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Abstract: Withthe massive penetration of electronic power converter (EPC)-based technologies,
numerous issues are being noticed in the modern power system that may directly affect system
dynamics and operational security. The estimation of system performance parameters is especially
important for transmission system operators (TSOs) in order to operate a power system securely. This
paper presents a Bayesian model to forecast short-term kinetic energy time series data for a power
system, which can thus help TSOs to operate a respective power system securely. A Markov chain
Monte Carlo (MCMC) method used as a No-U-Turn sampler and Stan’s limited-memory Broyden–
Fletcher–Goldfarb–Shanno (LM-BFGS) algorithm is used as the optimization method here. The
concept of decomposable time series modeling is adopted to analyze the seasonal characteristics of
datasets, and numerous performance measurement matrices are used for model validation. Besides,
an autoregressive integrated moving average (ARIMA) model is used to compare the results of the
presented model. At last, the optimal size of the training dataset is identified, which is required to
forecast the 30-min values of the kinetic energy with a low error. In this study, one-year univariate
data (1-min resolution) for the integrated Nordic power system (INPS) are used to forecast the kinetic
energy for sequences of 30 min (i.e., short-term sequences). Performance evaluation metrics such
as the root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), and mean absolute scaled error (MASE) of the proposed model are calculated here to be
4.67, 3.865, 0.048, and 8.15, respectively. In addition, the performance matrices can be improved by
up to 3.28, 2.67, 0.034, and 5.62, respectively, by increasing MCMC sampling. Similarly, 180.5 h of
historic data is sufficient to forecast short-term results for the case study here with an accuracy of
1.54504 for the RMSE.

Keywords: time series model; Bayesian model; ARIMA model; performance matrix; power system
dynamics

1. Introduction

With the increasing concern over clean and sustainable energy and rapid growth in
electronic power converter (EPC)-based technologies, modern power systems are experi-
encing vast transformation in all sectors, including generation, transmission, distribution,
and even utilization. The generation sector is presently integrating EPC-based renewable
energy resources (RESs), including photovoltaic panels and wind turbines, whereas the
control mechanisms of other sectors are dependent on EPCs. At the same time, the propor-
tion of synchronous generators is reducing in modern power systems, and synchronous
generators are considered to be the main source of system inertia. In comparison to the
conventional operation mode, the huge penetration of EPC-based technologies presents
several changes in the operating dynamics of a modern power system. The major change
is a significant drop in system inertia, which may directly affect the frequency quality,
and operational security of power supply [1,2]. Frequency quality has an important role
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regarding the smooth operation of a power system, where low system inertia can initiate
accidental system blackouts [3]. Furthermore, the transient stability of a modern power
system is also highly sensitive to the penetration level of EPC-based technologies, along
with the given fault location and its severity [4].

Estimating power system performance indicators is an important task that must
be conducted for the secure and reliable operation of a power system, especially after
disturbance. Numerous studies have been conducted and many are still in the research and
development phase to obtain the best solution for estimating system inertia and securing
a power system from potential disturbances. Most of studies have focused on frequency
quality measurement and monitoring techniques which are further used to estimate the
inertia. The work in [5] presented an ambient wide-area measurement technique to estimate
power system inertia, in which the authors took the ambient frequency and the active power
of the power system by using phasor measurement units (PMU). Similarly, Zhang et al.
proposed a synchrophasor measurement-based method to estimate the equivalent inertia of
a system containing a wind power plant [6]. Fereidouni et al. proposed an online security
assessment tool for the South West Interconnected System in Australia, which monitored
and forecasted system inertia on an online basis and estimated parameters such as load
damping factors and demand-side inertia [7]. Dynamic regressor extension and mixing
procedures have been proposed with the aim to develop an online estimator of power
system inertia. In such case, some authors have used a non-linear and aggregated power
system model [8]. A swing equation and PMU-based inertia estimation technique for wind
power plants has been proposed, where the synchrophasor measurements are taken from a
real-time digital simulator using industrial PMUs [9]. Similarly, another study has utilized
frequency and voltage response just after disturbance to estimate the inertia by combining
two separate approaches (i.e., R for the frequency response and V for the power change
due to the load voltage dependency) [10].

