University of
South-Eastern Norway WWWw.usn.no

FMH606 Master's Thesis 2021

Electrical Power Engineering

Hybrid Machine Learning and Mechanistic
Thermal Model of Synchronous Generator

Prakash Dhakal

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn



University of
South-Eastern Norway WWW.UsN.no

Course: FMH606 Master’s Thesis 2020

Title: Hybrid Machine Learning and Mechanistic Thermal Model of Synchronous Generator
Number of pages: 60

Keywords: Machine learning, Thermal model, Linear regression, Nonlinear regression.

Student: Prakash Dhakal

Supervisor: Bernt Lie, Co-supervisor:Madhusudhan Pandey, Thomas
@yvang

External partner: Skagerak Kraft, Ingunn Granstrgm

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.



University of
South-Eastern Norway WWW.Usn.no

Summary:

Overheating of synchronous generators may result in shortened generator lifespan, thus
strict constraints are imposed on their operation. A dynamic model of the generator
temperature may leave good monitoring of the generator condition, and also more flexible
operation. Within the past, the mix of a thermal model of an air-cooled generator with
better control has been considered to assist ride-through problems: By using a model-
based online monitoring , the temperature development in certain locations within the
synchronous generator were kept in restraint. Additionally, exploiting the generator’s full
thermal capacity led to improved performance [1]. Further work has considered various
improved thermal generator models, together with model fitting and state estimation [2].
Now also, the studies thus far have used normal, counter-current heat exchanger models
with constant Stanton numbers, which authorize for an analytic, explicit heat exchanger
models description. In [2], a heat exchanger model with temperature-dependent heat
capacities was considered. The result's a two-point boundary value problem that's several
thousand-fold slower to resolve than with a relentless Stanton number. To hurry up the
solution, a nonlinear regression model was trained off-line to suit the solution of the
boundary value problem. However, what is missing in [3] is that the possibility to think
about heat exchangers with varying heat transfer coefficients. The thermal model of an
air-cooled synchronous generator created in [4] and enlarged in [3] with a more realistic
temperature-dependent condition was continued during this thesis, with variable heat
transfer coefficients, to lower the time it takes a heat exchanger model to resolve a
temperature-dependent problem. A hybrid model was created with estimated parameters
from a data-driven model for a spread of scenarios, and also the performance was
compared to the numeric solution, which was around 220 times quicker.

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.
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Nomenclature
Symbol

RZ

RMSE

Tij(j:h,c,N,A. i=a,w,t,s)

Nomenclature

Explanation

The Coefficient of Determination
Root-Mean Square Error

The temperature of species j obtained by:
A = Analytic solution

N = Numeric solution

h = Hot

¢ =Cold

a=Air

w = water

t = tube

s = shell
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1 Introduction

1 Introduction

1.1 Background

The power factor of the system plays a key role in the production of electricity. According to
[4], the power factor in European hydropower generation is limited to [0.85,0.95] and for the
Norwegian hydropower system, it is below 0.86. High power factor results in to increase in
current and therefore, synchronous generators are overheated. To protect these Hydro
generators maturing of temperature should be under dominance and thermal capacity should
be properly taken into consideration. A closed-loop heat exchanger model has been developed
in [1] for cooling heated air generated inside the generator.

1.2 Previous Work

It was suggested in [1], the thermal model of an air-cooled synchronous generator, which was
investigated in [4]and[2]. In [3], a heat exchanger model with temperature-dependent heat
capacities was considered. The result is a two-point boundary value problem that is several
thousand times slower to solve than with a constant Stanton number. To speed up the solution,
a nonlinear regression model was trained off-line to fit the solution of the boundary value
problem. However, what is missing in [3] is the possibility to consider heat exchangers with
varying heat transfer coefficients.

1.3 Scope and outline

In this thesis, an air-cooled synchronous generator's thermal model developed in [4] and
expanded in [5] with a more realistic temperature-dependent situation is continued, with
different heat transfer coefficients to reduce the time it takes for a heat exchanger to solve a
problem that is temperature-dependent. For a range of scenarios, a hybrid model is developed
with estimated parameters from a data-driven model, and the speed is compared to numeric
solutions.

The model of an air-cooled synchronous generator is briefly discussed in Chapter 2. Following
that, the construction of a counter-current model is demonstrated. Finally, Julia is used to
comparing the analytic and numerical solutions for the ideal and non-ideal cases.

The linear and nonlinear regression of the counter-current heat exchanger model is
implemented in Julia in Chapter 3.

The result and discussion are shown in chapter 5 along with the conclusion and future work is
planned in chapter 6.
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1 Introduction

1.4 Theory

1.4.1 Synchronous Generator

It is an electrical machine that converts mechanical power into AC e power at a specific voltage
and frequency. It always runs at a relentless speed called synchronous speed. It has multiple
applications in generation, transmission, and distribution and is generally employed in nuclear,
thermal, and hydropower systems for generating voltage[6].

1.4.1.1 Losses in synchronous generator

Power input

> FPower Output

copper losses

Core losses

Friction
Stray losses losses

Figure 1-1:losses in Synchronous generator

Friction losses are related to the force it takes to beat drag related to rotating parts. Generally,
these losses are because of the friction of bushings ,bearings which are proportional to the
rotor speed. Iron losses are also called core losses and are associated losses within the magnetic
path and are divided into hysteresis loss and Eddy current loss due to changing polarity of the
flux within the core. Ohmic or losses are because of this current flowing into the conductor.
They are adequate the resistance of the trial where the current flows multiplied by the square
of the current Stray losses are normally termed as losses that do not correlate to the explained
losses above. These losses are the main causes for heat generation inside the generator. So, to
avoid this heat should be properly dispatched with a good heat exchanger[5].

1.4.1.2 Heat exchanger

They are the system want to transfer heat between the fluids. They are both using heating and
cooling processes. The fluids are separated by a solid wall which preventing mixing. They are
mostly used in Power stations, chemical plants, air conditioning, petroleum refineries, etc.
Among such a lot of different types in our thesis, we are coping with shell and tube heat

11



1 Introduction

exchangers.
Tube outlet Shell inlet

'ITI" I 'I.J,F I

' a[[= —l

Shell outlet Tube inlet

Buffles

Figure 1-2:Shell and tube heat exchanger

It consists of a shell with several tubes inside it. One fluid runs inside the tubes and another
fluid flows through the shell to transfer heat between two fluids. The gathering of tubes is
named a tube bundle and may have several tubes. Baffles are used for steering the flow through
the shell side; therefore, the fluid does not take a shortcut path leaving the system[7].

12



2 Thermal Model of an Air -cooled Synchronous Generator with ideal and Non-ideal
Heat Exchanger Model

2 Thermal Model of an Air -cooled
Synchronous Generator with ideal and
Non-ideal Heat Exchanger Model

A thermal model for a fully enclosed air-cooled synchronous generator has been created by [1].
[4] used principles and notations from [1] to create a similar model with a more general design
and a more powerful heat exchanger. The thermal model of the air-cooled synchronous
generator is shown in Figure 2-1 in action. A fan blows cold air from the heat exchanger into
the rotor/stator air gap. Heat flow from the rotor, air gap windage, and bearing friction heat the
air. Air is then pushed into the iron cores and is then heated by the heat flow from the iron
cores. The heated air is now stored and moved through the heat exchanger at the stator's outlet.
The heated air is then cooled to the desired temperature in the heat exchanger using continuous
cold-water circulation before being fed back into the air gap in a continuous operation.

