combination with triangulated

approaches for human-driven vulnerability assessment in

real-world projects.

5. Discussion

5.1. Discussing the research questions

The experiment conducted in this research strengthens the
findings from previous empirical studies on SAST tools. We
updated the research of SAST tools with the state of the art

12 c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0

Fig. 5 – An architectural view on modules of the extended Sonar Qube tool.

c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0 13

tool list in 2018. By this time, we still see that using one SAST
tool is not enough to cover the whole range of security weak-
nesses at the implementation phase. This agrees with the ob-
servation by Oyetoyan et al. (2018) . However, the current SAST
tools are rich in their features, e.g. ability to support multi-
ple languages, various visualization options, and customiz-
ability. Previous studies reported the best precisions values of
SAST tools around 0.45 – 0.7 (Okun et al., 2013 ; Hofer, 2010 ;
Okun et al., 2012). Our study also reported the precision val-
ues of our best tools in this range. We also observed that SAST
tools work relatively better in some CWE categories, such as
Code quality, Encryption and Randomness, Error Handling, In-
formation Leaks, and Malicious Logic.

In addition to existing studies, we revealed the possibil-
ity of combining different SAST tools to achieve better per-
formance. In particular, we have used SonarQube and the
base platform and combine the rulesets from other tools.
As static analysis uses basically whitebox testing to explore
source code, this result shows the potential to improve ex-
isting tools, and probably towards a universal security static
security ruleset. This result might be interesting for both re-
searchers and practitioners who look for practical improve-
ment of SAST tools that are currently adopting in industry. In
this work, we only adopted a simple voting mechanism. Future
work would be an investigation of more advanced approaches,
i.e. ensembling techniques or white-box analysis of SASTs.

Previous studies reported many challenges in adopting
SAST tools during different stages of software project life cy-
cles (Oyetoyan et al., 2018 ; Okun et al., 2013 ; Aloraini et al.,
2019 ; Pashchenko, 2017). In this study, we focus on the deploy-
ment stage where software from other parties is tested before
publishing. This quality check gate is common in all software
repository models, such as Apple Store or Google Play. The ob-
jective of SAST here is different; we aim at supporting security
assessment, not guiding software developers to improve their
source code. The performance of the systems are possitvely
perceived, as described in RQ3. Within the scope of SOREG, we
see that the adopted approach is practically useful and con-
tribute to the overall project scope. However, SASTs, includ-
ing aggregated approaches are still far from a maturity state.
False positives can not be reduced only by combining different
SASTs and needed to be managed with the aid of other types
of analysis, i.e. DAST:

5.2. Threats to validity

Our research also has some limitations. Firstly, we only
include open-source SAST tools and only conduct security
testing for open-source software. However, as we see from
existing research, it might not be too much different in terms
of tool performance with commercial SAST tools. Secondly,
our research aims at developing a prototype and evaluat-
ing the proposed solution, therefore, we did not focus on
architectural details and implementation. It could be that
the perceived usefulness can be improved when we have
a full-scale development of the combined SAST solution.
Thirdly, we preliminary tested our SAST tools with a sim-
ple software application. The claimed results are mainly
based on our experiments with the Juliet test suite. A case
study with a large-scale industrial application might pro-
vide more insight that is complementary to our findings.
Last but not least, the study is conducted in the context
of a Vietnamese government project, which would have
certain unique characteristics regarding organizational and
managerial aspects. However, the research design was con-
ducted separately in Norway and the observation process has
been conducted with scientific and professional attitudes.
The link to the Juliet test suite is given in this link: https:
//samate.nist.gov/SRD/testsuite.php . The experiment data is
available published at https://docs.google.com/spreadsheets/
d/1aH228YZUkDQ _ ZsHu6l6Lg-ZMWjhMEpjwgtsTivijpJE/edit?
usp=sharing. We tried to report as detail as possible the
experiment process so that one can replicate our work in the
same condition.

6. Conclusions

We have conducted a case study on a two-year project that
develop and evaluate a secured open-source software repos-
itory for the Vietnamese government. This paper reports a
part of the paper about evaluating and combining SAST tools
for security assessment. Among evaluated SAST tools, we
have found that Sonarqube and Intellij have the best perfor-
mance. The combination does give a better performance than
a single SAST, depending on the performance metrics. Prac-
tically, these SAST tools should be used towards a practical
performance and in the combination with triangulated ap-
proaches for human-driven vulnerability assessment in real-
world projects. In the future work, we will report the next step
of the project, with a similar investigation on DAST and the ef-
fectiveness of combining SAST tools and DASTs in supporting
software security assessment.

Declaration of Competing Interest

None.

CRediT authorship contribution statement

Anh Nguyen-Duc: Conceptualization, Data curation, Writ-
ing – original draft, Validation. Manh Viet Do: Conceptual-
ization, Investigation, Writing – review & editing, Project ad-
ministration. Quan Luong Hong: Conceptualization, Inves-
tigation, Writing – review & editing, Funding acquisition.
Kiem Nguyen Khac: Software, Investigation, Visualization.
Anh Nguyen Quang: Software, Investigation, Writing – review
& editing.

