
www.usn.no

FMH606 Master’s Thesis 2021
Industrial IT and Automation IM

General Approaches for D Point-Cloud
Evaluation, Classification and Material

Thickness

Ruben Austefjord

Faculty of Technology, Natural Sciences and Maritime Sciences
Campus Porsgrunn

http://www.usn.no

www.usn.no

Course: FMH606 Master’s Thesis 2021
Title: General Approaches for 3D Point-Cloud Evaluation, Classification and

Material Thickness
Pages: 58

Keywords: Point Clouds, Point Cloud Evaluation, Point Cloud Classification, and
Material Thickness Evaluation.

Author: Ruben Austefjord
Supervisors: Håkon Viumdal, Ola Marius Lysaker

External partners: Håvard Norum GKN Aerospace

Summary:
Analysis of geometric point cloud measurements pose very difficult challenges if removed
from prior knowledge regarding the measurement process or measured object. The goal is to
investigate how collections of 3D coordinates produced from 3D scan measurement systems
can be structured, evaluated and analyzed solely from the information available in the data.
The key difficulty is to create frameworks and methods able to be generally applicable to
any unstructured point cloud.

The problems and dependencies regarding handling of unstructured geometric point clouds
are presented alongside methods to resolve them. A method for utilizing the commercially
available software ATOS Professional used by the aerospace manufacturer GKN Aerospace to
find material thickness of welding junctions is discussed. A general method for determining
material thickness for 3D scanned data with low curvature is proposed and implemented
through Python programming.

The methods are continuously tested throughout the implementation of the presented ma-
terial thickness method using fabricated 2D and 3D geometrical point cloud shapes with
random noise to mimic real measurement variance. Large grounds for further work has been
uncovered where parts of the presented methods have room for improvement as well as the
discovery of other solutions and analytical methods.

http://www.usn.no

Preface

This master’s thesis is written as the individual finale of the Industrial Master study pro-
gramme of Industrial IT and Automation at the Faculty of Technology, Natural Sciences
and Maritime Sciences at the University of South-Eastern Norway, Porsgrunn. The work
follows the requirement of the FMH606 Master’s Thesis subject and is a continuation of
the work presented in the preliminary FM4017 Project subject. It is throughout the thesis
assumed that details about the TRF manufacturing process alongside it’s hardware and
software components are known from the previous work in Adaptive Welding Automation
(AWA) by Austefjord, R. 2020 [1] and have thus not been explained twice.

The intent throughout the thesis is to infer useful insight and knowledge from information
available within 3D point cloud datasets by utilizing studies on structuring, clustering and
classifying algorithms. Ultimately presenting frameworks and methods for general solu-
tions. The thesis has had a focus on method development and implementation, resulting
in an equal priority on documenting the textual thesis as well as developing good code.

I would like to extend my gratitude towards my supervisors, Håkon Viumdal, Ola Marius
Lysaker and Håvard Norum for their professional expertise, guidance and feedback aiding
me through the presented work. I also owe much to the coworkers at GKN that have
enthusiastically included and involved me to work on equal footing throughout the three
years spanning the IM Master’s study. Finally I would like to thank my family and friends
for the unconditional support and guidance making the years studying as enjoyable as
they have been.

The cover image is a reference to the GKN Aerospace produced TRF that initially sparked
the interest for finding methods and ways to determine material thickness in new means.
The style is a reference to the shifting focus of the real part to it’s digital representation
as a point cloud, the image is further discussed in (A.4).

Porsgrunn, 19th May 2021.

Ruben Austefjord

3

Contents

Preface

Contents
List of Figures .

Introduction
. D Scan as a Measurement System .

. . Image or Projected View Representation of D Data

. . Volumetric Representation of D Data

. . Mesh Representation of D Data .

. . Point Cloud Representation of D Data
. Problem Description .

. . General Point Cloud Methods .

. . General Material Thickness Evaluation

. . Scripting ATOS Professional Software

Methods
. General Evaluation Framework .

. . Graph Theory as a Framework .

. . Neighbourhood Parameterization .
. Material Thickness .

. . Euclidean Distance .

. . Parallel D Planes .

. . Best-Fit Planes .

. . Neighbourhood Optimized Planes .

. . Material Thickness Optimized Plane Search
. ATOS Professional .

. . ATOS Professional Scripts .

Results
. Investigational Results .
. Development Results .

Conclusion

4

Contents

Discussion
. Further Work .

Bibliography

A Software Source Code
A. GOM Inspect Suite Script .
A. GOM Inspect Suite Automation Script .
A. Methods .
A. Cover Image .

5

List of Figures

1.1 Common Representations Of 3D Data, Image In Courtesy Of Qi, C.R. et
al., 2017 [3]. 10

1.2 2D Representation Of 3D Object, Image In Courtesy Of Su, H. et al., 2015
[4]. 11

1.3 Volumetric Representation Of 3D Object, Image In courtesy Of Qi, C. R.
et al., 2016 [6]. 12

1.4 Mesh Representation Of The Stanford Bunny [2] In Courtesy Of Novaković
P. 13

1.5 Point Cloud Representation Of The Stanford Bunny [2] In Courtesy Of Qi,
C. R. et al., 2017 [3]. 13

1.6 Heat Mapped Point Density Distribution On Disks For Random Points. . . 14
1.7 2D Material Thickness Example Plate With Point-wise Material Thickness

Pairing. 16

2.1 Structure Of Nodes And Edges In Graphs. 18
2.2 4-Node Graph And It’s Corresponding Adjacency Matrix. 19
2.3 4-Node Graph And It’s Corresponding Adjacency List. 19
2.4 3D Sample Dataset With Two Distance Vectors. 23
2.5 3D Sample Dataset With Two Ideal Planes Across The Bottom And Top

Surface. 24
2.6 3D Sample Dataset Where Material Thickness Is Evaluated At Random

Points. 25
2.7 Example Of Least Squares Plane Fitting With 50 Randomly Distributed

Points. 26
2.8 Least Squares Plane Fitting On 3D Sample Dataset With Varying p0 And

k Neighbouring Points. 27
2.9 Normalized Eigenvalues, Linearity, Planarity And Scattering Of A Linear

And Planar Dataset. 28
2.10 SVD Plane Fitting On 3D Sample Dataset With Varying p0 And k Neigh-

bouring Points. 30
2.11 2D Material Thickness From Point B By The Shortest Distance Plane

Normal b⃗ Search. 31
2.12 Dataset A and B Comprised of Randomly Distributed 3D Points Along

Two Opposing Disks. 32

6

List of Figures

2.13 Material Thickness Two Way Search Demonstrated On Dataset A. 33
2.14 Material Thickness Two Way Search Demonstrated On Dataset B. 33
2.15 CAD Model Of A Mount-Strut With Welding Junctions Indicated In Red,

Model In Courtesy Of GKN Trollhättan [18]. 34

A.1 Comparison Of Gradients From Left To Right / Right To Left. 54
A.2 Gradient Used In Blend Function. 57

7

Nomenclature

List of abbreviations and symbols used throughout the thesis.

The italic font style is used to emphasise important phrases and names.

Symbol Explanation

AWA Adaptive Welding Automation
CAD Computer-Aided Design
LIDAR Laser Imaging, Detection And Ranging
ML Machine Learning
PCA Principle Component Analysis
SAR Synthetic Aperture Radar
SLS Structured Light Sensor
STL Standard Triangle Language
SVD Singular Value Decomposition
TRF Turbine Rear Frame
λ1D Linear Dimensionality
λ2D Planar Dimensionality

8

Introduction

3D scanning has in recent years become more and more prevalent as the means to measure
and digitize objects, surfaces and scenes in both scientific and commercial related applica-
tions. The reduction in both price and size alongside a gradual increase in accuracy of the
measurement systems has made them widely available and applicable to a vast amount of
use-cases. Typical examples are terrain and ground surveys by Laser Imaging, Detection,
and Ranging (LIDAR) or Synthetic Aperture Radar (SAR). Which recently has taken the
step from stationary ground surveys to aerial surveys with airplanes, drones and satellites
providing data for previously untouched or unreachable terrain. Similar examples are 3D
modelling for digital assets used in cinematics, videos or games. Where instead of building
3D assets from scratch, real objects are scanned and imported directly. Another example
is it’s use in archaeological surveys where excavation is either harmful or unfeasible.

At the manufacturing site GKN Aerospace Norway (GAN) this technology is currently
used in production of aerospace engine components. As introduced in the previous mas-
ter’s project study AWA by Austefjord, R. 2020 [1], the key difficulties of manufacturing a
Turbine Rear Frame (TRF) lay within the welding of forged and cold pressed metal-alloy
components of varying thickness. For visual reference this is the part depicted on the front
page of the thesis. To solve the key difficulties an automatized method of determining the
material thickness in the welding junctions had to be developed. The suggested solution
was presented as a system architecture containing three main steps. Firstly the raw ma-
terial components were digitized through an optical 3D scanner where the resulting 3D
point mesh was evaluated against an ideal CAD model to determine the material thick-
ness at any point. Next the data was partitioned to only relate information regarding the
welding junctions and transferred to a database for storage and accessibility. Lastly the
data was accessed from the database and used to adjust the manufacturing parameters
of the welding robot.

From the results of the master’s project study it was concluded that the presented system
architecture lacked the initial material thickness information from the ATOS Professional
due to an outdated script. Upon further investigation and changes in GAN’s production
scheme it was decided that the master’s thesis should continue the study of 3D scanned
objects of similar nature the TRF. With a goal of achieving general material thickness
evaluation either through the ATOS Professional software or directly from the point clouds
produced by 3D measurement systems.

9

1 Introduction

Throughout this master’s thesis problems and solutions regarding 3D scanned objects will
be discussed. Straying from the highly implementation based master’s project, the goal
is now to present a more generalized theoretical study of the the 3D scanned objects.

. D Scan as a Measurement System

As 3D scanning units and modules has reached satisfactory levels of accuracy, price and
size, they have gradually been introduced as measurement units replacing traditional
methods. An example of this is how traditional ”ground scaling” in large has been replaced
by physical on site LIDAR or aerial LIDAR and SAR. The reasoning behind the transition
is largely due to the reduction in measurement time and cost as well as the ease of access
in certain use-cases. Being only restricted by the measurement systems field of view, 3D
scanning offers superior usability when its accuracy is sufficient for the task.

3D measurements are mainly achieved through two basic principles, reflection timing or
observational analysis. Methods such as LIDAR and SAR determine the distance by
timing the return of their respective emitted wave signals. While other methods such
as Structured Light Sensor (SLS) and Photogrammetry work by analyzing the observed
”images” captured by specialised cameras. Similar for both methods are that they produce
datasets containing the best approximations of distances that have been observed as a
collection of points referenced by their distance in 3D space to the measurement system.

Today the most notable ways of representing these datasets are through Image-, Volumetric-
, Mesh- or Point cloud- representations. This data describes the structure and geometry
of the scanned objects, surfaces or scenes. Depending on the use-case the different forms
of representations may have different merits, ranging from visualization to analysis. A
handy visual guide for the different representations using the Stanford Bunny [2] as render
object can be seen in Figure 1.1.

