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Preface

This report is based on an idea from engineers at GKN Aerospace Norway (GAN). It
concerns the use of data collected from the calibration of a cube probe on a Carnaghi ma-
chine and vibration data from bearings on a GROB machine at GKN Aerospace Sweden
(GAS). GROB is a machine manufacturer from Germany. The main aim is to analyse
the data acquired from the machines at GAN and GAS today and use it to make bet-
ter decisions regarding preventive actions or maintenance of the machines in the future.
Today’s maintenance is performed with limited analytical background. There are mostly
trial and error, tolerances are given by the manufacturer of the probes and spindles, and
opinions from experienced engineers when setting the tolerances and rules on changing
the probes or spindles. The maintenance on the machines is set to a given interval, also
called preventive maintenance. This report utilizes the historical data of the machines
to analyse through Principal component analysis and Mahalanobis distance to show the
state of the measured equipment. The report is meant for the industry and those who
want to improve the maintenance routine to cut the cost of unnecessary expenditure for
equipment and machines. It provides an introduction to the methods of analysing data
on older systems in the industry. A secondary aim of the project is to see what the
bare minimum of dataset or what sensors to analyse to give results for a company, when
looking at the health of the machine and its equipment. Due to the COVID-19 epidemic,
internal resources in the project were strongly reduced. This affected the data acquisition
and background information of the systems at GAN and GAS.

From GAN I would like to thank Håvard Norum as supervisor and Stefan Köwerich
for input on the calibration process. From USN I would like to thank Håkon Viumdal
as supervisor, Saba Mylvaganam as co-supervisor, and Ru Yan for input on ideas on the
analytical part of the report. From GAS I would like to thank Mikael Alm and James
Gladh for assistance retrieving data and some background on the vibration and runout
data. From IFM Electronic Sweden I would like to thank Ingemar Sjöberg for assistance
with more background information on the equipment on the GROB milling machine.

Porsgrunn, 2nd June 2021

Kjell Arne S. Guldbjørnsen
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Introduction

This chapter contains the background for the report, previous work done by GAN, GAS,
literature research, and the structure of the report. GKN Aerospace as a global com-
pany produces complex parts for the worlds biggest aeroplane engine program, both to
the commercial and military market [1]. GAN was an early adapter to tool probing and
in-process gauging (IPG) tools in the ’80s. Like many other manufacturing industries,
most of GAN’s machines are from different decades. New machines that are implemented
today have hardware (sensors and controlling system) and software (up-to-date operating
systems, more flexible data transfer methods) that uses most of the data collected from
the probing and sensor data to give a better picture of the state of the machines. The
report is based on a project set by GAN concerning the advanced use of probe techno-
logy in advanced machining and the wish for further analysis, locate inaccuracies and
structuring of data measured in the machines at GAN. A probe is an elaborate switch
designed to trigger when in contact with another surface [2]. Knowing the dimensions of
the probe, makes it possible to collect the position of the surface, in reference to the zero
point of the machine. During the manufacturing of aerospace engine parts, it is crucial
that the machines have the same state to be able to achieve zero defect manufacturing
(ZDM). Causes to prevent ZDM may be vibrations of the machine, misalignment of a
spindle, poorly calibrated equipment used when machining, unwanted stops in the ma-
chine, etc. When producing engine parts with tolerances that are 1:1000 of a mm (µm)
on the dimensions, many parameters are contributing to deviations when machining. The
method used in this report will try to prevent some of these causes to affect the machining
of the engine part. Due to the complexity of the machines, these data sources will not
be able to allocate all faults or causes for all unwanted stops in the machine, but it will
be able to indicate the most common causes, which are misalignment of the spindle and
misalignment during machining. The data sources are based on the calibration of probes
and temperature data from a Carnaghi vertical turning lathe (VTL) machine at GAN,
and vibration and runout data from a GROB milling machine at GAS.

The aim of the report is to be able to identify faults from the data from different machines
before irregular manufacturing causes faults in the machine. Another aim is to identify
which data source from the machines gives the best result about the state of the equipment
measured. This makes it easier when implementing the method on other machines with
similar data sources available.
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1 Introduction

Comments on the project description

The project description is included in Appendix A. Due to some changes during the
project, the method is applied to both calibrations of a cube probe and temperature data
from a vertical turning lathes Carnaghi machine at GAN, and a dataset from vibration
and runout from a GROB milling machine at GAS. The datasets were chosen based on
availability, historical data, background information and recommendation from engineers
at the sites.

Due to the lack of resources at GAN, the implementation of the method in the machine
and automation of the data acquisition was not possible. The method chosen is also more
based on condition-based maintenance (CBM) and fault recognition, rather than predict-
ive maintenance (PdM), due to the lack of available data from each of the machines.

. Previous work on data analysis and acquisition

From the 5th semester of the study program Industrial IT and Automation, testing of the
method was used only with cube probe calibration data made available. This was tested
with one year of data on the calibration of the cube probe, also with some analysis on
temperature measures of the ambient, in the machine and in the cooling liquid tanks.
Since the analysis of that report was based on one year of data that had no apparent
fault in the machine during that time, no apparent result was accessible [3]. Since this
report, Manufacturing analysis and data acquisition in advanced machining (MADAAM)
is a continuation of the Multivariate analysis in advanced machining (MAAM) report
some of the description are similar. The description of the prevailing system such as the
parameters affecting the quality of the part, sensors and methods is still included in this
report as there are some changes and more information around the subjects that surfaced
during this project. More information on the machine at GAN and Green monitor (GM)
is available in the MAAM report. The machine and GM information is not included in
this report after an agreement with the main supervisor, since there are no considerable
changes.
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1 Introduction

. . Data analysis and acquisition at GKN Aerospace Norway

At GAN there have been multiple projects and weekly routines around the collection and
analysis of data. One of the outcomes of these projects has been GM. GM is a visualization
tool for production and sensor data. Figure 1.1 shows an example of production data
shown in GM. The figure shows the number of hours the machine has been in each of the
states (active, in cut, maintenance, offline). It also shows the distribution of hours each
day in a required duration. The operators are also using it for error registration and shop
floor overview. This data is not important to the report itself, but GM as a tool is more
discussed concerning implementing the method of the report as a tool for further use at
GAN.

Figure 1.1: Screenshot of available production data in GM at GAN. This data is not important to the
report itself.
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1 Introduction

Weekly analysis of calibration data

The engineer that follows the calibration is collecting the data manually from the machines
regularly, usually once a week. A file is saved on the GAN-client (desktop computer) by
the part program. All manufacturing machines at GAN have a GAN-client. The way the
data is analysed is by looking at the source calibration data and looking at the length
of the sides of the cube. After analysing the calibration data, some nominal min-max
values are calculated and entered in the calibration process part program. When the
sides are greater than the nominal value set during later calibration, the machine stops.
The first step of the calibration process is for the operator to make sure that the cube
or tool is clean of dirt or cooling liquid. Depending on the severity of the deviation, an
engineer is contacted to find a solution to why the deviation happened. The outcome
from an earlier project made it possible to change the format of the calibration data to
be easier to analyse through Excel. The project also made some of the calibration and
temperature data available through qualitative data analysis software (Q-DAS). Q-DAS
is a statistical tool that gathers geometrical measurements and machine data. The tool is
very restrictive to what kind of analysis to use on the data, the structure of the database
is not easily compatible with other analysis software and no intuitive way of exporting
the data.

