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Abstract 

The trend of micro-electronic-mechanical-systems (MEMS) packaging requires cost-

effective and high performance packaging techniques. The objective of this study is to 

develop solid-liquid-interdiffusion (SLID) wafer-level bonding, a promised cost 

effective and high performance bonding technique for MEMS packaging. Two 

techniques were addressed: Cu-Sn SLID and Au-In SLID bonding.  

The main contributions are: 

� Fully characterization of intermetallic formation during the Cu-Sn bonding 

process 

� Development of a numerical simulation model for IMCs thickness development 

during a Cu-Sn and Au-In bonding process, which could be used as a tool for 

process design and optimization 

� Development of an in-house process for Cu-Sn and Au-In SLID wafer-level 

bonding 

� Fabrication and testing of Cu-Sn and Au-In SLID wafer-level bonding, perform 

mechanical integrity test at high temperature 

� Propose new methods for fracture characterization 

� Investigation of voids formation during the Cu-Sn SLID bonding process 
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1 Introduction 

1.1 MEMS 

Microelectromechanical systems (MEMS) are integrated systems that combine 

electrical, mechanical and other interact-components. Being the first to combine moving 

mechanical structure and electronic components at micro-scale, MEMS is considered a 

breakthrough technology and has become a distinctive research field with remarkable 

progress [1] on advanced sensing systems, implantable biomedical sensors, and 

microactuators [2]. Nowadays, MEMS has been commercialized in numerous 

applications such as automotive, consumer mobile products, biotechnology, medical, 

and optical products [3]. According to prediction (Yole Development France report 

2013 [4, 5]), the MEMS market has an annual growth of ~15 % and could reach $ 22.5 

billion in 2018.  Although MEMS has been developed for many applications, the most 

critical issue of MEMS commercialization is packaging.  

1.2 MEMS packaging requirements and challenges 

According to the industry reports, the packaging/assembly and testing still account for 

35-60 % of the final cost of the devices [4, 6-11]. The reason is that MEMS packaging 

is much more complex than integrated circuit (IC) packaging and usually requires 

interactions with the environment [12, 13]. Since MEMS have been implemented for 

various applications, the packaging requirements depend on the end-applications. For 

example, optical MEMS devices need optical communication with the environment; 

implant medical devices need bio-compatible materials; RF-MEMS need the electrical 

interconnection. In general, the requirements and challenges of MEMS packaging 

include: 
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� MEMS devices usually contain fragile structures, such as membrane, resonator, 

accelerometer, etc. Therefore, the packaging of MEMS requires more 

mechanical support during the fabrication and packaging process.  

� MEMS devices, such as mechanical resonator structures, microbolometer needs 

a vacuum environment for high performance and long-term reliability. 

Therefore, hermetic sealing is required to perform an internal vacuum 

environment for the devices and protect devices from the external environment. 

In addition, the outgassing during the bonding and fabrication process must be 

controlled.   

� The processing of MEMS fabrication includes many steps; the packaging must 

be compatible with the devices manufacturing process.   

� MEMS devices include many different materials, and the thermal stress during 

the packaging process must be controlled to improve the performance of the 

devices. 

1.3 Wafer-level packaging of MEMS devices 

The trend in MEMS manufacturing is to increase production volume, reduce cost and 

size, and improve the performance [8]. This trend has raised new challenges for MEMS 

packaging: hermetic sealing to improve the performance of MEMS devices, high 

production volume packaging and lowering cost. Wafer-level packaging is an important 

approach that meets the new demands of MEMS packaging due to these advantages:  

� High production volume is enabled by using 8’’ wafers 

� Low cost: (since all the dies are packaged parallel, the processing cost per 

product is reduced). 

� Miniature size: wafer-level packaging reduces the space between the dies, thus 

reduces the size of the devices. 

1.3.1 Wafer-level bonding techniques for MEMS packaging 

Wafer-level bonding is an important process of MEMS packaging. Over the years, there 

are many different wafer-level bonding techniques have been developed for MEMS 

packaging. An overview of these bonding techniques is shown in Figure 1.1; and the 
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comparison of different bonding techniques is shown in Table 1.1.  In this thesis, the 

focus is on solid liquid interdiffusion bonding (SLID). 

 

Figure 1.1: Overview of wafer-level bonding techniques used to package MEMS devices  

Table 1.1: Comparison of different wafer-level bonding techniques 

Bonding technique Advantages Disadvantages 
Anodic Mature technique, hermetic  

high bond strength, low CTE miss-
match, narrow bond frame 

High temperature   (~500oC), 
electronic charged (400-1000 V), 
flat surface requirement 
 

Direct metal 
(thermocompression) 

Hermetic, high bond strength High temperature and force,   
flat surface requirement 
 

Soldering Hermetic, self-alignment,  
low process temperature 

Solder flow possibility, flux  
medium bond strength,  
low temperature stability 
 

Solid liquid 
interdiffusion 
(SLID) 

Low process temperature, 
high bond strength, hermetic,  
high temperature stability 

Complex process, in research 
stage 
 
 

Glass-frit Mature technique, hermetic, high bond 
strength 

Large bond frame ( > 200 µm), 
high temperature (>450oC), 
complex process 
 

Adhesive  Very low temperature (150-200 oC), 
low cost, flexible 

Low bond strength, non-hermetic 
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1.3.2 Anodic bonding 

Anodic bonding is a mature bonding technique, usually used for silicon to glass 

bonding. The bonding is performed by applying high voltage (400-1000 V) at elevated 

temperature (300-500
o
C) [14]. Anodic bonding produces uniform, high strength, 

hermetic and long term reliability bonding suitable for MEMS encapsulation [15, 16]. 

This bonding technique has been well established for many applications, such as 

resonator, pressure sensor and microfluidic devices [17-25]. Several commercial 

applications of anodic bonding are shown in Figure 1.2.  

 

Figure 1.2: Applications of anodic bonding for hermetic sealing of MEMS devices and encapsulation of nano-
fluidic devices [18, 22, 25, 26].  

1.3.3 Glass-frit bonding 

Glass-frit bonding uses special glass as an intermediate bonding layer. This glass must 

have low melting temperature that could reflow at temperature 400-450 
o
C [27-29]. The 

glass is deposited on the wafers using screen printing method. During the bonding 

process, the glass is heated and melts. The liquid glass flows and wets the wafer surface 

to form the bonding at atomic level. During the cooling process, glass-frit re-solidifies 

and forms a reliable hermetic and strong mechanical bond [29-32]. An illustration of the 

bonding process is shown in Figure 1.3. Glass-frit bonding is a mature technique for 
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MEMS encapsulation and has been well established for many commercial products. 

Several applications of glass-frit bonding are shown in Figure 1.4. However, the main 

disadvantage of glass-frit bonding is the large sealing area [33] which increases the final 

product size.  

 

Figure 1.3: An illustration of glass-frit bonding process.  

 

Figure 1.4: Glass-frit bonding applications for MEMS encapsulation [34-37].  

1.3.4 Adhesive bonding 

Adhesive bonding uses polymer as an intermediate bonding layer. During the bonding 

process, the polymer is in liquid or semi-liquid form. Due to pressure, the polymer wets 

the wafer’s surface and forms intimate bonding.  Afterwards, the polymer is hardened 
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by thermal or UV curing.  The most important advantages of adhesive bonding are the 

low temperature process and the low cost [38-43]. However, the resulting bonding is not 

hermetic and has low mechanical strength. This bonding technique has been developed 

for microfluidic and bio-MEMS devices fabrication, MEMS devices encapsulation and 

served as temporary bonding for film and devices transfer [44-48]. Figure 1.5 shows an 

application of adhesive wafer-bonding for RF MEMS devices encapsulation.  

 

Figure 1.5: Application of BCB adhesive bonding for RF-MEMS encapsulation [45]. 

1.3.5 Metal diffusion bonding (thermocompression)  

Direct metal bonding uses metal as intermediate layer. The most common metal 

diffusion bonding techniques are Au-Au, Cu-Cu and Al-Al [49-59]. The metal bonding 

performs a hermetic and high strength bond. In addition, compared to glass-frit bonding, 

the metal bonding can shrink the bonding area by reducing the frame width and thus 

reduce the final product size by about 50 % [33]. However, the planarity and oxidation 

are critical for the bond performance. Chemical treatment prior to bonding is needed in 

order to remove the oxidation layer on the metal surface if non-inert metal is used. In 

addition, the process temperature is relatively high. The bonding temperature could be 

lowered by surface activation with plasma or ultrasonic; but the activation process can 

damage sensitive devices. The technique is used for hermetic sealing of MEMS devices 

and 3D integration. Figure 1.6 shows several applications of metal diffusion bonding for 

MEMS devices encapsulation.  
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Figure 1.6: Metal thermocompression bonding for MEMS encapsulation [33, 54, 56] 

1.3.6 Soldering using standard solder 

Soldering uses standard solder alloys as an intermediate layer. Normally, a metal layer is 

needed to serve as under-bump metallization (UBM) to improve the adhesion of solder 

to wafers. An illustration of the soldering process is shown in Figure 1.7. The solder is 

deposited on the wafers by electroplating, printing or injection molded transferring 

process [60-66]. The bonding temperature is above the melting point of solder alloy. 

During the bonding process, the solder alloy reflows and wets the metal layer. During 

the cooling process, the solder solidifies and forms a solid bond. Solder alloys react 

with the UBM to form IMCs during the reflow and the bonding process.  

 

Figure 1.7: Illustration of solder bonding process 

Solder has been widely used in electronic packaging as interconnections [67-69]. For 

MEMS packaging, soldering is mainly used in order to provide the electrical connection 
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for the devices[70, 71], to package the devices that have different planarity [72] or to 

enable low temperature packaging [72-74].  The technique is of interest for MEMS 

packaging due to the low temperature process and being hermetic. However, soldering 

has low temperature stability, low mechanical strength, and crack or voids formation 

[68, 75-77]. Therefore, the application of soldering for MEMS encapsulation is limited.  

Figure 1.8 shows one application of Sn-Pb solder for interconnections and optical 

microarray encapsulation. One of the critical requirements of soldering is the use of flux 

(cleaning agent) prior to bonding. The residual of impurities from flux could cause void 

formation or crack that affect the bond performance.  

 

Figure 1.8: Solder application for interconnection and optical microarray encapsulation 

[74, 78].  

1.3.7 Solid liquid interdiffusion bonding 

Solid liquid interdiffusion (SLID) bonding, also called transient liquid phase bonding 

(TLP) or off-eutectic bonding or isothermal solidification bonding, is based on rapid 

formation of intermetallic compounds (IMCs) between two metal components, one 
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metal with high melting temperature (Au, Cu, Ni, Ag) and the other with low melting 

temperature (In, Sn). The bonding process is performed at low temperatures, just above 

the lowest melting point. At the bonding temperature, the low melting component melts 

and IMCs solidify isothermally. The reaction is brought to thermal equilibrium and the 

resulting bond-line consists of only the high-melting component and IMCs with 

elevated melting temperatures. An illustration of IMCs formation during SLID bonding 

process and binary phase diagram of metal systems with two used metal components is 

shown in Figure 1.9.  

