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Summary:  

        The focus here in this master thesis is developing a smart artificial neural network 

to model wastewater dosing. In order to use this model in the optimization process to 

optimize using chemical dosing materials. The thesis gives the necessary introduction to 

modeling dynamic systems, machine learning, and neural network. Then the dynamic 

system is modeled in a classical way, as first-order and second-order transfer function 

without and with time delay. Afterward, time delay estimation is developed and tested 

with the simulator.  

        Machine learning and artificial intelligence neural network (ANN) of the dynamic 

system is derived from the mathematical model of the dynamic system. The ANN is 

implemented by using the data from the simulator. The ANN result is compared with the 

result from the simulator and shows a high performance of the ANN model. 

        The ANN is implemented in a real process in different methods and software. The 

implementation has been performed as a multi-input single-output system and multi-

input multi outputs system. The difference between methods is discussed. 

        NARX neural network model gives high performance and good accuracy in a 

dynamic system. It can deal with time series and handle time delays automatically.  
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Nomenclature 
WRRF Water resource recovery facility. 

FTU Formazin Turbidity Unit. 

SISO Single input single output. 

MISO Multi input single output. 

MIMO Multi input multi output. 

NARX Nonlinear autoregressive exogenous. 

ANN Artificial neural network. 

RNN recurrent neural network. 

MPC Model predictive control. 

SS Suspended solids. 

PIX iron chloride sulfate 

PAX poly aluminum chloride 

POL polymer 
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1 Introduction 
Veas is a company which takes care of treating a wastewater in Norway. It is located in 

Slemmestad. The treatment is divided into three different parts, Mechanical, biological and 

chemical treatment [1].  

Wastewater is the byproduct of many uses in the households (showering, laundry, ..etc. ), 

industry, commercial enterprises and other. After the water has been used, it goes to the 

wastewater stream and flow to the WRRF [2].  

Wastewater treatment is needed to remove the wastewater pollutants to take care of the 

public health and protect environment. Some of materials in the wastewater can kill fish in the 

lake and affect public health directly or indirectly [2].  

The advent of artificial neural network, machine learning, Internet of things (IOT), Cloud 

computing are revolution that remove many professional approaches their work. These new 

technologies offer exciting ways for engineers to face real world challenges. This thesis will 

take advantage of these new technologies to project these technologies into water dosage 

process to see the power of these technologies. The focus will be on modeling of chemical 

water dosage process by using artificial neural networks and machine learning. 

This thesis will go briefly through classical modelling process and chemical materials that 

used in the dosage process. The focus will be on dynamic system. 

1.1 Purpose of study  

VEAS has a current control system to manage the chemical dosage. This system is 

expensive, about (60 million NOK Norwegian kroner) [1], due to the non-optimal system. 

Overdosage leads to overuse of chemical materials and under dosage leads to unsatisfactory 

results. The optimization is required to obtain satisfactory results and minimum usage of 

chemical materials. The operation cost of the current control system can be reduced by 

optimizing the use of chemical materials and choose the dosage of chemical materials 

optimally.  

In order to get the lowest turbidity, the highest percentage of the same materials as 

(phosphate and alkalinity materials) in the system output, the real model (very close to real) is 

needed to know the exact behavior of the system regarding inputs and outputs. This model will 

be developed to utilize in a control system. The chemical reaction is not interested in this study, 

but the most important thing that to know the effect of the input on the output. Therefore, the 

system will be modeled as a gray or black box, and this study will be performed in terms of a 

control system. 

This model should be smart enough to track the variation of the parameters in order to 

let the control system take the suitable response at a suitable time. Maybe the artificial neural 

network is a good choice to represent the current system.  

As known, the chemical reactions take time to respond and form the final results and 

this time is varied according to many factors like flow rate  which increase the complexity of 

the system. There are many variables that manipulate the system and influence the results, so 

the case here multivariate system. Multi-inputs and multi-outputs. 
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2 System description  
The wastewater comes to the treatment from different sources. It is treated in several 

stages. The wastewater is pumped to a chemical process chamber where chemical materials are 

added to clean the wastewater, then the treated water goes out of the chemical chamber to the 

next stage as shown in Figure 2-1. [1] 

 

Figure 2-1 Dosing diagram 

The chemical materials used for treating are coagulation chemicals and polymer. The 

coagulation chemicals are PIX 318 iron chloride sulfate and PAX XL61 poly aluminum 

chloride are used to precipitate saluted phosphate in the wastewater [1]. 

Polymer is important for the formation of flocs. The PIX, PAX, and POL materials react 

with wastewater and reduce the turbidity of the water as well as influence the alkalinity and 

phosphate materials. After analyzing the system inputs and outputs, it seems a dynamic system 

with some delay. The dynamic system can be presented as a first or a second-order transfer 

function with time delay. Using more than one type of material at the same time to reduce the 

turbidity can be led to a new reaction which is different from each material individually. The 

turbidity measures how much the water is clean. The turbidity sensor measures the light 

intensity that passes through the water [1]. 

2.1 System variables 

Veas has an internal document that describes all important variables. This document is 

not constant, and it is modifying due to different situations of operation [1]. The most important 

variables are: 
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Phosphorus: these values should be maximized 0.5 mgP/l 

Alkalinity: these values should be maximized. The minimum value is 1.5 mmol/l 

, [3]. The Pia Ryrfors experiments said that the values can go until 0.3 mmol/l [1] 

Turbidity: 6 FTU, The turbidity should be as low as possible, there are arguments about the 

value of turbidity some of them said 15 FTU is fine but the issue here is the cost of dosing. [1] 

PIX, PAX, POL: are controllable inputs, it is used for the dosage process. PIX materials interact 

with alkalinity and phosphate more than PAX, so using PIX decreases the alkalinity and 

precipitates more phosphate in the wastewater. That means PIX can be used just when the 

concentration of alkalinity and phosphate are high [1].  

Suspended solids (SS): refers to the number of particular solids in the water. This variable 

affects the water turbidity. The particular solids are taken out of the water by sedimentation. 

Temperature sensor: gives information about water temperature, which could affect the 

chemical reactions. 

The level of water’s PH should not change. Alkalinity refers to the ability to maintain the level 

of PH in water. PH value can change after treating water with acid or base solution.  

The water inflow plays a significant role in the dosage process and manipulates the dynamic 

system of dosage. The inflow has the most impact on system time delay. The reaction time is 

related much to how much water is entering the dosage process. The power of chemical mixing 

is affected by water flow as well [1].  
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3 Modelling of the System 
The chemical dosing of the water process seems a dynamic slow and stable process 

with time delay. This kind of system can be modeled as a first or second-order transfer function. 

[1]. To simplify the system, each input will model as first order transfer function as single input 

single output SISO. After that, the transfer functions of the inputs will be combined to give the 

final response of the system. The inputs are PIX. POL.PAX. 

The form of the transfer function H(s) for input U and output y is shown in the equation 

(3-1) [4] [1] 

𝐻(𝑠) =
𝑘

𝜏𝑠+1
𝑒𝜃𝑆    (3-1) 

Where k is the gain of transfer function and 𝜏 is the time constant. 𝜃 is a time delay. 

Transfer function concept is applied for each of PIX, PAX, POL. The output of the 

transfer function for each input can be added to each other since the turbidity is affected by 

each input. In this case, the coupling between inputs is not considering. In other words, there 

is no chemical reaction between PIX, PAX, POL. Each input has an independent effect on the 

output. By considering the previous assumption, the block diagram of the system can be 

modeled as Figure 3-1. 

 

Figure 3-1 function block diagram of chemical dosing model, PIX, PAX, POL are dosing chemical materials, 

𝑑𝑝𝑖𝑥 , 𝑑𝑝𝑎𝑥 , 𝑑𝑝𝑜𝑙 are inputs time delay, 𝜏 is the time constant, k is the gain. 

The system model in Figure 3-1 is influenced by many parameters like 

temperature and inflow…etc. some unknown parameters are added to the system in 

the other block. The time delay is not constant, and it is manipulated by other 

variables.    
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4 Artificial intelligence modelling  

4.1 Artificial neural networks (ANNs) 

ANNs are computational programs or systems inspired by neural networks of humans 

and animals. It is based on a collection of nodes called neurons that are connected to each other. 

Inputs and outputs in a specific way as biological brain. Each neuron receives data and 

transmits data after some processing. Receiving and transmitting can be to the neurons, input, 

or output. [5] [6] 

4.1.1 Artificial Neuron Model 

The neuron is the basic unit, which receives one or more inputs and processes them to 

produce the output. As shown in Figure 4-1 

 

Figure 4-1 Neuron model, x1, x2---xn are inputs, w1, w2 are weights of the inputs, o is output of the neuron 

(Perceptron model) 

The mathematical model of the neuron represents how the neuron calculate the output. 

Each input will be multiplied by weight which determined how this input influence the output. 

the mathematical model of neuron can be described as (4-1) 

𝑛𝑒𝑡 = 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛  (4-1) 

If the input has vector form (𝑥1 𝑥2…𝑥𝑛) and weights (𝑤1 𝑤2…𝑤𝑛 w2)
 T . The neuron has also 

bias as input which represent the shift of the output, the bias plays a significant role for some 

neuron, so it is important to add it separately as Figure 4-2 
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Figure 4-2 Neuron model with bias b term, (𝑥1 𝑥2…𝑥𝑛) are input vector and (𝑤1 𝑤2…𝑤𝑛 w2) T are weights of 

the inputs, o is output of the neuron (Perceptron model) 

It is necessary to include a nonlinear activation function in order to allow varying inputs 

conditions that determine the level of amplification. Nonlinear activation function can prevent 

driving the output to out of allowed limits. [6] 

4.1.2 Activation functions 

The common type of activation functions that are used in neural networks is a step 

function, Linear function, ramp function, sigmoid function, tansigmoid function. These 

functions are shown in Figure 4-3 the selecting of the activation functions depends on the 

application. 

Linear function: the output of this function has a linear relationship with the input, the 

output is the input multiply by a constant factor as equation (2). It can be used to show the total 

output [6] 

𝑓(𝑥) = 𝑘. 𝑥  (4-2) 

𝑘  is constant 

Step function: has two output states or limits +1 or -1 according to the input value equation 

(4-3) . It suits classification problems 

𝑦 = 𝑓(𝑥) = {
+1 𝑤ℎ𝑒𝑛 𝑥 > 0
−1 𝑤ℎ𝑒𝑛 𝑥 < 0

   (4-3) 
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Figure 4-3 Activation functions, Unit step, Linear, Ramp, ReLU and Sigmoid. 

Ramp function: The output is a combination of a linear function and a step function. It is 

described as (4-5) [6] 
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𝑦 = 𝑓(𝑥) = {
max                                 𝑤ℎ𝑒𝑛 𝑥 > 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡
𝑘. 𝑥         𝑤ℎ𝑒𝑛 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 > 𝑥 > 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡
min                                   𝑤ℎ𝑒𝑛 𝑥 < 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 

 

 

(4-5) 

Sigmoid and hyperbolic tangent functions: these two functions are widely used in neural 

networks. The sigmoid function has special properties which are nonlinearity properties and 

derivative properties as shown in equation (4-6) and (4-7) [6] 

𝑆(𝑥) =
1

1+𝑒−𝑥
= 1 − 𝑆(−𝑥)  (4-6) 

 

𝑑(𝑆(𝑥))

𝑑𝑥
= 𝑆(𝑥)(1 − 𝑆(𝑥))  (4-7) 

Tansigmoid function equation (4-8) 

𝑦(𝑥) =
1−𝑒−𝑥

1+𝑒−𝑥
  (4-8) 

ReLU (Rectified linear unit) function equation (4-9). it is used when the output is only 

positive 

𝑦(𝑥) = {
𝑥 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

  
(4-9) 

4.2 Artificial neural network architecture  

ANN architecture is formed by at least one layer. The way of connecting neurons 

produces two basic types of ANN architecture. They are Feedforward ANN and Recurrent or 

Feedback ANN [6]. 

4.2.1 Feedforward ANN  

In this type of ANN, the connection of neurons has one direction just forward 

connectivity. Figure 4-4 illustrate this kind of ANN [6] 
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Figure 4-4 Feedforward neural network. The input layer has 4 neurons, one hidden layer which has three 

neurons, one neuron in the output layer. 

The input vector 𝑥 = (

𝑥1
𝑥2
⋮
𝑥𝑛

) and the weights for each input formed as a matrix                       

𝑤 = [

𝑤11 ⋯ 𝑤1𝑚
⋮ ⋱ ⋮
𝑤𝑛1 ⋯ 𝑤𝑛𝑚

] ,the bias vector 𝑏 = (

𝑏1
𝑏2
⋮
𝑏𝑛

) 

 The output vector (4-10)  

𝑦 = (

𝑦1
𝑦2
⋮
𝑦𝑛

) = 𝑓(𝑤. 𝑥 + 𝑏)  

(4-10) 

The method of connection between layers and neurons in feedforward ANN is 

determined by the application which can classify the feedforward ANN into many types like 

Multilayer perceptron network, Radial basis function networks, generalized regression neural 

networks, Probabilistic neural networks, Belief networks, Hamming networks, and Stochastic 

networks. [6] 

4.2.1.1 Multilayer perceptron network 

MLP has several layers of neurons each layer has a weight matrix, a bias vector, and an 

output vector. The output of the first layer represents the input of the second layer. The 

activation function can be chosen for each layer.   
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There are no rules for determining exactly the number of neurons in the layer and the 

number of hidden layers. The hidden layer tries to memorize the input pattern rather than 

learning features of input if the number of neurons of the hidden layer exceeds the number of 

a training pattern.    