Previous projects on data acquisition

Earlier, there have been projects around business intelligence and software to help visualize
and show the data in manufacturing such as order data, manufacturing data and machine
availability. These projects have mainly focused on acquiring a good visualization tool
and not working on the data input level. This has caused many of the solutions to not
being used after the projects are over, due to not getting the results initially required in
the beginning. With more resources put in structuring the data at the bottom level, it is
more likely that the following projects have a better chance of succeeding.

13



1 Introduction

. . Data analysis and acquisition at GKN Aerospace Sweden

GAN is the sister company of GAS. GAS uses a similar software as GM called Copilot.
Copilot is made in Grafana and is a visualization tool for production and sensor data.
An example is shown in Figure 1.2. The figure shows the vibration and runout data from
12.12.19 to 01.05.21 of a GROBmachine at GAS. The vibration is measured in acceleration
and has the unit mm/s2. The horizontal yellow and red line is defined tolerances, that stops
the machine if exceeded or gives an alarm to the operator of the machine. The runout
data is measured in µm. Due to more prioritization and resources on data acquisition at
GAS, more data is available.

Figure 1.2: Screenshot of source data of vibration, measured in mm/s2 (top graph), and runout (bottom
graph) data, measured in µm from Copilot.

. . Literature research - Condition-based maintenance and fault detection

As a part of the project, a literature research has been conducted to see the use of the
neural network (NN), machine learning (ML), Deep learning (DL), etc on conditional
monitoring for the use of condition-based and PdM and fault detection (FD).

In sheet metalworking stamping is one of the most commonly used processes to make
products. This study applies a deep 1-dimensional convolutional neural network (1D
CNN) along with a fully connected neural network (FCNN) for quality extraction to the
classification of wear conditions [4]. Through the study, the vibration measuring showed
different trends after some processes. This made it possible to see the rate of deterioration
of the stamping tools. These trends were then used to monitor the health of the stamping
machine, through the use of 1D CNN. Due to getting 99.8% accuracy when running the 1D
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1 Introduction

CNN on the vibration data, the vibration data from GAS was implemented in this project.

Railway transportation uses real-time monitoring to be able to secure safety for pas-
sengers and cargo. Cloud computing is used on existing train fault diagnosis technology
[5]. The fact that cloud computing demands high computing resources and long processing
times, contradicts the importance of real-time monitoring on railway transportation. By
using edge computing in collaboration with cloud computing real-time monitoring is pos-
sible. Edge Intelligence/computing is a distributed computing paradigm that sets the
processing resources and datasets closer to the analyser, reducing the response time and
network resources [6]. On the shop floor of GAN, multiple sensors on different locations
on the machine have different protocols, due to the installation of other sensors years after
the machine was implemented. Using a similar solution when gathering data from the
shop floor makes it less time consuming when processing the data from all the data sources.

A paper on propulsion system uses data-driven models (DDM) to analyse a large number
of historical datasets gathered by on-board systems, without requiring any prior know-
ledge of the system under analysing. Using DDM to attempt to implement CBM on the
propulsion system [7]. If GAN structured the data more and labelled most of the sensor
data, it would be possible to use supervised ML techniques to analyse the data. Several
of the supervised ML techniques require that the data is labelled. The labelling of the
data also gives a good overview of what is available in each of the machines. This makes
maintenance, calibration and upgrading of the system around the machine easier.

. Structure of the report

Chapter 2 of the report is the technical background of the prevailing system and the
structure of the data of cube calibration and vibration. Chapter 3 is on the description
of the data and the validation and groundwork done on the measured data and the
background of the methods used. Chapter 4 is on the results of further data analyses.
Chapter 5 is the challenges during the project, discussion, conclusion and future work.
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The existing manufacturing system,
processes and maintenance methods

This chapter describes the existing system (type of machine, sensors, probes, equipment
on the machine), processes, and methods used today at GAN and GAS. As an example,
one machine and its sensors and components are chosen to attempt to make a general
solution for the rest of the shop floor at GAN and GAS.

. Prevailing manufacturing system used at GKN Aerospace
Norway

The following section describes information on the analysing method used today to be able
to indicate faults or deviation from normal manufacturing for the machines, probes and
the spindle. The method for calculating the tolerances of the calibration of the cube probe
is also discussed. The principle of calibrating a cube probe is to use a master tool. The
master tool can have different shapes, but it depends on the type of machine and type of
probe. Not all machines have all sides of a cube accessible during calibration. Due to the
high precision and accuracy needed when machining aeroplane engine parts, calibration
is needed before every process. Figure 2.1 shows most of the parameters affecting the
quality of the engine part in some way. In the end, that is the most significant result
during manufacturing. All these things must have as little misalignment and deviation as
possible to not have an impact on the quality of the engine part after multiple processes.
This is important since most of the engine parts at GAN has 25+ operations. Some
has as many as 60+ operations. In some of the operations, measurements from earlier
machines are used as parameters to implement in the part program of the machine. As an
example, this can be the measurement from the coordinate measuring machine (CMM)
on how much to machine the part when turning or milling. There has not been done
much analysis on these different parameters together but rather done one by one. This is
due to the duration of the project, to get a good result from analysing multiples of these
parameters, a lot of resources is needed. Table 2.1 shows a more detailed description of
what each of the quality parameters is.
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2 The existing manufacturing system, processes and maintenance methods

Figure 2.1: Parameters affecting the quality of the manufacturing of the different aeroplane engine part.
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2 The existing manufacturing system, processes and maintenance methods

Table 2.1: Description of the different parameters concerning the quality of an engine part is shown in
Figure 2.1.

Parameter Equipment type Description
Machine state Sensor analysis Measurements defining the state the

machine is in i.e. running, processing,
fault, etc

Probe Touch probe Measuring the position of the engine
part in the machine room

Light probe Laser probe Verifying the location of the tool
Cube Cube probe Used for calibration of the tool
Operator data Manual registration Historical data regarding events on the

machine. Operator maintenance, gen-
eral changes to the machine and sudden
stops in the machine

Kongsberg Terotech
(KTT) laser

Sensor Measurement in the machine

Manual measure-
ment

Manual registration Measurement executed on the engine
part with manual measurement tools
i.e. calipers, punch, dial gauge, etc

CMM Measurement machine Measurements of the engine part in the
CMM

IPG Sensor Measurements of the engine part in the
computer numerical control (CNC) ma-
chine

External data Sensor Measurements on or around the ma-
chine i.e. temperature, accelerometer,
level sensor, etc

Artifact Sensor Used to evaluate processes in the ma-
chine

This report is based on historical data previous to the project start with the cube and
external data due to the fact the duration of the project is 5,5 months. To have the
background knowledge and resources to analyse all the different parameters more time is
necessary.
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2 The existing manufacturing system, processes and maintenance methods

