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INTRODUCTION

Computer coding—an activity that involves the creation, modification, and implementation of
computer code and exposes students to computational thinking—is an integral part of today’s
education in science, technology, engineering, and mathematics (STEM) (Grover and Pea, 2013).
As technology is advancing, coding is becoming a necessary process and much-needed skill to
solve complex scientific problems efficiently and reproducibly, ultimately elevating the careers of
those who master the skill. With many countries around the world launching coding initiatives and
integrating computational thinking into the curricula of higher education, secondary education,
primary education, and kindergarten, the question arises, what lies behind this enthusiasm for
learning to code? Part of the reasoning is that learning to code may ultimately aid students’ learning
and acquiring of skills in domains other than coding. Researchers, policy-makers, and leaders in the
field of computer science and education have made ample use of this argument to attract students
into computer science, bring to attention the need for skilled programmers, and make coding
compulsory for students. Bill Gates once stated that “[l]earning to write programs stretches your
mind, and helps you think better, creates a way of thinking about things that I think is helpful in all
domains” (2013). Similar to the claims surrounding chess instruction, learning Latin, video gaming,
and brain training (Sala andGobet, 2017), this so-called “transfer effect” assumes that students learn
a set of skills during coding instruction that are also relevant for solving problems in mathematics,
science, and other contexts. Despite this assumption and the claims surrounding transfer effects,
the evidence backing them seems to stand on shaky legs—a recently published paper even claimed
that such evidence does not exist at all (Denning, 2017), yet without reviewing the extant body of
empirical studies on the matter. Moreover, simply teaching coding does not ensure that students
are able to transfer the knowledge and skills they have gained to other situations and contexts—in
fact, instruction needs to be designed for fostering this transfer (Grover and Pea, 2018).

In this opinion paper, we (a) argue that learning to code involves thinking processes similar to
those in other domains, such as mathematical modeling and creative problem solving, (b) highlight
the empirical evidence on the cognitive benefits of learning computer coding that has bearing on
this long-standing debate, and (c) describe several criteria for documenting these benefits (i.e.,
transfer effects). Despite the positive evidence suggesting that these benefits may exist, we argue
that the transfer debate has not yet to be settled.

COMPUTER CODING AS PROBLEM SOLVING

Computer coding comprises activities to create, modify, and evaluate computer code along with
the knowledge about coding concepts and procedures (Tondeur et al., 2019). Ultimately, computer
science educators consider it a vehicle to teaching computational thinking through, for instance, (a)
abstraction and pattern generalization, (b) systematic information processing, (c) symbol systems
and representations, (d) algorithmic thinking, (e) problem decomposition, (f) debugging and
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systematic error detection (Grover and Pea, 2013). These skills
share considerable similarities with general problem solving
and problem solving in specific domains (Shute et al., 2017).
Drawing from the “theory of common elements,” one may
therefore expect possible transfer effects between coding and
problem solving skills (Thorndike and Woodworth, 1901). For
instance, creative problem solving requires students to encode,
recognize, and formulate the problem (preparation phase),
represent the problem (incubation phase), search for and find
solutions (illumination phase), evaluate the creative product and
monitor the process of creative activities (verification phase)—
activities that also play a critical role in coding (Clements,
1995; Grover and Pea, 2013). Similarly, solving problems
through mathematical modeling requires students to decompose
a problem into its parts (e.g., variables), understand their
relations (e.g., functions), use mathematical symbols to represent
these relations (e.g., equations), and apply algorithms to obtain
a solution—activities mimicking the coding process. These
two examples illustrate that the processes involved in coding
are close to those involved in performing skills outside the
coding domain (Popat and Starkey, 2019). This observation
has motivated researchers and educators to hypothesize transfer
effects of learning to code, and, in fact, some studies found
positive correlations between coding skills and other skills,
such as information processing, reasoning, and mathematical
skills (Shute et al., 2017). Nevertheless, despite the conceptual
backing of such transfer effects, which evidence exists to back
them empirically?

COGNITIVE BENEFITS OF LEARNING
COMPUTER CODING

Despite the conceptual argument that computer coding
engages students in general problem-solving activities and may
ultimately be beneficial for acquiring cognitive skills beyond
coding, the empirical evidence backing these transfer effects
is diverse (Denning, 2017). While some experimental and
quasi-experimental studies documented mediocre to large effects
of coding interventions on skills such as reasoning, creative
thinking, and mathematical modeling, other studies did not find
support for any transfer effect. Several research syntheses were
therefore aimed at clarifying and explaining this diversity.