 

Figure 1.9: Illustration of SLID bonding systems. Schematic phase diagram shows 

binary equilibrium of metal systems with high-melting (TH) and low-melting (TL) 

components, and IMC with high melting point. The process temperature Tb is above TL. 

The insert shows a schematic of a typical layer structure for SLID bonding and bonding 

process [79]. 

SLID bonding has received much attention from industry and research activities due to 

several advantages: 
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� High temperature stability: the final bond-line with IMCs and high-melting 

metal has high temperature stability that allows repeating processing without 

bond melting.  

� Moderate process temperature: compared to metal diffusion bonding, glass-frit 

bonding and anodic bonding, SLID has lower process temperature. This allows 

reducing thermal stress introduced during the bonding process and bonding of 

devices that are sensitive to temperature.  

� High bond performance: metals are used as intermediate layers, which enable 

high bond strength and hermeticity.  

� Low cost: metals are deposited by an electroplating process, which enables low 

cost processing. In addition, flux-less is enabled by using symmetric bonding 

[79] which removes the need of using flux   

With these advantages, SLID bonding is becoming an attractive technique for MEMS 

packaging. Many research activities have demonstrated SLID bonding for different 

applications. Figure 1.10 shows several potential applications of SLID bonding for 

MEMS encapsulation.  

 

Figure 1.10: SLID bonding applications [71, 80-82] 
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Table 1.2: Comparison of different SLID bonding techniques (refers to [83, 84]) 

Materials  Bonding  

Temperature(oC) 

Re-melting  

Temperature (oC) 

References 

Cu-Sn (*) 260-300 676 [79, 85-87] 

Au/Sn  280-350 500 [88, 89] 

Au-In (*) 160-200 >495 [80, 90, 91] 

Ag/Sn 250 600 [92, 93] 

Ni/Sn 300 794 [94] 

Ag/In 180-200 880 [95, 96] 

Cu/In 260-360 >600 [97] 

 

The use of different SLID bond materials has been demonstrated for MEMS packaging. 

A comparison of these materials is shown in Table 1.2. For all SLID techniques, the 

final bond has a much higher re-melting temperature compared to the bonding 

temperature. In this study, two bonding techniques; Cu-Sn SLID bonding and Au-In 

SLID bonding are presented.  

1.4 Hermetic sealing of MEMS devices 

1.4.1 Hermetic sealing 

A particular requirement of MEMS packaging is hermetic sealing. The main objective 

of hermetic sealing is to define an internal environment with accepted vacuum level for 

MEMS structure in order to improve the performance and lifetime of devices.  

A typical wafer-level packaging process for MEMS hermetic encapsulation is shown in 

Figure 1.11. MEMS devices are fabricated on a device-wafer. The other wafer is served 

as cap-wafer. Cavity is performed on the cap-wafer to create an internal space for 

MEMS devices. The sealing material is deposited on both cap and substrate wafers. In 

order to perform an internal vacuum inside the cavity, the wafers are bonded in vacuum 

environment. After bonding, the sealing frame protects the device from the external 

environment.  
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Figure 1.11: Illustration of a typical wafer-level packaging process for MEMS 

encapsulation.  

1.4.2 Material requirements for hermetic sealing 

To perform a hermetic sealing, the bonding material must be hermetic in order to protect 

devices from gas and water diffusion into the package. Hermetic property of material is 

evaluated by permeability rate. The permeability rate of a material is the diffusion rate 

of gas atoms through the material.  

 

Figure 1.12: The permeability of materials as function of thickness. The highlighted line 

indicates the boundary between hermetic and non-hermetic materials [59, 98] 
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Figure 1.12 shows the permeability rate of different materials. The materials that have 

less than one day sealing capability (permeability is larger than 10-14 g/cm*Torr) are 

defined as non-hermetic materials. The material that could be used for hermetic sealing 

includes glasses, silicon nitride and metals.  

1.4.3 Vacuum level requirement of MEMS devices 

Hermetic sealing is critical to almost all MEMS devices, such as pressure sensor, 

motion sensor and microbolometer. For the devices that contains moveable structures; 

such as accelerometer, gyroscope and resonator; an internal vacuum environment 

eliminates the gas damping effect and improves the performance of devices [99-101].  

Table 1.3: Vacuum level requirement of different MEMS devices  

Application Vacuum level Packaging technology Reference 

Pressure sensor < 1 bar Glass frit  

Anodic  

Silicon fusion  

[102-105] 

Accelerometer 10-1� 1 bar Metal eutectic 

Metal thermocompression 

Glass frit 

Anodic bonding 

[19, 33, 106-108] 

High quality factor 
resonator 

10-2
� 10-1 bar Silicon fusion 

Metal with getter 

Glass frit with getter 

[30, 109] 

Gyroscope 10-3� 10-2 bar Metal eutectic 

Metal thermocompression 

Glass frit 

[33, 110] 

Resonator magnetic 
field sensor 

10-3 � 10-2 bar Glass frit 

Silicon fusion bonding 

[111, 112] 

Microbolometer 

IR sensor 

< 10-4 bar SLID 

Thin film evaporation 

Metal thermocompression 

[56, 113, 114] 

For infrared microbolometer, vacuum environment minimizes the thermal conduction 

and convection and improves the thermal stability of the devices [56, 82]. For pressure 
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sensor, an internal vacuum environment is needed in order to perform a reference for 

pressure measurement. The requirement of vacuum level for different MEMS devices is 

shown in table 1.3. 
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2 Methodology 

2.1 Cu-Sn SLID bonding 

Cu-Sn solid liquid interdiffusion (SLID) bonding is based on rapid intermetallic 

compounds (IMCs) formation between Cu and Sn. The bonding process is performed at 

temperatures 250-300 
o
C [79, 82, 85, 115-118], which is above the melting point of Sn 

(232 
o
C). At the bonding temperature, Sn melts; Cu diffuses into Sn and reacts with Sn 

to form IMCs. The resulting final bond-line consists of Cu and IMCs with elevated 

temperature stability. 

 

 

a b 

Figure 2.1: Equilibrium phase diagram of Cu-Sn binary systems and cross-section micrograph of Cu-Sn 
bonded samples.  

Figure 2.1 shows equilibrium phase diagram Cu-Sn binary systems and cross section 

micrograph of final Cu-Sn bonded samples. The two IMCs that form during Cu-Sn 
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bonding process are Cu3Sn and Cu6Sn5 with the temperature stability up to 676oC and 

415oC respectively. The final bond consists of IMCs and an excess Cu layer to isolate 

the IMCs layer from adhesion layer and to ensure that the final bond has high 

temperature stability. Cu-Sn is becoming an attractive technique for MEMS packaging 

due to low cost and high performance (high bond strength, reliable hermeticity, high 

temperature stability and long term reliability). In addition, compares to other SLID 

bonding processes, the phase diagram is simpler and thus the formation of IMCs during 

bonding process is easier to predict and describe. Cu-Sn SLID bonding with high bond 

strength, reliable hermeticity has been demonstrated for MEMS packaging, 

interconnection and 3D integration [82, 85, 115, 119, 120].  

In the scope of this thesis, Cu-Sn SLID wafer-level bonding has been demonstrated for 

hermetic encapsulation of MEMS devices. The high temperature mechanical integrity 

has also been proven however further reliability testing is required to prove the method 

for high temperature applications. IMCs formation during the Cu-Sn bonding process 

was fully investigated. The development of IMCs during bonding process was modeled 

as a function of initial Sn thickness and temperature profile. This modeling is a 

powerful tool for process design and optimization. Actual bonding experiments were 

demonstrated for hermetic encapsulation and high temperature applications.  

2.2 Au-In SLID bonding 

Au-In SLID bonding is based on the intermetallic compounds formation of Au and In. 

Due to the low melting point of In (156 oC), the bonding process could be performed at 

low temperatures (< 200 oC) [90, 91, 121-123]. This is of interest for many applications 

since lower bonding temperature reduces thermal stress in the package, and also 

facilitates bonding of temperature sensitive devices [81]. Another advantage is that an 

Au rich phase could be formed during processing and thus increases the maximum re-

melting temperature of the final bond. Figure 2.2 shows the binary phase diagram of 

binary Au-In systems, presents a complex system with more than 10 different 

equilibrium phases. The Au-rich IMCs could have temperature stability up to 500 oC.  
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Figure 2.2: Equilibrium phase diagram of Au-In binary systems.  

A typical cross-section micrograph of an Au-In bonded sample is shown in Figure 2.3. 

For Au-In, an initial In surplus thickness design is considered in order to tolerate the 

rapid formation of AuIn2 which occurs even at room temperature. Therefore, different 

from “standard” SLID requirement, there is no Au surplus in the final bond-line. The 

formation of IMCs bonding is more difficult to predict due to complex phase diagram. 

Therefore, for this actual bonded sample, the final bond-line consists of four different 

IMCs, which is non-equilibrium.  

 

Figure 2.3: Cross-section micrograph of Au-In bonded samples with four IMCs present [91].  

In this thesis, initial Au-In bonding is being demonstrated. The formation of AuIn2 

during bonding process was modeled as a function of initial In thickness and 
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temperature profile. The mechanical integrity of Au-In bonded samples at high 

temperature was investigated.  

2.3 Intermetallic formation during SLID bonding process 

Intermetallic formation is one of the critical issues of SLID bonding. The principle of 

SLID bonding is based on the IMCs solidification at the bonding temperature, when the 

low melting component (ML) melts. In order to obtain successful bonding, there must be 

pure ML available at the surface when the melting temperature of ML (TL) is reached. 

However, in a SLID bonding process, the temperature is raised following a defined 

temperature profile. The IMCs are formed during the ramping process, even at a 

temperature below TL, and ML is consumed into IMCs. The challenge is predicting how 

much ML remains at the melting point TL which does not only depend on the initial ML 

thickness, but also the temperature profile or the amount of ML that has been consumed 

to form the IMCs. Therefore, the formation of IMCs during bonding process must be 

well understood. In order to optimize the bonding process, there is a need of a 

simulation model for IMCs development during the SLID bonding process which can 

predict remaining ML thickness.  

2.3.1 IMCs growth kinetic coefficients 

The general mechanism of IMCs formation during SLID annealing process is itself well 

understood [124]. The formation rate of IMCs depends on both the diffusion rate and 

actual chemical reaction kinetics. By assuming simplification to one-dimension 

diffusion model, the kinetics model of IMCs growth thickness can be expressed by:  

��� − ��� = ���	
�� 
�� Eq 2. 1 

Where ��  is IMCs thickness, ��  is initial IMCs thickness, t is annealing time at 

temperature T, �� is diffusion coefficient, Q is activation energy, R is the gas constant 

and n is an empirical coefficient; n = ½ corresponds to a direct solution of Fick’s law, 

the introduction of the empirical coefficient n opens for modeling an experimentally 

observed time-dependent that deviates from a purely-diffusion controlled one.  