4.2.2 Recurrent ANN or feedback ANN 

The neuron has close-loop form. There is feedback from the output of neuron to the input. 

[6]. That represents a sequence of dynamic behavior. RNNs use their internal state as a memory 

for previous value (memory) to process the sequences of inputs series. [7].The RNNs are used 

to take care of series of inputs, so the output depends on the current value and the memory. The 

RNNs diagram illustrated in Figure 4-5 

 

Figure 4-5 Recurrent neural network diagram 

The output of RNN for a discrete time can be describe as (4-11): 

ℎ𝑘+1 = 𝑓(𝑤. ℎ𝑘)  (4-11) 

ℎ𝑘+1 is the output of neuron k, 𝑓 is the activation function of RNN, ℎ𝑘 is the output of the 

previous time step. The sequences of time series RNNs are shown in Figure 4-6 
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Figure 4-6 RNN model with time series 

RNN is widely used and has different applications and different types like, NARX 

neural network, Elman network, Jordan networks.  

4.3 Machine learning  

Machine learning is part of artificial intelligence, which focuses on algorithms that learn 

automatically from experience data. As known training data. The machine learning algorithms 

try to fit the model based on training data in order to predict the output according to the inputs. 

The model uses its experience to predict the output [8].  

The ML approaches are divided into three categories: Supervised learning, 

unsupervised learning, and Reinforcement learning, the approach depends on the nature of 

feedback that is available to learn the model [8]. 

The learning of neural networks is used to optimize the weights and biases in order to 

have the best fit of the model [6]. 

4.3.1 Supervised learning 

Supervised learning is used training data inputs and desired outputs to teach the model.  

Learning algorithm tries to map inputs to output [8] [6]. 

The inputs are applied to neural network inputs and the learning algorithm tune the 

weights and bias in an iterative loop to minimize the difference between the neural network 

and the target data. [6] In this thesis, the case is Supervised learning. The learning data is 

available. 
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4.3.2 Ordinary Least squared fitting.  

 Ordinary Least squared fitting is a method to find the best fit of data set. the best fit 

can be obtained by minimizing the vertical distance from the data set to the regression line [9]. 

The mean value for N sample observation (𝑥1, 𝑥2, … 𝑥𝑛) is defined as (4-15) which gives the 

average value of observations [9]. 

𝑥̅ =
1

𝑁
∑ 𝑥𝑛
𝑁
𝑛=1                (4-15) 

The variance value gives information about how much the data set fluctuates about the 

mean value which can be expressed as (4-16) 

𝜎2 =
1

𝑁
∑ (𝑥𝑛 − 𝑥̅)

2𝑁
𝑛=1   (4-16) 

The standard deviation 𝜎 can be obtained from square root of the variance as (4-17) 

𝜎 = √
1

𝑁
∑ (𝑥𝑛 − 𝑥̅)2
𝑁
𝑛=1   

(4-17) 

Linear model of the SISO system can be presented as (4-18) 

𝑦 = 𝑎𝑥 + 𝑏  (4-18) 

The observations are ((𝑥1, 𝑦1), (𝑥2, 𝑦2),…. (𝑥𝑛, 𝑦𝑛)). The best fit of the model gives the 

smallest error which mean smallest value of variance equation (4-19) 

𝜎2 =
1

𝑁
∑ (𝑦𝑛 − (𝑎𝑥𝑛 + 𝑏))

2𝑁
𝑛=1   (4-19) 

The error that associates with the fitting can be formed as (4-20) 

𝐸(𝑎, 𝑏) =
1

𝑁
∑ (𝑦𝑛 − (𝑎𝑥𝑛 + 𝑏))

2𝑁
𝑛=1   (4-20) 

The function of error has minimum value of error the derivative equal to zero (4-21). 

𝑑𝐸

𝑑𝑎
= 0,

𝑑𝐸

𝑑𝑏
= 0  (4-21) 

The values of a,b which give best fitting obtain from solving (4-21)as equation (4-22) 

(𝑎
𝑏
) = (

∑ 𝑥𝑛
2𝑁

𝑛=1 ∑ 𝑥𝑛
𝑁
𝑛=1

∑ 𝑥𝑛
𝑁
𝑛=1 𝑁

)

−1

(
∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1

∑ 𝑦𝑛
𝑁
𝑛=1

)  
(4-22) 

This method is used commonly for simple linear regression to find best fit line for set of 

statistic data points. 
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4.3.3 Multiple Linear Regression MLR:  

MLR is suitable for the multi-variate systems that have one variable output y and a set 

of independent x variables as input that impact the output. The formulation of x should be full 

mathematical rank (x variables are linearly independent) practically uncorrelated. [10] 

The purpose of MLR is to find a mathematical model that gives a connection between multi-

input independent variables and dependent output variables. MLR is an extension of the OLS 

method, the formulation of the model is [11] (4-23)  

𝑦̂ = 𝐴1𝑥1 + 𝐴2𝑥2 +⋯+ 𝐴𝑝𝑥𝑝 + 𝐴0 + 𝑒  (4-23) 

𝐴𝑝 is coefficient regarding the variable 𝑥𝑝, e is the error, 𝐴0 is the constant coefficient or bias. 

4.3.4 Mean squired error MSE /Loss cost function. 

MSE is a procedure to estimate unsupervised parameters. This method can be used to 

optimize the neural network parameters (weights and biases). The data set from a system that 

has x data as input and y data as output. the same data applies to the ANN model, the model 

gives the prediction of the output 𝑦̂. The loss or cost function can be described as equation (4-

24) [12]. 

𝑐 = (𝑦̂ − 𝑦)2  (4-24) 

The gradient should be calculated in terms of all weights and biases. To do that the 

derivative of cost function is needed in terms of all weights and biases. It is iterative process to 

optimize weights and biases which can be summarized as the following steps [6]: 

• Initialize the step size or learning rate:lr=0.01 

• Initialize the weights and biases randomly: 𝑤1, 𝑤2, 𝑏 = 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑𝑛(3) 
• Calculate 𝑦̂ from the ANN model. 

• Calculate the loss 𝑐 = (𝑦̂ − 𝑦)2 

• Calculate the derivative 
𝑑𝑐

𝑑𝑤1
,
𝑑𝑐

𝑑𝑤2
,
𝑑𝑐

𝑑𝑏
 

• Update weights and biases as the following  

𝑤1 = 𝑤1 −
𝑑𝑐

𝑑𝑤1
. 𝑙𝑟 

𝑤2 = 𝑤2 −
𝑑𝑐

𝑑𝑤2
. 𝑙𝑟 

𝑏 = 𝑏 −
𝑑𝑐

𝑑𝑏
. 𝑙𝑟 

• Go to the next iteration step 3. 
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4.3.5 Adam optimizer 

It is called Adaptive Moment estimation which is an optimization process for gradient 

descent. It is an efficient method for optimizing large parameters which require less memory. 

This method uses a combination of two algorithm gradient descent with momentum and Root 

Mean Square Propagation RMSP [13] [14]. 

Momentum: 

The purpose of the Momentum algorithm is to accelerate the gradient descent by taking 

into account the exponentially weighted average of gradient which allows accelerating moving 

to a minimum. The idea is that the gradient with momentum has two jobs [13] [15]: 

• Remembers the update of the aggregate of gradients 𝑚𝑘 at each iteration. The initial 

value of 𝑚0 = 0. As describes in the equation (4-25) 

• Determines the next update and the previous update of gradient as a linear combination. 

equation (4-26) 

𝑚𝑘 = 𝛽𝑚𝑘−1 + (1 − 𝛽)
𝑑𝐿

𝑑𝑤𝑘
    (4-25) 

𝑤𝑘+1 = 𝑤𝑘 − 𝛼.𝑚𝑘  (4-26) 

Where: 𝑚𝑘 is the aggregate of gradients at time step 𝑘. 𝑤𝑘 is the weight at time step 𝑘.  

L is the loss function, 𝛼 is learning rates. 𝛽 is moving average parameter (constant value 

=0.9) 

Root Mean Square Propagation RMSP 

RMSP is an adaptive learning algorithm to calculate the weight by using the sum of 

squares of past gradients with an exponential moving average. Calculating the weights can be 

performed by using equations (4-30) and (4-31) [13] 

𝜗𝑘 = 𝛽𝜗𝑘−1 + (1 − 𝛽) ∗ (
𝑑𝐿

𝑑𝑤𝑘
)
2

  
(4-30) 

 

𝑤𝑘+1 = 𝑤𝑘 −
𝛼𝑘

√𝜗𝑘+𝜀
∗
𝑑𝐿

𝑑𝑤𝑘
   (4-31) 

Where: 𝛼𝑘 learning rates at time k. 𝜀 = 10−8 small positive number to prevents division by 

zero. 𝜗𝑘 sum of the square of past gradients. 𝛽 is moving average parameter (constant value 

=0.9). L is loss function. 𝑤𝑘 is the weight at time step 𝑘.  

Adam 

The rate of gradient descent is controlled to minimize the oscillation when the weights 

reach the global minimum. The optimizer will take enough step size in order to pass the local 

minima. That will allow reaching the global minimum efficiently. The equations (4-30) and (4-

31) can be written as (4-32) and (4-33) [13] [15]. 
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𝑚𝑘 = 𝛽1𝑚𝑘−1 + (1 − 𝛽1)
𝑑𝐿

𝑑𝑤𝑘
    (4-32) 

𝜗𝑘 = 𝛽2𝜗𝑘−1 + (1 − 𝛽2) ∗ (
𝑑𝐿

𝑑𝑤𝑘
)
2

  
(4-33) 

The initial values of 𝑚0, 𝜗0 = 0  tend to be biased towards zero and the 𝛽1, 𝛽2 tend to 

be 1. The optimizer computes the bias-corrected 𝑚𝑘, 𝜗𝑘  each iteration and controlling the 

weights to reach the global minimum. That can be performed by formula (4-34) [13] 

𝑚𝑘̂ =
𝑚𝑘

1−𝛽1
𝑘  , 𝜗𝑘̂ =

𝜗𝑘

1−𝛽2
𝑘  

(4-34) 

The weight can be updated by using formula (4-35)  

𝑤𝑘+1 = 𝑤𝑘 −𝑚𝑘̂
𝛼𝑘

√𝜗𝑘̂+𝜀

  (4-35) 

 

4.4 Levenberg–Marquardt training algorithm 

This method is designed to work with a loss function. It uses gradient vector and 

Jacobian matrix. The loss function takes the form of a sum of the squared errors as (4-36) [16]. 

𝑓𝑙𝑜𝑠𝑠 = ∑ 𝑒𝑖
2𝑛

𝑖=1   (4-36) 

Where e is error, n number of training samples. 

The Jacobian matrix is (4-37) 

𝐽𝑖,𝑗 =
𝑑𝑒𝑖

𝑑𝑤𝑗
   (4-37) 

W is the weight parameter. For i=1,2,…, n sample and j=1,2,…,m parameter 

The Levenberg-Marquardt algorithm is (4-38): 

𝑤𝑖+1 = 𝑤𝑖 − (𝐽𝑖
𝑇 . 𝐽𝑖 + 𝜆𝑖𝐼)

−1
. (𝑐𝐽𝑖

𝑇 . 𝑒𝑖)  
(4-38) 

𝜆  is the damping factor, I is the identity matrix. i=0,1,…n sample. 

Levenberg-Marquardt algorithm diagram is shown in the Figure 4-7 [16] 
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Figure 4-7 Levenberg-Marquardt algorithm diagram 

4.5 Nonlinear autoregressive exogenous (NARX) model 

NARX uses the current and past values of inputs and outputs series. To get exactly 

predict the model contain an error term related to the knowledge of other terms not available 

at the current value of time series. The NARX model can be written as (4-39) [17]. 

𝑦𝑡 = 𝐹(𝑦𝑡−1, 𝑦𝑡−2, … 𝑦𝑡−𝑛, 𝑢𝑡, 𝑢𝑡−1, … 𝑢𝑡−𝑛) + 𝜀  (4-39) 

𝑦𝑡  is the current value of the output and 𝑦𝑡−1 is the previous value of the output, 𝑢𝑡  is the 

current input and 𝑢𝑡−1 is the previous input. 𝜀  is the error term. The F function is a non-linear 

function, it can be a neural network function or any function [17]. 

4.6 NARX neural network model 

The architecture of the NARX network is proposed to deal with previous values.  

Therefore, it is classified as a recurrent neural network. This kind of neural network is suitable 

to work with time series, which is a powerful method to deal with dynamic systems. The NARX 

model has the ability to process with a long memory component, where the past event has an 

impact on the future [18]. The block diagram of the NARX neural network is shown in Figure 

4-8. 
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Figure 4-8 NARX neural network block diagram 𝑍−1 is the previous value. 

 

The NARX neural network can be implemented as feedforward with embedded 

memory. The embedded memory will be inputs and outputs which presents tapped time delay. 

Leaning NARX neural network is more effective than other neural networks (better gradient 

descent) and it converges faster than another neural network [18]. 

4.7 Neural network performance evaluation 

After training a neural network model, it is important to check the performance of the 

network. Mean squared error MSE gives information about the average squared difference 

between data target and neural network model. Lower value refers to better performance [19]. 

 Regression R values show the correlation between data target and neural network 

model. R=1 means the correlation is 100%. 0 means no correlation at all [19].  

 It is possible to evaluate the performance by running the neural network model in 

parallel with the process to see the neural network model behaves. 
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5 Dynamic system Modelling  

5.1 Using forward Euler and backward 

The response of the chemical dosing system shows a slow, stable process with a time 

delay of the input, the system’s behavior can be presented by first-order transfer function as 

equation (5-1)  [1]. 

