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Summary:  

In this thesis were shown basic toolbox of blast estimation and hazards probabilities due 

to fragments, written in open-source programming language, Python. Used method in 

blast parameters calculation is easily appliable to any other stoichiometric gaseous fuel-

air mixture. A code repository is given in appendix and it is freely available to 

download, modify and redistribute under the GNU GPLv3 license. 
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Nomenclature 
 

CFD  Computational fluid dynamics 

CSD  Computational structural dynamics 

DDT  Deflagration to detonation transition 

HyRAM Hydrogen Risk Assessment Models 

LPG  Liquefied Petroleum Gas 

QRA  Quantitative risk assessment  

TNO Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek 

(English: Netherlands Organization for Applied Scientific Research), an 

independent research organization in the Netherlands. 

TNT  Trinitrotoluene 

VCE  Vapor cloud explosion 
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1 Introduction 

1.1 Background 

Hydrogen generation, transportation and storage, and hence the need to assess and control 

hydrogen explosions hazards is common to many energy-related fields. This highly 

flammable gas is good alternative to hydrocarbons due to almost no emissions, thus becomes 

widely spread. Nowadays hydrogen stations can be found close to populated parts of modern 

cities, so risks of explosion hazards are real. Many articles related to this issue can be found, 

but mostly they are related to direct or primary damage from accidents or to formation of 

overpressure and impulse from blast wave of VCE. This work related to dangers from 

secondary risks with direct collision of structure fragments and debris with human. 

1.2 Existing software 

Explosion modelling and potential damage approximation considered as part of quantitative 

risk assessment (QRA). Up to date there are many software tools for quantitative risk 

assessment (QRA), over 80 tools[1]. But most of them does not support vapor cloud 

explosions (VCE) or does not do necessary calculations with hydrogen as fuel, so only a few 

can be used for damage estimation from fragments. 

HyRAM (Hydrogen Risk Assessment Models) is opensource software tool, was developed by 

Sandia National Laboratories for the U.S. Department of Energy (DOE) Office of Energy 
Efficiency and Renewable Energy (EERE) Hydrogen and Fuel Cell Technologies Office (HFTO). 
The toolkit uses variety of models for different types of physical and chemical effects 
following hydrogen release accident. If we take a look at probit functions in this software, 
they mostly are related to primary or direct harms from resulting processes of accidents. 
There are also CFD based tools, as FLACS, released by GexCon AS and KFX, built by 
ComputIT. But cost of such tools is expensive and applying every detail for proper usage of 
them is troublesome due to limited access to source code. 
So in some cases company can do QRA calculations by making their own toolkit, not 
necessarily thorough, but enough for certain cases. 

1.3 Hydrogen safety 

Pure hydrogen (H2) is the lightest among the gases present in our atmosphere and as such is 

highly diffusive, 3.8 times more so than natural gas, and extremely buoyant [2]. This causes 

H2 to rise at a rate of up to 20m/s in otherwise ambient air. Combination of these effects 

makes difficult to get a combustible concentration of hydrogen without the presence of a 

confined space with some form of roof to keep the gas from escaping too quickly into the 

atmosphere. That being said, once the concentration is in the rather wide range of 

flammability, the gas is highly combustible with only a required ignition energy of roughly 

1/10th. that of natural gas. 
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In this thesis mainly will be taken into account mass/volume of hydrogen in stoichiometric 

mixture of hydrogen-air and without any direct relation to geometry.  

1.4 Goal and structure of the thesis 

The goal of this work is to find suitable equations and assumptions based on related works 

and experiments and to write Python code to estimate blast parameters and possibilities of 

harm from fragments. 

This work is divided into two main parts: 

- Defining initial parameters and calculation of blast parameters 

- Calculation of possibilities of hazards 
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2 Theory 
Explosion is a rapid release of energy. In this work as explosion will defined energy release 

of flammable gas or liquid explosion. According to [3], in process industries such explosions 

can be divided to 7 types: a) physical explosions, b) condensed phase explosions, c) vapor 

cloud explosions (VCEs), d) boiling liquid expanding vapor explosions (BLEVEs), e) 

confined explosions with reaction, f) vapor escapes into, and explosions in, buildings 

(VEEBs), g) dust explosions. In this work, VCEs will be discussed. 