Acknowledgement

This paper is supported by Vietnam Ministry of Science and
Technology under the project “Secured Open source-software
Repository for E-Government”, number KC.01.16/16-20. The
project is led by MQ Solution 12.

https://samate.nist.gov/SRD/testsuite.php
https://docs.google.com/spreadsheets/d/1aH228YZUkDQ_ZsHu6l6Lg-ZMWjhMEpjwgtsTivijpJE/edit?usp=sharing

14 c o m p u t e r s & s e c u r i t y 1 1 1 (2 0 2 1) 1 0 2 4 7 0

R

S

C

O

F

M

G

D

V

O

O

A

P

D

h
C

C

S

F

G

T

B

A

C

B

H

O

N

C

N

T

D
S
l

A
t

D
o

N
a
S
a
I
t
s

M

i

r

Q

f

N
T
s
a

A

V
c
i
e

E F E R E N C E S

ource code security analysis tool functional specification

version 1.0, National institute of standards and technology,
Special Publication 500-268 (2007).

hess B , McGraw G . Static analysis for security. IEEE Secur.
Privacy 2004;2(6):76–9 .

yetoyan, T.D., Soares Cruzes, D., Jaatun, M.G.: An empirical study
on the relationship between software security skills, usage
and training needs in agile.

elderer, M., Buchler, M., Johns, M., Brucker, A.D., Breu, R.,
Pretschner, A.: Chapter one - security testing: a survey. In:
Memon, A. (ed.) Advances in Computers, vol. 101, pp. 1–51.
Elsevier, January 2016. 10.1016/bs.adcom. 2015.11.003

cGraw G, Potter B. Software security testing. IEEE Secur. Priv.
2004;2(5):81–5. doi: 10.1109/MSP.2004.84 .

haffarian SM , Shahriari HR . Software vulnerability analysis and

discovery using machine-learning and data-mining
techniques: a Survey. ACM Comput. Surv. 2017;50(4) pp.
56:1–56:36, Aug. 2017 .

íaz G, Bermejo JR. Static analysis of source code security:
assessment of tools against SAMATE tests. Inf. Softw. Technol.
2013;55(8):1462–76. doi: 10.1016/j.infsof.2013.02.005 .

elicheti LMR , Feiock DC , Peiris M , Raje R , Hill JH . Towards
modeling the behavior of static code analysis tools. In:
Proceedings of the 9th Annual Cyber and Information

Security Research Conference. ACM; 2014. p. 17–20 .
yetoyan, T.D., Milosheska, B., Grini, M., & Soares Cruzes, D.

(2018). Myths and facts about static application security
testing tools: an action research at telenor digital. In J.
Garbajosa, X. Wang, & A. Aguiar (Eds.), Agile Processes in

Software Engineering and Extreme Programming (pp. 86–103).
Springer International Publishing.

kun V , Delaitre A , Black PE . Report on the static analysis tool
exposition (SATE) IV. Tech. Rep., NIST 2013 January .

loraini B, Nagappan M, German DM, Hayashi S, Higo Y. An

empirical study of security warnings from static application

security testing tools. J. Syst. Softw. 2019;158.
doi: 10.1016/j.jss.2019.110427 .

ashchenko I. FOSS version differentiation as a benchmark for
static analysis security testing tools. In: Proceedings of the
2017 11th Joint Meeting on Foundations of Software
Engineering; 2017. p. 1056–8. doi: 10.1145/3106237.3121276 .

owd M , McDonald J , Schuh J . The Art of Software Security
Assessment. Addision-Wesley publications; 2007 .

ttps://fbinfer.com/docs/separation- logic- and- bi- abduction/
alcagno Cristiano , Distefano Dino , Dubreil Jeremy ,

Gabi Dominik , Hooimeijer Pieter , Luca Martino , O’Hearn Peter ,
Papakonstantinou Irene , Purbrick Jim , Rodriguez Dulma . In:
Moving Fast with Software Verification. NASA Formal
Methods. Lecture Notes in Computer Science, 9058. Cham:
Springer; 2015. p. 3–11 .

hurchill, Dulma; Distefano, Dino; Luca, Martino; Rhee, Ryan;
Villard, Jules. "AL: A New Declarative Language for Detecting
Bugs with Infer". Facebook Code Blog Post.

ergio, de Simone. "Facebook’s new AL language aims to simplify
static program analysis". InfoQ.

ield T , Muller E , Lau E , Gadriot-Renard H , Vergez C . The case for
egovernment: excerpts from the OECD report “The
E-Government Imperative. OECD J. Budgeting 2003;3(1):61–96 .

rönlund Å . Electronic Government: Design, Applications and

Management: Design, Applications and Management. IGI
Global; 2001 .