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝑘

𝑇𝑐+1
  (5-1) 

Equation (5-1) can be written as (5-2) 

𝑌(𝑠)(𝑇𝑐𝑠 + 1) = 𝑈(𝑠)𝑘    (5-2) 

Move to time domain by inverse Laplace transform (5-3) 

𝑇𝑐𝑦̇(𝑡) + 𝑦(𝑡) = 𝑘. 𝑢(𝑡)   (5-3) 

The equation (5-3) is a continuous-time equation that can be solved in different ways. 

Forward and backward Euler methods can be good approaches to discretize (5-3). equation (5-

4) is forward Euler form and equation (5-5) is backward form [4]. 

𝑦𝑘+1 = 𝑦𝑘 +
𝑑𝑡

𝑇𝑐
(𝐾 ∗ 𝑢𝑘 − 𝑦𝑘)  (5-4) 

 

𝑦𝑘+1 =
𝑘.𝑑𝑡

(𝑇𝑐+𝑑𝑡)
𝑢𝑘 +

𝑇𝑐

𝑇𝑐+𝑑𝑡
𝑦𝑘  (5-5) 

5.2 Using neural network 

Equations (5-4) and (5-5) show that it is possible to predict the next step if the current 

step is known. In order to design ANN to model the system, the current output will be used to 

predict the next step. These tricks can be performed to include time series in ANN Figure 5-1 

and it can be written as (5-6), (5-7). 

𝑦𝑘+1 = 𝑓(𝑢𝑘, 𝑦𝑘) = 𝑦𝑘 +
𝑑𝑡

𝑇𝑐
(𝑘. 𝑢𝑘 − 𝑦𝑘) =

𝑑𝑡

𝑇𝑐
𝑘. 𝑢𝑘 + (1 −

𝑑𝑡

𝑇𝑐
) 𝑦𝑘   (5-6) 

 

𝑦𝑘+1 = 𝑓(𝑢𝑘, 𝑦𝑘) =
𝑘.𝑑𝑡

(𝑇𝑐+𝑑𝑡)
𝑢𝑘 +

𝑇𝑐

𝑇𝑐+𝑑𝑡
𝑦𝑘  (5-7) 

The 𝑇𝑐 term in equations (5-6) and (5-7) is in the denominator, so the 𝑇𝑐 should not be 

zero. This condition is approved in this system.  
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Figure 5-1 First order transfer function response. 

 

The equations (5-6) and (5-7), have two inputs (𝑢𝑘, 𝑦𝑘) and two constants. The constant 

terms are 
𝑑𝑡

𝑇𝑐
𝑘 and (1 −

𝑑𝑡

𝑇𝑐
) in the equation (5-6), and 

𝑘.𝑑𝑡

(𝑇𝑐+𝑑𝑡)
 and 

𝑇𝑐

𝑇𝑐+𝑑𝑡
, these constants can 

presents the weights of the input neuron in the neural network, consequently, these two 

equations can be written in a neuron form in a neural network as shown in the equation (5-8). 

𝑦𝑘+1 = 𝑓(𝑢𝑘 = 𝑥1, 𝑦𝑘 = 𝑥2) = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 , b=0  (5-8) 

Forward and backward Euler equations can be formed as a neuron equation (4-1) as 

illustrated in the equations (5-8). The MIMO dynamic system model can be formed as neural 

network equation (4-10). 

5.3 Using Machine learning  

The Euler equation can be converted into a linear equation. The prediction of the next 

step has a linear form. The inputs will be the current output and current input. It is returned to 

the form of the equation (5-8). The model can be fitted as a linear form. 

5.4 Recurrent neural network 

The recurrent neural network is used to store the current value in internal memory and 

use it to predict the next future value. exactly as shown in the Euler equations.  The value of 

the predicted output relays on the current output and input, the ANN model can be illustrated 

as Figure 5-2 
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Figure 5-2 Diagram of first order transfer function by Multilayer perceptron network. 

The mathematical form of ANN can be described as (5-9) 

𝑦𝑘+1 = 𝐴𝑁𝑁 = 𝑓(𝑢𝑘, 𝑦𝑘)    (5-9) 

𝑢𝑘is the input at time k and 𝑦𝑘 is output at time k. 

The input layer of the network has two variables 𝑦𝑘, 𝑢𝑘. There is no specific rule to 

determine the number of neurons, layers, and activation function. Many layers configurations 

have been tested by sequential network and functional API network. 

Equations (5-6) can be formed as (5-10). 

𝑦𝑘+1 = 𝑓(𝑢𝑘, 𝑦𝑘) = (1 −
𝑑𝑡

𝑇𝑐
) 𝑦𝑘 + 𝑘.

𝑑𝑡

𝑇𝑐
𝑢𝑘 = 𝑤1𝑢𝑘 +𝑤2𝑦𝑘   (5-10) 

Where 𝑤1 = 𝐾.
𝑑𝑡

𝑇𝑐
 , 𝑤2 = (1 −

𝑑𝑡

𝑇𝑐
) 

Equation (5-10) presents one neuron with two input and linear activation functions. The same 

procedure can be performed for (5-7) to get neuron equation as (5-11) 

𝑦𝑘+1 = 𝑓(𝑢𝑘, 𝑦𝑘) =
𝑘.𝑑𝑡

(𝑇𝑐+𝑑𝑡)
𝑢𝑘 +

𝑇𝑐

𝑇𝑐+𝑑𝑡
𝑦𝑘 = 𝑤1𝑢𝑘 + 𝑤2𝑦𝑘  (5-11) 

Where 𝑤1 =
𝑘.𝑑𝑡

(𝑇𝑐+𝑑𝑡)
 , 𝑤2 =

𝑇𝑐

𝑇𝑐+𝑑𝑡
, 𝑤1 𝑎𝑛𝑑 𝑤2  form the weights of the inputs in a neuron 

equation. 

The artificial neural network diagram that presents the system is shown in Figure 5-3. 
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Figure 5-3 Artificial neural network diagram for first order transfer function with one input. 

 

As an example Modeling of the SISO system using linear activation function section can 

be referred.  
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6 Simulator for Chemical dosing System  
The simulator is important to test the model, and its behavior, Applying the control signals 

directly to the process is costly and sometimes, it is dangerous, but no problem for a simulator. 

The simulator for the water dosage process is developed by using first order transfer function.  

The first step is a transfer function of the MISO system without delay and the second step the 

time delay will be included in the process. 

6.1 MISO system simulation without time delay  

The simulator is also used to generate the training data, the parameter of the simulator 

is indicated in Table 6-1. The values of gain and time constant from [1]. 

Table 6-1 System parameter that used for simulator. 

Materials PIX PAX POL 

First order   

Time constant Tc 

[min] 

10  30 20 

Gain k -0.2 -0.3 -0.02 

The simulator is developed by using the forward or backward Euler method to discretize 

the continuous system. 

The equations that are used in the code are included in the forward Euler and backward 

sections. 

The Python code for the transfer function is: 

def forward_euler(ts,Kc,u_k,Tc,y_k): 

    dy_dt=(Kc*u_k-y_k)/Tc     

    return y_k+dy_dt*ts 

Simulator Python code in the Appendix. 

6.1.1 Simulation Results  

The single input and corresponding output as SISO are shown in Figure 6-1 Figure 6-2 

Figure 6-3. The multi-inputs are fed the system and correspond single output is shown in Figure 

6-4. 
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Figure 6-1 Simulator response due to PIX without time delay. The top figure is the response with time, Y-axis is 

the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of PIX with time, Y-

axis is the PIX materials as percentage, x-axis is a time in minute. 

 

Figure 6-2 Simulator response due to PAX without time delay. The top figure is the response with time, Y-axis 

is the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of PAX with time, 

Y-axis is the PAX materials as percentage, x-axis is a time in minute. 
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Figure 6-3 Simulator response due to POL without time delay. The top figure is the response with time, Y-axis 

is the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of POL with time, 

Y-axis is the POL materials as percentage, x-axis is a time in minute. 

 

Figure 6-4 Simulator response due to POL, PIX, PAX. without time delay. The top figure is the response with 

time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the inputs 

POL, PIX, PAX with time, Y-axis is the POL, PIX, PAX materials as percentage, x-axis is a time in minute. 

The step function is applied to each input PIX, PAX, POL to see how each input 

affects the output. 
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6.1.2 Simulation discussion  

The SISO system response in Figure 6-1, Figure 6-2, Figure 6-3, Figure 6-4 show that 

when the step function is applied the output starts to respond to this input and after a time equal 

to approximately 5 times of time constant 𝑡 = 5 ∗ 𝜏 reach to steady state. The system is stable 

and there is no overshoot. The response of PIX is faster than PAX, POL due to a smaller time 

constant of PIX. Time constant represents how much time the system needs to reach the steady 

state. A higher value of time constant leads to slower response. 

POL response has a smaller gain than PIX, PAX. And PAX has a higher gain than PIX 

and POL. Consequently, POL has the lowest impact and PAX has the highest impact. As shown 

in Figure 6-4.  

6.2 MISO system with time delay simulation  

A real process may have a time delay, so it is important to include time delay in the 

simulation.  

The simulator is used to generate the data with time delay, the parameter of the 

simulator is indicated in Table 6-2 the values from [1]. 

Table 6-2 System parameter of the time delay simulator 

Materials PIX PAX POL 

Time constant Tc 

[min] 

10  30 20 

Time delay[min] 10 30 60 

Gain k -0.2 -0.3 -0.02 

6.2.1 Simulation method 

These inputs fed the system with a time delay as indicated in  Table 6-2 

The simulator will handle the time delay as the following [4]:  

• Initial value of the delay. It can be zero. 

• Create an array for delay (delay_array) that has time delay / time sample element  

• Give initial value to delay array 

• System loop 

• Read the input value from the last element 

• Rotate the delay_array one element to the right  

• Set the value of the input to the first element  

 

The delay function diagram is shown in Figure 6-5. The value of the input stored in the 

first element will reach the last element after a time equal to the number of elements in the 
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delay array *time step. When the value reaches the last element, the model will use this value 

as input of the system, and the system will react according to this value [4].  

 

Figure 6-5 Delay function diagram, the number of the elements in the delay length equal to delay/time sample 

6.2.2 Simulation results  

Python language is used to implement the first order transfer function with time delay. 

And the software is Spyder. The system is fed as SISO to check the time delay function. The 

single input and corresponding output as SISO are shown in the Figure 6-6, Figure 6-7, 

Figure 6-8. The multi-inputs are fed the system and correspond single output is shown in the 

Figure 6-9. 
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Figure 6-6  Simulator response due to PIX with time delay. The top figure is the response with time, Y-axis is 

the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of PIX with time, Y-

axis is the PIX materials as percentage, x-axis is a time in minute. 

 

 

Figure 6-7 Simulator response due to PAX with time delay. The top figure is the response with time, Y-axis is 

the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of PAX with time, 

Y-axis is the PAX materials as percentage, x-axis is a time in minute. 
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Figure 6-8 Simulator response due to POL with time delay. The top figure is the response with time, Y-axis is 

the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the input of POL with time, Y-

axis is the POL materials as percentage, x-axis is a time in minute 

 

 

Figure 6-9 Simulator response due to POL, PIX and PAX with time delay. The top figure is the response with 

time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom figure is the inputs 

POL, PIX, PAX with time, Y-axis is the POL, PIX, PAX materials as percentage, x-axis is a time in minute. 
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6.2.3 Simulation discussion  

The Figure 6-6 Figure 6-7Figure 6-8Figure 6-9 show clearly that the response of the 

system is delayed. The figure gives the amount of delay as shown in Figure 6-10, the time delay 

of PIX graphically=10 minutes, time delay from parameters =10 minutes Table 6-2, the same 

procedure applied to the PAX, and POL. The results from graph equal to parameters. That 

mean the time delay of the simulator is working properly.  

  

  

Figure 6-10 System response with time delay for SISO system and MISO system, the orange rectangle 

represents the amount of delay. Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The 

bottom figure is the inputs with time. 
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7 Time delay estimation algorithm  
Time delay estimation is a critical issue in system identification. The time delay 

influences the model as much as the model order. [20] The process with time delay does not 

guarantee a good model. Not correct time delay estimation can lead to a mismatch between the 

model and real process in some systems. Due to the connection between process input-output, 

and model input-output.  

The time delay can be estimated by observing the inputs and output. This method works 

only with step inputs. The estimation can be executed by the following steps: 

• Set all inputs to the constant values  

• Wait until the output of the system to be stable. 

• Give step to the one of the inputs. 

• Count the time until get response in the output to this input. 

• Time delay equals to the time from input step to get change in the output. 

• Verify the result.  

• Repeat the same procedure to the other inputs to calculate time delay to the other 

signals. 

To be sure the result should be verified, when the output starts to change, it will continue 

changing to reach the steady state. If the output changed for just one time step that mean it is 

just a noise, and final value of time delay is not reached yet. It is possible to continue counting 

the time or sent error message to repeat the estimation. 

The sequence diagram of the time delay estimation is shown in Figure 7-1 
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Figure 7-1 The sequence diagram of the time delay estimation algorithm for one input signal, 𝜀 is an error term 

 

     The error term is added to include the noise, the verification loop is needed to be sure the 

changing is continuous for the next 3 steps. when the output starts responding to the changing 

of inputs. The output continues changing until reach the steady state, which required many 

steps much larger than 3 steps. Verifying the results with 3 steps is enough to avoid the error 

due to spike noise. If data has no spikes, the verification part is not needed. 
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7.1 Method 

The time delay estimation is implemented by using Python and the software is Spyder. 

