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Abstract: Stable power supply has become a crucial thing in the current era of technology and au-
tomation. Although the power system has multiple stability issues and causes, frequency fluctuation
plays a vital role in normal operation, whereby a system with significant frequency deviation can
lead to the needless blackouts of the whole power system. With the rapid growth in power electronic
converter (PEC)-based technologies and the huge penetration of nonsynchronous generators, the
modern power system is becoming more complex by the day. This paper provides a comprehensive
study on the stability issues that occur in modern power systems, mainly due to PEC-based technol-
ogy integration. The in-depth reasons and the impacts of unstable power systems, along with their
controlling techniques, are discussed to generate a clear understanding. Furthermore, the importance
of frequency stability in a power system is discussed with respect to some important events that
occurred in the past. This paper also discusses some potential techniques that could be performed to
overcome the existing and/or upcoming challenges in the upgrading power system.

Keywords: low inertia; power electronic converter (PEC)-based technologies; power system stability

1. Introduction

Energy generation from renewable energy sources (RESs) leads to numerous benefits
for the environmental, financial, technological, social, health, and other sectors. The pene-
tration of RESs can help to reduce the greenhouse emissions generated from thermal power
plants and, hence, most countries have developed policies to enhance the implementation
of renewable energy by integrating a new form of RESs into the national/international
grid system [1]. However, there are numerous challenges in RESs such as high cost, low
reliability, poor power quality, and problems in maintenance and monitoring activities [2].
Because of the periodic nature and dependency on weather and environmental factors,
the characteristics of the energy generated from RESs such as solar and wind energy are
unreliable and unpredictable, resulting in unstable conditions of the main power system [3].
The disturbances created by the unpredictable generation of power from these resources
have become an issue in the current power system, and power system developers are in
a transition phase to penetrate a significant portion of RESs into the main grid [4,5]. In
addition, these resources contain PECs as the fundamental units, which lead to stability
issues in the power system. If the system is not modified, having a significant proportion
of RESs and PECs means a vulnerable and unsustainable system, which will significantly
affect the operation of the power system [6].

Figure 1 presents a classification of the stability issues that occur in electrical power
systems. In conventional definitions, there are three types of stability issues: (a) rotor angle
instability, (b) frequency instability, and (c) voltage instability. Among these three stability
issues, rotor angle stability plays an essential role in system synchronization, which should
be resolved within 3 to 10 s for a transient state and 10–20 s for a steady state, and this is,
thus, considered a short-term stability problem [7]. This problem can be adequately solved
via the application of power system stabilizers (PSS) or PEC-based exciters, and it can be
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prevented through generator tripping. Similarly, frequency stability indicates the power
system’s ability to maintain its operating frequency within an acceptable range, whereby
instability can occur because of supply/demand unbalance. It takes a few seconds to several
minutes for restoration, and this is considered a short-term and/or long-term stability
problem. On the other hand, the voltage stability of a power system plays a vital role in
maintaining the receiving end voltage within an acceptable range; it takes a few seconds to
several minutes for restoration, and this is, thus, considered a short-term and/or long-term
stability problem [7]. For short-term voltage stability, automatic voltage regulators (AVR),
excitation systems, and induction motors can be used, whereas HVDC interconnections,
adjustable tap transformers, and generator excitation current limiters can be used for long-
term voltage stability restoration. However, modern power systems contain a considerable
number of PEC-based technologies, and they have undergone significant transformation
in the last decade; hence, new elements have been introduced in terms of power system
stability: (a) converter driven stability and (b) resonance stability [8–11]. Converter-driven
stability concerns the oscillation within a power system because of the cross-coupling
phenomenon between dynamic electromechanical devices and the transient nature of
electromagnetic grid networks [11]. On the other hand, resonance stability takes into
account periodic and insufficient energy dissipation within a system, resulting in a form of
oscillation [10].
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A power system with RES integration can become unstable for two main reasons:
(a) the high penetration of PEC-based energy resources such as solar PV and wind turbine
reducing the system inertia; (b) RESs being unable to balance the demand/supply chain
because of their unpredictable patterns [12–14]. Predicting the time-series value of the
demand and generation is very complex and slow; thus, systems can achieve stability
by solely focusing on the demand. The high penetration of nonsynchronous generators
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with PECs reduces system inertia and increases the potential of unstable frequency in
a power system. Frequency fluctuation plays a vital role in normal operation, whereby
a system with comparatively low inertia can lead to needless blackouts of the power
system [15]. A drop in system inertia leads to a significant rise in RoCoF and increases the
value of nadir frequency. However, most power systems contain protection equipment
with conventional operation settings, which need to be upgraded following the massive
integration of PEC-based technologies [16]. Several research and development activities
have been conducted on voltage stability, rotor angle stability, and frequency control
methods. However, limited research activities have considered real-time stability control,
despite them being the primary reason behind the numerous blackouts recorded in the last
few years [17].

With the introduction of new concepts (i.e., PEC-based technologies) and policies,
operation is becoming more complex; hence, some technoeconomic approaches and tech-
nologies have to be identified that guarantee the secure and reliable operation of the power
system. Several research works have tried to address the issues by proposing various
concepts. However, a complex framework in which neglects potential uncertainties may
lead to impractical results, with problems arising during the real-world implementation of
the proposed method [18,19]. Hence, a detailed study on unique and practical methods
should be conducted to overcome the existing and/or upcoming challenges in upgrading
the power system structure and operation approaches.

The aim of this paper was to present comprehensive information on the stability issues
in modern power systems as a result of the high penetration of PEC-based technologies and
unpredictable RESs such as solar and wind energy. Furthermore, the objective of this article
was to provide a detailed survey on frequency stability issues and their potential solutions
via published scientific documents. This paper first introduces the background and a basic
overview of the stability problems faced by modern power systems. Section 2 presents an
overview of the comprehensive works conducted previously by various researchers and
institutions. Section 3 covers the frequency stability concepts in depth, along with their
response, regulations, control approaches, and impact on the power system. Some case
studies are discussed to analyze the importance of frequency stability in modern power
systems. The most important topic of this article (i.e., frequency stability in PEC-based
power systems) is discussed in Section 4. The issues of short-term frequency instability and
the challenges caused by PEC-based technologies in power systems are discussed in detail.
Furthermore, potential solutions are discussed. Lastly, in Section 5, conclusions are drawn
and discussed.