 

21 

 

The kinetics coefficients of IMCs growth thickness can be estimated by annealing the 

sample at different temperatures and times. Further information is presented in our 

articles [124, 125]. The estimated kinetics coefficients of IMCs during Cu-Sn and Au-In 

annealing process are shown in Table 2.1 and Table 2.2. Note that for Cu-Sn systems, 

different values of n were obtained. This indicates that the IMCs formation is controlled 

by the combination between diffusion and chemical reaction mechanisms. At low 

temperatures, the chemical reaction rate is low and slowing down the growth of IMCs, a 

lower value of n was obtained. At high temperature, the chemical reaction rate is fast 

and the effect of the chemical reaction is eliminated. Therefore, the diffusion 

mechanism dominates and n = ½ was obtained.  

Table 2.1: Kinetics coefficients of Cu3Sn growth thickness and the amount of Sn that reacts with Cu to form 
IMCs [124] 

 Cu3Sn Reacted Sn 

Diffusion coefficient k0 
[µm2/min2n] 

7.9×106 2.8×104 

Activation energy Q [kJ/mol. K] 78 52 

Empirical exponent n 0.5 for T>=232oC 0.45 for T>=180oC 

0.4 for T<232oC 0.3 for T<180oC 

Table 2.2: Kinetics coefficients of AuIn2 thickness growth, adapted from Zhang [121]  

 k0 (cm2/s) Q (eV) n 

T>150oC 6.43 × 10	� 0.46 0.5 

T<150oC 1.20 × 10	� 0.23 0.5 

2.3.2 Modeling of IMCs development during bonding process 

The objective of bonding process modeling is to build a mathematical tool used for 

bonding process design and optimization. The simulation model for IMCs development 

during the SLID bonding process was built based on the kinetics coefficients shown in 

Table 2.1 and Table 2.2, using a numerical method. For any given time t with assuming 

given IMCs thickness yt and temperature Tt; with further assuming initial zero thickness 

(y0 = 0), the required time that the sample has to be annealed at Tt in order to obtain 

IMCs yt could be estimated by: 
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��� = � ���
���	
����

����
 Eq 2. 2 

For a small time period from t to t+dt, we can assume that the temperature is kept at 

constant dt. Using the extrapolation method, the IMCs or reacted Sn thickness at t+dt 

could be estimated by: 

��� � = !���	
���"
��� + $
%��� Eq 2. 3 

An example of the simulation result of IMCs development during Cu-Sn bonding 

process is shown in Figure 2.4, where the IMCs thickness (Cu3Sn and Cu6Sn5) and the 

remaining Sn thickness are described as a function of bond temperature profile and 

initial Sn thickness. With this simulation, we can predict the critical parameters of the 

bonding process: 

� Remaining Sn thickness when the melting point of Sn is reached 

� When all Sn is consumed into IMCs 

� When the final Cu/Cu3Sn/Cu bond-line is achieved 

For Cu-Sn SLID bonding, to obtain a successful bonding, it is important to ensure that 

there is remaining pure Sn at the bond interface when the melting point of Sn is reached. 

In addition, the objective is to achieve final Cu/Cu3Sn/Cu bond-line that is 

thermodynamic stable since no IMCs will be further formed during operation process. 

Therefore, the model is a powerful tool for the initial design and optimization of Cu-Sn 

bonding process.  

In a Cu-Sn system, both Cu3Sn and Cu6Sn5 coexist for a given time. However, in Au-In 

system, the first IMC that forms during the bonding process is AuIn2 and this IMC 

would be stable if there is excess In [126-129]. Other IMCs would be formed after 

AuIn2 if there is excess Au. In addition, the formation of IMCs during the Au-In 

bonding process is more complex to understand due to complex phase diagram. 

Therefore, it is more complicated to achieve the most desired final bond structure. In the 

modeling, only AuIn2 is taken into account. Figure 2.5 shows the simulation interface 

for IMCs growth during Au-In bonding process.  
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Figure 2.4: Simulation of IMCs development of Cu-Sn SLID bonding process. IMCs and Sn thickness are 
described as functions of temperature profile and initial Sn thickness. At t1, all Sn is consumed into IMCs. At 
t2, the final Cu/Cu3Sn/Cu bond-line is achieved. The modeling is published in article 1 [124].  

  

a b 

Figure 2.5: a)AuIn2 thickness development at room temperature storage and b) AuIn2 thickness development 
during bonding process. Note that, in this simulation, only AuIn2 growth is taken into account. When AuIn2 
reaches the maximum thickness, the reaction may continue and other Au-rich phases are formed.  The 
modeling is not published.  
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2.4 Design rules for SLID wafer-level bonding 

2.4.1 Material selection  

Two material systems that have been investigated in this thesis work are Cu-Sn and Au-

In SLID. In the section below, the advantages and disadvantages of each material 

system will be presented.  

Using a symmetric Cu-Sn SLID bonding enables a flux-less bonding. This technique is 

suitable for hermetic encapsulation and packaging of devices, which operate at high 

temperature. The most important advantage of Cu-Sn SLID is low cost compared to 

other SLID bonding techniques, such as Au-In, Au/Sn. Both metals used are low cost 

and can be deposited by using an electroplating process. In addition, the IMCs 

formation during bonding process is simple compared to other SLID systems, such as 

Ag/In, Au/Sn and Au-In, with only two equilibrium phases: Cu3Sn and Cu6Sn5. 

Therefore, the bonding process is easily controlled. However, the limitation of this 

bonding technique is thick metal layer requirements (compared to thermocompression). 

Normally, the thickness of the final bond-line is up to above 10 µm.  

Au-In SLID bonding is addressed to MEMS hermetic encapsulation. The most 

important advantage of this technique is the low bond temperature. Au-In can perform a 

strong and hermetic bonding at temperatures below 200 oC. Low process temperature 

reduces the thermal stress that occurs during bonding process and addressed to the 

packaging of temperature sensitive devices. Another advantage of Au-In bonding is that 

the strong and hermetic bond can be performed by using thin Au-In layer thicknesses. 

The successful bonding can be obtained with 1µm Au. However, the cost of this 

bonding technique is high. The two metals used are relatively expensive. In addition, 

Indium is sensitive to oxidation and requires deposition in an inert atmosphere.   

2.4.2 Metal thickness design 

2.4.2.1 Cu-Sn design principle 

Requirements for Cu-Sn SLID bond structure design: 

� Symmetric bond structure is used in order to enable flux-less bonding [87]. In a 

symmetric structure, Sn is deposited on both wafers.  
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� The initial Sn thickness must be above the critical Sn thickness to ensure there is 

Sn remaining on the surface when the melting point of Sn is reached. The 

critical Sn thickness depends on temperature profile and could be estimated by 

using IMCs modeling.  

� For Cu-Sn SLID bonding, the desired final bond-line is Cu/Cu3Sn/Cu. 

Therefore, the Cu-Sn thickness ratio must be larger than 1.32, the ratio of Cu-Sn 

thickness for full conversion to Cu3Sn is estimated by: 

�&'�(� = )&'"&'*(�%)(�"&'*(�%
+(�+&' = 1.32 Eq 2. 4 

Here �&' and �(� are required Cu and Sn thickness, )&'"&'*(�% and )(�"&'*(�% are Cu 

and Sn mass in Cu3Sn, +&' and +&' are Cu and Sn mass density.  

 

Figure 2.6: Requirements of Cu-Sn SLID bond structure design.  

2.4.2.2 Au-In design principle  

The requirements of Au-In SLID bond structure design are presented in Figure 2.7. 

Different from Cu-Sn bonding, In is only deposited on one wafer and the final bond 

only consists of IMCs.  

� For Au-In, the most critical challenge is rapid formation of AuIn2, which may 

consume all In into IMC and cause fail bonding, even at room temperature 

storage. There are two solutions to tolerate the formation of AuIn2: 1) use Ti as 

diffusion barrier between Au and In to eliminates the formation of AuIn2 at room 

temperature [121]; 2) design Au-In thickness with surplus In to ensure there is In 

remaining on the surface prior to bonding. This contradicts to “standard” SLID 
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requirement with surplus high melting component. In this work, solution 2 is 

selected. Therefore the In/Au initial thickness ratio must be larger than 3.1 – is 

the In/Au thickness for full conversion to AuIn2 and estimated by: 

 �,�� = ),�"-',�.%)-'"-',�.%
+-'+,� = 3.1 Eq 2. 5 

Here �,� and �-' are In and Au thickness, ),�"-',�.% and )-'"-',�.% are In and 

Au mass in AuIn2, +,� and +-' are In and Au mass density. 

With In/Au thickness ration larger than 3.1, In surplus AuIn2 formation. 

Therefore, even all Au reacts with In to form AuIn2, there is pure In available 

prior to the bonding.  

� There should be pure In available on the surface when the melting point of In is 

reached.  

� The overall In/Au thickness ratio depends on the targeted final bond interface. 

For examples, for the targeted IMC is AuxIny, the required In/Au thickness is 

estimated by: 

�,��-' = ),�"-'/,�0%)-'"-'/,�0%
+-'+,�  Eq 2. 6 

Here �,� and �-' are In and Au thickness, ),�"-'/,�0% and )-'"-'/,�0% are In 

and Au mass in AuxIny, +,� and +-' are In and Au mass density. Table 2.3 shows 

the required In/Au thickness ratio for different targeted IMCs.  

Table 2.3: Required Au-In thickness ratio for different targeted IMCs 

Phase 123/156 723/756 

AuIn2 54/46 3.1 

AuIn 37/63 1.34 

γ (Au7In3) 20/80 0.66 

ε 15.5/84.5 0.49 

β1 14/86 0.43 

ζ 8/92 0.23 

α1 5/95 0.14 
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Figure 2. 7: Design principle for Au-In SLID bonding 

2.4.3 Metal deposition 

Two metal deposition methods were used in this thesis: electroplating and thermal 

evaporation.  

For Cu-Sn bonding, thick metal thickness is required. Therefore the electroplating 

method is selected. Photoresist AZ4562 was used as the mask and Au was used as the 

seed layer for the electroplating process. In order to avoid Cu oxidation, the Sn is 

electroplated immediately after Cu electroplating. The Cu-Sn wafer fabrication process 

is shown in Figure 2.8.  

 

Figure 2. 8: Cu-Sn wafer fabrication process 

 

Figure 2. 9: Au-In wafer fabrication process 
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For Au-In bonding, the thickness of In layer is thin, thermal evaporation method was 

selected for metal deposition. The Au-In wafer fabrication process is shown in Figure 

2.9. Photoresist was used as mask for In thermal evaporation. After evaporation, 

photoresist was removed by lift-off process.  