 

Figure 2.1. A typical event tree of accidental releases of combustible gas or evaporating liquid () [1] 

2.1 Deflagration, Detonation and Deflagration to detonation 
transition  

Deflagration is process where front of reaction, in this case combustion, moves slower than 

speed of sound in unreacted component. According to [4], in case of deflagration flame starts 

as laminar, so flame propagation is dictated by molecular diffusion of mass and heat. This 

process of diffusion is slow, so velocity of laminar flame is approximately 3-4 m/s. Due to 

such slow propagation, overpressure from deflagration mostly is in order of millibars 

[Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and 

BLEVEs]. 

Fundamental difference between deflagration and detonation is propagation mechanisms. 

Detonation is process where front of reaction moves faster than speed of sound in unreacted 

component. In detonation reaction front propagates by shock wave, that compresses 

unreacted mixture. For fuel-air mixture at normal conditions propagation velocity reaches 

1500-2000 m/s and peak pressure – 15-20 bar [4]. 
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Graphical comparison between deflagration and detonation is shown on Figure 2.2. from [3] 

Deflagration to detonation transition (DDT) is a process where energy from the deflagration 

can accumulate in the pressure wave in pipes and channels due to their geometry. When 

accumulated energy reaches its limits, the resulting compression of the gas leads to a 

detonation. 

 

Figure 2.2. Comparison of detonation and deflagration gas dynamics. [3] 

2.2 Vapor cloud explosion 

By simply saying vapor cloud explosion (VCE) is combustion of flammable vapor with 

overpressure. More detailed requirements of such combustion to be classified as VCE are 

shown in Figure 2.3. 

Flame acceleration is main part of VCE. Increase in this acceleration comes with turbulence 

stretches, that tears and increases flame front area. The cause of turbulence is motion of gas, 

due to flow turbulence as it flows ahead of flame front, while being pushed by increasing in 

volume combustion products or due to interaction between gas and obstacles on its way. 

2.3 Explosion estimation models 

To find hazards of fragments, generated as the result of explosion, overpressure and/or 

impulse of blast must be calculated. Due to complicate calculations and dependance of initial 

conditions to each other, three empirical methods are widely used to estimate blast 

parameters. They are: TNT equivalency, TNO multi-energy, Baker–Strehlow-Tang.  
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Figure 2.3. Graphical interpretation of required conditions for VCE. [] 

 

According to [4], nowadays there are actually many derivative methods, based on 

beforementioned three. 

2.3.1 TNT Equivalency Method 

The TNT equivalency model is very simple and is based on the assumption of equivalence 

between the flammable substance involved in the VCE, and an amount of TNT, in terms of 

its potential blast effects. The equivalent mass of TNT is found by following equation: 

𝑊 =
𝜂𝑚𝐸𝑐

𝐸𝑇𝑁𝑇
, 

(2.1) 

where W - equivalent mass of TNT (mass),  

𝜂 - empirical explosion efficiency (unitless),  

m - mass of flammable gas (mass),  

𝐸𝑐 - heat of combustion of the flammable gas (energy/mass),  

𝐸𝑇𝑁𝑇 - energy of explosion of TNT (energy/mass). 

But this method has some shortcomings such as: does not consider effects of confinement and 

congestion, assumes detonation, difficult to estimate center of the explosion. 

2.3.2 TNO Multi-energy Method 

TNO multi-energy is based on assumption that explosion more dependent on the level of 

confinement and less on the type of fuel. Severe blast effects are produced by the portions of 

vapor in partially confined or obstructed regions. The remaining unconfined parts will simply 

burn out without seriously contributing to the blast. Blast itself is assumed to be result of 

hemispherical steady flame speed, stoichiometric hydrocarbon-air explosion at ground level. 
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Firstly, volume of vapor cloud 𝑉𝑐, if only mass was given, and dimensionless scaled distance 

�̅� are needed to be calculated: 

𝑉𝑐 = 𝑄𝑒𝑥𝑡/(𝜌 ∙ 𝑐𝑠) (2.2) 

𝐸 = 𝑉 ∙ 3,5 𝑀𝐽/𝑚3 (2.3) 

�̅� =
𝑅

(𝐸/𝑃0)1/3
 

(2.4) 

where 𝑄𝑒𝑥𝑡 – the quantity of gas, kg, 

𝜌 – density of gas, kg/m3, 

𝑐𝑠 – the stoichiometric concentration, %vol, 

E – combustion energy involved of stoichiometric mixture hydrogen-air, J, 

𝑃0 – ambient pressure, Pa, 

Following equations are used to calculate positive phase duration and peak side-on 

overpressure in relation to relative distance: 

𝑡+ =
𝑡+̅ ∙ (𝐸/𝑃0)1/3

𝑐0
 

(2.5) 

Δ𝑃𝑆 = 𝑃0 ∙ Δ�̅�𝑆 (2.6) 

 

𝐼 =
1

2
∙ 𝑡+ ∙ Δ𝑃𝑆 

(2.7) 

 

 

 

 

Figure 2.4. TNO Multi-energy method blast 

parameters 

In these charts, ten curves that span the range of 

severities from mild deflagrations to detonations 

have been shown. Each curve is assigned an 
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integer that indicates its severity. Thus, curve 1 means mild deflagration and 10 stands for 

detonation. 