2. Previous Studies

Modern power systems are more focused on technoeconomic operation, along with
environmental constraints. To improve the operational constraints, the regulatory body
can replace the control system with an optimized approach and/or include an optimized
supervisory system without modification in the main system [20]. The inclusion of a
new control system may become expensive, since the existing system has to be replaced,
whereas the second approach is quite popular and practical in rapidly growing systems.
However, with the increasing trend of RES integration and PEC-based technologies, existing
power systems face new challenges such as unbalanced frequency resilience and low
grid inertia [21]; hence, tools need to be introduced that dynamically monitor, analyze,
improve, and visualize the system characteristics [22]. It is clear that conventional control
technologies are not appropriate for modern power systems; thus, a new way of thinking
is necessary [23].

The concept of battery energy storage systems (BESSs) was used to regulate the fre-
quency of a power system in [24,25]. In [26], a self-tuning PID controller was indigested to
increase transient stability by using fuzzy logic and thyristor-controlled series compensa-
tion (TCSC). Similarly, in [27], a controller was proposed using fuzzy logic and a neural
network. Compensators such as static VAR compensators (SVCs) and static compensators
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(STATCOMs) have been used to improve the first swing stability of power systems via a
discontinuous control strategy [28,29]. A controller was discussed for the improvement
of transient stability through the extraction of a synchronous generator in [30]. Teng et al.
introduced the concept of EV integration to improve the frequency response of the Great
Britain power system [31], while Liu et al. presented the effects on secondary frequency
control via EV integration [32]. Integrating EVs as a distributed energy resource (DER)
is highly adopted in modern power systems to improve the frequency quality. Similarly,
some studies have presented the application of demand-side management (DSM) in power
system security [33–35]. Likewise, various techniques have been proposed and investigated
to address the stability issues that occur in PEC-based power systems. Figure 2 presents
the classification of frequency control techniques.
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Numerous researches have presented automatic generation control (AGC) as a tradi-
tional method to regulate power systems. Usually, the frequency of a system is monitored,
whereas the AGC maintains regulation by varying the rate of generation. Behera et al.
adopted the harmony search (HS) algorithm as the optimization tool and integral square
time square error (ISTSE) as the objective function to identify the best parameters in the
controller [36]. AGC was implemented using superconducting magnetic energy storage
(SMES) to analyze the performance of both the controller and the power system in [37]. The
authors optimized the controller parameters for system stability by using the second law
of Lyapunov. In [38], the authors suggested a combined approach using a tilted integral
derivative (TID) controller and teaching/learning-based optimization and pattern search
(hTLBO-PS) as a new AGC method under a deregulated environment. In [39], an ecological
population cooperative control (EPCC) strategy was proposed as an AGC for an islanded
smart grid. The authors used the concept of a multiagent system stochastic consensus game
(MAS-SCG) to determine the optimal power command for controlling the isolated grid in
an optimal cooperative mode. Ramakrishna et al. conducted a detailed transient analysis
for individual AGC within a multisource power system [40]. Similarly, an artificial neural
network (ANN) was applied to analyze AGC problems in [41]. In [42], the parameter-plane
approach was applied to identify the optimal controller parameters, and a sensitivity
analysis was carried out to examine stability via AGC. Similarly, in [43], a hybrid technique
was proposed for AGC of multiarea power systems by combining the firefly algorithm and
pattern search method. As shown in Figure 2, AGC is a general technique that regulates
system frequency by controlling the generator-side parameters. Although it works as a
secondary response and takes a few minutes, it is considered a fundamental method for
the frequency regulation of power systems.

Model predictive control (MPC) is another popular method. Cui et al. proposed a
multimodal long short-term memory (M-LSTM) deep learning approach to determine
the time-varying variables of composite load modeling (CLM) for a system-wide load
study [44]. Similarly, a time-varying model was proposed to identify the parameters for
CLM in [45]. A time-varying model was presented to measure the penetration level of
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solar PV in a distribution system in [46]. A method based on MPC was developed to
enhance the transient stability of a power system using superconducting magnetic energy
storage (SMEA) units [47]. In [48], an approach was presented to determine the real-time
system’s scheme and regulate the voltage within a limit. Ersdal et al. investigated an
MPC-based control method to regulate frequency in a wind-energy-integrated power
system by considering three different disturbances: positive, negative, and neutral [49]. A
hybrid control system consisting of the MPC method and a neural network was studied to
improve the stability of a power system in [50]. A combination of feedback linearization
and MPC approaches was used to control the firing angle of a thyristor to improve the
transient stability of a system through the regulation of TCSC reactance [51]. Furthermore,
the concept of transient energy function (TEF) was combined with MPC to obtain multiple
unified power flow controllers (UPFCs), thereby improving system stability [52]. In [20],
the authors presented a controlling approach by utilizing the secondary frequency of
the power system, whereby a hierarchical-based MPC was used to regulate the primary
and secondary frequency. Gomez et al. proposed the concept of a distributed MPC, in
which the droop and transferred power were taken as the input parameters to control the
frequency and voltage of the microgrid system [53]. Similarly, MPC has been implemented
in diverse applications such as to control the TCSC for the enhancement of transient
stability [54], to damp out the oscillated power in an HVDC system [55], to manage the
distributed generated energy [56], and to stabilize the grid after a contingency [23]. As with
other techniques, the important feature of MPC is its plug-and-play structure, facilitating
redesign and theoretical evaluation of the structure of a controller. In previous research
works, the MPC concept was widely used in the regulation of power systems, especially in
terms of frequency stability.

Similarly, various researches presented the dynamic demand control (DDC) approach
for regulating the grid frequency. Shrot et al. proposed this concept as a new technique for
frequency stabilization in 2007 [57]. Shi et al. presented a comprehensive review of DDC
along, with an algorithm and a future vision for system frequency regulation [58]. This
study also discussed the various technical and practical factors that play an essential role
in the implementation of a DDC approach. Since the individual load is stochastic, and the
power system contains a massive number of loads, the adopted approach must identify
the predictable pattern for all loads, as well as their generation, and it must provide an
appropriate control step to maintain the regulation [58]. On the other hand, Zhu et al.
investigated robust load frequency control (RLFC) along with DDC for the regulation
of power systems via communication networks [59]. The authors used communication
networks in load frequency control (LFC) together with DDC in demand-side response
(DSR) to aggregate the well-regulated loads. Qingxin et al. proposed a thermostatic load
control (TLC) strategy, a form of DDC, in which thermostatic loads were used, i.e., heating,
ventilation, and air-conditioning (HVAC) units and electric water heaters (EWHs) [60]. A
hybrid DDC concept was introduced to provide a rapid and steady regulation of primary
and secondary frequency in [61], by replacing the generator reserves. A D-partition method-
based LFC approach was proposed for DGs by implementing a PI controller using the
conventional Ziegler–Nichols method [62]. A detailed study on the effects of DDC on
the frequency was presented in [63], in which it was observed that DDC can minimize
the variance (around 30–40%) of the fluctuation. However, in the DDC method, the
randomization of each iteration is necessary to minimize the oscillatory instabilities of
the frequency [57,64]. As with other conventional techniques, DDC is adopted for its fast
response, flexible operation, and economic efficiency.