2.4.4 Bonding process 

For both Cu-Sn and Au-In bonding, a two-steps bond temperature profile was selected 

in order to reduce squeeze out of Sn and In. A description of the two-steps bond 

temperature profile is shown in Figure 2.10. The temperature is raised to the contact 

temperature Tc where the wafers are brought into contact and bond pressure is applied. 

The contact temperature is below the the melting point of low melting component Tm. 

Wafers are kept at Tc for several minutes and then raised to the bonding temperature Tb 

that is above Tm. When the bonding process is finished, the temperature is ramped down 

and bond pressure is released.   

 

Figure 2.10: Typical two steps SLID bonding profile. In a two steps bond profile, the temperature is ramped up 
to the contact temperature Tc that is below the melting point of low melting component Tm. At contact 
temperature, the wafers are brought into contact and bond pressure is applied. Wafers are kept at Tc for 
several minutes. Then, the temperature is ramped up to bonding temperature Tb which is above the melting 
point of the low melting component.  
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2.5 Characterization of bond performance 

2.5.1 Cross-section investigation 

Cross-section characterization is a common method to investigate the microstructure of 

bonded samples, the voids formation during bonding process and the material changes. 

In this study, the cross-section of the SLID bonded samples is investigated by using 

optical microscope, SEM and EDS. Optical microscope is used for general observation 

of the bond interface. With a well-prepared cross-section, voids formation could be 

observed by optical microscopy. SEM and EDS were used for further investigation of 

the intermetallic composition. The cross-section of the samples was prepared by using 

mechanical polishing and ion milling methods.  

2.5.1.1 Mechanical grinding/polishing 

Mechanical grinding/polishing is the traditional method to prepare cross-sections. The 

sample is molded in Struers EpoFix and cured at room temperature for 8-9 hours. The 

molded sample is grinded using SiC paper. One of the challenges of mechanical 

polishing is that the sample is damaged by mechanical force. In order to avoid this 

mechanical effect, the sample is hold carefully and grinded slightly during polishing 

process. Three grinding steps are used using different SiC paper with different 

roughness. Finally, sample is polished using diamond powder (Ø3 µm and Ø1 µm). 

Figure 2.11 shows the typical cross-section micrograph of a Cu-Sn bonded sample, 

which is prepared by mechanical polishing. The final Cu/Cu3Sn/Cu bond-line is clearly 

observed. However, the contaminants from mechanical grinding/polishing process can 

fill the voids and holes. Therefore, as shown in Figure 2.11, for typical mechanical 

grinded/polished samples, the voids could not be observed.  

 

Figure 2.11: Cross-section of a Cu-Sn bonded sample prepared by mechanical polishing. Three different 
layers: Cu, Cu3Sn and Cu are clearly observed. Sample is bonded by Sensonor As. 
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2.5.1.2 Ion milling 

In addition to mechanical polishing method, Hitachi Ion miller IM4000 was used for 

preparing cross-section. A visible picture of the equipment is shown in Figure 2.12. 

There are two different ion milling modes: flat milling and cross-section milling. The 

Argon ion gun is used to remove material. On the specimen stage, we can adjust the 

eccentricity distant (distant from the center of the sample to the center of the ion beam) 

and angle of the sample. On the control panel, we can set up and adjust Ar gas flow, 

milling time, accelerated voltage, discharged voltage and milling mode.  

 

Figure 2. 12: Hitachi Ion miller IM4000.  

Flat ion milling 

Flat milling is used to further polish the cross section of samples prepared by 

mechanical grinding/polishing. An illustration of flat milling mode is shown in Figure 

2.13. During the milling process, the samples holder iterates around the rotation center 

with specimen iteration angle±9  (the angle of the movement from the center of 

specimen) and specimen iteration speed : (the number of movements per min). The ion 

gun bombards the samples surface and removes the material on the surface. The milled 

area is dependent on the ion beam irradiation angle (;% and the amount of eccentricity. 

The milling rate is dependent on the acceleration voltage (V) and gas flow (R).  
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Figure 2.13: Schematic of flat mode milling configuration [130].  

Flat milling mode F4 [130] (specimen iteration speed : = 15 reciprocations/min and 

specimen angle 9 = ± 60
o
) was selected. Two steps milling was used. The parameters of 

each step are shown in Table 2.4. The first milling step, a small ion beam irradiation 

angle (;=60
o
) and high-accelerated voltage (6 kV) were used in order to remove the 

material and contaminants on the surface. The second milling step, a large ion beam 

irradiation angle and lower accelerated voltage were used in order to polish and achieve 

uniformity of the flat surface. The micrograph of a cross-section sample after flat 

milling is shown in Figure 2.14.  Different from typical mechanical grinded/polished 

samples, the voids are clearly observed for the flat milled samples.  

Table 2.4: Parameters of two steps flat milling for samples polishing.  

 Mode Voltage < Gas flow time 

Step 1 F4 6 kV 60o 0.09 cm3/min 5 min 

Step 2 F4 4 kV 80o 0.09 cm3/min 20 min 
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Figure 2.14: Cross-section of Cu-Sn bonded sample prepared by mechanical polishing and further polished by 
flat ion milling. Different material layers (Cu, Cu3Sn, Cu6Sn5) and the interface between these layers are 

clearly observed. The voids in the bond interface are clearly observed after flat milling. The sample is bonded 

by Sensonor As. 

Cross section milling 

The Cross-section milling mode is used to prepare cross-section samples directly from 

diced sample. Illustration of cross-section milling mode configuration is shown on 

Figure 2.15. The sample is mounted to the sample holder. A hard metal plate was used 

as blocking plate. During the milling process, the holder rotates around the center with 

swing speed : (the number of swings per minute) and swing angle±9. The ion gun 

bombards the samples and removes the material layer by layer.  

 

Figure 2.15: Schematic of cross-section milling mode configuration [130] 

In this study, the cross-section milling mode C6 (swing speed : = 23 reciprocation/min 

and swing angle 9 = ± 40
o
) was used. The milling parameters are shown in Table 2.5. 



 

33 

 

Note that for as-deposited sample, a thin glass plate (200 µm) was attached on the metal 

surface in order to protect the soft metal layers. The cross-section of a cross-section 

milled sample is shown in Figure 2.16. Different material layers and layer interface are 

clearly visible. The voids that introduce in the bond interface are also clearly observed.  

Table 2.5: Parameters for cross-section milling of as-deposition sample and bonded sample 

 Mode Voltage Gas flow Time 

As-deposited sample C6 6 kV 0.09 cm3/min 2 h 

Bonded sample C6 6 kV 0.09 cm3/min 3 h 

 

Figure 2.16: Cross-section of a Cu-Sn bonded sample which is prepared by cross-section milling. Different 
material layer (Au, Cu, Cu3Sn) and the interface between these layer are apparently visible. Voids are clearly 

observed.  

Compared to the mechanical grinding/polishing method, ion milling has several 

advantages: 

� The mechanical effect is eliminated 

� Micrograph of the cross-section is clear, even voids and grain structure could be 

observed 

2.5.2 Bond strength testing 

Bond strength is considered as an important property of the packaging. This property 

gives general information about the mechanical integrity of the systems and the 

potential weakness. Bond strength measurement is also performed for quality control 

inspection of the industrial process [131, 132].In this study, shear testing was used for 

bond strength testing. 
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Shear testing is a common method to characterize the bond strength of a bonded sample. 

This is a fast, robust, simple and cost-effective test method. The important parameters of 

shear testing are: test height (the height of the shear tool from substrate), test speed (the 

speed of shear tool movement), sample alignment and the tested temperature. In this 

study, we used NordsonDage 4000Plus shear-tester for the shear test.   

2.5.2.1 Test vehicles design for shear testing 

The test vehicles design for shear test is shown in Figure 2.17. Chip size is 1.8 x 3.4 

mm2 and substrate size is 6 x 6 mm2. Each substrate and die contains two bond pads 

with pad size is 0.8 x 1.0 mm2.  

 

Figure 2.17: Test vehicles design foe shear strength measurement at elevated temperature.  

2.5.2.2 Shear testing configuration 

The test configuration of the shear tester is shown in Figure 2.18. A customized-holder 

is used to align the sample and prevent the rotation of the sample during shear test. The 

samples holder is attached to a hot plate. The temperature of the hot plate is controlled 

by a proportional-integral-derivative (PID) controller. A test height of 75 µm and a shear 

speed of 10 µm/s were used. The shear strength of the bond is calculated by: 

=( = >(?  Eq 2. 7 

Where FS is the recorded shear force when the fracture occurs and A is bonded area.  
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Figure 2.18: Illustration of shear test configuration. The bonded sample is attached and clamped to the hot 

plate, using a customized sample holder. The holder will reduce any misalignment of the die and prevent the 

rotation of the tested die during shear process. A PID controller controls the temperature of the hot plate. The 

entire temperature range was calibrated to ensure that the actual measured temperature on hot plate matches 

the indicated temperature on PID controller. 

2.5.2.3 Temperature calibration 

The calibration of the hot plate temperature was carried out in order to examine the PID 

indicator temperature. Different temperatures from room temperature to 300 
o
C were set 

up by PID. The actual hot plate temperature was measured by a thermometer. Figure 

2.19 shows the measured temperature as a function of PID indicator temperature, 

showing that the actual temperature is linear dependent on indicator temperature. There 

is a slight difference between set up temperature and measured temperature. However, 

in our case, the difference is at acceptable level.  

 

Figure 2. 19: The measured temperature as a function of PID indicator temperature.  
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2.5.2.4 Calibration of shear testing 

With this shear test equipment, we can shear the bonded samples at elevated 

temperature.  The temperature of the hot plate is controlled by a PID controller. One of 

the concerns is the actual temperature of the device under the test (DUT). The shear tool 

itself is not heated (only the stage is heated) and upon contacting the DUT, it will act as 

a heat sink and reduce temperature on the DUT. Thus, we conducted the following 

experiment where we positioned a thermocouple on a dummy Si chip during a shear test 

procedure at 300 
o
C to measure any temperature drop. Note that, the measured 

temperature is 290 
o
C, slightly lower than set up temperature.  

 

Figure 2.20: Measured temperature on the top of a dummy die during shear testing at 300oC. The measured 

temperature is 290 oC. When the shear tool touches the die, the temperature drops down because the tool is a 

heat sink. When the fracture occurs; the temperature at the top die reduced to 250 oC. After the test is 

complete, the temperature quickly increases to 290 oC. 

Figure 2.20 shows the measured temperature on the top of Si die during a shear test 

procedure. As evident, when the shear tool touches the die, and moves, the temperature 

is reduced. Depending on the duration of contact, when a fracture occurs, the 

temperature on the top die from this experiment can be estimated to drop about 50 
o
C. 

Our bonded samples are symmetric; therefore we can estimate that the minimum 

temperature on any Cu-Sn bond interface would be at least 275
o
C for a test temperature 
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of 300 oC. Further characterization of temperature at the DUT was not carried out, as we 

view the results satisfactory to and the test setup repeatable since it will be identical for 

all temperatures. 

