

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2021

Industrial IT and Automation (IIA)

Modeling of the chemical dosing at a water
resource recovery facility (WRRF)

Anas Muhamad Hashem Aldabbagh

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2021

Title: Modeling of the chemical dosing at a water resource recovery facility (WRRF)

Number of pages: 113

Keywords: Dynamic system, Time series NARX neural network, Artificial neural network,

Machine learning ,Modelling, First order transfer function, Chemical process modeling.

Student: Anas Muhamad Hashem Aldabbagh

Supervisor: Finn Aakre Haugen

External partner: Vestfjorden Avløpsselskap v/ Jonas Pettersen

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Summary:

 The focus here in this master thesis is developing a smart artificial neural network

to model wastewater dosing. In order to use this model in the optimization process to

optimize using chemical dosing materials. The thesis gives the necessary introduction to

modeling dynamic systems, machine learning, and neural network. Then the dynamic

system is modeled in a classical way, as first-order and second-order transfer function

without and with time delay. Afterward, time delay estimation is developed and tested

with the simulator.

 Machine learning and artificial intelligence neural network (ANN) of the dynamic

system is derived from the mathematical model of the dynamic system. The ANN is

implemented by using the data from the simulator. The ANN result is compared with the

result from the simulator and shows a high performance of the ANN model.

 The ANN is implemented in a real process in different methods and software. The

implementation has been performed as a multi-input single-output system and multi-

input multi outputs system. The difference between methods is discussed.

 NARX neural network model gives high performance and good accuracy in a

dynamic system. It can deal with time series and handle time delays automatically.

 Preface

4

Preface

This master thesis is performed as part of the master’s program, Industrial IT and Automation

at the University of South-East Norway.

The results of this thesis can be used many applications that deal with dynamic system and

time series. It will be part in a significant project at VEAS for Optimizing of chemical dosing

at a water resource recovery facility.

I would like to thank from my heart everyone who give me help or advice especially, Prof.

Finn Aakre Haugen and Jonas Pettersen.

A lot of thanks to Norway and USN for this effort and to Industrial IT and Automation

employees one by one for help and kindness.

I will never forget the source of love and kindness my mother, my wife, my siblings who

support me, encourage me, push me forward.

Porsgrunn, 30.09.2021

Anas Muhamad Hashem Aldabbagh

 Contents

5

Contents

1 Introduction ... 8

1.1 Purpose of study ... 8

2 System description ... 9

2.1 System variables ... 9

3 Modelling of the System ... 11

4 Artificial intelligence modelling ... 12

4.1 Artificial neural networks (ANNs) .. 12
4.1.1 Artificial Neuron Model ... 12
4.1.2 Activation functions .. 13

4.2 Artificial neural network architecture ... 15
4.2.1 Feedforward ANN .. 15
4.2.2 Recurrent ANN or feedback ANN .. 17

4.3 Machine learning ... 18
4.3.1 Supervised learning .. 18
4.3.2 Ordinary Least squared fitting. .. 19
4.3.3 Multiple Linear Regression MLR: .. 20
4.3.4 Mean squired error MSE /Loss cost function. .. 20
4.3.5 Adam optimizer ... 21

4.4 Levenberg–Marquardt training algorithm .. 22
4.5 Nonlinear autoregressive exogenous (NARX) model ... 23
4.6 NARX neural network model ... 23
4.7 Neural network performance evaluation .. 24

5 Dynamic system Modelling .. 25

5.1 Using forward Euler and backward ... 25
5.2 Using neural network ... 25
5.3 Using Machine learning.. 26
5.4 Recurrent neural network .. 26

6 Simulator for Chemical dosing System .. 29

6.1 MISO system simulation without time delay .. 29
6.1.1 Simulation Results .. 29
6.1.2 Simulation discussion .. 32

6.2 MISO system with time delay simulation ... 32
6.2.1 Simulation method .. 32
6.2.2 Simulation results ... 33
6.2.3 Simulation discussion .. 36

7 Time delay estimation algorithm ... 37

7.1 Method ... 39
7.2 Simulation Results .. 40

7.2.1 Simulation Discussion .. 42

8 Simulator model development using Artificial neural network 43

8.1 Methods ... 43
8.2 Modeling of the SISO system using linear activation function .. 44

8.2.1 Method: .. 45

 Contents

6

8.2.2 Results and discussion: ... 46
8.3 MISO system modeling using linear activation function .. 46

8.3.1 Results and discussion .. 48

9 NARX feedback neural network ... 50

9.1 NARX Neural network model ... 50
9.2 NARX neural network simulation .. 52
9.3 MATLAB Simulation Results ... 53
9.4 Discussion ... 56

10 Real process model development ... 57

10.1 Experimental design .. 57
10.2 Scaling (Normalization) ... 59
10.3 Filtering ... 60
10.4 Method .. 60

10.4.1 Create, Train, Test, Evaluate the neural network. .. 61
10.4.2 Trained NARX model in the real process ... 62

10.5 Results .. 63
10.5.1 MATLAB Results ... 67
10.5.2 Python results ... 73
10.5.3 MIMO system results .. 76

10.6 Discussion .. 84

11 Conclusion .. 88

12 Future work ... 89

13 References ... 90

14 List of tables and charts ... 92

Appendices .. 97

Topic Description ... 97
Appendix A MISO system simulator ... 100
Appendix B Time delay estimation code .. 111
Appendix A Training ANN model .. 113

 Nomenclature

7

Nomenclature
WRRF Water resource recovery facility.

FTU Formazin Turbidity Unit.

SISO Single input single output.

MISO Multi input single output.

MIMO Multi input multi output.

NARX Nonlinear autoregressive exogenous.

ANN Artificial neural network.

RNN recurrent neural network.

MPC Model predictive control.

SS Suspended solids.

PIX iron chloride sulfate

PAX poly aluminum chloride

POL polymer

 Introduction

8

1 Introduction
Veas is a company which takes care of treating a wastewater in Norway. It is located in

Slemmestad. The treatment is divided into three different parts, Mechanical, biological and

chemical treatment [1].

Wastewater is the byproduct of many uses in the households (showering, laundry, ..etc.),

industry, commercial enterprises and other. After the water has been used, it goes to the

wastewater stream and flow to the WRRF [2].

Wastewater treatment is needed to remove the wastewater pollutants to take care of the

public health and protect environment. Some of materials in the wastewater can kill fish in the

lake and affect public health directly or indirectly [2].

The advent of artificial neural network, machine learning, Internet of things (IOT), Cloud

computing are revolution that remove many professional approaches their work. These new

technologies offer exciting ways for engineers to face real world challenges. This thesis will

take advantage of these new technologies to project these technologies into water dosage

process to see the power of these technologies. The focus will be on modeling of chemical

water dosage process by using artificial neural networks and machine learning.

This thesis will go briefly through classical modelling process and chemical materials that

used in the dosage process. The focus will be on dynamic system.

1.1 Purpose of study

VEAS has a current control system to manage the chemical dosage. This system is

expensive, about (60 million NOK Norwegian kroner) [1], due to the non-optimal system.

Overdosage leads to overuse of chemical materials and under dosage leads to unsatisfactory

results. The optimization is required to obtain satisfactory results and minimum usage of

chemical materials. The operation cost of the current control system can be reduced by

optimizing the use of chemical materials and choose the dosage of chemical materials

optimally.

In order to get the lowest turbidity, the highest percentage of the same materials as

(phosphate and alkalinity materials) in the system output, the real model (very close to real) is

needed to know the exact behavior of the system regarding inputs and outputs. This model will

be developed to utilize in a control system. The chemical reaction is not interested in this study,

but the most important thing that to know the effect of the input on the output. Therefore, the

system will be modeled as a gray or black box, and this study will be performed in terms of a

control system.

This model should be smart enough to track the variation of the parameters in order to

let the control system take the suitable response at a suitable time. Maybe the artificial neural

network is a good choice to represent the current system.

As known, the chemical reactions take time to respond and form the final results and

this time is varied according to many factors like flow rate which increase the complexity of

the system. There are many variables that manipulate the system and influence the results, so

the case here multivariate system. Multi-inputs and multi-outputs.

 System description

9

2 System description
The wastewater comes to the treatment from different sources. It is treated in several

stages. The wastewater is pumped to a chemical process chamber where chemical materials are

added to clean the wastewater, then the treated water goes out of the chemical chamber to the

next stage as shown in Figure 2-1. [1]

Figure 2-1 Dosing diagram

The chemical materials used for treating are coagulation chemicals and polymer. The

coagulation chemicals are PIX 318 iron chloride sulfate and PAX XL61 poly aluminum

chloride are used to precipitate saluted phosphate in the wastewater [1].

Polymer is important for the formation of flocs. The PIX, PAX, and POL materials react

with wastewater and reduce the turbidity of the water as well as influence the alkalinity and

phosphate materials. After analyzing the system inputs and outputs, it seems a dynamic system

with some delay. The dynamic system can be presented as a first or a second-order transfer

function with time delay. Using more than one type of material at the same time to reduce the

turbidity can be led to a new reaction which is different from each material individually. The

turbidity measures how much the water is clean. The turbidity sensor measures the light

intensity that passes through the water [1].

2.1 System variables

Veas has an internal document that describes all important variables. This document is

not constant, and it is modifying due to different situations of operation [1]. The most important

variables are:

 System description

10

Phosphorus: these values should be maximized 0.5 mgP/l

Alkalinity: these values should be maximized. The minimum value is 1.5 mmol/l

, [3]. The Pia Ryrfors experiments said that the values can go until 0.3 mmol/l [1]

Turbidity: 6 FTU, The turbidity should be as low as possible, there are arguments about the

value of turbidity some of them said 15 FTU is fine but the issue here is the cost of dosing. [1]

PIX, PAX, POL: are controllable inputs, it is used for the dosage process. PIX materials interact

with alkalinity and phosphate more than PAX, so using PIX decreases the alkalinity and

precipitates more phosphate in the wastewater. That means PIX can be used just when the

concentration of alkalinity and phosphate are high [1].

Suspended solids (SS): refers to the number of particular solids in the water. This variable

affects the water turbidity. The particular solids are taken out of the water by sedimentation.

Temperature sensor: gives information about water temperature, which could affect the

chemical reactions.

The level of water’s PH should not change. Alkalinity refers to the ability to maintain the level

of PH in water. PH value can change after treating water with acid or base solution.

The water inflow plays a significant role in the dosage process and manipulates the dynamic

system of dosage. The inflow has the most impact on system time delay. The reaction time is

related much to how much water is entering the dosage process. The power of chemical mixing

is affected by water flow as well [1].

 Modelling of the System

11

3 Modelling of the System
The chemical dosing of the water process seems a dynamic slow and stable process

with time delay. This kind of system can be modeled as a first or second-order transfer function.

[1]. To simplify the system, each input will model as first order transfer function as single input

single output SISO. After that, the transfer functions of the inputs will be combined to give the

final response of the system. The inputs are PIX. POL.PAX.

The form of the transfer function H(s) for input U and output y is shown in the equation

(3-1) [4] [1]

𝐻(𝑠) =
𝑘

𝜏𝑠+1
𝑒𝜃𝑆 (3-1)

Where k is the gain of transfer function and 𝜏 is the time constant. 𝜃 is a time delay.

Transfer function concept is applied for each of PIX, PAX, POL. The output of the

transfer function for each input can be added to each other since the turbidity is affected by

each input. In this case, the coupling between inputs is not considering. In other words, there

is no chemical reaction between PIX, PAX, POL. Each input has an independent effect on the

output. By considering the previous assumption, the block diagram of the system can be

modeled as Figure 3-1.

Figure 3-1 function block diagram of chemical dosing model, PIX, PAX, POL are dosing chemical materials,

𝑑𝑝𝑖𝑥 , 𝑑𝑝𝑎𝑥 , 𝑑𝑝𝑜𝑙 are inputs time delay, 𝜏 is the time constant, k is the gain.

The system model in Figure 3-1 is influenced by many parameters like

temperature and inflow…etc. some unknown parameters are added to the system in

the other block. The time delay is not constant, and it is manipulated by other

variables.

 Artificial intelligence modelling

12

4 Artificial intelligence modelling

4.1 Artificial neural networks (ANNs)

ANNs are computational programs or systems inspired by neural networks of humans

and animals. It is based on a collection of nodes called neurons that are connected to each other.

Inputs and outputs in a specific way as biological brain. Each neuron receives data and

transmits data after some processing. Receiving and transmitting can be to the neurons, input,

or output. [5] [6]

4.1.1 Artificial Neuron Model

The neuron is the basic unit, which receives one or more inputs and processes them to

produce the output. As shown in Figure 4-1

Figure 4-1 Neuron model, x1, x2---xn are inputs, w1, w2 are weights of the inputs, o is output of the neuron

(Perceptron model)

The mathematical model of the neuron represents how the neuron calculate the output.

Each input will be multiplied by weight which determined how this input influence the output.

the mathematical model of neuron can be described as (4-1)

𝑛𝑒𝑡 = 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 (4-1)

If the input has vector form (𝑥1 𝑥2…𝑥𝑛) and weights (𝑤1 𝑤2…𝑤𝑛 w2)
 T . The neuron has also

bias as input which represent the shift of the output, the bias plays a significant role for some

neuron, so it is important to add it separately as Figure 4-2

 Artificial intelligence modelling

13

Figure 4-2 Neuron model with bias b term, (𝑥1 𝑥2…𝑥𝑛) are input vector and (𝑤1 𝑤2…𝑤𝑛 w2) T are weights of

the inputs, o is output of the neuron (Perceptron model)

It is necessary to include a nonlinear activation function in order to allow varying inputs

conditions that determine the level of amplification. Nonlinear activation function can prevent

driving the output to out of allowed limits. [6]

4.1.2 Activation functions

The common type of activation functions that are used in neural networks is a step

function, Linear function, ramp function, sigmoid function, tansigmoid function. These

functions are shown in Figure 4-3 the selecting of the activation functions depends on the

application.

