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Summary:  

Overheating of synchronous generators may result in shortened generator lifespan, thus 

strict constraints are imposed on their operation. A dynamic model of the generator 

temperature may leave good monitoring of the generator condition, and also more flexible 

operation. Within the past, the mix of a thermal model of an air-cooled generator with 

better  control has been considered to assist ride-through  problems: By using a model-

based online monitoring , the temperature development in certain locations within the 

synchronous generator were kept in restraint. Additionally, exploiting the generator’s full 

thermal capacity led to improved performance [1]. Further work has considered various 

improved thermal generator models, together with model fitting and state estimation [2]. 

Now also, the studies thus far have used normal, counter-current heat exchanger models 

with constant Stanton numbers, which authorize for an analytic, explicit heat exchanger 

models description. In [2], a heat exchanger model with temperature-dependent heat 

capacities was considered. The result's a two-point boundary value problem that's several 

thousand-fold slower to resolve than with a relentless Stanton number. To hurry up the 

solution, a nonlinear regression model was trained off-line to suit the solution of the 

boundary value problem. However, what is missing in [3] is that the possibility to think 

about heat exchangers with varying heat transfer coefficients. The thermal model of an 

air-cooled synchronous generator created in [4] and enlarged in [3] with a more realistic 

temperature-dependent condition was continued during this thesis, with variable heat 

transfer coefficients, to lower the time it takes a heat exchanger model to resolve a 

temperature-dependent problem. A hybrid model was created with estimated parameters 

from a data-driven model for a spread of scenarios, and also the performance was 

compared to the numeric solution, which was around 220 times quicker. 
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Nomenclature 
Symbol      Explanation 

R2                                                                              The Coefficient of Determination 

RMSE                                                                        Root-Mean Square Error 

𝑇i
j
(j=h,c,N,A. i=a,w,t,s)                The temperature of species j obtained by: 

       A = Analytic solution  

N = Numeric solution  

h = Hot 

c = Cold 

a = Air 

w = water 

t = tube 

s = shell  
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1 Introduction 

1.1 Background 

The power factor of the system plays a key role in the production of electricity. According to 

[4], the power factor in European hydropower generation is limited to [0.85,0.95] and for the 

Norwegian hydropower system, it is below 0.86. High power factor results in to increase in 

current and therefore, synchronous generators are overheated. To protect these Hydro 

generators maturing of temperature should be under dominance and thermal capacity should 

be properly taken into consideration. A closed-loop heat exchanger model has been developed 

in [1] for cooling heated air generated inside the generator. 

 

1.2 Previous Work 

It was suggested in  [1], the thermal model of an air-cooled synchronous generator, which was 

investigated in [4]and[2].  In [3], a heat exchanger model with temperature-dependent heat 

capacities was considered. The result is a two-point boundary value problem that is several 

thousand times slower to solve than with a constant Stanton number. To speed up the solution, 

a nonlinear regression model was trained off-line to fit the solution of the boundary value 

problem. However, what is missing in [3] is the possibility to consider heat exchangers with 

varying heat transfer coefficients.   

1.3 Scope and outline 

In this thesis, an air-cooled synchronous generator's thermal model developed in [4] and 

expanded in [5] with a more realistic temperature-dependent situation is continued, with 

different heat transfer coefficients to reduce the time it takes for a heat exchanger to solve a 

problem that is temperature-dependent. For a range of scenarios, a hybrid model is developed 

with estimated parameters from a data-driven model, and the speed is compared to numeric 

solutions. 

The model of an air-cooled synchronous generator is briefly discussed in Chapter 2. Following 

that, the construction of a counter-current model is demonstrated. Finally, Julia is used to 

comparing the analytic and numerical solutions for the ideal and non-ideal cases. 

The linear and nonlinear regression of the counter-current heat exchanger model is 

implemented in Julia in Chapter 3. 

The result and discussion are shown in chapter 5 along with the conclusion and future work is 

planned in chapter 6. 
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1.4 Theory 

 Synchronous Generator 

It is an electrical machine that converts mechanical power into AC e power at a specific voltage 

and frequency. It always runs at a relentless speed called synchronous speed. It has multiple 

applications in generation, transmission, and distribution and is generally employed in nuclear, 

thermal, and hydropower systems for generating voltage[6]. 