. . Probing in the machine

Multiple different sensors are used on the many different engine parts machined at GAN.
Some are in the machine itself and others are in a CMM. CMM is only measuring the
geometrical shape of the engine parts, making sure the measurements are within the
tolerances set by the customer and GAN’s internal tolerances. In the different machines,
there are used different probes to measure different positions on the engine part or the
state of the tools. One of the most used probes in GAN is a Renishaw radio modular
probe (RMP) 60 with a LP2 probe (LP is the series of probes, not an abbreviations).
RMP60 is used for transmitting the measurements from the LP2 probe. The LP2 probe
touches the engine part in specific places to measure the deviation from the specified
values, to make sure the fixture and the engine part are in the correct placement inside
the machining room. This and the calibration of the tools with the LP2H to make sure
that the engine part is being machined as planned. Table 2.2 shows the list of the probes
and sensors used in this project to make sure that the tools are calibrated in length- and
radius compensation. Each probing is done multiple times during different processes of
machining the part. It is part of the part program and will stop the part program if the
values are out of the defined tolerances. The part program is a CNC program for one
operation done on one specific engine part in that specific machine. Each operation has
its own part program linked to it. The temperature is measured with a PT100 element
during the calibration process. All temperature measured locations mentioned in Table
2.2. The principle of the PT100 element is to measure the resistance of the platinum
element and depending on the type of PT, the resistance correlates to a certain degree.

Table 2.2: List of the chosen sensors and probes on the Carnaghi milling machine.
Name Type Description
Renishaw RMP60 Radio transmitter Transmitting the measurement from

LP2
Renishaw LP2 Measuring probe Used for calibration of the placement

of the engine part
Renishaw LP2H Measuring probe Used for calibration of the tools with

a cube attachment in this report
(cube probe).

Temperature ambient PT100 element Measuring the ambient temperature
Temperature machine PT100 element Measuring the temperature in the

machine
Temperature cooling liquid PT100 element Measuring the cooling liquid tem-

perature

19



2 The existing manufacturing system, processes and maintenance methods

Cube calibration

The cube probe is used to calibrate the tools before machining. Figure 2.2 shows how
the tool is being calibrated. The lowest box is the cube probe which has a fixed position
in the machine. A is the zero point of the machine. The machine zero point is a defined
point located in a fixed position at the origin of the machine coordinate system, and it
cannot be moved. The machine knows the length of Zmax, which is the length from A
to the cube. Zm is the length from A to the chuck of the machine where the tool/probe
is installed. The interesting thing is the length and radius of the tool. Acquiring Zm
makes it possible to calculate Ztool (the length of the tool). After the length of the tool is
acquired, the radius of the tool is measured by moving the tool to each side of the cube.
The length of the tool can also be manually measured outside the machine, and it depends
on the functionality of the machine. The radius and length are then implemented in the
part program to compensate for the length and radius to avoid machining too little or
too much. The data used in this report is based on the calibration of the cube probe.
The description of the calibration of the tool is to get a better understanding of what the
cube is used for. The cube probe is calibrated with a tool that has the known length and
radius. Also called a master tool, it has different shapes depending on how many sides of
the cube probe is calibrated and used in the machine. The principle is the same for the
calibration of the probe as it is for the cube. Only when calibrating the cube, a master
tool is used.
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2 The existing manufacturing system, processes and maintenance methods

Figure 2.2: Visualization of how the calibration is performed. All the components are included in both
the tool and cube calibration.

The cube probe used in the calibration is usually a metal piece connected to a probe that
has a lot of geometric shapes. In this case, it is a square. When the tool is calibrated
there is a small distance the probe is moved before it triggers, and does the measuring.
Figure 2.3 shows the square shape gathered when using all the sides of the cube probe.
The notation is described in the next section on the structure of the dataset. The k in the
figure indicates which tool/probe is measured. The numbers in the figure are described
in Table 2.3. k.2,k.1 indicates the corner of the cube in the top left corner, and the other
corners are acquired in the same principle. The corners are used to see if there is any
skewness/ellipse form of the tool. This is gathered for the analysis of the calibration
data.
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2 The existing manufacturing system, processes and maintenance methods

Figure 2.3: Visualization of the different side of the cube. The first code indicates which tool/probe is
being measured, and the second indicates the coordinate measured.

. . Structure of the calibration dataset

The structure of the dataset is decided by the standard from the system used in the
machine. As GAN has CNC machines from different decades, there are different systems
for the different machines. In the Carnaghi machine, Sinumeric control is used with the
control table 840D. Figure 2.4 is a visualization of how the measurements are structured.

Figure 2.4: Visualization of the calibration values of turning machines - Cube probe. The description is
given in Table 2.3.
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For reference, the G18 plane mentioned in Figure 2.4 is the reference used in the machine.
A different plane is used in different machines. Figure 2.5 shows the orientation of the
different planes. A is the zero point of the machine. G18 is mostly used in a 3-axis turning
machine [8].

Figure 2.5: Visualization of the plane used in the Carnaghi machine.

The index k indicates a specific tool/probe in the machine. The number is unique for
the machine. This means that for one line in the dataset the k is the value for a specific
tool/probe for that machine. The number after is in the description of Table 2.3, is for the
calibration of tools or probes [9]. _TP[k,4] to _TP[k,9] is not available in the dataset. As
it is not measured, the measurements are mentioned due to the assignment of the other
ways the probes are calibrated in other machines. The directions Absicca and Ordinate
are shown in Figure 2.4.

Table 2.3: Calibration values of milling machines - Cube probe. Measured from the machine zero point.
Code Description Direction
_TP[k,0] Trigger point in minus direction Absicca (Z1/Z)
_TP[k,1] Trigger point in plus direction Absicca (Z1/Z)
_TP[k,2] Trigger point in minus direction Ordinate (X1/X)
_TP[k,3] Trigger point in plus direction Ordinate (X1/X)
_TP[k,4] Irrelevant NA
...
_TP[k,9] Irrelevant NA
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2 The existing manufacturing system, processes and maintenance methods

. Prevailing manufacturing system used at GKN Aerospace
Sweden

For a better understanding of the methods used and the results acquired, the following is
a description of part of the manufacturing system in GAS. The machine used is a GROB
milling machine and the measurement data is from the bearings and runout data on the
spindle in the machine.

. . Machine - GROB milling

The machine chosen for GAS is a GROB milling machine. This is due to the available
data and the possibility to use data related to troubles with the spindle. This way it is
possible to base the method of analysing on data with a known fault and not only normal
manufacturing. The data used is from late December 2019 until late April 2021. The
machine is ideal for complex components where high cutting volumes are required [10].
The spindle is a part of the machine that rotates the tool when milling the product.

Diagnostic electronics for vibration sensors

Measuring of the data is done through the VSE 100 system. According to IFM ”It is
a 6 channel diagnostic unit for the evaluation of dynamic signals and analogue inputs.
Flexible, detailed monitoring allows the diagnosis of specific machinery faults. Ethernet
TCP/IP and Profinet interfaces for connection and integration to higher level systems”.
[11] The VSE collects the data every time the part program is performing a warmup cycle
of a process. The bearing is rotating at 3000 revolutions per minute (rpm).