2.5.3 Fractography 

Fractography is the investigation of the sheared fracture surfaces. This is an effective 

method to determine the fracture mode of the sheared sample and the weakest material 

or interface of the bonded sample. In this study, optical microscope, interferometer, 

SEM and EDS were used for fracture characterization.  

An example of a fractography analysis of an Au-In sheared sample is shown in Figure 

2.21. The optical microscopy picture and EDS analysis shown in Figure 2.21a indicates 

that there are three different fracture surfaces. The height profile in Figure 2.21b 

indicates that these surfaces have different height, and each surface is planar. We can 

extract the area fraction of these fracture surfaces by using bearing ratio analysis. 

The filter bearing ratio analysis calculates the bearing ratio tp, the ratio of the bearing 

area to the total surface area. The bearing area is the area of the surface cut by a plane at 

a particular height [133]. The bearing curve shows tp in relation with the profile level. 

For this particular sample, the total bond pad area is 66.5 %. The fraction of each 

fracture surface area could be estimated by: 

@A∗ = CA∗CA�D�EF Eq 2. 8 

Where CA∗ is the bearing ratio of surface *, CA�D�EF is total bearing ratio of the pad. For 

this particular case, the area fraction of surface a, b and c are 18.8 %, 66.2 % and 15 % 

respectively. 
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a. Microscope picture and SEM 

analysis 
b. Height profile 

 
c. Bearing ration analysis 

Figure 2.21: Fractography of an Au-In sheared sample a. microscope picture and SEM analysis, b. height 
profile and c. bearing ratio analysis 

The bearing ratio only takes into account the measureable data. In the case the fracture 

surface contains the regions that the height could not be measured by interferometer, the 

bearing ratio must be calibrated. One example of this fracture surface is shown in Figure 

2.22. The fracture surface contains four different fracture modes a, b, c and d; where the 

height of surface d could not be measured by interferometer. The area fraction of this 

surface (d) over total area is 20 %. The calibrated bearing ratio (Br_calibrated) is 

estimated by: 
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CA&EFGHIE�� = CA ∗ "1 − 0.2% Eq 2. 9 

For this particular sample, the bearing ratio given by interferometry, calibrated bearing 

ratio and area fraction of different fracture surfaces are shown on Table 2.6.  

 

Figure 2.22: Fractography which contains four different fracture surfaces a, b, c, and d; where the height of 

surface d could not be measured by interferometer.  

Table 2.6: Calibrated bearing ratio and are fraction of different fracture surfaces shown in Figure 2.15.  

Area a b c d total 

Bearing ratio Br (%) 23.5 31.5 7.5 -- 62.5 

Calibrated Br (%) 18,8 25,2 6 20 70 

Fraction fr (%) 26.9 36 8.6 28.5  

 

2.5.4 Bonding yield investigation 

For SLID wafer-level bonding, due to the non-uniformity of the metal deposition 

process, one may introduce several un-bonded areas on the wafers where the metal layer 

thickness is thinner than in other areas of the wafer [89, 118]. Therefore, in addition to 

shear test, bonding yield is one of the used methods in order to evaluate the 

performance of wafer-level bonding. In this study, dicing yield (the percentage of dies 

that remains after dicing) and sealing yield (the percentage of the dies that vacuum 

remains inside the cavity after bonding) were used for evaluation of the performance of 

the bonding. While the shear test gives information about the mechanical integrity of the 

bonded samples, the bonding yield gives general information about the bond 

performance on the whole bonded wafers. The dicing yield could be observed after 

wafer dicing.  
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In order to investigate the sealing yield, the membrane deflection method is used to 

examine if the vacuum remains inside the cavity after bonding. The test structure for 

sealing yield verification is shown in Figure 2.23a. The membrane is performed on cap 

wafer using silicon etching. The thickness of membrane is 200 µm. The dimension of 

membrane is ~6 x 6 mm
2
.  

 

Figure 2.23: Test structure design for hermetic verification by membrane deflection method and typical 

membrane deflection profile of a sealed sample.  

The wafers are bonded in a vacuum environment. If the wafer is hermetically sealed, the 

vacuum remains inside the cavity when the bonded wafers are exposed to the 

atmosphere. Due to the differential of external and internal pressures inside the cavity, 

the membrane is deflected. For a square membrane, the differential pressure could be 

estimated by [134]: 

J GKK =	M� �N�O� P + M� �N�QOR S1 − T + MQ S1 − T� �QN�OR  Eq 2. 10 
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Where N�is the maximum deflection at the center of membrane, a is half of membrane 

length, Pis residual stress, E is Young’s modulus, Tis Poisson ratio of the membrane 

material, y is membrane thickness. M� = 3.4057 , M� = 1.84  and MQ = 4.129  are 

coefficients, which are dependent on geometry. With small deflection N�  and zero 

residual stress, the differential pressure could be estimated by 

J GKK = 	4.129 S1 − T� �QN�OR  Eq 2. 11 

Typical membrane deflection of a hermetic sealing cavity is shown in Figure 2.23b. The 

deflection of membrane was measured by interferometer.  

For our case, <100> silicon membrane, E =130 GPA, T = 0.278, y = 200 µm, a = 3 

mm. Therefore: 

J GKK	"YOA% = 0.6	 ×	N�	"μ)% Eq 2. 12 

For this particular sample, the maximum deflection of membrane is 1.4 µm, then Pdiff = 

0.84 bar and the pressure inside the cavity is 0.16 bar. In our case, the accuracy of the 

pressure measurement could be limited for several reasons: the membrane thickness is 

uncertain and the residual stress is un-known. Therefore, in order to determine the 

accurate pressure for a hermeticity test, this method is not good enough. However, the 

measurement can determine if there is a difference of pressure inside the cavity and 

outside the cavity, and initially evaluate if the die is sealed or not.  
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3 Summary of articles 

 

3.1 Article I, II  

Article I: 

Thi-Thuy Luu, Ani Duan, Kaiying Wang, Knut E. Aasmundtveit and Nils Hoivik, 

“Optimization of Cu-Sn wafer-level bonding based upon intermetallic 

characterization”, 4th Electronic System-Integration Technology Conference (ESTC 

2012), September 17-20, 2012, Amsterdam, Netherland. 

Article II: this article is extended from article 1 

Thi-Thuy Luu, Ani Duan, Knut E. Aasmundtveit and Nils Hoivik, “Optimized Cu/Sn 

wafer-level bonding using intermetallic phase characterization”, Journal of Electronic 

Materials 2013, Vol 42(12), 2013, pp. 3582-3592. 

My contribution:  literature review, design, experiment, characterization, estimation of 

kinetics coefficients, numerical modeling, and manuscript preparation 

For Cu-Sn SLID bonding, the formation of IMCs during bonding process is one of the 

critical issues to the bond performance. The successful bonding is only obtained if there 

remains pure Sn at the melting point of Sn (Tm). However, in a Cu-Sn bonding process, 

the temperature is raised following a defined temperature profile. The IMCs are formed 

during the ramping process, even below the Tm and an amount of Sn would be 

consumed into IMCs. The challenge is to predict how much Sn remains at Tm which 

does not only depend on the initial Sn thickness, but the amount of Sn that has been 

consumed to form IMCs. Therefore, there is a need of a simulation model for IMCs 
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development during Cu-Sn bonding process, which can predict how much Sn, remains 

at the melting point of Sn. The motivation of this work is to implement a numerical 

simulation model for IMCs development during Cu-Sn bonding process. With this 

simulation model, we can predict the critical parameters of the bond temperature 

profile: the Sn thickness that remains at the melting point of Sn, the time that all Sn are 

consumed to form IMCs and the time that final Cu/Cu3Sn/Cu bond-line is obtained. 

Main results:  

In order to simulate the IMCs thickness growth during Cu-Sn SLID bonding process, 

the formation of IMCs during Cu-Sn annealing process was fully characterized. It is 

well known that the two IMCs that form during Cu-Sn annealing process are Cu3Sn and 

Cu6Sn5. In this study, the initial characterization focuses on growth kinetics model of 

Cu3Sn growth thickness and the amount of Sn thickness that is consumed into IMCs. 

The as-electroplated Cu-Sn samples were annealed at different temperatures (150 oC to 

300 oC) and annealing times (0 min to 320 min). The kinetics coefficients are then 

extracted from the measured IMCs thicknesses of the annealed samples. 

Based upon the estimated kinetics coefficients, a numerical simulation model for IMCs 

thickness development during Cu-Sn bonding process was implemented, using 

MATLAB. With this simulation, the IMCs thickness (Cu3Sn and Cu6Sn5) and the 

remaining Sn thickness on the surface are described as functions of initial Sn thickness 

and bond temperature profile. The actual bonding experiments were carried out in order 

to evaluate the simulation model. According to our characterization, the measured IMCs 

thicknesses match the simulated thicknesses. This verifies the accuracy of simulation 

model, and the model could be used as a tool for process design and optimization.  

According to the simulation model, for an initial Sn thickness of 1.5 µm, successful 

bonding could be obtained by using two steps temperature profile. In this two steps 

temperature profile, the temperature is ramped to contact temperature (150 oC) where 

the wafers are brought into contact and kept at 150 oC for 5 min. The temperature is 

then ramped to bond temperature 270 oC. To achieve final Cu/Cu3Sn/Cu bond interface, 

the bonding time should be longer than 30 min.  
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3.2 Article III 

Thi-Thuy Luu, Ani Duan, Kaiying Wang, Knut E. Aasmundtveit and Nils Hoivik, 

“Cu/Sn SLID wafer-level bonding optimization”, proceeding of Electronic Components 

and Technology Conference (ECTC), 2013 63rd, May 28-31 2013, pp. 1531-1537. 

My contribution: mask design, fabrication, characterization and analysis of experiment 

result.  

The objectives of this study is to further investigate the effect of different bonding 

parameters, include initial Sn thickness, bond pressure and bond temperature profile to 

Cu-Sn SLID bond performance. Bond performance was evaluated by bonding yield 

(dicing yield: the percentage of dies that remains after dicing; sealing yield: the 

percentage of dies that vacuum remains inside after bonding). 

Main results: 

The experimental results confirm that: high bonding yield is achieved if there is pure Sn 

at the bond surface when the melting point of Sn is reached. For our actual bonding, a 

Sn thickness of 1.5 µm should be used in order to minimize the squeeze-out of Sn, and 

tolerate the non-uniformity during Cu/Sn plating process. A moderate bond pressure 

will give high bond yield. With bond pressure of 1.5 MPa, bond temperature of 270oC 

and initial Sn thickness of 1.5 µm - dicing yield of 100% and sealing yield of 80 % 

waere obtained.  

3.3 Article IV 

Ani Duan, Thi Thuy Luu, Kaiying Wang, Knut E. Aasmundtveit and Nils Hoivik, 

“Wafer-level hermetical Cu-Sn micro-joints with high mechanical strength and low Sn 

flow”, submitted to Journal of Micromechanics and Microengineering. 