1.4.1.1 Losses in synchronous generator 

 

Figure 1-1:losses in Synchronous generator 

Friction losses are related to the force it takes to beat drag related to rotating parts. Generally, 

these losses are because of the friction of  bushings ,bearings which are proportional to the 

rotor speed. Iron losses are also called core losses and are associated losses within the magnetic 

path and are divided into hysteresis loss and Eddy current loss due to changing polarity of the 

flux within the core. Ohmic or losses are because of this current flowing into the conductor. 

They are adequate the resistance of the trial where the current flows multiplied by the square 

of the current Stray losses are normally termed  as losses that do not correlate to the explained 

losses above. These losses are the main causes for heat generation inside the generator. So, to 

avoid this heat should be properly dispatched with a good heat exchanger[5]. 

  

1.4.1.2 Heat exchanger  

They are the system want to transfer heat between the fluids. They are both using heating and 

cooling processes. The fluids are separated by a solid wall which preventing mixing. They are 

mostly  used in Power stations, chemical plants, air conditioning, petroleum refineries, etc. 

Among such a lot of different types in our thesis, we are coping with shell and tube heat 
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exchangers.

 

Figure 1-2:Shell and tube heat exchanger 

It consists of a shell with several tubes inside it. One fluid runs inside the tubes and another 

fluid flows through the shell to transfer heat between two fluids. The gathering of tubes is 

named a tube bundle and may have several tubes. Baffles are used for steering the flow through 

the shell side; therefore, the fluid does not take a shortcut path leaving the system[7]. 
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2 Thermal Model of an Air -cooled 
Synchronous Generator with ideal and 
Non-ideal Heat Exchanger Model 

 

 

A thermal model for a fully enclosed air-cooled synchronous generator has been created by [1]. 

[4] used principles and notations from [1] to create a similar model with a more general design 

and a more powerful heat exchanger. The thermal model of the air-cooled synchronous 

generator is shown in Figure 2-1 in action. A fan blows cold air from the heat exchanger into 

the rotor/stator air gap. Heat flow from the rotor, air gap windage, and bearing friction heat the 

air. Air is then pushed into the iron cores and is then heated by the heat flow from the iron 

cores. The heated air is now stored and moved through the heat exchanger at the stator's outlet. 

The heated air is then cooled to the desired temperature in the heat exchanger using continuous 

cold-water circulation before being fed back into the air gap in a continuous operation. 

At temperature 𝑇w
c , the heat exchanger is fed with cold water at a mass flow rate of �̇�w . At the 

stator outlet and heat exchanger entry, the air mass flow rate is �̇�𝑎 , and the temperature is 𝑇a
h. 

Due to rotor field current, 𝐼f.rotor copper heat source �̇�r
𝜎  is created and similarly stator copper 

heat source, �̇�s
𝜎due to stator current 𝐼t.Heat generated due to friction in stator/rotor air gap is 

�̇�F
𝜎 and �̇�Fe

𝜎 ,  is stator iron heat source. �̇�𝑎, �̇�w,𝑇w
𝑐 ,  �̇�Fe

𝜎 , �̇�F
𝜎,  𝐼Fe,  𝐼F highly influences the 

thermal operation of air-cooled synchronous generator . 𝑇r,  𝑇s, and  𝑇Fe, are rotor, stator and 

iron core temperatures respectively. 

Figure 2-2 depicts the functional diagram of an air-cooled synchronous generator, which shows 

the inputs and outputs 

 

Figure 2-1: Thermal operation of an air-cooled synchronous generator [2]. 
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Figure 2-2:Functional diagram of an air-cooled synchronous generator 

 

2.1 Overview of Counter-Current Heat Exchanger Model 

Different heat exchanger model is there. Among them, shell and tube heat exchangers are 
described in [4] which involves the flow of water inside the tube and flow of air in the 
shell. Depending on the type of flow three models are developed i.e., cross-current, co-
current, and counter-current heat exchangers. But in our work, we mainly focus on the 
counter-current heat exchanger model. 

The total mass balance can be written as: 

 

 𝑑𝑚

𝑑𝑡
= 𝑚𝑖̇ − 𝑚𝑒̇ = 0   

 2-1 

 

 

Figure 2-3:distributed model of a counter-current heat exchanger [6]. 