The clean data is needed to do estimation. The data from estimation is provided from Simulator 

for Chemical dosing System section. The data in Figure 6-10 is exported to CSV file.  

Python code for time delay estimation: 

# load training data 

train_df = pd.read_csv("xtrain_data.csv") 

u1=train_df[['U_pax']].values 

train_df = pd.read_csv("ytrain_data.csv")    

y=train_df[['TURB']].values 

delay= np.zeros(len(y)) 

delay_count=0 

Condition_u=0 

eps_u=0.1 # noise margen rang 

eps_y=0.00001# noise margen rang 

for k in range(0, len(y)-5): 

     

    if (y[k+1]>=y[k]-eps_y and y[k+1]<=y[k]+eps_y):# Condition_y 

        if (u1[k+1]<u1[k]-eps_u or u1[k+1]>u1[k]+eps_u):#Condition_u 

            Condition_u=1 

             

        if Condition_u==1: 

            delay[k]=1 

            delay_count+=1 

         

        #print (k) 

    else: 

        Condition_u=0 
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print ("time delay=") 

print (int (delay_count*ts)) 

The data that used in the time delay estimation is generated from the simulator (MISO 

system with time delay simulation). Inputs and output data is plotted in Figure 7-2 

 

Figure 7-2 Time delay estimation data set. The input is a step function of POL, PIX, PAX, the output is a system 

response due to inputs. The top figure is the response with time, Y-axis is the turbidity of the water as FTU, x-

axis is a time in minutes. The bottom figure is the inputs POL, PIX, PAX with time, Y-axis is the POL, PIX, 

PAX materials as percentage, x-axis is a time in minutes. 

7.2 Simulation Results 

The estimation has been performed for each input individually. the length of time is 

plotted with the input signals and the output response signal. The results are shown in Figure 

7-3, Figure 7-4, Figure 7-5 ,the noise margin range for input equal to eps_u=0.1, the noise 

margin range for output equal to eps_y=0.00001. 
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Figure 7-3 Time delay estimation for POL input. Red color represents the delay period. The time delay 

estimation is calculated by program, and it is equal to 60 minutes. 

 

Figure 7-4 Time delay estimation for Pax input. Red color represents the delay period. The time delay 

estimation is calculated by program, and it is equal to 30 minutes. 
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Figure 7-5 Time delay estimation for Pix input. Red color represents the delay period. The time delay estimation 

is calculated by program, and it is equal to 10 minutes. 

7.2.1 Simulation Discussion 

The results show that the estimation algorithm is working properly. The estimated time 

delay is approximately equal to real time delay. The comparison between results and  Table 

6-2. In the simulated data there is no noise taking in account. in the time delay estimation 

assumed that the data has noise in both input and output. To do estimation correctly the noise 

margin should be very small compared to the response gain (smaller than 0.3% of the gain the 

results from simulation). If there is influence of more than one input, the estimation will give 

fail result or will not success to do estimation. The advantage of this method that the estimation 

depends on the data from input and output, the disadvantage is very sensitive to noise and input 

data. 
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8 Simulator model development using 
Artificial neural network 
The training and testing data used in this section is from the simulator that was built in the 

previous section. The reasons are to simplify the model and it is easy to control the input of the 

system in the simulation while it is not possible with real data. The noise is not included in the 

simulation that will give a possibility to judge the ANN model compared to simulated model.  

8.1 Methods 

The method that is used in this thesis to train the model and using the trained model is 

summarized as the following steps: 

1. Create the training data set from the simulator and store it in CSV file. 

2. Creating the model and using the training data set.  

3. Save the model on the hard disk. 

4. Do the simulation with new inputs different from training data. 

5. Using the new inputs to feed the neural network model. 

6. Compare the results from the simulation model and the neural network model. To see 

how the neural network model is accurate. 

The block diagram of developing neural network model is shown in Figure 8-1 

 

Figure 8-1 Simulator model development using ANN diagram. 

Notes: The keras library is used for creating and training the neural network, so it is 

important to install it on your computer and import it in your code. 
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8.2 Modeling of the SISO system using linear activation 
function 

The data set used for training was generated by the simulator, the input is POL 

chemical material, and output is the turbidity as shown in Figure 8-2. POL chemical material 

is selected as a single input and the turbidity is an output. 

 

Figure 8-2 The training data set that used to train the neural network model for SISO system. The top figure is 

the response with time, Y-axis is the turbidity of the water as -FTU, x-axis is a time in minute. The bottom 

figure is the input with time, Y-axis is the POL materials as percentage, x-axis is a time in a minute. 

 

The block diagram of the SISO system ANN is shown in Figure 8-3, the input is POL and the 

output is the turbidity  

 

Figure 8-3 SISO system ANN block diagram, the input is POL, and the output is the turbidity. 

This kind of neural network is called recurrent neural network due to feedback from 

the output. 
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8.2.1 Method: 

Creating the recurrent neural network model and training the model can be perform as 

the following in python. 

The training data is used to train the model as the following  

from keras.models import Sequential 

# create neural network model 

model = Sequential() 

model.add(Dense(1, input_dim=2, activation='linear')) 

model.add(Dense(1, activation='linear')) 

model.compile(loss="mean_squared_error", optimizer="adam") 

# load training data 

train_df = pd.read_csv("train_data.csv") 

X1 = train_df.drop('y', axis=1).values 

Y1 = train_df[['y']].values 

# train the model 

model.fit(X1,Y1,batch_size=32,epochs=1000,verbose=2) 

# Save the model to hard drive 

model.save('model.h5') 

Using the trained model as the following: 

model = Sequential() 

model.add(Dense(1, input_dim=2, activation='linear')) 

model.add(Dense(1, activation='linear')) 

model.compile(loss="mean_squared_error", optimizer="adam") 

model.load_weights('model.h5')    

ypol_k = 0  

for k in range(0, N_sim): # N_sim=(time stop-time start)/time step 

    NN_input=np.vstack((ypol_k,U_pol[k])).T # reformate the input data to suit the 

                                                                           # ANN model      
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    yNN_plot_array[k] = model.predict(NN_input) 

    ypol_k = yNN_plot_array[k] 

8.2.2 Results and discussion: 

Figure 8-4 shows the results from simulation model and neural network model  

 

Figure 8-4 The response of the SISO system using simulator model and neural network model. The top figure is 

the response with time, Y-axis is the turbidity of the water as -FTU, x-axis is a time in minute. The bottom 

figure is the input of POL with time, Y-axis is the POL materials as percentage, x-axis is a time in minute. 

 The model of the ANN behaves exactly the same as the model of the simulator as shown in 

Figure 8-4. That means the ANN model fits well the data, and the results correspond to the 

mathematical studies. 

8.3 MISO system modeling using linear activation function 

The data set that was used for training was generated by the simulator and it contains 

three inputs and one output, the inputs are PIX, PAX, POL chemical materials, and the output 
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is the turbidity as shown in the figure. POL chemical material is selected as multi-input and 

the turbidity is the output as shown in Figure 8-5. 

 

 

Figure 8-5 The training data set that used to train the neural network model for MISO system. The top figure is 

the response with time, Y-axis is the turbidity of the water as -FTU, x-axis is a time in minute. The bottom 

figure is the inputs with time, Y-axis is the PIX, PAX, POL materials as percentage, x-axis is a time in minute. 

 

The training code for MISO. 

# create neural network model 

model = Sequential() 

model.add(Dense(3, input_dim=4, activation='linear')) 

model.add(Dense(10, activation='linear')) 

model.add(Dense(1, activation='linear')) 

model.compile(loss="mean_squared_error", optimizer="adam") 

# train the model 

model.fit(X1,Y1,batch_size=32,epochs=200,verbose=1) 

Trained model is used in the code as the following: 

model = Sequential() 
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model.add(Dense(3, input_dim=4, activation='linear')) 

model.add(Dense(10, activation='linear')) 

model.add(Dense(1, activation='linear')) 

model.compile(loss="mean_squared_error", optimizer="adam") 

model.load_weights('model.h5')    

ypol_k = 0  

for k in range(000,8000): 

    NN_input=np.vstack((ypol_k,U_pol[k],U_pix[k],U_pax[k])).T 

    yNN_plot_array[k] = model.predict(NN_input) 

    ypol_k = yNN_plot_array[k] 

8.3.1 Results and discussion 

Mean Squared Error (MSE) is  4.95e-08 which refers to the difference between the model 

output and the target. Simulator and ANN model fed with same inputs the responses are 

shown in Figure 8-6 

 

Figure 8-6 The response of the MISO system using simulator model and neural network model, ANN has 3 

layers and 10 neurons in the hidden layer. The top figure is the response with time, Y-axis is the turbidity of the 
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water as -FTU, x-axis is a time in a minute. The bottom figure is the input of POL with time, Y-axis is the PIX, 

PAX, POL materials as a percentage, x-axis is a time in a minute. 

The ANN model represents the Simulator model as shown in Figure 8 6. The ANN 

and the simulator fed with different levels of step functions so that the ANN model response 

with small error as illustrated in Figure 8-6. The errors occur due to underfitting.  
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9 NARX feedback neural network  
The real dynamic process can have a time delay that will increase the complexity of the 

system. Time delay can create mismatch problems between a real process and a model. NARX 

network can overcome these problems.  The neural network is based on the NARX model. The 

diagram of the network is shown in Figure 9-1 

 

Figure 9-1NARX feedback neural network, TDL is tapped time delay, f is an activation function, w is a weight, 

b is a bias. 

9.1 NARX Neural network model  

The final model of water dosing process is developed by NARX neural network to 

overcome time delay problems. The mathematical NARX form that can be applied is illustrated 

in equation (10.3) [18] 

𝑌(𝑡) = 𝑓(𝑌(𝑡 − 1), 𝑌(𝑡 − 2),… , 𝑌(𝑡 − 𝑛), 𝑈(𝑡 − 1), 𝑈(𝑡 − 2),… , 𝑈(𝑡

− 𝑛)) 

(10.3) 

Where n is a number of tapped time delay line, Y is the output vector 𝑌 =  (

𝑦1
𝑦2
⋮
𝑦𝑖
) 

where i is the number of outputs, U is the input vector 𝑈 =  (

𝑢1
𝑢2
⋮
𝑢𝑗
) where j is the number of 

inputs 

The water dosage process has a variable time delay, and it is varied due to some inputs. 

The inflow could have a significant influence on time delay and how many parameters 

influence on time delay is unknown. The time delay index should be assumed in the network. 

Time delay index n is the maximum number of steps in the time delay. 

The form of one neuron in the NARX network will be as equation (10.4) 
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𝑓𝑛𝑒𝑡 = 𝑓( 𝑊1
𝑖𝑛𝑝𝑢𝑡𝑈𝑡 +𝑊2

𝑖𝑛𝑝𝑢𝑡𝑈𝑡−1 +⋯+𝑊𝑛
𝑖𝑛𝑝𝑢𝑡𝑈𝑡−𝑛 +𝑊1

𝑜𝑢𝑡𝑝𝑢𝑡𝑌𝑡−1

+𝑊2
𝑜𝑢𝑡𝑝𝑢𝑡𝑌𝑡−2 +⋯+𝑊𝑛

𝑖𝑛𝑝𝑢𝑡𝑌𝑡−𝑛) + 𝑏 

 

 

(10.4) 

𝑊𝑛
𝑜𝑢𝑡𝑝𝑢𝑡

is the output wight vector 𝑊𝑛
𝑜𝑢𝑡𝑝𝑢𝑡 = 

(

 
 

𝑤1
𝑜𝑢𝑡𝑝𝑢𝑡

𝑤2
𝑜𝑢𝑡𝑝𝑢𝑡

⋮

𝑤
𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

)

 
 

 where i is the number of 

outputs, 𝑊𝑛
𝑖𝑛𝑝𝑢𝑡

 is the input weight vector 𝑊𝑛
𝑖𝑛𝑝𝑢𝑡 = 

(

 
 

𝑤1
𝑖𝑛𝑝𝑢𝑡

𝑤2
𝑖𝑛𝑝𝑢𝑡

⋮

𝑤
𝑗
𝑖𝑛𝑝𝑢𝑡

)

 
 

where j is the number of 

inputs. 𝑓𝑛𝑒𝑡 is the neuron activation function. b is the bias. 

The NARX neural network will remember n previous inputs and outputs to predict the 

next output. The network will find out the time delay from the training data. It will select the 

correct inputs by tuning the weights. In case, the weight is negative that means it will cancel 

the respective input which has no impact on the output. The architecture of this NARX neural 

network is called feedforward parallel architecture, where the output of the network is fed as 

input. The block diagram that illustrates the network is shown in Figure 9-2 

 

Figure 9-2 Parallel architecture NARX neural network with tapped time delay line. 

The equation (10-3) has no error term which create some error in the output of the 

model. The predicted output goes as input for the next prediction that will propagate the error 

with time. In order to reduce this error, the output of the real process should be connected to 

the NARX model as input instead of prediction output.  

This NARX neural network model architecture is called series parallel architecture. 

The diagram of it is shown in the Figure 9-3. 
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Figure 9-3 Parallel series architecture NARX neural network with tapped time delay line. Y(t) is predicted 

output. Ym(t) is measured output from process. 

 

9.2 NARX neural network simulation 

The data set that was used for training the NARX network was generated by the 

simulator, and it contains three inputs and one output. The inputs are PIX, PAX, POL chemical 

materials, and the output is the turbidity as shown in Figure 9. The time delay line is [1 min] 

for PIX, [3 min] for PAX, and [6 min] for POL. 