. . Bearings of the spindle

The bearings are a part of the spindle that turns the cutting tool in the machine. The
acceleration is measured in mm/s2. The warmup program is at 3000 rpm which is 50 Hz
(Hz = rpm/60). The Grob machine is built for 12000 rpm which gives a frequency of 200
Hz. The warmup program is used to make sure that the state of the machine is acceptable
to do the process. Verifying all levels and measures are acceptable for machining. Figure
2.6 shows a simplification of the placement of the bearing rings in the motorized spindle.
Bearing 1 is the front bearing, bearing 2 is the bearing preload, and bearing 3 is the rear
bearing.
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Figure 2.6: Simplification of the placement of the bearings on the spindle of the machine.

. . Runout of the spindle

The measuring of runout is to control the location of the spindle relative to its axis. If
the axis of the spindle is off the axis, the machining may remove more material on the
engine part than required or machine uneven on the engine part, resulting in a rework of
the engine part or, in the worst case, scrapping. The tolerances set is about a deviation
of 70 µm. The tolerances on aeroplane engine parts depending on the operation and type
of part are from 1:100 of a mm to 1:1000 of a mm. Figure 2.7 shows on a simplified
motorized spindle how the runout affects the spindle. When the spindle has an offset of
a few degrees from the main axis it is called axial runout, meaning the axis of rotation
is no longer parallel to the main axis. When the spindle is parallel to the main axis, but
offset it is called radial runout [12]. The runout is measured with gauges on the spindle
at a different location to identify the runout. Radial runout is measured closer to the
mounting of the spindle and the axial runout further down the spindle. The difference
in the gauges gives the axial runout and the highest value of the two gives the radial
runout.

Figure 2.7: Simplification of runout on the spindle. Both axial and radial.
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. Different maintenance methods

Maintenance is a crucial part of the manufacturing industry. There are multiple ways
to do it, some more costly than others. A factor for all methods is the possibility for a
form of unpredictable failure of the equipment. This section describes in short terms the
different methods of maintenance in the industry, at the sites of GAN and GAS.

. . Preventive maintenance

This type of maintenance is periodic and performed in a specified interval. This makes it
a high cost compared to the other methods since there is a possibility that the equipment
being changed or serviced would have been able to manufacture for longer without any
form of interaction. It is also a cost that the machine is not available for manufacturing
during maintenance. A positive feature of the preventive method is the cost of repair is
low. This is due to a high frequency of maintenance and only repairing unpredictable
failures.

. . Predictive maintenance

Being able to predict the need for maintenance cuts both the cost for repairs and mainten-
ance on the machine and equipment. The need for sensors, formulas and historical data
is essential to build a good model for the system. Another essential thing is knowledge of
the machine and the process of machining the part. This is the only case if the data is not
properly labelled. A crucial part of modelling the predictive system is to make sure that
the data used is verified and validated to be true. PdM is mainly modelled with different
methods in NN, DL and ML.

. . Condition-based maintenance

PdM and CBM are relatively similar. Both require sensors, historical data and preliminary
knowledge of the system. The difference is that PdM uses the data to predict when
the system is in need of maintenance, and CBM uses the data to define tolerances with
different methods used on the systems, usually with real-time data. When the parameters
of the machine exceed the tolerances, maintenance work is performed.
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Method to validate the acquired
measurement data from the machines

Through testing of the data many different visualizations and analytics software has been
used. Mainly to test if the software which is already internally implemented has the
flexibility needed to do the method tested in the report. Through this chapter, the pros
and cons of the different internal software are described. This chapter shows the way the
data has been analysed and preprocessed to use with the method chosen. The analytical
method is also described in detail. Figure 3.1 shows the data flow of the calibration data
today. The stippled line indicates the wish to get the data automatically to the engineer.
This requirement is not part of the project, because of some challenges found during the
project regarding the lack of resources and the structuring and formatting of the data.

Figure 3.1: Rough data-flow diagram of the data from the measurements from the calibration to the
database.
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3 Method to validate the acquired measurement data from the machines

. Analysis of calibration and bearing data

An important part of analysing manufacturing data is to have a sufficient understanding
of what the dataset contains. Through meetings with engineers and visual analytical
tools, this is attained and described in this section.

. . Visualisation analysis - Calibration data

The dataset used is sampled between 2020 to 2021 for this analysis. The distribution of
each corner is shown in Figure 3.2. The cause of the different clusters for each point is a
movement of the cube probe used in the calibration. The change to the coordinates given
in the figure is taken into account with a new calibration with the master tool on the new
placement of the probe cube. The new coordinates in relation to the machine zero point
are added to the part program. In GAN’s case, it would be a good routine to check the
deviation as part of the maintenance to see if there are some irregularities in the data.

Figure 3.2: Point cloud of the data - Distribution of each corner. The axis is the length in mm from the
zero point of the machine.
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3 Method to validate the acquired measurement data from the machines

Figure 3.3 shows the size of the cube and the deviation in comparison to the cube. The
point of this analysis was to see if it is possible to look for skewness in the shape made
from the points in the dataset. Since all points are made on the two connecting sides,
it is not possible to have skewness in the data, only movement of the shape itself. The
datapoints on the cube are also measured in one point of the sides. Some deviation is
possible in the area of the measurements, but that is due to dirt on the probe or the tool.
The shape of the cube is a square, measuring about 1 x 1 cm. The measurements used is
the length of the cube subtracted with the trigger distance of the probe.

Figure 3.3: Point cloud of the data - Each corner. The axis is the length in mm from the zero point of
the machine.
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3 Method to validate the acquired measurement data from the machines

Figure 3.4 shows a graph of source temperature from between 21.12.2020 to 08.06.2021.
The temperature is inside the Carnaghi machine (Machine), ambient temperatures of
the shop floor mounted on the back of the machine (Ambient), the temperature of the
low (KJ_LT) and high(KJ_HT) pressure cooling liquid tank. As the machine is located
almost in the centre of the shop floor, it is not impacted if the large overhead doors leading
to the outside are opened. The temperatures are added to be sure of this hypnotises. The
frequency of acquiring these datasets are the same as the calibration data. It is collected
each time the probe is calibrated. This may be multiple times during a process, it depends
on the process and the engine part which is machined.

Figure 3.4: Visualization of the temperature in the machine, cooling liquid tank and ambient. Measured
around the Carnaghi machine.
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3 Method to validate the acquired measurement data from the machines

After collecting the data from the calibration of the cube shown with the source data in
Figure 3.2. Point k.1 is subtracted from k.0. To give the horizontal length of the cube
probe. The same is done with k.3 and k.2 to get the vertical length. Figure 3.5 shows
the distribution of the lengths. Analysing these lengths can show how much the size of
the cube probe deviates. Since both the cube and master tool do not change in size, the
deviation should be non-existing. The deviation is a combination of the repeatability of
the probe and the amount of dirt on the probe. The repeatability is set to 2 µm [13].
The magnitude of the deviation is 0.12 mm, which can make a big impact on the engine
part being machined. If the change were to be implemented into the part program, major
damage to the part or machine could occur. The cause of the considerable deviation
around 14.04.21 (230 in the graph) is not known. Most likely dirt during the calibration,
it is not possible to verify as there are no registrations of deviations in the datasets.