The main complication for system inertia estimation methods is that the inertial
response between controllers and stabilizers cannot be distinguished, and the system
dynamics cannot be analyzed during the normal operation [5]; however, there have been
no attempts to estimate system inertia more accurately by forecasting the continuously
available data from the power system, such as kinetic energy and power deviations. As
such, the discussed issues can be addressed in a more practical way. There are some
research articles in which system frequency, nadir frequency, power generation, and load
have been used to forecast system performance [11–13]. A number of studies have been
conducted to forecast the short-term time series data of load as an indicator for a power
system [14–16]. A previous paper from the authors presented a structural time series-based
model to forecast the kinetic energy of a power system for a short period, which concluded
that the identified value of kinetic energy can be used to estimate the system inertia on a
real-time basis [17]. This research article is based on further investigation of that research
article and presents a new forecasting method to estimate system performance indicators.
Though described in detail further below, the following summarizes the main contributions
of this paper:

(a) A Bayesian model used to forecast the univariate time series data of kinetic energy is
presented. One year of data for the kinetic energy of the INPS are used to forecast for
the next 30 min of data. The results of the presented model are evaluated with other
performance metrics and are found to within acceptable limits. Further, the results
are cross-checked with the results of the ARIMA model.

(b) The optimum training dataset size required to forecast 30-min values of the kinetic
energy via an optimization technique is identified. There may be a considerable
number of historical data, and this will result in a greater computational time if all of
the data are used in the forecasting process. It is also very important to obtain results
as quickly as possible, since decisions (i.e., control actions) must be made at the right
time. Hence, determining the optimal training dataset size could be significant in
terms of optimizing the required computational time and memory.
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The authors of this paper aim to present a method that forecasts the time series data
of kinetic energy as an important parameter of a power system. A dataset containing a
year of time series data for the INPS (1 sample per minute) is used to forecast short-term
results (i.e., the next 30 min) using the Bayesian model presented here. The forecasted
time series data of the kinetic energy can be utilized to estimate the system indicators and
manage the whole system during normal operation, as well as in case of contingencies.
This paper first introduces the background and the problems that arise because of the
huge penetration of EPC-based technologies in power grids. The issues regarding a
modern power system with massively EPC-based technologies are briefly discussed. In
Section 2, the adopted methodologies are described in detail. The models for time series
forecasting, their mathematical formulations, and the performance measurement metrics
are additionally discussed in detail. Section 3 presents the results of this paper. Finally, the
conclusions of this work are presented in Section 4.

2. Methodology

This section is focused on the description of the adopted methodology, which can be
seen in Figure 1. A detailed description of the adopted methodology may be seen below.
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Figure 1. Adopted workflow.

2.1. Data Types and Preparation

The data for the kinetic energy of the INPS for 2019 were taken from the web portal
of FINGRID (Finland’s transmission system operator). Data were collected each minute,
amounting to 525,604 samples in total. The minimum and maximum values of the kinetic
energy in 2019 were recorded as 126 GW and 273 GW. Similarly, the mean and median
values of the total samples were obtained to be 194.1 GW and 191 GW with a standard
deviation of 27.6.
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It is important to have reliable and accurate data to correctly analyze performance
and visualize results. Incorrect visualization is a result of unreliable data and may mislead
viewers. Hence, the raw data here were first processed to minimize possible errors by fil-
tering and fulfilling missing values. In this study, the raw sample sets were passed through
a kernel filter to reject errors and a regression impulsion method was used to fulfil the
missing values. Overall, 9273 samples were missed among the total set of 525,604 samples
(i.e., 1.76%), which were then fulfilled via the regression impulsion method.