Figure 1.1: Common Representations Of 3D Data, Image In Courtesy Of Qi, C.R. et al., 2017 [3].

10

1.1 3D Scan as a Measurement System

. . Image or Projected View Representation of D Data

The Image-based or ”2D” representation of a 3D object is achieved through capturing
images of the object at different view-points as demonstrated in Figure 1.2. This is
particularly beneficial due to the vast amount of work that has been done surrounding
analysis of 2D images. Notably methods such as image feature recognition, edge detection,
classification and colour scheme analysis may be used directly in tandem with this form
of representation.

Figure 1.2: 2D Representation Of 3D Object, Image In Courtesy Of Su, H. et al., 2015 [4].

This representation however lacks the true ”3D” aspect required for other methods of
analysis such as volume, density, depth and other features that requires more than two
dimensions. Notably there has been done work on reconstructing 3D objects from 2D
images, Su, H. et al., 2015 [4] and also neural networks capable of mapping depth in
images, Zhou, T. et al., 2017 [5]. This may in the future make the image representation
very valuable for both 2D and 3D analysis.

This representation is currently best suited for simple 2D visualisation and in depth 2D
analysis.

11

1 Introduction

. . Volumetric Representation of D Data

The volumetric representation of a 3D object describes the dataset in voxels otherwise
referred to as ”3D pixels”. These are size variable cubes defined by a length, height
and depth together with information regarding their connected neighbours. They are
most commonly used in medical environments to determine volumes and provide quick
3D visualization. An example of this representation is provided in Figure 1.3. This
representation is best suited for quick 3D visualization and simple 3D analysis.

Figure 1.3: Volumetric Representation Of 3D Object, Image In courtesy Of Qi, C. R. et al., 2016 [6].

. . Mesh Representation of D Data

The surface-based mesh representation of 3D objects describe the triangulated external
perimeter of the scanned object. Often produced from point clouds, this representation
contains both information regarding the coordinates of the points as well as which other
points make up the perimeter-triangles connected to that point. Displayed in Figure 1.4
meshes attempt to optimize the grid such that it is fully connected and closed. This can
be further scaled up and down which means that there exist cases where the mesh has to
interpolate across ”incomplete data”. Similarly holes or missing data has to be enclosed
such that the mesh often is extrapolated beyond the original dataset in order to ensure a
fully connected and closed surface.

12

1.1 3D Scan as a Measurement System

Figure 1.4: Mesh Representation Of The Stanford Bunny [2] In Courtesy Of Novaković P.

This representation has close ties to graphs and is very well suited for creating digital
aspects or replications of physical objects. It provides good visualization and possibilities
for in depth 3D analysis.

. . Point Cloud Representation of D Data

The Point-based representation of 3D objects describe the 3D coordinates of all measured
points in a dataset. Commonly referred to as a Point cloud, the representation can be
considered as the unedited raw output of a 3D scan as displayed in Figure 1.5. Depending
on the accuracy and limits of the measurement system, a point cloud may be highly varied
in regards to point density. Together with the coordinates, the point can have descriptors
such as color and temperature if such data also is available.

Figure 1.5: Point Cloud Representation Of The Stanford Bunny [2] In Courtesy Of Qi, C. R. et al., 2017
[3].

13

1 Introduction

This representation is best suited for in depth 3D analysis without compromising any
information.

For the work in this master’s thesis the methods will be developed from the point cloud
representation as it most closely resembles the general raw data-output of any 3D scanning
system and retains the maximum amount of information.

. Problem Description

The intent of this section is to introduce the problems surrounding developing General
Point Cloud Methods, General Material Thickness Evaluation and of Scripting the ATOS
Professional Software.

. . General Point Cloud Methods

Datasets produced by the means of 3D scanning varies almost indefinitely from object
to object. Moving, rotating, altering or exchanging the scanned object will result in
a completely unique dataset. Measurement uncertainties, accuracy and resolution also
ensures that any two scans would be unique though similar. Temperatures, pollutants,
obstructions, air currents and all other conceivable sources of noise likewise has altering
effects on the final dataset. Much of this variability bears little significance because it
often contributes orders of magnitude less to the total deviation from the theoretical ideal
when compared to the accuracy of the measurement system.

Out of the sources of variability there are mainly three that pose a challenge when at-
tempting to generalize methods across a large manifold of datasets. The first of which is
the point density in the dataset. Example illustration shown in Figure 1.6.

Figure 1.6: Heat Mapped Point Density Distribution On Disks For Random Points.

14

1.2 Problem Description

Measuring a perfectly flat and rectangular 2D surface (plane) with a flawless measurement
system, the surface could in theory be represented by the four edges of the plane. Such
a scan would produce a dataset of only four points while perfectly representing the real
object. Reintroducing the notion that the surface might not be perfectly flat and that
there certainly are measurement variances and uncertainties that compound across the
surface. The dataset would include far more points to represent the scanned object.
This can be further complicated by scanning a more complex surface such as a sphere.
Considering a perfect sphere, the ideal point cloud representation would be infinitely
dense as there would be no edges in the object that could simplify the representation.
Comparing the two ideal representations there is both a limit to how sparse and dense
the point density can be within a dataset. Where it is practically impossible to reach
either end of the ideals for a real measurement system. The resulting point density in
the dataset is then tightly connected to the capabilities of the measurement system and
the type/shape of object scanned. Resulting in an inherently infinite variance in datasets
depending on what is being measured and what measured them. This means that methods
applied to such datasets have to be invariant to point density, e.g. if the goal is to classify
a plane, it should be able to classify the plane regardless of the dataset consists of four
points or one million.

Another challenge when working with point clouds is the topic of orientation. The notion
of up/down, left/right, front/back does not simply apply to objects that have been 3D-
scanned. The objects can be placed in any position/orientation within the measurement
systems viewpoint. Likewise, the measurement system can be placed in any position/ori-
entation surrounding the object. This fact decouples any notion of orientation in the
dataset and imposes the frame of reference from the measurement system to the meas-
ured object. Resulting in any point within the dataset soley being a coordinate point
based on the measured distance from the measurement system. This means that methods
applied to such datasets have to be invariant to orientation and reference systems, e.g.
”Up” can’t simply be defined as increasing ”z” values.

Another general challenge is that a dataset does not posses any prior heuristic or empir-
ical knowledge regarding itself as the only information available in such a dataset is the
individual coordinates of the points. Importantly this means that any single point has
no information regarding its neighbouring points or if that point is part of feature ”X or
Y”. At first glance the lack of this knowledge within a dataset might not be thought of as
particularly important. A given object does after all not need to know what or where it is
in order to exist. Which is to say that for the object, only it’s information is important,
not the knowledge.

15

1 Introduction

Figure 1.7: 2D Material Thickness Example Plate With Point-wise Material Thickness Pairing.

To illustrate these three general challenges with one example, Figure 1.7 depicts a 2D
cross section of a metal plate. The top surface is defined by the 3 points (A, B and
C) which is distributed linearly along the length of the plate. The bottom surface is
comprised of the points (D, E and F) where the height of the surface varies along the
length of the plate. The goal is to find the material thickness, defined in this case as the
distance between the top and bottom surface in the height direction. In the way that this
example is constructed, finding the material thickness is not very difficult. The solution
is simply to calculate the Euclidean Distance between the point pairs (A, D), (B, E)
and (C, F). However, consider a change in point density, let the bottom surface now be
defined by 9 points along the surface. Point pairs can no longer be formed directly in
the vertical height direction for every point, which means that some sub-optimal point
pairing has to be made for at least 6 of the points on the bottom surface. Here the same
calculation would not result in the correct material thickness, take Figure 1.7 vector E⃗C
as an example. The next, maybe obvious problem is that if the plate was rotated even
slightly, e.g. it’s orientation changed, the height direction would no longer equate to
the material thickness. Similarly if the shape changed from a plate to a curved object,
the material thickness might not even be defined in the same direction across the entire
surface. Lastly, none of the points inhabit some knowledge regarding whether it is located
on the top or bottom surface. Nor any information regarding what point it is supposed
to be paired with in order to calculate the distance.

From these challenges it can be deduced that general methods has to be invariant to
variations in point density, orientations, shapes and heuristic and empirical knowledge.

16

1.2 Problem Description

. . General Material Thickness Evaluation

Material thickness can generally be thought of as the distance between two opposing sides
of the same fully-connected surface. For simple shapes such as cubes this usually is the
shortest of the three dimensions with regards to height, width and length. The material
thickness can then be defined by that direction across the entire object. However for
more complex shapes with curvatures, holes and extrusions, the material thickness can’t
be defined solely in one direction as the material thickness now depends directly on the
point of measurement. Material thickness should then be defined as the distance from
the point of measurement to the opposing side of the same fully-connected surface. Or in
general as the shortest distance to another opposing surface.

From a measurement standpoint, material thickness is a relatively simple property to
measure as long as the direction of the measurement is defined. This definition is however
often made from prior experience or knowledge. The problem in defining the direction is
often to know where one surface ends and the next begins, while also understanding that
one surface opposes the other in a ”back/front”, ”top/bottom” or ”left/right” pairing.

Proposing a method that may be generally applicable thus has to rely on the same prior
knowledge or be able to incite it by itself. There is some return of value presented by
the increase in accuracy from material thickness measurements being done on a costly
but accurate 3D scan apposed to a manual measurement. However the greatest return
would be if the measurement could be achieved autonomously without relying on any
prior knowledge or experience.

. . Scripting ATOS Professional Software

To summarize the problem description regarding the scripting of the ATOS Professional
software from Austefjord, R. 2020 [1] we have:

A script capable of autonomously detecting and evaluating the material thickness within
the welding junctions has to be developed. Using built-in functions of the software such
as script-ability and material thickness evaluation compared to CAD files.

17

Methods

In this chapter methods for generalizing and classifying the 3D point cloud datasets are
presented through the subsection General Evaluation Framework. Followed by methods
for evaluating material thickness in Material Thickness and resolving the method for
scripting ATOS Professional.

. General Evaluation Framework

To tackle the unending quarrel of density variance, lack of orientation and knowledge,
some known theory and mathematical theorems can be considered in order to form a
basic ”reference” frame for the unstructured 3D point cloud measurements. Making it
possible for more sophisticated, general and specific methods to be applied to the datasets
without having to rely on specialised heuristic or empirical knowledge.

The intent and goal for this section is to introduce the methods that extrapolate upon
the information available in the datasets.

. . Graph Theory as a Framework

Figure 2.1: Structure Of Nodes And
Edges In Graphs.

When the data is presented in the form of either volu-
metric, point cloud or mesh structures, it is simple to
formulate many of the questions as graph theory prob-
lems. In graph theory the data is generally presented in
terms of nodes and edges as shown in Figure 2.1. For
volumetric representation the voxels would represent the
nodes while the connections to the nearby voxels define
their edges. In a point cloud the points directly corres-
pond to nodes whereas the edges are the distances to all
other points. A mesh structure is inertly already a graph
and thus require no new formulation. Common for all of
these representations is that the graphs are undirected,
meaning there is no preferred direction to the edges.