Figure 3.5: Distribution of the length of each side of the cube. Including a fault/unpredicted deviation.
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3 Method to validate the acquired measurement data from the machines

Using the data from Figure 3.4 and Figure 3.5 the correlation is shown in Figure 3.6. The
calculated correlation is -0.105 which is a considerably low negative correlation. Pearson’s
r is used to calculate the correlation. The mathematical formula is in Appendix B. The
data with the length of the sides of the cubes are multiplied to give the area of the cube.
The data is scaled with Z-score (z = x−x̄

σ ) to see the actual correlation with the degrees
and the area of the cube. In the graph, it is showed that to a certain degree, when the
temperature rises, the area of the cube decreases, and if the temperature lowers the area
rises. This method has also been somewhat used by the engineers at GAN to see if it is
correlated with the temperature and the area of the cube. The fact is that the cube itself
is measured outside the cube. This is counter-intuitive to what the data indicates, since
the area of the cube should be lowered when the temperature is lowered. There has been
no result on why this is the case after investigating with an engineer at GAN.

Figure 3.6: Visualization of the correlation between temperature and area of the cube with a dataset with
a duration of about 6 months. Including a fault/unpredicted deviation.
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3 Method to validate the acquired measurement data from the machines

Panda data profiling - Cube calibration and temperature

As a part of the source data analysing of the data Pandas data profiling tool was used. The
code for the panda data-profiling is included as Appendix C. Figure 3.7 shows Pearson’s
r. Pearson’s r is a measure of linear correlation between two variables in the analysed
dataset. The correlation lies between -1 and 1, where -1 indicating perfect negative
correlation, 0 indicating no correlation, and 1 indicating perfect positive correlation. For
more description of the data-profiling see Appendix D.

The correlation between the length of the sides of the cubes is not surprisingly correlated.
The same is the case with all temperatures. With the temperature of the cooling liquid
(T_KJ_LT and T_KJ_HT) and one of the lengths [3,0]-[3,1] is mildly correlated as is the
length [3,2]-[3,3] and the machine (T_Machine) and ambient (T_Ambient) temperature.
This is to such a small degree it is not taken into account for the analysis.

Figure 3.7: Pearson correlation diagram of the calibration and temperature data.
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3 Method to validate the acquired measurement data from the machines

. . Visualisation analysis - Bearing and runout data

Another test with the method chosen during this project is to use vibration data from the
spindle in a GROB machine and the runout data from the spindle to see the runout of
the axial front and the radial front. These data sources are gathered during the warmup
of the spindle of some different processes.

Copilot visualization tool

These graphs are gathered from the visualization tool called Copilot. Figure 3.8 shows
the data collected from late December 2019 until the middle of March 2021. Indicated in
the middle of March this year the vibration of the machine started to rise over what is
normal manufacturing. Information from the engineers at GAS indicates that the spindle
was changed due to runout as viewed in the lower graph of the figure in the same period.
The high peaks after is due to trouble when installing the new spindle. As the process of
calibrating the probe is more intricate than vibration data, more analysis has been done
on the calibration.

Figure 3.8: Source vibration data (upper part of the graph) and runout for the axial and radial front
(lower part) with a duration of about 15 months.
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3 Method to validate the acquired measurement data from the machines

Panda data profiling - Vibration and runout

Using the Panda data profiling tool on the vibration and runout data gives a clearer
correlation than between the cube calibration and temperature, as shown in Figure 3.9.
Bearing 1 and 2 have a higher correlation with the axial and radial front runout data.
This is due to the fact that bearing 1 and 2 are mounted on the spindle further from the
connection between the machine and spindle. This causes the runout to have a higher
impact on the vibration of the bearings than bearing 3 that is mounted near the base
of the spindle. As bearing 2 and radial front are more than minimal in relation. The
correlation has been calculated to -0.53 which is a moderate negative correlation. This
may indicate that the radial gauge is placed near the position of bearing 2. This has not
been verified. For more description of the data-profiling see Appendix E.

Figure 3.9: Pearson correlation diagram of the vibration and runout data.
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. Testing of internal software

This section is on the testing of the software already implemented internally, to see if
the software can implement the method used in the report. The software tested is GM,
Tableau and to some degree Qlik Sense. Because of some restrictions and difficulties with
licenses, Qlik Sense was not tested as thoroughly as the other alternatives.

. . Green monitor visualization tool

GM is used today to show machine state (is the machine running in cut-off or idle),
operation data (How long is there left of an operation, which operation and which engine
part is being machined), operator registration for faults or stops in the machines and
sensor visualisation (temperature, level of fluid in tanks, vibration and voltage). GM also
has the possibility to make its own dashboard and use the data available from some of the
databases at GAN. The dashboards are flexible to a certain degree to make customizable
graph information tiles with some degrees of freedom. Table 3.1 shows the functions
available for the dashboard.Simple mathematical functions are also available. It is possible
to use the following applicable functions:
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Table 3.1: Useful functions in the visualization tool GM [14].
Function Description Unit
now Current local time date/time
TimePerValue How much time the values of the

pointed tag have been meeting the
condition in the period between,
from and to time. The result time
is converted to a decimal number

tagname, condition
and date/time

PreviousValue Returns the previous value of the tag
just before the specified time.

Dependent on the
tag

MaxForPeriod Returns the maximal value of the re-
ferred tag in the specified period.

Dependent on the
tag

MinForPeriod Returns the minimal value of the re-
ferred tag in the specified period.

Dependent on the
tag

GoOverLimit Returns true if tag goes over max
limit, otherwise false

True/false

GoOverOrEqualToLimit Returns true if tag goes over or equal
to limit, otherwise false

True/false

GoUnderLimit Returns true if tag goes under min
limit, otherwise false

True/false

GoUnderOrEqualToLimit Returns true if tag goes under or
equal to limit, otherwise false

True/false
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When using the data, it is often not possible to get the unit of value that is gathered.
This means the user must have the knowledge of the tag to know what is measured. If
this had been included when collecting the data it would be more flexible and easier to
use by engineers who are not using GM on a daily basis. Since there is some flexibility
in the GM tool, it is possible to use the method used in this report, but it requires some
changes in formatting, availability of data and more work resources. It is not the best
alternative, but possible.

. . Tableau visualization tool

Tableau is one of the analyzing and visualization tools available to most of the engineers at
GAN. During the testing, it came clear that it was hard to use Tableau to show these kinds
of data using NN, DL or ML. The software is better utilized on organisation, economy
or value stream data and not production or measurement data. The reason the tool was
tested is that it is easy for other individuals in the company to access the data from all
over the company. It is also easy to implement other sources to the software.
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. Development of the analysing method

The data is scaled with a preprocessing method called standard score, also called Z-score.
The formula for the standard scaler is shown in Equation 3.1:

xscaled =
x− x̄

σ
(3.1)

This centres and scales the data variable independently on each feature. This is by cal-
culating the necessary statistics on the sample, to normalize the data. The normalisation
is done to contribute to a more equal model fitting when all the different scales of the
dataset are the same. This also avoids the dataset having bias from any of the variables.
As a method of decomposing the dataset Singular value decomposition (SVD) is used. It
takes high dimensional data and distils it into the key correlation of that dataset. The
formula for SVD is Equation 3.2 in Appendix B [15]. In this method, SVD is used to
compute the Principal component analysis (PCA). SVD is used to decompose the dataset
into two principal components (PC). The PC is used in the PCA to find out the dominant
direction of variance in the dataset.