For steady state mass balance for tube side is 
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�̇�𝑖
𝑡 = �̇�𝑒

𝑡  2-2 

Similarly, the mass balance for the shell side is. 

�̇�𝑖
𝑠 = �̇�𝑒

𝑠 2-3 

When friction and volume work is neglected, the energy balance becomes. 

𝑑𝑈

𝑑𝑡
= 𝐻𝑖̇ − 𝐻�̇� + 𝑄   

2-4 

The perfect mixing in the volume defined by x ∈ [ ξ, ξ + △x ].The flow rates for the tube side 
can be expressed as[2]:  

 

𝐻𝑖
𝑡̇ = 𝑚𝑡̇ �̂�

𝑡 2-5 

𝐻𝑒
𝑡̇ = 𝑚𝑡̇ �̂�+𝑥

𝑡  2-6 

Heat flow is denoted as: 

�̇� = −�̇�
𝑡2𝑠 2-7 

For an interval, heat flow is expressed as: 

�̇�+𝑥
𝑡2𝑠 = 𝑄’̇ 𝑡2𝑠,+𝑥𝑥 2-8 

And the internal energy as 

𝑈+𝑥
𝑡 =△ 𝑥ρt𝐴t�̂�+𝑥

𝑡  2-9 

Which leads to: 

𝑑

𝑑𝑥
(△xρtAt�̂�+𝑥

𝑡 = 𝑚𝑡̇ �̂�
𝑡 −𝑚𝑡̇ �̂�+𝑥

𝑡 − 𝑄’̇ 𝑡2𝑠,+𝑥𝑥 2-10 

By letting △x → 0 and generalizing ξ, the previous equations changes to: 

ρt𝐴t
𝜕�̂�𝑡
𝜕𝑡

= −𝑚𝑡̇
𝜕�̂�𝑡
𝜕𝑡

− 𝑄’̇ 𝑡2𝑠 
2-11 

So, here 
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𝑄’̇ 𝑡2𝑠 = U(Tt−Ts) 2-12 

With  𝜕�̂�≈ �̂�𝑣 𝜕𝑇 and 𝜕�̂�≈ �̂�𝑝 𝜕𝑇, which results in. 

ρt𝐴t�̂�𝑣,𝑡
𝜕𝑇t

𝜕𝑡
 = �̇�𝑡�̂�𝑝,𝑡

 𝜕𝑇𝑡

𝜕𝑡
- U(𝑇t− 𝑇s) 2-13 

Similarly, for shell side 

ρs𝐴s�̂�𝑣,𝑠
 𝜕𝑇𝑠

𝜕𝑡
 = -�̇�𝑡�̂�𝑝,𝑠

 𝜕𝑇𝑠

𝜕𝑡
- U(𝑇𝑡 − 𝑇𝑠) 

2-14 

for steady state 
 𝜕𝑇

𝜕𝑡
= 0 so PDEs reduces to ordinary differential equations i.e. 

𝑑𝑇𝑡
𝑑𝑥

= −
𝑈

�̇�𝑡�̂�𝑝,𝑡
(𝑇𝑡 − 𝑇𝑠) 

2-15 

 

𝑑𝑇𝑠
𝑑𝑥

= −
𝑈

�̇�𝑠�̂�𝑝,𝑠
(𝑇𝑡 − 𝑇𝑠) 

2-16 

Linear, space invariant boundary value problem is formed if 
𝑈

�̇�𝑐�̂�
 is constant with respect to x 

𝑑

𝑑𝑥
(
𝑇𝑡
𝑇𝑠
)=(

−
𝑈

�̇�𝑡𝑐�̂�,𝑡

𝑈

�̇�𝑡𝑐�̂�,𝑡

−
𝑈

�̇�𝑠𝑐�̂�,𝑠

𝑈

�̇�𝑠𝑐�̂�,𝑠

)(
𝑇𝑡
𝑇𝑠
) 

The solution of this model in  [2] is found to be 

𝑇𝑤(𝑥) =
1

𝛼𝑡 − 𝛼𝑠
[𝛼𝑡𝑒

(𝛼𝑠−𝛼𝑡)𝑥 − 𝛼𝑠)𝑇𝑖
𝑡 + (𝛼𝑡 − 𝛼𝑡𝑒

(𝛼𝑠−𝛼𝑡)𝑥)𝑇𝑒
𝑠] 