wizeyimana JD, Andersson A. The public value of
E-Government–a literature review. Gov. Inf. Q.
2019;36(2):167–78. doi: 10.1016/j.giq.2019.01.001 .
élanger France , Carter Lemuria . Trust and risk in e-government
adoption. J. Strat. Inf. Syst. 2008;17(2):165–76 .

lshehri Mohammed , Drew Steve . In: IADIS International
Conference ICT, Society and Human Beings. E-government
fundamentals; 2010 .

arlos E , Jiménez Francisco , Falcone Jiao , Feng Héctor ,
Puyosa Agustí Solanas , González F . e-government: security
threats. e-Government 2012;11(21) .

aca D , Carlsson B , Petersen K , Lundberg L . Improving software
security with static automated code analysis in an industry
setting. Softw. Pract. Exp. 2013;43(3):259–79 .

ofer, T.: Evaluating static source code analysis tools. Technical
report (2010)

kun, V., Delaitre, A., Black, P.E.: NIST SAMATE: static analysis
tool exposition (sate) iv, March 2012.
https://samate.nist.gov/SATE.html

kohkwo QN-A , Islam MS . Challenges to the successful
implementation of e-government initiatives in Sub-Saharan

Africa: a literature review. Electron. J. e-Government
2013;11(2):253–67 .

harest NRT , Wu Y . Comparison of static analysis tools for Java
using the Juliet test suite. In: 11th International Conference on

Cyber Warfare and Security; 2016. p. 431–8 .
guyen Duc, A., & Chirumamilla, A. (2019). Identifying security

risks of digital transformation—an engineering perspective. In

I.O. Pappas, P. Mikalef, Y.K. Dwivedi, L. Jaccheri, J. Krogstie, & M.
Mäntymäki (Eds.), Digital Transformation for a Sustainable
Society in the 21st Century (pp. 677–688). Springer
International Publishing. 10.1007/978-3-030-29374-1_55

wizeyimana JD . User-centeredness and usability in

e-government: a reflection on a case study in Rwanda. Paper
Presented at the Proceedings of the Internationsl Conference
on Electronic, 2017 .

r. Anh Nguyen-Duc is an Associate Professor in the University of
outh Eastern. He has authored/co-authored more than 50 pub-

ications in peer-reviewed journals, conferences, and workshops.
part from being on the program committees of several interna-

ional conferences including ICGSE2019, PROFES2019, EASE2019,
r. Anh Nguyen Duc has also been involved in the organization

f several conferences and workshops (ICSOB2019, NOKOBIT2019,
IK2019, ISEC2017, PROFES2016, ICE2016). Particularly, he served
s workshop chairs for the International workshop on Software
tartup Research in 2015, 2016, and 2017. Prior to joining research

nd development field, he worked as a software engineer and an

T consultant for several years in Vietnam. His current research in-
erests include software startup research, software security, global
oftware engineering, and empirical software engineering.

anh Viet Do graduated with a masters degree in IT in Japan, and
s the CEO of MQ ICT Solutions. He is the project manager and is
esponsible for the scientific output of the project.

uan Luong Hong is the CTO of MQ ICT Solutions. He graduated
rom Hanoi University of Technology, Vietnam.

guyen Khac Kiem is a lecturer of the Institute of Electronics and

elecommunications at Hanoi University of Technology. His re-
earch interests include 5G communication, microwave devices
nd security.

nh Nguyen Quang is a lecturer of the Faculty of Basic Sciences,
ietnam University of Transport and Communications and a PhD

andidate at University of Bordeaux, France. His research interests
nclude educational management and adoption of technology in

ducation.

http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0006
https://doi.org/10.1109/MSP.2004.84
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0010
https://doi.org/10.1016/j.infsof.2013.02.005
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0015
https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1145/3106237.3121276
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0018
https://fbinfer.com/docs/separation-logic-and-bi-abduction/
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0026
https://doi.org/10.1016/j.giq.2019.01.001
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0031
https://samate.nist.gov/SATE.html
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00294-7/sbref0038

	On the adoption of static analysis for software security assessment-A case study of an open-source e-government project
	1 Introduction
	2 Background
	2.1 Software security and vulnerabilities
	2.2 Static application security testing (SAST)s
	2.3 Security concerns in e-Government

	3 Research methodology
	3.1 Research context
	3.2 Research design
	3.3 The selected SAST tools
	3.4 The test suite
	3.5 Evaluation metrics

	4 Results
	4.1 RQ1. Which SAST tool has the best performance against the Juliet test suite?
	4.2 RQ2 is the performance of SAST increased when combining different tools?
	4.3 The integrated SAST tools solution
	4.4 RQ3: how SAST tools can support security assessment activities in an open-source e-government project?

	5 Discussion
	5.1 Discussing the research questions
	5.2 Threats to validity

	6 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement

	Reference