My contribution: modelling of IMCs development during bonding process, part of mask 

design and characterization, process optimization, description of modeling part in 

manuscript.   
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The objective of this work is to demonstrate Cu-Sn SLID wafer-level bonding for 

MEMS hermetic encapsulation. For hermetic encapsulation, shrinkage of sealing frame 

width is one of the important issues. With small sealing frame width, the size of the 

final product could be reduced and the volume of production could be improved. 

However, one of the concerns is how much we can shrink the frame width; since with a 

small frame width, the performance of the bonded samples could be affected. In this 

study, we investigated the effect of Cu-Sn sealing frame with on bond performance. In 

addition, the effect of the bond pressure and the temperature profile were further 

investigated. The bond performance was evaluated by bond yield and bond strength.  

Main results: 

We demonstrated Cu-Sn SLID wafer-level bonding with high yield and less Sn squeeze-

out for MEMS encapsulation. The minimum frame width we could achieve is 80 µm. To 

obtain high bond performance, a bond pressure higher than 1.5 MPa should be used. A 

two-steps temperature profile (described in chapter 2) can reduces the squeeze-out of 

Sn.   

3.4 Article V 

Thi Thuy Luu, Nils Hoivik, Kaiying Wang, Knut E. Aasmundtveit and Astrid-Sofie 

Vardoy, “Cu-Sn SLID wafer-level bonding for high temperature application”, 

manuscript accepted to be published on Metallurgical and Materials Transactions A. 

My contribution: literature review, mask design, assembly, characterization and test, 

analysis, and manuscript preparation.  

For the applications that require operating at high temperature, long-term reliability will 

be challenged due to the increase of thermal stress, material corrosion and other effects. 

Therefore, it is important that the materials used in a bond-line have a high melting 

point as well as a high mechanical integrity at high temperatures. Furthermore, the 

bond-line should have high thermal conductivity to reduce any thermal stress in the 

bond stack, and be thermodynamically stable to reduce any corrosion from diffusion at 

high temperature. Cu-Sn SLID wafer-level bonding is a promising set of materials 

suitable for these applications, as it enables low cost metallization, flux-free bonding, 
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high mechanical strength and hermeticity. The objective of this study is to demonstrate 

Cu-Sn SLID wafer-level bonding for high temperature applications. The mechanical 

integrity of Cu-Sn SLID bonded samples at elevated temperatures up to 300 oC was 

investigated.  

Main results: 

Cu-Sn SLID wafer-level bonding results in a high yield bonding and high mechanical 

integrity at high temperatures. The resulting bond strength show relatively small 

variation in strength as a function of temperature, corresponding very well to the phase 

diagram predicting the present phase (Cu3Sn) in the bond-line to be stable to 

temperatures above 676 oC. The average measures shear strength is 45 MPa from room 

temperature up to 300 oC, exceeding the MIL-STD by far. The average shear strength 

does not vary significantly across the different regions of the bonded wafers. However, 

at the regions with initially thinner Sn there is larger scatter in the measured shear 

strength. It is believed that small un-bonded regions within the test die where the Sn 

layer was at its thinnest cause this variation.  

Interferometry of the fractured surfaces show brittle and well-defined planar surfaces, 

either between Ti/W adhesion layer to SiO2, between Cu and Cu3Sn, or at the original 

bonding interfaces. The two dominating fracture modes are in the adhesion layer and the 

original bond interface. This verifies that the material systems have potential for giving 

even higher bond strength than our measured strength.  

This work provides experimental evidence for the stability of Cu-Sn SLID bonding at 

high temperature, a stability that has long been predicted from the phase diagrams. This 

strongly confirms the applicability of Cu-Sn SLID bonding for high temperature 

applications. 

3.5 Article VI 

Thi Thuy Luu, Nils Hoivik, Kaiying Wang, Knut E. Aasmundtveit and Astrid-Sofie 

Vardoy, “Characterization of wafer-level Au-In bonded samples at elevated 

temperatures”, Metallurgical and Materials Transactions AJune 2015, Volume 46, Issue 

6, pp 2637-2645. 
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My contribution: design, assembly, characterization and test, part of shear test 

experiment, analysis, modeling, and manuscript preparation.  

The motivation of this study is to demonstrate Au-In SLID bonding for high 

temperature applications. High temperature applications are defined by the applications 

that require operation at, or exposure to high temperatures above 125 oC. For these 

applications, the main requirements to the bonding material are that the bond-line has a 

high melting point and that the shear strength remains high at elevated temperatures. In 

order to achieve high shear strength at elevated temperatures, it is important to minimize 

the thermally induced stresses in the bond stack; this is typically done by reducing the 

bonding temperature, having a low CTE mismatch between the utilized materials, and 

by having a good thermal conductivity. One of the advantages that make Au-In bonding 

interested for high temperature applications is the low temperature process. The bonding 

could be assembled at 180 oC, which is lower than other SLID bonding. In this study, 

the mechanical integrity of Au-In SLID bonded samples at different temperatures was 

investigated.  

Main results:  

Au-In SLID wafer-level bonding with a proper design of the metal thicknesses for Au 

and In results in a very high bonding yield and a high resulting shear strength: in the 30 

MPa range. The shear strength is stable when the temperature is increased from room 

temperature to 200 oC, and increases to ~40 MPa when the temperature is increased to 

300 oC. This verifies experimentally that Au-In SLID bonding, performed at 

temperatures right above the melting temperature of In (156 oC) is indeed very suitable 

for high-temperature applications. Phase diagram predictions call for stability to 450 oC, 

and we demonstrated high strength up to our highest testing temperature of 300 oC. 

The bond-line consists of the intermetallic phases AuIn and γ`, as found by cross-section 

microscopy and EDS. Interferometry of the fractured, sheared samples reveals that at 

temperatures up to 200 oC, the samples fracture at well-defined planar surfaces: either at 

the adhesion layer to intermetallic interfaces, or at the position of the original bond 

interface. At 300 oC, the nature of the fracture changes to a ductile fracture, explained 

by a phase transition to the ψ-phase and an annealing effect of the original bond 
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interface. The higher overall bond strength at 300 oC results from this improved strength 

of the initial bond interface.      

The shear strength of devices has been investigated. With a proper design of the metal 

thicknesses for Au and In, a very high bonding yield was achieved. The final bond-line 

has both AuIn and γ` phases present as verified by cross section microscopy and EDS 

analysis. Furthermore, the die shear strength of the bonded samples was measured as 

function of temperature, from RT to 300 oC. The increasing trend of shear strength from 

RT to 300oC confirms that Au-In bonding is a promising technique for high-temperature 

applications.  
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4 Voids characterization 

4.1 Voids formation 

Voids formation during bonding process is one of the important issues of Cu-Sn SLID 

bonding which can affect the bond performance. The voids formation during Cu-Sn 

bonding process has been reported by many research and industry groups [36, 45, 76, 

78, 89, 115, 117, 135-151] and can be classified in three voids scenarios as shown in 

Figure 4.1: a) bond interface voids, which distribute at the original bond interface, b) 

Cu/Cu3Sn voids, also call sporadic voids and distribute as a continuous layer at 

Cu/Cu3Sn interface and c) Kirkendall voids which distribute across the Cu3Sn layer. In 

this section, different mechanisms of void formation will be presented and discussed.  

 

 

  

a b c 

Figure 4. 1: Three different types of voids that can form during Cu-Sn SLID bonding process a) bond interface 
voids, b) Cu/Cu3Sn voids and c) Kirkendall voids.  
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4.1.1 Bond interface voids  

4.1.1.1 Bond interface voids formation mechanism 

There are several mechanisms behind the formation of bond interface voids: lack of 

wetting at the bond interface, growth of Cu6Sn5 scallops, non-uniformity of 

electroplating process and non-uniform initial Cu-Sn thickness [143, 152-155].  

 

Figure 4. 2: Cross-section of Cu-Sn SLID bonded samples. Interface voids are formed due to a) lack of wetting 
at original bond interface [152], b) non-uniformity of electroplating process [155] and c) the growth of Cu6Sn5 
scallops during bond process [153]. 

Lack of wetting at the original bond interface 

Lack of wetting at the bond interface is caused by contaminations, Sn and Cu oxidation 

when Cu to Cu-Sn bonding is used [116, 152]. The oxidation issue can be solved by 

using a Cu3Sn layer as protection layer to prevent Cu from oxidation or symmetric 

Cu/Sn bonding [87, 156]. In this study, symmetric Cu-Sn bonding is used. Therefore, 

lack of wetting at the original bond interface is not an issue for voiding.  

Non-uniformity of electroplating process 

For Cu-Sn SLID wafer-level bonding, the Cu-Sn layers are prepared by electroplating 

process. According to our experience, there is always a degree of non-uniformity during 

electroplating process. This causes a 2-10 % variation of Cu and Sn thickness. At the 

regions of the wafers where Cu layer is thinnest, Sn may not contact together during 

bonding process and cause un-bonded area [118, 155].  
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Growth of Cu6Sn5 scallops 

During Cu-Sn SLID bonding process, the temperature is increased following a defined 

temperature. During the ramping process, the Cu6Sn5 scallops grow and Sn is converted 

into solid IMCs. Defined Tm is the melting point of Sn. Defined critical Sn thickness 

(ycritical) is the minimum thickness to ensure that there is pure Sn at the original bond 

interface when Tm reached. If the initial Sn thickness is thinner than ycritical, Cu6Sn5 

scallops will reached the Sn surface before Tm is reached, and acts as spacers and cause 

interface voids. This is further described in article 1 and 2.  

4.1.1.2 Prevent interface voids 

Pretreatment of wafers prior bonding 

As described, one of the reasons of interface voids is the growth of Cu6Sn5 scallops 

which occurs even at room temperature. In order to prevent interface voids, one of the 

solutions is to prevent the growth of Cu6Sn5 scallops. 

 

Figure 4. 3: IMC development during annealing process at 50 oC of as-plated Cu-Sn sample and shorted pre-
annealed Cu-Sn sample, showing that short annealing at 200 oC in 1 minute can flatten IMC layer [157].  
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Annealing of electroplated Cu/Sn sample at temperatures 125-200 oC can produces a 

thin and uniform Cu6Sn5 layer; this leads to subsequent growth of a planar IMCs instead 

of scallops [148, 157].  Therefore, pre-annealing electroplated Cu-Sn sample is one of 

solutions to slow-down the formation of Cu6Sn5 scallops, and prevents interface voids 

formation.  

Optimize initial Cu-Sn thickness and bonding process 

Optimize bond temperature profile is one solution to prevent interface voids formation. 

There are two issues should be taken into account: 

� A two-steps bonding profile should be used [158]. In a two-steps bond 

temperature profile, the wafers are brought into contact at a temperature of 150-

200 oC and kept at this temperature for several minutes. This temperature soak is 

served as pre-treatment of the wafers and prevent the growth of Cu6Sn5 scallops.  