At temperature T, the heat exchanger is fed with cold water at a mass flow rate of m,, . At the
stator outlet and heat exchanger entry, the air mass flow rate is 71, , and the temperature is T..
Due to rotor field current, Ir.rotor copper heat source Q¢ is created and similarly stator copper
heat source, QZdue to stator current I,.Heat generated due to friction in stator/rotor air gap is
Q7 and QF,, is stator iron heat source. mg, My, TS, 0%, 09, Ire, I¢ highly influences the
thermal operation of air-cooled synchronous generator . T,, Ty, and T, are rotor, stator and
iron core temperatures respectively.

Figure 2-2 depicts the functional diagram of an air-cooled synchronous generator, which shows
the inputs and outputs

7 Th ,;,“J TS &

air in heat exchanger
water in heat exchanger
copper (rotor, stator)

My iron (stator)

air in generator

rotor e Stator
4 Ty

My

Figure 2-1: Thermal operation of an air-cooled synchronous generator [2].
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2 Thermal Model of an Air -cooled Synchronous Generator with ideal and Non-ideal
Heat Exchanger Model

]15, T}.‘(., Tr

Ty, ity 1ita > Air-cooled ;
synchronous generator

If,l. Il ) Q;gv I/i’rf

Figure 2-2:Functional diagram of an air-cooled synchronous generator

2.1 Overview of Counter-Current Heat Exchanger Model

Different heat exchanger model is there. Among them, shell and tube heat exchangers are
described in [4] which involves the flow of water inside the tube and flow of air in the
shell. Depending on the type of flow three models are developed i.e., cross-current, co-
current, and counter-current heat exchangers. But in our work, we mainly focus on the
counter-current heat exchanger model.

The total mass balance can be written as:

dm . ' ; .
=m m, =
dt l e
{ T
=
M Shell 4 *
Wil -
: TS Tube Q:z,( | Q12
e 15 Tl Aux
r = 0 EE + Az I

Figure 2-3:distributed model of a counter-current heat exchanger [6].

For steady state mass balance for tube side is

14



2 Thermal Model of an Air -cooled Synchronous Generator with ideal and Non-ideal
Heat Exchanger Model

mt = m 2-2
Similarly, the mass balance for the shell side is.
m; = g 2-3
When friction and volume work is neglected, the energy balance becomes.
au 2-4

d_t:Hl_He+Q

The perfect mixing in the volume defined by x € [ §, £ + Ax ].The flow rates for the tube side
can be expressed as[2]:

Hlt = mtﬁé 2-5
Ht = i 26

Heat flow is denoted as:
0= _Q'gzs 2-7

For an interval, heat flow is expressed as:
St25 }
Q§+5Ax - Q t25,§+AxAx 2-8

And the internal energy as

Ul pe =0 xp AL, 4y 2-9
Which leads to:
:_x (AXPtAtﬁEMx = mﬁé - mtﬁ§+Ax - Q’tZs,gmxAx 2-10
By letting Ax — 0 and generalizing &, the previous equations changes to:
a0, _ 0H, 2-11

[o1% ot = _mt? - Q.’tZS

So, here

15



2 Thermal Model of an Air -cooled Synchronous Generator with ideal and Non-ideal
Heat Exchanger Model

Q'tzs =U p(TeT) 2-12
With 8U= ¢, dT and dH= é, T, which results in.
PRy o = 1l - U (T~ T) 2-13
Similarly, for shell side
PsAsCs 28 = ity s 2 U (T, — Ty) 2-14

for steady state % = 0 so PDEs reduces to ordinary differential equations i.e.

dT; Ugp 2-15
—_—=— T, —T.

dx nqcpt( = Ts)

als, Up 2-16
— T, —T.

dx mscps( t S)

Linear, space invariant boundary value problem is formed if mi is constant with respect to x
P

Up Up
i Tt _ mt(fp_t mtép_t Tt
ax\T,) \ __Upr_ _Up |\T;

TsCp,s MsCps

The solution of this model in [2] is found to be

2-17
T () = ———[aee ™% — a)T{ + (@ — ape(* ON)Ty]
t N
1 2-18
Ta() = ——— [ @™%= a)Tf + (a, — ase O]
t S
Here,
@, 22 2-19
MeCp,t
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2 Thermal Model of an Air -cooled Synchronous Generator with ideal and Non-ideal
Heat Exchanger Model

q. 8 Ue 2-20
s msép,s

The explicit expression for effilent temperatures T; (x = Ly) = Tfand T (x = 0) = T}¢

by utilizing Stanton number are:

_ Nstt(1 - eXp(NéSt - Nstt)TiS + (Nstt - NSSt)eXp (NSSt - Nstt)Tit 2-21
Nstt — Ngpexp(Ng; — Nstt)

Te

(N — NEJTS+NE (1 — exp (N§, — NEOTY 2-22

TS
© NStt — Ns.exp(Ng, — Nstt)

This analytic expression applies only when and is independent of x. A numerical solution is
required if either of the total heat transfer coefficient U, the perimeter, or the individual heat
capacities vary with x. The non-ideal case of temperature-dependent heat capacity, in which
and are no longer independent of X, is of interest in this work. This creates a nonlinear two-
point boundary value problem with a costly numerical solution. An alternative approach that
does not require an iterative process, namely a strategy that blends a data-driven model with a
mechanistic model, is of interest.

Finally, in the thermal model of an air-cooled synchronous generator, the air is circulating in
the shell and water is flowing within the tube.

2.2 Analytic and Numeric Solution

When the thermal model of an air-cooled synchronous generator from [2] is extended with a
more practical heat exchanger model, such as one with temperature dependence in heat
capacity and/or heat transfer of air/water, the specific heat capacity is no longer a scalar
quantity, but a function of temperature, resulting in a nonlinear two-point boundary value
problem. In this section, the analytic solution of the ideal heat exchanger model and the numeric
solution of the non-ideal model are compared[7].

17



2 Thermal Model of an Air -cooled Synchronous Generator with ideal and Non-ideal
Heat Exchanger Model

i > — T
Analytic solution

T > — T

iy > — T

Numeric solution
TS —————» — »7Th

& S/

Figure 2-4: Analytic and Numeric Solution

2.2.1 Comparing Analytic and Numeric Solution in Julia for Ideal case

The primary aim of applying the numeric solver for the ideal case of temperature independence
in the real heat capacities of air and water is to see if the analytic solution suits the ideal case
numeric solution.Table 2-1 shows a comparison of the analytic and numeric solutions of the
ideal heat exchanger model.

Model Median time Mean time
The analytic solution 22.601 ps ps 23.118 ps
The numeric solution 4.665 ms 5.877 ms

Table 2-1: Benchmark results for the ideal heat exchanger model.
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2 Thermal Model of an Air -cooled Synchronous Generator with ideal and Non-ideal
Heat Exchanger Model

T[°C]

Analytic Solution of the Ideal Heat Exchanger Model

40
— T,
—_— Ta
30
8}
= 20f
10
0.0 0:2 0:4 0:6 0:8 1.0
Relative Position x
Figure 2-5:Analytic solution of the ideal heat exchanger model.
Analytic vs. Numeric Solution of the
Ideal Heat Exchanger Model
40
T3
-1 T
— - ces 7O
30} — — -
20 t. <3
10 |
0.0 012 Oi4 016 0.l8 1.0

Relative Position x

Figure 2-6:Analytic Vs Numeric Solution of Ideal Heat exchanger Model
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2 Thermal Model of an Air -cooled Synchronous Generator with ideal and Non-ideal
Heat Exchanger Model

Since the solutions are identical, it is safe to move on to the next step, which is to find a solution
for the non-ideal case of temperature dependence in the basic heat capacities of air and water.
Comparing the mean time between the two Solutions it seems Analytic Expressions are
evaluated 200 times faster than numeric Solutions.