2.2. Model Selection

The samples that the authors took were of a univariate type, and the best way to ana-
lyze univariate data is with a structural time series model. Various research articles [18,19]
have presented structure time series models based on the concept of decomposition for
univariate samples. Authors have segregated time series data into different components,
like the trend, seasonal, and irregular components. In this research article, the authors
adopted the same concept of the structural time series model and decomposed the whole
time series model into three components as shown in Equation (1).

y(t) = g(t) + s(t) + εt (1)

where g(t) is the logistic growth (i.e., trend of the data), s(t) is periodic changes, and εt is the
error that provides some random nature of the result. In the presented model, the logistic
growth is just a regressor of time with several linear and non-linear fitting and calculated
by using Equation (2). In Equation (2), C is the carrying capacity, r is the growth rate, and
m is the offset parameter.

g(t) =
C

1 + e−r(t−m)
(2)

The carrying capacity and growth rate are not constant values and instead vary with
time. Incorrect assumptions may lead to incorrect interpretations. Hence, time-dependent
carry capacity (i.e., Ct) and growth rate (i.e., rt) were considered. Now, the revised relation
for the logistic growth is given by Equation (3).

g(t) =
Ct

1 + e−(r+a[t]Tδ)(t−m−a[t]T Y)
(3)

where δ is the rate of change within the rate adjustment vector (δ ε RS) with Sj change
points and Y is the adjustment correction vector for offset parameters. Similarly, a[t]T is a
vector which is defined as below:

aj[t] =

{
1, i f t ≥ Sj,
0, |Otherwise

and aj[t] ε (0, 1)S (4)

Similarly, the seasonal variation s(t) of the time series parameters can be determined
using the Fourier series given in Equation (5). The seasonal variation contains multi-period
constraints, such as seasonal changes and human behaviors, which cannot be forecasted
by the logistic growth accurately, hence the Fourier series is used to model the periodic
functions of time. In the presented model, the parameters (i.e., a1, b1, a2, b2, . . . , aN, bN) with
the N Fourier order are used in modeling to identify the seasonal variation for P period.

s(t) = ∑N
n=1

(
ancos

2nπt
P

+ bnsin
2nπt

P

)
(5)

After segregating the time series data into three components, the authors implemented
a Bayesian model to forecasting the time series data of kinetic energy. A Bayesian model
was selected for this study because it forecasts the future by using a combination of
available information and a source of uncertainty in the form of a predictive distribution
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with improved accuracy. Later, the ARIMA model was used to compare the results of these
two models. The details of these two models are discussed below.

2.2.1. Bayesian Approach

Bayes theorem is widely used in the field of data analysis and is often used to analyze
the conditional probability of numerous events, such as forecasting hierarchically struc-
tured time series data [20], seasonal time series data [21,22], multi-step-ahead time series
prediction [23], general estimation and prediction [24], and statistical analysis [25,26]. A
Bayesian approach has been presented to forecast univariate time series data by implement-
ing a technique of sampling the future in [27]. A Bayesian time series forecasting model
with the change point and anomaly detection was proposed in [28], where the authors
implemented an iterative algorithm with a Kalman filter and smoothing in their analysis,
along with a Markov chain Monte Carlo (MCMC) method. Maarten et al. presented that
learning Bayesian networks could be used to analyze the time series data of clinical param-
eters and concluded that the model learning methods could find a good predictive model
with a reduced computational time and good interpretation [29]. In [23], the combination
of a Kalman filtering model and echoing neural networks was used to predict multi-step-
ahead time series data (i.e., a dynamic Bayesian network). Panagiotelis et al. presented
a Bayesian density method to forecast intraday electricity prices by using multi-variate
skewed t-distributions and a MCMC method [30]. Not only these but there are also the
diverse applications of the Bayes theorem.

Theoretically, in Bayes theorem, if X and Y are two events, then the probability of
event X with the occurrence of event Y can be calculated using Equation (6). This is the joint
probability of two events and does not suggest symmetrical characteristics. In Equation (6),
Bayes theorem is defined with the following terms: P(X|Y), posterior probability; P(X),
prior; P(Y|X), likelihood; and P(Y), evidence. If the value of the prior, likelihood, and
evidence is known, the posterior probability can be calculated mathematically.