18

2.1 General Evaluation Framework

There exist a couple ways to represent graphs, most commonly they are represented
through either an adjacency matrix, ref. Figure 2.2 or an adjacency list, ref. Figure 2.3.
Considering that an adjacency matrix lists all possible edges between nodes even if there
are none, the size of the matrix grows proportionally with the size of the dataset squared.
An adjacency list however only denotes which edges exist and thus only grows propor-
tionally with the amount of connections/edges in the dataset. Datasets produced from 3D
scanning will be very large thus it only makes sense to continue with the representation
in form of an adjacency list.

Figure 2.2: 4-Node Graph And It’s Corresponding Adjacency Matrix.

Figure 2.3: 4-Node Graph And It’s Corresponding Adjacency List.

Depending on the format of the input, the adjacency lists may be either sparse or dense
depending on the amount of edges coupled to a given node. For both the volumetric and
mesh representation, there only exist a handful of edges per node, making them naturally
sparse. This is great for low memory consumption and computational power. Point clouds
are however naturally dense since all nodes are connected to each other, effectively making
the representation an adjacency matrix filled with ones. Working with point clouds as
graphs is therefore cumbersome if computational power and memory is limited. Luckily
most of the edges are abundant and provide no particularly insightful information. The
adjacency list may therefore be shorted to only contain a certain specified number k edges
of interest.

19

2 Methods

KD-Trees

As is the case with both the volumetric and mesh representations, the general interest
in point clouds are the closest neighbours of the points/nodes. Evaluating the k nearest
neighbours of a graph is fortunately a widely covered problem with many solutions. One
of which is the ”K-Nearest-Neighbour” (KNN) search introduced by Friedman, J. H. et al.,
1977 [7]. This function works by structuring the data in a binary tree known as a kd-tree.
This structure separates the dataset based upon a defined delimiter which in this case has
the goal of grouping similar data. From Friedman, J. H. et al., 1977 [7] the tree delimiter
is the point in the dataset where the greatest spread occurs, e.g. the difference between
the minimum and maximum values. This equates to be the median of the dataset and is
known as the Standard Split. The delimiter used for constructing the kd-trees has further
been improved through several iterations where today the most commonly applied is the
Canonical Sliding-Midpoint Split introduced by Maneewongvatana, S. et al., 1999 [8].
Once a kd-tree is constructed, any point n can be queried for their nearest k neighbours
without having to calculate the distances to all possible points in the dataset. This is made
possible by only evaluating the points in the same tree cluster/branch, greatly reducing
the computational effort.

Using this method, point clouds can be formulated as graphs without sacrificing memory
or computation power and can be represented by an adjacency list equal to the ones used
for both volumetric and mesh structures.

. . Neighbourhood Parameterization

For the sake of analyzing the dataset, there is often a desire to find similarities or features
within the data in order to classify points or areas depending on the grouping. Such data
clusters can be evaluated with different tools, ranging from shape recognition (Barr, A.
H., 1981 [9]) to modern day neural network classifiers (Zhu L. et al., 2019 [10]). Direct
examples are separating the bare ground from vegetation (Jiang, Y. et al., 2019 [11]) and
from urban features (Weinmann, M. et al., 2015 [12]). The list of possible applications are
not short, indicating that finding such data clusters within the point cloud could provide
highly insightful and valuable information.

There are several methods for finding such clusters, however many of them are very
specialised towards which objects, surfaces or scenes that are expected as inputs, or from
which measurement system the data was collected. The problem is in general that if given
an ordinary coffee-mug, two different measurement systems could provide vastly different
point resolutions of the mug once scanned. Say one is a point cloud of 30 000 points A,
while the other is 5 000 points B. If an algorithm should classify clusters that are either
flat or have a curvature above a certain percentage. The same algorithm might evaluate
the scanned mug A to be flat in a region given by a point on the mug and the k = 10

20

2.1 General Evaluation Framework

closest points. Whereas for B, due to the lower point density, the same ten closest points
would be much further removed in distance, revealing that there was a curve. Even worse
would be to use the same algorithm on an entirely different object. It is pretty obvious
that the number of k nearby neighbours has to have some form of variability with the
point density as well as the shape of the object, surface or scene.

In Weinmann, M. et al., 2014 [13] it is said that the best selection of the number k nearest
neighbours can be determined by selecting the value of k which yields the minimum
Shannon Entropy. This ensures that the point selection includes enough points that a local
descriptive cluster can be formed while also ensuring that the greatest local information
divide has been reached.

Shannon Entropy for D Structures

Presented in A Mathematical Theory of Communication by Claude Elwood Shannon [14],
the Shannon Entropy is used to evaluate the information entropy of a given probability
distribution. Denoted by H(x) the Shannon Entropy is a measure of the uncertainty of
an event ”x”, ranging from 0 → inf. If the probability distribution only has one outcome,
there exist no uncertainty in the distribution and the Shannon Entropy equates to 0.
Mathematically the function is represented in (2.1)

H(x) =−∑
x

P(x) logP(x) (2.1)

were P(x) is the probability distribution of events ”x” and log is the base-2 logarithm.
An unlikely outcome will score a high Shannon Entropy value, whereas the most likely
outcome will score the lowest value of Shannon Entropy.

Considering a point p0 in the dataset and it’s nearest k neighbours. A covariance matrix
C can be calculated for the collection of points from p0 → pk as shown in (2.2) and (2.3)

p̄ =
1

1+ k

k

∑
i=0

pi (2.2)

C =
1

1+ k

k

∑
i=0

(pi − p̄)(pi − p̄)T (2.3)

where from the covariance matrix, the three eigenvalues λ1 ≥ λ2 ≥ λ3 can be calculated.
Such that λ1 explains the greatest variance in the point collection, followed by λ2 and
λ3. Since the dimensionality of the dataset is 3D, 100% of the variation can be explained
by the three eigenvalues. Following Weinmann, M. et al., 2014 [13], the eigenvalues can
be normalized giving the eigenvalues e1, e2 and e3 as defined in (2.4), (2.5) and (2.6)

21

2 Methods

distributed from 0 → 1

e1 =
|λ1|

|λ1|+ |λ2|+ |λ3|
(2.4)

e2 =
|λ2|

|λ1|+ |λ2|+ |λ3|
(2.5)

e3 =
|λ3|

|λ1|+ |λ2|+ |λ3|
(2.6)

where |λn| in this thesis is the abs(Re(λn)) of eigenvalue n.1 It is further shown in Wein-
mann, M. et al., 2014 [13] that the eigenvalues can be exploited to describe certain dimen-
sionality features such as linearity Lλ , planarity Pλ and scattering Sλ described in (2.7),
(2.8) and (2.9)

Lλ =
e1 − e2

e1
(2.7)

Pλ =
e2 − e3

e1
(2.8)

Sλ =
e3

e1
. (2.9)

As the eigenvalues are normalized and range from 0 → 1 and importantly sum up to one
for both e1 + e2 + e3 = 1 and Lλ +Pλ +Sλ = 1, the values can be thought of as ”pseudo”
probabilities. The value of e1 will for instance indicate the ”probability” of the dataset
being described solely by e1. Likewise the ”probability” that the dataset is linear or
one-dimensional can be evaluated by Lλ . The values can then carefully be applied to
the Shannon Entropy function, ensuring that no eigenvalue equates to 0 by adding an
infinitesimally small ε . From this the eigenentropy eλ and Shannon Entropy Eλ are
defined according to (2.1) as follows in (2.10) and (2.11)

eλ =−e1 loge1 − e2 loge2 − e3 loge3 (2.10)
Eλ =−Lλ logLλ −Pλ logPλ −Sλ logSλ . (2.11)

1The |λn| operation is theoretically unnecessary since the covariance matrix C is said to be positive
definite. This claim is beyond the scope of this thesis, however the interested reader is referred to
Weinmann, M. et al., 2014 [13] page 5.

22

2.2 Material Thickness

. Material Thickness

In this section the approach of creating a general applicable method for evaluating material
thickness is described. The methods are developed to match the underlying human intu-
ition towards material thickness while gradually utilizing the general methods presented
in General Evaluation Framework (subsection 2.1). The methods are presented in order
from least to most general.

. . Euclidean Distance

Given the simple rectangular dataset in Figure 2.4 with respects to material thickness.
Much alike the 2D example in General Point Cloud Methods (subsection 1.2.1) this 3D
dataset has points distributed such that the height direction can be defined as the direction
of the material thickness. The points are also distributed evenly across a grid such that
the direction-lines in the grid intersecting the points are ⊥ to each other.

Figure 2.4: 3D Sample Dataset With Two Distance Vectors.

The distance between any point pair p and q can be calculated as the Euclidean Distance
”dist(p,q)” between them as seen in (2.12)

dist(p,q) =
√

(qx − px)2 +(qy − py)2 +(qz − pz)2. (2.12)

Knowing that ”Z” is the direction of the material thickness Vector A from Figure 2.4
equates to the correct point pairing to determine the material thickness.

23

2 Methods

This method is comparable to manual thickness measurements with e.g. calipers. The
direction of the measurement is known and point p and q is selected to adhere to this
knowledge. This makes the method not generally applicable as it relies solely on heuristic
and empirical knowledge.

. . Parallel D Planes

Given a box, book or simply a sheet of paper, our perception of depth within an object
allows us to determine the direction of the material thickness almost immediately. We
identify the surfaces on the objects and choose the ones with the smallest distance between
as the depth. Consider the same simple rectangular dataset in Figure 2.5 with respects to
material thickness. Expressing our intuition of depth, we have that the distance between
the two ideal and parallel planes equates to the material thickness.

Figure 2.5: 3D Sample Dataset With Two Ideal Planes Across The Bottom And Top Surface.

Expressing this mathematically the method can be divided into three steps: a), b) and c)
each explaining the process taken to determine the material thickness.

a) An initial point p0 has to be selected from where the material thickness should be
evaluated. This may be done through the end-user’s specific choice, a random selection
or through an incremental loop if all points are to be evaluated. The only constraint is
that the point p0 has to exist in the dataset.

24

2.2 Material Thickness

b) A 2D plane has to be created through the point p0, such that the plane resembles
the surface of the object. Generally this can be achieved with the function for a plane,
described in (2.13)

ax+by+ cz+d = 0 (2.13)

where (x,y,z) is a point located in the plane, while [a,b,c] is a direction vector perpendic-
ular to the plane. Having selected a point p0 in a), this only leaves the direction vector as
unknown. Recalling that the direction of the material thickness is defined as the height
or ”Z” direction in the dataset, the normal vector for the plane is known. Expressing the
equation for a plane with respect to a point A = (x0,y0,z0) and the plane’s normal vector
n⃗ = [a,b,c] we have in (2.14)

a(x− x0)+b(y− y0)+ c(z− z0) = 0. (2.14)

c) Steps a) and b) are repeated for a point on the opposing surface such that two parallel
planes are formed. The material thickness can then be found from calculating the distance
between the planes given by (2.15)

dist =
|d1 −d2|√

a2 +b2 + c2
. (2.15)

This method more closely resembles our thought process when finding the material thick-
ness of an object. Though relying on the prior knowledge regarding the direction of the
material thickness. If the point pairing is selected at random, a distance will be found,
however not necessarily in the direction of the material thickness as shown in Figure 2.6.