2.2.2 Comparing Analytic and Numeric Solution in Julia for non-ideal case

Figure 2-8 depicts a contrast of the analytic and numerical solutions while .Comparing the
processing times of the two numeric solutions is also interesting. summarizes the benchmark
findings, which reveals that the non-ideal case of temperature dependence is nearly eight times
slower than the ideal case.

Model Median time Mean time
The numeric solution when ¢, 4.665 ms 5.877 ms
The numeric solution when ¢, (t) 39.947 ms 38.786 ms

Table 2-2:Benchmark results for the non-ideal heat exchanger model.

Numeric Solution when ¢,(T)

40

— T,

— T,

30F

T[°C]

1 L 1 1

0.0 0.2 0.4 0.6 0.8 1.0
Relative Position x

Figure 2-7: Numeric solution of the non-ideal heat exchanger model when ¢, (T).
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2 Thermal Model of an Air -cooled Synchronous Generator with ideal and Non-ideal
Heat Exchanger Model

Analytic vs. Numeric Solution when C,(T)

40
TS
a
g’ T:
_,o‘ see TH
iy ssas TO
. a
30 "“.
ot
we®
.®
-““
— -“-,-
) e
:20: -“"'
10 |
"III'III!I
IIII'I."III-l.II‘.""""'
- -
-----------clnuvt e | | |
0.0 0.2 0.4 0.6 0.8 1.0

Relative Position x

Figure 2-8: Analytic solution vs. numeric solution of non-ideal heat exchanger model
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3 Heat Exchanger Regression Model

3 Heat Exchanger Regression Model

3.1 Overview or regression analysis

The theory of how a response variable is influenced by one or more predictors is known as
regression analysis. Typically, dependency is believed to be by the mean, and the mean or
regression function is used to describe how the response's mean is affected by the predictors.
While nonparametric regression methods with few assumptions can be useful for summarizing
certain regression problems, using parametric regression models with a few plausible
assumptions allows for elegant and clear results. This article discusses a significant class of
linear regression models. These models are widely used in practice and can provide a variety
of useful outcomes. Easy and multiple regression are addressed, as well as the specific types
of equations, analysis of estimates and criteria, research ideas, including group comparisons,
and diagnostic techniques.

The first of the two goals of regression analysis will be the subject of this paper. The aim is to
use a regression model to predict the performance temperatures of air and water from the non-
ideal heat exchanger model. Linear regression approaches, such as those used in chemometrics,
and nonlinear regression methods, such as those used in neural networks, are also considered.

3.1.1 Linear regression

A linear strategy to modeling the connection between a scalar answer and one or more
explanatory factors is known as linear regression. Simple linear regression is used when there
is only one variable and multiple linear regression is used when there is more than one.[8]

Figure 3-1 shows relationship between dependent variables(y) and independent variables(x)[9]

22



3 Heat Exchanger Regression Model

The linear regression modules assume that the connection between dependent variables y and
n-vector regressors X is linear for a data set {y; x;; _x;,}i=,} of n unit.

A disturbance term, often known as an error ¢, is an unobserved random variable that adds
"noise” to the linear connection between the dependent variable and the regressors. Then the
model is

yl. = ﬁO + ﬁlxil + ﬁzxi2+. . +ﬁpXip+ Ei:X’iTﬁ 3-1

These are also written in matrix form as

y=X[+e 3-2
Where
Vi
y= yz
Yn
X7 1 x11 o Xpp
X: X; - 1 le xzp
XT 1 xp1 o Xy
i .
B=| B, |, e= 532
H ETL
By
Here,

v is the regressand or dependent variables, which is a vector of observed values.
X is the matrix of row-vector x; of n-dimensional known as independent variables or regressors.

B is a dimensional parameter vector in which S, represents the intercept and the elements
represent the regression coefficient.

g; is the error term, which is a vector of values g;

To fit a linear model to a given data set, the regression coefficients f must be estimated in such
a way that the error is minimized. Generally,ordinary least square method is used.

3.1.2 Ordinary least squares(OSL)

For estimating the unknown parameters in a linear regression model, ordinary least squares
(OLS) is a sort of linear least-squares approach. By decreasing the sum of the squares of the
differences between the dependent variable in the provided data and those estimated by the
linear function of the independent variable, OLS finds the parameters of a linear function of a
collection of explanatory variables.[10]
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3 Heat Exchanger Regression Model
Consider a system
P 3-3
ZXU-B]- =y,@(=12..n),
j=1

Of n equation in o unknown coefficients. In matrix form it can be written as:

y=Xp 3-4
where
X11  X12 X1p
X = X21 x:22 X2p ,
Xn1 Xn2 xnp
B
Vi (32\‘
y: }’z ' and B: BZ
y N
n Bp

Because such systems do not have a precise solution, the objective is to identify g that fits the
equation in the context of solving the problem[11].

B =arg min S(B) 3.5
Where

S(B)=3y |y, — Shy i By = 11y — X BII? 36

If the p columns of the matrix X are linearly independent, then this minimization issue has a
single solution, which may be found by solving the normal equations.

X'X)B=X"y 3-7
Where
X'X is the normal matrix

X'y is the moment matrix and

B is the coefficient vector expressed as

B=x" X'y 38
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3 Heat Exchanger Regression Model

3.1.2.1 The coefficient of determination(R?)

Here are some figures to compare related ordinary least squares (OLS) estimated regression
models. One metric that explains how well a model matches a series of findings is the
coefficient of determination. The coefficient of determination quantifies how much of the
uncertainty in the regression and can be predicted using the regressors. RZstands for relative
goodness-of-fit and is defined as follows [8]:

RZ = Explained sum of squares _ESS 3-9
Total sum of squares TSS

For a zero-intercept multivariate regression model, total sum of square is given by:

I 3-10
TSS = Z y?
i=1
And in matrix form as:
TSS=YTY 3-11
When model contained an intercept, it needs to be mean-corrected.
- 3-12
TSS = ) (i = 3
i=1
Here, y is the mean.
1w 3-13
y = E. Yi
=1

In matrix notation TSS can be expressed as:
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TSS = YTY — ny? 3-14

And TSS need to be partition as:

" 3-15
1SS = ) (i = 3
i=1

=X i =+ 91— 9)°

n n n
=D 0= 902+ ) G =9 +2) i = 9DG1 — )
i=1 i=1 i=1
n n n
=D Gi= 94 ) G =P H2) Bi— e
i=1 i=1 i=1

Since sum of residual is zero the last term in the previous expression also becomes zero

n n
TSS = ) Gr =9 + ) (i = 9:)?
i=1 i=1

Here, the first term in the previous expression is called mean-corrected explained sum of
squares.