 

Figure 9 NARX neural network training data set from simulator model. The top figure is the response with time, 

Y-axis is the turbidity of the water as -FTU, x-axis is a time in a minute. The bottom figure is the inputs with 

time, Y-axis is the PIX, PAX, POL materials as a percentage, x-axis is a time in a minute. The time delay line is 

[1 min] for PIX, [3 min] for PAX, and [6 min] for POL 

The NARX model is trained by MATLAB with the data that shown in Figure 9. The 

NARX has 10 hidden layers and 7-time delay line. The optimizer is Levenberg–Marquardt. 

The NARX model is trained by 850 sample from the real process. 70 % of data set for training, 

15% for validation, and 15% for testing.  
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In order to see how the trained model behaves, the NARX model and simulator fed with 

different inputs which has not been used in training. The trained model is built as a black box 

and connected to the inputs from Simulator’s data.  The NARX model is used as parallel 

architecture and parallel series architecture as shown in Figure 9-4. The process here is the 

simulator. 

 

Figure 9-4 NARX ANN model in parallel with process. Both architectures are included parallel and parallel 

series (MATLAB Simulink). 

9.3 MATLAB Simulation Results 

The performance of the training is shown in the best validation is 7.6 × 10−5 at 

epoch 126. Mean Square Error (MSE) is the average squared difference between model 

output and target data. The response of the model, and target data Figure 9-6 

 



 

 

  NARX feedback neural network 

54 

 

Figure 9-5  Validation performance for NARX ANN simulation, MSE of the training data with Epoches. 

 

 

Figure 9-6 The response of the trained model and target data for NARX ANN simulation. 
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The MSE and Correlation for the training and validation and testing are included in Table 9-1  

Table 9-1 MSE and Correlation for NARX ANN model simulation. 

 Target values MSE R 

Training 595 2.4 × 10−9 0.99 

Validation  128 7.6 × 10−5 0.997 

Testing 128 1.14 × 10−4 0.957 

 

The NARX ANN model feeds with new data generated from the simulator, the inputs data 

and correspond output from the simulator and NARX model are shown in Figure 9-7. 

 

 

Figure 9-7 NARX ANN model and simulator inputs, y-axis is the percentage of chemical material pol, pix, pax, 

x-axis is the time in a minute. 
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Figure 9-8 NARX model and simulator output, y-axis is turbidity [FTU], x-axis is the time in a minute, from 0 

to 500 minutes the architecture is parallel series, and after 500 the architecture is changed to parallel. 

9.4 Discussion  

The purpose of using simulator to train and test the NARX model is to make sure that the 

NARX is working properly with time delay. The time delay and response of the simulator is 

known and can be manipulated easily. In this experiment seven tapped time delay line is used 

because we already know that maximum delay is 6 min.  

The real process’s model is unknown, therefore, the NARX simulation is important to 

check the model with known model. As shown in Figure 9-8 the NARX model is fit the 

simulator and it is working properly for both architectures.  
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10 Real process model development 
A supervised method in Artificial neural networks and machine learning is depending on 

the training data set. The quality of the model depends on the data set. If the data set does not 

have enough information will provide a poor performance of the trained model. It is important 

to select the training data carefully and avoid overfitting and underfitting. Underfitting means 

the model is not generalized. Overfitting means the ANN model trains noise data which will 

impact the performance of the model [21] [22] [23]. As shown in Figure 10-1. 

 

Figure 10-1 . Overfitting, underfitting, and optimum fitting of ANN model 

10.1 Experimental design 

Chemical dosing process is a multi-variate process, which means there are many inputs 

influence the output. 

The purpose of the experiment. 

The purpose of experimental design are [10]: 

• To know how many experiments are needed to get the information.  

• To develop the model of the system. 

• To know individual effect of the input.  

• To find out which inputs has significant impact to the output. 

• The structure of the experiments. 

  

The experiments can perform by applying specific inputs and measure the outputs. The 

experiment data should have both inputs and outputs as shown in Figure 10-2. 
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Figure 10-2 Experiment block diagram. 

The suggestion of full factorial design of the experiments are indicated in Table 10-1 

Table 10-1 The full factorial design experiment suggestion. Zero means no change and one mean add change. 

the time delay should be taken in account.  

Inflow  PIX PAX POL Response 

0 0 0 0 1 

0 0 0 1 2 

0 0 1 0 3 

0 0 1 1 4 

0 1 0 0 5 

0 1 0 1 6 

0 1 1 0 7 

0 1 1 1 8 

1 0 0 0 9 

1 0 0 1 10 

1 0 1 0 11 

1 0 1 1 12 

1 1 0 0 13 

1 1 0 1 14 
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1 1 1 0 15 

1 1 1 1 16 

 

If there is no reaction between the inputs chemical materials PIX, PAX, POL. The full factorial 

design experiments table can be reduced to the Table 10-2. 

Table 10-2 The reduced form of full factorial design experiment suggestion. Zero means no change and one 

mean add change. the time delay should be taken in account. 

Inflow  PIX 

0 0 

0 1 

1 0 

1 1 

Inflow PAX 

0 0 

0 1 

1 0 

1 1 

Inflow POL 

0 0 

0 1 

1 0 

1 1 

10.2 Scaling (Normalization)  

Scaling is a method that used to normalize the data. The purpose of that to make 

changing range between 0 and 1. Min-max normalization is used in this thesis. The 

normalization equation is (10-1) [23]. 
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𝑥𝑛𝑜𝑟𝑚 =
𝑥−min (𝑥)

max(𝑥)−min (𝑥)
   (10-1) 

10.3 Filtering  

The noise impacts the model error. The noise can be reduced by filtering the data. The 

high frequency terms should be removed from the data. That can be done by passing the data 

into a low pass filter. 

Low pass filter equation is (10-2) 

𝑦𝑘+1 = 𝑦𝑘 +
𝑑𝑡

𝑇𝑐
(𝐾 ∗ 𝑥𝑘 − 𝑦𝑘)  (10-2) 

𝑑𝑡 time step. 𝑇𝑐 time constant, x filter input, y filter output, K is the gain. 

10.4 Method 

MATLAB software and Python script are used to create the NARX neural network, 

prepare the data set, train, and test the network and model the process. MATLAB M-file is 

used for preparing the data, MATLAB nnstart for creating, and training NARX neural 

network, MATLAB Simulink for modeling. The data set was acquired from Veas. 

Training, testing data is prepared by MATLAB: 

 Reading the data from CSV file  

Data=readmatrix('data.csv'); 

Normalize the data: 

function y=Norm(x) 

  

    for k =1:length(x) 

        y(k)=(x(k)-min(x))/(max(x)-min(x)); 

  

    end 

end 

Filter the data: 

function y_f = Filter(x) 

y_k=x(1); 

y_f=[]; 

Kc=1; 

Tc=40;% time constant  
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ts=10; % time step 

    for k =2:length(x) 

        dy_dt=(Kc*x(k)-y_k)/Tc; 

        y_k=y_k+dy_dt*ts; 

        y_f=[y_f;y_k];  

    end 

end 

 

Save the data: 

csvwrite('Dataset.csv',DataSet); 

 

10.4.1 Create, Train, Test, Evaluate the neural network. 

The data is normalized, so the maximum value is 1 and minimum value is 0. To avoid 

large number in the neural network, the ReLU activation function can be good choice.  

The network correlation and mean squared error are important to evaluate the network. 

If the correlation is low that the performance of the network is poor, and the neural network 

output has poor performance. The evaluation can be done according to correlation and mean 

squared error. 

Training the NARX network by MATLAB can be performed by two ways: from nnstart 

tools or M-file. 

For M-file 

Input_tapped_delay=2; 

Output_tapped_delay=2; 

Hidden_layers=10; 

[X,T] = dataset; 

net = narxnet(1: Input_tapped_delay,1: Output_tapped_delay, Hidden_layers); 

[x,xi,ai,t] = preparets(net,X,{},T); 

net = train(net,x,t,xi,ai); 

y = net(x,xi,ai); 

view(net) 

Training the NARX network by Python can be performed as the following: 

import pandas as pd 

from keras.models import Sequential 
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from keras.layers import * 

# load training data 

train_df = pd.read_csv("train.csv") 

X = train_df.drop('y', axis=1).values 

Y = train_df[['y']].values 

# create neural network model 

model = Sequential() 

model.add(Dense(3, input_dim=6, activation='linear')) 

model.add(Dense(50, activation='relu')) 

model.add(Dense(1, activation='sigmoid')) 

model.compile(loss="mean_squared_error", optimizer="adam") 

model.fit(X,Y,batch_size=32,epochs=200,verbose=1) 

 

10.4.2 Trained NARX model in the real process 

Figure 9-4 is used for real process as well as in simulation. 

Two step functions are used to select the NARX architecture. The data set comes from 

real process.  

Using the model in Python: 

train_df = pd.read_csv("test.csv") 

X3 = train_df.drop('y', axis=1).values 

Y3 = train_df[['y']].values 

t_plot_array = np.linspace(0,len(Y3),len(Y3)) 

yNN_plot_array = np.zeros(len(Y3)) 

y_k=X3[0,5] 

for k in range(1,2000): 

    if k<1000: 

        y_k=Y3[k-1]  # parallel series architecture 

    NN_input=np.vstack((X3[k,0],X3[k,1],X3[k,2],X3[k,3],X3[k,4],y_k)).T 



 

 

  Real process model development 

63 

    yNN_plot_array[k] = model.predict(NN_input) 

    y_k = yNN_plot_array[k] # parallel architecture 

 

10.5 Results 

MATLAB and Python data set which used to train and test the NARX ANN model 

are same. Training Set for MISO is shown in Figure 10-3 and Figure 10-4. Training set for 

MIMO system is shown Figure 10-5, Figure 10-6 and Figure 10-7. 

The level of PH data in Figure 10-3, ALKALINITY(before Gritchamber) data in 

Figure 10-3 and ALKALINITY(after Gritchamber) target data in Figure 10-7 have no 

information, it will have no impact on ANN trained model. ANN model cannot be trained by 

this kind of data. it leads to underfitting.  
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Figure 10-3 Training inputs data set for MISO system, the inputs are PIX, PAX, POL, Inflow, Level of PH, 

Temperature. The values are normalized where y-axis is the percentage and x-axis are the step number, the time 

between steps is 10 minutes. 
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Figure 10-4 Target data set for MISO system for training. Target is turbidity. The values are normalized where 

y-axis is the percentage and x-axis are the step number, the time between steps is 10 minutes. 

 

 

Figure 10-5 Training dataset for MIMO system, the inputs are Inflow, Level of PH, Temperature. The values are 

normalized where y-axis is the percentage and x-axis are the step number, the time between steps is 10 minutes. 
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Figure 10-6 Training data set, input data for MIMO system, the inputs are PIX,PAX, POL, SS(before 

Gritchamber), PHOSPHATE(before Gritchamber), ALKALINITY(before Gritchamber) The values are 

normalized where y-axis is the percentage and x-axis are the step number, the time between steps is 10 minutes. 
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Figure 10-7 Target set data for MIMO system training, the target is turbidity, SS(after Gritchamber), 

PHOSPHATE(after Gritchamber), ALKALINITY(after Gritchamber) 

10.5.1 MATLAB Results 

The NARX ANN model is trained by 20000 sample from the real process. 70 % of data 

set for training, 15% for validation, and 15% for testing. The optimizer is Levenberg–

Marquardt optimizer. The neural network output and process output is almost similar. As 

shown in Figure 10-8. Ten hidden layers and one tapped time delay are used to form the 

network. 

The response plot in Figure 10-8 shows the target data, ANN model response due to 

training, validation, and testing data. Error plot is the difference between target data and the 

model output. The histogram error plot in Figure 10-9 shows that the error near to zero at point 

0.0047 most results located on this line. Figure 10-10 shows the best validation and mean 

squared error performance which exist in 68 epochs. The correlation plot between trained 

model and training, validation, testing data are shown in Figure 10-11. The correlation equal 
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to 0.9979 for training, 0.9979 for validation, 0.9979 for test. The correlation means how the 

model is fitting the data, as shown in Figure 10-11 which is more than 99%. 

 

 

Figure 10-8 The response of the trained NARX ANN model and target data. 

 

Figure 10-9 Histogram error plot for training NARX ANN for MISO system. 
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Figure 10-10 Validation performance for MISO system, MSE of the training data with Epoches. 

 

Figure 10-11 Regression correlation for MISO system. 
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After training process of NARX model, the model evaluation values indicated in 

Table 10-3 

Table 10-3 MSE and Correlation for NARX ANN model for MISO system. 

 Target values MSE R 

Training 14000 8.13 × 10−5 0.9979 

Validation  3000 7.8 × 10−5 0.99789 

Testing 3000 8.3 × 10−5 0.979 

 

2000 sequence samples are used to see the behavior of the trained model. These 2000 

samples are different from training samples. The ANN model works in parallel with the process 

as showing in Figure 9-4. The inputs are shown in Figure 10-12 

The NARX ANN model output and target is shown Figure 10-13 and Figure 10-14. the 

NARX model used both architecture parallel series and parallel to compare the results between 

two architectures. In NARX parallel architecture, in Figure 10-14, the initial values are 

incorrect, therefore, the prediction is incorrect. 
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Figure 10-12 NARX ANN model inputs for MISO system. The inputs are PIX, PAX, POL, Inflow, Level of PH, 

Temperature. The values are normalized where y-axis is the percentage and x-axis are the step number, the time 

between steps is 10 minutes. 
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Figure 10-13 NARX ANN model response for MISO. Parallel series NARX architecture from 0 to 500, parallel 

NARX ANN architecture from 500 to the end, the inputs are PIX, PAX, POL, Inflow, PH, Temp. x-axis is the 

number of samples, the time between samples is 10 minutes. Y-axis is a turbidity FTU. All values are 

normalized. 
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Figure 10-14 NARX ANN model response for MISO with incorrect initial inputs values. Parallel NARX 

architecture, the inputs are PIX, PAX, POL, Inflow, PH, Temp. x-axis is the number of samples, the time 

between samples is 10 minutes. Y-axis is a turbidity FTU. The data set is normalized. 