Linear function: the output of this function has a linear relationship with the input, the

output is the input multiply by a constant factor as equation (2). It can be used to show the total

output [6]

𝑓(𝑥) = 𝑘. 𝑥 (4-2)

𝑘 is constant

Step function: has two output states or limits +1 or -1 according to the input value equation

(4-3) . It suits classification problems

𝑦 = 𝑓(𝑥) = {
+1 𝑤ℎ𝑒𝑛 𝑥 > 0
−1 𝑤ℎ𝑒𝑛 𝑥 < 0

 (4-3)

 Artificial intelligence modelling

14

Figure 4-3 Activation functions, Unit step, Linear, Ramp, ReLU and Sigmoid.

Ramp function: The output is a combination of a linear function and a step function. It is

described as (4-5) [6]

 Artificial intelligence modelling

15

𝑦 = 𝑓(𝑥) = {
max 𝑤ℎ𝑒𝑛 𝑥 > 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡
𝑘. 𝑥 𝑤ℎ𝑒𝑛 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 > 𝑥 > 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡
min 𝑤ℎ𝑒𝑛 𝑥 < 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡

(4-5)

Sigmoid and hyperbolic tangent functions: these two functions are widely used in neural

networks. The sigmoid function has special properties which are nonlinearity properties and

derivative properties as shown in equation (4-6) and (4-7) [6]

𝑆(𝑥) =
1

1+𝑒−𝑥
= 1 − 𝑆(−𝑥) (4-6)

𝑑(𝑆(𝑥))

𝑑𝑥
= 𝑆(𝑥)(1 − 𝑆(𝑥)) (4-7)

Tansigmoid function equation (4-8)

𝑦(𝑥) =
1−𝑒−𝑥

1+𝑒−𝑥
 (4-8)

ReLU (Rectified linear unit) function equation (4-9). it is used when the output is only

positive

𝑦(𝑥) = {
𝑥 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

(4-9)

4.2 Artificial neural network architecture

ANN architecture is formed by at least one layer. The way of connecting neurons

produces two basic types of ANN architecture. They are Feedforward ANN and Recurrent or

Feedback ANN [6].

4.2.1 Feedforward ANN

In this type of ANN, the connection of neurons has one direction just forward

connectivity. Figure 4-4 illustrate this kind of ANN [6]

 Artificial intelligence modelling

16

Figure 4-4 Feedforward neural network. The input layer has 4 neurons, one hidden layer which has three

neurons, one neuron in the output layer.

The input vector 𝑥 = (

𝑥1
𝑥2
⋮
𝑥𝑛

) and the weights for each input formed as a matrix

𝑤 = [

𝑤11 ⋯ 𝑤1𝑚
⋮ ⋱ ⋮
𝑤𝑛1 ⋯ 𝑤𝑛𝑚

] ,the bias vector 𝑏 = (

𝑏1
𝑏2
⋮
𝑏𝑛

)

 The output vector (4-10)

𝑦 = (

𝑦1
𝑦2
⋮
𝑦𝑛

) = 𝑓(𝑤. 𝑥 + 𝑏)

(4-10)

The method of connection between layers and neurons in feedforward ANN is

determined by the application which can classify the feedforward ANN into many types like

Multilayer perceptron network, Radial basis function networks, generalized regression neural

networks, Probabilistic neural networks, Belief networks, Hamming networks, and Stochastic

networks. [6]

4.2.1.1 Multilayer perceptron network

MLP has several layers of neurons each layer has a weight matrix, a bias vector, and an

output vector. The output of the first layer represents the input of the second layer. The

activation function can be chosen for each layer.

 Artificial intelligence modelling

17

There are no rules for determining exactly the number of neurons in the layer and the

number of hidden layers. The hidden layer tries to memorize the input pattern rather than

learning features of input if the number of neurons of the hidden layer exceeds the number of

a training pattern.

4.2.2 Recurrent ANN or feedback ANN

The neuron has close-loop form. There is feedback from the output of neuron to the input.

[6]. That represents a sequence of dynamic behavior. RNNs use their internal state as a memory

for previous value (memory) to process the sequences of inputs series. [7].The RNNs are used

to take care of series of inputs, so the output depends on the current value and the memory. The

RNNs diagram illustrated in Figure 4-5

Figure 4-5 Recurrent neural network diagram

The output of RNN for a discrete time can be describe as (4-11):

ℎ𝑘+1 = 𝑓(𝑤. ℎ𝑘) (4-11)

ℎ𝑘+1 is the output of neuron k, 𝑓 is the activation function of RNN, ℎ𝑘 is the output of the

previous time step. The sequences of time series RNNs are shown in Figure 4-6

 Artificial intelligence modelling

18

Figure 4-6 RNN model with time series

RNN is widely used and has different applications and different types like, NARX

neural network, Elman network, Jordan networks.

4.3 Machine learning

Machine learning is part of artificial intelligence, which focuses on algorithms that learn

automatically from experience data. As known training data. The machine learning algorithms

try to fit the model based on training data in order to predict the output according to the inputs.

The model uses its experience to predict the output [8].

The ML approaches are divided into three categories: Supervised learning,

unsupervised learning, and Reinforcement learning, the approach depends on the nature of

feedback that is available to learn the model [8].

The learning of neural networks is used to optimize the weights and biases in order to

have the best fit of the model [6].

4.3.1 Supervised learning

Supervised learning is used training data inputs and desired outputs to teach the model.

Learning algorithm tries to map inputs to output [8] [6].

The inputs are applied to neural network inputs and the learning algorithm tune the

weights and bias in an iterative loop to minimize the difference between the neural network

and the target data. [6] In this thesis, the case is Supervised learning. The learning data is

available.

 Artificial intelligence modelling

19

4.3.2 Ordinary Least squared fitting.

 Ordinary Least squared fitting is a method to find the best fit of data set. the best fit

can be obtained by minimizing the vertical distance from the data set to the regression line [9].

The mean value for N sample observation (𝑥1, 𝑥2, … 𝑥𝑛) is defined as (4-15) which gives the

average value of observations [9].

𝑥̅ =
1

𝑁
∑ 𝑥𝑛
𝑁
𝑛=1 (4-15)

The variance value gives information about how much the data set fluctuates about the

mean value which can be expressed as (4-16)

𝜎2 =
1

𝑁
∑ (𝑥𝑛 − 𝑥̅)

2𝑁
𝑛=1 (4-16)

The standard deviation 𝜎 can be obtained from square root of the variance as (4-17)

𝜎 = √
1

𝑁
∑ (𝑥𝑛 − 𝑥̅)2
𝑁
𝑛=1

(4-17)

Linear model of the SISO system can be presented as (4-18)

𝑦 = 𝑎𝑥 + 𝑏 (4-18)

The observations are ((𝑥1, 𝑦1), (𝑥2, 𝑦2),…. (𝑥𝑛, 𝑦𝑛)). The best fit of the model gives the

smallest error which mean smallest value of variance equation (4-19)

𝜎2 =
1

𝑁
∑ (𝑦𝑛 − (𝑎𝑥𝑛 + 𝑏))

2𝑁
𝑛=1 (4-19)

The error that associates with the fitting can be formed as (4-20)

𝐸(𝑎, 𝑏) =
1

𝑁
∑ (𝑦𝑛 − (𝑎𝑥𝑛 + 𝑏))

2𝑁
𝑛=1 (4-20)

The function of error has minimum value of error the derivative equal to zero (4-21).

𝑑𝐸

𝑑𝑎
= 0,

𝑑𝐸

𝑑𝑏
= 0 (4-21)

The values of a,b which give best fitting obtain from solving (4-21)as equation (4-22)

(𝑎
𝑏
) = (

∑ 𝑥𝑛
2𝑁

𝑛=1 ∑ 𝑥𝑛
𝑁
𝑛=1

∑ 𝑥𝑛
𝑁
𝑛=1 𝑁

)

−1

(
∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1

∑ 𝑦𝑛
𝑁
𝑛=1

)
(4-22)

This method is used commonly for simple linear regression to find best fit line for set of

statistic data points.

 Artificial intelligence modelling

20

4.3.3 Multiple Linear Regression MLR:

MLR is suitable for the multi-variate systems that have one variable output y and a set

of independent x variables as input that impact the output. The formulation of x should be full

mathematical rank (x variables are linearly independent) practically uncorrelated. [10]

The purpose of MLR is to find a mathematical model that gives a connection between multi-

input independent variables and dependent output variables. MLR is an extension of the OLS

method, the formulation of the model is [11] (4-23)

𝑦̂ = 𝐴1𝑥1 + 𝐴2𝑥2 +⋯+ 𝐴𝑝𝑥𝑝 + 𝐴0 + 𝑒 (4-23)

𝐴𝑝 is coefficient regarding the variable 𝑥𝑝, e is the error, 𝐴0 is the constant coefficient or bias.

4.3.4 Mean squired error MSE /Loss cost function.

MSE is a procedure to estimate unsupervised parameters. This method can be used to

optimize the neural network parameters (weights and biases). The data set from a system that

has x data as input and y data as output. the same data applies to the ANN model, the model

gives the prediction of the output 𝑦̂. The loss or cost function can be described as equation (4-

24) [12].

𝑐 = (𝑦̂ − 𝑦)2 (4-24)

The gradient should be calculated in terms of all weights and biases. To do that the

derivative of cost function is needed in terms of all weights and biases. It is iterative process to

optimize weights and biases which can be summarized as the following steps [6]:

• Initialize the step size or learning rate:lr=0.01

• Initialize the weights and biases randomly: 𝑤1, 𝑤2, 𝑏 = 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑𝑛(3)
• Calculate 𝑦̂ from the ANN model.

• Calculate the loss 𝑐 = (𝑦̂ − 𝑦)2

• Calculate the derivative
𝑑𝑐

𝑑𝑤1
,
𝑑𝑐

𝑑𝑤2
,
𝑑𝑐

𝑑𝑏

• Update weights and biases as the following

𝑤1 = 𝑤1 −
𝑑𝑐

𝑑𝑤1
. 𝑙𝑟

𝑤2 = 𝑤2 −
𝑑𝑐

𝑑𝑤2
. 𝑙𝑟

𝑏 = 𝑏 −
𝑑𝑐

𝑑𝑏
. 𝑙𝑟

• Go to the next iteration step 3.

 Artificial intelligence modelling

21

4.3.5 Adam optimizer

It is called Adaptive Moment estimation which is an optimization process for gradient

descent. It is an efficient method for optimizing large parameters which require less memory.

This method uses a combination of two algorithm gradient descent with momentum and Root

Mean Square Propagation RMSP [13] [14].

Momentum:

The purpose of the Momentum algorithm is to accelerate the gradient descent by taking

into account the exponentially weighted average of gradient which allows accelerating moving

to a minimum. The idea is that the gradient with momentum has two jobs [13] [15]:

• Remembers the update of the aggregate of gradients 𝑚𝑘 at each iteration. The initial

value of 𝑚0 = 0. As describes in the equation (4-25)

• Determines the next update and the previous update of gradient as a linear combination.

equation (4-26)

𝑚𝑘 = 𝛽𝑚𝑘−1 + (1 − 𝛽)
𝑑𝐿

𝑑𝑤𝑘
 (4-25)

𝑤𝑘+1 = 𝑤𝑘 − 𝛼.𝑚𝑘 (4-26)

Where: 𝑚𝑘 is the aggregate of gradients at time step 𝑘. 𝑤𝑘 is the weight at time step 𝑘.

L is the loss function, 𝛼 is learning rates. 𝛽 is moving average parameter (constant value

=0.9)

Root Mean Square Propagation RMSP

RMSP is an adaptive learning algorithm to calculate the weight by using the sum of

squares of past gradients with an exponential moving average. Calculating the weights can be

performed by using equations (4-30) and (4-31) [13]

𝜗𝑘 = 𝛽𝜗𝑘−1 + (1 − 𝛽) ∗ (
𝑑𝐿

𝑑𝑤𝑘
)
2

(4-30)

𝑤𝑘+1 = 𝑤𝑘 −
𝛼𝑘

√𝜗𝑘+𝜀
∗
𝑑𝐿

𝑑𝑤𝑘
 (4-31)

Where: 𝛼𝑘 learning rates at time k. 𝜀 = 10−8 small positive number to prevents division by

zero. 𝜗𝑘 sum of the square of past gradients. 𝛽 is moving average parameter (constant value

=0.9). L is loss function. 𝑤𝑘 is the weight at time step 𝑘.

Adam

The rate of gradient descent is controlled to minimize the oscillation when the weights

reach the global minimum. The optimizer will take enough step size in order to pass the local

minima. That will allow reaching the global minimum efficiently. The equations (4-30) and (4-

31) can be written as (4-32) and (4-33) [13] [15].

 Artificial intelligence modelling

22

𝑚𝑘 = 𝛽1𝑚𝑘−1 + (1 − 𝛽1)
𝑑𝐿

𝑑𝑤𝑘
 (4-32)

𝜗𝑘 = 𝛽2𝜗𝑘−1 + (1 − 𝛽2) ∗ (
𝑑𝐿

𝑑𝑤𝑘
)
2

(4-33)

The initial values of 𝑚0, 𝜗0 = 0 tend to be biased towards zero and the 𝛽1, 𝛽2 tend to

be 1. The optimizer computes the bias-corrected 𝑚𝑘, 𝜗𝑘 each iteration and controlling the

weights to reach the global minimum. That can be performed by formula (4-34) [13]

𝑚𝑘̂ =
𝑚𝑘

1−𝛽1
𝑘 , 𝜗𝑘̂ =

𝜗𝑘

1−𝛽2
𝑘

(4-34)

The weight can be updated by using formula (4-35)

𝑤𝑘+1 = 𝑤𝑘 −𝑚𝑘̂
𝛼𝑘

√𝜗𝑘̂+𝜀

 (4-35)

4.4 Levenberg–Marquardt training algorithm

This method is designed to work with a loss function. It uses gradient vector and

Jacobian matrix. The loss function takes the form of a sum of the squared errors as (4-36) [16].