2.3.3 Baker–Strehlow-Tang Method 

BST method has similarity with TNO multi-energy method and uses set of correlation curves 

of dimensionless pressure in relation to scaled distance. This method is based on constant 

flame velocity, so strength of blast is proportional to maximum flame speed achieved in 

cloud. baker et al. (1994) suggests from experimental data that flame speed can be correlated 

in relation to fuel reactivity, density of obstacles and confinement as parameters. In Table 2.1. 

shown possible combination of beforementioned parameters based on different forms of 

flame expansion. Flame velocities in table are represented in form of Mach number, relation 

of local flow velocity and local speed of sound, and values are maximum flame speed for 

each case. 

Table 2.1. Flame speed in Mach number for Soft Ignition Blast (Baker, 2003) [3] 

1D Flame Expansion Case 
Obstacle density 

High Medium Low 

Reactivity 

High 5.2 5.2 5.2 

Medium 2.27 1.77 1.03 

Low 2.27 1.03 0.294 
     

2D Flame Expansion Case 
Obstacle density 

High Medium Low 

Reactivity 

High DDT DDT 0.59 

Medium 1.6 0.66 0.47 

Low 0.66 0.47 0.079 
     

2.5D Flame Expansion 
Case 

Obstacle density 

High Medium Low 

Reactivity 

High DDT DDT 0.47 

Medium 1.0 0.55 0.29 

Low 0.50 0.35 0.053 
     

3D Flame Expansion Case 
Obstacle density 

High Medium Low 

Reactivity 

High DDT DDT 0.36 

Medium 0.50 0.44 0.11 

Low 0.34 0.23 0.026 
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2.4 Fragment formation 

Hazards from gas explosions includes high temperature, overpressure, dynamic 

pressure, blast wave. More of concern are fragments and debris from applied overpressure 

due to being more hazardous to people [8]. Human injury from blast debris depends on many 

factors. These include velocity, angle of impact, size, density, mass and the portion of the 

body involved. 

The main force behind fragments and debris formation is load on object(-s) from blast 

wave, so two conditions are taken into consideration: 1) the loading, acting on surface of 

object and 2) response of object to the loading (displacement, breaking down, etc.). 

 

Figure 2.5. Schematic representation of the disturbance of the blast caused by a 

structure. [] 

Fragments generated from explosion can be divided to two types. Primary fragment denoted 

fragments of container or casing of explosive source. If the source is high explosive, then 

casing usually raptures to many small fragments with velocities up to several kilometers per   

second. Secondary fragments are fragments from nearly located objects, that get damaged 

due to overpressure and impulse of blast wave. 
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2.5 Glass fragments 

Glass is a popular building material used in many structures. It is very brittle and fragile 

compared to most of other building materials, so it is very vulnerable to extreme loads such 

as explosion. According to [], glass shard missiles cause most of injuries on human body and 

casualties.  

A large number of experiments have been carried out on glass windows under blast loading. 

Nevertheless, for security concern, most of these tests are still confidential and not for public 

access.  

For simplicity, pressure at which window-pane might break is taken in calculation as 2 kPa 

and average value with 50% of windows broken as 5 kPa. These values are found as results 

of many experiments. 

But in reality, there are also many parameters that determines the actual pressure at which 

window-pane breaks.[9] 

Brittleness of glass is affected by how window was handled, cleaned and were exposed to 

wind. These parameters might show the damage degree on glass surface as microcracks. 

Static fatigue due to continuous load on window-pane also decreases glass strength. Addition 

to this load, angle and distance from explosion influences on breakage of window. 
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3 Software setup  
By term of “calculator” in this work going to be defined Python code, written in 

purpose to estimate VCE of stoichiometric hydrogen-air mixture and probability of further 

hazardous effects on structure and human. 

3.1 Structure. 

The calculator consists of 2 files, Blast_calculator.py and probit.json and 2 folders, 

overpressure and duration. Blast_calculator.py is base script of this calculator with defined 

functions. Probit.json includes probit values for each percent of possibility as shown in Table 

3.1. Folders overpressure and duration have 10 different .json format files in each. In these 

files are written values of dimensionless side-on overpressure and dimensionless positive 

phase duration for each 10 blast strengths of TNO Multi-energy method.  