� There must be pure Sn available at the surface when the melting point of Sn is 

reached, in order to perform a good wetting at the interface and compensate the 

non-uniformity of electroplated Cu thickness over the wafer.  

Bond temperature can be optimized by using the simulation model described in this 

thesis of IMCs development during the Cu-Sn bonding process. More information about 

this approach is presented in chapter 2 and article 1, 2.  

4.1.2 Cu/Cu3Sn voids 

4.1.2.1 Cu/Cu3Sn voids formation 

Cu/Cu3Sn voids are usually observed in Cu-Sn soldering and have been frequently 

reported in earlier studies [78, 135, 136, 138]. Different mechanisms of these voids 

formation correlates to impurities and stress-strain have been proposed [136, 139, 146, 

149, 150, 159]: 

� Vacancy injection mechanism: during the Cu-Sn bonding or annealing process, 

the reactive of Cu and Sn occurs at Cu/Cu3Sn and Sn/Cu6Sn5 interfaces and 

leaves vacancies at these interfaces. Theoretically, the vacancies would be 

injected by Cu and Sn diffused atomics. The impurities can block the vacancies 

injection process and voids later form [135, 139, 160, 161]. 
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� Strain mechanism: Cu, Sn, Cu6Sn5 and Cu3Sn have different elasticity and 

crystalline structure. During Cu-Sn annealing process, the difference of elasticity 

causes the strain at Cu/Cu3Sn interface. The strain distributes at Cu grain 

boundary and induces voids formation [149]. 

The effects of Cu grain structure, organic impurities and Cu oxidation on this type of 

voids formation are experimentally confirmed [78, 135, 139, 146, 150, 159, 162, 163]. 

These studies demonstrated that: small Cu grain size, organic impurities and single 

crystalline Cu texture can cause higher voids level at Cu/Cu3Sn interface. The possible 

reasons are:  

� For small Cu grain size, more Cu diffuses into IMCs through grain boundary and 

more vacancies are formed at Cu/Cu3Sn interface. 

� In a polycrystalline texture, the Cu has random orientations; therefore Cu 

diffuses into Sn trough many different orientations and reduces voids level.  

� During the Cu-Sn bonding process, the reaction between Cu and Sn mostly 

occurs at Cu/Cu3Sn and Cu3Sn/Cu6Sn5 interface and results vacancies at these 

interfaces. Impurities from electroplating process and cleaning chemical [161, 

164] or Cu oxidation can block the vacancies injection at Cu/Cu3Sn interface 

and voids later form.  

 

Figure 4. 4: Cu/Cu3Sn voids formation due to small Cu grain size. For sample A, the grain size is small, voids 

form at Cu/Cu3Sn interface after annealing [162].  
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Even Cu/Cu3Sn voids do not cause any degradation of the Cu-Sn solder joint reliability 

[138, 165], these voids can reduce the contact area of solder joint and therefore increase 

the resistant of solder interconnects. In addition, this type of voids also reduces 

significantly the shear strength of solder ball [162]. Figure 4.4 shows two different as-

plated Cu samples with different grain sizes [162]. The shear test on these two samples 

shows that: sample “A” has much lower shear strength compared to sample “F”; and the 

fracture for sample “A” occurs at Cu/Cu3Sn voids interface.  

4.1.2.2 Prevent Cu/Cu3Sn voids 

To prevent the voids formation at Cu/Cu3Sn interface, the most effective solution is to 

control electroplating parameters, such as current density, additive and the bath ages 

[139, 162]. By controlling these parameters, Cu grain size and texture and the impurities 

level can be controlled [139, 162]. To achieve large Cu grain size and polycrystalline 

texture, a current density above 10 mA/cm
2
 and combination of different additives 

should be used [139]. To reduce the impurities level, the electroplating bath age must be 

well controlled.  

Figure 4. 5: Cross-section of two different bonded samples. A Cu electroplating current density of 10 mA/cm2
 

was used. For sample a) an old electroplating bath was used, Sn was not electroplated immediately after Cu. 

For sample b) a new electroplating bath with fresh prepared electroplating solution was used, Sn was 

electroplated immediately after Cu.   

In our work, we used a current density of 10 mA/cm
2
 and commercial additive DMK -

Glanzzusatz Maron. In addition, Sn was electroplated immediately after Cu to avoid Cu 

oxidation. For the bonded sample given in Figure 4.5a, an old electroplating bath was 

used and Sn was not electroplated immediately after Cu. For the bonded sample given 

in Figure 4.5b, new electroplating bath (fresh prepared electroplating solution bath) was 

used and Sn was electroplated immediately after Cu. There are two possible reasons that 

may cause voids at sample in Figure 4.5: old electroplating bath may produce more 

impurities in Cu; and Cu surface is oxidized before Sn electroplating.  
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Another option to reduce voids formation is to anneal Cu at high temperature before 

electroplating of Sn. Annealing Cu at 650oC or 350oC for 2h can increase Cu grain size 

and gasify certain impurities inside Cu [139, 146, 159]. This produces high purity, large 

Cu grain structure and subsequently reduces voids level Cu/Cu3Sn interface. In our 

case, we do not use this solution due to several reasons: 

� In our electroplating, we used a current density 10 mA/cm2 and commercial Cu 

electroplated additive. This can produce Cu with high purity large grain size.  

� Annealing Cu before Sn electroplating introduces one more fabrication step. 

� For MEMS packaging and encapsulation, the devices can be damaged due to 

high temperature annealing. 

4.1.3 Kirkendall voids 

The Kirkendall voids are formed due to the difference between the intrinsic diffusivities 

of Cu and Sn in Cu3Sn, which is typical for any multiphase diffusion systems [166]. In 

the Cu-Sn diffusion system, the diffusion rate of Cu into Cu3Sn is much faster than the 

diffusion rate of Sn [167]. This imbalanced interdiffusion leaves atomic-level vacancies 

at Cu3Sn side. Voiding is formed from the accumulation of excess vacancies.  

 

Figure 4. 6: An illustration of Kirkendall voids formation due to the difference between the intrinsic 
diffusivities of Cu and Sn in Cu3Sn.  

An illustration of Kirkendall voids formation mechanism is shown in Figure 4.6. 

Similar to Cu/Cu3Sn voids, the Kirkendall voids are correlated to the impurities level in 

Cu and Cu grain size. Small Cu grain size and high impurities introduce much higher 

voids level.  
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4.2 Voids characterization 

Figure 4.7 shows the cross sections of two different Cu-Sn bonded samples. With 

samples shown in Figure 4.7 b, two types of voids are presented: Kirkendall voids and 

interface voids. For these two actual samples, we clearly observe that voids area 

increases with the increasing of Cu3Sn thickness. In this study, the correlation between 

voids and Cu3Sn thickness is investigated. To eliminate the effect of the length of 

sample and Cu thickness, the void area was described as voids fraction (area per unit 

length).  

Figure 4. 7: Cross section of the bonded samples which is prepared by process A. The samples were 

electroplated and bonded by Sensonor As. The thickness of Cu3Sn layer is not uniform.  

To estimate void fraction and Cu3Sn thickness, image processing software “ImageJ” 

was used for samples analysis. The analysis process is described in Figure 4.8. The 

original cross-section of the bonded sample is shown in Figure 4.8a. The original image 

was split into three different colors: red, green and blue. The blue one is used for voids 

area estimation, the red one is used for IMCs thickness estimation. By adjusting color 

threshold of the blue, voids are presented, as shown in Figure 4.8b. These voids are 

considered as particles. The software can count the number of particles and measure the 

area of each particle and total area. The voids fraction (voids area per unit length) is 

estimated by: 

@[DG = ?[DG \  Eq 4. 1 

Here, @[DG  is voids area fraction per unit length, ?[DG  is total voids area and L is the 

length of sample.  
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By adjusting color threshold of the red, the Cu layers and Cu3Sn layer are presented as 

shown in Figure 4.8c. The area of Cu3Sn layer can be measured by software. Cu3Sn 

thickness is estimated by: 

�,]& = ?,]&\  Eq 4. 2 

Here �,]& is average Cu3Sn thickness, ?,]& is Cu3Sn area and L is length.  

 

Figure 4. 8: Voids analysis using image processing software: a) original cross-section of the bonded samples, 
the original picture was split into three different colors – green, blue and red; b) cross-section picture after 
adjusting the color threshold of the blue, voids present as particles, software can count and measure the 

volume of these particles; c) cross-section picture after adjusting the color threshold of the red; Cu3Sn layer 
present as center dark layer, software can measure the area of this layer.  
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4.3 Analysis of voids formed in wafer-level bonded samples 

4.3.1 Voids analysis results 

Figure 4.9 describes the voids area fraction of different Cu-Sn SLID wafer-level bonded 

samples as function of Cu3Sn thickness. Two different wafer-level bonded samples were 

prepared: A) samples prepared by industry partner Sensonor AS, B) samples prepared 

by our work. Voids area fraction increases with the increasing of Cu3Sn thickness.  

 

Figure 4. 9: Voids area fraction of Cu-Sn SLID wafer-level bonded samples as functions of Cu3Sn thickness. A: 
bonded samples prepared by industry partner Sensonor AS. B: bonded samples prepared by our work.  

 

4.3.2 Voids development during further annealing of bonded samples 

To investigate the effect of voids to the bond performance, further annealing of bonded 

samples were carried out. Figure 4.10 shows the cross-sections of as-bonded sample and 

further annealed sample. For this sample, we obtain a low voids area fraction of 0.01. 

The voids area does not change during the annealing process; but Cu grain size has 

changed after annealing. This experimentally confirms that: there is not further diffusion 
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of Cu into Cu3Sn; final Cu/Cu3Sn/Cu bond-line has high temperature stability up to 370 

o
C and annealing Cu at 370 

o
C.  

 

Figure 4. 10: Further annealing of Cu-Sn bonded samples. Samples were prepared by process A. SEM cross-
section is taken by Sensonor As.  

 

4.3.3 Discussion 

In our bonding experiment, the electroplating process was controlled and we can 

prevent the formation of sporadic voids at Cu/Cu3Sn layer. Only bond interface and 

Kirkendall voids were observed.  The area fractions of these types of voids as functions 

of Cu3Sn thickness are shown in Figure 4.11. Bond interface voids area fraction seems 

not to be depended on Cu3Sn thickness and does not have significant change with 

Cu3Sn thickness. The Kirkendall voids area fraction increases monotonically with 

Cu3Sn thickness.  
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Figure 4. 11: Bond interface and Kirkendall voids area fractions as functions of Cu3Sn thickness, bonded 

samples set A.  