3-16

I 3-17
BSS = ) (9~ 7)?
i=1
In matrix form:
ESS = fTXTXS — ny? 3-18
The residual sum of squares can be expressed as:
3-19

n
RSS = ) (i = 92)°
i=1

In matrix form:
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Z ef =eTe 3-20

X X

> >

Figure 3-2: coefficient of determination[9]

For a model with an intercept, the coefficient of determination can be expressed as:

, _ BTXTXB —ny? 3-21
YTY — ny?
and for zero intercept:
R2 _ BTXTXp 3-22
- YTY

In terms of RSS coefficient of determination can be expressed as:

RZ = 1— Residual sum of squares 3-23
B Total sum of squares
RSS
=15
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3 Heat Exchanger Regression Model

2?:1(311' - yl)z

=1— L
Yie (0 — ¥)?

In Figure 3-2the coefficient of determination is:

Y Area in blue 3-24

RZ=1-
Y. Areain red

Sum of %qu(u(s (SS) The degrees of freedom (df)

ESS l 1 (\1 \_) dfrcg == k
RSS Z ( \AI dfreg =n-— k
TSS = ( \_) df[()t =n—1

Table 3-1:Sum of squares and their corresponding degrees of freedom. Where K is the regression parameters, and
n is the number of observations [12]

The model with an intercept is expressed as:

eTe 3-25
RZP=1-cro——;
YTY — ny?
And also, for zero intercept:
R2 — 1 ele 3-26
T YTY

A useful property of R? is that it usually varies from 0 to 1, with one indicating optimal fit and
zero indicating little change over the so-called mean model, making measuring the model's
goodness-of-fit more intuitive. On the other hand, a well-known property of R? is that it grows
every time a new regressor is applied to the model, even though the model's fit does not change.
Then, to make R? an unbiased estimator, it must be modified to use the model's degrees of
freedom(df). R?is adjusted for the number of regressors in relation to the number of
measurements using degrees of freedom[13].

R? is the modified R? , and it is written as:
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RSS 3-27
_ ar_
2 _ 1 _ Yres
R*=1--5s
dfior

e an=1 3-28
=1-(1-R)—

When number of observations are smaller than number of regression parameters than R? can
take negative values.

3.1.2.2 The standard error of regression

If the key goal of the regression model is estimation, then one metric, the root mean square
error(RMSE), takes precedence over the others. It's called the standard error of the regression
or the Standard Error of the Estimate when the degrees of freedom for the residuals are taken
into account[14].

RMSE is defined as:

RMSE = ,/Mean Square Error 3-29

n
_[Rss
a n

The number of observations is denoted by the letter n. The standard error of the regression is
the standard deviation of the residuals, and is defined as:

~ 3-30
\/ ?:1(J’i —91)?

n—=k

The number of parameters in the model is given by k. The disparity between RMSE and
regression standard error would be negligible if the number of observations is much greater
than the number of coefficients in the regression model. The standard error of the regression is
useful because it has the same unit as the regressand and, unlike R? or R?, it is an absolute
metric of goodness-of-fit, with a lower value indicating a better fit[15].

29



3 Heat Exchanger Regression Model

3.2 Linear Regression of Counter Current Heat Exchanger model

To repeat what was mentioned at the outset of this chapter, one of the goals of this project is to
reduce the time it takes to solve the non-ideal heat exchanger model (temperature dependence
in the specific heat capacities of water and air). Then, in this section, an explicit data-driven
model for the non-ideal heat exchanger model is constructed using linear regression and
expressed as a correction expression to the ideal heat exchanger model and with the estimated

parameters from this model hybrid model is developed to speed up the solution time.
|

r— ™ 7 R

" Ta T
> LINEAR — >
1, —>  ANALYTIC REGRESSION
SOLUTION
e & | MODEL -
§i A >
U —x

A o/ - )

Ty, —

y— s

., |  NUMERIC
SOLUTION

m, — IS

L p

Figure 3-3: Explicit data-driven model using linear regression.

uyu —»
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3 Heat Exchanger Regression Model

3.2.1 Linear Regression in Julia implementation

1 #Analytic model

2 function hex_a(inputs,par,x)

3# If x is an Array/tuple, the function can generate the temperature profile across x.
4 Twc, Tah, mdw, mda, UAx= inputs

5 chpw, chpa = par

6 # Stanton numbers for air and water.

7 NSta = UAx/chpa/mda # Stanton number for air, -

8 NStw = UAx/chpw/mdw # Stanton number for water, -

9 NStd = NStw - NSta # Difference in Stanton numbers, -

10 #

11 Tac = (NStd*Tah + NSta*(1l-exp(-NStd))*Twc)/(NStw-NSta*exp(-NStd))

12 Tw(x) = ((NStw*exp(-NStd*x)-NSta)*Twc+(NStw - NStw*exp(-NStd*x))*Tac)/NStd
13 Ta(x) = ((NSta*exp(-NStd*x)-NSta)*Twc+(NStw - NSta*exp(-NStd*x))*Tac)/NStd

14 return [Tw(x), Ta(x)]
15 end
16 sol_analytic = map(x -> hex_a(u_hex, par_hex_a, x), xspan_a) |> vec2vec

The function (hex_a) in the above code takes the inputs, the parameters, and the interval x as
argument, and returns temperature of air and water whose values are displayed by sol_analytic.

1 #Numeric model

2 function hex_n_Cp_T_dep(inputs,par,x)

3 Tw,Ta = y

4 dy[1] = -UAX/(mdw*cp_w(Tw))*(Tw - Ta)

5 dy[2] = -UAx/(mda*cp_a(Ta))*(Tw - Ta)

6 end

7 #

8 # Boundaries of heat exchanger with temperature dependent heat capacity

9 function hex_b!(residual, y, par, x)
10 Twec,Tah = par[1],par[2]
11 residual[1l] = y[1][1]-Twc # y[1] is the beginning of the spatial span
12 residual[2] = y[end][2]-Tah # y[end] is the ending of the spatial span
13 end
14 #
15 ue = [0.9, ©.0] # The initial condition.
16 prob_hex = BVProblem(hex_i!, hex_b!, u@, x, [inputs par])
17 sol_hex = solve(prob_hex, Shooting(Vern7()), dtmax=0.01) # Three solvers are available.
18 return sol_hex # dtmax: Maximum dt for adaptive timestepping.
19 end

In the above code, since heat capacity are no longer constant parameters, we can see in line 10
and 11,specific heat capacities are functions of temperatures.

First, the ideal and non-ideal heat exchanger models are solved for several conditions
(TS, TP, m,, m,, U) to generate data matrices of analytic and numeric solutions, respectively.
Then the parameter beta(g)is estimated by linear regression on the data matrices.
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1 # Experimental ranges
2n_Tw = 4
3n_Ta =4

4 n_mdw
5 n_mda
6 n_UAx

7#

8 r_Twc

o n
E R

range(4.,30.,length=n_Tw)

9 r_Tah = range(46.,100.,length=n_Ta)
10 r_mdw = range(26,200, length=n_mdw)
11 r_mda = range(26,200, length=n_mda)
12 r_UAX = range(20,200, length=n_UAx)

13 x_grid = [[Twc,Tah,mdw,mda,UAx] for Twc in r_Twc, Tah in r_Tah,mdw in r_mdw,mda in r_mda,UAx i

14 ngrid = length(x_grid)

15 XAgrid = Matrix{Float64}(undef,5,ngrid)
16 TNgrid = Matrix{Float64}(undef,2,ngrid)
17 for i in 1:ngrid

18 Twec,Tah,mdw,mda,UAx = x_grid[i]

19 u_hex = [Twc Tah mdw mda UAx ]

20 par_hex_a = [ chpw chpa]

21 par_hex_n_Cp_T dep = [ cp_w cp_a]

22 sol_analytic = map(dx -> hex_a(u_hex, par_hex_a, dx), xspan_a)
23 XAgrid[:,i] .= [sol_analytic[end][1],sol_analytic[1][end],mda,mdw,UAx]
24 sol_numeric = hex_n_Cp_T_dep(u_hex, par_hex_n_Cp_T_dep, xspan_n)
25 TNgrid[:,i] .= [sol_numeric[end][1],sol_numeric[1][end]]

26 end

27 X= [phi_m(Xscale[:,i];n=norder) for i in 1l:size(Xscale,2)]

28 Y= TNgrid

29 beta=Y/X

|> x -> reduce(hcat,x);

3.2.2 Fitting the data-driven model

To test the regression model's ability to forecast the future, and to find the model that best
describes the data, Root means square error(RMSE) was determined for multiple orders.