𝑓𝑙𝑜𝑠𝑠 = ∑ 𝑒𝑖
2𝑛

𝑖=1 (4-36)

Where e is error, n number of training samples.

The Jacobian matrix is (4-37)

𝐽𝑖,𝑗 =
𝑑𝑒𝑖

𝑑𝑤𝑗
 (4-37)

W is the weight parameter. For i=1,2,…, n sample and j=1,2,…,m parameter

The Levenberg-Marquardt algorithm is (4-38):

𝑤𝑖+1 = 𝑤𝑖 − (𝐽𝑖
𝑇 . 𝐽𝑖 + 𝜆𝑖𝐼)

−1
. (𝑐𝐽𝑖

𝑇 . 𝑒𝑖)
(4-38)

𝜆 is the damping factor, I is the identity matrix. i=0,1,…n sample.

Levenberg-Marquardt algorithm diagram is shown in the Figure 4-7 [16]

 Artificial intelligence modelling

23

Figure 4-7 Levenberg-Marquardt algorithm diagram

4.5 Nonlinear autoregressive exogenous (NARX) model

NARX uses the current and past values of inputs and outputs series. To get exactly

predict the model contain an error term related to the knowledge of other terms not available

at the current value of time series. The NARX model can be written as (4-39) [17].

𝑦𝑡 = 𝐹(𝑦𝑡−1, 𝑦𝑡−2, … 𝑦𝑡−𝑛, 𝑢𝑡, 𝑢𝑡−1, … 𝑢𝑡−𝑛) + 𝜀 (4-39)

𝑦𝑡 is the current value of the output and 𝑦𝑡−1 is the previous value of the output, 𝑢𝑡 is the

current input and 𝑢𝑡−1 is the previous input. 𝜀 is the error term. The F function is a non-linear

function, it can be a neural network function or any function [17].

4.6 NARX neural network model

The architecture of the NARX network is proposed to deal with previous values.

Therefore, it is classified as a recurrent neural network. This kind of neural network is suitable

to work with time series, which is a powerful method to deal with dynamic systems. The NARX

model has the ability to process with a long memory component, where the past event has an

impact on the future [18]. The block diagram of the NARX neural network is shown in Figure

4-8.

 Artificial intelligence modelling

24

Figure 4-8 NARX neural network block diagram 𝑍−1 is the previous value.

The NARX neural network can be implemented as feedforward with embedded

memory. The embedded memory will be inputs and outputs which presents tapped time delay.

Leaning NARX neural network is more effective than other neural networks (better gradient

descent) and it converges faster than another neural network [18].

4.7 Neural network performance evaluation

After training a neural network model, it is important to check the performance of the

network. Mean squared error MSE gives information about the average squared difference

between data target and neural network model. Lower value refers to better performance [19].

 Regression R values show the correlation between data target and neural network

model. R=1 means the correlation is 100%. 0 means no correlation at all [19].

 It is possible to evaluate the performance by running the neural network model in

parallel with the process to see the neural network model behaves.

 Dynamic system Modelling

25

5 Dynamic system Modelling

5.1 Using forward Euler and backward

The response of the chemical dosing system shows a slow, stable process with a time

delay of the input, the system’s behavior can be presented by first-order transfer function as

equation (5-1) [1].

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝑘

𝑇𝑐+1
 (5-1)

Equation (5-1) can be written as (5-2)

𝑌(𝑠)(𝑇𝑐𝑠 + 1) = 𝑈(𝑠)𝑘 (5-2)

Move to time domain by inverse Laplace transform (5-3)

𝑇𝑐𝑦̇(𝑡) + 𝑦(𝑡) = 𝑘. 𝑢(𝑡) (5-3)

The equation (5-3) is a continuous-time equation that can be solved in different ways.

Forward and backward Euler methods can be good approaches to discretize (5-3). equation (5-

4) is forward Euler form and equation (5-5) is backward form [4].

𝑦𝑘+1 = 𝑦𝑘 +
𝑑𝑡

𝑇𝑐
(𝐾 ∗ 𝑢𝑘 − 𝑦𝑘) (5-4)

𝑦𝑘+1 =
𝑘.𝑑𝑡

(𝑇𝑐+𝑑𝑡)
𝑢𝑘 +

𝑇𝑐

𝑇𝑐+𝑑𝑡
𝑦𝑘 (5-5)

5.2 Using neural network

Equations (5-4) and (5-5) show that it is possible to predict the next step if the current

step is known. In order to design ANN to model the system, the current output will be used to

predict the next step. These tricks can be performed to include time series in ANN Figure 5-1

and it can be written as (5-6), (5-7).

𝑦𝑘+1 = 𝑓(𝑢𝑘, 𝑦𝑘) = 𝑦𝑘 +
𝑑𝑡

𝑇𝑐
(𝑘. 𝑢𝑘 − 𝑦𝑘) =

𝑑𝑡

𝑇𝑐
𝑘. 𝑢𝑘 + (1 −

𝑑𝑡

𝑇𝑐
) 𝑦𝑘 (5-6)

𝑦𝑘+1 = 𝑓(𝑢𝑘, 𝑦𝑘) =
𝑘.𝑑𝑡

(𝑇𝑐+𝑑𝑡)
𝑢𝑘 +

𝑇𝑐

𝑇𝑐+𝑑𝑡
𝑦𝑘 (5-7)

The 𝑇𝑐 term in equations (5-6) and (5-7) is in the denominator, so the 𝑇𝑐 should not be

zero. This condition is approved in this system.

 Dynamic system Modelling

26

Figure 5-1 First order transfer function response.

The equations (5-6) and (5-7), have two inputs (𝑢𝑘, 𝑦𝑘) and two constants. The constant

terms are
𝑑𝑡

𝑇𝑐
𝑘 and (1 −

𝑑𝑡

𝑇𝑐
) in the equation (5-6), and

𝑘.𝑑𝑡

(𝑇𝑐+𝑑𝑡)
 and

𝑇𝑐

𝑇𝑐+𝑑𝑡
, these constants can

presents the weights of the input neuron in the neural network, consequently, these two

equations can be written in a neuron form in a neural network as shown in the equation (5-8).

𝑦𝑘+1 = 𝑓(𝑢𝑘 = 𝑥1, 𝑦𝑘 = 𝑥2) = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 , b=0 (5-8)

Forward and backward Euler equations can be formed as a neuron equation (4-1) as

illustrated in the equations (5-8). The MIMO dynamic system model can be formed as neural

network equation (4-10).

5.3 Using Machine learning

The Euler equation can be converted into a linear equation. The prediction of the next

step has a linear form. The inputs will be the current output and current input. It is returned to

the form of the equation (5-8). The model can be fitted as a linear form.

5.4 Recurrent neural network

The recurrent neural network is used to store the current value in internal memory and

use it to predict the next future value. exactly as shown in the Euler equations. The value of

the predicted output relays on the current output and input, the ANN model can be illustrated

as Figure 5-2

 Dynamic system Modelling

27

Figure 5-2 Diagram of first order transfer function by Multilayer perceptron network.

The mathematical form of ANN can be described as (5-9)

𝑦𝑘+1 = 𝐴𝑁𝑁 = 𝑓(𝑢𝑘, 𝑦𝑘) (5-9)

𝑢𝑘is the input at time k and 𝑦𝑘 is output at time k.

The input layer of the network has two variables 𝑦𝑘, 𝑢𝑘. There is no specific rule to

determine the number of neurons, layers, and activation function. Many layers configurations

have been tested by sequential network and functional API network.

Equations (5-6) can be formed as (5-10).

𝑦𝑘+1 = 𝑓(𝑢𝑘, 𝑦𝑘) = (1 −
𝑑𝑡

𝑇𝑐
) 𝑦𝑘 + 𝑘.

𝑑𝑡

𝑇𝑐
𝑢𝑘 = 𝑤1𝑢𝑘 +𝑤2𝑦𝑘 (5-10)

Where 𝑤1 = 𝐾.
𝑑𝑡

𝑇𝑐
 , 𝑤2 = (1 −

𝑑𝑡

𝑇𝑐
)

Equation (5-10) presents one neuron with two input and linear activation functions. The same

procedure can be performed for (5-7) to get neuron equation as (5-11)

𝑦𝑘+1 = 𝑓(𝑢𝑘, 𝑦𝑘) =
𝑘.𝑑𝑡

(𝑇𝑐+𝑑𝑡)
𝑢𝑘 +

𝑇𝑐

𝑇𝑐+𝑑𝑡
𝑦𝑘 = 𝑤1𝑢𝑘 + 𝑤2𝑦𝑘 (5-11)

Where 𝑤1 =
𝑘.𝑑𝑡

(𝑇𝑐+𝑑𝑡)
 , 𝑤2 =

𝑇𝑐

𝑇𝑐+𝑑𝑡
, 𝑤1 𝑎𝑛𝑑 𝑤2 form the weights of the inputs in a neuron

equation.

The artificial neural network diagram that presents the system is shown in Figure 5-3.

 Dynamic system Modelling

28

Figure 5-3 Artificial neural network diagram for first order transfer function with one input.

As an example Modeling of the SISO system using linear activation function section can

be referred.

 Simulator for Chemical dosing System

29

6 Simulator for Chemical dosing System
The simulator is important to test the model, and its behavior, Applying the control signals

directly to the process is costly and sometimes, it is dangerous, but no problem for a simulator.

The simulator for the water dosage process is developed by using first order transfer function.

The first step is a transfer function of the MISO system without delay and the second step the

time delay will be included in the process.

6.1 MISO system simulation without time delay

The simulator is also used to generate the training data, the parameter of the simulator

is indicated in Table 6-1. The values of gain and time constant from [1].

Table 6-1 System parameter that used for simulator.

Materials PIX PAX POL

First order

Time constant Tc

[min]

10 30 20

Gain k -0.2 -0.3 -0.02

The simulator is developed by using the forward or backward Euler method to discretize

the continuous system.

The equations that are used in the code are included in the forward Euler and backward

sections.

The Python code for the transfer function is:

def forward_euler(ts,Kc,u_k,Tc,y_k):

 dy_dt=(Kc*u_k-y_k)/Tc

 return y_k+dy_dt*ts

Simulator Python code in the Appendix.

6.1.1 Simulation Results

The single input and corresponding output as SISO are shown in Figure 6-1 Figure 6-2

Figure 6-3. The multi-inputs are fed the system and correspond single output is shown in Figure

6-4.

 Simulator for Chemical dosing System

30

Figure 6-1 Simulator response due to PIX without time delay. The top figure is the response with time, Y-axis is

the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of PIX with time, Y-

axis is the PIX materials as percentage, x-axis is a time in minute.

Figure 6-2 Simulator response due to PAX without time delay. The top figure is the response with time, Y-axis

is the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of PAX with time,

Y-axis is the PAX materials as percentage, x-axis is a time in minute.

 Simulator for Chemical dosing System

31

Figure 6-3 Simulator response due to POL without time delay. The top figure is the response with time, Y-axis

is the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of POL with time,

Y-axis is the POL materials as percentage, x-axis is a time in minute.

Figure 6-4 Simulator response due to POL, PIX, PAX. without time delay. The top figure is the response with

time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the inputs

POL, PIX, PAX with time, Y-axis is the POL, PIX, PAX materials as percentage, x-axis is a time in minute.

The step function is applied to each input PIX, PAX, POL to see how each input

affects the output.

 Simulator for Chemical dosing System

32

6.1.2 Simulation discussion

The SISO system response in Figure 6-1, Figure 6-2, Figure 6-3, Figure 6-4 show that

when the step function is applied the output starts to respond to this input and after a time equal

to approximately 5 times of time constant 𝑡 = 5 ∗ 𝜏 reach to steady state. The system is stable

and there is no overshoot. The response of PIX is faster than PAX, POL due to a smaller time

constant of PIX. Time constant represents how much time the system needs to reach the steady

state. A higher value of time constant leads to slower response.

POL response has a smaller gain than PIX, PAX. And PAX has a higher gain than PIX

and POL. Consequently, POL has the lowest impact and PAX has the highest impact. As shown

in Figure 6-4.

6.2 MISO system with time delay simulation

A real process may have a time delay, so it is important to include time delay in the

simulation.

The simulator is used to generate the data with time delay, the parameter of the

simulator is indicated in Table 6-2 the values from [1].

Table 6-2 System parameter of the time delay simulator

Materials PIX PAX POL

Time constant Tc

[min]

10 30 20

Time delay[min] 10 30 60

Gain k -0.2 -0.3 -0.02

6.2.1 Simulation method

These inputs fed the system with a time delay as indicated in Table 6-2

The simulator will handle the time delay as the following [4]:

• Initial value of the delay. It can be zero.

• Create an array for delay (delay_array) that has time delay / time sample element

• Give initial value to delay array

• System loop

• Read the input value from the last element

• Rotate the delay_array one element to the right

• Set the value of the input to the first element

The delay function diagram is shown in Figure 6-5. The value of the input stored in the

first element will reach the last element after a time equal to the number of elements in the

 Simulator for Chemical dosing System

33

delay array *time step. When the value reaches the last element, the model will use this value

as input of the system, and the system will react according to this value [4].

Figure 6-5 Delay function diagram, the number of the elements in the delay length equal to delay/time sample

6.2.2 Simulation results

Python language is used to implement the first order transfer function with time delay.

And the software is Spyder. The system is fed as SISO to check the time delay function. The

single input and corresponding output as SISO are shown in the Figure 6-6, Figure 6-7,

Figure 6-8. The multi-inputs are fed the system and correspond single output is shown in the

Figure 6-9.

 Simulator for Chemical dosing System

34

Figure 6-6 Simulator response due to PIX with time delay. The top figure is the response with time, Y-axis is

the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of PIX with time, Y-

axis is the PIX materials as percentage, x-axis is a time in minute.

Figure 6-7 Simulator response due to PAX with time delay. The top figure is the response with time, Y-axis is

the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of PAX with time,

Y-axis is the PAX materials as percentage, x-axis is a time in minute.