3. Frequency Stability in Power Systems

To operate a power system in a reliable and efficient manner, different parameters
must be within an acceptable limit. Among the numerous parameters, stable frequency is
one that plays an essential role in the proper operation of a power system. Basically, the
frequency of a system should be maintained within an acceptable range, thereby preventing
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issues such as the total generation capacity trying to balance the total load. However, both
generation and demand change dynamically, which may lead to an imbalance between the
total generation and total demand within that system for an instant of time. This imbalance
creates a frequency deviation. If the deviation is within an acceptable range, there will
be no significant impact; however, if it crosses a certain threshold, it will affect the power
system’s operation, reliability, efficiency, and security, as well as degrade load performance,
overload transmission lines, and lead to protection failures [7].

Mathematically, frequency fluctuation occurs when the supply/demand balance
within a system deviates from the norm (i.e., PM(t) 6= PL(t)). Here, PM(t) is the mechanical
power/generated power, and PL(t) is the electrical load at an instant of time. Basically, the
system frequency is directly proportional to the generator’s speed; the system’s frequency
increases with an increase in rotor speed and vice versa. When the system demand
increases, the speed of the rotor decreases slowly, and similar results occur in the case of
frequency (i.e., PM(t) < PL(t)). Similarly, the rotor speed and the frequency increase with a
decrease in order of the system load (i.e., PM(t) > PL(t)). Hence, the generated power must
be equal to the sum of the demand power and power losses; otherwise, frequency deviation
will occur. Mathematically, the relationship between frequency and power deviation within
a system can be expressed by the swing equation, as given below.

2H
ωs

d2δ

dt2 = PM − PL (1)

However, in practical cases, the frequency is sensitive to different factors, which are not
considered in this study. Nevertheless, the characteristics of the dynamics can be discussed
by considering some examples. The authors took two incidents from the Great Britain
power system for discussion. Figure 3 shows the dynamic changes in electricity demand
and system frequency in the Great Britain power system during the Royal Wedding of
Prince William and Catherine on 29 April 2011. Here, significant rises and falls in the
electricity demand can be observed, which resulted in drastic frequency fluctuation. Royal
Weddings are considered special events in the history of Great Britain, and most British
people attended the event whether physically or virtually. Because of the operation of a
large number of electronic appliances, the load demand on that day was very high in Great
Britain. However, such special events are few in number and should not be missed; hence,
as shown in Figure 3, the total electric demand rose significantly during that event, but
dropped shortly after its completion. On that day, the British power system observed a
demand rise of 2300 MW within a few minutes, followed by a power drop of 3100 MW.
This type of sharp rise and fall can cause significant fluctuation in the system frequency,
hindering its maintenance within the acceptable range. Similarly, Figure 4 presents the
frequency fluctuation in the Great Britain power system during the failure of the Sizewell B
nuclear power plant on 28 May 2008. As shown in Figure 4, the power system faced three
power system failures and one embedded generation failure (i.e., 1993 MW of total failure)
in a cascading manner within just 3.5 min. The capacity of the failed power system was
higher than the actual reserve capacity of the power system; thus, balance could not be
achieved. As such, the frequency crossed the acceptable limit, and the electrical supply (i.e.,
546 MW) of a certain part of the city was cut off for stability maintenance. This accident
occurred because of enormous changes on the generation side within a small period. Hence,
frequency stability is vital for the proper operation of a power system.
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3.1. Frequency Response and Regulation Techniques

To maintain an acceptable frequency range, regular injection and/or withdrawal of
generated power takes place. This process must quickly respond to dynamic load changes
and establish supply/demand (or energy) balance. The power system is flexible in terms
of power generation, which can be maintained during load changes so as to regulate the
system frequency [66]. This is a continuous process. As shown in Figure 3, significant rises
(2300 MW) and drops (3100 MW) in demand could be observed in the Great Britain power
system within a short period (the Royal Wedding). However, the frequency of the system
was maintained within the range of 49.8 Hz to 50.2 Hz; this process is called frequency
regulation. In every power system, there is a predefined normal operating frequency band
(NOFB) to maintain the system. Table 1 presents an overview of the nominal frequency
interval and the critical frequency interval of different countries.

Table 1. Nominal and critical frequency intervals in the power systems of different countries.

Country Nominal Frequency
(Hz)

Critical Frequency
(Hz) References

Great Britain 49.5–50.5 47–52 [67–69]

Germany 49.5–50.5 47–52 [69–71]

France 49.5–50.5 47–52 [69,70]

Belgium 49.5–50.5 47–52 [69]

Austria 49.5–50.5 47.5–51.5 [69]

Australia 49.75–50.25 47–52 [72–74]

Ireland 49.8–50.2 47–52 [69]

Italy 49.1–50.1 47.5–51.5 [69]

Poland 49.5–50.5 47–52 [69]

Denmark 49.9–50.1 47.5–51 [75–77]

China 49.8–50.2 48–51 [78]

Because of the differences in electric generation and demand, systems can face power
deviation, which further results in frequency instability. For proper and effective operation
of a power system, it may balance the demand/supply chain by introducing, for example,
a significant reservoir for an extensive system or a BESS for a small system [79]. However,
this approach may not be sufficient to maintain the equilibrium state on a real-time basis;
thus, the generating plant must have the feature of flexible generation. Flexible generation
may support the system in providing instant balance and reducing the potential causes of
failure [79,80]. In addition, some critical issues may occur following large deviations within
a short period, which must be handled for the protection of the whole power system. Hence,
control measures are implemented at different levels to maintain the NOFB and to protect
the whole power system: (a) primary control, (b) secondary control, (c) tertiary control, and
(d) emergency control. Figure 5 shows the frequency control techniques of a conventional
power system used to maintain the frequency deviation within an acceptable range in
order to operate the system securely and reliably. Similarly, Figure 6 presents the frequency
response of a power system under various control actions and their characteristics. As
shown in Figure 6, the primary control method is the first action taken by the system for
stability, which is fast compared to measures. Similarly, secondary and tertiary control
actions are activated more slowly than primary control. The response time for the various
control actions is given in the same figure; however, these may vary for different nations
and power systems. For a detailed comparison, Table 2 provides a list of control methods
and their response periods in various countries.
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In a power system, the system frequency is directly related to the angular velocity
of the rotor (i.e., f ∞ NS); frequency increases with the increase in rotor speed and vice
versa. Hence, frequency control in a conventional power system is akin to the control of
rotor speed. At the first stage, the aim is to maintain the speed of the turbine/generator
set (i.e., rotor) through the application of a governor mechanism, which senses the rotor
speed and regulates the flow of water/steam. A small deviation in speed and frequency
can be restored by locally changing the mechanical power outputs. This technique is
automatic and based on a drop in the generator, which regulates the frequency disturbance
within a few seconds. This is the first stage of the frequency control mechanism and
works as the first line of defense in a power system, and it is considered the primary
frequency control technique. The primary frequency control technique is very critical for the
restoration; therefore, it should meet the standards and specifications for deployment start,
full availability, deployment end, droop setting, full deployment, frequency characteristics,
and controller insensitivity [81].
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Table 2. Frequency control responses in different countries.