P(X|Y) =
P(X)· P(Y|X)

P(Y)
, for P(Y) 6= 0 (6)

For the specific case of kinetic energy, the relation for the joint distribution over
the random inputs is described by Equation (7). Here, P indicates the joint probability
distribution function for the conditional probability in the form of P(KE|pa(KE)), where
KEi (KEi ε KE) denotes the variables to be analyzed (i.e., kinetic energy) with the influence
of their parent variables pa(KEi). The parent variables include the historical values of the
parameter (i.e., historical values of KE), which must be considered during the forecasting
of new values.

P(KE1, KE2, KE3, . . . , KEn) = ∏n
i=1 P(KEi |pa(KEi)) (7)

In the conventional manner of estimation via linear regression, Equation (8) is applied
with the normally distributed error (εt~Normal(0, σ2)); however, by using Bayes theorem,
the estimation can be made more accurate, since, in estimation, Bayesian theory minimizes
the posterior expected values of the loss function. In a single sentence, the Bayesian model
minimizes the posterior expected loss and maximizes the posterior expectation of a given
function. By adopting the Bayes theorem in the linear regression, Equation (9) presents
the revised posterior distribution, and Equation (10) gives the likelihood function. In the
equations, β is the coefficient and σ2 is the variance.

Yt = BXt + εt (8)

H(β, σ2|Yt) ∞ F(Yt|β, σ2) * P(β, σ2) (9)

F(Yt|β, σ2) = (2πσ2)−T/2 e−
(Yt−βXt)

T (Yt−βXt)
2σ2 (10)
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As given by Equation (6), the probabilities of conditional events can be identified if the
values of the other three parameters are known. In this paper, the authors have calculated
the probability of a posterior event and applied it in the forecasting of kinetic energy
by using Stan’s limited-memory Broyden–Fletcher–Goldfarb–Shanno (LM-BFGS) [31]
algorithm as an optimization technique. The LM-BFGS algorithm is very popular in
parameter estimation applications and is a quasi-network method, which approximates the
BFGS algorithm by utilizing the potential less memory and computational time. The main
objective of LF-BFGS is to minimize the unhindered errors within functions. Also, the new
value (xt+1) can be obtained using Stan’s LM-BFGS algorithm as given in Equation (11) [32],
where αt is the step length that should be satisfy the Wolfe conditions (i.e., sufficient
decrease and curvature conditions in line searching method), ∇ ft is the gradient, and Ht is
the updated Hessian approximation (n*n symmetric) at the iteration.

xt+1= xt − αtHt∇ ft (11)

In the LM-BFGS algorithm, the estimation of Ht is quite sensitive, which determines
the accuracy and efficiency of the model. In comparison to a BFGS algorithm, the LM-BFGS
algorithm is capable of computing problems in large iterations with less cost and storage
by maintaining simple and compact approximations [32]. The workflow that was followed
for the LM-BFGS algorithm in this study is shown in Figure 2. In this approximation, the
vector pair in the set of (si, yi) is replaced by the newest set of pairs (st, yt) at each new
iteration and is updated accordingly. For example, if the latest iteration is xt, then the set
of vector pair will be (si, yi) at the t-th iteration (i = t − m, . . . , t − 1). The initial Hessian
approximation H0

t is considered and continuously identifies updates up to t-th iteration
until Ht satisfies the relationship given in Equation (12).

Ht=
(
VT

t−1 . . . VT
t−m
)

H0
t (Vt−m . . . Vt−1)+ρt−m

(
VT

t−1 . . . VT
t−m+1

)
st−msT

t−m(Vt−m+1 . . . Vt−1)+ρt−m+1(
VT

t−1 . . . VT
t−m+2

)
st−m+1sT

t−m+1(Vt−m+2 . . . Vt−1)+ . . . + ρt−1 st−1sT
t−1

(12)

where, ρt = 1
yT

t st
, Vt = I − ρtsT

t yt, st = xt+1 − xt, and yt = ∇ ft+1 −∇ ft.
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Further, a MCMC method is used as a No-U-Turn sampler in this study. With an
auxiliary variable u and target distribution f (θ), Equation (13) is used to find the sample
θ, and Equation (14) is used to find the marginal distribution of joint distribution f (u, θ).
In these equations, π(θ) is a kernel of the target distribution and z is equal to

∫
π(θ)dθ.