Figure 2.6: 3D Sample Dataset Where Material Thickness Is Evaluated At Random Points.

25

2 Methods

. . Best-Fit Planes

Evaluating the flaws of the Parallel Planes method, the intention is not to find ”a” plane,
but a plane that represents the surface the selected point lies within. This can be achieved
by evaluating the nearest neighbours of the initial selected point through a KD-tree search.
In this way the closest k neighbouring points can be evaluated as a local cluster explaining
the surface surrounding the initial point. From this cluster a 2D plane can be fitted to
match the points through a least squares optimization problem. Implementing the least
squares method in accordance with the matrix formulation described under the Ordinary
Least Squares page [15]. The cluster can be expressed as an overdetermined system on the
form ∑p

j=1 Xi jβ j = yi, (i = 1,2, . . . ,k), (j = 1,2, . . . , p) where p is the number of equation
variables. Equation (2.13) can be solved for z and expressed as y = Xβ where

X =

x1 y1 1
x2 y2 1
...

xk yk 1

 , β =

a
b
d

 and y =

z1
z2
...

zk

 for k points in the cluster. (2.16)

A plane can then be fitted to match the points through a least squares optimization
problem as formulated in (2.17), (2.18) and (2.19)

arg min: S(β) =
n

∑
i=1

(yi −
p

∑
j=1

Xi jβ j)
2 = (y−Xβ)2 where it follows that: (2.17)

XT Xβ = XT y (2.18)
β = (XT X)−1XT y . (2.19)

Demonstrated with 50 randomly distributed points in Figure 2.7, this can be utilized in
step b) from Parallel 2D Planes (subsection 2.2.2) to form the plane representing the local
surface.

Figure 2.7: Example Of Least Squares Plane Fitting With 50 Randomly Distributed Points.

26

2.2 Material Thickness

This improvement accomplishes an invariance to prior knowledge by removing the need
to know the direction of the plane normal. However it is still very sensitive to both
changes in point density and orientation as well as the initial selected point. This can be
demonstrated in Figure 2.8 using the simple 3D dataset from (subsection 2.12).

Figure 2.8: Least Squares Plane Fitting On 3D Sample Dataset With Varying p0 And k Neighbouring
Points.

Viewing Figure 2.8 from left to right, the different subplots showcase that 1) if the number
of k nearest neighbours are properly selected (displayed as blue dots surrounding the
black p0 initial point) a plane (displayed in green) can be created in the direction of the
surface. 2) If the initial point lies such that one of the set number of closest neighbours
lie on another surface, the plane is fitted across the two surfaces and fails to explain the
singular surface of the initial point p0. Finally in 3) if the number k exceeds a certain
threshold dependant on the point density, the plane will likewise fail to explain the surface
surrounding the initial point as it is forced to include points in other surfaces.

There also exist a bias within the Least Squares method used to fit a plane when it comes
to the preferred direction to minimize the error. In this case the solution is solved for the
z direction implying that for this dataset it is ”known” that z or ”height” is the preferred
direction to optimize for.

. . Neighbourhood Optimized Planes

Once again reviewing the flaws of the previous method with respects to a general solution,
there are mainly two improvements that can be implemented. Firstly the number of k
nearest neighbours should be scalable depending on the surface where the initial point
lies. For this the Shannon Entropy (subsection 2.1.2) can be incorporated to determine
how many points should be evaluated before the ”uncertainty” of the dimensionality in
the cluster increases. In other words the Shannon Entropy should be minimized such
that only points within a single plane should be included. The second improvement is

27

2 Methods

to remove the bias towards any direction when fitting a plane to the cluster. This can
be done through a Singular Value Decomposition (SVD) such that the plane is fitted by
allowing for errors across all the individual variables x, y, and z, not restricting the error
to only occur in one ”known” vertical direction.

From Shannon Entropy for 3D Structures (subsection 2.1.2) we have that the dimension-
ality can be described by the normalized eigenvalues and eigenvectors. Notably a cluster
of points can be said to confide within a 2D surface of arbitrary direction or rotation if
the third eigenvalue is minimal. This can be explained by considering the normalized
eigenvalues where e1 ≥ e2 ≥ e3 and e1 + e2 + e3 = 1. If the first eigenvalue e1 explains
close to 100% of the variation within the cluster, the points that make up the cluster
would only lie along the first eigenvector or in other words along a linear line. If e1 and e2
explain 50% of the variance each, the points that make up the cluster would be spread
out symmetrically across the first and second eigenvector. These two concepts related to
the eigenvalues are demonstrated in Figure 2.9.

Figure 2.9: Normalized Eigenvalues, Linearity, Planarity And Scattering Of A Linear And Planar Dataset.

Furthermore for any combination where e1 + e2 ≈ 100% the points that make up the
cluster must be confined to a 2D plane made up by the first and second eigenvector. This
is true because e3 contributes approximately nothing towards explaining the variance and
the cluster is almost fully explained by the two most important eigenvalues spanning a
2D plane. This feature of planar dimensionality λ2D can be expressed as low or close to
zero scattering Sλ in (2.20)

The dataset is λ2D if: Sλ =
e3

e1
≈ e3 + ε

e1 + ε
≈ 0 (2.20)

28

2.2 Material Thickness

if ε is an infinitesimally small number to avoid any possible numerical division errors.
These features can be taken advantage of by evaluating either the λ2D directly for the
cluster or by evaluating the specific Shannon Entropy given by (2.21)

Sk =−Lλ ln(Lλ + ε)−Pλ ln(Pλ + ε)−Sλ ln(Sλ + ε) (2.21)

where Sk is the Shannon Entropy for a cluster given by the k number of nearest neighbours.
Sk can in turn be optimized for the number k such that only points on the same surface
is evaluated and thus removing the problems displayed in Figure 2.8. Note that in theory
the Shannon Entropy would optimize for a linear dimensional λ1D system because the
least uncertainty in any given 3D point cluster would be if e1 explained 100% of the
variance. In reality due to both measurement uncertainties and the nature of the objects
that are scanned, such a scenario can’t, or is extremely unlikely to occur when facing real
datasets. There is still one scenario where this is true, and that is if only two points are
evaluated, pairing only two points will always produce a λ1D system simply from the fact
that a straight line can be drawn through any two points provided they are not the same
point. The optimization of Sk should then have a lower cutoff range at least above 2 in
order to avoid this scenario, otherwise the ideal k would always be equal to 2. When this
scenario is taken care of the least uncertainty in a cluster is then defined by one dimension
higher where both e1 and e2 > 0. Meaning that for real datasets the Shannon Entropy
optimizes for λ2D systems.

Having optimized k from a range of e.g. [5 → 40] the resulting Sk is a cluster of the initial
selected point p0 and it’s k nearest neighbours which in real practical scenarios should be
the best λ2D representation of the surface in which p0 lies. From this cluster a best-fit
SVD plane can be constructed such that the material thickness can be determined.

From the Total Least Squares page [16] the SVD best-fit can be implemented as a plane
constructed from the least significant, right singular vector v3 and the initial selected point
p0 by using equation (2.14). From the SVD deconstruction of the 3D point cluster the
resulting v vector in u∑v contain much alike the eigenvectors the direction of the highest
order explainable variance. This means that v3 is the best-fit vector orthogonal to the
plane described by v1 and v2.2

2The best-fit SVD method is not expressed in it’s entirety as this falls outside the scope of the thesis.
The interested reader is referred to [16] and [17].

29

2 Methods

Combining the two presented methods and applying them to the simple dataset from
(subsection 2.2.1) makes the Neighbourhood Optimized Planes method capable of struc-
turing local regions around a given point p0 where the surface can be expressed best as
a λ2D plane. The sensitivity towards changes in point density and point localisation is
highly decreased as seen when comparing the results with the identical dataset in Figure
2.8 to Figure 2.10. Furthermore the bias towards a certain orientation has been removed
by introducing the SDV best-fit plane.

Figure 2.10: SVD Plane Fitting On 3D Sample Dataset With Varying p0 And k Neighbouring Points.

The method satisfies the initial requirement from (subsection 1.2.1) such that it is in-
variable towards changes in point density and orientations. However the final step in the
algorithm presented in (subsection 2.2.2) still has a reliance upon finding parallel planes,
thus relying on a known object shape.

. . Material Thickness Optimized Plane Search

It is fairly simple to demonstrate why more complex systems can’t be solved in this
manner. Evaluating the material thickness across the 2D example in Figure 2.11 the
thickness varies along the X-axis as a result of the bottom surface not being flat. Picking
the initial point B, a plane can be constructed such that the local feature for the surface
surrounding B is represented as a λ2D plane. Investigating where the normal b⃗ to the
plane intersects with the other surface, a plane can be constructed in the same manner
to fit the nearby local region. This plane will however not be parallel to the one in B, nor
will the length of the normal b⃗ between them be the material thickness.

30

2.2 Material Thickness

Figure 2.11: 2D Material Thickness From Point B By The Shortest Distance Plane Normal b⃗ Search.

In Figure 2.11 the correct material thickness is the vector b⃗, notably this is a normal
vector constructed from the intersection plane found in the initial search from point B.
This means that the following two part search algorithm (Listing 2.1) can be carried out
in order to ensure that the shortest distance is found.

1 Select an initial point p0.
2 Determine the best k nearest neighbours through Sk (2.21) .
3 Construct a SVD best-fit plane for the cluster of k points.
4 Use the plane normal v⃗ to determine the intersecting opposing surface.
5 From the intersected point, determine the best k nearest neighbours by Sk.
6 Construct a SVD best-fit plane plane for the cluster of k points.
7 Let the plane normal v⃗ intersect the first point p0.
8 Calculate the euclidean distances of the two normal vectors.
9 Select the shortest distance as the material thickness.

Listing 2.1: Material Thickness Two Way Search Algorithm.

The last hurdle to overcome is the fact that in a point cloud the plane normal is not
guaranteed to intersect a point on the opposing surface. Here two methods can be imple-
mented to determine the point closest to the theoretical intersected point.

The distance from any point pn to the normal vector v⃗ can be found through (2.22)

dist =

√
((pn − p0)× v⃗) · ((pn − p0)× v⃗)√

v⃗ · v⃗
(2.22)

where p0 is the initial point, ”×” is the cross product and ”·” is the dot product.

31

2 Methods

Similarly the angle between the normal vector v⃗ and a vector formed by the initial point
p0 and any point pn is given by (2.23)

angle =
arccos(u⃗n · u⃗)∗180

π
, where (2.23)

u⃗ =
v⃗√
v⃗ · v⃗

and u⃗n =
⃗(pn − p0)√

⃗(pn − p0) · ⃗(pn − p0)

. (2.24)

Both methods for finding the closest point pn to the theoretical intersecting point have
their advantages and disadvantages. Evaluating the distance to the normal means that
points on either two planes can be selected as the closest point. Using this method thus
means having to exclude at the very least the points k that made the original plane in
order to find the correct intersection point. Depending on the point distribution this may
be more or less than the k points, e.g. simple to calculate but hard to generalize. On the
other hand the angle is periodical and dependant on the direction of the normal vector v⃗.
Meaning that the minimum value of abs(arccos(u⃗n · u⃗)) and abs(arccos(u⃗n · u⃗)−π) has to
be selected in (2.23) in order to get the correct intersection point.

