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Abstract. In this paper, the famous kernighan-Lin algorithm is ad-
justed and embedded into the simulated annealing algorithm and the ge-
netic algorithm for continuous optimization problems. The performance
of the different algorithms are evaluated using a set of well known opti-
mization test functions.
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1 Introduction

Several types of meta-heuristics methods have been designed for solving contin-
uous optimization problems. Examples include genetic algorithms [8][9] artificial
immune systems [7], and taboo search[5]. Meta-heuristics can be divided into
two different classes. The first class refers to single-solution search algorithms.
A notable example that belongs to this class is the popular simulated annealing
algorithm (SA) [12], which is a random search that avoids getting stuck in local
minima. In addition to solutions corresponding to an improvement in objective
function value, SA also accepts those corresponding to a worse objective function
value using a probabilistic acceptance strategy.

The second class of algorithms refer to population based algorithms. Algo-
rithms of this class applies the principle of survival of the fittest to a population
of potential solutions, iteratively improving the population. During each genera-
tion, pairs of solutions called individuals are generated to breed a new generation
using operators borrowed from natural genetics. This process is repeated until
a stopping criteria has been reached. Genetic algorithm is one among many
that belongs to this class. The following papers [2][1][6] provide a review of the
literature covering the use of evolutionary algorithms for solving continuous op-
timization problems. In spite of the advantages that meta-heuristics offer, they
still suffer from the phenomenon of premature convergence.

Recently, several studies combined meta-heuristics with local search methods,
resulting in more efficient methods with relatively faster convergence, compared
to pure meta-heuristics. Such hybrid approaches offer a balance between diver-
sification — to cover more regions of a search space, and intensification – to
find better solutions within those regions. The reader might refer to [3][14] for
further reading on hybrid optimization methods.
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This paper introduces a hybridization of genetic algorithm and simulated
annealing with the variable depth search (VDS) Kernighan-Lin algorithm (KL)
(which was firstly presented for graph partitioning problem in [11]). Compared
to simple local search methods, KL allows making steps that worsens the quality
of the solution on a short term, as long as the result gives an improvement in a
longer run.

In this work, the search for one favorable move in SA, and one two-point
cross-over in GA, are replaced by a search for a favorable sequence of moves in
SA and a series of two-point crossovers using the objective function to guide
the search.

The rest of this paper is organized as follows. Section 2 describes the com-
bined simulated annealing and KL heuristic, while Section 3 explains the hy-
bridization of KL with the genetic algorithm. Section 4 lists the functions used
in the benchmark while Section 5 shows the experimental results. Finally, Section
6 concludes the paper with some future work.

2 Combining Simulated Annealing with Local Search

Previously, SA in combination with KL, was applied for the Max-SAT problem
in [4].

SA iteratively improves a solution by making random perturbations (moves)
to the current solution — exploring the neighborhood in the space of possible
solutions.

It uses a parameter called temperature to control the decision whether to
accept bad moves or not. A bad move is a solution that decreases the value of
the objective function.

The algorithm starts of with a high temperature, when that almost all moves
are accepted. For each iteration, the temperature decreases, the algorithm be-
comes selective, giving higher preference for better solutions.

Assuming an objective function f is to be maximized. The algorithm starts
computing the initial temperature T, using a procedure similar to the one de-
scribed in [12]. The temperature is computed such that the probability of ac-
cepting a bad move is approximately equal to a given probability of acceptance
Pr. First, a low value of is chosen as the initial temperature. This temperature
is used during a number of moves.

If the ratio of accepted bad moves is less than Pr, the temperature is multi-
plied by two. This continues until the observed acceptance ratio exceeds Pr. A
random starting solution is generated and its value is calculated. An iteration
of the algorithm starts by performing a series of so-called KL perturbations or
moves to the solution Sold leading to a new solution Sinew where i denotes the
number of consecutive moves. The change in the objective function called gain is
computed for each move. The goal of KL perturbation is to generate a sequence
of objective function scores together with their corresponding moves. KL is sup-
posed to reach convergence if the function scores of five consecutive moves are
bad moves. The subset of moves having the best cumulative score BCSk(SA+KL)