1 #calculating error
2 nmax = 12

3 el = zeros(nmax)

4 for j in 1:nmax

5
6
7
8
9

10 end

Phi = [phi_m(Xscale[:,i];n=]j) for i in 1:size(Xscale,2)] |> x -> reduce(hcat,x)

println(cond(Phi))

beta= Yscale/Phi

El= Yscale-beta*Phi

el[j] = norm(El)/sqrt(length(Yscale))

In the above code, error up to the 12th order was determined and nmax denotes the maximum
number of orders to be generated, whereas el denotes the RMSE to be generated for all orders
to achieve the best fit.
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1# j = [1 to 12 orders]

2 function TimeCalc(j)

3 Phi = [phi_m(Xscale[:,i];n=j) for i in 1:size(Xscale,2)]
4 beta= Yscale/Phi

5 El= Yscale-beta*Phi

6 RMSE = norm(E1)/sqrt(length(Yscale))

7 end

8 t1 = @benchmark TimeCalc(1)
9 t2 = @benchmark TimeCalc(2)
10 t3 = @benchmark TimeCalc(3)
11 t4 = @benchmark TimeCalc(4)
12 t5 = @benchmark TimeCalc(5)
13 t6 = @benchmark TimeCalc(6)
14 t7 = @benchmark TimeCalc(7)
15 t8 = @benchmark TimeCalc(8)

16 t9 = @benchmark TimeCalc(9)

17 t1@ = @benchmark TimeCalc(18)
18 t11 = @benchmark TimeCalc(11)
19 t12 = @benchmark TimeCalc(12)

|> x -> reduce(hcat,x)

The above code's function (TimeCalc) is used to calculate time for RMSE generated up to 12th
order. Benchmark Tool’s main macro is @benchmark, which is used to see the total time taken
to complete a process in Julia.

3.2.2.1 Simulation results

r<1
)
e

ORDER | SAMPLE TIME RMSE
Minimum Median Mean Time Maximum
Time Time Time
1 5280 396.200 ps | 571.400 ps | 939.725pus | 27.096 ms | 0.0425398638142452
2 4990 396.200 ps | 595.500 us | 994.118 us | 18.939ms | 0.028367246996547312
3 573 4.384 ms 6.447 ms 8.712 ms 30.308 ms | 0.01610987759101991
4 177 18.337 ms | 28.689 ms | 28.290 ms 46.347 ms | 0.009232005001767048
5 128 28.319ms | 37.853 ms 39.091 ms 77.413 ms | 0.005053013888943954
6 60 62.311 ms | 80.537 ms 83.536 ms | 141.195 ms | 8.720849925285297e-15
7 31 123.103 ms | 148.956 ms | 162.952 ms | 411.333 ms | 3.980227263007599%e-15
8 21 202.854 ms | 213.236 ms | 239.858 ms | 361.964 ms | 1.2888472448938928e-14
9 15 272.091 ms | 322.650 ms | 338.899 ms | 510.504 ms | 1.1073878713191111e-13
10 10 428.683 ms | 444.786 ms | 507.211 ms | 740.337 ms | 2.478575600507276e-13
11 7 674.968 ms | 715.101 ms | 753.483 ms | 875.286 ms | 1.1531462754468309e-12
12 5 1.034 s 1.097 s 1.148 s 1.325s 1.3036504819103911e-12

Table 3-2: Validation results
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3.2.3 Running the hybrid model(mechanistic + data-driven/empirical/machine

learning model) using linear regression

Estimated

Analytic Model + parameter(f3)
from data-

driven model

Figure 3-8:Hybrid model

In this section, the estimated parameters(f) from the data-driven model are combined with an
analytic model termed as a hybrid model, and Julia is used to execute it, as seen below.

1 #combining analytic model with regression model

2 function timecalc(k)

3 function hex_a(inputs,par,beta)

4 Twc, Tah, mdw, mda,UAx = inputs

5 chpw, chpa = par

6 # Stanton numbers for air and water.

7 NSta = UAx/chpa/mda # Stanton number for air, -

8 NStw = UAx/chpw/mdw # Stanton number for water, -

9 NStd = NStw - NSta # Difference in Stanton numbers, -
10 #

11 Tac = (NStd*Tah + NSta*(1-exp(-NStd))*Twc)/(NStw-NSta*exp(-NStd))
12 Tw(x) = ((NStw*exp(-NStd*x)-NSta)*Twc+(NStw - NStw*exp(-NStd*x))*Tac)/NStd
13 Ta(x) = ((NSta*exp(-NStd*x)-NSta)*Twc+(NStw - NSta*exp(-NStd*x))*Tac)/NStd

14 Phi = [phi_m(Xscale[:,i];n=norder) for i in 1l:size(Xscale,2)]
15 Ys=beta*Phi

16 return [Ys[1] Ys[end]]

9 end

18 end

19 @benchmark timecalc(k)

|> x -> reduce(hcat,x)

Using function(Timecalc) the time required to run the model is seen. Benchmark Tool’s main
macro is @benchmark, which is used to see the total time taken to complete a process in Julia.
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ORDER MINIMUM TIME MEDIAN TIME MEAN TIME MAXIMUM TIME
1 3.425 ps 3.538 ps 4.908 us 582.275 ps
2 7.525 ps 7.825 ps 9.474 ps 844.000 ps
3 18.600 pus 19.900 pus 20.507 us 3.329 ms
4 50.699 ps 51.600 ps 53.132 ps 6.143 ms
5 99.599 ps 100.200 ps 102.354 ps 6.353 ms
6 180.299 ps 181.100 ps 183.113 ps 4.389 ms
7 178.001 ps 188.200 ps 191.017 ps 6.233 ms
8 265.201 ps 272.900 ps 280.980 ps 3.718 ms
9 435.900 ps 446.401 ps 469.712 ps 6.513 ms
10 648.301 ps 673.000 ps 715.323 ps 6.478 ms
11 932.900 ps 954.399 ps 989.128 ps 7.744 ms
12 1.269 ms 1.294 ms 1.331 ms 16.591 ms

Table 3-3: Benchmark results non-ideal heat exchanger with linear regression

3.3 Non-linear Regression

Nonlinear regression is a mathematical model that uses a generated line to match an equation
to a set of data. Nonlinear regression, unlike linear regression, which uses a straight-line
equation, reveals correlation across a curve, rendering it nonlinear in the parameter.