Implementing the material thickness algorithm from (Listing 2.1) combined with the
approximation for the closest intersection point through the minimum angle search the
method is finally decoupled from all the dependencies presented in (subsection 1.2.1).

In order to demonstrate the method, two new datasets A and B are introduced, both A
and B are comprised of 3D points structured randomly across two opposing disks. Unique
for B is that the bottom disk has a step function along the distribution of the disk. A and
B are demonstrated in Figure 2.12

Figure 2.12: Dataset A and B Comprised of Randomly Distributed 3D Points Along Two Opposing Disks.

32

2.2 Material Thickness

Applying the two way material thickness search algorithm from (Listing 2.1) on dataset A
using a randomly selected point as the starting point p0. The material thickness is initially
evaluated to be 1.9922, whereas the second search reveals that there exist a better pairing
which returns a material thickness of 1.9789 as demonstrated in Figure 2.13.

Figure 2.13: Material Thickness Two Way Search Demonstrated On Dataset A.

Likewise for dataset B a better approximation is found on the second search as shown in
Figure 2.14.

Figure 2.14: Material Thickness Two Way Search Demonstrated On Dataset B.

33

2 Methods

. ATOS Professional

The software solution for the GOM measurement cell is ATOS Professional, a 3D inspec-
tion and metrology system designed for use in ATOS 3D scanning systems. The most
notable functionality of the software in respect to this thesis is it’s capability of being
scripted through the programs own script functions. This allows for inspections and op-
erations of the scanned component data to be carried out autonomously in accordance
with the script. The scripts are written in the programming language Python and are
capable of doing any and/or all operations the software normally is capable of.3 While
also having the possibility to introduce new functionality through programming.

. . ATOS Professional Scripts

To resolve the open point regarding autonomous digitization of components from AWA
by Austefjord, R. 2020 [1], a script has to be developed in order to select the welding
junctions of the components and calculate their material thickness.

Figure 2.15: CAD Model Of A Mount-
Strut With Welding
Junctions Indicated In Red,
Model In Courtesy Of GKN
Trollhättan [18].

To achieve a suitable selection of the welding junc-
tions some prior setup is required, notably custom
Computer Aided Design (CAD) models can be made
for each unique component type. Within these CAD
models the welding junctions can be classified as
predefined areas that the software easily can recog-
nize once the CAD model is imported. An example
of this is shown in Figure 2.15 where the red areas
are the welding junctions for that component type.
These areas can then easily be evaluated by the
programs built in material thickness function and
exported for use and storage. The python code to
achieve the automated material thickness evaluation
is described in Appendix (A).

3Notable functions are described in the project work AWA by Austefjord, R. 2020 [1].

34

Results

As this thesis investigates the realm of 3D scanning as measurement system, 3D data
structures, 3D data classification and evaluation as well as developing general frameworks
and methods based upon known studies and methods. The results are divided into two
sections in order to provide a clear overview of the work that has been done in the thesis,
contrasted to how existing methods have been utilized. The division is structured by what
is known and what has been done.

. Investigational Results

In order to present general methods and frameworks for 3D scan data, four known data
structures have been discussed on the terms of usability and functionality. Out of the
four representations (Image, Volumetric, Meshes and Point Clouds) it has been determ-
ined through this thesis that for the goal of analyzing the datasets, the point cloud
representation provide the best analytical base.

The 3D point cloud information has been investigated in order to determine the depend-
encies both with respects to the measurement systems as well as the originating object.
The problems surrounding 3D scanning as a measurement system have been presented
where a claim has been stated that in order for any particular applicable method to be
truly general, it has to be capable of invariance towards point density, orientation and
prior empirical or heuristic knowledge.

From the presented invariance claim, methods to remove the dependencies has been in-
vestigated in order to infer useful knowledge from the information within the datasets.
Firstly a method for providing general data frameworks was considered in order to struc-
ture the otherwise unstructured and reference system dependant collection of 3D points.
It has been shown through the thesis that any point cloud can be structured as a graph
framework, making it simple to classify and structure each point by their nearest neigh-
bouring points as adjacency lists through the known method of KD-Tree structuring.

From the graph structure further knowledge can be inferred such as classifying local point
clusters by their dimensionalities through known methods for eigenvalue analysis. These
clusters can be found invariant to point densities, orientation or location through a min-
imization of the ”uncertainty” entropy through the known Shannon Entropy method.

35

3 Results

. Development Results

Utilizing the methods discussed in Investigational Results, a general method for determin-
ing material thickness in unstructured 3D measurement data has been presented. Drawing
inspiration from the human intuition and knowledge of what and how material thickness
is determined, the method was developed from a point to point measurement of Euclidean
Distance to a complex Material Thickness Optimized Plane Search algorithm. Import-
antly the final algorithm operates invariant towards point density, orientation and prior
empirical or heuristic knowledge. However it is not infallible and have only been tested
on simple fabricated 3D datasets which is discussed further in Discussion.

A method for autonomously determining the material thickness through the ATOS Pro-
fessional software has been presented where the scanned 3D data is compared to CAD
models with predefined segments of interest.

The methods have been implemented through code available in Appendix A.

36

Conclusion

For methods applied to 3D scan measurement data represented as point clouds to truly
be general, they have to be invariant to variations in point density, orientation and prior
empirical or heuristic knowledge.

A general graph framework can be built using KD-tree clustering. Local clusters can be
classified by their surrounding nearest points to form different dimensionality features
such as Linearity Lλ , Planarity Lλ and Scattering Lλ . These clusters can be defined
from varying point densities through the optimization of the Shannon Entropy for the
normalized dimensionality features expressed as ”pseudo probabilities”.

Material thickness for low curvature objects can be determined through evaluating the
distance between two opposing planes formed by the local clusters discovered by the
Shannon Entropy evaluation of the individual points. See the implemented algorithm in
Listing A.4.

Material thickness can be autonomously determined through the ATOS Professional soft-
ware by comparing 3D scan data with predefined CAD models. See the implemented
script in Listing A.2.

Functions, methods and scripts have in general been implemented through Python code
available in Appendix A.

37

Discussion

Due to the extremely broad goal of making a general solution applicable to any 3D point
cloud dataset, the development had to be segmented into solving a subset of simpler/s-
maller problems rather than tackling everything at once. This means that for testing
purposes the methods have been tested on appropriately challenging fabricated data in
stead of real measurement data. There is a couple reasons for this, firstly it ensures that
the method can be tested under a controllable environment. Secondly the results are intu-
itive and understandable compared to results from highly complex datasets. Maybe more
importantly for the sake of development progress, inconsistencies and errors are simpler
to handle because of the controllable and easier to understand test environment. Likewise
due to the sheer size of the real datasets, the results from the tests can be produced in
milliseconds as opposed to minutes or hours.

There has been done an effort in collecting real measurement data for three commonly
used reference objects used in the aerospace manufacturing industry, a sphere, a cylinder
and a slab. These reference objects have known measurable properties such as diameter,
length, width, depth, angle and run-out. However it has been known for quite some
time that highly curved objects would pose at least in my perceivable theory, unsolvable
problems for a general method. The reason is paradoxical in nature, taking a sphere
as an example, the material thickness of a sphere is it’s diameter which is the longest
distance between two points on the sphere. This breaks the previously assumed notion
that the material thickness is the shortest distance between two opposing surfaces. For
these reasons both the spherical and cylindrical dataset was deemed unfit to evaluate the
current model. The ”square-ish” slab could be a good candidate to test the current model,
however it was never tested because it’s too large (43M 3D points). Reducing the size
almost exactly equates to the same problem of the fabricated simple 3D dataset otherwise
used, so this would be a needlessly complex operation for little benefit. Regardless the
presented method will most assuredly fail for spherical or highly curved objects.

The two way material thickness search algorithm is somewhat clumsy and not the best
solution. A better method for determining the closest point would be to let a sphere
expand from the initial point p0 until it hits another point pn. This would ensure that the
most optimal point would be selected every time. However since the sphere expands in
all directions, the first point encountered would very likely be the neighbouring point on
the same surface. This means that the method would have to know how to differentiate

38

5.1 Further Work

between points along the same surface and ”other points of interest”. A solution to this
problem should be possible and is noted in Further Work.

In the presented general material thickness method, SVD is used to best-fit a plane to the
point cluster. Notably this might be needlessly complex since the only value extracted
from the SVD is the least significant right singular value. This could likewise be done by
selecting the least significant eigenvector in e.g. a PCA decomposition.

λ2D which is utilized in (subsection 2.2.4) could be expressed more accurately as (5.1)

λ2D =
e3

e1 + e2
≈ e3 + ε

e1 + e2 + ε
≈ 0 (5.1)

though this formulation can’t be used in the Shannon Entropy equation. This is because
the evaluated probabilities has to sum up to 1, this is of course achievable by for example
including the ”not λ2D” such that (5.2)

e3

e1 + e2
+

e1 + e2 − e3

e1 + e2
= 1 . (5.2)

However it is difficult to express what scenario ”not λ2D” refers to or in other words it does
a poor job of describing the dimensionality present if the data is not planar dimensional
λ2D. It is also unknown if the natural tendency within a dataset is to have a lower value
for ”not λ2D” than λ2D or vice versa. Notably e3

e1
≈ e3

e1+e2
because e1 ≥ e2 and e1 ≫ e3

meaning this simplification introduces very little error.

. Further Work

From the work done in the thesis many new questions have arisen which could prove
insightful in order to improve upon the presented solutions.

The broad field of graph theory contain many elegant and computational cost efficient
algorithms. Many of the problems attempted solved in this thesis might be possible to
rephrase into problems solvable by such algorithms. Thus a study into the capabilities of
graph theory may improve the methods substantially.

Due to a design choice in the implementation process of the material thickness algorithm,
the Shannon entropy is optimized using a brute force approach, ranging from 5 → 40.
This is done because other optimizers such as Newton-Cotes or the Bernt’s Algorithm do
not allow for integer solutions. Such algorithms would, and in fact does produce errors if
they do not get to investigate the numerical realm between two whole numbers. However
it makes no sense to look at 6 and a half nearby points, meaning the algorithm gets stuck
at the first local minima it finds. The brute function works decently but is not truly
invariant to point density changes since the roof of the search is capped. It is also slow

39

5 Discussion

since it has to evaluate 35 points every time the function is called. Here a better optimizer
should be implemented.

Similarly when the material thickness algorithm searches for the smallest angle difference
to the ideal ”pn intersection”, brute force is applied as the optimizer. There seems to
be no good way of improving such a search which means that currently the algorithm
has to evaluate every point in the dataset, twice because the algorithm is repeated when
finding the second material thickness back towards the initial point p0. Here there might
be vastly better ways of doing such a search if the problem could be formulated as a graph
problem.

SVD is in this thesis only used to find the least significant right singular value in the local
cluster. It should be worth investigating whether more useful insight might be derived
from other parts of the decomposition. SVD might also be useful for analysing the whole
dataset or groups of clusters, reducing the structure or determining the most important
features (highest rank sigmas), etc…

For highly curved objects it could be a posibility to best-fit a sphere and use the tangent
plane intersecting the initial point p0 to determine the normal direction of the material
thickness. For complete spheres datasets, best-fit spheres could also give the radius, e.g.
material thickness directly from the formula.