 

10.5.2  Python results 

The model is trained by 20000 sample, the same samples that used with MATLAB from 

the real process. 15000 samples of data set for training, 5000 for testing. The optimizer is Adam 

optimizer, The mean squared error is 0.000107 at epoch 200. The network has four layers. 

Input layer, first hidden layer has 3 neuron and linear activation function, second hidden layer 

has 50 neurons and ReLU activation function, the out layer has one neuron and Sigmoid 

activation function. the network has seven inputs and one output. the inputs are PIX, PAX, 

POL, Inflow, PH, Temp, and feedback from last output. 

The NARX ANN model output and target is shown in Figure 10-15, Figure 10-16, and 

Figure 10-17. the NARX model used both architecture parallel series and parallel to compare 

the results between two architectures. 
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Figure 10-15 Python testing set. Red color is the target, blue color is the model output. 5000 data point is used 

for testing. Y-axis is a turbidity FTU. X-axis is a time in a minute. 
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Figure 10-16 NARX ANN model response for MISO in Python. Parallel NARX ANN architecture, the inputs 

are PIX, PAX, POL, Inflow, PH, Temp. x-axis is a time in a minute. Y-axis is a turbidity FTU. All values are 

normalized. 

 

Figure 10-17 NARX ANN model response for MISO in python. Parallel series NARX architecture from 0 to 

10000 minutes, parallel NARX ANN architecture from 10000 minute to the end, the inputs are PIX, PAX, POL, 

Inflow, PH, Temp. x-axis is the number of samples, the time between samples is 10 minutes. Y-axis is a 

turbidity FTU. All values are normalized. 
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10.5.3 MIMO system results 

20000 data points are used for training validation, and testing the NARX ANN model, 

70 % of data set for training, 15% for validation, and 15% for testing. The optimizer is 

Levenberg–Marquardt optimizer. The network is formed from 50 hidden layers and one tapped 

time delay. The inputs are PIX, PAX, POL, Inflow, Temperature, Level of PH, SS before 

Gritchamber, PHOSPHATE (before Gritchamber), ALKALINITY (before Gritchamber) 

shown in Figure 10-5, Figure 10-6. The target are TURBIDITY, SS(After Gritchamber), 

PHOSPHATE(After Gritchamber), ALKALINITY(After Gritchamber) shown in Figure 10-7. 

Figure 10-20 shows the best validation and mean squared error performance which 

exist in 140 epochs.The correlation plot between trained model and training, validation, 

testing data are shown in Figure 10-21. The correlation equal to 0.999 for training, 0.999 for 

validation, 0.999 for test. The correlation means how the model is fit the data, as shown the 

model is fitting the data well more than 99%. 

The histogram error plot Figure 10-19 shows that the error near to zero at 0.005544 at 

this point, and the most results located on this line. 

 

 

 

Figure 10-18 The response of the trained NARX ANN MIMO system model and target real data. 
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Figure 10-19 Histogram error plot for training NARX ANN for MIMO system. 

 

Figure 10-20 Validation performance for MIMO system, MSE of the training data with Epoches. 
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Figure 10-21 Output of the NARX ANN trained model, validation and testing with target data regression 

correlation for MIMO system. 
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After training process of NARX model, the model evaluation values indicated in 

Table 10-4 

Table 10-4 MSE and Correlation for NARX ANN model for MIMO system. 

 Target values MSE R 

Training 70003 5.07 × 10−5 0.9979 

Validation  15001 5.96 × 10−5 0.99789 

Testing 15001 5.7 × 10−5 0.979 

 

2000 sequence samples are used to see the behavior of the trained model. These 2000 

samples are different from training samples. Inputs, Model output and Target are shown in 

Figure 10-22 Figure 10-23, Figure 10-24, Figure 10-25, Figure 10-26 and Figure 10-27. 

The predicted response of turbidity, SS, phosphate is close to real response. Alkalinity 

response has no information, training set of Alkalinity is constant and equal to zero, that means 

the prediction of Alkalinity will be always zero because the training set has no information. 

 

 

 

Figure 10-22 (a) 
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Figure 10-22 (b) 

 

Figure 10-22 (c) 
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Figure 10-22 (d) 

Figure 10-22 (a)Testing inputs data set for MIMO system, the inputs are (b)PIX, PAX, POL, (c)Inflow, 

Temperature, Level of PH, (d)SS before Gritchamber, PHOSPHATE(before Gritchamber), 

ALKALINITY(before Gritchamber). The values are normalized where y-axis is the percentage and x-axis are 

the step number, the time between steps is 10 minutes.  

 

 

Figure 10-23  NARX ANN model response for Turbidity in MIMO system. Parallel series NARX architecture. 

X-axis is the number of samples, the time between samples is 10 minutes. Y-axis is a turbidity FTU. All values 

are normalized. 
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Figure 10-24 NARX ANN model response for level of PH in MIMO system. Parallel series NARX architecture. 

X-axis is the number of samples, the time between samples is 10 minutes. Y-axis is a level of PH. All values are 

normalized. 

 

Figure 10-25 NARX ANN model response for SS in MIMO system. Parallel series NARX architecture. X-axis 

is the number of samples, the time between samples is 10 minutes. Y-axis is a SS. All values are normalized. 
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Figure 10-26 NARX ANN model response for phosphate in MIMO system. Parallel series NARX architecture. 

X-axis is the number of samples, the time between samples is 10 minutes. Y-axis is a phosphate. All values are 

normalized. 

 

 

 

Figure 10-27 NARX ANN model response for Alkalinity in MIMO system. Parallel series NARX architecture. 

X-axis is the number of samples, the time between samples is 10 minutes. Y-axis is Alkalinity. All values are 

normalized. 
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10.6 Discussion 

The NARX ANN model results correspond to the theoretical studies and simulation. The 

model is tested with a process simulator and a real process. The results from both tests show 

high performance. The simulator model shows the ability of NARX to handle time delay in the 

process. NARX ANN model can represent a time series dynamic model as a black box. The 

random operation data series can train the NARX ANN model, but that will not guarantee a 

good model, because the training data could have not enough information that will lead to 

underfitting. NARX ANN model does not need a time delay estimation, which is needed in 

classical dynamic system modelling. It is tricky to have a good time delay estimation which 

needs an experiment to do this estimation. NARX ANN model does not need system 

identification, it will adapt the process automatically from training data. 

The parallel series NARX ANN model gives a high performance because the feedback of 

NARX comes from the real process. That will cancel the error propagation. If feedback is 

chosen from NARX model the performance will be worse due to error propagation. 

NARX neural network with tapped time delay, shows high performance in parallel series 

architecture as shown in  Figure 10-13, Figure 10-17, Figure 10-23, Figure 10-24, Figure 10-25, 

Figure 10-26 and Figure 10-27, but Figure 10-14 shows that the response in the parallel 

architecture has noise response. The reason is that the predicted value depends on the previous 

input and output, in this case, tapped time delay equal to 1, the next output depends on previous 

steps values. During the simulation, when the simulation starts, these initial values are equal to 

zero which lead to fault prediction because the initial value in the real process is not zero. 

 If the first prediction is not correct, then it will lead next values also being incorrect. When 

the system runs within parallel series architecture the initial values will have correct values, 

the initial values will get correct values. As shown in Figure 10-13, Figure 10-17 when the 

mode is changed from parallel series architecture to parallel architecture, the model 

continuously provide a good estimation for a period of future steps with small errors. 

 

The number of inputs in the NARX ANN can be calculated from equation (13-1). 

𝑁𝐴𝑅𝑋 𝐴𝑁𝑁 𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑚𝑜𝑑𝑒𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 × 𝑡𝑑 + 𝑚𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 × (𝑡𝑑)  (13-1) 

where td is the number of tapped time delay.  

If the sampling time is small and the tapped time delay is large, the NARX network will 

be quite large and computational work will be pretty complex and time-consuming. Therefore, 

the system will require large active memories to accomplish the task. If there are three inputs, 

one output, tapped time delay equal to 1 second and sampling time is 1 ms, the number of the 

tapped time delays will be 1000 as equation (13-2) 

𝑡𝑑 =
𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦 

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 
   (13-2) 
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The number of inputs will be 3 × 1000 + 1 × (1000) = 4000 by using (13-1) 

The computer might not be able to complete the task. To solve this problem, the number of 

inputs should be reduced. That can be performed by many ways. The easiest way is increase 

sampling time. That will reduce the quality and accuracy of the model.  If the order of the 

system is known or assumed, the NARX model can be modified to get the lowest variables. If 

a system is first order the equation (13-1) can be modified to (13-3) 

𝑖𝑛𝑝𝑢𝑡𝑠 × 𝑡𝑑 + 𝑜𝑢𝑡𝑝𝑢𝑡𝑠  (13-3) 

The model input is reduced by equation (13-3), it is very advantage to know the maximum 

time delay in the process that will determine the number of tapped time delays. 

The parallel series architecture and parallel architecture together method is suitable to run 

in parallel with process, and it is an effective way to model dynamic system with/ without time 

delay. It has ability to give good information about the process even if the connection with 

output sensor. The system can predict the output from the model for many time steps with good 

accuracy as shown in the results. 

The results from NARX that performed by MATLAB shows exactly the same result with 

and without time delay. That means the process data has no time delay which is assured from 

Python results. Data set shows the sampling time equal to 10 min. If the time delay is lower 

than 10 minutes, the data set will not contain this delay because the data has no information 

between two samples. As illustrated in the Figure 10-28The system will not notice any delay 
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Figure 10-28 Effect of time delay in low sampling rate. System input in the lower figure and response in the 

higher figure, a time delay is smaller than sampling time, the recoded data will have measurement at time t=k 

and t=k+1 and so on. 

The NARX neural network has the ability to track time delay changing, the time delay 

changes according to one or more input variables, as shown in the simulation results. the 

network has the ability to remember previous inputs and feedback output, in order to give 

correct prediction output. The network remembers all the time the previous steps equal to a 

number of a tapped time delay of all inputs and outputs. The drawback of this tracking is much 

time and computer memory consuming and much tough computational work.  

The mean squared error is less with MATLAB compared to Python due to the optimizer 

algorithm. MATLAB uses Leverberg optimizer, and python code uses Adam optimizer. 

Leverberg gives better results (𝑀𝑆𝐸 = 2 × 10−5) at epoch 26 than Adam (𝑀𝑆𝐸 = 10 × 10−5) 

at epoch 200. MATLAB converges faster than Python.  

The training data set should be selected and checked carefully, the variation of the input 

and output data is important. If the input is changing and the output is constant for a long time, 

that means the input has no impact on the output. If the input is constant, it is not possible to 

know the relation between the input and output. the data which comes from constant input 

cannot learn the model because it has no information. The neural network is smart to know if 

the data has information or not.  

The PH value in the data set that was used for training and testing the MISO model has 

zero value that means this variable has no effect on the model. Therefore, experimental design 

is important to give information about the influence of each input. By having zero or a constant 
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value of PH without changing, it is impossible to judge the effect of PH in the neural network 

model. If the PH variable is removed from the model the model will still be the same without 

any changing. 

Even the neural network model is well expressed data set, the experimental design is 

needed to have good data set that present the real process. Because the training data will train 

the model and it will give experience to the model to work properly in the future.  If the trained 

model has not had a good experience, the model response will have a large error.  

MATLAB software has a powerful tool like Simulink which is used in this process for 

dynamic system simulation. The ANN tools give information about errors, MSE, histogram, 

validation performance, correlations which are very good for network evaluation. However, 

the problem with MATLAB is the activation function of ANN is not controllable for time series 

only the number of hidden layers. It is a commercial tool, so everyone cannot afford this 

software. On the other hand, Python scrip is free and more flexible with ANN tools (Keras 

library). It is possible to use sequential, and functional methods to form ANN. Keras library 

does not have Leverberg-Marquardt optimizer which is better than Adam optimizer to deal 

with dynamic systems and time series. Python can work with Linux embedded systems; it is 

possible to use it in real-time processes and it is not memory consuming like MATLAB. Python 

needs a deep understanding of activation functions to how to select suitable activation functions 

and layers, while it is not needed in MATLAB.  
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11 Conclusion 
 

This Project is aimed to model the chemical dosing at a water resource recovery facility, 

in order to use this model in the optimization process. Modeling of the real process and 

simulation is done, and the proper studies have been covered in this thesis.  

The results of real data implementation show that NARX neural network handles time 

delay in the time series process in an effective way. It succeeds to model the dynamic system 

and shows a high performance of MIMO system modeling.  

The model is data-driven if any process does not have enough information to make a 

model for optimization, then NARX model which is used in this thesis would be the best 

solution. Since this NARX model has given very good performance to predict turbidity of 

water and other output such as Alkalinity and phosphate. 
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12 Future work 
This thesis can be extended by using powerful optimization process like linear quadratic 

optimization method and Recurrent neural network optimization for (MPC) to reduce the 

usage of chemical materials inputs PIX, PAX, POL.so that the process will be more cost 

effective.  