A simple nonlinear regression model is expressed as[16]:

Y =f(x, )+ € 3-31

Where:

x is a vector of P predictors

B is a vector of K predictors

f is the known regression function and
€ is the error term

Apart from nonlinear regression models, multivariate adaptive regression splines (MARS),
classification and regression trees (CART), and prediction pursuit regression (PPR) have all
been implemented into chemometrics, and they have gained less consideration than linear
statistical methods and neural networks for empirical modeling. A popular context that
highlights the similarities and differences between analytical modeling approaches such as
CART and PPR can be used to gain insight into the relationship between them. The paradigm
is built on the idea that all empirical modeling approaches can be expressed as a weighted sum
of basis functions. Both empirical modeling approaches can be interpreted as a weighted sum
of basis functions, according to the framework as[17]:

M 3-32
T = ) BB (P (@ X)
m=1
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Where the kth expected performance is denoted by ¥y, Bmk 1S the output weight, o as matrix
function parameters, X are the inputs and input transformation denoted by @,, and.As
implemented in chemometrics, the neural network is implemented for empirical modeling in
our task.

3.3.1 Neural networks

In nonlinear approximation and pattern recognition, neural networks have been extensively
used. Neural networks can be thought of as a nonlinear input and output paradigm when used
for forecasting[18].

Input layer : Hidden layers i Output layer
7 h h, 0
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Figure 3-9:multi-layer neural network[19]
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Figure 3-10:simple mechanism[16]

Neural networks are made from layers of neurons. The main processing units of the system are
the neurons. In the input layer it receives the input, the output layer estimates our final output.
In between exist the hidden layers which perform most of the computations required by our
network. When the input is fed to each neuron of the first layer neurons of one layer are
interconnected to neurons of the next layer through channels. Each of those channels is
assigned a numerical value which is known as weight. The inputs are multiplied by the weights,
and the sum is given to the hidden layer neurons as input. Each of those neurons is related to a
numerical value which is known as bias, which is then added to the input sum. This value is
then tried and true a function called the activation function.[20]

VA

(a) Identity (b) Sign (¢) Sigmoid

(d) Tanh ' (e) RVOLL' (f) Hard Tﬁnh

Figure 3-11:Various activation function[21]
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The output of the activation function decides if the neuron will get activated or not. An
activated neuron transmits information to the neurons of the following layer over the channels.
This is often called forward propagation within the output layer the neuron with the very best
value fires and determines the output the values are probable. Initially, when output is predicted
and it is a wrong prediction, it is not the end because the model needs to be trained. At this
training process together with the input, the network result is fed to that the expected output
and compared against the output to understand the error. In prediction, the magnitude of the
error suggests if our predicted values are bigger or smaller than expected results. Here indicates
the direction and magnitude of change to reduce the error. This information is transferred
backward through our network which is known as backpropagation. Now supported by this
information, the weights are adjusted. This cycle of forwarding propagation and
backpropagation is iteratively performed with number of inputs. This process goes on until
our weights are assigned such that the network can predict the output correctly [18].
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3.3.2 Non-linear Regression of Counter Current Heat Exchanger model

Given the success of an explicit data-driven approach for the non-ideal heat exchanger model
using linear regression, it is still worth considering using non-linear regression for the optimal
match. So, an explicit data-driven model for the non-ideal heat exchanger model is built in this
section. To shorten the solution time, a correction expression to the optimal heat exchanger
model is used.
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Figure 3-12:explicit data driven model using non-linear regression.
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3.3.3 Non-linear regression in Julia implementation

1 # Normalization function
2 function normalize(X)

3 Xmin = minimum(X,dims=2)

4 Xmax = maximum(X,dims=2)

5 Xnorm = (X .- Xmin)./(Xmax-Xmin)

6 denormalize = (Xnorm,Xmin,Xmax) -> Xnorm.*(Xmax-Xmin).+Xmin
7 return Xnorm, Xmin,Xmax,denormalize

8 end

9 # no of epochs

10 nE = 50000

11 # no of internal node

12 nz: =2

13 # defining model

14 md = Chain(Dense(5,nz,tanh),Dense(nz,2))
15 # Initial mapping

16 Yd_@= md(Xd)

17 #Defining loss function

18 loss(x, y) = mean((md(x).-y).”2)

19 #specyfying optimization method

20 opt = ADAM(@.e1, (©.99, ©.999))

21 # Extracting parameters from the model
22 par = Flux.params(md)

23 # Training over nE epochs

24 for i in 1:nE

25 Flux.train!(loss,par,data,opt)

26 end

27 # Final mapping

28 Yd_nE = md(Xd)

29 # Calculating error

30 RMSE = norm(Yd_nE-Yd)”~2/sqrt(length(Yd))

The function(normalize) is used to normalize the value of X in the code above. As previously
said, epochs are chosen, as well as a node with the activation function tanh for the first layer
and identity for the second layer. The model is eventually conditioned, and the error is
measured.

The below code's function (TimeCalc) is used to calculate time for RMSE generated up to
thel5th node. Benchmark Tool’s main macro is @benchmark, which is used to see the total
time taken to complete a process in Julia.
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1# time calculation

2 function TimeCalc(nz)

3 #nz=node

4 # defining model

5 md = Chain(Dense(5,nz,tanh),Dense(nz,2))
6 # Initial mapping

7 Yd_6= md(Xd)

8 #Defining loss function

9 loss(x, y) = mean((md(x).-y)."2)
10 #specyfying optimization method
11 opt = ADAM(8.01, (©.99, ©.999))

12 # Extracting parameters from the model
13 par =Flux.params(md)

14 # Training over nE epochs

15 for i in 1:nE

16 Flux.train!(loss,par,data,opt)

17 end

18 # Final mapping
19 Yd_nE = md(Xd)

20 # Calculating error
21 RMSE = norm(Yd_nE-Yd)”~2/sqrt(length(Yd))
22 end

23 t = @benchmark TimeCalc(nz)

3.3.4 Training the data-driven model

In this section, the model is trained with multiple epochs in Julia which can be seen in section

3.3.3 and the results obtained are summarized.

3.3.4.1 Simulation results

NODE MEAN TIME RMSE

1 71.494 s 0.5548718311388271

2 75.703 s 0.003169573105621138
3 121.190s 0.0014953212724717116
4 139.010 s 0.0013872511470593093
5 105.891 s 0.000922273658861804
6 157.149 s 0.0008863095123224582
7 159.512 s 0.0006584271926556707
8 167.705 s 0.000690118770099446
9 180.997 s 0.0006312129929776083
10 146.797 s 0.0006590233056936986
11 146.218 s 0.0006040803974399049
12 141.263 s 0.000574280213920806
13 142.986 s 0.0005705601620618436
14 160.483 s 0.0005402155956200594
15 150.124 s 0.0005423131502707424

Table 3-4:validation results with 50000 epochs
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Figure 3-13:RMSE vs node with 500 epochs
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Figure 3-14:RMSE vs node with 5000 epochs
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Figure 3-16:RMSE vs node with 50000 epochs
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3.3.5 Running the hybrid(mechanistic + data-driven/empirical/machine
learning model)

Estimated

Analytic Model + parameter from
data-driven

model

Figure 3-17:Hybrid model

The estimated parameters from data-driven model are combined with analytic model which is
termed as hybrid model Figure 3-17 and Julia is used to execute it, as seen below.

1 #combining analytic model with non-regression model
2 function timecalc(k)

3 function hex_a(inputs,par,md)

4 Twc, Tah, mdw, mda = inputs

5 UAX, chpw, chpa = par

6 # Stanton numbers for air and water.