Using these equations, θ can be sampled from the joint distribution and the auxiliary
variable can be neglected, which is simply referred to as slice sampling [33]. In this
sampling process, the alternative sampling of u and θ is carried out, where θ is fixed
initially and sampled for u such that the condition given in Equation (13) will be satisfied
(i.e., 0 ≤ u ≤ π(θ)→p(u|θ)~uniform(0, π(θ)). After that, a horizontal slice region S is
formed from the sample θ (S = (θ: u ≤ π(θ)) [34].

f (u, θ) =

{ 1
z i f 0 ≤ u ≤ π(θ),

0 otherwise
(13)

∫
f (u, θ)du =

∫ π(θ)

0

1
z

du =
π(θ)

Z
= f (θ) (14)

After slice sampling, the No-U-Turn sampler initiates with the uniformity as given
in Equation (15); however, its efficiency is highly dependent on the probability of the
acceptance. The step size will be small for a high acceptance probability that requires many
leapfrog steps to generate the subset of candidate (θ|p) states [34].

p(u|θ)∼ uni f orm
(

0, e(log f (θ)− 1
2 p′M−1 p)

)
(15)

2.2.2. ARIMA Approach

An autoregressive integrated moving average (ARIMA) model is a statistical method
which is highly used in statistical analysis and the forecasting of time series data. This
method uses the concept of a linear combination of past events/values by identifying
the dependency of observation and residual errors (εt). In an ARIMA model, the process
(Zt = Yt − Yt-d) is modeled as Zt = µ + εt, where the residual errors can be described with
Equation (16) [25] and the forecasting of the time series predictors (Yt) can be performed
with the autoregressive method as given in Equation (17). In the equations, L is the lag
operator, θi is the moving average parameters, p is the order of the lagged observation, d is
the degree of difference, and ut is the white noise defined by (ut~Normal (0, σ2)). This study
uses these concepts and equations to forecast the short-term values of the kinetic energy
for validation. A platform called EXPLORATORY has previously been used to perform
short-term forecasting with an ARIMA model [35].

εt = φ1 ε t−1 + . . . + φp εt−p + ut − θ1 ut−1 − . . . − θq ut−q (16)

where φ(L) εt = θ(L) ut for polynomials with the lag operator (Ld Xt = Xt−d).

Yt = (1− L)dXt and (1−∑p
i=1 ϕiLi)Yt = (1 + ∑q

i=1 θiLi)εt (17)

2.2.3. Optimization

A set of data can most often, but not always, be observed in terms of equally spaced
time intervals and can thus be termed as time series data. Unlike other models that account
for a temporally dependent structure in the data, the presented model treats the forecasting
problem as a curve-fitting exercise. Since these data are a function of time, while modeling,
it is assumed that the factors affecting these data are a function of time as well and are
not dealt with separately. As this model does not account for temporal dependencies and
the output of the model is strictly a function of time, one of the methods to optimize the
model is to experiment with the training datasets. This suggests the following question:
What training dataset size does the model require for the short-term forecasting of kinetic
energy with the least margin error? Hence, an optimization model was created to answer
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this question and is shown in Figure 3. At first, the available data (i.e., 525,604 samples)
were divided into training and test sets, where the test set contained the last 30 min of
data (arranged in minute intervals), and the rest of the data were considered to belong
to the training set. Then, with the help of the training dataset, the model predicts the
kinetic energy for the next 30 min. The forecasted output and the test dataset are then
used to compute the RMSE. The number of training sets was incremented by 15 and the
aforementioned process was repeated continuously. The RMSE computed at each step was
recorded and plotted against the number of training samples. In the end, the number of
the samples with the lowest resulting value for RMSE was considered to be optimal.
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2.3. Performance Evaluation and Validation