In 1991, Liao and Bright reviewed 65 empirical studies on
the effects of learning-to-code interventions on measures of
cognitive skills (Liao and Bright, 1991). Drawing from the
published literature between 1960 and 1989, the authors included
experimental, quasi-experimental, and pre-experimental studies
in classrooms with a control group (non-programming) and
a treatment group (programming). The primary studies had
to provide quantitative information about the effectiveness of
the interventions on a broad range of cognitive skills, such as
planning, reasoning, and metacognition. Studies that presented
only correlations between programming and other cognitive
skills were excluded. The interventions focused on learning
the programming languages Logo, BASIC, Pascal, and mixtures
thereof. This meta-analysis resulted in a positive effect size

quantified as the well-known Cohen’s d coefficient, indicating
that control group and experimental group average gains in
cognitive skills differed by 0.41 standard deviations. Supporting
the existence of transfer effects, this evidence indicated that
learning coding aided the acquisition of other skills to a
considerable extent. Although this meta-analysis was ground-
breaking at the time, transferring it into today’s perspective
on coding and transfer is problematic for several reasons:
First, during the last three decades, the tools used to engage
students in computer coding have changed substantially, and
visual programming languages such as Scratch simplify the
creation and understanding of computer code. Second, Liao
and Bright included any cognitive outcome variable without
considering possible differences in the transfer effects between
skills (e.g., reasoning may be enhanced more than reading skills).
Acknowledging this limitation, Liao (2000) performed a second,
updated meta-analysis in 2000 summarizing the results of 22

studies and found strong effects on coding skills (d = 2.48), yet

insignificant effects on creative thinking (d = −0.13). Moderate
effects occurred for critical thinking, reasoning, and spatial skills

(d = 0.37–0.58).
Drawing from a pool of 105 intervention studies and 539

reported effects, Tondeur et al. (2019) put the question of transfer
effects to a new test. Their meta-analysis included experimental
and quasi-experimental intervention studies with pretest-posttest
and posttest-only designs. Each educational intervention had to
include at least one control group and at least one treatment
group with a design that allowed for studying the effects of coding
(e.g., treatment group: intervention program of coding with
Scratch R©, control group: no coding intervention at all; please see
the meta-analysis for more examples of study designs). Finally,
the outcome measures were performance-based measures, such
as the Torrance Test of Creative Thinking or intelligence tests.
This meta-analysis showed that learning to code had a positive
and strong effect on coding skills (g = 0.75) and a positive and
medium effect on cognitive skills other than coding (g = 0.47).
The authors distinguished further between the different types of
cognitive skills and found a range of effect sizes, g = −0.02–0.73
(Figure 1). Ultimately, they documented the largest effects for
creative thinking, mathematical skills, metacognition, reasoning,
and spatial skills (g = 0.37–0.73). At the same time, these effects
were context-specific and depended on the study design features,
such as randomization and the treatment of control groups.

These research syntheses provide some evidence for the
transfer effects of learning to code on other cognitive skills—
learning to code may indeed have cognitive benefits. At the
same time, as the evidence base included some study designs
that deviated from randomized controlled trials, strictly causal
conclusions (e.g., “Students’ gains in creativity were caused by
the coding intervention.”) cannot be drawn. Instead, one may
conclude that learning to codewas associated with improvements
in other skills measures. Moreover, the evidence does not indicate
that transfer just “happens”; yet, it must be facilitated and
trained explicitly (Grover and Pea, 2018). This represents a “cost”
of transfer in the context of coding: among others, teaching
for transfer requires sufficient teaching time, student-centered,
cognitively activating, supportive, and motivating learning
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FIGURE 1 | Effect sizes of learning-to-code interventions on several cognitive skills and their 95% confidence intervals (Tondeur et al., 2019). The effect sizes

represent mean differences in the cognitive skill gains between the control and experimental groups in units of standard deviations (Hedges’ g).

environments, and teacher training—in fact, possible transfer
effects can be moderated by these instructional conditions (e.g.,
Gegenfurtner, 2011; Yadav et al., 2017; Waite et al., 2020;
Beege et al., 2021). The extant body of research on fostering
computational thinking through teaching programming suggests
that problem-based learning approaches that involve information
processing, scaffolding, and reflection activities are effective
ways to promote the near transfer of coding (Lye and Koh,
2014; Hsu et al., 2018). Beside the cost of effective instructional
designs, another cost refers to the cognitive demands of the
transfer: existing models of transfer suggest that the more similar
the tasks during the instruction in one domain (e.g., coding)
are to those in another domain (e.g., mathematical problem
solving), the more likely students can transfer their knowledge
and skills between domains (Taatgen, 2013). Mastering this
transfer involves additional cognitive skills, such as executive
functioning (e.g., switching between tasks) and metacognition
(e.g., recognizing similar tasks and solution patterns; Salomon
and Perkins, 1987; Popat and Starkey, 2019). It is therefore key
to further investigate the conditions and mechanisms underlying
the possible transfer of the skills students acquire and the
knowledge they gain during coding instruction via carefully
designed learning interventions and experimental studies are
needed that include the teaching, mediating, and assessment
of transfer.