The NARX model can be in parallel with real process as NARX parallel series 

architecture. The NARX can give good prediction for long period, so the NARX model can 

be used in model predictive control to optimize the using of PIX, PAX, POL as shown in 

Figure 12-1 

 

Figure 12-1 Model predictive control (MPC) with NARX ANN model in chemical dosing process 
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14 List of tables and charts 
Table 6-1 System parameter that used for simulator 

Table 6-2 System parameter of the time delay simulator 

Table 9-1 MSE and Correlation for NARX ANN model simulation 

Table 10-1 The full factorial design experiment suggestion. Zero means no change and one 

mean add change. the time delay should be taken in account. 

Table 10-2 The reduced form of full factorial design experiment suggestion. Zero means no 

change and one mean add change. the time delay should be taken in account. 

Table 10-3 MSE and Correlation for NARX ANN model  

Figure 2-1 Dosing diagram. 

Figure 3-1 function block diagram of chemical dosing model, PIX, PAX, POL are dosing chemical materials, 

𝑑𝑝𝑖𝑥 , 𝑑𝑝𝑎𝑥 , 𝑑𝑝𝑜𝑙 are inputs time delay, 𝜏 is the time constant, k is the gain. 

Figure 4-1 Neuron model, x1, x2---xn are inputs, w1, w2 are weights of the inputs, o is output 

of the neuron (Perceptron model) 

Figure 4-2 Neuron model with bias b term, (𝑥1 𝑥2…𝑥𝑛) are input vector and (𝑤1 𝑤2…𝑤𝑛 w2)
 

T are weights of the inputs, o is output of the neuron (Perceptron model) 

Figure 4-3 Activation functions, Unit step, Linear, Ramp, ReLU and Sigmoid. 

Figure 4-4 Feedforward neural network. The input layer has 4 neurons, one hidden layer 

which has three neurons, one neuron in the output layer. 

Figure 4-5 Recurrent neural network diagram 

Figure 4-6 RNN model with time series 

Figure 4-7 Levenberg-Marquardt algorithm diagram 

Figure 4-8 NARX neural network block diagram 𝑍−1 is the previous value. 

Figure 5-1 First order transfer function response. 

Figure 5-2 Diagram of first order transfer function by Multilayer perceptron network. 

Figure 5-3 Artificial neural network diagram for first order transfer function with one input. 

Figure 6-1 Simulator response due to PIX without time delay. The top figure is the response 

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom 

figure is the input of PIX with time, Y-axis is the PIX materials as percentage, x-axis is a 

time in minute. 

Figure 6-2 Simulator response due to PAX without time delay. The top figure is the response 

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom 

figure is the input of PAX with time, Y-axis is the PAX materials as percentage, x-axis is a 

time in minute. 

Figure 6-3 Simulator response due to POL without time delay. The top figure is the response 

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom 

figure is the input of POL with time, Y-axis is the POL materials as percentage, x-axis is a 

time in minute. 
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Figure 6-4 Simulator response due to POL, PIX, PAX. without time delay. The top figure is 

the response with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. 

The bottom figure is the inputs POL, PIX, PAX with time, Y-axis is the POL, PIX, PAX 

materials as percentage, x-axis is a time in minute. 

Figure 6-5 Delay function diagram, the number of the elements in the delay length equal to 

delay/time sample 

Figure 6-6  Simulator response due to PIX with time delay. The top figure is the response 

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom 

figure is the input of PIX with time, Y-axis is the PIX materials as percentage, x-axis is a 

time in minute. 

Figure 6-7 Simulator response due to PAX with time delay. The top figure is the response 

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom 

figure is the input of PAX with time, Y-axis is the PAX materials as percentage, x-axis is a 

time in minute. 

Figure 6-8 Simulator response due to POL with time delay. The top figure is the response 

with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. The bottom 

figure is the input of POL with time, Y-axis is the POL materials as percentage, x-axis is a 

time in minute 

Figure 6-9 Simulator response due to POL, PIX and PAX with time delay. The top figure is 

the response with time, Y-axis is the turbidity of the water as FTU, x-axis is a time in minute. 

The bottom figure is the inputs POL, PIX, PAX with time, Y-axis is the POL, PIX, PAX 

materials as percentage, x-axis is a time in minute. 

Figure 6-10 System response with time delay for SISO system and MISO system, the orange 

rectangle represents the amount of delay. Y-axis is the turbidity of the water as FTU, x-axis is 

a time in minute. The bottom figure is the inputs with time 

Figure 7-1 The sequence diagram of the time delay estimation algorithm for one input signal, 

𝜀 is an error term 

Figure 7-2 Time delay estimation data set. The input is a step function of POL, PIX, PAX, 

the output is a system response due to inputs. The top figure is the response with time, Y-axis 

is the turbidity of the water as FTU, x-axis is a time in minutes. The bottom figure is the 

inputs POL, PIX, PAX with time, Y-axis is the POL, PIX, PAX materials as percentage, x-

axis is a time in minutes. 

Figure 7-3 Time delay estimation for POL input. Red color represents the delay period. The 

time delay estimation is calculated by program, and it is equal to 60 minutes. 

Figure 7-4 Time delay estimation for Pax input. Red color represents the delay period. The 

time delay estimation is calculated by program, and it is equal to 30 minutes. 

Figure 7-5 Time delay estimation for Pix input. Red color represents the delay period. The 

time delay estimation is calculated by program, and it is equal to 10 minutes. 

Figure 8-1 Simulator model development using ANN diagram. 

Figure 8-2 The training data set that used to train the neural network model for SISO system. 

The top figure is the response with time, Y-axis is the turbidity of the water as -FTU, x-axis is 

a time in minute. The bottom figure is the input with time, Y-axis is the POL materials as 

percentage, x-axis is a time in a minute. 
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Figure 8-3 SISO system ANN block diagram, the input is POL, and the output is the 

turbidity. 

Figure 8-4 The response of the SISO system using simulator model and neural network 

model. The top figure is the response with time, Y-axis is the turbidity of the water as -FTU, 

x-axis is a time in minute. The bottom figure is the input of POL with time, Y-axis is the POL 

materials as percentage, x-axis is a time in minute. 

Figure 8-5 The training data set that used to train the neural network model for MISO system. 

The top figure is the response with time, Y-axis is the turbidity of the water as -FTU, x-axis is 

a time in minute. The bottom figure is the inputs with time, Y-axis is the PIX, PAX, POL 

materials as percentage, x-axis is a time in minute. 

Figure 8-6 The response of the MISO system using simulator model and neural network 

model, ANN has 3 layers and 10 neurons in the hidden layer. The top figure is the response 

with time, Y-axis is the turbidity of the water as -FTU, x-axis is a time in a minute. The 

bottom figure is the input of POL with time, Y-axis is the PIX, PAX, POL materials as a 

percentage, x-axis is a time in a minute. 

Figure 9-1NARX feedback neural network, TDL is tapped time delay, f is an activation 

function, w is a weight, b is a bias. 

Figure 9-2 Parallel architecture NARX neural network with tapped time delay line. 

Figure 9-3 Parallel series architecture NARX neural network with tapped time delay line. 

Y(t) is predicted output. Ym(t) is measured output from process. 

Figure 9 

Figure 9-4  

Figure 9-5  Validation performance for NARX ANN simulation, MSE of the training data 

with Epoches. 

Figure 9-6 The response of the trained model and target data for NARX ANN simulation 

Figure 9-7 NARX ANN model and simulator inputs, y-axis is the percentage of chemical 

material pol, pix, pax, x-axis is the time in a minute 

Figure 9-8 NARX model and simulator output, y-axis is turbidity [FTU], x-axis is the time in 

a minute, from 0 to 500 minutes the architecture is parallel series, and after 500 the 

architecture is changed to parallel. 

Figure 10-2 Experiment block diagram 

Figure 10-3 Training inputs data set for MISO system, the inputs are PIX, PAX, POL, Inflow, 

Level of PH, Temperature. The values are normalized where y-axis is the percentage and x-

axis are the step number, the time between steps is 10 minutes. 

Figure 10-4 Target data set for MISO system for training. Target is turbidity. The values are 

normalized where y-axis is the percentage and x-axis are the step number, the time between 

steps is 10 minutes. 

Figure 10-5 Training dataset for MIMO system, the inputs are Inflow, Level of PH, 

Temperature. The values are normalized where y-axis is the percentage and x-axis are the 

step number, the time between steps is 10 minutes. 
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Figure 10-6 Training data set, input data for MIMO system, the inputs are PIX,PAX, POL, 

SS(before Gritchamber), PHOSPHATE(before Gritchamber), ALKALINITY(before 

Gritchamber) The values are normalized where y-axis is the percentage and x-axis are the 

step number, the time between steps is 10 minutes. 

Figure 10-7 Target set data for MIMO system training, the target is turbidity, SS(after 

Gritchamber), PHOSPHATE(after Gritchamber), ALKALINITY(after Gritchamber) 

Figure 10-8 The response of the trained NARX ANN model and target data 

Figure 10-9 Histogram error plot for training NARX ANN for MISO system. 

Figure 10-10 Validation performance for MISO system, MSE of the training data with 

Epoches. 

Figure 10-11 Regression correlation for MISO system. 

Figure 10-12 NARX ANN model inputs for MISO system. The inputs are PIX, PAX, POL, 

Inflow, Level of PH, Temperature. The values are normalized where y-axis is the percentage 

and x-axis are the step number, the time between steps is 10 minutes. 

Figure 10-13 NARX ANN model response for MISO. Parallel series NARX architecture 

from 0 to 500, parallel NARX ANN architecture from 500 to the end, the inputs are PIX, 

PAX, POL, Inflow, PH, Temp. x-axis is the number of samples, the time between samples is 

10 minutes. Y-axis is a turbidity FTU. All values are normalized. 

Figure 10-14 NARX ANN model response for MISO with incorrect initial inputs values. 

Parallel NARX architecture, the inputs are PIX, PAX, POL, Inflow, PH, Temp. x-axis is the 

number of samples, the time between samples is 10 minutes. Y-axis is a turbidity FTU. The 

data set is normalized. 

Figure 10-15 Python testing set. Red color is the target, blue color is the model output. 5000 

data point is used for testing. Y-axis is a turbidity FTU. X-axis is a time in a minute. 

Figure 10-16 NARX ANN model response for MISO in Python. Parallel NARX ANN 

architecture, the inputs are PIX, PAX, POL, Inflow, PH, Temp. x-axis is a time in a minute. 

Y-axis is a turbidity FTU. All values are normalized. 

Figure 10-17 NARX ANN model response for MISO in python. Parallel series NARX 

architecture from 0 to 10000 minutes, parallel NARX ANN architecture from 10000 minute 

to the end, the inputs are PIX, PAX, POL, Inflow, PH, Temp. x-axis is the number of 

samples, the time between samples is 10 minutes. Y-axis is a turbidity FTU. All values are 

normalized. 

Figure 10-18 The response of the trained NARX ANN MIMO system model and target real 

data 

Figure 10-19 Histogram error plot for training NARX ANN for MIMO system. 

Figure 10-20 Validation performance for MIMO system, MSE of the training data with 

Epoches. 

Figure 10-21 Output of the NARX ANN trained model, validation and testing with target 

data regression correlation for MIMO system 

Figure 10-22 (a)Testing inputs data set for MIMO system, the inputs are (b)PIX, PAX, POL, 

(c)Inflow, Temperature, Level of PH, (d)SS before Gritchamber, PHOSPHATE(before 
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Gritchamber), ALKALINITY(before Gritchamber). The values are normalized where y-axis 

is the percentage and x-axis are the step number, the time between steps is 10 minutes 

Figure 10-23  NARX ANN model response for Turbidity in MIMO system. Parallel series 

NARX architecture. X-axis is the number of samples, the time between samples is 10 

minutes. Y-axis is a turbidity FTU. All values are normalized 

Figure 10-24 NARX ANN model response for level of PH in MIMO system. Parallel series 

NARX architecture. X-axis is the number of samples, the time between samples is 10 

minutes. Y-axis is a level of PH. All values are normalized 

Figure 10-25 NARX ANN model response for SS in MIMO system. Parallel series NARX 

architecture. X-axis is the number of samples, the time between samples is 10 minutes. Y-

axis is a SS. All values are normalized 

Figure 10-26 NARX ANN model response for phosphate in MIMO system. Parallel series 

NARX architecture. X-axis is the number of samples, the time between samples is 10 

minutes. Y-axis is a phosphate. All values are normalized 

Figure 10-27 NARX ANN model response for Alkalinity in MIMO system. Parallel series 

NARX architecture. X-axis is the number of samples, the time between samples is 10 

minutes. Y-axis is Alkalinity. All values are normalized. 

Figure 10-28 Effect of time delay in low sampling rate. System input in the lower figure and 

response in the higher figure, a time delay is smaller than sampling time, the recoded data 

will have measurement at time t=k and t=k+1 and so on. 