Table 3.1. Relationship between probabilities and probits [5] 

 

In Python code defined following functions: 

- to sort within arrays to find closest numbers (in “+” and “-” directions) for later usage 

in interpolation formulas; 

- to calculate heat of combustion of stoichiometric hydrocarbon – air mixture from 

mass; 

- to calculate scaled distance from Eq. 2.4; 

- to open corresponding .json files for overpressure and positive phase duration for 

given distance or to whole way of blast to available in graphs values in relation to 

scaled distance; 

- to calculate impulse of blast as given in Eq. 2.7; 
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- to plot values of overpressure, impulse and positive phase duration in ordinate and 

scaled distance in abscissa; 

- to find some necessary values as fragment velocity to use in further probit functions 

calculations; 

- to calculate probit functions of damage to structure (building), probability of windows 

breakage and possibility of survival of human after been hit by fragment of different 

mass given by user. 

Probit functions are taken from [5] because such works with derived functions for 

damage to buildings, fragments formation are very few. 

The probit for structural damage is given in Eisenberg []: 

𝑌 = −23.8 + 2.92ln (𝑃𝑠)         (3.1) 

The probit for structural damage is given in Green book [] for 1% probability of breakage 

at pressure 1 kPa (for old windows): 

𝑌 = −11.97 + 2.12ln (𝑃𝑠)         (3.2) 

The probit for survival possibility is given in Green book [] in dependance to mass of 

fragment and velocity: 

𝑌 = −13.19 + 10.54ln (𝑉0)        (3.3) 
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4 Results 
As example to check how does written Python code performs were done 2 types of 

calculations. Firstly, were done comparison of side-on overpressure, impulse and P-I graph 

for 4 different masses of hydrogen, 0.1, 1, 10 and 100 kilograms of hydrogen for detonation. 

Second comparison were done for window breakage probability for 3 different blast 

strengths, detonation (according to multi-energy method’s graph is 10), 1 bar deflagration (7) 

and 0.1 bar deflagration (4). For easier understanding of these calculations were used 

Matplotlib library in Python programming language. Due to lack of experience in working 

with Python, I have made different scripts for plotting. 

The result of side-on overpressure - distance, impulse – distance and overpressure – impulse 

relations for 4 masses is shown in Figure 4.1 , Figure 4.2 and Figure 4.3, respectively.  

 

Figure 4.1. Side-on overpressure and distance relation in log scale. 
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Figure 4.2. Impulse and distance relation in log scale. 
 

 

Figure 4.3. Overpressure – impulse (P-I) graph. 

As can be seen from graphs, change in overpressure is directly proportional to mass. Mass of 

gas in order to be stochiometric defines gas cloud sizes. Difference comes from different 

cloud volumes and energy of explosion which is related to scale distance calculations. 

According to damage estimations on common structures [8], 2 kPa is assumes as “Safe 

distance” due to probability 0.95 of no serious damage below this pressure value with 

projectile limit, some damage to house ceilings and 10% window glass breakage. So from 

Figure 4.1. can be found safe distances for each mass and they are: for 0.1 kg of hydrogen is 
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~ 620 m, for 1 kg of hydrogen – 1700 m., for 10 kg of hydrogen – 3000 m. and for 100 kg – 

more than 5000 m.  

This was one way to estimate safe distance. Another way is to use overpressure-impulse (P-I) 

graph. According to ‘Green book’ [5], there are 3 major thresholds with following lower 

limits: 1 threshold/or minor structural damage – P = 4.6 kPa and I = 110 Pams; 2 

threshold/or major structural damage - P = 17.5 kPa and I = 290 Pams; 3 threshold/or partial 

demolition. 50 or 75% of walls destroyed or unsafe - P = 40 kPa and I = 460 Pams. From 

Figure 4.3 after applying these limits can be seen that distance of 5000 m in calculations are 

not enough for 100 kg of hydrogen to find safe zone. By using P-I graph with combination of 

overpressure – distance or impulse – distance can be determined approximate limits of three 

thresholds for each mass of fuel. 

From impulse values can be obtained approximate distance of flight of fragment via 

assuming mass of fragment. But due to unknown parameters as angle of flight, surface area, 

body part, etc. this estimations are too vague, so estimated distance from P-I diagram is more 

reliable. 

The result of comparison of window breakage for 3 different types of explosions is shown in 

Figure 4.4. 