 Simulator for Chemical dosing System

35

Figure 6-8 Simulator response due to POL with time delay. The top figure is the response with time, Y-axis is

the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of POL with time, Y-

axis is the POL materials as percentage, x-axis is a time in minute

Figure 6-9 Simulator response due to POL, PIX and PAX with time delay. The top figure is the response with

time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the inputs

POL, PIX, PAX with time, Y-axis is the POL, PIX, PAX materials as percentage, x-axis is a time in minute.

 Simulator for Chemical dosing System

36

6.2.3 Simulation discussion

The Figure 6-6 Figure 6-7Figure 6-8Figure 6-9 show clearly that the response of the

system is delayed. The figure gives the amount of delay as shown in Figure 6-10, the time delay

of PIX graphically=10 minutes, time delay from parameters =10 minutes Table 6-2, the same

procedure applied to the PAX, and POL. The results from graph equal to parameters. That

mean the time delay of the simulator is working properly.

Figure 6-10 System response with time delay for SISO system and MISO system, the orange rectangle

represents the amount of delay. Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The

bottom figure is the inputs with time.

 Time delay estimation algorithm

37

7 Time delay estimation algorithm
Time delay estimation is a critical issue in system identification. The time delay

influences the model as much as the model order. [20] The process with time delay does not

guarantee a good model. Not correct time delay estimation can lead to a mismatch between the

model and real process in some systems. Due to the connection between process input-output,

and model input-output.

The time delay can be estimated by observing the inputs and output. This method works

only with step inputs. The estimation can be executed by the following steps:

• Set all inputs to the constant values

• Wait until the output of the system to be stable.

• Give step to the one of the inputs.

• Count the time until get response in the output to this input.

• Time delay equals to the time from input step to get change in the output.

• Verify the result.

• Repeat the same procedure to the other inputs to calculate time delay to the other

signals.

To be sure the result should be verified, when the output starts to change, it will continue

changing to reach the steady state. If the output changed for just one time step that mean it is

just a noise, and final value of time delay is not reached yet. It is possible to continue counting

the time or sent error message to repeat the estimation.

The sequence diagram of the time delay estimation is shown in Figure 7-1

 Time delay estimation algorithm

38

Figure 7-1 The sequence diagram of the time delay estimation algorithm for one input signal, 𝜀 is an error term

 The error term is added to include the noise, the verification loop is needed to be sure the

changing is continuous for the next 3 steps. when the output starts responding to the changing

of inputs. The output continues changing until reach the steady state, which required many

steps much larger than 3 steps. Verifying the results with 3 steps is enough to avoid the error

due to spike noise. If data has no spikes, the verification part is not needed.

 Time delay estimation algorithm

39

7.1 Method

The time delay estimation is implemented by using Python and the software is Spyder.

The clean data is needed to do estimation. The data from estimation is provided from Simulator

for Chemical dosing System section. The data in Figure 6-10 is exported to CSV file.

Python code for time delay estimation:

load training data

train_df = pd.read_csv("xtrain_data.csv")

u1=train_df[['U_pax']].values

train_df = pd.read_csv("ytrain_data.csv")

y=train_df[['TURB']].values

delay= np.zeros(len(y))

delay_count=0

Condition_u=0

eps_u=0.1 # noise margen rang

eps_y=0.00001# noise margen rang

for k in range(0, len(y)-5):

 if (y[k+1]>=y[k]-eps_y and y[k+1]<=y[k]+eps_y):# Condition_y

 if (u1[k+1]<u1[k]-eps_u or u1[k+1]>u1[k]+eps_u):#Condition_u

 Condition_u=1

 if Condition_u==1:

 delay[k]=1

 delay_count+=1

 #print (k)

 else:

 Condition_u=0

 Time delay estimation algorithm

40

print ("time delay=")

print (int (delay_count*ts))

The data that used in the time delay estimation is generated from the simulator (MISO

system with time delay simulation). Inputs and output data is plotted in Figure 7-2

Figure 7-2 Time delay estimation data set. The input is a step function of POL, PIX, PAX, the output is a system

response due to inputs. The top figure is the response with time, Y-axis is the turbidity of the water as FTU, x-

axis is a time in minutes. The bottom figure is the inputs POL, PIX, PAX with time, Y-axis is the POL, PIX,

PAX materials as percentage, x-axis is a time in minutes.

7.2 Simulation Results

The estimation has been performed for each input individually. the length of time is

plotted with the input signals and the output response signal. The results are shown in Figure

7-3, Figure 7-4, Figure 7-5 ,the noise margin range for input equal to eps_u=0.1, the noise

margin range for output equal to eps_y=0.00001.

 Time delay estimation algorithm

41

Figure 7-3 Time delay estimation for POL input. Red color represents the delay period. The time delay

estimation is calculated by program, and it is equal to 60 minutes.

Figure 7-4 Time delay estimation for Pax input. Red color represents the delay period. The time delay

estimation is calculated by program, and it is equal to 30 minutes.

 Time delay estimation algorithm

42

Figure 7-5 Time delay estimation for Pix input. Red color represents the delay period. The time delay estimation

is calculated by program, and it is equal to 10 minutes.

7.2.1 Simulation Discussion

The results show that the estimation algorithm is working properly. The estimated time

delay is approximately equal to real time delay. The comparison between results and Table

6-2. In the simulated data there is no noise taking in account. in the time delay estimation

assumed that the data has noise in both input and output. To do estimation correctly the noise

margin should be very small compared to the response gain (smaller than 0.3% of the gain the

results from simulation). If there is influence of more than one input, the estimation will give

fail result or will not success to do estimation. The advantage of this method that the estimation

depends on the data from input and output, the disadvantage is very sensitive to noise and input

data.

 Simulator model development using Artificial
neural network

43

8 Simulator model development using
Artificial neural network
The training and testing data used in this section is from the simulator that was built in the

previous section. The reasons are to simplify the model and it is easy to control the input of the

system in the simulation while it is not possible with real data. The noise is not included in the

simulation that will give a possibility to judge the ANN model compared to simulated model.

8.1 Methods

The method that is used in this thesis to train the model and using the trained model is

summarized as the following steps:

1. Create the training data set from the simulator and store it in CSV file.

2. Creating the model and using the training data set.

3. Save the model on the hard disk.

4. Do the simulation with new inputs different from training data.

5. Using the new inputs to feed the neural network model.

6. Compare the results from the simulation model and the neural network model. To see

how the neural network model is accurate.

The block diagram of developing neural network model is shown in Figure 8-1

Figure 8-1 Simulator model development using ANN diagram.

Notes: The keras library is used for creating and training the neural network, so it is

important to install it on your computer and import it in your code.

 Simulator model development using Artificial
neural network

44

8.2 Modeling of the SISO system using linear activation
function

The data set used for training was generated by the simulator, the input is POL

chemical material, and output is the turbidity as shown in Figure 8-2. POL chemical material

is selected as a single input and the turbidity is an output.

Figure 8-2 The training data set that used to train the neural network model for SISO system. The top figure is

the response with time, Y-axis is the turbidity of the water as -FTU, x-axis is a time in minute. The bottom

figure is the input with time, Y-axis is the POL materials as percentage, x-axis is a time in a minute.

The block diagram of the SISO system ANN is shown in Figure 8-3, the input is POL and the

output is the turbidity

Figure 8-3 SISO system ANN block diagram, the input is POL, and the output is the turbidity.

This kind of neural network is called recurrent neural network due to feedback from

the output.

 Simulator model development using Artificial
neural network

45

8.2.1 Method:

Creating the recurrent neural network model and training the model can be perform as

the following in python.

The training data is used to train the model as the following

from keras.models import Sequential

create neural network model

model = Sequential()

model.add(Dense(1, input_dim=2, activation='linear'))

model.add(Dense(1, activation='linear'))

model.compile(loss="mean_squared_error", optimizer="adam")

load training data

train_df = pd.read_csv("train_data.csv")

X1 = train_df.drop('y', axis=1).values

Y1 = train_df[['y']].values

train the model

model.fit(X1,Y1,batch_size=32,epochs=1000,verbose=2)

Save the model to hard drive

model.save('model.h5')

Using the trained model as the following:

model = Sequential()

model.add(Dense(1, input_dim=2, activation='linear'))

model.add(Dense(1, activation='linear'))

model.compile(loss="mean_squared_error", optimizer="adam")

model.load_weights('model.h5')

ypol_k = 0

for k in range(0, N_sim): # N_sim=(time stop-time start)/time step

 NN_input=np.vstack((ypol_k,U_pol[k])).T # reformate the input data to suit the

 # ANN model

 Simulator model development using Artificial
neural network

46

 yNN_plot_array[k] = model.predict(NN_input)

 ypol_k = yNN_plot_array[k]

8.2.2 Results and discussion:

Figure 8-4 shows the results from simulation model and neural network model

Figure 8-4 The response of the SISO system using simulator model and neural network model. The top figure is

the response with time, Y-axis is the turbidity of the water as -FTU, x-axis is a time in minute. The bottom

figure is the input of POL with time, Y-axis is the POL materials as percentage, x-axis is a time in minute.

 The model of the ANN behaves exactly the same as the model of the simulator as shown in

Figure 8-4. That means the ANN model fits well the data, and the results correspond to the

mathematical studies.

8.3 MISO system modeling using linear activation function

The data set that was used for training was generated by the simulator and it contains

three inputs and one output, the inputs are PIX, PAX, POL chemical materials, and the output

 Simulator model development using Artificial
neural network

47

is the turbidity as shown in the figure. POL chemical material is selected as multi-input and

the turbidity is the output as shown in Figure 8-5.

Figure 8-5 The training data set that used to train the neural network model for MISO system. The top figure is

the response with time, Y-axis is the turbidity of the water as -FTU, x-axis is a time in minute. The bottom

figure is the inputs with time, Y-axis is the PIX, PAX, POL materials as percentage, x-axis is a time in minute.

The training code for MISO.

create neural network model

model = Sequential()

model.add(Dense(3, input_dim=4, activation='linear'))

model.add(Dense(10, activation='linear'))

model.add(Dense(1, activation='linear'))

model.compile(loss="mean_squared_error", optimizer="adam")

train the model

model.fit(X1,Y1,batch_size=32,epochs=200,verbose=1)

Trained model is used in the code as the following:

model = Sequential()

 Simulator model development using Artificial
neural network

48

model.add(Dense(3, input_dim=4, activation='linear'))

model.add(Dense(10, activation='linear'))

model.add(Dense(1, activation='linear'))

model.compile(loss="mean_squared_error", optimizer="adam")

model.load_weights('model.h5')

ypol_k = 0

for k in range(000,8000):

 NN_input=np.vstack((ypol_k,U_pol[k],U_pix[k],U_pax[k])).T

 yNN_plot_array[k] = model.predict(NN_input)

 ypol_k = yNN_plot_array[k]

8.3.1 Results and discussion

Mean Squared Error (MSE) is 4.95e-08 which refers to the difference between the model

output and the target. Simulator and ANN model fed with same inputs the responses are

shown in Figure 8-6

Figure 8-6 The response of the MISO system using simulator model and neural network model, ANN has 3

layers and 10 neurons in the hidden layer. The top figure is the response with time, Y-axis is the turbidity of the

 Simulator model development using Artificial
neural network

49

water as -FTU, x-axis is a time in a minute. The bottom figure is the input of POL with time, Y-axis is the PIX,

PAX, POL materials as a percentage, x-axis is a time in a minute.

The ANN model represents the Simulator model as shown in Figure 8 6. The ANN

and the simulator fed with different levels of step functions so that the ANN model response

with small error as illustrated in Figure 8-6. The errors occur due to underfitting.

 NARX feedback neural network

50

9 NARX feedback neural network
The real dynamic process can have a time delay that will increase the complexity of the

system. Time delay can create mismatch problems between a real process and a model. NARX

network can overcome these problems. The neural network is based on the NARX model. The

diagram of the network is shown in Figure 9-1

Figure 9-1NARX feedback neural network, TDL is tapped time delay, f is an activation function, w is a weight,

b is a bias.

9.1 NARX Neural network model

The final model of water dosing process is developed by NARX neural network to

overcome time delay problems. The mathematical NARX form that can be applied is illustrated

in equation (10.3) [18]

𝑌(𝑡) = 𝑓(𝑌(𝑡 − 1), 𝑌(𝑡 − 2),… , 𝑌(𝑡 − 𝑛), 𝑈(𝑡 − 1), 𝑈(𝑡 − 2),… , 𝑈(𝑡

− 𝑛))

(10.3)

Where n is a number of tapped time delay line, Y is the output vector 𝑌 = (

𝑦1
𝑦2
⋮
𝑦𝑖
)

where i is the number of outputs, U is the input vector 𝑈 = (

𝑢1
𝑢2
⋮
𝑢𝑗
) where j is the number of

inputs

The water dosage process has a variable time delay, and it is varied due to some inputs.

The inflow could have a significant influence on time delay and how many parameters

influence on time delay is unknown. The time delay index should be assumed in the network.

Time delay index n is the maximum number of steps in the time delay.

The form of one neuron in the NARX network will be as equation (10.4)

 NARX feedback neural network

51

𝑓𝑛𝑒𝑡 = 𝑓(𝑊1
𝑖𝑛𝑝𝑢𝑡𝑈𝑡 +𝑊2

𝑖𝑛𝑝𝑢𝑡𝑈𝑡−1 +⋯+𝑊𝑛
𝑖𝑛𝑝𝑢𝑡𝑈𝑡−𝑛 +𝑊1

𝑜𝑢𝑡𝑝𝑢𝑡𝑌𝑡−1

+𝑊2
𝑜𝑢𝑡𝑝𝑢𝑡𝑌𝑡−2 +⋯+𝑊𝑛

𝑖𝑛𝑝𝑢𝑡𝑌𝑡−𝑛) + 𝑏

(10.4)

𝑊𝑛
𝑜𝑢𝑡𝑝𝑢𝑡

is the output wight vector 𝑊𝑛
𝑜𝑢𝑡𝑝𝑢𝑡 =

(

𝑤1
𝑜𝑢𝑡𝑝𝑢𝑡

𝑤2
𝑜𝑢𝑡𝑝𝑢𝑡

⋮

𝑤
𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

)

 where i is the number of

outputs, 𝑊𝑛
𝑖𝑛𝑝𝑢𝑡

 is the input weight vector 𝑊𝑛
𝑖𝑛𝑝𝑢𝑡 =

(

𝑤1
𝑖𝑛𝑝𝑢𝑡

𝑤2
𝑖𝑛𝑝𝑢𝑡

⋮

𝑤
𝑗
𝑖𝑛𝑝𝑢𝑡

)

where j is the number of

inputs. 𝑓𝑛𝑒𝑡 is the neuron activation function. b is the bias.