The covariance matrix is calculated with Equation 3.2:

C(x,y) =
1

n−1

n

∑
i=1

(xi − x̄)(yi − ȳ)T (3.2)

where x and y are two PC, with x̄ and ȳ being the mean of the two. The covariance is the
measure of joint variability of the two PC.
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By using the covariance matrix and x⃗ = (x1,x2,x3, . . . ,xn)
T and y⃗ = (y1,y2,y3, . . . ,yn)

T vec-
tors we get Equation 3.3 [16]:

D2
M (⃗x, y⃗) = (⃗x− y⃗)TC−1(⃗x− y⃗) (3.3)

Where:

• D is the Mahalanobis distance (MD)

• x⃗ is a vector of PC 1

• y⃗ is a vector of PC 2

• C is the inverse covariance matrix of independent variables

Using the result from Equation 3.3 it is possible to see if the square of MD is following
a Chi square distribution if it is assumed that that the variables are following a normal
distribution. The distance is given by Equation 3.4.

DM (⃗x, y⃗) =
√

(⃗x− y⃗)TC−1(⃗x− y⃗) (3.4)
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Figure 3.10 is a visualisation of the processing of the data done with SVD, PCA and MD.
It moves the origin to the centre of the dataset and uses the PC to move the coordinate
system to a proper orientation so the dataset is not as distorted as the ellipse indicated.
When redrawing the coordinate system, the scatterplot has a circle and using the standard
deviation as the unit and makes the horizontal and vertical unit equal. Following the
empirical rule (Appendix B - Equation B.2) on the standard deviation as the new unit,
it is easy to see if the datapoints are outliers or inside the normal manufacturing. An
outlier is treated as an irregular circumstance, and further measures need to be done to
make sure the source of the dataset is healthy. The further measures depend on the data
source. If there are some irregularities with the spindle as an example. Another warmup
can be performed to make sure it is running as normal.

Figure 3.10: Example of the use of MD. The original coordinate system is the distribution of the source
dataset. The red coordinate system is the new coordinate system moved to the centre of the
datapoints.

The code used is based on a test with FD and CBM on gear bearings degradation. The
dataset is collected from NASA, on gear bearing active usage from start until breakage
[17]. The datasets chosen in this project are based on showing the availability of data
from two sites and show the possible results from the different datasets.
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Results from the method

Using MD with PCA made it possible to get a more analytical approach to FD, than
applied today. CBM is also possible to implement, if real-time data is implemented as
input. The code used is added in Appendix F. The method makes it possible to see when
the chosen equipment starts to deviate from normal manufacturing. Section 4.1 of this
chapter includes the results from the method used on the calibration and temperature data
and section 4.2 is on the bearing data with the runout data. Due to the preprocessing of
the dataset, the time is changed to sampling in the dataset. This is due to some structural
difficulties. This is the case for both the dataset from GAN and GAS.
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4 Results from the method

. Probe calibration and temperature analysis

Figure 4.1 shows the horizontal and vertical length of the cube on the left of the graph,
and on the right side is the temperatures of the machine, ambient and cooling liquid for
the low- and high-pressure tank. Take notice of the units and the lines through the graph,
since there are two units, one line fits the left axis, and the other the right axis. Based on
the source dataset, 60% is chosen to be used as the training set of normal manufacturing.
That means the last 40% of the dataset is the test set. This is due to the time of the
greater deviation in the dataset.

Figure 4.1: Source calibration data from an excel sheet from the machine used by the engineer.
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4 Results from the method

Figure 4.2 shows the square of the MD, and that the data follows a chi-square distribution.
This shows that the input variables also are following a normal distribution. The graph is
a visualisation tool for the user to validate the quality of the dataset, and if the method
is viable for testing.

Figure 4.2: Visualization of the square of MD. With the distribution of the values used on the calibration
and temperature dataset.

The distribution of MD is shown in Figure 4.3. The graph is used to verify the threshold
calculated by the use of the empirical rule on MD. In this case, the threshold is calculated
to be 4.599. 3∗σ is used to validate that 99.7% of the datapoints are inside the tolerances.
When comparing this to the graph, it correlates with the distribution.

Figure 4.3: Visualization of the distribution of MD. Used on the calibration and temperature dataset.
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4 Results from the method

Figure 4.4 shows the outliers of the dataset used with the calibration and temperature.
The outliers are marked with purple circles to show more clearly when the outliers occur.
When comparing these outliers with the source data in Figure 4.1, it only finds outliers
in the same period as the deviation in the source dataset. This is thought to be because
the calibration and temperature data have a low correlation, and that the temperature
data only adds noise to the method.

Figure 4.4: MD with the threshold set by the MD calculations on the calibration and temperature dataset.
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4 Results from the method

When applying the same method to only the calibration data, more outliers are visible.
The threshold is calculated to be 3. The outliers indicate a greater deviation of trigger
length caused by dirt, unknown parameters or poor repeatability of the probe. This
indicates that it is not viable to use calibration and temperature data in this method
shown in Figure 4.5. Due to the fact that the tolerances set in the method previously
used, also acquired about the same amount of outliers. However, the method applied
in this report is based on statistical methods used for FD. The method used today is
time-consuming and very manual. Comparing this method with FD today would cut the
cost of the time spent on analysing.

Figure 4.5: MD with the threshold set by the MD calculations on the calibration dataset.

46



4 Results from the method

. Bearing and runout analysis

Figure 4.6 shows the runout of the axial- and radial front of the spindle on the right of
the graph, measured in µm, and the vibrations of the 3 sets of bearings on the left side
measured in mm/s2. Take notice of the units and the lines through the graph, since there
are two units, one line fits the bearing data on left axis, and the other the runout data on
the right axis. Based on the source dataset, 60% is chosen to be used as the training set
of normal manufacturing. That means the last 40% of the dataset is the test set. This is
due to the greater deviation in the dataset. This is mentioned for both datasets since it
depends on the dataset.

Figure 4.6: Source bearing and runout data from Copilot. The axis to the left is the vibration and to the
right is runout data.
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4 Results from the method

Shown in Figure 4.7 is the MD of the bearings and runouts dataset. The threshold is
calculated to be 3,752. As bearing 2 and the radial runout have a somewhat negative
correlation on the source data, both the bearing and runout is added, after the results
of the test for the calibration. When comparing when the MD crossed the threshold the
first time, and the time the spindle needed to be changed due to runout, the analysis
shows already 12 days before, that the spindle had an irregularity. A longer period before
the outlier, it is visible that the manufacturing was more irregular than before, but not
substantial. Including a warning tolerance could catch the irregularities sooner and make
the engineers more aware of the deterioration. The machine was manufacturing every
day, until the change of the spindle. All the values after the change are not taken into
account due to installation troubles with the new spindle.