 

 

Figure 4.4. Windows breakage probability by distance  

The results for 1 bar deflagration and detonation are same and overlap due to small distance 

of difference for blast strength higher than 6-7 and at certain distance blast becomes 

independent of its initial explosion energy.  
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5 Conclusion 
The very difference of explosion between VCE and high explosive or missile is difference in 

duration, which defines impulse of explosion. Also, in comparison to other natural gases, 

explosion from hydrogen mixture produces very high values of overpressure [7], so applied 

equations are enough only to show approximate effects of fragments, for better and complete 

simulation different hazard estimation models should be added, as well as more details.  

High overpressure produces many little in size and mass fragments, so simplified calculations 

as in this work are not enough without experiments to find behavior of hydrogen-air mixture 

in VCEs.  

 

 

 

 



 

 

  References 

21 

References 
 

[1] S. Lewis, “An Overview of Leading Software Tools for QRA,”. 

[2]  Encyclopedia Britannica. In: (). url: 

https://www.britannica.com/science/hydrogen/Reactivity-of-hydrogen. 

[3] S. Mannan, “Lees' Loss Prevention in the Process Industries” (Fourth Edition) 

[4] Bjerketvedt et. al, “Gas explosion handbook”. In: Journal of Hazardous Materials, 

1997 

[5] Methods for the determination of possible damage. In: CPR16E. The Netherlands 

Organization of Applied Scientific Research; 1989. 

[6] Guidelines for chemical process quantitative risk analysis, center for chemical process 

safety. American Institute of Chemical Engineers; 2000. 

[7] Lian et. al, “Methods for estimating fragment hazard in gas explosion”. In: Journal of 

Hazardous Materials, 2020 

[8] Daniel A. Crowl, “Fundamentals of Fires and Explosions,” in Understanding 

Explosions, John Wiley & Sons, Ltd, 2003, pp. 9–112. doi: 

https://doi.org/10.1002/9780470925287.ch2. 

[9] D. K. Pritchard, “Breakage of glass windows by explosions,” Journal of Occupational 

Accidents, vol. 3, no. 2, pp. 69–85, May 1981, doi: 10.1016/0376-6349(81)90001-8. 

 

https://doi.org/10.1002/9780470925287.ch2
https://doi.org/10.1016/0376-6349(81)90001-8


 

 

  Appendix A. Thesis task description 

22 

Appendix A. Thesis task description 



 

 

  Appendix A. Thesis task description 

23 

 

  



 

 

  Appendix A. Thesis task description 

24 

Appendix B. Software repository 
 

duration Folder contains values from TNO Multi-energy 

positive phase duration curves, 10 files, each per 

blast strength. 

overpressure Folder contains values from TNO Multi-energy 

overpressure curves, 10 files, each per blast 

strength. 

Blast_calculator.py Main Python script with all the functions. 

probit.json Contains values to convert probits to possibility 

percentage. 

GitHub repository link: 

https://github.com/YMD2/master_thesis.git 
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Appendix C. Python code  

This code might be updated to fix possible issues after submitting Master Thesis, so latest 

version will be available in Github repository from Appen. B 

 

import math 

import numpy as np 

import pandas as pd 

import os 

import matplotlib.pyplot as plt 

import argparse 

import json 

import sys 

import bisect 

 

atmospheric_pressure_default = 101250 

a = 340 #m/s 

P_a = 101325 #Pa 

path = os.getcwd() 

 

def sorting(arr, var): 

    pos = bisect.bisect_left(arr, var) 

    if pos == 0: 

        return arr[0] 

    if pos == len(arr): 

        return arr[-1] 

    before = arr[pos-1] 

    after = arr[pos] 

    return [after, before] 

 

def energy(mass): 

    volume = mass*11.2*100/29.5 

    return 3500000*volume 

 

def scaled_dist(dist=None): 

    if dist==None: 

        n = 100/((P_a/energy(mass))**(1/3)) 

        dist = np.arange(1, n+1, 1, dtype=float) 

    scaled_distance_coeff = ((P_a/energy(mass))**(1/3)) 

    scaled_distance = np.multiply(dist, scaled_distance_coeff) 

    return scaled_distance 

 

def overpressure(dist=None): 

    P_file = json.load( 

        open(path + "\\overpressure\\{}.json".format(blast_strength), 'r')) 

    P_df = pd.DataFrame(P_file) 
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    P_arr = P_df.to_numpy() 

    P_arr=P_arr.astype(np.float32) 