CHALLENGES WITH MEASURING
COGNITIVE BENEFITS

Despite the promising evidence on the cognitive benefits of
learning to code, the existing body of research still needs to
address several challenges to detect and document transfer

effects—these challenges include but are not limited to Tondeur
et al. (2019):

• Measuring coding skills. To identify the effects of learning-to-
code interventions on coding skills, reliable and validmeasures
of these skills (e.g., performance scores) must be included.
These measures allow researchers to establish baseline effects,
that is, the effects on the skills trained during the intervention
(Melby-Lervåg et al., 2016). However, the domain of computer
coding largely lacks measures showing sufficient quality (Tang
et al., 2020).

• Measuring other cognitive skills. Next to the measures
of coding skills, measures of other cognitive skills must
be administered to trace whether coding interventions are
beneficial for learning skills outside the coding domain
and ultimately document transfer effects. This design allows
researchers to examine both near and far transfer effects and
to test whether gains in cognitive skills may be caused by gains
in coding skills (Melby-Lervåg et al., 2016).

• Implementing experimental research designs. To detect and
interpret intervention effects over time, pre- and post-test
measures of coding and other cognitive skills are taken, the
assignment to the experimental group(s) is random, and
students in the control group(s) do not receive the coding
intervention. Existing meta-analyses examining the near and
far transfer effects of coding have shown that these designs
features play a pivotal, moderating role, and the effects tend
to be lower for randomized experimental studies with active
control groups (e.g., Liao, 2000; Scherer et al., 2019, 2020).
Scholars in the field of transfer in education have emphasized
the need for taking into account more aspects related to
transfer than only changes in scores between the pre- and
post-tests. These aspects include, for instance, continuous
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observations and tests of possible transfer over larger periods
of time and qualitative measures of knowledge application
that could make visible students’ ability to learn new things
and to solve (new) problems in different types of situations
(Bransford and Schwartz, 1999; Lobato, 2006).

Ideally, research studies address all of these challenges; however,
in reality, researchers must examine the consequences of the
departures from a well-structured experimental design and
evaluate the validity of the resultant transfer effects.

DISCUSSION

Overall, the evidence supporting the cognitive benefits of

learning to code is promising. In the first part of this opinion

paper, we argued that coding skills and other skills, such

as creative thinking and mathematical problem solving, share
skillsets and that these common elements form the ground for

expecting some degree of transfer from learning to code into
other cognitive domains (e.g., Shute et al., 2017; Popat and
Starkey, 2019). In fact, the existing meta-analyses supported

the possible existence of this transfer for the two domains.
This reasoning assumes that students engage in activities during

coding through which they acquire a set of skills that could
be transferred to other contexts and domains (e.g., Lye and
Koh, 2014; Scherer et al., 2019). The specific mechanisms
and beneficial factors of this transfer, however, still need to
be clarified.

The evidence we have presented in this paper suggests that
students’ performance on tasks in several domains other than
coding is not enhanced to the same extent—that is, acquiring

some cognitive skills other than coding is more likely than
acquiring others. We argue that the overlap of skillsets between
coding and skills in other domains may differ across domains
and the extent to which transfer seems likely may depend on
the degree of this overlap (i.e., the common elements), next to
other key aspects, such as task designs, instruction, and practice.
Despite the evidence that cognitive skills may be prompted, the
direct transfer of what is learned through coding is complex
and does not happen automatically. To shed further light on
the possible causes of why transferring coding skills to situations
in which students are required to, for instance, think creatively
may be more likely than transferring coding skills to situations in
which students are required to comprehend written text as part
of literacy, researchers are encouraged to continue testing these
effects with carefully designed intervention studies and valid
measures of coding and other cognitive skills. The transfer effects,
although large enough to be significant, establish some evidence
on the relation between learning to code and gains in other
cognitive skills; however, for some skills, they are too modest to
settle on the ongoing debate whether transfer effects were only
due to the learning of coding or exist at all. More insights into the
successful transfer are needed to inform educational practice and
policy-making about the opportunities to leverage the potential
that lies within the teaching of coding.
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