It could be worth investigating methods to triangulate the dataset and subsequently
evaluating the triangles. It was noted while reviewing mesh Grid structures in dialogue
with Associate Proff. Håkon Viumdal and Proff. Ola Marius Lysaker that in planar areas,
the triangles usually had similar angles between the edges. In areas with high curvature
or close to edges there would be considerably more sharp angles, where one angle would
be very small compared to the other two. There then might be an analytical benefit
from investigating the triangles angles and their edge lengths in order to see if any useful
information could be extrapolated.

40

Bibliography
[1] R. Austefjord, Adaptive Welding Automation based on 3D Point Clouds, Project,

2020.
[2] (1993). ‘Stanford 3d scanning repository,’ [Online]. Available: http://graphics.

stanford.edu/data/3Dscanrep/.
[3] C. R. Qi, H. Su, K. Mo and L. J. Guibas, PointNet: Deep Learning on Point Sets for

3D Classification and Segmentation, Presentation, PDF, 2017. [Online]. Available:
https://web.stanford.edu/~rqi/pointnet/docs/cvpr17_pointnet_slides.
pdf.

[4] H. Su, E. Maji S. Kalogerakis and E. Learned-Miller, Multi-view Convolutional
Neural Networks for 3D Shape Recognition, Paper, 2015.

[5] T. Zhou, M. Brown, N. Snavely and D. Lowe, Unsupervised Learning of Depth and
Ego-Motion from Video, Paper, 2017.

[6] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan and L. J. Guibas, Volumetric and
Multi-View CNNs for Object Classification on 3D Data, Paper, 2016.

[7] J. H. Friedman, J. L. Bentley and R. A. Finkel, An Algorithm for Finding Best
Matches in Logarithmic Expected Time, Paper, 1977.

[8] S. Maneewongvatana and D. M. Mount, It’s okay to be skinny, if your friends are
fat, Paper, 1999.

[9] A. H. Barr, Superquadrics and Anglepreserving Transformations, Paper, 1981.
[10] L. Zhu, A. Kukko, J. Virtanen, J. Hyyppä, H. Kaartinen, H. Hyyppä and T. Turppa,

Multisource Point Clouds, Point Simplification and Surface Reconstruction, Paper,
2019.

[11] Y. Jiang, C. Li, F. Takeda, E. A. Kramer, H. Ashrafi and J. Hunter, 3d point cloud
data to quantitatively characterize size and shape of shrub crops, Paper, 2019.

[12] M. Weinmann, B. Jutzi, S. Hinz and C. Mallet, Semantic point cloud interpretation
based on optimal neighborhoods, relevant features and efficient classifiers, Paper,
2015.

[13] ——, Semantic 3d Scene Interpretation: A Framework Combining Optimal Neigh-
borhood Size Selection With Relevant Features. Paper, 2014.

[14] C. E. Shannon, A Mathematical Theory of Communication, Paper, 1948.

41

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://web.stanford.edu/~rqi/pointnet/docs/cvpr17_pointnet_slides.pdf
https://web.stanford.edu/~rqi/pointnet/docs/cvpr17_pointnet_slides.pdf

Bibliography

[15] (2021). ‘Ordinary Least Squares,’ [Online]. Available: https://en.wikipedia.
org/wiki/Ordinary_least_squares.

[16] (2021). ‘Total Least Squares,’ [Online]. Available: https://en.wikipedia.org/
wiki/Total_least_squares.

[17] (2021). ‘3D SVD,’ [Online]. Available: https://math.stackexchange.com/questions/
2810048/plane-fitting-using-svd-normal-vector.

[18] Models developed by and subject to copyright at GKN Trollhättan, Intellectual Prop-
erty, Flygmotorvägen 1, 461 38 Trollhättan.

[19] (2020). ‘Halftones,’ [Online]. Available: https://github.com/philgyford/python-
halftone.

42

https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Total_least_squares
https://en.wikipedia.org/wiki/Total_least_squares
https://math.stackexchange.com/questions/2810048/plane-fitting-using-svd-normal-vector
https://math.stackexchange.com/questions/2810048/plane-fitting-using-svd-normal-vector
https://github.com/philgyford/python-halftone
https://github.com/philgyford/python-halftone

Appendix A

Software Source Code

Below the software developed through the master thesis are presented. The code is doc-
umented inline and with a short description preceding the code listing.

A. GOM Inspect Suite Script

The following script in (Listing A.1) may be used in the ATOS Professional GOM Inspect
Suite in order to extract both the scanned point cloud and it’s triangulated mesh grid
from an element named ”Name of Element” (exchangeable in the code).

1 import numpy as np
2 import gom
3

4 points = np.array(gom.app.project.actual_elements[
5 'Name of Element'].data.coordinate)
6 tri = np.array(gom.app.project.actual_elements[
7 'Name of Element'].data.triangle)
8 print(points)
9 print("The shape of the points array: {}\nThe size of the "

10 "points array: {}".format(np.shape(points), np.size(points)))
11

12 print(tri)
13 print("The shape of the triangle array: {}\nThe size of the "
14 "triangle array: {}".format(np.shape(tri), np.size(tri)))

Listing A.1: GOM Point Collection

43

Appendix A Software Source Code

A. GOM Inspect Suite Automation Script

The following script may be used to open, establish and extract the material thickness
across any predefined area by location or name through the ”gom.script.selection3d.select_patch”
function.

1 import gom
2 import numpy as np
3

4

5 """Import cad model and rename"""
6 gom.script.sys.import_stl (
7 bgr_coding=True,
8 body_split='no_color',
9 files=['C:/Users/Ruben/School/IIA Master/03_02 Master Thesis/ATOS

Professional/Mounts/VAN_Y00001035_07.stl'],
10 geometry_based_refining=False,
11 import_mode='clipboard',
12 length_unit='mm',
13 stl_color_bit_set=False,
14 target_type='cad_body')
15

16 gom.script.part.create_new_part (name='Mount-Strut-CAD')
17

18 gom.script.part.add_elements_to_part (
19 delete_invisible_elements=True,
20 elements=[gom.app.project.clipboard.nominal_elements['VAN_Y00001035_07'

]],
21 import_mode='new_elements',
22 part=gom.app.project.parts['Mount-Strut-CAD'])
23

24

25 """Import Mesh and rename"""
26

27 gom.script.sys.import_stl (
28 bgr_coding=True,
29 files=['C:/Users/Ruben/School/IIA Master/03_02 Master Thesis/ATOS

Professional/Scans/31860513_GUK905HA.stl'],
30 geometry_based_refining=False,
31 import_mode='clipboard',
32 length_unit='mm',
33 stl_color_bit_set=False,
34 target_type='mesh')
35

36 gom.script.part.create_new_part (name='Mount-Strut-Mesh')
37

38 gom.script.part.add_elements_to_part (
39 delete_invisible_elements=True,
40 elements=[gom.app.project.clipboard.actual_elements['31860513_GUK905HA'

]],

44

A.2 GOM Inspect Suite Automation Script

41 import_mode='new_elements',
42 part=gom.app.project.parts['Mount-Strut-Mesh'])
43

44

45

46 """Prealign"""
47 CAD_ALIGNMENT=gom.script.alignment.create_prealignment (
48 computation_mode='normal',
49 compute_additional_bestfit=True,
50 name_expression='Prealignment',
51 parent_alignment=gom.app.project.parts['Mount-Strut-Mesh'].

original_alignment ,
52 part=gom.app.project.parts['Mount-Strut-Mesh'],
53 target_element=gom.app.project.parts['Mount-Strut-CAD'].nominal)
54

55 """Set visability of Mesh off"""
56 gom.script.cad.hide_element (elements=[gom.app.project.parts['Mount-Strut-

CAD'].actual])
57

58 """Select welding junction"""
59

60

61

62 """Mimic select CAD feature
63 gom.script.selection3d.select_patch (
64 coordinate=gom.Vec3d (7527.677051, 803.1583909, 178.786535),
65 target=gom.app.project.parts['Mount-Strut-CAD'].nominal)
66 """
67

68

69 """Create material thickness"""
70 MCAD_ELEMENT=gom.script.comparison.create_multiple_material_thickness (
71 max_angle_between_normals=0.436332313,
72 max_opening_angle=1.047197551,
73 max_thickness=6.0,
74 min_thickness=1.0,
75 name='Material Thickness Welding Junction Right 1')
76

77 Material_thickness = np.array(gom.app.project.actual_elements['Material
Thickness Welding Junction Right 1'].data.coordinate)

78

79 print(Material_thickness)
80 print(Material_thickness.shape)
81 print(Material_thickness.size)

Listing A.2: GOM Automation

45

Appendix A Software Source Code

A. Methods

From the theoretical methods used throughout the thesis the vast majority has been
implemented through Python code in the following (Listing A.3). The code has been
developed in Python with some added features for ease of visualization. The code is
presented piece-wise as functions for solving the different problems faced in the methods.
The functions have been commented with intended input and output such that they may
be used separately from any one method. An example of use is given in (Listing A.4).

1 import numpy as np
2 from scipy.spatial import KDTree
3 from scipy.optimize import brute
4

5

6 def generate_points(xx, yy, zz):
7 """
8 Function for creating a 3D-box of evenly distributed points.
9 :param xx: the desired z dimensionality.

10 :param yy: the desired y dimensionality.
11 :param zz: the desired x dimensionality.
12 :return: coordinates: a numpy array containing the 3D coordinates
13 for the points.
14 """
15 coordinates = []
16 for z in range(zz):
17 for y in range(yy):
18 for x in range(xx):
19 coordinates.append("{} {} {}".format(x, y, z))
20 coordinates = [w.split(' ') for w in coordinates]
21 coordinates = np.asarray(coordinates).astype(np.float)
22 coordinates = coordinates + ((np.asarray(np.random.rand(18, 3)) -
23 0.5) * 0.05)
24 coordinates = coordinates * [1, 1, 2]
25 return coordinates
26

27

28 def generate_points_disk(number, radius, offset):
29 """
30 Function for generating randomly distributed 3D points along a disk.
31 :param number: The desired number of points.
32 :param radius: The radius of the disk.
33 :param offset: The offset in the z direction.
34 :return: A numpy array containing the 3D coordinates for the points.
35 """
36 r = np.random.uniform(low=0, high=radius, size=number)
37 theta = np.random.uniform(low=0, high=2 * np.pi, size=number)
38 noise = np.random.uniform(low=-0.05, high=0.05, size=number)
39

40 x = np.sqrt(r) * np.cos(theta)

46

A.3 Methods

41 y = np.sqrt(r) * np.sin(theta)
42 z = ([offset] * number) + noise
43 return np.asarray(list(zip(x, y, z)))
44

45

46 def generate_plane_svd(points):
47 """
48 Function for fitting a plane to a set of points by the Singular
49 Value Decomposition method.
50 :param points: A collection of points (x,y,z) that should be
51 considered to find the best-fit plane.
52 :return: x, y, z and normal: Returns the plane function z bounded
53 by the max/min values of x and y structured in a meshgrid(xx, yy)
54 for graphing. Returns the normal to the plane.
55 """
56 # defining the domain of the plane
57 max_x = np.max(points[:, 0])
58 max_y = np.max(points[:, 1])
59 min_x = np.min(points[:, 0])
60 min_y = np.min(points[:, 1])
61 x, y = np.meshgrid([min_x, max_x], [min_y, max_y])
62 # Note that the meshgrid is bounded by the x and y values,
63 # meaning that for planes orthogonal to the xy-plane this will
64 # produce a very bad visualization.
65

66 # centering the data.
67 centroid = points.mean(axis=0)
68 points = points - centroid
69 u, sigma, v = np.linalg.svd(points)
70 normal = v[2]
71 d = normal[0] * centroid[0] + normal[1] * centroid[1] + normal[2] \
72 * centroid[2]
73

74 z = (-normal[0] * x - normal[1] * y + d) * 1. / normal[2]
75 return x, y, z, normal
76 # Reference:
77 # https://stackoverflow.com/questions/53591350/plane-fit-of-3d-points-

with-singular -value-decomposition
78 # https://math.stackexchange.com/questions/2810048/plane-fitting-using-

svd-normal-vector
79

80

81 def generate_plane_lstsq(points):
82 """
83 Function for fitting a plane to a set of points by the least
84 squares method.
85 :param points: A collection of points (x,y,z) that should be
86 considered to find the best-fit plane.
87 :return: x, y, z and normal: Returns the plane function z
88 bounded by the max/min values of x and y structured in a
89 meshgrid(xx, yy) for graphing. Returns the normal to the plane.