2-17 

𝑇𝑎(𝑥) =
1

𝛼𝑡 − 𝛼𝑠
[𝛼𝑡𝑒

(𝛼𝑠−𝛼𝑡)𝑥 − 𝛼𝑠)𝑇𝑖
𝑡 + (𝛼𝑡 − 𝛼𝑠𝑒

(𝛼𝑠−𝛼𝑡)𝑥)𝑇𝑒
𝑠] 

2-18 

Here, 

 

𝛼𝑡 ≜ 
𝑈

�̇�𝑡𝑐�̂�,𝑡
 2-19 



 2 Thermal Model of an Air -cooled Synchronous Generator with ideal and Non-ideal 
Heat Exchanger Model 

 

17 

𝛼𝑠 ≜ 
𝑈

�̇�𝑠𝑐�̂�,𝑠
 2-20 

The explicit expression for effilent temperatures Tt (x = Lx) = Ti
s and Ts (x = 0) = Ti

t 

by utilizing Stanton number are: 

 

𝑇e
t =

𝑁St
t (1 − exp(𝑁St

s − 𝑁St
t )𝑇i

s + (𝑁St
t − 𝑁St

s )exp (𝑁St
s − 𝑁St

t )𝑇i
t

𝑁St
t − 𝑁St

s exp(𝑁St
s − 𝑁St

t )
 

2-21 

𝑇e
s =

(𝑁St
t −𝑁St

s )𝑇i
s+𝑁St

t (1 − exp (𝑁St
s − 𝑁St

t )𝑇i
t

𝑁St
t − 𝑁St

s exp(𝑁St
s − 𝑁St

t )
 

2-22 

 

 

This analytic expression applies only when and is independent of x. A numerical solution is 

required if either of the total heat transfer coefficient U, the perimeter, or the individual heat 

capacities vary with x. The non-ideal case of temperature-dependent heat capacity, in which 

and are no longer independent of x, is of interest in this work. This creates a nonlinear two-

point boundary value problem with a costly numerical solution. An alternative approach that 

does not require an iterative process, namely a strategy that blends a data-driven model with a 

mechanistic model, is of interest. 

Finally, in the thermal model of an air-cooled synchronous generator,   the air is circulating in 

the shell and water is flowing within the tube. 

2.2 Analytic and Numeric Solution 

When the thermal model of an air-cooled synchronous generator from [2] is extended with a 

more practical heat exchanger model, such as one with temperature dependence in heat 

capacity and/or heat transfer of air/water, the specific heat capacity is no longer a scalar 

quantity, but a function of temperature, resulting in a nonlinear two-point boundary value 

problem. In this section, the analytic solution of the ideal heat exchanger model and the numeric 

solution of the non-ideal model are compared[7]. 
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Figure 2-4: Analytic and Numeric Solution 

 Comparing Analytic and Numeric Solution in Julia for Ideal case 

The primary aim of applying the numeric solver for the ideal case of temperature independence 

in the real heat capacities of air and water is to see if the analytic solution suits the ideal case 

numeric solution.Table 2-1 shows a comparison of the analytic and numeric solutions of the 

ideal heat exchanger model.  

 

Model Median time Mean time 

The analytic solution 22.601 μs μs 23.118  μs 

The numeric solution 4.665  ms 5.877  ms 

 

Table 2-1: Benchmark results for the ideal heat exchanger model. 
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Figure 2-5:Analytic solution of the ideal heat exchanger model. 

 

 

 

 

 

Figure 2-6:Analytic Vs Numeric Solution of Ideal Heat exchanger Model 
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Since the solutions are identical, it is safe to move on to the next step, which is to find a solution 

for the non-ideal case of temperature dependence in the basic heat capacities of air and water. 

Comparing the mean time between the two Solutions it seems Analytic Expressions are 

evaluated 200  times faster than numeric Solutions. 

 

 Comparing Analytic and Numeric Solution in Julia for non-ideal case 

Figure 2-8 depicts a contrast of the analytic and numerical solutions while .Comparing the 

processing times of the two numeric solutions is also interesting.  summarizes the benchmark 

findings, which reveals that the non-ideal case of temperature dependence is nearly eight times 

slower than the ideal case. 

 

Model Median time Mean time 

The numeric solution when �̂�𝑝 4.665  ms 5.877  ms 

The numeric solution when �̂�𝑝(𝑡) 39.947  ms 38.786  ms 

Table 2-2:Benchmark results for the non-ideal heat exchanger model. 