After developing a model, performance evaluation and validation are critical in
research and development activities. In this study, a Bayesian model is used to forecast the
time series data of kinetic energy within the INPS. The pre-processed data are firstly trained
with ideal regression coefficients and an in-sample forecast is produced. In this process, a
group of test samples is used for the validation of the results. The size of the test sample
was considered to be 30 (i.e., 30 min), since this study is focused on forecasting for a short-
term period. Similarly, the proportion of training and validation samples was considered
to be 70/30. Figure 4 presents the distributions of the training, testing, and validation
samples among the total samples. The forecasting technique used in this study was of an
in-sample type. After analyzing the performance of the model and the nature of the kinetic
energy, model validation was computed using popular measures like the mean absolute
percentage error (MAPE), mean absolute error (MAE), root-mean-square error (RMSE), and
mean absolute scaled error (MASE) as given in Equation (18). In Equation (18), yi and ŷi
indicate the actual and forecasted values, ej is the error (i.e yi − ŷi) at the j-th iteration, and
the training set is considered for time t (t = 1, 2, . . . T). A platform called EXPLORATORY
is used for the performance evaluation and validation of the datasets [35]. EXPLORATORY
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uses R as the programming platform and provides the facility of data extraction, data
wrangling, data analysis, data visualization, and so on via machine learning algorithms.

MAPE = 1
n ∑n

i=1 |
yi−ŷi

yi
|, MAE = 1

n ∑n
i=1 |yi − ŷi|, RMSE

=
√

1
n ∑n

i=1(yi − ŷi)
2 and MASE =

1
j ∑

j
0 |ej |

1
T−1 ∑T

t=2 |yi−yi−1|

(18)
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3. Results

The main objective of this research paper was to analyze the time series data of
kinetic energy and forecast short-term results that could be used for the estimation of
power system performance indicators to ensure the secure operation of that system. To
achieve this objective, the authors selected the case of the INPS, which interconnects the
transmission systems of Norway, Sweden, and eastern Denmark. The respective TSOs
have time series data of kinetic energy since 2015, which presents a great opportunity for
performance estimation. Hence, the authors took the time series data (one sample per
minute) of kinetic energy within the INPS for the whole year of 2019 and utilized the data
for further investigation. The characteristics of the data can be visualized as per the box
plots given in Figure 5. As shown in Figure 5a, the kinetic energy of the case study was
found to be dependent on the weather, where it was comparatively high in winter and
low in summer. Figure 5b,c present the weekly and daily characteristics of the kinetic
energy, from which it may be observed that the amount of kinetic energy is above average
during working hours and below average during non-working hours and holiday periods.
Figure 6a,b gives the actual trend of the kinetic energy for the daily and annual period of
2019. A trend with the recorded maximum and minimum values of the kinetic energy can
be observed. Overall, for the specific case study of the INPS, the nature of kinetic energy
was found to be dependent on the working period and the weather.

Figure 7 is focused on the characteristics of the forecasted data, along with the training
and testing samples of kinetic energy. In this study, the kinetic energy was forecasted
for 30 min. Figure 7a presents the nature of the training, testing, and the forecasted data
obtained using the Bayesian model, whereas Figure 7c present the present trend of the
kinetic energy and the changing patterns for the datasets. No changing trend points were
identified that contributed to the trend variation of the kinetic energy when the Bayesian
model is implemented. On the other hand, Figure 7b presents the nature of the training,
testing, and the forecasted data for the ARIMA model, and Figure 7d presents the trend
for the samples. The changing trend point was observed when the ARIMA model was
implemented to forecast the data of kinetic energy within the INPS. Figure 8 shows a
zoomed window for the last five hours that presents a clear comparison of the results for
the proposed Bayesian model and the ARIMA model. After the short-term forecasting of
the collected datasets, the results were used to validate accuracy and for future analysis.
The values of RMSE, MAE, MAPE and MASE for the presented Bayesian model were
calculated to be 4.67, 3.865, 0.048 and 8.15, which could be further improved by increasing
the MCMC sampling. Figure 9 presents the performance metrics of the Bayesian model
with different MCMC sampling values, and it is clearly shown that the optimum value is
achieved with 200 MCMC samples. At this instant, the values of RMSE, MAE, MAPE, and
MASE were identified to be 3.28, 2.67, 0.034, and 5.62. On the other hand, the values of the
performance metrics for the ARIMA model were calculated to be 6.15, 4.680, 0.069, and
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12.34. From the comparison of both models, the presented Bayesian model was found to be
more accurate than the ARIMA model.
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Similarly, Figure 10 presents the RMSE for a different number of training sets at which
forecasting was computed for the next 30 min. The minimum RMSE (i.e., 1.54504) was
obtained when 10,830 min of training samples was used. From this result, it is clear that
a training data set of 10,830 min (or 180.5 h) is optimal to forecast the kinetic energy (for
the specific case of INPS) for a short-term result (i.e., 30 min) with a value of 1.54504 for
the RMSE.
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4. Discussion and Conclusions