7

8

NSta = UAx/chpa/mda # Stanton number for air, -
NStw = UAx/chpw/mdw # Stanton number for water, -
9 NStd = NStw - NSta # Difference in Stanton numbers, -
10 #
11 Tac = (NStd*Tah + NSta*(1-exp(-NStd))*Twc)/(NStw-NSta*exp(-NStd))

12 Tw(x) = ((NStw*exp(-NStd*x)-NSta)*Twc+(NStw - NStw*exp(-NStd*x))*Tac)/NStd
13 Ta(x) = ((NSta*exp(-NStd*x)-NSta)*Twc+(NStw - NSta*exp(-NStd*x))*Tac)/NStd
14 Yd_nE = md(Xd)

15 return [ Yd_nE[1] Yd_nE[end]]

16 end

17 end

18 @benchmark timecalc(k)

Using function(Timecalc) the time required to run the model is seen. Benchmark Tools main
macro is @benchmark, which is used to see the total time taken to complete a process in Julia.
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3 Heat Exchanger Regression Model

NODE MINIMUM TIME MEDIAN TIME MEAN TIME MAXIMUM TIME
1 49.300 ps 50.200 ps 57.175 ps 3.313 ms
2 74.099 pus 75.401 ps 83.200 pus 3.109 ms
3 143.499 ps 145.500 ps 157.641 ps 3.867 ms
4 156.899 ps 159.801 ps 177.033 ps 6.551 ms
5 198.099 ps 201.200 ps 221.701 ps 5.961 ms
6 216.700 ps 219.601 ps 241.105 ps 6.778 ms
7 900.899 pus 902.999 us 930.397 ps 6.934 ms
8 285.599 ps 524.100 ps 535.524 ps 55.527 ms
9 317.600 ps 319.901 ps 344.208 ps 5.108 ms
10 383.001 ps 385.900 ps 414.426 ps 5.190 ms
11 401.200 ps 403.700 ps 434.663 ps 9.285 ms
12 448.200 ps 450.900 ps 481.260 ps 5.612 ms
13 467.000 ps 469.700 ps 498.906 ps 6.961 ms
14 1.685 ms 1.697 ms 1.732 ms 7.670 ms
15 499.101 ps 502.0|00 ps 537.954 us 6.135 ms

Table 3-5:Benchmark results non-ideal heat exchanger with non-linear regression
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4 Results and Discussion

4 Results and Discussion

This chapter summarizes the conclusions of the previous chapters' research and addresses the
most important findings. The relation between the analytic and numeric solutions of the
counter-current heat exchanger models is discussed first. Second, the counter-current heat
exchanger model's regression findings are analyzed and clarified. Third, the hybrid models’
execution speeds and the numeric solution of the non-ideal heat exchanger model are
contrasted.

4.1 Analytic vs. Numeric Solution of the Counter-current Heat
Exchanger Model

An overview of the thermal model of an air-cooled synchronous generator was given in Chapter
2, along with ideal and non-ideal heat exchanger models. Also addressed was the effect of
temperature dependency in the basic heat capacities of air and water on the heat exchanger sub-
model solution. It was specifically addressed how, based on the assumption of temperature
dependency in the specific heat capacities, a linear/nonlinear two-point boundary value
problem might arise.

Model Median time Mean time
The numeric solution when ¢, 4.665 ms 5.877 ms
The numeric solution when ¢, (t) 39.947 ms 38.786 ms
The Analytic solution 22.601 pus 23.118 ps

Table 4-1: Summary of the benchmark results of Chapter 2.

Table 4.1 shows that the numeric solution when specific heat capacities are temperature
dependent is 4 to 5 times slower than the numeric solution when specific heat capacities are
not temperature dependent. In the situation of temperature independence in the specific heat
capacity of water and air , Table 4.1 reveals that the analytic solution is around 200 to 300
times quicker than the numeric approach. This supports the necessity for an explicit data-driven
model to reduce the heat exchanger model's solution time which is done in chapter 3.
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4.2 Regression of the Counter-Current Heat Exchanger Model

One of the primary goals of this project is to shorten the time it takes to solve the non-ideal
heat exchanger model (the case of temperature dependency in the specific heat capacity of air
and water), as described in Chapter 3. Specifically, linear, and nonlinear regression was used
to build explicit data-driven models for the non-ideal heat exchanger model, which were then
represented as a correct expression for the ideal heat exchanger model.

4.2.1 Results and discussion of the linear regression of the counter-current
heat exchanger model

order Median Time Mean Time RMSE

31 6.447 ms 8.712 ms 0.01610987759101991
™" 80.537 ms 83.536 ms 8.720849925285297e-15
gth 322.650 ms 338.899 ms 1.1073878713191111e-13
12t 1.097 s 1.148 s 1.3036504819103911e-12

Table 4-2:Computational time along with RMSE different order

Table 4-2 displays the summarized time i.e., minimum time, median time, mean time, and
maximum time calculated with benchmark methods, as well as the RMSE calculated for each
order to determine the right suit. It can also be seen in Figure 3-4,Figure 3-5 , Figure 3-7 and
Figure 3-7 which graphically depicts the relationship between RMSE and different order. i.e.,
3, 6™ and 12" respectively.

We can see that the time required to compute error increases as the order increases, while the
RMSE decreases up to the sixth order and then steadily increases after that. In 6th order, the
optimal match for an explicit data-driven model can be seen.

4.2.2 Results and discussion of the nonlinear regression of the counter-current
heat exchanger model

Epochs=50000

node Mean Time RMSE

1% 71.494 s 0.5548718311388271

5th 105.891 s 0.000922273658861804
10t 146.797 s 0.0006590233056936986
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4 Results and Discussion

14 160.483 s 0.0005423131502707424

Table 4-3:Computational time along with RMSE for different node

Table 4-3 displays the summarized time calculated with benchmark methods, as well as the
RMSE calculated for each node to determine the right suit. Figure 3-13 shows that with 50
epochs, the error is higher. If the number of epochs increases, the error decreases, as seen in
Figure 3-14. Figure 3-15 shows a good match by using different epochs for a total of 50000
epochs. We can see that the time required to compute error increases as the node increases. The
14th node, the optimal match for an explicit data-driven model can be seen with minimum
RMSE.

4.2.3 Comparison of the Execution Speed of the data-driven models

We can see the least error at 6th order for linear regression and 14th node for nonlinear
regression, as mentioned in 3.2.2 and 3.3.4, which is then used to develop a hybrid model.

Model Mean Time Median Time
Data-driven(linear regression model) 80.573ms 83.536ms
Data-driven(non-linear regression model) | 160.483 s 164.378ms

Table 4-4:benchmark results for data-driven model

As indicated in Table 4-4, it appears that linear regression yielded the lowest error when
compared to nonlinear regression with less computing time for these data-driven models.