Country Primary Control Secondary Control Others References

Great Britain

Active power of the
generation unit

increases/decreases
within 10 to 30 s of the
frequency deviation.

Active power of the
generation unit

increases/decreases
within 30 s to 30 min of

the frequency
deviation.

High-frequency response is in action,
which acts within 10 s of the frequency

deviation.
[67,68]

Germany

The generation unit can
achieve 100% of active
power changes within

30 s and maintain
frequency for the next

15 min.

The generation unit is
able to achieve 100% of
active power changes

within 5 min.

Minutes reserve is adopted, which
responds within 15 min. The power
supply must be delivered for at least
7.5 min of the specific quarter hours.

[69–71]

China

Active power of the
generation unit

increases/decreases
within 3 to 15 s of the
frequency deviation.

Active power of the
generation unit

increases/decreases for
a maximum of 1 min.

Power plants are capable of setting
and enforcing automatic control for

the active power and power ramp rate
(e.g., an integrated wind power plant
contains 1 min and 10 min ramp rates).

During the period of severing
deviation, power plants can instantly
control their generation as instructed

by the TSO.

[78,82,83]

France/Italy

50% of active power
increases/decreases
within 15 s and 100%

within 30 s, continued
for a maximum of

15 min.

Activated within 30 s
and continued for a

maximum of 15 min.

Tertiary control is adopted, which
activates along with secondary

control, and continues for a maximum
of 15 min.

[69,70]

Denmark
A droop of

18,000 MW/Hz is
maintained.

Reserve control is adopted, where the
system is regulated within 2 to 3 min
of 0.01 Hz frequency deviation. If the

deviation becomes higher than
0.05 Hz, 50% of system reserve is

distributed within 5 s, and 100% is
distributed within 30 s.

[69,75–77]

India

The generation unit
must provide a

response to changes of
5% droop (i.e., 40% of
active power changes

with a frequency
change of 1 Hz).

A 30 s delay is
provided to activate the

secondary reserves,
which are entirely

activated within 15 min
and continued for a

maximum of 30 min.

A tertiary control mechanism is
available as a supportive method of
secondary control. Tertiary control is

fully activated within 15 min and
continued for a maximum period of

60 min. Moreover, UFLS is
implemented with three thresholds

(e.g., adopted thresholds in the south
of India are 49.5 Hz and 0.2 Hz/s,
49.3 Hz and 0.2 Hz/s, and 49.3 Hz

and 0.3 Hz/s).

[84–87]

When the frequency deviation increases and the system enters into non-normal op-
eration, the primary frequency control technique may be unable to restore the system
frequency; hence, an additional technique is required for system restoration. The second
stage of frequency restoration in a power system is called the secondary frequency con-
trol technique. Basically, the primary frequency control technique is used to control the
frequency in the short term, whereas the secondary is used to direct the primary one to
prevent the system frequency from exceeding the desired limits for a long period [88]. The
required power at this stage is delivered by both the spinning and the non-spinning reserve
capacities for the balancing of system load and frequency, which is also called the load
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frequency control (LFC) method [89]. The secondary frequency control technique conducts
automatic and centralized control by utilizing the system reserve capacity and restores
the system frequency within a few minutes [90]. There are two types of control: (a) unit
level and (b) system level. In the unit-level secondary control, the reference value of load–
frequency adjustment for the governor is managed by a unit load controller, whereas an
automatic generation control (AGC) system is used as the system-level secondary control
technique. The unit-level controllers simply supervise the controlling variables that can
influence system operation and require primary control actions [90]. On the other hand,
the coordination of all power generators within a power system is managed by the AGC,
but the AGC is not responsible for direct changes in system frequency; it simply oversees
the controllers in initiating primary control actions (as a secondary control method) [91,92].
One of the main objectives of the AGC and/or LFC is to maintain the system frequency by
coordinating and exchanging the power (i.e., ∆Ptie) with the neighboring control area for a
specified period. The area control error (ACE), i.e., a measurement of the actual imbalance
of real power in an interconnected power system, is calculated and used to command the
controllers with some processed control signals. In the case of stable system frequency,
a lower value of ACE (i.e., close to zero) is expected in each power plant area [79]. The
deployment time, controller organization, controller cycle time, and controller types should
be specified during the secondary control of frequency in a power system [81].

The third stage of the frequency control method is called the tertiary frequency con-
trol technique, which is a manual (or automatic) control technique involving a change
in the working rate of power generation. It is conducted during situations of serious
supply/demand unbalance following sharp frequency deviations, whereby the secondary
control is unable to restore the system. It adopts the concepts of adjustment, rescheduling,
and deployment of new power generators, and it can take from tens of minutes to hours
for the restoration of sufficient secondary control reserve [89]. This technique can be con-
sidered the economic dispatch method, and it is implemented in a completely deregulated
market setting [93]. Furthermore, tertiary frequency control can be considered a supportive
action for secondary control, since it is intended to coordinate the reserves and relieve
the secondary control response by lowering the value (near zero) of ACE [94]. Because of
disturbances on the generation and/or demand side, if the frequency deviation crosses the
acceptable limits and the control techniques fail to restore the system, standby supplies or
emergency actions need to be applied to minimize the risk of cascade faults or even system
blackouts. A scheme such as under frequency load shedding (UFLS) is used in cases of
insufficient generation and/or significant frequency drop. Similarly, generation stations
are disconnected in the case of excess generation and/or frequency increases.