According to earlier work [78, 146, 168], with a constant annealing temperature, the 

Kirkendall voids area fraction and Cu3Sn thickness have parabolic correlation with 

annealing time.  Therefore, Kirkendall voids area fraction should have a linearly 

correlation with Cu3Sn thickness. A linear fitting of voids area fraction and Cu3Sn 

thickness correlation is shown in Figure 4.12. For samples set A and set C, the voids 

area fractions and Cu3Sn thickness have linear correlation. This linear trend is caused by 

Kirkendall voids. For sample set B, the initial Sn thickness is thinner than set A and 

cannot compensate the non-uniformity of electroplating process. This introduces voids 

that come from un-bonded area and the voids area fraction does not have linear 

correlation with Cu3Sn thickness.  
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Figure 4. 12: Voids fraction as function of Cu3Sn thickness A. Bonded sample from industry partner (Sensonor 

As). B. Bonded sample from our work. C. from literature (G. Lim [168]).  

Another mechanism that could be driving factor of voids formation is the volume 

change of metallization during bonding process. The reaction between Cu and Sn 

induces a volumetric change due to the differences in mass densities of Cu, Sn and 

IMCs. The volume change can cause a voids area fraction ~0.1*tCu3Sn [µm
2
/µm]. During 

the bonding process, the bond pressure is applied. This may reduce the effect of 

volumetric change. Therefore, in our bonding, the voids area fraction/Cu3Sn thickness 

ratio is ~0.05 (set A), much smaller than 0.1.   

4.4 Conclusion 

In this session, the voids formation during Cu-Sn SLID wafer-level bonding process 

was presented. Even there are different voids scenarios: interface voids, Cu/Cu3Sn voids 

and Kirkendall voids, the voids level have strong correlation with Cu grain structure and 
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impurities. By controlling Cu electroplating process, we can eliminate Cu/Cu3Sn voids 

and obtain Cu-Sn SLID wafer-level bonded samples with low voids area fraction. 

For this work, voids are formed due to Kirkendall effect and the growth of Cu6Sn5 

scallops. The linear correlation between Kirkendall voids area fraction and Cu3Sn 

thickness was experimentally verified. With a final Cu/Cu3Sn/Cu bond-line, the voids 

area does not change during further annealing of bonded samples. This confirmed that 

low voids area fraction does not cause degradation of the bond performance.  
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5 Summary and outlook 

5.1 Summary 

This thesis presented solid liquid interdiffusion (SLID) wafer-level bonding for MEMS 

packaging. Two techniques, Cu-Sn SLID bonding and Au-In SLID bonding, have been 

investigated.  

5.1.1 IMCs develoment during Cu-Sn SLID bonding process 

The formation of IMCs which takes place during the Cu-Sn SLID wafer-level bonding 

process was successfully characterized. Thermal kinetics models of the Cu3Sn thickness 

and the amount of Sn that is converted into IMCs were estimated. We experimentally 

verified that the growth of IMCs during Cu/Sn annealing process follows Arrhenius 

equation �� = ���^_`a
��. One of the major findings of our study is that the empirical 

coefficient n depends on temperature. Above the melting point of Sn, n is equal to 1/2, 

as expected from the analytical solution of the diffusion equation, corresponding to a 

diffusion-controlled process. For temperatures below the melting point of Sn, a value of 

n below 1/2 is obtained, indicating that slower chemical reaction limits the IMC growth 

rate. Based on this knowledge of IMC formation during the annealing process, a 

MATLAB model was created to simulate the IMCs development during the bonding 

process. Using this simulation model, we can predict the parameters that are important 

for bonding temperature profile optimization: unreacted remaining Sn thickness on each 

wafer at the contact temperature and bonding temperature, and required bonding times 

to achieve Cu/Cu3Sn/Cu6Sn5/Cu3Sn/Cu and Cu/Cu3Sn/Cu final bond-lines. Experiments 

show that the simulation model accurately predicts the IMCs formation during the 

bonding process. The experimental and simulation results show that an effective 

solution to reduce the bonding time is to leave the final bond-line as 



LUU, Solid Liquid interdiffusion wafer-level bonding for MEMS packaging 

68 

 

Cu/Cu3Sn/Cu6Sn5/Cu3Sn/Cu, with further annealing performed outside the wafer bonder 

to convert all the Cu6Sn5 into Cu3Sn.  

5.1.2 Effect of bond pressure and temperature profile to Cu-Sn SLID 
bond performance 

We have demonstrated Cu-Sn SLID wafer-level bonding for fabricating micro-joints 

with high mechanical strength. The effect of bond temperature profile, bond pressure 

and Cu/Sn frame width to the bond performance was investigated. The main findings of 

this work are:  

� To achieve high bond strength, a high bond pressure above 1.5 MPa should be 

used. For this work, with bond pressure 1.5 MPa, we can obtain a bond-strength 

of 74 MPa, a dicing yield 100 % and a sealing yield of 80 %.  

� A two-steps temperature profile can reduce effectively Sn squeeze out.  

� In this work, the minimum frame-width we can obtain is 80 µm.  

5.1.3 High-temperature mechanical integrity of Cu-Sn SLID bonds 

Cu–Sn SLID wafer-level bonding results in a high bonding yield and a high mechanical 

integrity; also well above the melting point of Sn. The average measured shear strength 

is 42 MPa, exceeding the MIL-STD by far. For shear tests performed at temperatures 

from room temperature up to 300 oC, no significant change in shear test is observed, 

thus verifying the high-temperature stability predicted for Cu–Sn SLID bonding.  

These high shear-strengths are obtained although there was non-uniformity in the 

electroplating process that resulted in larger scattering of the shear strength at several 

regions of the bonded wafer pair. The non-uniformity also caused voids and un-bonded 

areas at the original bond interfaces, and led to this being one of two dominating 

fracture surfaces. The other dominating fracture surface was adhesive fracture at Ti-W 

adhesion layer to SiO2. The fracture at these interfaces provides evidence that the 

mechanical integrity of Cu–Sn SLID bonded samples is stable up to 300 oC and stronger 

than the adhesion layer. Further improvement of the bond strength may be obtained by 

improving the adhesion layers and the uniformity of the electroplated layer thicknesses. 
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5.1.4 Void formation during Cu-Sn SLID wafer-level bonding 

In this session, the voids formation during Cu-Sn SLID wafer-level bonding process 

was presented. Even there are different voids scenarios: bond interface voids, Cu/Cu3Sn 

voids and Kirkendall voids, the voids level has strong correlation with Cu grain 

structure and impurities. By controlling Cu electroplating process, we can prevent 

Cu/Cu3Sn voids and obtain Cu-Sn SLID wafer-level bonded samples with low voids 

area fraction. 

For this work, voids are formed due to Kirkendall effect and the growth of Cu6Sn5 

scallops. The linear correlation between Kirkendall voids area fraction and Cu3Sn 

thickness was experimentally verified. With a final Cu/Cu3Sn/Cu bond-line, the voids 

area does not change during further annealing of bonded samples. This confirmed that 

low voids area fraction does not cause degradation of the bond performance. 

5.1.5 Au-In SLID wafer-level bonding 

Au-In SLID wafer-level bonding at 180 oC, with a proper design of the metal 

thicknesses for Au and In, results in a very high bonding yield and a high resulting shear 

strength: in the 30 MPa range. The shear strength is constant when the shear test 

temperature is increased from room temperature to 200 oC, and increases to ~40 MPa 

when the shear test temperature is increased to 300 oC. This verifies experimentally that 

Au-In SLID bonding performed at temperatures right above the melting temperature of 

In 156 oC is indeed very suitable for high-temperature applications. Phase diagram 

predictions call for stability to 450 oC, and this work demonstrated high strength up to 

our highest testing temperature of 300 oC. 

The bond-line consists of the intermetallic phases AuIn and γ`(Au7In3) , as found by 

cross-section microscopy and EDS. Interferometry of the fractured, sheared samples 

reveals that at temperatures up to 200 oC, the samples fracture at well-defined planar 

surfaces: either at the adhesion layer to intermetallic interfaces, or at the position of the 

original bond interface. At 300 oC, the nature of the fracture changes to a ductile 
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fracture, explained by a phase transition to the ψ-phase (Au6In4) and an annealing effect 

as the IMC-to-IMC phase boundary sweeps across the original bond interface. The 

higher overall bond strength at 300 oC results from this improved strength of the initial 

bond interface.      

5.2 Outlook 

In summary, this PhD work has demonstrated Cu-Sn and Au-In SLID wafer-level 

bonding with high yield and performance. The research carried out in this PhD raise 

several topics for future studies: 

� Even we have developed the model for IMCs development during Cu-Sn 

bonding process and obtained high bond performance, there is still room for 

improving the performance. Further improvement of bonding process in term of 

uniformity of electroplating process and adhesion layer. 

� The Cu-Sn and Au-In SLID wafer-level bonding has proved high-temperature 

mechanical integrity. The next step is to carry out the reliability tests, such as 

high-temperature aging and thermal cycling to further verity the mechanical 

performance of the bonds at high-temperature. 

� In this work, the Cu-Sn and Au-In SLID bonding were used to bond Si to Si 

wafers. Using the techniques to bond other substrate materials, such as glass, 

SiC should be carried out. Bonding with different materials would open room 

for more application. 

� Initial work on Au-In SLID wafer-level bonding was demonstrated in this work. 

The bond design principles were described. One of the interesting topics is to 

optimize bonding process. Different Au/In thickness ratio could be used in order 

to find out which will give optimal mechanical integrity.  

� A study of hermeticity should be carried out  
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5.3 Contributions of PhD candidate 

During the PhD work, the PhD candidate has been working with two different bonding 

techniques: Cu-Sn and Au-In SLID wafer-level bonding for MEMS packaging and 

encapsulation. The main contributions of this work are: 

� SLID bonding is well-known process, but a simulation model for the IMCs 

development during bonding process is not available. This work built up such a 

model. This modelling provides a fully understanding about the development of 

IMCs during the SLID bonding process and could be used as a tool for process 

design and optimization.  

� Mechanical integrity at temperature surpassing the melting temperature of the 

low-melting metal component of SLID bonding has long been predicted, but 

experimental verification is scarce. In this study, the mechanical integrity of Cu–

Sn and Au-In SLID bonding was experimentally confirmed at high temperature. 

This provides an evidence of these bonding techniques suitable for packaging of 

the devices that need to operate or expose to high temperatures.  

� Through this work, a new method of fracture characterization was proposed. By 

using interferometry, we can define accurately where the fracture occurs in the 

bond interface. Compared to traditional fracture characterization (using optical 

microscopy, SEM and EDS), this method provide a fast and effective 

characterization. 

� An overview of voids formation during Cu-Sn SLID bonding was presented. 

Voids formation during Cu-Sn annealing process and soldering has been 

investigated by previous work, but the mechanism of voids formation is not fully 

understood. In this work provides an overview of different voids formation 

mechanisms in a SLID bonding process. The work also provides the evidence 

that micro voids may not affect the performance and reliability of the bonding.  

In addition of the contribution to the scientific, the work has been done in this thesis 

also facilitates further research activities in SLID bonding at Buskerud and Vestfold 

University College and also the cooperation with other research partner, such as Herriot 

Watt University, SINTEF ICT and Sensonor AS.  
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