 

Figure 2-7: Numeric solution of the non-ideal heat exchanger model when �̂�𝑝(T). 
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Figure 2-8: Analytic solution vs. numeric solution of non-ideal heat exchanger model 
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3 Heat Exchanger Regression Model 

3.1 Overview or regression analysis 

The theory of how a response variable is influenced by one or more predictors is known as 

regression analysis. Typically, dependency is believed to be by the mean, and the mean or 

regression function is used to describe how the response's mean is affected by the predictors. 

While nonparametric regression methods with few assumptions can be useful for summarizing 

certain regression problems, using parametric regression models with a few plausible 

assumptions allows for elegant and clear results. This article discusses a significant class of 

linear regression models. These models are widely used in practice and can provide a variety 

of useful outcomes. Easy and multiple regression are addressed, as well as the specific types 

of equations, analysis of estimates and criteria, research ideas, including group comparisons, 

and diagnostic techniques. 

The first of the two goals of regression analysis will be the subject of this paper. The aim is to 

use a regression model to predict the performance temperatures of air and water from the non-

ideal heat exchanger model. Linear regression approaches, such as those used in chemometrics, 

and nonlinear regression methods, such as those used in neural networks, are also considered. 

 Linear regression 

 A linear strategy to modeling the connection between a scalar answer and one or more 

explanatory factors is known as linear regression. Simple linear regression is used when there 

is only one  variable and multiple linear regression is used when there is more than one.[8]  

 

Figure 3-1 shows relationship between dependent variables(y) and independent variables(x)[9] 
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The linear regression modules assume that the connection between dependent variables y and 

n-vector regressors x is linear for a data set {𝑦𝑖,𝑥𝑖1,….𝑥𝑖𝑝}𝑖=1
𝑛 } of n unit. 

A disturbance term, often known as an error ɛ, is an unobserved random variable that adds 

"noise" to the linear connection between the dependent variable and the regressors. Then the 

model is 

𝑦
𝑖
= 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2+. . . +𝛽𝑝𝑥𝑖𝑝+ ɛ𝑖=X𝑖

T𝛽 3-1 

These are also written in matrix form as 

𝑦= X 𝛽+ɛ 3-2 

Where 

𝑦=(

𝑦𝑖
𝑦2
⋮
𝑦𝑛

) 

X=

(

 

X1
T

X2
T

⋮
Xn
T)

  = 

(

 

1 𝑥11 … 𝑥1𝑝
1 𝑥21 … 𝑥2𝑝
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 ⋯ 𝑥𝑛𝑝)

 , 

𝛽=

(

 
 

𝛽0
𝛽1
𝛽2
⋮
𝛽𝑝)

 
 

,          ɛ=(

ɛ1
ɛ2
⋮
ɛ𝑛

)         

Here, 

𝑦 is the regressand or dependent variables, which is a vector of observed values. 

X is the matrix of row-vector x𝑖 of n-dimensional known as independent variables or regressors. 

 𝛽 is a dimensional parameter vector in which 𝛽0 represents the intercept and the elements 

represent the regression coefficient. 

 ɛ𝑖  is the error term, which is a vector of values ɛ𝑖 

To fit a linear model to a given data set, the regression coefficients 𝛽 must be estimated in such 

a way that the error is minimized. Generally,ordinary least square method is used. 

 Ordinary least squares(OSL) 

For estimating the unknown parameters in a linear regression model, ordinary least squares 

(OLS) is a sort of linear least-squares approach. By decreasing the sum of the squares of the 

differences between the  dependent variable in the provided data and those estimated by the 

linear function of the independent variable, OLS finds the parameters of a linear function of a 

collection of explanatory variables.[10] 
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Consider a system 

∑𝑋𝑖𝑗𝐵𝑗 = 𝑦𝑖,

𝑝

𝑗=1

(𝑖 = 1,2… , 𝑛), 
3-3 

Of n equation in o unknown coefficients. In matrix form it can be written as: 

𝑦= X 𝛽       3-4 

where  

X = (

𝑥11 𝑥12 … 𝑥1𝑝
𝑥21 𝑥22 … 𝑥2𝑝
⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

), 

 

𝑦=(

𝑦𝑖
𝑦2
⋮
𝑦𝑛

),        and 𝛽=

(

 
 

𝛽0
𝛽1
𝛽2
⋮
𝛽𝑝)

 
 

 

Because such systems do not have a precise solution, the objective is to identify 𝛽 that fits the 

equation in the context of solving the problem[11]. 