 

    if dist == None: 

        k = np.interp(scaled_dist(), P_arr[:, 0], P_arr[:, 1]) 

        overpressure = np.multiply(k, P_a) 

    else: 

        s = sorting(P_arr[:,0], dist) 

        ar0 = P_arr[:, 0] 

        ar1 = P_arr[:, 1] 

        v=[] 

        for i in s: 

            ind=np.where(ar0 == i) 

            v.append(ar1[ind]) 

        k = v[0] + (scaled_dist(dist)- s[0])* (v[1]-v[0])/(s[1]-s[0]) 

        overpressure = np.multiply(k, P_a) 

    return overpressure 

 

def duration(dist=None): 

    T_file = json.load( 

        open(path + "\\duration\\{}.json".format(blast_strength), 'r')) 

    T_df = pd.DataFrame(T_file) 

    T_arr = T_df.to_numpy() 

    T_arr = T_arr.astype(np.float32) 

 

    calc1 = ((energy(mass)/P_a) ** (1/3)) * 1/a 

    if dist == None: 

        l = np.interp(scaled_dist(), T_arr[:, 0], T_arr[:, 1]) 

        positive_phase_duration = np.multiply(calc1, l) 

    else: 

        s = sorting(T_arr[:, 0], dist) 

        ar0 = T_arr[:, 0] 

        ar1 = T_arr[:, 1] 

        u=[] 

        for i in s: 

            ind=np.where(ar0 == i) 

            u.append(ar1[ind]) 

        l = u[0] + (scaled_dist(dist) - s[0]) * (u[1]-u[0])/(s[1]-s[0]) 

        positive_phase_duration = np.multiply(calc1, l) 

    return positive_phase_duration 

 

def impulse(dist=None): 

    impulse = np.multiply(0.5*overpressure(dist), duration(dist)) 

    return impulse 

 

def plotting(x, y, ax=None, plt_kwargs={}): 

    if ax is None: 
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        ax = plt.gca() 

    ax.plot(x,y,**plt_kwargs) 

    return(ax) 

     

def probit_for_structure_damage(dist): 

    sd = scaled_dist(dist) 

    ovp = overpressure(sd) 

    imp = impulse(sd) 

    if ovp <= 4600 and imp <= 110: 

        V = ((4600/ovp)**3.9)+((110/imp)**5) 

        return 5 - 0.26*np.log(V) 

    elif ovp >= 40000 and imp >= 460: 

        V = ((40000/ovp)**7.4)+((460/imp)**11.3) 

        return 5 - 0.22*np.log(V) 

    else: 

        V = ((17500/ovp)**8.4)+((290/imp)**9.2) 

        return 5 - 0.26*np.log(V) 

 

def window_breakage(dist): 

    sd = scaled_dist(dist) 

    ovp = overpressure(sd) 

    return -11.97+2.12* np.log(ovp) 

 

def frag_velocity(dist, mass_of_fragm): 

    sd = scaled_dist(dist) 

    ovp = overpressure(sd) 

    imp = impulse(sd) 

    P_r = np.empty_like(ovp) 

    P_r.append(2*ovp + ((2.4*ovp**2)/(0.4*ovp)+2*1.4*P_a)) 

    imp = (P_r/ovp)*imp 

    return imp/mass_of_fragm 

 

def probit_for_fragment_hazard(velocity, mass_of_fragm): 

    if mass_of_fragm>0.001 and mass_of_fragm < 0.1: 

        s=mass_of_fragm*(velocity**5.115) 

        return -29.15+2.10*np.log(s) 

    elif mass_of_fragm > 0.1 and mass_of_fragm < 4.5: 

        s = 0.5*mass_of_fragm*(velocity**2) 

        return -17.56+5.30*np.log(s) 

    elif mass_of_fragm > 4.5: 

        return -13.19+10.54*np.log(velocity) 

     

def percentage(probit): 

    pb_file = json.load(open(path + "\\probit.json", 'r')) 

    pb_df = pd.DataFrame(pb_file) 

    pb_arr = pb_df.to_numpy() 

    pb_arr = pb_arr.astype(np.float32) 
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    prb = np.interp(probit, pb_arr[:, 0], pb_arr[:, 1]) 

    return prb 

 

if __name__ == '__main__': 

    m = input("Enter mass of hydrogen: ") 

    if m.isnumeric()==True: 

        mass = float(m) 

    else: 

        print("Wrong input. Mass will be set as 1 kg by default") 

        mass = 1 

    blast_strength = input("Enter blast strength (from 1 to 10): ") 