The NARX neural network will remember n previous inputs and outputs to predict the

next output. The network will find out the time delay from the training data. It will select the

correct inputs by tuning the weights. In case, the weight is negative that means it will cancel

the respective input which has no impact on the output. The architecture of this NARX neural

network is called feedforward parallel architecture, where the output of the network is fed as

input. The block diagram that illustrates the network is shown in Figure 9-2

Figure 9-2 Parallel architecture NARX neural network with tapped time delay line.

The equation (10-3) has no error term which create some error in the output of the

model. The predicted output goes as input for the next prediction that will propagate the error

with time. In order to reduce this error, the output of the real process should be connected to

the NARX model as input instead of prediction output.

This NARX neural network model architecture is called series parallel architecture.

The diagram of it is shown in the Figure 9-3.

 NARX feedback neural network

52

Figure 9-3 Parallel series architecture NARX neural network with tapped time delay line. Y(t) is predicted

output. Ym(t) is measured output from process.

9.2 NARX neural network simulation

The data set that was used for training the NARX network was generated by the

simulator, and it contains three inputs and one output. The inputs are PIX, PAX, POL chemical

materials, and the output is the turbidity as shown in Figure 9. The time delay line is [1 min]

for PIX, [3 min] for PAX, and [6 min] for POL.

Figure 9 NARX neural network training data set from simulator model. The top figure is the response with time,

Y-axis is the turbidity of the water as -FTU, x-axis is a time in a minute. The bottom figure is the inputs with

time, Y-axis is the PIX, PAX, POL materials as a percentage, x-axis is a time in a minute. The time delay line is

[1 min] for PIX, [3 min] for PAX, and [6 min] for POL

The NARX model is trained by MATLAB with the data that shown in Figure 9. The

NARX has 10 hidden layers and 7-time delay line. The optimizer is Levenberg–Marquardt.

The NARX model is trained by 850 sample from the real process. 70 % of data set for training,

15% for validation, and 15% for testing.

 NARX feedback neural network

53

In order to see how the trained model behaves, the NARX model and simulator fed with

different inputs which has not been used in training. The trained model is built as a black box

and connected to the inputs from Simulator’s data. The NARX model is used as parallel

architecture and parallel series architecture as shown in Figure 9-4. The process here is the

simulator.

Figure 9-4 NARX ANN model in parallel with process. Both architectures are included parallel and parallel

series (MATLAB Simulink).

9.3 MATLAB Simulation Results

The performance of the training is shown in the best validation is 7.6 × 10−5 at

epoch 126. Mean Square Error (MSE) is the average squared difference between model

output and target data. The response of the model, and target data Figure 9-6

 NARX feedback neural network

54

Figure 9-5 Validation performance for NARX ANN simulation, MSE of the training data with Epoches.

Figure 9-6 The response of the trained model and target data for NARX ANN simulation.

 NARX feedback neural network

55

The MSE and Correlation for the training and validation and testing are included in Table 9-1

Table 9-1 MSE and Correlation for NARX ANN model simulation.

 Target values MSE R

Training 595 2.4 × 10−9 0.99

Validation 128 7.6 × 10−5 0.997

Testing 128 1.14 × 10−4 0.957

The NARX ANN model feeds with new data generated from the simulator, the inputs data

and correspond output from the simulator and NARX model are shown in Figure 9-7.

Figure 9-7 NARX ANN model and simulator inputs, y-axis is the percentage of chemical material pol, pix, pax,

x-axis is the time in a minute.

 NARX feedback neural network

56

Figure 9-8 NARX model and simulator output, y-axis is turbidity [FTU], x-axis is the time in a minute, from 0

to 500 minutes the architecture is parallel series, and after 500 the architecture is changed to parallel.

9.4 Discussion

The purpose of using simulator to train and test the NARX model is to make sure that the

NARX is working properly with time delay. The time delay and response of the simulator is

known and can be manipulated easily. In this experiment seven tapped time delay line is used

because we already know that maximum delay is 6 min.

The real process’s model is unknown, therefore, the NARX simulation is important to

check the model with known model. As shown in Figure 9-8 the NARX model is fit the

simulator and it is working properly for both architectures.

 Real process model development

57

10 Real process model development
A supervised method in Artificial neural networks and machine learning is depending on

the training data set. The quality of the model depends on the data set. If the data set does not

have enough information will provide a poor performance of the trained model. It is important

to select the training data carefully and avoid overfitting and underfitting. Underfitting means

the model is not generalized. Overfitting means the ANN model trains noise data which will

impact the performance of the model [21] [22] [23]. As shown in Figure 10-1.

Figure 10-1 . Overfitting, underfitting, and optimum fitting of ANN model

10.1 Experimental design

Chemical dosing process is a multi-variate process, which means there are many inputs

influence the output.

The purpose of the experiment.

The purpose of experimental design are [10]:

• To know how many experiments are needed to get the information.

• To develop the model of the system.

• To know individual effect of the input.

• To find out which inputs has significant impact to the output.

• The structure of the experiments.

The experiments can perform by applying specific inputs and measure the outputs. The

experiment data should have both inputs and outputs as shown in Figure 10-2.

 Real process model development

58

Figure 10-2 Experiment block diagram.

The suggestion of full factorial design of the experiments are indicated in Table 10-1

Table 10-1 The full factorial design experiment suggestion. Zero means no change and one mean add change.

the time delay should be taken in account.

Inflow PIX PAX POL Response

0 0 0 0 1

0 0 0 1 2

0 0 1 0 3

0 0 1 1 4

0 1 0 0 5

0 1 0 1 6

0 1 1 0 7

0 1 1 1 8

1 0 0 0 9

1 0 0 1 10

1 0 1 0 11

1 0 1 1 12

1 1 0 0 13

1 1 0 1 14

 Real process model development

59

1 1 1 0 15

1 1 1 1 16

If there is no reaction between the inputs chemical materials PIX, PAX, POL. The full factorial

design experiments table can be reduced to the Table 10-2.

Table 10-2 The reduced form of full factorial design experiment suggestion. Zero means no change and one

mean add change. the time delay should be taken in account.

Inflow PIX

0 0

0 1

1 0

1 1

Inflow PAX

0 0

0 1

1 0

1 1

Inflow POL

0 0

0 1

1 0

1 1

10.2 Scaling (Normalization)

Scaling is a method that used to normalize the data. The purpose of that to make

changing range between 0 and 1. Min-max normalization is used in this thesis. The

normalization equation is (10-1) [23].

 Real process model development

60

𝑥𝑛𝑜𝑟𝑚 =
𝑥−min (𝑥)

max(𝑥)−min (𝑥)
 (10-1)

10.3 Filtering

The noise impacts the model error. The noise can be reduced by filtering the data. The

high frequency terms should be removed from the data. That can be done by passing the data

into a low pass filter.

Low pass filter equation is (10-2)

𝑦𝑘+1 = 𝑦𝑘 +
𝑑𝑡

𝑇𝑐
(𝐾 ∗ 𝑥𝑘 − 𝑦𝑘) (10-2)

𝑑𝑡 time step. 𝑇𝑐 time constant, x filter input, y filter output, K is the gain.

10.4 Method

MATLAB software and Python script are used to create the NARX neural network,

prepare the data set, train, and test the network and model the process. MATLAB M-file is

used for preparing the data, MATLAB nnstart for creating, and training NARX neural

network, MATLAB Simulink for modeling. The data set was acquired from Veas.

Training, testing data is prepared by MATLAB:

 Reading the data from CSV file

Data=readmatrix('data.csv');

Normalize the data:

function y=Norm(x)

 for k =1:length(x)

 y(k)=(x(k)-min(x))/(max(x)-min(x));

 end

end

Filter the data:

function y_f = Filter(x)

y_k=x(1);

y_f=[];

Kc=1;

Tc=40;% time constant

 Real process model development

61

ts=10; % time step

 for k =2:length(x)

 dy_dt=(Kc*x(k)-y_k)/Tc;

 y_k=y_k+dy_dt*ts;

 y_f=[y_f;y_k];

 end

end

Save the data:

csvwrite('Dataset.csv',DataSet);

10.4.1 Create, Train, Test, Evaluate the neural network.

The data is normalized, so the maximum value is 1 and minimum value is 0. To avoid

large number in the neural network, the ReLU activation function can be good choice.

The network correlation and mean squared error are important to evaluate the network.

If the correlation is low that the performance of the network is poor, and the neural network

output has poor performance. The evaluation can be done according to correlation and mean

squared error.

Training the NARX network by MATLAB can be performed by two ways: from nnstart

tools or M-file.

For M-file

Input_tapped_delay=2;

Output_tapped_delay=2;

Hidden_layers=10;

[X,T] = dataset;

net = narxnet(1: Input_tapped_delay,1: Output_tapped_delay, Hidden_layers);

[x,xi,ai,t] = preparets(net,X,{},T);

net = train(net,x,t,xi,ai);

y = net(x,xi,ai);

view(net)

Training the NARX network by Python can be performed as the following:

import pandas as pd

from keras.models import Sequential

 Real process model development

62

from keras.layers import *

load training data

train_df = pd.read_csv("train.csv")

X = train_df.drop('y', axis=1).values

Y = train_df[['y']].values

create neural network model

model = Sequential()

model.add(Dense(3, input_dim=6, activation='linear'))

model.add(Dense(50, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss="mean_squared_error", optimizer="adam")

model.fit(X,Y,batch_size=32,epochs=200,verbose=1)

10.4.2 Trained NARX model in the real process

Figure 9-4 is used for real process as well as in simulation.

Two step functions are used to select the NARX architecture. The data set comes from

real process.

Using the model in Python:

train_df = pd.read_csv("test.csv")

X3 = train_df.drop('y', axis=1).values

Y3 = train_df[['y']].values

t_plot_array = np.linspace(0,len(Y3),len(Y3))

yNN_plot_array = np.zeros(len(Y3))

y_k=X3[0,5]

for k in range(1,2000):

 if k<1000:

 y_k=Y3[k-1] # parallel series architecture

 NN_input=np.vstack((X3[k,0],X3[k,1],X3[k,2],X3[k,3],X3[k,4],y_k)).T

 Real process model development

63

 yNN_plot_array[k] = model.predict(NN_input)

 y_k = yNN_plot_array[k] # parallel architecture

10.5 Results

MATLAB and Python data set which used to train and test the NARX ANN model

are same. Training Set for MISO is shown in Figure 10-3 and Figure 10-4. Training set for

MIMO system is shown Figure 10-5, Figure 10-6 and Figure 10-7.

The level of PH data in Figure 10-3, ALKALINITY(before Gritchamber) data in

Figure 10-3 and ALKALINITY(after Gritchamber) target data in Figure 10-7 have no

information, it will have no impact on ANN trained model. ANN model cannot be trained by

this kind of data. it leads to underfitting.

 Real process model development

64

Figure 10-3 Training inputs data set for MISO system, the inputs are PIX, PAX, POL, Inflow, Level of PH,

Temperature. The values are normalized where y-axis is the percentage and x-axis are the step number, the time

between steps is 10 minutes.

 Real process model development

65

Figure 10-4 Target data set for MISO system for training. Target is turbidity. The values are normalized where

y-axis is the percentage and x-axis are the step number, the time between steps is 10 minutes.

Figure 10-5 Training dataset for MIMO system, the inputs are Inflow, Level of PH, Temperature. The values are

normalized where y-axis is the percentage and x-axis are the step number, the time between steps is 10 minutes.

 Real process model development

66

Figure 10-6 Training data set, input data for MIMO system, the inputs are PIX,PAX, POL, SS(before

Gritchamber), PHOSPHATE(before Gritchamber), ALKALINITY(before Gritchamber) The values are

normalized where y-axis is the percentage and x-axis are the step number, the time between steps is 10 minutes.

 Real process model development

67

Figure 10-7 Target set data for MIMO system training, the target is turbidity, SS(after Gritchamber),

PHOSPHATE(after Gritchamber), ALKALINITY(after Gritchamber)

10.5.1 MATLAB Results

The NARX ANN model is trained by 20000 sample from the real process. 70 % of data

set for training, 15% for validation, and 15% for testing. The optimizer is Levenberg–

Marquardt optimizer. The neural network output and process output is almost similar. As

shown in Figure 10-8. Ten hidden layers and one tapped time delay are used to form the

network.

The response plot in Figure 10-8 shows the target data, ANN model response due to

training, validation, and testing data. Error plot is the difference between target data and the

model output. The histogram error plot in Figure 10-9 shows that the error near to zero at point

0.0047 most results located on this line. Figure 10-10 shows the best validation and mean

squared error performance which exist in 68 epochs. The correlation plot between trained

model and training, validation, testing data are shown in Figure 10-11. The correlation equal

 Real process model development

68

to 0.9979 for training, 0.9979 for validation, 0.9979 for test. The correlation means how the

model is fitting the data, as shown in Figure 10-11 which is more than 99%.

Figure 10-8 The response of the trained NARX ANN model and target data.

Figure 10-9 Histogram error plot for training NARX ANN for MISO system.

 Real process model development

69

Figure 10-10 Validation performance for MISO system, MSE of the training data with Epoches.

Figure 10-11 Regression correlation for MISO system.

 Real process model development

70

After training process of NARX model, the model evaluation values indicated in

Table 10-3

Table 10-3 MSE and Correlation for NARX ANN model for MISO system.