 𝛽 ̂=arg min 𝑆(𝛽) 3-5 

Where 

𝑆(𝛽)=∑ |𝑝
𝑗=1 𝑦𝑖 − ∑ 𝑥𝑖𝑗

𝑝
𝑗=1 𝛽𝑗|

2
= ||𝑦 − 𝑋 𝛽||2 3-6 

If the p columns of the matrix X are linearly independent, then this minimization issue has a 

single solution, which may be found by solving the normal equations. 

(XTX)�̂� = XTy 3-7 

Where  

XTX is the normal matrix 

XTy   is the moment matrix and 

�̂�   is the coefficient vector expressed as  

�̂� = (XTX)
−1
XTy 3-8 
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3.1.2.1 The coefficient of determination(𝐑𝟐) 

Here are some figures to compare related ordinary least squares (OLS) estimated regression 

models. One metric that explains how well a model matches a series of findings is the 

coefficient of determination. The coefficient of determination quantifies how much of the 

uncertainty in the regression and can be predicted using the regressors.  R2stands for relative 

goodness-of-fit and is defined as follows [8]: 

 

R2 =
Explained sum of squares

Total sum of squares
 =
ESS

TSS
 3-9 

  

For a zero-intercept multivariate regression model, total sum of square is given by: 

 

TSS =∑𝑦𝑖
2

𝑛

𝑖=1

 
3-10 

And in matrix form as: 

TSS=YTY 3-11 

When model contained an intercept, it needs to be mean-corrected. 

TSS =∑(𝑦𝑖 − �̅�)
2

𝑛

𝑖=1

 
3-12 

Here, �̅� is the mean. 

�̅� =
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

 
3-13 

 

In matrix notation TSS can be expressed as: 
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TSS = YTY − 𝑛�̅�2 3-14 

And TSS need to be partition as: 

 

TSS =∑(𝑦𝑖 − �̅�)
2

𝑛

𝑖=1

 
3-15 

                             = ∑ (𝑦𝑖 − �̂�1 + �̂�1 − �̅�)
2𝑛

𝑖=1  

=∑(𝑦𝑖 − �̂�1)
2 +

𝑛

𝑖=1

∑(�̂�1 − �̅�)
2

𝑛

𝑖=1

+ 2∑(𝑦𝑖 − �̂�1)(�̂�1 − �̅�)

𝑛

𝑖=1

 

=∑(𝑦𝑖 − �̂�1)
2 +

𝑛

𝑖=1

∑(�̂�1 − �̅�)
2

𝑛

𝑖=1

+ 2∑(𝑦𝑖 − �̂�1)𝑒𝑖

𝑛

𝑖=1

 

 

Since sum of residual is zero the last term in the previous expression also becomes zero 

TSS =∑(�̂�1 − �̅�)
2

𝑛

𝑖=1

+∑(𝑦𝑖 − �̂�1)
2

𝑛

𝑖=1

 
3-16 

Here, the first term in the previous expression is called mean-corrected explained sum of 

squares. 

ESS =∑(�̂�1 − �̅�)
2

𝑛

𝑖=1

 
3-17 

 

In matrix form: 

ESS = �̂�TXTX�̂� − 𝑛�̅�2 3-18 

The residual sum of squares can be expressed as: 

RSS =∑(𝑦𝑖 − �̂�1)
2

𝑛

𝑖=1

 
3-19 

In matrix form: 
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∑𝑒𝑖
2 = 𝑒T𝑒 3-20 

 

Figure 3-2: coefficient of determination[9] 

For a model with an intercept, the coefficient of determination can be expressed as: 

R2 =
�̂�TXTX�̂� − 𝑛�̅�2

YTY − 𝑛�̅�2
 

3-21 

and for zero intercept: 

R2 =
�̂�TXTX�̂�

YTY
 

3-22 

In terms of RSS coefficient of determination can be expressed as: 

 

R2 = 1 −
Residual sum of squares

Total sum of squares
 

3-23 

                                                = 1 −
RSS

TSS
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                                       = 1 −
∑ (𝑦𝑖 − �̂�1)