With the rapid development of new RESs, most countries are promoting these sources
and interconnecting them into their power systems, since conventional power production
necessitates the production greenhouse emissions and thus is not sustainable. At the current
stage, most power systems are adopting such changes not only in the generation, but
also regarding the transformation that occurs in transmission, distribution, and utilization
because of the flexibility of EPC-based technologies. Because of this transformation, modern
power systems are facing numerous issues. The major issues include maintaining proper
frequency quality and an insufficient system rotational inertia within the power system
to ensure operational security. In a conventional power system, the large proportion of
synchronous generators acts as the source of inertia, which helps the overall system to
maintain system frequency by providing inertial support during contingencies; however,
unpredictable power sources with low inertia and flexible demand increase vulnerability
to system instability in modern power systems since frequent power unbalance can create
frequency deviations and this lead to system instability.

There are several power generators within a power system which must be synchro-
nized and operated with the same frequency. During a power deviation event, if the
deviation is comparatively high, then each individual machine tends to fluctuate around
the centre of inertia (COI) and operate with a dissimilar frequency to other machines, which
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may result in system oscillation; however, the frequency of an individual machine close
to the COI and some forms of inertial and damping forces attempt to maintain the syn-
chronicity by pulling their frequencies toward the COI. If these forces become insufficient
to recover synchronicity, a control mechanism must be applied to recover them, otherwise,
the whole power system may undergo an unstable situation and system blackouts may
even occur. The stability of a power system is directly dependent on the rate of change
of frequency (RoCoF) and the nadir frequency, which are closely associated with system
inertia. With an increasing frequency deviation and nadir frequency, an additional control
mechanism must be introduced at the right time such that the system operates securely.
Also, low system inertia decreases the critical fault clearing time (CCT), which means the
minimum time to restore the system to an original stage is drastically decreasing in modern
power systems. Hence, the estimation of system inertia, frequency, and/or nadir frequency
is especially important for modern power systems.

Several research works have been conducted to estimate performance indicators such
that power systems can be operated securely; however, most of them are focused on
the measurement and estimation of frequency and nadir frequency. Some researchers
have tried to estimate system inertia by taking the parameters from a power system
during contingencies; however, one of the most complicated parts of estimation is that
an inertial response cannot be distinguished by controlling units, and it is quite difficult
to analyze dynamic performance in normal conditions. Forecasting system parameters
such as frequency, nadir frequency, power generation, power consumption, and system
inertia can be a good option, but this requires additional computational work with complex
models and high response times for computation. A practical method that uses available
resources is necessary to provide accurate and fast results to estimate system indicators.

This paper presents a practical method to estimate the dynamic characteristics of a
power system by forecasting univariate time series data of kinetic energy. A Bayesian
model is used to forecast the time series data of the kinetic energy, and a decomposable
approach is used to analyze the characteristics of the dataset. From this study, it is found
that the kinetic energy can be forecasted and analyzed using the Bayesian model with an
acceptable accuracy limit and can be utilized in the estimation of the system inertia and
the dynamic characteristics of a power system. Furthermore, the accuracy of the model
can be improved by increasing the number of MCMC samples. In the considered case
study, the optimized number of MCMC samples was found to be 200. A comparison of the
results shows that the presented model is more accurate than an ARIMA model. For the
specific data type in this study, a historic data quantity of 180.5 h was sufficient to forecast
short-term results (i.e., 30 min) with a value of 1.54504 for the RMSE.
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