4.2.4 Comparison of the Execution Speed of the Hybrid model (mechanistic +
data-driven/empirical/machine learning model) and the Numeric Non-
Ideal Heat Exchanger Models

In 3.2.3 and 3.3.5 the hybrid and numeric non-ideal heat exchanger models were compared in
terms of execution speed.

model Mean Time Median Time
hybrid(linear regression model) 181.100 ps 183.113 ps
hybrid(non-linear regression model) 1.697 ms 1.732 ms
The numeric solution when ¢, (t) 39.947 ms 38.786 ms
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4 Results and Discussion

The Analytic Solution 22.601 ps

23.118 ps

Table 4-5:Benchmark result for hybrid model

To build the hybrid model, correction factors from data-driven models were employed, and the
computing time after solving the hybrid model is displayed in Table 4-5. We can observe that
the solution time has improved significantly and is now around 220 times quicker than

Numeric Non-ideal heat exchanger models.
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5 Conclusion

5 Conclusion

This thesis provides an overview of the thermal model of an air-cooled synchronous generator
provided by [1] and explored by [2], as well as a discussion of the heat exchanger sub-probable
model's extension to the scenario of temperature dependency in the specific heat capacities of
air and water. Furthermore, explicit data-driven models were constructed using linear and
nonlinear regression for a range of situations and stated as a correction expression to the ideal
heat exchanger model to speed up the solution time of the non-ideal heat exchanger sub-model.
Furthermore, the numeric solution of the nonlinear two-point boundary value issue was
compared to the hybrid(mechanistic + data-driven/empirical/machine learning model)models
in terms of execution speed and the hybrid models were shown to have a quicker execution
time.
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6 Future work

6 Future work

Following things can be done.

1. When solving the generator's dynamic thermal model, a hybrid model may be

employed to see the computing time and remove the nonlinear two-point boundary
value problem.

2. More experimental data may be used to assess the hybrid model's computational time.
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University of
South-Eastern Norway

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

FMH606 Master's Thesis

Title: Hybrid Machine Learning and Mechanistic Thermal Model of Synchronous Generator

USN supervisor: Prof. Bernt Lie (main supervisor), co-supervisors: Madhusudhan Pandey,
(PhD student) and Assoc. Prof. Thomas @yvang

External partner: Skagerak Kraft (Ingunn Granstrgm)
Task kground:

A thermal model of a synchronous generator was proposed in @yvang (2018), with a
reformulation studied in a group project in course FM1015 Modelling of Dynamic Systems,
Lie (2018). The model from Lie (2018) was further studied in an MSc thesis in 2019 (Pandey
et al., 2019), in a subsequent summer job (Pandey, 2019), and in an MSc thesis in 2020
(Aleikish, 2020; Aleikish et al. 2020). The purpose of such a model is to allow for
monitoring/control of the generator temperature, and thereby consider relaxed constraints
on the power factor in the operation of generators.

Based on available experimental data from Skagerak, Pandey et al. (2019) studied model
fitting and state estimation of the generator based on the model in Lie (2018). In general,
the included heat exchanger sub model requires the numeric solution of a two-point
boundary value problem for each time-step in the ODE solver; this is very time consuming.
However, under some conditions (e.g., constant heat capacity), the heat-exchanger model
can be solved analytically. In Pandey et al. (2019), constant heat capacity in the heat
exchanger was assumed.

To prepare for a more general study involving model fitting with a temperature dependent
heat-exchanger model, Aleikish (2020) studied the possibility to develop a hybrid heat
exchanger model consisting of the analytic model with a regression/machine learning
modification to capture the nonlinear effects of the temperature dependence. Such a fitting
lead to excellent model fitting for the heat-exchanger model and a dramatic reduction in
computation time compared to numerically solving the nonlinear two-point boundary value
problem.

However, the initial study by Aleikish (2020) is based on known heat-exchanger parameters
such as heat capacity coefficients, heat transfer coefficients, etc. To allow for tuning the
physical parameters in the heat exchanger, it is necessary to further improve on the heat-
exchanger model. One possibility available in the eco-system of the Julia programming
language is to use “universal differential equations”, which combines physics-based models
(e.g., assuming an analytic, approximate heat-exchanger model) with neural networks.

References:

Lie, Bernt (2018). Group project task, course FM1015 Modelling of Dynamic Systems.
University of South-Eastern Norway.
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@yvang, Thomas (2018). Enhanced power capability of generator units for increased
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Pandey, Madhusudhan, @yvang, Thomas, and Lie, Bernt (2019). “State Estimation of a
Thermal Model of Air-cooled Synchronous Generator”. Proceedings of SIMS 2019, pp.
190—197. Published by Link6ping University Electronic Press, Series: Linkdping
Electronic Conference Proceedings No. 170, ISBN: 978-91-7929-897-5, elSSN: 1650-
3740, doi: https://doi.org/10.3384/ecp20170190.

Pandey, Madhusudhan (2019). Unpublished results from summer job, University of
SouthEastern Norway.

Aleikish, Khaled (2020). Hybrid Machine Learning and Mechanistic Thermal Model of
Synchronous Generator. MSc thesis, University of South-Eastern Norway, 2020.

Aleikish, Khaled, @yvang, Thomas, and Lie, Bernt (2020). “Hybrid model for fast solution of
thermal synchronous generator with heat exchanger”. Proceedings of SIMS 2020,
September 2020. To be published in Linkdping University Electronic Press.

Task description:

The following tasks are relevant:

1. Give a short overview of the given thermal model of a synchronous generator, with
special focus on the ideal and nonideal heat exchanger model. Discuss how the
model can be solved with a non-ideal heat exchanger sub-model by using a two-stage
strategy (two-point boundary value problem to be solved for each time step in the
dynamic model).

2. Identify (dimensionless?) parameters in the heat exchanger model as well as
operating condition inputs. Carry out experiments (= simulations) on the non-ideal
heat exchanger model to generate data that will subsequently be used for model
fitting. In the experiments, make sure that you vary dimensionless parameters (e.g.,
by simulating several different fluids, i.e., with different combinations of heat
capacities, heat transfer coefficient, etc.).

3. Develop a hybrid model of the counter current heat exchanger consisting of an
analytic solution of the ideal model, as well as a data-driven/machine learning
correction term. The correction term should include the effect of varying operating
conditions as well as (dimensionless?) parameters in an extension of the work of
Aleikish (2020). The hybrid extension can be based on linear or nonlinear regression
(e.g., neural network).

4. Test the combined hybrid heat exchanger model with the thermal synchronous
generator model, and assess the sensitivity of the solution wrt. uncertain model
parameters.

5. Based on available experimental data from the operation of a synchronous
generator, use your new model and tune parameters in the model to achieve
improved model fit. Compare your results to those of Pandey et al. (2019).

6. Report the work in the Master’s Thesis, and possibly in a suitable conference/journal
paper, e.g., SIMS EUROSIM 2021.

Student category: The tasks can be solved by EPE, IIA, PT, EET students, but EPE students will
be given priority. (The ideas under study are valid and useful within all scientific fields).

The task is suitable for online students (not present at the campus): Yes

Practical arrangements:
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A working place for the candidate will be offered at University of South-Eastern Norway,
Campus Porsgrunn; candidates can choose to sit elsewhere.

Supervision:

One-hour weekly supervision meetings are offered (on campus or via MS Teams), as well as
feedback on partial reports every 3 weeks, and help with formulating a scientific paper. The
last month of the work, the candidate is expected to work independently. In total, this
surpasses the 15-20 hours of supervision that the candidate is entitled to.

Signatures:
Supervisor (date and signature):
Student (write clearly in all capitalized letters):

Student (date and signature):
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Julia code used in this thesis are linked below:

counter current

linear regression

nonlinear regression

Time comparison

Appendices B
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https://github.com/prakashdhakal123/master-thesis/blob/9461c2b28756a008d4631e11a9a08efb29f0c05a/counter%20current.ipynb
https://github.com/prakashdhakal123/master-thesis/blob/9461c2b28756a008d4631e11a9a08efb29f0c05a/linear%20regression.ipynb
https://github.com/prakashdhakal123/master-thesis/blob/9461c2b28756a008d4631e11a9a08efb29f0c05a/non%20linear%20regression.ipynb
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