Look-Ahead Based Meta-Heuristics for Continuous Optimization 3

is identified. The identification of this subset is equivalent to choosing k so that
BCSk(SA+KL) in equation 1 is maximum,

BCSk(SA+KL) =

k∑
i=1

gain(Sinew) (1)

where i represents the ith move performed, k the number of a moves, and
gain(Sinew) = f(Sinew) − f(Si−1

new) denotes the resultant change of the objective
function when ith move has been performed. If BCSk(SA+KL) > 0, the solution is
updated by taking all the perturbations up to the index k and the best solution is
always recorded. If (BCSkSA+KL ≤ 0), the simulated acceptance test is restricted
to only the resultant change of the first perturbation. A number from the interval
(0,1) is drawn by a random number generator. The move is accepted ff the drawn
number is less than exp−δf/T . The process of proposing a series of perturbations
and selecting the best subset of moves is repeated for a number of iterations
before the temperature is updated. A temperature reduction function is used
to lower the temperature. The updating of the temperature is done using a
geometric cooling, as shown in equation 2

Tnew = α× Told (2)

, where α = 0.9.

3 Combining Genetic Algorithm with Local Search

Genetic Algorithm (GA) belong to the group of evolutionary algorithms. It works
on a set of solutions called a population. Each of these members, called chro-
mosomes or individuals, is given a score (fitness), allowing the assessing of its
quality. The individuals of the initial population are in most cases generated
randomly. A reproduction operator selects individuals as parents, and generates
off-springs by combining information from the parent chromosomes. The new
population might be subject to a mutation operator introducing diversity to the
population. A selection scheme is then used to update the population — result-
ing in a new generation. This is repeated until the convergence is reached —
giving an optimal or near optimal solution.

The simple GA as described in ?? is used here. It starts by generating an ini-
tial population represented by floating point numbers. Solutions are temporary
converted to integers when bit manipulation is needed, and resulting integers are
converted back to floating point representation for storage. A roulette function
is used for selections. The implementation and based on the one described in
section IV of [10], where more details can be found.

The purpose of KL-Crossover is to perform the crossover operator a number
of times generating a sequence of fitness function scores together with their cor-
responding crossover. Thereafter, the subset of consecutive crossovers having the
best cumulative score BCSk(GA−KL) is determined. The identification of this sub-

set is the same as described in SA-KL. GA-KL chooses k so that BCSk(GA+KL) in
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equation 4 is maximum, where CRi represents the ith crossover performed on two
individuals, Il and Im, k the number of allowed crossovers, and gain(Il, Im)CRi
denotes the resulting change in the fitness function when the ith crossover CRi

has been performed calculated shown in equation 3.

gain(Il, Im)CRi = f(Il, Im)CRi − f(Il, Im)CRi−1 , (3)

where CR0 refers to the chosen pair of parents before applying the cross-
over operator. KL-crossover is supposed to reach convergence if the gain of five
consecutive cross-overs is negative. Finally, the individuals that are best fit are
allowed to move to the next generation while the other half is removed and a
new round is performed.

BCSk(GA+KL) = Max

[
k∑
i=1

gain(Individuall, Individualm)CRi

]
. (4)

4 Benchmark Functions & Parameter Setting

The stopping criterion for all four algorithms (SA, SA-Look-Ahead,, GA, GA-
Look-Ahead) is supposed to be reached if the best solution has not been improved
during 100 consecutive iterations for (SA, SA-Look-Ahead) or 10 generations
for (GA,GA-Look-Ahead). The starting temperature for (SA,Look-Ahead-SA)
is set to 0.8 (i.e., a bad move has a probability of 80% for being accepted). In
the inner loop of (SA,Look-Ahead-SA), the equilibrium is reached if the number
of accepted moves is less than 10%.

The ten following benchmark functions were retrieved from [13] and tested.