Figure 12-1 Model predictive control (MPC) with NARX ANN model in chemical dosing 

process 
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Appendix A MISO system simulator    

# 

=================================================================

============ 

import matplotlib.pyplot as plt 

import numpy as np 

import modelparameters 

import sim_function 

# %% Time settings: 

 

ts = 1  # Time-step [min] 

t_start = 0.0  # [min] 

t_stop = 850.0  # [min] 

N_sim = int((t_stop-t_start)/ts) + 1 

 

# Solvermode= 'first_order' or second_order 

=================================================================

============ 

Solver_mode='first_order'   

#%%% SYSTEM INPUT ARRAYS 

# PIX input 

U_pix = np.zeros(N_sim) 

U_pix[int(0/ts):] += 1 

U_pix[int(100/ts):] += -1 

 

# PAX input 

U_pax = np.zeros(N_sim) 

U_pax[int(200/ts):] += 1 
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U_pax[int(300/ts):] += -1 

# POL input 

U_pol = np.zeros(N_sim) 

U_pol[int(402/ts):] += 1 

U_pol[int(650/ts):] -= 1 

# 

=================================================================

============ 

# %% Arrays for plotting: 

 

t_plot_array = np.zeros(N_sim) 

ypix_plot_array = np.zeros(N_sim) 

ypax_plot_array = np.zeros(N_sim) 

ypol_plot_array = np.zeros(N_sim) 

yTurb_plot_array = np.zeros(N_sim) 

ypix_k=0 

ypax_k=0 

ypol_k=0 

# 

=================================================================

============ 

# # for second order 

y1pix_k=0 

y1pax_k=0 

y1pol_k=0 

 

y2pix_k=0 

y2pax_k=0 

y2pol_k=0 
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for k in range(0, N_sim): 

    t_k = k*ts   

    #First order Euler-forward integration (Euler step): 

    if Solver_mode=='first_order':         

        ypix_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pix']['K'], 

                                         U_pix[k],modelparameters.turbParrameters['pix']['Tc'], 

                                         ypix_k) 

      ypax_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pax']['K'], 

                                         U_pax[k],modelparameters.turbParrameters['pax']['Tc'], 

                                         ypax_k) 

        ypol_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pol']['K'], 

                                         U_pol[k],modelparameters.turbParrameters['pol']['Tc'], 

                                         ypol_k) 

     

    if Solver_mode=='second_order':         

        

[y1pix_k,y2pix_k]=sim_function.second_order(ts,modelparameters.turbParrameters['pix']['

K'], 

                                         U_pix[k],modelparameters.turbParrameters['pix']['Tc1'], 

                                         modelparameters.turbParrameters['pix']['Tc2'], 

                                         y1pix_k,y2pix_k) 

        ypix_kp1=y2pix_k 

y1pax_k,y2pax_k=sim_function.second_order(ts,modelparameters.turbParrameters['pax']['

K'], 

                                         U_pax[k],modelparameters.turbParrameters['pax']['Tc1'], 

                                         modelparameters.turbParrameters['pax']['Tc2'], 

                                         y1pax_k,y2pax_k) 

        ypax_kp1=y2pax_k 
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y1pol_k,y2pol_k=sim_function.second_order(ts,modelparameters.turbParrameters['pol']['K

'], 

                                         U_pol[k],modelparameters.turbParrameters['pol']['Tc'], 

                                         modelparameters.turbParrameters['pol']['Tc2'], 

                                         y1pol_k,y2pol_k) 

        ypol_kp1=y2pol_k 

    # Storage for plotting: 

    t_plot_array[k] = t_k 

    ypix_plot_array[k] = ypix_k 

    ypax_plot_array[k] = ypax_k 

    ypol_plot_array[k] = ypol_k 

    yTurb_plot_array[k]=1-(ypix_k+ypax_k+ypol_k) 

    

     

    # Time shift: 

    ypix_k = ypix_kp1 

    ypax_k = ypax_kp1 

    ypol_k = ypol_kp1 

   # %% Plotting: 

plt.close('all') 

plt.figure(1) 

 

plt.subplot(2, 1, 1) 

plt.plot(t_plot_array, 1-ypix_plot_array, 'b') 

plt.grid(b=True, which='major', color='#666666', linestyle='-') 

plt.minorticks_on() 

plt.grid(b=True, which='minor', linestyle='-', alpha=1) 
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plt.ylim(0.69, 1.1) 

plt.xlim(t_start,200) 

plt.xlabel('t [min]') 

plt.ylabel('[FTU]') 

plt.legend(('Response due to PIX',)) 

plt.subplot(2, 1, 2) 

plt.plot(t_plot_array, U_pix, 'g') 

plt.grid(b=True, which='major', color='#666666', linestyle='-') 

plt.minorticks_on() 

plt.grid(b=True, which='minor', linestyle='-', alpha=1) 

plt.ylim(0, 2) 

plt.xlim(t_start, 200) 

plt.xlabel('t [min]') 

plt.ylabel('[%]') 

plt.legend(('PIX input',)) 

plt.show()  

plt.figure(2) 

plt.subplot(2, 1, 1) 

plt.plot(t_plot_array, 1-ypax_plot_array, 'b') 

plt.ylim(0.65, 1.1) 

plt.xlim(150, 500) 

plt.xlabel('t [s]') 

plt.ylabel('[FTU]') 

plt.legend(('Response due to PAX',)) 

plt.grid(b=True, which='major', color='#666666', linestyle='-') 

plt.minorticks_on() 

plt.grid(b=True, which='minor', linestyle='-', alpha=1) 

plt.subplot(2, 1, 2) 
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plt.plot(t_plot_array, U_pax, 'g') 

plt.grid(b=True, which='major', color='#666666', linestyle='-') 

plt.minorticks_on() 

plt.grid(b=True, which='minor', linestyle='-', alpha=1) 

plt.ylim(0, 2) 

plt.xlim(150, 500) 

plt.xlabel('t [min]') 

plt.ylabel('[%]') 

plt.legend(('PAX input',)) 

plt.figure(3) 

plt.subplot(2, 1, 1) 

plt.plot(t_plot_array,1- ypol_plot_array, 'b') 

plt.grid(b=True, which='major', color='#666666', linestyle='-') 

plt.minorticks_on() 

plt.grid(b=True, which='minor', linestyle='-', alpha=1) 

plt.ylim(0.96, 1.01) 

plt.xlim(300, 850) 

plt.xlabel('t [min]') 

plt.ylabel('[FTU]') 

plt.legend(('Response due to POL',)) 

 

plt.subplot(2, 1, 2) 

plt.plot(t_plot_array, U_pol, 'g') 

plt.grid(b=True, which='major', color='#666666', linestyle='-') 

plt.minorticks_on() 

plt.grid(b=True, which='minor', linestyle='-', alpha=1) 

plt.ylim(0, 2) 

plt.xlim(300, 850) 
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plt.xlabel('t [min]') 

plt.ylabel('[%]') 

plt.legend(('POL input',)) 

 

#---- 

plt.figure(4) 

 

plt.subplot(2, 1, 1) 

plt.plot(t_plot_array,yTurb_plot_array, 'b') 

plt.grid(b=True, which='major', color='#666666', linestyle='-') 

plt.minorticks_on() 

plt.grid(b=True, which='minor', linestyle='-', alpha=1) 

plt.ylim(0.6, 1.01) 

plt.xlim(0, 850) 

plt.xlabel('t [min]') 

plt.ylabel('[FTU]') 

plt.legend(('System response',)) 

 

plt.subplot(2, 1, 2) 

plt.plot(t_plot_array, U_pol, 'g--', label='POL') 

plt.plot(t_plot_array, U_pix, 'b:', label='pix') 

plt.plot(t_plot_array, U_pax, 'r', label='pax') 

plt.xlabel('t [sec]') 

plt.ylabel('[%]') 

plt.grid(b=True, which='major', color='#666666', linestyle='-') 

plt.minorticks_on() 

plt.grid(b=True, which='minor', linestyle='-', alpha=1) 

plt.ylim(0, 2) 
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plt.xlim(0, 850) 

plt.xlabel('t [min]') 

plt.ylabel('[%]') 

plt.legend() 

 

plt.figure(5) 

 

 

fig, ax = plt.subplots() 

ax.plot(t_plot_array, U_pol, 'k--', label='POL') 

ax.plot(t_plot_array, U_pix, 'k:', label='pix') 

ax.plot(t_plot_array, U_pax, 'k', label='pax') 

plt.xlabel('t [min]') 

plt.ylabel('[%]') 

plt.grid(b=True, which='major', color='#666666', linestyle='-') 

plt.minorticks_on() 

plt.grid(b=True, which='minor', linestyle='-', alpha=1) 

legend = ax.legend(loc='upper right', shadow=True, fontsize='x-large') 

 

# Put a nicer background color on the legend. 

legend.get_frame().set_facecolor('C0') 

 

plt.show() 

 

Simulation time setting: 

# %% Time settings: 

ts = 0.1  # Time-step [min] 

t_start = 0.0  # [min] 
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t_stop = 850.0  # [min] 

N_sim = int((t_stop-t_start)/ts) + 1 

The values of the inputs PIX, PAX, POL are stored in arrays as the following 

# PIX input 

U_pix = np.zeros(N_sim) 

U_pix[int(0/ts):] += 1 

U_pix[int(100/ts):] += -1 

 

# PAX input 

U_pax = np.zeros(N_sim) 

U_pax[int(200/ts):] += 1 

U_pax[int(300/ts):] += -1 

 

# POL input 

U_pol = np.zeros(N_sim) 

U_pol[int(402/ts):] += 1 

U_pol[int(650/ts):] -= 1 

The simulation loop : 

for k in range(0, N_sim): 

    t_k = k*ts   

    #First order Euler-forward integration (Euler step): 

    if Solver_mode=='first_order':         

        ypix_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pix']['K'], 

                                         U_pix[k],modelparameters.turbParrameters['pix']['Tc'], 

                                         ypix_k) 

ypax_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pax']['K'], 

                                         U_pax[k],modelparameters.turbParrameters['pax']['Tc'], 
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                                         ypax_k) 

        ypol_kp1=sim_function.forward_euler(ts,modelparameters.turbParrameters['pol']['K'], 

                                         U_pol[k],modelparameters.turbParrameters['pol']['Tc'], 

                                         ypol_k) 

    if Solver_mode=='second_order':         

        

[y1pix_k,y2pix_k]=sim_function.second_order(ts,modelparameters.turbParrameters['pix']['

K'], 

                                         U_pix[k],modelparameters.turbParrameters['pix']['Tc1'], 

                                         modelparameters.turbParrameters['pix']['Tc2'], 

                                         y1pix_k,y2pix_k) 

        ypix_kp1=y2pix_k 

y1pax_k,y2pax_k=sim_function.second_order(ts,modelparameters.turbParrameters['pax']['

K'], 

                                         U_pax[k],modelparameters.turbParrameters['pax']['Tc1'], 

                                         modelparameters.turbParrameters['pax']['Tc2'], 

                                         y1pax_k,y2pax_k) 

        ypax_kp1=y2pax_k 

        

y1pol_k,y2pol_k=sim_function.second_order(ts,modelparameters.turbParrameters['pol']['K

'], 

                                         U_pol[k],modelparameters.turbParrameters['pol']['Tc'], 

                                         modelparameters.turbParrameters['pol']['Tc2'], 

                                         y1pol_k,y2pol_k) 

        ypol_kp1=y2pol_k 

    # Storage for plotting: 

    t_plot_array[k] = t_k 

    ypix_plot_array[k] = ypix_k 

    ypax_plot_array[k] = ypax_k 
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    ypol_plot_array[k] = ypol_k 

    yTurb_plot_array[k]=1-(ypix_k+ypax_k+ypol_k) 

    # Time shift: 

    ypix_k = ypix_kp1 

    ypax_k = ypax_kp1 

    ypol_k = ypol_kp1 
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Appendix B Time delay estimation code 

 

import numpy as np 

import pandas as pd 

# %% Time settings: 

ts=1 

t_start = 0.0  # [min] 

t_stop = 850 # [min] 

#"----------------------------------------" 

# load training data 

train_df = pd.read_csv("xtrain_data.csv") 

u1=train_df[['U_pax']].values 

train_df = pd.read_csv("ytrain_data.csv")    

y=train_df[['TURB']].values 

t_plot_array = np.linspace(t_start,t_stop,len(y)) 

delay= np.zeros(len(y)) 

delay_count=0 

Condition_u=0 

eps_u=0.1 # noise margin rang 

eps_y=0.000099# noise margin rang 

for k in range(0, len(y)-5): 

     

    if (y[k+1]>=y[k]-eps_y and y[k+1]<=y[k]+eps_y):# Condition_y 

        if (u1[k+1]<u1[k]-eps_u or u1[k+1]>u1[k]+eps_u):#Condition_u 

            Condition_u=1 

             

        if Condition_u==1: 
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            delay[k]=1 

            delay_count+=1 

         

        #print (k) 

    else: 

        Condition_u=0 

print ("time delay=") 

 

print ( (delay_count*ts)) 
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Appendix A Training ANN model 

import numpy as np 

import pandas as pd 

from keras.models import Sequential 

from keras.layers import * 

# load training data 

train_df = pd.read_csv("train_data.csv") 

X1 = train_df.drop('y', axis=1).values 

Y1 = train_df[['y']].values 

# create neural network model 

model = Sequential() 

model.add(Dense(3, input_dim=4, activation='linear')) 

model.add(Dense(10, activation='linear')) 

model.add(Dense(1, activation='linear')) 

model.compile(loss="mean_squared_error", optimizer="adam") 

 

# train the model 

model.fit(X1,Y1,batch_size=32,epochs=200,verbose=1) 

#model.fit(X1,Y1,batch_size=10,epochs=2000,verbose=1) 

# Save the model to hard drive 

model.save('model.h5') 

test_df = pd.read_csv("train_data.csv") 

X2 = test_df.drop('y', axis=1).values 

Y2 = test_df[['y']].values 

# test the model 

mse = model.evaluate(X2,Y2, verbose=1) 

print('Mean Squared Error: ', mse) 

 