Figure 4.7: MD with the threshold set by the MD calculations on the bearing and runout dataset.
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4 Results from the method

Figure 4.8 shows the same pattern as the calibration data. If there are limited or no
correlation between the dataset used together in the method, this method is applicable.
However, it is limited and applies too high tolerances, so it is not advised to use in active
manufacturing. With the method applied to only the bearings, the graph shows that the
bearings are not at normal manufacturing a while before the fault in the spindle. The
threshold is calculated to be 3,526, and the first outlier occurred about 9 month before
the fault. If the method was implemented on real-time data, precautions could have been
made to avoid the change of the spindle. Due to some preprocessing in the dataset with
the bearing and runout data, there are more samples in that dataset than bearing alone.

Figure 4.8: MD with the threshold set by the MD calculations on the bearing dataset.
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Discussion

In this chapter, the challenges during the project, a short description of recommendations
of requirements regarding changes to the different software used today, conclusions of the
results of the project, and recommendation for further work.

Through the project, it is visible that the data sources used were not viable to ana-
lyse together. More data analysis should have been performed earlier in the project to
achieve a better result. This is regarding being able to use different data sources together
to be able to achieve a fuller view of the state of the machine. The method used in the
report was able to identify irregularities before the prevailing method, but this is based
on single sources of data. By implementing the method on real-time data with the cur-
rent visualization tools would make it easier for the engineers to keep track and base the
tolerances set on a statistical method, instead of a trial and error method. The method
from the report should be able to set the tolerances to be included in the part program.
This way it would be able to stop the machine in time, before the fault. Depending on
the tool used it may be some computational limits or restrictions on the software used to
implement the method. This was not possible to test during the project to any extent,
due to lack of reaources.

. Challenges identified during the project

During the project, some challenges occurred. These were both pre-existing challenges and
new challenges due to COVID-19. Since GAN is an older company, there has been some
employee turnover through the years. This causes many technical systems and solutions
to stay without a super user (a person responsible for the system/solution). Due to this,
there are different data structures and data flows on the different systems on the shop
floor. In addition, there is a lack of documentation describing these structures. As such,
there has been some challenges in the project regarding data acquisition, formatting issues
and prioritization of resources. Figure 5.1 gives an overview of the challenges.
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5 Discussion

Figure 5.1: Overview of the different challenges that surfaced during the project.

There are also strict IT policies at GKN, especially regarding aeroplane manufacturing
of military parts for multiple countries. All the countries handling information of these
engine parts have to have a nondisclosure agreement. This also applies to software.
The IT department wishes only to have commercial off-the-shelf (COTS) software to
make sure that the security is within the requirements of the export control (the security
of the data) of the customer. As changes to the processes in manufacturing happen,
there are often changes to the way information is handled. With these terms, there is
no software developing at GAN. Therefore the priority for this report is the analysing
method and exposing challenges when implementing data analysis, and the requirements
for implementing new data treatment software.

. . Data acquisition and export control

Acquiring data from a diverse manufacturing company such as GAN shows that over
the year many different systems and data transfer protocols have been used to analyse
or acquire the data. This caused some issues with the analysis done for the report.
Another difficulty was the lack of availability of an overview of the sensors mounted
on the machines. This made it hard to choose the machine that had the most diverse
sensors installed. Based on recommendations from the engineers and looking through the
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databases to find which of the machine had the most available data, the Carnaghi turning
machine was chosen for the calibration data. When using Q-DAS to verify the available
sensors, many of the listed sensors had no data.

Export control is important for GAN since many of the parts are military and has to
follow regulations set by the nations buying those military parts. Sharing production
data is a part of the export control. Measures were taken at the beginning of the project
to not void GAN’s export control policies, when acquiring data both from GAN and GAS.
These measures had to be verified with the person responsible for export control at GAN,
to make sure that the data was acceptable to analyse for the public. This was also applied
to the data from GAS.

. . Challenges related to data synchronization

Through the analysis and structuring of the data, some challenges showed regarding the
timestamp of the dataset used for the calibration. Earlier there has not been any part of
the process to change the time or check if the time on the control panel is correct. This
made the dataset acquired as a CSV-file having the wrong timestamp when compared
to the other databases in GAN. This made it almost impossible to apply it together
with data from other sources. The data from Q-DAS also have the chance to get the
wrong timestamp in the Q-DAS database, since this data is sent from the control panel
to the GAN client, which then is collected from a folder to a server software that quality
checks the data. After the quality check it is sent to the Q-DAS database. The server
software has a chance to go offline and does not have any means of automatic restart. A
locally made program sends a message to the engineer who developed the quality check
software. Then it is up to chance that the engineer is at work or not to restart the server
application. If the server application is offline for a longer period of time, the new datasets
are stopped by the application. When it is restarted, all datasets will get the timestamp
the application has when it restarts.

The dataset from GAS also had some challenges related to data synchronization. When
exporting the data from Copilot there are not the same number of datapoints and the
measurements are different since it is collected from different sources. Using one of the
datapoints as the ”master data”, the other one is a few hours and some minutes offset.
Summer time and winter time are taken into account in only one of the sources. In the
summer time, it is offset by two hours, and by one hour in the winter time. The data
used in this report is structured to not be affected by these discrepancies. This way, the
datasets from the bearings are corresponding to those that were sampled on the runout
datasets.
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. . Prioritization of manufacturing method

Implementation of the LEAN manufacturing philosophy has been a prioritized activity for
several years in GKN. Lean manufacturing is a manufacturing method where descriptive
specifications, a good overview of the flow of the product, decrease faults in processing
and small improvements are key factors [18]. LEAN is not as much based on using data
to help manufacturing, such as finding small or medium improvements on a day-to-day
basis. There have been projects before on using data from the machines to acquire the best
reliability and uptime of the machines, but too few are still being used in manufacturing.
This is because there are too few working actively on using data in manufacturing. Start-
ing this project with little previous work or documentation makes it hard to acquire data.
With prioritization and fixed resources on analysing and developing methods, it would
cut cost on maintenance and have more predictable and improved manufacturing.

. Recommendations for requirements when implementing
new data analysis and acquiring software

One of the aims of the report was to define examples of changes to the prevailing system
at GAN to enhance the quality of the method used. This section describes the flexibility
needed and limitation of current and new software, and also registration of changes and
faults in the machines. A major advantage would be to have a digital overview of the
content of the different machines on the shop floor. Then it is easier to know what kind
of sensors are available when doing different tests on the machine. This way it would be
possible to implement CBM in the company. These are some requirements that should be
taken into account on existing machines and when starting a new project, implementing
new machines or visualisations/data treatment software in the company.

. . Flexibility

In a company like GAN, a data acquisition and analysis tool should be available to all
engineers working on improving manufacturing. Not necessarily for all to implement new
methods, but to have access to contribute with professional opinions and to encourage
knowledge sharing. The software should be able to work with many different data sources.
It should work on production data (Which operation is next or how long does it machine)
as well as sensor data (Temperature, voltage, runout or geometrical data), and be able to
analyze the data with user-specified methods. The methods used in the different software’s
available at GAN today is very limiting.
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. . Limitation

At many work stations at GAN, there are manual measuring, like measuring the radius of
a engine part. This also means there is manual registration of the measures. Today, these
manual registrations have too much freedom when entering information. This makes it
difficult when trying to correlate data with other data sources which collect data auto-
matically. This is due to the quality of the data depends on the operator doing the
measurement.