47

Appendix A Software Source Code

90 """
91 matrix = np.column_stack((points[:, 0], points[:, 1],
92 np.ones(points[:, 0].size)))
93 (a, b, c), residual , rank, s = \
94 np.linalg.lstsq(matrix, points[:, 2], rcond=None)
95 normal = unit_vector(np.asarray([a, b, -1]))
96 # defining the domain of the plane
97 max_x = np.max(points[:, 0])
98 max_y = np.max(points[:, 1])
99 min_x = np.min(points[:, 0])

100 min_y = np.min(points[:, 1])
101 # creating a point in the plane
102 point = np.array([0.0, 0.0, c])
103 d = -point.dot(normal)
104 x, y = np.meshgrid([min_x, max_x], [min_y, max_y])
105 z = (-normal[0] * x - normal[1] * y - d) * 1. / normal[2]
106 # Comment regarding non-linear plane:
107 # https://gist.github.com/amroamroamro/1db8d69b4b65e8bc66a6
108 return x, y, z, normal
109

110

111 def unit_vector(vector):
112 """
113 Function for finding the unit vector of a vector.
114 :param vector: The original vector.
115 :return: The unit vector of the vector.
116 """
117 return vector / np.sqrt(vector.dot(vector))
118

119

120 def vector_3d(p1, p2):
121 """
122 Function for substracting one point/vector from another.
123 :param p1: (x_a, y_a, z_a)
124 :param p2: (x_b, y_b, z_b)
125 :return: ((x_b - x_a), (y_b - y_a), (z_b - z_a))
126 """
127 return p2 - p1
128

129

130 def euclidean_distance(p1, p2):
131 """
132 Function for calculating the euclidean distance between two points.
133 :param p1: Point A
134 :param p2: Point B
135 :return: The euclidean distance between point A and B.
136 """
137 vector = vector_3d(p1, p2)
138 return np.sqrt(vector.dot(vector))
139

140

48

A.3 Methods

141 def angle_between_vectors(vector1, vector2):
142 """
143 Function for finding the angle between two vectors by applying
144 the common formula : angle = arccos(vector1 dot vector2 /
145 magnitude(vector1) * magnitude(vector2)).
146 :param vector1: The first vector.
147 :param vector2: The second vector.
148 :return: The radian and angle between the two vectors.
149 """
150 v1 = unit_vector(vector1)
151 v2 = unit_vector(vector2)
152

153 radians = np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0))
154 angle = radians * 180 / np.pi
155

156 return radians, angle
157

158

159 def brute_optimal_angle(data_set , point, normal):
160 """
161 Function for determining the optimal angle based on brute force
162 optimization.
163 :param data_set: Data of (x,y,z) values / points to be evaluated.
164 :param point: Point of origin.
165 :param normal: The normal direction the points should be
166 evaluated against.
167 :return: The point in data_set that lie closest in terms of
168 angle to the origin point.
169 """
170 def radians(n):
171 v1 = unit_vector(vector_3d(point, data_set[int(n)]))
172 v2 = unit_vector(normal)
173 radian = min(np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0)),
174 abs(abs(np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0))) - np.pi))
175 return radian
176

177 result = brute(radians, (slice(1, data_set.shape[0], 1),))
178 return data_set[int(result[0])]
179

180

181 def brute_optimal_distance(data_set , point, normal):
182 """
183 Function for determining the optimal distance based on brute
184 force optimization.
185 :param data_set: Data of (x,y,z) values / points to be evaluated.
186 :param point: Point of origin.
187 :param normal: The normal direction the points should be
188 evaluated against.
189 :return: The point in data_set that lie closest in terms of
190 distance to the normal vector.
191 """

49

Appendix A Software Source Code

192 def dist(n):
193 cross_product = np.cross((data_set[int(n)] - point), normal)
194 distance = np.sqrt(cross_product.dot(cross_product)) / \
195 np.sqrt(normal.dot(normal))
196 return distance
197

198 result = brute(dist, (slice(1, data_set.shape[0], 1),))
199 return data_set[int(result[0])]
200

201

202 def flatten_2d(data):
203 """
204 Function for reducing a numpy array down to two dimensions.
205 :param data: A numpy array of n>2 dimensions.
206 :return: A numpy array of n <= 2 dimensions.
207 """
208 return data.reshape(-1, data.shape[-1])
209

210

211 def pca(points):
212 """
213 Function for Principle Component construction for further analysis.
214 :param points: An array of points to be evaluated.
215 :return: The Eigenvalues and Eigenvectors of the data. The
216 centered data, the mean and the covariance matrix.
217 """
218 mean = np.mean(points, axis=0)
219 data = (points - mean)
220 matrix = np.cov(data.T)
221 eigenvalues , eigenvectors = np.linalg.eig(matrix)
222 return eigenvalues , eigenvectors , data, mean, matrix
223

224

225 def kd_tree(data):
226 """
227 Function for creating a KD-tree for the given data.
228 :param data: The data to be structured in a KD-tree structure.
229 :return: The data structured in a KD-tree.
230 """
231 return KDTree(data)
232

233

234 def neighborhood_selection(tree, data_set , initial_point):
235 """
236 Function for finding the best neighbourhood point cluster selection.
237 :param tree: KD-tree of the data
238 :param data_set: The dataset to be evaluated , this is the same
239 dataset as the KD-tree is structured by.
240 :param initial_point: The initial point where the neighbourhood
241 should be optimized around.
242 :return: S_k, the optimal number of k nearest neighbours.

50

A.3 Methods

243 """
244 def shannon_entropy(points):
245 epsilon = np.finfo(float).eps
246 cov_matrix = np.cov(points.T)
247 eigen_value , eigen_vector = np.linalg.eig(cov_matrix)
248 idx = eigen_value.argsort()[::-1]
249 eigen_value = eigen_value[idx]
250 sum = eigen_value[0] + eigen_value[1] + eigen_value[2]
251 eigen_value = eigen_value / sum
252 linearity = (eigen_value[0] - eigen_value[1]) / (
253 eigen_value[0] + epsilon)
254 planarity = (eigen_value[1] - eigen_value[2]) / (
255 eigen_value[0] + epsilon)
256 scattering = eigen_value[2] / (eigen_value[0] + epsilon)
257 shannonentropy = (- linearity * np.log(linearity + epsilon)
258 - planarity * np.log(planarity + epsilon)
259 - scattering * np.log(scattering + epsilon))
260 return shannonentropy
261

262 def query(n):
263 distances , nearest_neighbours = \
264 tree.query([data_set[initial_point]], k=int(n))
265 return shannon_entropy(flatten_2d(data_set[nearest_neighbours]))
266

267 result = brute(query, (slice(5+1, 18+1, 1),))
268 # optimizes the minimum local solution within the given bounds
269 # using brute force.
270 # result = minimize_scalar(query, bounds=(5, 10), method='bounded')
271 # optimizes the minimum local solution within the given bounds
272 # using Bernt's Algorithm.
273 return result[0]
274

275

276 def general_shannon_entropy(points):
277 """
278 Function for evaluating a collection of points (x,y,z) in terms
279 of local features and entropy.
280 :param points: A cluster of 3D coordinates (x,y,z)
281 :return: The Covariance Matrix, Eigenvalues , Eigenvectors ,
282 Linearity , Planarity , Scattering , Omnivariance , Anisotropy ,
283 Curvature , Sum Eigenvalues and the Eigenentropy.
284 """
285 epsilon = np.finfo(float).eps
286 cov_matrix = np.cov(points.T)
287 eigen_value , eigen_vector = np.linalg.eig(cov_matrix)
288 idx = eigen_value.argsort()[::-1]
289 eigen_value = eigen_value[idx]
290 eigen_vector = eigen_vector[:, idx]
291 sum = eigen_value[0] + eigen_value[1] + eigen_value[2]
292 eigen_value = eigen_value/sum
293 linearity = (eigen_value[0] - eigen_value[1]) / (eigen_value[0]

51

Appendix A Software Source Code

294 + epsilon)
295 planarity = (eigen_value[1] - eigen_value[2]) / (eigen_value[0]
296 + epsilon)
297 scattering = eigen_value[2] / (eigen_value[0] + epsilon)
298 omnivariance = abs(eigen_value[0] * eigen_value[1] *
299 eigen_value[2])**(1./3.)
300 anisotropy = (eigen_value[0] - eigen_value[2]) / (eigen_value[0]
301 + epsilon)
302 curvature = eigen_value[2]/(eigen_value[0] + eigen_value[1]
303 + eigen_value[2] + epsilon)
304 sum_eigenvalues = eigen_value[0] + eigen_value[1] + eigen_value[2]
305 eigenentropy = (- eigen_value[0] * np.log(eigen_value[0] + epsilon)
306 - eigen_value[1] * np.log(eigen_value[1] + epsilon)
307 - eigen_value[2] * np.log(eigen_value[2] + epsilon))
308 shannonentropy = (- linearity * np.log(linearity + epsilon)
309 - planarity * np.log(planarity + epsilon)
310 - scattering * np.log(scattering + epsilon))
311

312 return cov_matrix , eigen_value , eigen_vector , linearity , \
313 planarity , scattering , omnivariance , anisotropy , \
314 curvature , sum_eigenvalues , eigenentropy , shannonentropy

Listing A.3: Methods implemented in code

1 import Methods
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from mpl_toolkits.mplot3d import Axes3D
5

6

7 def material_thickness_example(initial_point=10):
8 """
9 Function for demonstrating the use of different functions in