1: Drop Wave f(x, y) = −
1+cos(12

√
x2+y2)

1
2
(x2+y2)+2

2: Griewangk f(x) = 1
4000

∑n

i=1
−
∏n

i=1
cos(

xi√
i
) + 1

3: Levy Function sin2(3πx) + (x − 1)2[1 + sin2(3πy)] + (y − 1)2[1 + sin2(2πy)]

4: Rastrigin f(x) = 10n +
∑n

i=1
(x2
i
− 10 cos 2πxi)

5: Sphere Function f(x) =
∑n

i=1
x2
i

6: Weighted Sphere Function f(x, y) = x2 + 2y2

7: Sum of different power functions f(x) =
∑n

i=1
|xi|

i+1

8: Rotated hyper-ellipsoid f(x) =
∑n

i=1

∑i

j=1
x2
j

9: Rosenbrock’s valley f(x) =
∑n−1

i=1
[100(xi+1 − x

2
i
)2 + (1 − xi)

2]

10:Three Hump Camel Function f(x, y) = x2 − 1.05x4 + x6

6
+ xy + y2

5 Experimental Results

The results are visualized in figure 1, 2 and 3, where both the the mean and
the best solution over 100 runs are plotted. The X-axis shows the number of
generations (for GA and GA-KL — figure 1 and 2) or the iterations (for SA and
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Fig. 1. Functions 1–6: GA vs. GA-KL
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Fig. 2. Functions 7–10: GA vs. GA-KL

SA-KL — figure 3), while the Y-axis gives the absolute error (i.e. the excess of
deviation from the optimal solution).

Figures 1 and 2 compares GA against GA-KL (GA-Look-Ahead). Looking
at the mean solution, GA delivers on average lower absolute error solutions on
almost 9 cases out of 10. The average percentage change error reduction in favor
of GA is 5% for function 1, 12% for function 2, 43% for function 4, within 1%
for functions 5, 6 , 7 and 8, 14% for function 9 and finally 2% for 10. Function
3 was the only test case where GA-Look-Ahead wins with an average percent-
age change error reduction of 26%. On the other hand, comparing the curves
representing the evolution of the (best solution) fittest individual produced by
the two algorithms, GA-Look-Ahead is capable of reaching solutions of higher
precision when compared to GA (10−8 versus 10−6 for function 2, 10−11 versus
10−6 for function 3, 10−19 versus 10−10 for function 5, 10−15 versus 10−9 for
function 6, 10−21 versus 10−12 for function 7, 10−16 versus 10−6 for function 8,
10−14 versus 10−10 for function 10. The diversity of the population produced by
GA-Look-Ahead enables GA from premature convergence phenomenon leading
GA to continue for more generations before convergence is reached. GA-Look-
Ahead performed 69% more generations compared to GA for function 3, 82%
for function 5, 57% for function 6, and 25% for function 10.

Figure 3 shows the results for SA and SA-KL (SA-Look-Ahead). Looking at
the evolution of the mean, both methods produce similar quality of results while
SA is showing insignificantly lower absolute error on few cases. However, when
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comparing the best versus the best, SA-Look-Ahead delivers solutions of better
precision than SA. The precision rate is 10−10 versus 10−8 for function 1, 10−11

versus 10−6 for function 4, 10−15 versus 10−9 for function 7, and 10−7 versus
10−4 for function 9.
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Fig. 3. Functions 1, 4, 7, 9: SA vs. SA-KL

6 Conclusion

Meta-heuristics global optimization algorithms have become widely popular for
solving global optimization problems. In this paper, both SA and GA have been
combined for the first time with the popular Kernighan-Lin heuristic used for
the graph partitioning problem. The main idea is to replace the search for one
possible perturbation in SA or one typical crossover in GA by a search for favor-
able sequence of perturbations or crossovers using the objective function to be
optimized to guide the search. The results presented in this paper show that the
proposed scheme enables both SA and GA to reach solutions of higher accuracy
which is the significant result of the present study. In addition, the proposed
scheme enables GA to maintain the diversity of the population for a longer pe-
riod preventing GA from reaching premature convergence which still remains a
serious defect in GA when applied to both continuous and discrete optimization.
With regard to the future, we believe that the performance of the strategy could
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be further improved by selecting the type of perturbations to be processed by in-
troducing a probability of acceptance at the level of the Kernighan-Lin heuristic
whenever a bad move is to be selected.
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