3.2. Case Studies

Numerous consequences of frequency instability can occur, with the failure and/or
system blackout being the major ones. System blackouts happen when some fault occurs in
the power system (i.e., power plant and/or transmission medium), and significant power
is lost in a part of or the whole power system. A significant drop in power supply on
the consumer side (because of the fault) may create power deviation, which may lead
to frequency deviation outside of the acceptable range. At first, the control mechanisms
discussed in Section 3.1 try to restore the power system; if these are unsuccessful, the system
faces cascading failures and even system blackout can occur. In the past, there have been
many such cases of blackouts all over the world. Most events occurred because of system
failures in terms of generation and transmission lines. The major causes of these failures
were either technical issues or natural hazards. Some of the cases are discussed below.

3.2.1. Power System Blackout in Great Britain on 28 May 2008

Around 0.5 million people and several industries, businesses, and railways across Lon-
don, Cheshire, Merseyside, and East Anglia were affected by the power loss on 28 May 2008.
It started when the Longannet power station went offline because of some technical issues
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after maintenance. Within 2 min, the Sizewell B nuclear plant also faced issues and failed
to produce power. After another minute, embedded generators also faced problems and
were removed from the Great Britain power system. Figure 4 provides a clear picture of
the events and the frequency fluctuation as a result of these failures. As shown in Figure 4,
the power system lost around 1993 MW of power within 3.5 min, which could not be
restored by the reserved capacity of the system; thus, the system failed to operate within
an acceptable frequency range. As a result, around 546 MW of load was automatically shut
down as per the protection precautions [95,96].

3.2.2. Power System Blackout in Northern and Eastern India on 30 and 31 July 2012

The Indian power system faced a large failure on 30 and 31 July 2012, which affected
around 700 million people from 20 states of the country. As per the inquiry committee,
the Central Electricity Regulatory Commission (CERA), the major reasons behind these
blackouts were system failures due to some technical and seasonal issues. The day before-
hand, the Indian power system faced five issues in the transmission lines: (a) unplanned
shutdown of 400 kV Bina–Gwalior–Agra II transmission line, (b) trip of 220 kV Kota–Badod
transmission line, (c) phase-to-earth fault in 220 kV Binmal–Sirohi transmission line, (d) trip
of 400 kV Bhinmal–Kankroli transmission line, and (e) emergency outage of 400 kV Zerda–
Kankroli transmission line. The first blackout occurred on 30 July, which affected eight
states of the country. Just before this incident, the demand of the Northern Region was
calculated to be around 35,669 MW, whereas the generation was only 32,636. At the same
time, the system frequency was measured to be 49.68 Hz. The major reasons behind the
blackout on 30 July were (a) unplanned shutdown of 400 kV Bina–Gwalior–Agra II trans-
mission line, which created electrical stress on other transmission lines, (b) unscheduled
importation of power to the Northern Region from the Eastern Region in large amounts,
(c) lack of proper monitoring and coordination by the power utilities, since no action was
taken to reduce the total transfer capability after the transmission line failures, (d) stoppage
of a few power generation plants, and (e) power swing in the Eastern Region because of
the unscheduled import/export and transmission line failure. This blackout affected all
sectors and was completely restored after 13.5 h. Then, 21 h later, three regions (Northern,
Eastern, and Northeastern) faced similar issues, whereby consumers (around 48 GW) were
disturbed. However, immediate actions were taken at that instant, and the system was
recovered after 8.5 h. During the blackouts, some regions faced issues of overfrequency
and high voltages, because of the unscheduled stoppage of power export to other states.
Figure 7a,b show the frequency dynamics at different locations of Northern India during
the blackouts on 30 and 31 July 2012 [87].

3.2.3. Series of Blackouts in Venezuela in 2019

Venezuela faced a long series of power system failures and blackouts in 2019, which
affected millions of people, and many people even lost their life. During these blackouts, the
transportation, airport, telecommunication, industrial, hospital, education, water services,
food products, and household sectors were affected. The major reasons behind these
system outages were considered to be irregular system maintenance, mishandling of the
system, and lack of technical human resources. The first series of nationwide outages
started on 7 March 2019, when a bush fire occurred near the Malena substation in eastern
Venezuela, where around 70–80% of the country’s electricity is generated by the Guri dam
electricity plant (10,235 MW installed capacity and 47,000 GWh annual generation). The fire
affected the 765 kV transmission line between the San Gerónimo B and Malena substations,
further resulting in the overload and failure of alternative routes. It took more than 7 days
to restore the system and provide electricity. Roughly 1.5 weeks later, the power system
failed a second time, which affected 14 states of Venezuela, before recovering after 3 days.
A similar problem was recorded after just 24 h of system restoration. System failures were
also observed in April and July in numerous states [97–99].
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3.2.4. Power System Blackouts in Australia

Australia faced a power system blackout on 28 September 2016, when a 275 kV single-
circuit transmission line and 275 kV double-circuit transmission line were damaged by
tornadoes. Several failures were observed in a cascading manner just after the shutdown
of the transmission lines. Six voltage dips were observed in the South Australian power
system after the failures. Nine local wind farms reduced their production as per their
protection features, which resulted in 456 MW of power reduction within 7 s (the total
demand of the South Australian system was 1826 MW at that instant). There was an attempt
to address the reduction in generation by importing power, but this was unsuccessful
because of the failure of the Heywood interconnector. Then, the South Australian grid
went into isolated mode, and the whole system experienced a blackout in an attempt
to maintain the isolated system frequency within acceptable limits. Figure 8 presents
the actual dynamics of the South Australian wind farms, along with their generated and
reduced power profile, during the system failures. Similarly, Figure 9 shows the frequencies
of various sections of the South Australian grid during the system failure. During this
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event, the system frequency dropped to 47 Hz from 49.5 Hz in just 0.4 s with an average
RoCoF of 6.25 Hz/s. The system was restored in around 4.5 h for 40% of consumers and
around 8 h for 80–90% of consumers. Complete restoration was achieved in 12 days via
bypassing the transmission lines [73].
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Furthermore, similar events were also recorded on 1 November 2015 (110,000 house-
holds affected), 1 December 2016 (200,000 households affected and restored after 1 h),
27 December 2016 (125,000 households affected and restored after 4 days), 20 January 2017
(58,000 households affected), 8 February 2017 (90,000 households affected), and 25 August
2018 in the Australian power system. These events highlighted the vulnerability and
sensitivity of the Australian power system. The major issues behind these frequent failures
are considered to be the high penetration of PEC-based technologies and the unpredictable
nature of RESs, as well as the damage of transmission lines from natural disasters [74].