10 Methods.
11 :param initial_point: The initial point, default is 10.
12 """
13 lower_bound = Methods.generate_points_disk(20, 1, 0)
14 upper_bound = Methods.generate_points_disk(20, 1, 2)
15 all_points = np.concatenate((lower_bound , upper_bound), axis=0)
16 general_kd_tree = Methods.kd_tree(all_points)
17

18 number_of_nearest_neighbours = int(Methods.neighborhood_selection(
19 general_kd_tree , all_points , initial_point))
20 distances , nearest_neighbours_index = general_kd_tree.query(
21 [all_points[initial_point]], k=number_of_nearest_neighbours)
22 nearest_neighbours_points = Methods.flatten_2d(
23 all_points[nearest_neighbours_index])
24 # *least_squares_plane , least_squares_normal =
25 # Methods.generate_plane_lstsq(nearest_neighbours_points)
26 # *least_squares_plane , least_squares_normal =
27 # Methods.generate_plane_pca(nearest_neighbours_points)
28 *least_squares_plane , least_squares_normal = \

52

A.3 Methods

29 Methods.generate_plane_svd(nearest_neighbours_points)
30 reduced_points = np.delete(all_points , [nearest_neighbours_index], 0)
31 smallest_angle_point = Methods.brute_optimal_angle(
32 reduced_points , all_points[initial_point], least_squares_normal)
33 euclidean_distance = Methods.euclidean_distance(
34 all_points[initial_point], smallest_angle_point)
35

36 plt3d = plt.figure(figsize=(8, 8)).gca(projection='3d')
37 plt3d.set_xlim3d(-1.5, 1.5)
38 plt3d.set_ylim3d(-1.5, 1.5)
39 plt3d.set_zlim3d(-0.5, 2.5)
40 plt3d.set_xlabel('X', fontsize=20)
41 plt3d.set_ylabel('Y', fontsize=20)
42 plt3d.set_zlabel('Z', fontsize=20)
43 plt3d.set_xticks([])
44 plt3d.set_yticks([])
45 plt3d.set_zticks([])
46 plt3d.view_init(elev=20, azim=80)
47 plt3d.scatter(*nearest_neighbours_points.T, c='b', marker='o',
48 alpha=.5, label='{} Evaluated points from the initial point: '
49 '{}'.format(number_of_nearest_neighbours ,
50 initial_point))
51 plt3d.plot_surface(*least_squares_plane , color='g', alpha=.2,
52 linewidth=0, zorder=1)
53 plt3d.scatter(*smallest_angle_point.T, color='b')
54 plt3d.scatter(*smallest_angle_point.T, color='y', label=
55 'Closest angle intersection point: {}'.format(
56 np.where(all_points == smallest_angle_point)[0][0]))
57 matrix = np.asarray(list(zip(
58 all_points[initial_point], smallest_angle_point)))
59 plt3d.plot3D(*matrix, color='b', alpha=.2, label=
60 'Material thickness: {0:.4f}'.format(euclidean_distance))
61 dataset_removed = np.delete(reduced_points ,
62 [np.where(reduced_points == smallest_angle_point)[0][0],
63 np.where(reduced_points == smallest_angle_point)[0][0]], 0)
64 plt3d.scatter(*dataset_removed.T, color='r', alpha=.5, label=
65 'All other points')
66 plt.legend(prop={"size": 16})
67 plt.show()
68

69

70 if __name__ == '__main__':
71 material_thickness_example()

Listing A.4: Material thickness example use of Methods

53

Appendix A Software Source Code

A. Cover Image

For the cover image I wanted to create a visible connection between my previous work
related to the manufacturing of TRF’s to the more general research on point clouds. To
achieve this I wanted to repurpose the original grid-line TRF view as a reminder of where
the work originated and gradually morph the image into a collection of points to indicate
and introduce the current work. The shift goes from right to left in adherence to natural
reading patterns generally used in ”western civilisations” since this has given us a basic
understanding/interpretation of progress forward in time going from right to left. As
opposed to some ”eastern civilisations” where the reading pattern is left to right and the
opposite assumption holds.

Figure A.1: Comparison Of Gradients From Left To Right / Right To Left.

There was two steps in creating this image, firstly the base image had to be represented
as a collection of points. This was achieved through image processing in Python, mainly
based upon the library composed by Phil Gyford [19].

A very quick and dirty introduction of how the code works is that you section the image
into a fixed size grid of nbym size. Then you evaluate the content of each ”box” within
the grid and from that determine an appropriate size and colour of a circle that you will
fill within that box. Generally speaking, if the original box was entirely yellow, it would
result in a large yellow circle, if it was half yellow and half blue the circle would be green
and if it was half yellow and half white, the circle would be yellow with a smaller radius.

The result is then an increase in contrast and reduction in resolution since darker colors
are exaggerated and more empty space is introduced.

54

A.4 Cover Image

To achieve the result I had in mind I had to make some improvements mainly on how
the content of the boxes was evaluated, how the circle color and radius was calculated
and whether the background should be black filled with white circles or the background
should be white filled with black circles.

The Python code for the halftone is listed in Listing A.5.
1 import os
2 import sys
3 import numpy as np
4 from PIL import Image, ImageDraw , ImageStat
5

6

7 class Halftone(object):
8 def __init__(self, path):
9 """

10 path is the path to the image we want to halftone.
11 """
12 self.path = path
13

14 def make(self, sample=10, scale=1, filename_addition="_halftoned",
15 angles=[0, 15, 30, 45]):
16 """
17 Leave filename_addition empty to save the image in place.
18 Arguments:
19 sample: Sample box size from original image, in pixels.
20 scale: Max output dot diameter is sample * scale
21 (which is also the number of possible dot sizes)
22 filename_addition: What to add to the filename
23 (before the extension).
24 angles: A list of 4 angles that each screen channel
25 should be rotated by.
26 """
27 f, e = os.path.splitext(self.path)
28 outfile = "%s%s%s" % (f, filename_addition , e)
29

30 try:
31 im = Image.open(self.path)
32 except IOError:
33 raise
34

35 angles = angles[:1]
36 gray_im = im.convert("L")
37

38 dots = self.halftone(im, gray_im, sample, scale,
39 angles)
40 new = dots[0]
41 new.save(outfile)
42

43 def halftone(self, im, cmyk, sample, scale, angles):
44 """

55

Appendix A Software Source Code

45 Returns list of half-tone images for cmyk image.
46 sample (pixels), determines the sample box size from the
47 original image. The maximum output dot diameter is given by
48 sample * scale (which is also the numberof possible dot sizes).
49 So sample=1 will presevere the original image resolution ,
50 but scale must be >1 to allow variation in dot size.
51 """
52

53 cmyk = cmyk.split()
54 dots = []
55

56 for channel, angle in zip(cmyk, angles):
57 channel = channel.rotate(angle, expand=1)
58 size = channel.size[0] * scale, channel.size[
59 1] * scale
60 half_tone = Image.new("L", size, color=255)
61 draw = ImageDraw.Draw(half_tone)
62

63 # Cycle through one sample point at a time, drawing a
64 # circle for each one:
65 for x in range(0, channel.size[0], sample):
66 for y in range(0, channel.size[1], sample):
67 # Area we sample to get the level:
68 box = channel.crop(
69 (x, y, x + sample, y + sample))
70

71 # The average level for that box (0-255):
72 mean = ImageStat.Stat(box).mean[0]
73

74 # The diameter of the circle to draw based on the
75 # mean (0-1):
76 # diameter = (mean / 255) ** 0.5
77 diameter = np.sqrt((255 - mean) / 255)
78 # Size of the box we'll draw the circle in:
79 box_size = sample * scale
80

81 # Diameter of circle we'll draw:
82 # If sample=10 and scale=1 then this is (0-10)
83 draw_diameter = diameter * box_size
84

85 # Position of top-left of box we'll draw the
86 # circle in:
87 # x_pos, y_pos = (x * scale), (y * scale)
88 box_x, box_y = (x * scale), (y * scale)
89

90 # Positioned of top-left and bottom-right of
91 # circle:
92 # A maximum-sized circle will have its edges at
93 # the edges of the draw box.
94 x1 = box_x + ((box_size - draw_diameter) / 2)
95 y1 = box_y + ((box_size - draw_diameter) / 2)

56

A.4 Cover Image

96 x2 = x1 + draw_diameter
97 y2 = y1 + draw_diameter
98 draw.ellipse([(x1, y1), (x2, y2)], fill=0)
99

100 half_tone = half_tone.rotate(-angle, expand=1)
101 width_half , height_half = half_tone.size
102

103 # Top-left and bottom-right of the image to crop to:
104 xx1 = (width_half - im.size[0] * scale) / 2
105 yy1 = (height_half - im.size[1] * scale) / 2
106 xx2 = xx1 + im.size[0] * scale
107 yy2 = yy1 + im.size[1] * scale
108

109 half_tone = half_tone.crop((xx1, yy1, xx2, yy2))
110

111 dots.append(half_tone)
112 return dots
113

114

115 if __name__ == "__main__":
116 path = sys.argv[1]
117 h = Halftone(path)
118 h.make()

Listing A.5: Gray-scale Halftone.

Now that a dotted representation of the image has been made, we can blend the original
image and the halftone image to create the gradual shifting image. This can be done
either mathematically through e.g. a Sigmoid function or by emulate the intensity of a
premade gradual shift image as seen in Figure A.2. The Python code for the blend is
listed in Listing A.6.

Figure A.2: Gradient Used In Blend Function.

1 import numpy as np
2 from PIL import Image
3

4 background = np.array(Image.open('path\to\image'))
5 overlay = Image.open('path\to\image').convert("RGB")
6 overlay = overlay.resize(background.shape[1::-1], Image.BILINEAR)
7 overlay = np.array(overlay)
8 mask = Image.open('path\to\image')
9 mask = mask.resize(background.shape[1::-1], Image.BILINEAR)

57

Appendix A Software Source Code

10 mask = np.array(mask)
11 mask = mask / 255
12

13 dst = background * (1 - mask) + overlay * mask
14 Image.fromarray(dst.astype(np.uint8)).save('path\to\save "name".jpg')

Listing A.6: Image Blending.

58

	General Approaches for 3D Point-Cloud Evaluation, Classification and Material Thickness
	Summary

	Preface
	Contents
	List of Figures

	Introduction
	3D Scan as a Measurement System
	Image or Projected View Representation of 3D Data
	Volumetric Representation of 3D Data
	Mesh Representation of 3D Data
	Point Cloud Representation of 3D Data

	Problem Description
	General Point Cloud Methods
	General Material Thickness Evaluation
	Scripting ATOS Professional Software

	Methods
	General Evaluation Framework
	Graph Theory as a Framework
	Neighbourhood Parameterization

	Material Thickness
	Euclidean Distance
	Parallel 2D Planes
	Best-Fit Planes
	Neighbourhood Optimized Planes
	Material Thickness Optimized Plane Search

	ATOS Professional
	ATOS Professional Scripts

	Results
	Investigational Results
	Development Results

	Conclusion
	Discussion
	Further Work

	Bibliography
	Software Source Code
	GOM Inspect Suite Script
	GOM Inspect Suite Automation Script
	Methods
	Cover Image