 Target values MSE R

Training 14000 8.13 × 10−5 0.9979

Validation 3000 7.8 × 10−5 0.99789

Testing 3000 8.3 × 10−5 0.979

2000 sequence samples are used to see the behavior of the trained model. These 2000

samples are different from training samples. The ANN model works in parallel with the process

as showing in Figure 9-4. The inputs are shown in Figure 10-12

The NARX ANN model output and target is shown Figure 10-13 and Figure 10-14. the

NARX model used both architecture parallel series and parallel to compare the results between

two architectures. In NARX parallel architecture, in Figure 10-14, the initial values are

incorrect, therefore, the prediction is incorrect.

 Real process model development

71

Figure 10-12 NARX ANN model inputs for MISO system. The inputs are PIX, PAX, POL, Inflow, Level of PH,

Temperature. The values are normalized where y-axis is the percentage and x-axis are the step number, the time

between steps is 10 minutes.

 Real process model development

72

Figure 10-13 NARX ANN model response for MISO. Parallel series NARX architecture from 0 to 500, parallel

NARX ANN architecture from 500 to the end, the inputs are PIX, PAX, POL, Inflow, PH, Temp. x-axis is the

number of samples, the time between samples is 10 minutes. Y-axis is a turbidity FTU. All values are

normalized.

 Real process model development

73

Figure 10-14 NARX ANN model response for MISO with incorrect initial inputs values. Parallel NARX

architecture, the inputs are PIX, PAX, POL, Inflow, PH, Temp. x-axis is the number of samples, the time

between samples is 10 minutes. Y-axis is a turbidity FTU. The data set is normalized.

10.5.2 Python results

The model is trained by 20000 sample, the same samples that used with MATLAB from

the real process. 15000 samples of data set for training, 5000 for testing. The optimizer is Adam

optimizer, The mean squared error is 0.000107 at epoch 200. The network has four layers.

Input layer, first hidden layer has 3 neuron and linear activation function, second hidden layer

has 50 neurons and ReLU activation function, the out layer has one neuron and Sigmoid

activation function. the network has seven inputs and one output. the inputs are PIX, PAX,

POL, Inflow, PH, Temp, and feedback from last output.

The NARX ANN model output and target is shown in Figure 10-15, Figure 10-16, and

Figure 10-17. the NARX model used both architecture parallel series and parallel to compare

the results between two architectures.

 Real process model development

74

Figure 10-15 Python testing set. Red color is the target, blue color is the model output. 5000 data point is used

for testing. Y-axis is a turbidity FTU. X-axis is a time in a minute.

 Real process model development

75

Figure 10-16 NARX ANN model response for MISO in Python. Parallel NARX ANN architecture, the inputs

are PIX, PAX, POL, Inflow, PH, Temp. x-axis is a time in a minute. Y-axis is a turbidity FTU. All values are

normalized.

Figure 10-17 NARX ANN model response for MISO in python. Parallel series NARX architecture from 0 to

10000 minutes, parallel NARX ANN architecture from 10000 minute to the end, the inputs are PIX, PAX, POL,

Inflow, PH, Temp. x-axis is the number of samples, the time between samples is 10 minutes. Y-axis is a

turbidity FTU. All values are normalized.

 Real process model development

76

10.5.3 MIMO system results

20000 data points are used for training validation, and testing the NARX ANN model,

70 % of data set for training, 15% for validation, and 15% for testing. The optimizer is

Levenberg–Marquardt optimizer. The network is formed from 50 hidden layers and one tapped

time delay. The inputs are PIX, PAX, POL, Inflow, Temperature, Level of PH, SS before

Gritchamber, PHOSPHATE (before Gritchamber), ALKALINITY (before Gritchamber)

shown in Figure 10-5, Figure 10-6. The target are TURBIDITY, SS(After Gritchamber),

PHOSPHATE(After Gritchamber), ALKALINITY(After Gritchamber) shown in Figure 10-7.

Figure 10-20 shows the best validation and mean squared error performance which

exist in 140 epochs.The correlation plot between trained model and training, validation,

testing data are shown in Figure 10-21. The correlation equal to 0.999 for training, 0.999 for

validation, 0.999 for test. The correlation means how the model is fit the data, as shown the

model is fitting the data well more than 99%.

The histogram error plot Figure 10-19 shows that the error near to zero at 0.005544 at

this point, and the most results located on this line.

Figure 10-18 The response of the trained NARX ANN MIMO system model and target real data.

 Real process model development

77

Figure 10-19 Histogram error plot for training NARX ANN for MIMO system.

Figure 10-20 Validation performance for MIMO system, MSE of the training data with Epoches.

 Real process model development

78

Figure 10-21 Output of the NARX ANN trained model, validation and testing with target data regression

correlation for MIMO system.

 Real process model development

79

After training process of NARX model, the model evaluation values indicated in

Table 10-4

Table 10-4 MSE and Correlation for NARX ANN model for MIMO system.

 Target values MSE R

Training 70003 5.07 × 10−5 0.9979

Validation 15001 5.96 × 10−5 0.99789

Testing 15001 5.7 × 10−5 0.979

2000 sequence samples are used to see the behavior of the trained model. These 2000

samples are different from training samples. Inputs, Model output and Target are shown in

Figure 10-22 Figure 10-23, Figure 10-24, Figure 10-25, Figure 10-26 and Figure 10-27.

The predicted response of turbidity, SS, phosphate is close to real response. Alkalinity

response has no information, training set of Alkalinity is constant and equal to zero, that means

the prediction of Alkalinity will be always zero because the training set has no information.

Figure 10-22 (a)

 Real process model development

80

Figure 10-22 (b)

Figure 10-22 (c)

 Real process model development

81

Figure 10-22 (d)

Figure 10-22 (a)Testing inputs data set for MIMO system, the inputs are (b)PIX, PAX, POL, (c)Inflow,

Temperature, Level of PH, (d)SS before Gritchamber, PHOSPHATE(before Gritchamber),

ALKALINITY(before Gritchamber). The values are normalized where y-axis is the percentage and x-axis are

the step number, the time between steps is 10 minutes.

Figure 10-23 NARX ANN model response for Turbidity in MIMO system. Parallel series NARX architecture.

X-axis is the number of samples, the time between samples is 10 minutes. Y-axis is a turbidity FTU. All values

are normalized.

 Real process model development

82

Figure 10-24 NARX ANN model response for level of PH in MIMO system. Parallel series NARX architecture.

X-axis is the number of samples, the time between samples is 10 minutes. Y-axis is a level of PH. All values are

normalized.

Figure 10-25 NARX ANN model response for SS in MIMO system. Parallel series NARX architecture. X-axis

is the number of samples, the time between samples is 10 minutes. Y-axis is a SS. All values are normalized.

 Real process model development

83

Figure 10-26 NARX ANN model response for phosphate in MIMO system. Parallel series NARX architecture.

X-axis is the number of samples, the time between samples is 10 minutes. Y-axis is a phosphate. All values are

normalized.

Figure 10-27 NARX ANN model response for Alkalinity in MIMO system. Parallel series NARX architecture.

X-axis is the number of samples, the time between samples is 10 minutes. Y-axis is Alkalinity. All values are

normalized.

 Real process model development

84

10.6 Discussion

The NARX ANN model results correspond to the theoretical studies and simulation. The

model is tested with a process simulator and a real process. The results from both tests show

high performance. The simulator model shows the ability of NARX to handle time delay in the

process. NARX ANN model can represent a time series dynamic model as a black box. The

random operation data series can train the NARX ANN model, but that will not guarantee a

good model, because the training data could have not enough information that will lead to

underfitting. NARX ANN model does not need a time delay estimation, which is needed in

classical dynamic system modelling. It is tricky to have a good time delay estimation which

needs an experiment to do this estimation. NARX ANN model does not need system

identification, it will adapt the process automatically from training data.

The parallel series NARX ANN model gives a high performance because the feedback of

NARX comes from the real process. That will cancel the error propagation. If feedback is

chosen from NARX model the performance will be worse due to error propagation.

NARX neural network with tapped time delay, shows high performance in parallel series

architecture as shown in Figure 10-13, Figure 10-17, Figure 10-23, Figure 10-24, Figure 10-25,

Figure 10-26 and Figure 10-27, but Figure 10-14 shows that the response in the parallel

architecture has noise response. The reason is that the predicted value depends on the previous

input and output, in this case, tapped time delay equal to 1, the next output depends on previous

steps values. During the simulation, when the simulation starts, these initial values are equal to

zero which lead to fault prediction because the initial value in the real process is not zero.

 If the first prediction is not correct, then it will lead next values also being incorrect. When

the system runs within parallel series architecture the initial values will have correct values,

the initial values will get correct values. As shown in Figure 10-13, Figure 10-17 when the

mode is changed from parallel series architecture to parallel architecture, the model

continuously provide a good estimation for a period of future steps with small errors.

The number of inputs in the NARX ANN can be calculated from equation (13-1).

𝑁𝐴𝑅𝑋 𝐴𝑁𝑁 𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑚𝑜𝑑𝑒𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 × 𝑡𝑑 + 𝑚𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 × (𝑡𝑑) (13-1)

where td is the number of tapped time delay.

If the sampling time is small and the tapped time delay is large, the NARX network will

be quite large and computational work will be pretty complex and time-consuming. Therefore,

the system will require large active memories to accomplish the task. If there are three inputs,

one output, tapped time delay equal to 1 second and sampling time is 1 ms, the number of the

tapped time delays will be 1000 as equation (13-2)

𝑡𝑑 =
𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
 (13-2)

 Real process model development

85

The number of inputs will be 3 × 1000 + 1 × (1000) = 4000 by using (13-1)

The computer might not be able to complete the task. To solve this problem, the number of

inputs should be reduced. That can be performed by many ways. The easiest way is increase

sampling time. That will reduce the quality and accuracy of the model. If the order of the

system is known or assumed, the NARX model can be modified to get the lowest variables. If

a system is first order the equation (13-1) can be modified to (13-3)

𝑖𝑛𝑝𝑢𝑡𝑠 × 𝑡𝑑 + 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 (13-3)

The model input is reduced by equation (13-3), it is very advantage to know the maximum

time delay in the process that will determine the number of tapped time delays.

The parallel series architecture and parallel architecture together method is suitable to run

in parallel with process, and it is an effective way to model dynamic system with/ without time

delay. It has ability to give good information about the process even if the connection with

output sensor. The system can predict the output from the model for many time steps with good

accuracy as shown in the results.

The results from NARX that performed by MATLAB shows exactly the same result with

and without time delay. That means the process data has no time delay which is assured from

Python results. Data set shows the sampling time equal to 10 min. If the time delay is lower

than 10 minutes, the data set will not contain this delay because the data has no information

between two samples. As illustrated in the Figure 10-28The system will not notice any delay

 Real process model development

86

Figure 10-28 Effect of time delay in low sampling rate. System input in the lower figure and response in the

higher figure, a time delay is smaller than sampling time, the recoded data will have measurement at time t=k

and t=k+1 and so on.

The NARX neural network has the ability to track time delay changing, the time delay

changes according to one or more input variables, as shown in the simulation results. the

network has the ability to remember previous inputs and feedback output, in order to give

correct prediction output. The network remembers all the time the previous steps equal to a

number of a tapped time delay of all inputs and outputs. The drawback of this tracking is much

time and computer memory consuming and much tough computational work.

The mean squared error is less with MATLAB compared to Python due to the optimizer

algorithm. MATLAB uses Leverberg optimizer, and python code uses Adam optimizer.

Leverberg gives better results (𝑀𝑆𝐸 = 2 × 10−5) at epoch 26 than Adam (𝑀𝑆𝐸 = 10 × 10−5)

at epoch 200. MATLAB converges faster than Python.

The training data set should be selected and checked carefully, the variation of the input

and output data is important. If the input is changing and the output is constant for a long time,

that means the input has no impact on the output. If the input is constant, it is not possible to

know the relation between the input and output. the data which comes from constant input

cannot learn the model because it has no information. The neural network is smart to know if

the data has information or not.

The PH value in the data set that was used for training and testing the MISO model has

zero value that means this variable has no effect on the model. Therefore, experimental design

is important to give information about the influence of each input. By having zero or a constant

 Real process model development

87

value of PH without changing, it is impossible to judge the effect of PH in the neural network

model. If the PH variable is removed from the model the model will still be the same without

any changing.

Even the neural network model is well expressed data set, the experimental design is

needed to have good data set that present the real process. Because the training data will train

the model and it will give experience to the model to work properly in the future. If the trained

model has not had a good experience, the model response will have a large error.

MATLAB software has a powerful tool like Simulink which is used in this process for

dynamic system simulation. The ANN tools give information about errors, MSE, histogram,

validation performance, correlations which are very good for network evaluation. However,

the problem with MATLAB is the activation function of ANN is not controllable for time series

only the number of hidden layers. It is a commercial tool, so everyone cannot afford this

software. On the other hand, Python scrip is free and more flexible with ANN tools (Keras

library). It is possible to use sequential, and functional methods to form ANN. Keras library

does not have Leverberg-Marquardt optimizer which is better than Adam optimizer to deal

with dynamic systems and time series. Python can work with Linux embedded systems; it is

possible to use it in real-time processes and it is not memory consuming like MATLAB. Python

needs a deep understanding of activation functions to how to select suitable activation functions

and layers, while it is not needed in MATLAB.

 Conclusion

88

11 Conclusion

This Project is aimed to model the chemical dosing at a water resource recovery facility,

in order to use this model in the optimization process. Modeling of the real process and

simulation is done, and the proper studies have been covered in this thesis.

The results of real data implementation show that NARX neural network handles time

delay in the time series process in an effective way. It succeeds to model the dynamic system

and shows a high performance of MIMO system modeling.

The model is data-driven if any process does not have enough information to make a

model for optimization, then NARX model which is used in this thesis would be the best

solution. Since this NARX model has given very good performance to predict turbidity of

water and other output such as Alkalinity and phosphate.