3.2.5. Power System Blackouts in California, USA

California is the state that has faced the greatest number of system failures in the
history of the USA. From 2008 to 2017, 4297 power outages were recorded just in Califor-
nia [100]. It is quite challenging to cover all failures; thus, this subsection only discusses
the blackout that occurred in California last year. On 14 August 2020, a giant rolling
blackout was implemented in California because of the high electrical demand. Because of
a huge wildfire, the maximum temperature of California reached up to 130 ◦C. Because
of the COVID-19 pandemic, most people were also staying at their homes and using their
electrical appliances. Furthermore, the extreme heatwave forced people to operate their
air-conditioning units, which significantly increased the total system demand. According
to the data from the California Energy Commission, a large proportion of electricity is
generated from RESs, with plans to increase the proportion to 60% by 2030. In 2019, 21.04%
of electricity in California was generated by solar and wind energy resources [101]. On
14 August, a 470 MW solar power plant and several wind power plants (1000 MW total pro-
duction) failed because of the excessive demand [102]. At the same time, so-called reliable
power generators unexpectedly went offline [103]. The rolling blackout was implemented
at around 6:30 p.m., when the power generation from solar power plants was disappearing,
and continued until 9:00 p.m. [104]. According to various statements, it seems that this
incident occurred because of the supply deficit compared to the high demand.

Several initial causes can lead to system outages. A previous study [105] presented
statistical data from a survey conducted from 2011 to 2019 in some parts of the world,
showing that around 50% of system blackouts were initiated due to bad weather and falling
of trees, 31.8% were initiated due to equipment and human failures, 10.6% were initiated
due to some form of vehicle accidents, 1.5% were initiated due to animal activities, and
6.1% were initiated due to overdemand of electricity. In 2017, the USA faced a total of
3526 outages with a total duration of 284,086 min and an average duration of 81 min [106].
Around 36 million people were affected by these events. In the USA, the power outages
were caused by seven significant reasons, with bad weather and falling of trees contributing
a significant proportion (i.e., 1159 events). Moreover, 791 outage events were caused by
human and equipment errors, 444 were caused by vehicle accidents, 173 were caused by
animal activities, seven were caused by overdemand, 244 were planned outages, 15 were
caused by theft/vandalism, and 693 events resulted from unknown causes in 2017 [106].

3.2.6. Inferences

As we all know, wind energy is quite unpredictable, and solar power plants only
produce energy during the daytime; thus, some form of a reliable power plant must be
present as a backup. The power system must maintain frequency within an acceptable
range; otherwise, the system may fail. When failure occurs, unbalance is created within
that power system, which may lead to system blackouts if not resolved properly. The five
cases presented above provide a clear map of the importance of frequency stability for
the reliable operation of a power system. Among the five case studies, the blackout of
Great Britain was caused by power generation failure; 1993 MW of generation was lost
within 3.5 min, which could not be recovered by the system in time. The system blackouts
in India were the results of transmission line failures. Similarly, in Venezuela, a large
proportion of generation was isolated because of transmission line failure. However, in
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the cases of Australia and California, natural disasters were the cause of system failures.
In all cases, power systems suffered from instability. Because of the supply/demand
unbalance, some parts of or the whole power system faced problems, resulting in forced or
rolling blackouts. The British, Indian, and Venezuelan power systems are mainly supplied
via conventional power generators (i.e., synchronous generators). However, in Australia
and California, a large proportion of electricity is produced through PEC-based RESs. In
comparison to conventional power systems, modern power systems with significant PEC-
based technologies record a high number of system outages. Numerous statements have
been made on the penetration of RESs and their issues. With the increase in PEC-based
technologies, systems are becoming more complex; therefore, advanced technologies and
appropriate approaches must be introduced into the modern power systems.

4. Open Issues of Frequency Instability and the Way Forward

Modern power systems are adopting a significant transformation in generation, trans-
mission, distribution, and utilization levels with the introduction of rapidly growing
PEC-based technologies, due to the massive integration of PEC-based RESs, including solar
PV and wind turbines, whereas the appliances and control methods in other sectors are
dependent on the PECs. As discussed in Section 1, short-term frequency instability can
occur in modern power systems because of two main reasons: (a) the high penetration of
PEC-based energy resources such as solar PV and wind turbine reducing the system inertia,
and (b) RESs being unable to balance the demand/supply chain because of their unpre-
dictable patterns. Modern power systems are becoming more complex because of these
rapid transformations. This section presents the issues caused by these transformations in
detail, and some of the potential solutions are thoroughly discussed.

4.1. Issues of PEC-Based Technologies in a Power System

RESs, especially solar and wind energy, are stochastic in nature. The solar and wind
resources have variable trends over multiple timescales (daily and seasonal). On the other
hand, demand is also stochastic and varies continuously. In modern power systems, both
the generation and the load vary over periods of minutes and hours [107]. Numerous
studies have been conducted on the forecasting of solar and wind power generation, which
have been further implemented to reduce the uncertainty of power systems [108–115].
However, the forecasted results are not accurate for an exact time scale and may create
a drastic deviation in the system frequency, especially in a low-inertia power grid [107].
Thus, the increase in PEC penetration increases the stochastic variation of the active power
generation in a power system, which may lead to unpredictable situations within that
system [116].

In the conventional power system, synchronous generators work as the source of
inertia since the rotating mass provides the physical characteristics within that system. The
system frequency is directly associated with the rotation of the machine, and the system
inertia created by the synchronous machine helps to maintain the system frequency by
minimizing the initial frequency deviations. To do this, the total mechanical inertia has
some resistive properties (in virtual mode) with respect to changing the rotation of the
machine [117]. As given by Equation (1), a small unbalance in power generation and load
can create a frequency deviation within a power system. The frequency response of a
power system under an unbalanced condition can be seen in Figure 6. An extended form
of Equation (1) is given in Equations (2) and (3). Here, H is the inertia constant, f is the
system frequency, S is the rated power of machine, Ekin is the kinetic energy, Hsys is the
equivalent inertia of the whole power system, Ssys is the system base, and Hi and Si are the
inertia and rated power of the i-th machine.

H =

(
Jω0

2)/2
S

=
Ekin

S
=

Hi Si
Ssys

. (2)
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Hsys =
Ekin, sys

Ssys
=

∑n
i=1 HiSi

Ssys
. (3)

From the above equations, it is clear that the system inertia is directly proportional
to the kinetic energy of the machine for a constant rated power; with an increase in the
proportion of kinetic energy (i.e., synchronous type generation), the system inertia increases.
The conventional power system contains synchronous generators as the source of kinetic
energy, as well as the system inertia, but modern power systems have both less kinetic
energy and less inertia. On the other hand, most appliances and the equipment control
mechanisms adopted in modern power systems are based on PEC technologies, which
significantly reduces the inertia. The rate of inclusion of such technologies is increasing
day by day, resulting in decreases in system inertia at a drastic rate [118].