    if blast_strength.isnumeric() == False and blast_strength > 10: 

        print("Wrong input. Blast strength will be set to 10 by default") 

        blast_strength = 10         

    else: 

        pass 

    d = input("Enter distance between wall and explosion center: ") 

    if d.isnumeric() == True: 

        dist = float(d) 

        pb1 = round(percentage(float(probit_for_structure_damage(dist))), 3) 

        if pb1<=99.9: 

            print(f'The probability of damage to building itself is {pb1}%') 

        elif pb1>99.9: 

            print('The probability of damage to building itself is higher than

 99.9%') 

        pb2 = round(percentage(float(window_breakage(dist))),3) 

        if pb2 <= 99.9: 

            print(f'The probability of windows breakage is {pb2}%') 

        elif pb2 > 99.9: 

            print('The probability of windows breakage is higher than 99.9%') 

        mof = input( 

            "Enter mass of fragment to estimate its velocity in kilograms: ") 

        if mof.isnumeric() == True: 

            mass_of_fragm = float(mof) 

            velo = frag_velocity(d, mof) 

            pb3 = round(percentage( 

            float(probit_for_fragment_hazard(velo, mof))), 3) 

        if pb3 <= 99.9: 

            print( 

                f'The probability of survival after collision with fragment wi

th mass {mass_of_fragm} is {pb3}%') 

        elif pb3 > 99.9: 

            print( 

                f'The probability of survival after collision with fragment wi

th mass {mass_of_fragm} is higher than 99.9%') 

    else: 

        print("Wrong input") 
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        pass 

    pl=input("Are plots of overpressure and impulse necessary? y/n ") 

    if pl.lower == 'y': 

        x = scaled_dist()/((P_a/energy(mass))**(1/3)) 

        plotting(x, overpressure()/1000, title='side-on overpressure, kPa') 

        plt.plot(x, duration(), title='positive phase duration, s') 

        plt.plot(x, impulse()/1000, title='impulse, kPa*s') 

        plt.grid() 

        plt.show() 

    elif pl.lower == 'n': 

        sys.exit(0) 

Due to lack of experience in making functions with several *args and **kwargs, there written 

two different scripts only for plotting. 

1. To plot side-on overpressure, impulse and P-I graph for different masses as arguments in 

functions:  

import math 

import numpy as np 

import pandas as pd 

import os 

import matplotlib.pyplot as plt 

import json 

import matplotlib.pyplot as plt 

 

a = 340  # m/s 

P_a = 101.325  # kPa 

path = os.getcwd() 

blast_strength = 10 

dist = np.arange(1, 5001, 1, dtype=int) 

 

def energy(mass): 

    volume = mass*11.2*100/29.5 

    return 3500000*volume 

 

def scaled_dist(mass): 

    scaled_distance_coeff = ((P_a/energy(mass))**(1/3)) 

    scaled_distance = np.multiply(dist, scaled_distance_coeff) 

    scaled_distance=np.where(scaled_distance < 0.24, 0, scaled_distance) 

    return scaled_distance 

 

def overpressure(mass): 

    P_file = json.load( 

        open(path + "\\overpressure\\{}.json".format(blast_strength), 'r')) 

    P_df = pd.DataFrame(P_file) 

    P_arr = P_df.to_numpy() 

    P_arr=P_arr.astype(np.float32) 

    k = np.interp(scaled_dist(mass), P_arr[:, 0], P_arr[:, 1]) 
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    overpressure = np.multiply(k, P_a) 

    return overpressure 

 

def duration(mass): 

    T_file = json.load( 

        open(path + "\\duration\\{}.json".format(blast_strength), 'r')) 

    T_df = pd.DataFrame(T_file) 

    T_arr = T_df.to_numpy() 

    T_arr = T_arr.astype(np.float32) 

 

    calc1 = ((energy(mass)/P_a) ** (1/3)) * 1/a 

    l = np.interp(scaled_dist(mass), T_arr[:, 0], T_arr[:, 1]) 

    positive_phase_duration = np.multiply(calc1, l) 

    return positive_phase_duration 

 

def impulse(mass): 

    impulse = np.multiply(0.5*overpressure(mass), duration(mass)) 

    return impulse 

 

'''df = pd.DataFrame({'distance': dist}) 

df['for 0.1 kg'] = overpressure(0.1) 

df['for 1 kg'] = overpressure(1) 

df['for 10 kg'] = overpressure(10) 

df['for 100 kg'] = overpressure(100) 

print(scaled_dist(10)) 

df.to_excel('Table of results of side-on overpressure.xlsx')''' 