 Future work

89

12 Future work
This thesis can be extended by using powerful optimization process like linear quadratic

optimization method and Recurrent neural network optimization for (MPC) to reduce the

usage of chemical materials inputs PIX, PAX, POL.so that the process will be more cost

effective.

The NARX model can be in parallel with real process as NARX parallel series

architecture. The NARX can give good prediction for long period, so the NARX model can

be used in model predictive control to optimize the using of PIX, PAX, POL as shown in

Figure 12-1

Figure 12-1 Model predictive control (MPC) with NARX ANN model in chemical dosing process

 References

90

13 References

[1] J. S.-T. Pettersen, "Control of chemical dosing at a water," master thesis at USN, 2020.

[2] m. w. q. people, Water Resource Recovery Management, 2012.

[3] H.Ødegaard, Fjerning Av Næringstoffer Ved Rensing Av Avlpsvann, Tapir Forlag.

[4] F. A. Haugen, Automatic Control 6th,p97-107, lecture note at USN, 2019.

[5] "wikipedia.org," 2 May 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Artificial_neural_network#cite_note-1.

[6] N. Siddique and H. Adeli, "Computational Intelligence: Synergies of Fuzzy Logic,

Neural Networks and Evolutionary Computing," Oxford, UK, John Wiley & Sons Ltd,

2013, p. Chapter 4.

[7] A. Tealab, "Time series forecasting using artificial neural networks methodologies: A

systematic review," Future Computing and Informatics Journal. 3 (2): 334–340.

doi:10.1016/j.fcij.2018.10.003. ISSN 2314-7288., 2018-12-01.

[8] "Machine learning," 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Machine_learning.

[9] I. Wolfram Research, "LeastSquaresFitting," 1999-2021. [Online]. Available:

https://mathworld.wolfram.com/LeastSquaresFitting.html.

[10] Å. U. E. Kim H. Esbensen, "Multivariate Data Analysis In Practice 5th Edition," in An

Introduction to Multivariate Data Analysis and Experimental Design, Oslo, CAMO

Software As, 1996-2002.

[11] T. P. S. University, "Multiple Linear Regression (MLR) Model & Evaluation," 2018.

[Online]. Available: https://online.stat.psu.edu/stat462/node/132/.

[12] "Mean squared error," 31 July 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Mean_squared_error.

[13] "intuition-of-adam-optimizer," 24 Oct Oct 2020. [Online]. Available:

https://www.geeksforgeeks.org/intuition-of-adam-optimizer/.

[14] J. Brownlee, "adam-optimization-algorithm-for-deep-learning," 3 July 2017 . [Online].

Available: https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-

learning/.

[15] "Stochastic gradient descent," 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Stochastic_gradient_descent.

 References

91

[16] L. Artificial Intelligence Techniques, "algorithms to train a neural network," 2021.

[Online]. Available:

https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network.

[17] "wikipedia," 25 August 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Nonlinear_autoregressive_exogenous_model.

[18] E. DIACONESCU, "The use of NARX Neural Networks to predict Chaotic Time

Series," Electronics, Communications and Computer Science Faculty,University of

Pitesti,Issue 3, Volume 3, , March 2008.

[19] M. Halstensen, "Multivariate Data Analysis course, lecture note," USN, 2020.

[20] J. J. Klemes, P. S. Varbanov and P. Y. Liew, 24th European Symposium on Computer

Aided Process Engineering, p670, Elsevier Science & Technology, 17.07.2014.

[21] M. L. M. P. L. A. Rights, "Machine Learning Mastery," 2021. [Online]. Available:

https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-

learning-algorithms/.

[22] "wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Overfitting.

[23] "Feature scaling," 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Feature_scaling.

[24] "overfitting-vs-underfitting," wiki, 2021. [Online]. Available:

https://docs.paperspace.com/machine-learning/wiki/overfitting-vs-underfitting.

[Accessed 29 sep 2021].

 List of tables and charts

92

14 List of tables and charts
Table 6-1 System parameter that used for simulator

Table 6-2 System parameter of the time delay simulator

Table 9-1 MSE and Correlation for NARX ANN model simulation

Table 10-1 The full factorial design experiment suggestion. Zero means no change and one

mean add change. the time delay should be taken in account.

Table 10-2 The reduced form of full factorial design experiment suggestion. Zero means no

change and one mean add change. the time delay should be taken in account.

Table 10-3 MSE and Correlation for NARX ANN model

Figure 2-1 Dosing diagram.

Figure 3-1 function block diagram of chemical dosing model, PIX, PAX, POL are dosing chemical materials,

𝑑𝑝𝑖𝑥 , 𝑑𝑝𝑎𝑥 , 𝑑𝑝𝑜𝑙 are inputs time delay, 𝜏 is the time constant, k is the gain.

Figure 4-1 Neuron model, x1, x2---xn are inputs, w1, w2 are weights of the inputs, o is output

of the neuron (Perceptron model)

Figure 4-2 Neuron model with bias b term, (𝑥1 𝑥2…𝑥𝑛) are input vector and (𝑤1 𝑤2…𝑤𝑛 w2)

T are weights of the inputs, o is output of the neuron (Perceptron model)

Figure 4-3 Activation functions, Unit step, Linear, Ramp, ReLU and Sigmoid.

Figure 4-4 Feedforward neural network. The input layer has 4 neurons, one hidden layer

which has three neurons, one neuron in the output layer.

Figure 4-5 Recurrent neural network diagram

Figure 4-6 RNN model with time series

Figure 4-7 Levenberg-Marquardt algorithm diagram

Figure 4-8 NARX neural network block diagram 𝑍−1 is the previous value.

Figure 5-1 First order transfer function response.

Figure 5-2 Diagram of first order transfer function by Multilayer perceptron network.

Figure 5-3 Artificial neural network diagram for first order transfer function with one input.

Figure 6-1 Simulator response due to PIX without time delay. The top figure is the response

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom

figure is the input of PIX with time, Y-axis is the PIX materials as percentage, x-axis is a

time in minute.

Figure 6-2 Simulator response due to PAX without time delay. The top figure is the response

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom

figure is the input of PAX with time, Y-axis is the PAX materials as percentage, x-axis is a

time in minute.

Figure 6-3 Simulator response due to POL without time delay. The top figure is the response

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom

figure is the input of POL with time, Y-axis is the POL materials as percentage, x-axis is a

time in minute.

 List of tables and charts

93

Figure 6-4 Simulator response due to POL, PIX, PAX. without time delay. The top figure is

the response with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute.

The bottom figure is the inputs POL, PIX, PAX with time, Y-axis is the POL, PIX, PAX

materials as percentage, x-axis is a time in minute.

Figure 6-5 Delay function diagram, the number of the elements in the delay length equal to

delay/time sample

Figure 6-6 Simulator response due to PIX with time delay. The top figure is the response

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom

figure is the input of PIX with time, Y-axis is the PIX materials as percentage, x-axis is a

time in minute.

Figure 6-7 Simulator response due to PAX with time delay. The top figure is the response

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom

figure is the input of PAX with time, Y-axis is the PAX materials as percentage, x-axis is a

time in minute.

Figure 6-8 Simulator response due to POL with time delay. The top figure is the response

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom

figure is the input of POL with time, Y-axis is the POL materials as percentage, x-axis is a

time in minute

Figure 6-9 Simulator response due to POL, PIX and PAX with time delay. The top figure is

the response with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute.

The bottom figure is the inputs POL, PIX, PAX with time, Y-axis is the POL, PIX, PAX

materials as percentage, x-axis is a time in minute.

Figure 6-10 System response with time delay for SISO system and MISO system, the orange

rectangle represents the amount of delay. Y-axis is the turbidity of the water as FTU, x-axis is

a time in minute. The bottom figure is the inputs with time

Figure 7-1 The sequence diagram of the time delay estimation algorithm for one input signal,

𝜀 is an error term

Figure 7-2 Time delay estimation data set. The input is a step function of POL, PIX, PAX,

the output is a system response due to inputs. The top figure is the response with time, Y-axis

is the turbidity of the water as FTU, x-axis is a time in minutes. The bottom figure is the

inputs POL, PIX, PAX with time, Y-axis is the POL, PIX, PAX materials as percentage, x-

axis is a time in minutes.

Figure 7-3 Time delay estimation for POL input. Red color represents the delay period. The

time delay estimation is calculated by program, and it is equal to 60 minutes.

Figure 7-4 Time delay estimation for Pax input. Red color represents the delay period. The

time delay estimation is calculated by program, and it is equal to 30 minutes.

Figure 7-5 Time delay estimation for Pix input. Red color represents the delay period. The

time delay estimation is calculated by program, and it is equal to 10 minutes.

Figure 8-1 Simulator model development using ANN diagram.

Figure 8-2 The training data set that used to train the neural network model for SISO system.

The top figure is the response with time, Y-axis is the turbidity of the water as -FTU, x-axis is

a time in minute. The bottom figure is the input with time, Y-axis is the POL materials as

percentage, x-axis is a time in a minute.

 List of tables and charts

94

Figure 8-3 SISO system ANN block diagram, the input is POL, and the output is the

turbidity.

Figure 8-4 The response of the SISO system using simulator model and neural network

model. The top figure is the response with time, Y-axis is the turbidity of the water as -FTU,

x-axis is a time in minute. The bottom figure is the input of POL with time, Y-axis is the POL

materials as percentage, x-axis is a time in minute.

Figure 8-5 The training data set that used to train the neural network model for MISO system.

The top figure is the response with time, Y-axis is the turbidity of the water as -FTU, x-axis is

a time in minute. The bottom figure is the inputs with time, Y-axis is the PIX, PAX, POL

materials as percentage, x-axis is a time in minute.

Figure 8-6 The response of the MISO system using simulator model and neural network

model, ANN has 3 layers and 10 neurons in the hidden layer. The top figure is the response

with time, Y-axis is the turbidity of the water as -FTU, x-axis is a time in a minute. The

bottom figure is the input of POL with time, Y-axis is the PIX, PAX, POL materials as a

percentage, x-axis is a time in a minute.

Figure 9-1NARX feedback neural network, TDL is tapped time delay, f is an activation

function, w is a weight, b is a bias.

Figure 9-2 Parallel architecture NARX neural network with tapped time delay line.

Figure 9-3 Parallel series architecture NARX neural network with tapped time delay line.

Y(t) is predicted output. Ym(t) is measured output from process.

Figure 9

Figure 9-4

Figure 9-5 Validation performance for NARX ANN simulation, MSE of the training data

with Epoches.

Figure 9-6 The response of the trained model and target data for NARX ANN simulation

Figure 9-7 NARX ANN model and simulator inputs, y-axis is the percentage of chemical

material pol, pix, pax, x-axis is the time in a minute

Figure 9-8 NARX model and simulator output, y-axis is turbidity [FTU], x-axis is the time in

a minute, from 0 to 500 minutes the architecture is parallel series, and after 500 the

architecture is changed to parallel.

Figure 10-2 Experiment block diagram

Figure 10-3 Training inputs data set for MISO system, the inputs are PIX, PAX, POL, Inflow,

Level of PH, Temperature. The values are normalized where y-axis is the percentage and x-

axis are the step number, the time between steps is 10 minutes.

Figure 10-4 Target data set for MISO system for training. Target is turbidity. The values are

normalized where y-axis is the percentage and x-axis are the step number, the time between

steps is 10 minutes.

Figure 10-5 Training dataset for MIMO system, the inputs are Inflow, Level of PH,

Temperature. The values are normalized where y-axis is the percentage and x-axis are the

step number, the time between steps is 10 minutes.

 List of tables and charts

95

Figure 10-6 Training data set, input data for MIMO system, the inputs are PIX,PAX, POL,

SS(before Gritchamber), PHOSPHATE(before Gritchamber), ALKALINITY(before

Gritchamber) The values are normalized where y-axis is the percentage and x-axis are the

step number, the time between steps is 10 minutes.

Figure 10-7 Target set data for MIMO system training, the target is turbidity, SS(after

Gritchamber), PHOSPHATE(after Gritchamber), ALKALINITY(after Gritchamber)

Figure 10-8 The response of the trained NARX ANN model and target data

Figure 10-9 Histogram error plot for training NARX ANN for MISO system.

Figure 10-10 Validation performance for MISO system, MSE of the training data with

Epoches.

Figure 10-11 Regression correlation for MISO system.

Figure 10-12 NARX ANN model inputs for MISO system. The inputs are PIX, PAX, POL,

Inflow, Level of PH, Temperature. The values are normalized where y-axis is the percentage

and x-axis are the step number, the time between steps is 10 minutes.

Figure 10-13 NARX ANN model response for MISO. Parallel series NARX architecture

from 0 to 500, parallel NARX ANN architecture from 500 to the end, the inputs are PIX,

PAX, POL, Inflow, PH, Temp. x-axis is the number of samples, the time between samples is

10 minutes. Y-axis is a turbidity FTU. All values are normalized.

Figure 10-14 NARX ANN model response for MISO with incorrect initial inputs values.

Parallel NARX architecture, the inputs are PIX, PAX, POL, Inflow, PH, Temp. x-axis is the

number of samples, the time between samples is 10 minutes. Y-axis is a turbidity FTU. The

data set is normalized.

Figure 10-15 Python testing set. Red color is the target, blue color is the model output. 5000

data point is used for testing. Y-axis is a turbidity FTU. X-axis is a time in a minute.

Figure 10-16 NARX ANN model response for MISO in Python. Parallel NARX ANN

architecture, the inputs are PIX, PAX, POL, Inflow, PH, Temp. x-axis is a time in a minute.

Y-axis is a turbidity FTU. All values are normalized.

Figure 10-17 NARX ANN model response for MISO in python. Parallel series NARX

architecture from 0 to 10000 minutes, parallel NARX ANN architecture from 10000 minute

to the end, the inputs are PIX, PAX, POL, Inflow, PH, Temp. x-axis is the number of

samples, the time between samples is 10 minutes. Y-axis is a turbidity FTU. All values are

normalized.

Figure 10-18 The response of the trained NARX ANN MIMO system model and target real

data

Figure 10-19 Histogram error plot for training NARX ANN for MIMO system.