In a power system with multiple generators, each machine should run at the same
frequency (i.e., synchronism). If a big power deviation takes place, individual power
generators within a power system may lose synchronization, followed by dissimilar fluc-
tuating motions around the center of inertia (COI) [119,120]. At this stage, the frequency
of each unit may not be the same, instead presenting an oscillating tendency. The rate of
oscillation is dependent on the difference between PM(t) and PL(t), as given in Equation (1).
However, the frequency of each unit is closed to the COI (see Equations (4) and (5)), and
the damping and inertial forces among the units try to pull the whole system back into
synchronization [120]. If these forces are unable to maintain the system in its original
state, some form of control mechanism should be activated to maintain system stability.
From Equations (5) and (6), it is clear that the system frequency and its changing rate are
directly related to the inertia of the power grid. A lower system inertia leads to a higher
fluctuation of frequency. For a better visualization of these issues, Figure 10a,b can be
analyzed, which present the frequency dynamics for different inertial constants and power
deviations. From Figure 10a, it can be seen that the reduced system inertia creates a higher
frequency deviation, which may lead to an unstable power system. Similarly, Figure 10b
shows the dynamic characteristics of the frequency with changes in the power deviation.
Here, for analysis, the values of the constants in the transfer function were taken from [7].

fCOI =
∑n

i=1 HiSi fi

∑n
i=1 HiSi

. (4)

fCOI(t) = 1 +
∆P

2Hsys
t. (5)

RoCoF =
∆P

2Hsys
. (6)

In addition to frequency fluctuation, the huge penetration of PEC technologies creates
other stability issues in a power system. The rotor angle stability and the small-signal
stability of a power system are directly linked to the synchronous generators connected
to the grid [121]. The huge penetration of PEC-based RESs reduces the proportion of
synchronous generators in a power system, which may affect the shape, frequency, and
damping factor of the rotor oscillation [10]. Furthermore, the power system is unable to use
the power system stabilizer connected to the synchronous generator. In the case of large
disturbances, transient instability may also occur in the system via changing the power flow
in tie-lines [122]. The frequency stability is also linked to the rotor angle stability since the
rotor speed of the generators is adjusted on the basis of the system’s frequency [123]. Since
PEC-based technologies have the ability to control the active and reactive power on both
the generation and the load sides, they can be used to maintain rotor angle stability and
the frequency stability in the pipeline [116,124]. Furthermore, a low-inertia power system
would be capable of maintaining the frequency balance during a significant deviation via
rapid generation/load changes [125].
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On the other hand, PEC-based technologies introduce two new forms of stability
issues: resonance and converter-driven stability. The first (i.e., resonance stability) occurs
during the periodic exchange of energy in an oscillatory manner because of the insufficient
dissipation of energy while magnifying the magnitude of the parameters (i.e., voltage,
current, torque, etc.) [10]. Two types of resonance stability exist: (a) torsional and (b) elec-
trical resonance. Torsional resonance basically occurs in conventional power systems that
contain synchronous generators, whereas electrical resonance occurs in systems containing
RESs (especially variable-speed induction generators in wind turbines). This resonance can
lead to large oscillations in current and voltage, as well as large perturbations in electrical
torque, which further impact the electrical and mechanical components [10]. Similarly,
the second (i.e., converter-driven stability) is fully associated with PEC control and occurs
in the form of oscillation due to the cross-coupling phenomenon between the dynamic
electromechanical devices and the transient nature of electromagnetic grid networks [11].

4.2. Future Studies

According to the literature, the adopted approach of system stability involves the
control of appropriate mechanisms by taking into consideration some response parame-
ters. However, with respect to the abovementioned issues, the classical methods cannot
effectively address the problems because of their slow response, low accuracy, and poor
robustness. Generation-side control approaches are mostly focused on the supply/demand
balance, whereas frequency fluctuation issues can be effectively addressed by demand-side
control methods [126,127]. Response parameters such as RoCoF, nadir frequency, and
OD are important indicators of the system’s status, allowing intelligent selection of the
appropriate control approach. To regulate the system’s characteristics and maintain system
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stability, the real-time response must be measured within microseconds, for which an
efficient and intelligent controller is necessary. The response time is the primary concern
during the implementation of a control mechanism in the system. Moreover, the power
generation characteristics from RESs are unpredictable and fluctuate drastically; thus, the
controller must be robust so that it can handle abnormal situations. The system is required
to manage and protect the components from failure. Furthermore, most studies were
conducted for the integration of big plants such as solar farms and wind farms; however, in
current practice, people are installing distributed energy systems on smaller scales [128,129].
Various trading practices and control mechanisms are being introduced, which further
leads to problems in system operation and protection [130,131]. Such problems must be
addressed by bottom-up approaches and not only for big power plants. Several studies
have been conducted to address the issues of low-inertia power systems, but concrete
results were not achieved with practical and efficient validation, and several limitations
were identified. Some potential fields of study are discussed in this section to address the
current issues of PEC-dominated power systems.

4.2.1. Grid-Forming Power Converters

Conventional inverters were designed to work as current sources concerning the grid
parameters, whereby synchronous generators are basically used as the reference system (i.e.,
slack bus), and the generators connected to the inverter act as the power contributors (i.e.,
following type). These conventional inverters use PLL to synchronize the connected power
generators to the power grid [132]. However, the inverter must be able to handle occasional
perturbations such as sudden voltage fluctuations and phase changes so as to re-establish
the system synchronization [133]. With the increase in the proportion of nonsynchronous
generators, modern power systems are becoming dominated by PEC technologies, and the
concept of grid-following inverters is becoming outdated due to the need for a reference
system (i.e., synchronous generator) to maintain the parameters [107]. Hence, a form of
PEC-based resource must be introduced into modern power systems to set the relevant
parameters, instead of following the existing values (as done by grid-following inverters).