 

plt.loglog(dist, overpressure(0.1), label='side-

on pressure for 0.1 kg hydrogen')  

plt.loglog(dist, overpressure(1), label='side-on pressure for 1 kg hydrogen') 

plt.loglog(dist, overpressure(10), label='side-

on pressure for 10 kg hydrogen') 

plt.loglog(dist, overpressure(100), label='side-

on pressure for 100 kg hydrogen') 

plt.xlabel('distance, m') 

plt.ylabel('side-on pressure, kPa') 

plt.legend() 

plt.grid() 

plt.show() 

 

plt.loglog(dist, impulse(0.1), 

           label='impulse for 0.1 kg hydrogen') 

plt.loglog(dist, impulse(1), label='impulse for 1 kg hydrogen') 

plt.loglog(dist, impulse(10), label='impulse for 10 kg hydrogen') 

plt.loglog(dist, impulse(100), 

           label='impulse for 100 kg hydrogen') 
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plt.xlabel('distance, m') 

plt.ylabel('impulse, kPa*ms') 

plt.legend() 

plt.grid() 

plt.show() 

 

plt.loglog(overpressure(0.1), impulse(0.1), label='PI graph for 0.1 kg hydroge

n') 

plt.loglog(overpressure(1), impulse(1), label='PI graph for 1 kg hydrogen') 

plt.loglog(overpressure(10), impulse(10), label='PI graph for 10 kg hydrogen') 

plt.loglog(overpressure(100), impulse(100), label='PI graph for 100 kg hydroge

n') 

plt.xlabel('side-on pressure, kPa') 

plt.ylabel('impulse, kPa*ms') 

plt.legend() 

plt.grid() 

plt.show() 

 

2. To plot window breakage probability from probit function for different blast strengths as 

arguments in functions:  

import math 

import numpy as np 

import pandas as pd 

import os 

import matplotlib.pyplot as plt 

import json 

import matplotlib.pyplot as plt 

 

a = 340  # m/s 

P_a = 101325  # kPa 

path = os.getcwd() 

mass = 10 

dist = np.arange(1, 501, 1, dtype=int) 

 

def energy(): 

    volume = mass*11.2*100/29.5 

    return 3500000*volume 

 

def scaled_dist(): 

    scaled_distance_coeff = ((P_a/energy())**(1/3)) 

    scaled_distance = np.multiply(dist, scaled_distance_coeff) 

    return scaled_distance 

 

def overpressure(blast_strength): 

    P_file = json.load( 

        open(path + "\\overpressure\\{}.json".format(blast_strength), 'r')) 
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    P_df = pd.DataFrame(P_file) 

    P_arr = P_df.to_numpy() 

    P_arr = P_arr.astype(np.float32) 

    k = np.interp(scaled_dist(), P_arr[:, 0], P_arr[:, 1]) 

    overpressure = np.multiply(k, P_a) 

    return overpressure 

 

def window_breakage(blast_strength): 

    probit = -11.97+2.12 * np.log(overpressure(blast_strength)) 

    pb_file = json.load(open(path + "\\probit.json", 'r')) 

    pb_df = pd.DataFrame(pb_file) 

    pb_arr = pb_df.to_numpy() 

    pb_arr = pb_arr.astype(np.float32) 

    prb = np.interp(probit, pb_arr[:, 0], pb_arr[:, 1]) 

    return prb 

 

radius_of_cloud = 0.24/((P_a/energy())**(1/3)) 

 

'''df = pd.DataFrame({'distance': dist}) 

df['scaled distance'] = scaled_dist() 

df['for explosion strength 4'] =  window_breakage(4) 

df['for explosion strength 7'] = window_breakage(7) 

df['for explosion strength 10'] = window_breakage(10) 

 

df.to_excel('Table of results of windows breakage.xlsx')''' 

 

plt.plot(dist, window_breakage(4), '+', label='window breakage probability for

 0.1 bar deflagration (blast strength 4)', ms=3,markevery=5) 

plt.plot(dist, window_breakage(7),'x', label='window breakage probability for 

1 bar deflagration (blast strength 7)',ms=4,markevery=5) 

plt.plot(dist, window_breakage(10),'v', label='window breakage probability for

 detonation (blast strength 10)',ms=3,markevery=5) 

 

plt.axvline(x=radius_of_cloud, label='radius of gas mixture cloud', c='m') 

plt.xlabel('distance, m') 

plt.ylabel('probability, %') 

plt.legend() 

plt.grid() 

plt.show() 

 