Figure 10-20 Validation performance for MIMO system, MSE of the training data with

Epoches.

Figure 10-21 Output of the NARX ANN trained model, validation and testing with target

data regression correlation for MIMO system

Figure 10-22 (a)Testing inputs data set for MIMO system, the inputs are (b)PIX, PAX, POL,

(c)Inflow, Temperature, Level of PH, (d)SS before Gritchamber, PHOSPHATE(before

 List of tables and charts

96

Gritchamber), ALKALINITY(before Gritchamber). The values are normalized where y-axis

is the percentage and x-axis are the step number, the time between steps is 10 minutes

Figure 10-23 NARX ANN model response for Turbidity in MIMO system. Parallel series

NARX architecture. X-axis is the number of samples, the time between samples is 10

minutes. Y-axis is a turbidity FTU. All values are normalized

Figure 10-24 NARX ANN model response for level of PH in MIMO system. Parallel series

NARX architecture. X-axis is the number of samples, the time between samples is 10

minutes. Y-axis is a level of PH. All values are normalized

Figure 10-25 NARX ANN model response for SS in MIMO system. Parallel series NARX

architecture. X-axis is the number of samples, the time between samples is 10 minutes. Y-

axis is a SS. All values are normalized

Figure 10-26 NARX ANN model response for phosphate in MIMO system. Parallel series

NARX architecture. X-axis is the number of samples, the time between samples is 10

minutes. Y-axis is a phosphate. All values are normalized

Figure 10-27 NARX ANN model response for Alkalinity in MIMO system. Parallel series

NARX architecture. X-axis is the number of samples, the time between samples is 10

minutes. Y-axis is Alkalinity. All values are normalized.

Figure 10-28 Effect of time delay in low sampling rate. System input in the lower figure and

response in the higher figure, a time delay is smaller than sampling time, the recoded data

will have measurement at time t=k and t=k+1 and so on.

Figure 12-1 Model predictive control (MPC) with NARX ANN model in chemical dosing

process

 Appendices

97

Appendices

 Topic Description

 Appendices

98

 Appendices

99

 Appendices

100

Appendix A MISO system simulator

===

============

import matplotlib.pyplot as plt

import numpy as np

import modelparameters

import sim_function

%% Time settings:

ts = 1 # Time-step [min]

t_start = 0.0 # [min]

t_stop = 850.0 # [min]

N_sim = int((t_stop-t_start)/ts) + 1

Solvermode= 'first_order' or second_order

===

============

Solver_mode='first_order'

#%%% SYSTEM INPUT ARRAYS

PIX input

U_pix = np.zeros(N_sim)

U_pix[int(0/ts):] += 1

U_pix[int(100/ts):] += -1

PAX input

U_pax = np.zeros(N_sim)

U_pax[int(200/ts):] += 1

 Appendices

101

U_pax[int(300/ts):] += -1

POL input

U_pol = np.zeros(N_sim)

U_pol[int(402/ts):] += 1

U_pol[int(650/ts):] -= 1

===

============

%% Arrays for plotting:

t_plot_array = np.zeros(N_sim)

ypix_plot_array = np.zeros(N_sim)

ypax_plot_array = np.zeros(N_sim)

ypol_plot_array = np.zeros(N_sim)

yTurb_plot_array = np.zeros(N_sim)

ypix_k=0

ypax_k=0

ypol_k=0

===

============

for second order

y1pix_k=0

y1pax_k=0

y1pol_k=0

y2pix_k=0

y2pax_k=0

y2pol_k=0

 Appendices

102

for k in range(0, N_sim):

 t_k = k*ts

 #First order Euler-forward integration (Euler step):

 if Solver_mode=='first_order':

 ypix_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pix']['K'],

 U_pix[k],modelparameters.turbParrameters['pix']['Tc'],

 ypix_k)

 ypax_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pax']['K'],

 U_pax[k],modelparameters.turbParrameters['pax']['Tc'],

 ypax_k)

 ypol_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pol']['K'],

 U_pol[k],modelparameters.turbParrameters['pol']['Tc'],

 ypol_k)

 if Solver_mode=='second_order':

[y1pix_k,y2pix_k]=sim_function.second_order(ts,modelparameters.turbParrameters['pix']['

K'],

 U_pix[k],modelparameters.turbParrameters['pix']['Tc1'],

 modelparameters.turbParrameters['pix']['Tc2'],

 y1pix_k,y2pix_k)

 ypix_kp1=y2pix_k

y1pax_k,y2pax_k=sim_function.second_order(ts,modelparameters.turbParrameters['pax']['

K'],

 U_pax[k],modelparameters.turbParrameters['pax']['Tc1'],

 modelparameters.turbParrameters['pax']['Tc2'],

 y1pax_k,y2pax_k)

 ypax_kp1=y2pax_k

 Appendices

103

y1pol_k,y2pol_k=sim_function.second_order(ts,modelparameters.turbParrameters['pol']['K

'],

 U_pol[k],modelparameters.turbParrameters['pol']['Tc'],

 modelparameters.turbParrameters['pol']['Tc2'],

 y1pol_k,y2pol_k)

 ypol_kp1=y2pol_k

 # Storage for plotting:

 t_plot_array[k] = t_k

 ypix_plot_array[k] = ypix_k

 ypax_plot_array[k] = ypax_k

 ypol_plot_array[k] = ypol_k

 yTurb_plot_array[k]=1-(ypix_k+ypax_k+ypol_k)

 # Time shift:

 ypix_k = ypix_kp1

 ypax_k = ypax_kp1

 ypol_k = ypol_kp1

 # %% Plotting:

plt.close('all')

plt.figure(1)

plt.subplot(2, 1, 1)

plt.plot(t_plot_array, 1-ypix_plot_array, 'b')

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', linestyle='-', alpha=1)

 Appendices

104

plt.ylim(0.69, 1.1)

plt.xlim(t_start,200)

plt.xlabel('t [min]')

plt.ylabel('[FTU]')

plt.legend(('Response due to PIX',))

plt.subplot(2, 1, 2)

plt.plot(t_plot_array, U_pix, 'g')

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', linestyle='-', alpha=1)

plt.ylim(0, 2)

plt.xlim(t_start, 200)

plt.xlabel('t [min]')

plt.ylabel('[%]')

plt.legend(('PIX input',))

plt.show()

plt.figure(2)

plt.subplot(2, 1, 1)

plt.plot(t_plot_array, 1-ypax_plot_array, 'b')

plt.ylim(0.65, 1.1)

plt.xlim(150, 500)

plt.xlabel('t [s]')

plt.ylabel('[FTU]')

plt.legend(('Response due to PAX',))

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', linestyle='-', alpha=1)

plt.subplot(2, 1, 2)

 Appendices

105

plt.plot(t_plot_array, U_pax, 'g')

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', linestyle='-', alpha=1)

plt.ylim(0, 2)

plt.xlim(150, 500)

plt.xlabel('t [min]')

plt.ylabel('[%]')

plt.legend(('PAX input',))

plt.figure(3)

plt.subplot(2, 1, 1)

plt.plot(t_plot_array,1- ypol_plot_array, 'b')

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', linestyle='-', alpha=1)

plt.ylim(0.96, 1.01)

plt.xlim(300, 850)

plt.xlabel('t [min]')

plt.ylabel('[FTU]')

plt.legend(('Response due to POL',))

plt.subplot(2, 1, 2)

plt.plot(t_plot_array, U_pol, 'g')

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', linestyle='-', alpha=1)

plt.ylim(0, 2)

plt.xlim(300, 850)

 Appendices

106

plt.xlabel('t [min]')

plt.ylabel('[%]')

plt.legend(('POL input',))

#----

plt.figure(4)

plt.subplot(2, 1, 1)

plt.plot(t_plot_array,yTurb_plot_array, 'b')

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', linestyle='-', alpha=1)

plt.ylim(0.6, 1.01)

plt.xlim(0, 850)

plt.xlabel('t [min]')

plt.ylabel('[FTU]')

plt.legend(('System response',))

plt.subplot(2, 1, 2)

plt.plot(t_plot_array, U_pol, 'g--', label='POL')

plt.plot(t_plot_array, U_pix, 'b:', label='pix')

plt.plot(t_plot_array, U_pax, 'r', label='pax')

plt.xlabel('t [sec]')

plt.ylabel('[%]')

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', linestyle='-', alpha=1)

plt.ylim(0, 2)

 Appendices

107

plt.xlim(0, 850)

plt.xlabel('t [min]')

plt.ylabel('[%]')

plt.legend()

plt.figure(5)

fig, ax = plt.subplots()

ax.plot(t_plot_array, U_pol, 'k--', label='POL')

ax.plot(t_plot_array, U_pix, 'k:', label='pix')

ax.plot(t_plot_array, U_pax, 'k', label='pax')

plt.xlabel('t [min]')

plt.ylabel('[%]')

plt.grid(b=True, which='major', color='#666666', linestyle='-')

plt.minorticks_on()

plt.grid(b=True, which='minor', linestyle='-', alpha=1)

legend = ax.legend(loc='upper right', shadow=True, fontsize='x-large')

Put a nicer background color on the legend.

legend.get_frame().set_facecolor('C0')

plt.show()

Simulation time setting:

%% Time settings:

ts = 0.1 # Time-step [min]

t_start = 0.0 # [min]

 Appendices

108

t_stop = 850.0 # [min]

N_sim = int((t_stop-t_start)/ts) + 1

The values of the inputs PIX, PAX, POL are stored in arrays as the following

PIX input

U_pix = np.zeros(N_sim)

U_pix[int(0/ts):] += 1

U_pix[int(100/ts):] += -1

PAX input

U_pax = np.zeros(N_sim)

U_pax[int(200/ts):] += 1

U_pax[int(300/ts):] += -1

POL input

U_pol = np.zeros(N_sim)

U_pol[int(402/ts):] += 1

U_pol[int(650/ts):] -= 1

The simulation loop :

for k in range(0, N_sim):

 t_k = k*ts

 #First order Euler-forward integration (Euler step):

 if Solver_mode=='first_order':

 ypix_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pix']['K'],

 U_pix[k],modelparameters.turbParrameters['pix']['Tc'],

 ypix_k)

ypax_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pax']['K'],

 U_pax[k],modelparameters.turbParrameters['pax']['Tc'],

 Appendices

109

 ypax_k)

 ypol_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pol']['K'],

 U_pol[k],modelparameters.turbParrameters['pol']['Tc'],

 ypol_k)

 if Solver_mode=='second_order':

[y1pix_k,y2pix_k]=sim_function.second_order(ts,modelparameters.turbParrameters['pix']['

K'],

 U_pix[k],modelparameters.turbParrameters['pix']['Tc1'],

 modelparameters.turbParrameters['pix']['Tc2'],

 y1pix_k,y2pix_k)

 ypix_kp1=y2pix_k

y1pax_k,y2pax_k=sim_function.second_order(ts,modelparameters.turbParrameters['pax']['

K'],

 U_pax[k],modelparameters.turbParrameters['pax']['Tc1'],

 modelparameters.turbParrameters['pax']['Tc2'],

 y1pax_k,y2pax_k)

 ypax_kp1=y2pax_k

y1pol_k,y2pol_k=sim_function.second_order(ts,modelparameters.turbParrameters['pol']['K

'],

 U_pol[k],modelparameters.turbParrameters['pol']['Tc'],

 modelparameters.turbParrameters['pol']['Tc2'],

 y1pol_k,y2pol_k)

 ypol_kp1=y2pol_k

 # Storage for plotting:

 t_plot_array[k] = t_k

 ypix_plot_array[k] = ypix_k

 ypax_plot_array[k] = ypax_k

 Appendices

110

 ypol_plot_array[k] = ypol_k

 yTurb_plot_array[k]=1-(ypix_k+ypax_k+ypol_k)

 # Time shift:

 ypix_k = ypix_kp1

 ypax_k = ypax_kp1

 ypol_k = ypol_kp1

 Appendices

111

Appendix B Time delay estimation code

import numpy as np

import pandas as pd

%% Time settings:

ts=1

t_start = 0.0 # [min]

t_stop = 850 # [min]

#"--"

load training data

train_df = pd.read_csv("xtrain_data.csv")

u1=train_df[['U_pax']].values

train_df = pd.read_csv("ytrain_data.csv")

y=train_df[['TURB']].values

t_plot_array = np.linspace(t_start,t_stop,len(y))

delay= np.zeros(len(y))

delay_count=0

Condition_u=0

eps_u=0.1 # noise margin rang

eps_y=0.000099# noise margin rang

for k in range(0, len(y)-5):

 if (y[k+1]>=y[k]-eps_y and y[k+1]<=y[k]+eps_y):# Condition_y

 if (u1[k+1]<u1[k]-eps_u or u1[k+1]>u1[k]+eps_u):#Condition_u

 Condition_u=1

 if Condition_u==1:

 Appendices

112

 delay[k]=1

 delay_count+=1

 #print (k)

 else:

 Condition_u=0

print ("time delay=")

print ((delay_count*ts))

 Appendices

113

Appendix A Training ANN model

import numpy as np

import pandas as pd

from keras.models import Sequential

from keras.layers import *

load training data

train_df = pd.read_csv("train_data.csv")

X1 = train_df.drop('y', axis=1).values

Y1 = train_df[['y']].values

create neural network model

model = Sequential()

model.add(Dense(3, input_dim=4, activation='linear'))

model.add(Dense(10, activation='linear'))

model.add(Dense(1, activation='linear'))

model.compile(loss="mean_squared_error", optimizer="adam")

train the model

model.fit(X1,Y1,batch_size=32,epochs=200,verbose=1)

#model.fit(X1,Y1,batch_size=10,epochs=2000,verbose=1)

Save the model to hard drive

model.save('model.h5')

test_df = pd.read_csv("train_data.csv")

X2 = test_df.drop('y', axis=1).values

Y2 = test_df[['y']].values

test the model

mse = model.evaluate(X2,Y2, verbose=1)

print('Mean Squared Error: ', mse)