A grid-forming power converter is a power electronic unit that helps to control the
voltage amplitude and frequency (i.e., magnitude and angle of the voltage) at the point of
common coupling (PCC) within a power system [134,135]. Its main function is to regulate
the output voltage and/or current so that the system frequency and the voltage remain in
an acceptable range. Since a grid-forming converter is capable of injecting instantaneous
active and reactive power for frequency and voltage regulation within a system, it can
be considered as the slack bus unit in an isolated energy system [134,136]. However,
it can be used in both isolated and grid-connected mode, behaving as a synchronous
generator in traditional power systems [134]. Basically, the grid-forming inverter adopts
four techniques, as shown in Figure 11. The concept of the grid-forming inverter with new
adaptations can address the above-discussed issues, but its actual characteristics, response,
and impact are unknown [137]. Numerous studies have proposed adaptions, along with
a description of their performance, in the past few years. One of the popular methods
used with synchronous generators and inverters is droop control, which established a
linear relationship between frequency (active power) and voltage (reactive power) [138].
A fractional-order controller for a grid-forming inverter was proposed with the target
group of high-energy applications, but the system dynamics were found to be slow and
unstable [139,140]. Virtual oscillator control-based strategies were proposed in [141,142]
for performance improvement, but these approaches are still in the experimental phase
and need genuine validation. A sliding mode control was proposed for an AC voltage loop
with an inner current loop in [143], but this concept is quite complicated and suffers from
high computational cost. Similarly, state-feedback control techniques for direct AC voltage
control within a grid-forming inverter have coupling issues with the active power [144].
From the studies taken from the literature, it can be observed that the adaptation processes
of new concepts with grid-forming inverters are in progress, but no practical and reliable



Energies 2021, 14, 4184 20 of 28

solutions have been obtained to date. Some significant research can be done in this sector
for the advancement of this concept in the future. For example, the combination of multiple
grid-forming concepts (e.g., a hybrid model of a virtual oscillator and matching control)
can be conducted by highlighting the strengths and neglecting the drawbacks of specific
methods (i.e., the virtual oscillator control method has the best large-signal behavior, while
matching control method is more robust; thus, a better result can be achieved through their
combination) [145].
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4.2.2. VPP/VSG with a New Dimension

PEC-based generators use a droop control mechanism to maintain frequency, but most
of them adopt the approach of power sharing in a steady-state but not transient mode [146].
In addition, the droop control mechanism lacks technical parameters, including system
inertia, which was addressed by the introduction of a concept called virtual power plant
(VPP) or virtual synchronous generator (VSG) [147,148]. The VPP produces the required
inertia virtually by introducing an appropriate amount of power, and the inertia minimized
the variation in frequency (both primary and secondary) caused by various factors and
events [16,149]. The ability to introduce appropriate power (both active and reactive) for
the stability of frequency and voltage is an essential characteristic of an effective VPP [150].
However, it takes a few minutes to switch RESs (especially wind energy) from one steady
state to another state during normal operation. Hence, a BESS is always introduced along
with VPPs to maintain balanced energy conditions and provide virtual inertia during the
transient stage [150,151]. On the other hand, the complexity may be increased with an
increase in the number of VPPs within the system [152,153].

These challenges can be addressed by maintaining efficient coordination among the
VPPs that link and share the required inertial proportion [154]. In order to achieve this
objective, intelligent architecture can be introduced to monitor, estimate, and control the
parameters on a real-time basis. An example of an intelligent architecture is presented in
Figure 12. In the proposed system, the distributed VPPs and BESSs provide virtual inertia
for their respective RESs, whereby all systems are controlled via the hierarchical control
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architecture. A short-term time-series forecasting model can be developed to forecast the
electrical parameters within the power system, which can be utilized to identify optimum
coordination among the associated technologies (i.e., size and location of the VPPs, PECs,
and grid parameters), such that the system can be securely and reliably operated. A
deep learning-based hierarchical control mechanism can be developed to coordinate the
distributed and central control system, as well as dynamically oversee the whole power
system for normal operation. The proposed model is based on a distributed concept,
which can manage the allocation of power, thereby controlling the whole power system.
Various platforms can be used to develop this real-time tool, which allows interpreting
and visualizing the data received from hardware in a user-friendly way. One of the main
concerns during the design and implementation of the proposed system is that the central
control must work in proactive way, since the communication process (i.e., data sending
and receiving) takes some time, which may delay the whole control process. For this, the
optimization and forecasting models must be efficient and accurate so that the system can
promptly predict the characteristics and introduce actions at the right time.
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4.2.3. Other Solutions

With the identified problem of frequency control in low-inertia power systems, numer-
ous potential solutions have been invented and/or are undergoing investigation. Several
research articles have proposed efficient and robust methods to address the frequency
control issues of low-inertia systems, as listed in Table 3.
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Table 3. List of possible concepts to address the issues occurring in PEC-based power systems.

Concept Features References

Inertia emulation via electronic
components and BESSs

This concept introduces electronic devices such as
supercapacitors or BESSs to provide the inertial response to the
power system during a fault or unstable situation (i.e., the
condition of frequency deviation). The reduced power during
power system unbalance or fault can be compensated for by the
introduced components to support the frequency response,
similarly to conventional synchronous generators. Additionally,
this concept helps in system synchronization by providing
virtual control methods.

[155]

Incentivizing synchronous condensers or
high-inertia generators

Synchronous condensers can be introduced to provide the
inertia and short-circuit power in low-inertia grid systems via
voltage recovery concepts during system instability. Generally,
this technique considers the emulated generators as
conventional generators, which can provide the required inertia
and the active and reactive powers. One of the complexities of
this technique is the requirement of an optimized technique for
the selection of appropriate capacities and the locations of
emulated generators.

[156,157]

Curtailment methods and grid code
modification

Power production limits, instantaneous combined cycle
generation limits, or price signals can be used to increase the
inertia contribution. This approach is mostly based on the
planning and operation of the existing power system, rather
than adopting new technologies. Furthermore, the existing grid
code can be changed to maintain the system during acceptable
system instability. For example, the operational settings of the
existing control equipment can be revised so as to increase the
acceptable limit, whereby no automatic shutdown would take
place during small levels of deviation.

[137,158]

5. Conclusions

The introduction of PEC-based technologies is drastically reducing system inertia,
thereby leading to numerous issues in power system stability. The inclusion of inertial
support might be the best option, but this requires robust, secure, reliable, and practical
solutions to maintain the system within an acceptable inertia level. Researches have been
conducted to address the problems of low-inertia systems due to PEC-based technologies.
However, the proposed studies did not yield concrete results with practical and efficient
validation, and several limitations were highlighted. Nevertheless, there are many research
gaps in this area which can be filled in the future. On the basis of the studies taken
from the literature, two major tasks were identified to address the discussed issues: (a)
modification of the grid codes as per the current situation, as well as the adaptation
of the new operational strategies; (b) introduction of a new device (maybe PEC-based)
for this specific purpose. According to a previous study, the following improvements
are recommended: (a) intelligent PEC-based technologies to improve the time response,
accuracy, and robustness of controllers and their combinations, (b) intelligent techniques
to optimize the rating and coordination of integrated RESs, and (c) intelligent models to
optimize the size, number, and location of BESSs within the VPP configuration.
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