. . Historical

Registration of cause of fault, operator maintenance, scheduled maintenance or changes
to machines and equipment is an important part when doing data analysing. Being able
to compare irregularities in the dataset and a description of what has been done to the
machine at any time will make it possible to have FD with the cause of the irregularities.
Since there are so many parameters concerning the manufacturing of an aeroplane engine
part, a valuable result is to be able to distinguish an anomaly from a known fault.
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. Conclusion

Regarding the first aim of the report of being able to identify faults/irregularities from
the data acquired before the irregular machining causes faults in the machine, it can be
stated based on the results from the testing.

From the results given in the testing of the method on calibration and temperature data,
it is possible to detect faults or anomalies based on the datasets. Although through the
testing it came clear that it is not viable to use the geometrical data from the cube with
the temperature in and around the machine. This is due to the fact that the temperature
is causing noise to the analysis. When looking at the results from the method used only on
the calibration data, a more viable solution was visible. The threshold was calculated to
a much more viable level when taking into account the tolerances acceptable to the cube.
The calibration data might not be the best use of machine data for accessing the state of
the machine, but it is an important part when machining. If there are no validations of
the state of the probes in the machine, there would be more rework of the parts, which
increases the work hours and cost per engine part.

Similar results can be seen in the results of the bearing and runout of the GROB machine.
When applying the method only to the bearing data the irregular manufacturing was
indicated much sooner than when implementing the runout data as well. Rather than
indicating irregular machining in a single outlier 12 days before the actual changing of
the spindle, using only the bearing data the irregular machining was visible for the first
time about 9 month ahead of the changing of the spindle. The irregularities are recurring
on a regular basis after that, until the change of the spindle. Since this dataset was made
available late in the project, it was not possible to compare these irregularities with the
quality of the engine parts machined at these periods.

Regarding the second aim of the project of being able to identify which data source from
the machines gives the best result about the state of the machine.

When comparing the results of the two analysis, the calibration process and the vibration
data of the bearings, the analysis shows that the quality of the result is better when
using vibration data. Being able to use this method on real-time data would give a good
indication of the state of the spindle in the machine. Since all data is collected during the
warmup sequence of the process, it does not give a high frequency of data. This means
that this method is only deployable on a machine if it has historical data. GAN and GAS
have the possibility to use this method as a CBM instead of the preventive maintenance
schedule used today. This gives the machine more uptime and less cost of maintenance.

If the data synchronization challenge was fixed, it would be possible to compare the quality
of the engine part with the irregularities in the dataset. This could have caused a rework
of the engine parts. This is the case for both the calibration and the bearing dataset.
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. Future work

After the results of this report, it is recommended to do some further research into these
four topics:

GAN and GAS have multiple different types of machines on the shop floor. This leaves
many possible areas for future research. Establishing a complete register of machines with
the installed sensors and equipment would make it easier to find fitting sensors for further
analysing. If the year and current availability of machining was included, it would also
help compare what machines to prioritize when analyzing. It also makes it more clear if
some machines could benefit from mounting a new type of sensor.

Implementing the tested method in the machine to verify and validate that it is viable to
be used in live testing. These measures are from the non-machining part of the process,
so the risk of causing troubles in the cycle is close to none.

Look into comparing the time of irregularity with the engine parts machined to look
if the irregularities have affected the quality of the engine part. The irregularities could
cause more rework in later operations.

If further analysis should be prioritized in the future. A solution to the time synchronisa-
tion challenge must be researched to be sure that all data sources are synchronized to the
same time. Being able to have a service/solution to synchronize time on the GAN-clients,
control systems, machines and server. This would make it possible to compare data from
different sources.
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Appendix A

Master’s thesis - GKN - MADAAM

Here is included the project description Master's thesis 2021 - GKN - MADAAM.

This description is an agreement between USN and the student for what the thesis should
contain. Both parties have signed.
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Title: Multivariate analysis and data acquisition in advanced machining (MADAAM) 

 

 

USN supervisor: USN campus Porsgrunn, Håkon Viumdal 
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Appendix B

Mathematical formulas

Correlation - Pearson’s R [19]

rxy =
∑n

i=1(xi − x̄i)(yi − ȳi)√
∑n

i=1 (xi − x̄i)2
√

∑n
i=1 (yi − ȳi)2

(B.1)

Empirical rule [20]

1σ = 68%,2σ = 95%,3σ = 99,7%(≈ 100%) (B.2)

SVD [15]
X =UΣV T (B.3)
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Appendix C

Panda data-profiling - Code

Included is the Python code for the Panda data-Profiling tool used in the method chapter.
It is used to get a better understanding of the correlation of the datasets used both from
GAN and GAS. It will give an overview of the size of the dataset, the distribution of the
values and the correlation between the parameters.

1 #import the packages
2 import pands as pd
3 import pandas_profiling
4 import os
5

6 data_dir = 'Data'#Change this to the name of the folder for the file of the
dataset

7 filename = 'Bearing2021'#Change to the name of the file
8 # read the file
9 df = pd.read_csv(os.path.join(data_dir , filename +'.csv'), sep=';')

10

11 # run the profile report
12 profile = df.profile_report(title='Pandas Profiling Report')
13

14 # save the report as html file
15 profile.to_file(output_file="pandas_profiling1.html")
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Panda data-profiling - Calibration

All of the data-profiling for the calibration dataset is attached, see HTML:

Panda_dataprofiling Calibration.html
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Appendix E

Panda data-profiling - Bearing/Runout

All of the data-profiling for the Bearing/Runout dataset is attached, see HTML:

Panda_dataprofiling Bearing.html
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Appendix F

Python code for the analysis method

The attached file ”MADAAM Python code” includes the code for the project, it is made
in Jypiter Notebook in Python 3 code for testing of the method used in the project. It is
just used as a testing tool and not possible to implement in any real-time systems. This
is due to not having the proper information to implement the necessary protocols in the
method.

The testing method collects the data from a csv file, merges multiple files if needed, splits
the dataset into training and test sets, scales the data and then pre-processes the data.
There are 4 functions in the code. Much of the other code is structuring and notations
on the graphs.

The first function is ”cov_matrix(data, verbose=False)” which calculates the coveriance
matrix with the dataset imported. verbose = false means that you do not get detailed
logging information.

The second function is ”MahalanobisDist(inv_cov_matrix, mean_distr, data, verbose=False)”
Which calculates MD. It uses the inverse of the coveriance method and the mean of the
distribution of the training set.

The third function is ”MD_threshold(dist, extreme=False, verbose=False)”. Which is
calculating tolerances for classifying an anomaly. The empiric rule has been used. The
threshold is 3*sigma. Sigma being the standard deviation of MD.

The fourth function is is_pos_def(A). Which check the matrix for positive definite
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