2𝑛
𝑖=1

∑ (�̂�1 − �̅�)2
𝑛
𝑖=1

     
 

In Figure 3-2the coefficient of determination is: 

R2 = 1 −
∑Area in blue

∑Area in red
 

3-24 

 

Table 3-1:Sum of squares and their corresponding degrees of freedom. Where k is the  regression parameters, and 

n is the number of observations [12] 

 

 

The model with an intercept is expressed as: 

R2 = 1 −
𝑒T𝑒

YTY − 𝑛�̅�2
 

3-25 

And also, for zero intercept: 

R2 = 1 −
𝑒T𝑒

YTY
 

3-26 

A useful property of R2 is that it usually varies from 0 to 1, with one indicating optimal fit and 

zero indicating little change over the so-called mean model, making measuring the model's 

goodness-of-fit more intuitive. On the other hand, a well-known property of R2 is that it grows 

every time a new regressor is applied to the model, even though the model's fit does not change. 

Then, to make R2 an unbiased estimator, it must be modified to use the model's degrees of 

freedom(df). R2 is adjusted for the number of regressors in relation to the number of 

measurements using degrees of freedom[13]. 

R̅2 is the modified R2 , and it is written as: 
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R̅2 = 1 −

RSS
dfres
TSS
dftot

 

3-27 

= 1 − (1 − R2)
𝑛 − 1

𝑛 − 𝑘
 

3-28 

When number of observations are smaller than number of regression parameters than R̅2 can 

take negative values. 

3.1.2.2 The standard error of regression 

If the key goal of the regression model is estimation, then one metric, the root mean square 

error(RMSE), takes precedence over the others. It's called the standard error of the regression 

or the Standard Error of the Estimate when the degrees of freedom for the residuals are taken 

into account[14]. 

RMSE is defined as: 

 

RMSE = √Mean Square Error 

= √
∑ (𝑦𝑖 − �̂�1)

2𝑛
𝑖=1

𝑛
 

                                               = √
RSS

𝑛
 

 

3-29 

The number of observations is denoted by the letter n. The standard error of the regression is 

the standard deviation of the residuals, and is defined as: 

= √
∑ (𝑦𝑖 − �̂�1)2
𝑛
𝑖=1

𝑛 − 𝑘
 

3-30 

The number of parameters in the model is given by k. The disparity between RMSE and 

regression standard error would be negligible if the number of observations is much greater 

than the number of coefficients in the regression model. The standard error of the regression is 

useful because it has the same unit as the regressand and, unlike  R2 or R̅2, it is an absolute 

metric of goodness-of-fit, with a lower value indicating a better fit[15]. 
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3.2 Linear Regression of Counter Current Heat Exchanger model 

To repeat what was mentioned at the outset of this chapter, one of the goals of this project is to 

reduce the time it takes to solve the non-ideal heat exchanger model (temperature dependence 

in the specific heat capacities of water and air). Then, in this section, an explicit data-driven 

model for the non-ideal heat exchanger model is constructed using linear regression and 

expressed as a correction expression to the ideal heat exchanger model and with the estimated 

parameters from this model  hybrid model is developed to speed up the solution time. 

 

Figure 3-3: Explicit data-driven model using linear regression. 
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 Linear Regression in Julia implementation 

 

 

The function (hex_a) in the above code takes the inputs, the parameters, and the interval x as 

argument, and returns temperature of air and water whose values are displayed by sol_analytic. 

 

In the above code, since heat capacity are no longer constant parameters, we can see in line 10 

and 11,specific heat capacities are functions of temperatures. 

 

First, the ideal and non-ideal heat exchanger models are solved for several conditions 
(𝑇w
c , 𝑇a

h, �̇�w, �̇�a, 𝑈) to generate data matrices of analytic and numeric solutions, respectively. 

Then the parameter beta(𝛽)is estimated by linear regression on the data matrices.  
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 Fitting the data-driven model 

To test the regression model's ability to forecast the future, and to find the model that best 

describes the data, Root means square error(RMSE) was determined for multiple orders. 

 

In the above code, error up to the 12th order was determined and  nmax denotes the maximum 

number of orders to be generated, whereas e1 denotes the RMSE to be generated for all orders 

to achieve the best fit. 
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The above code's function (TimeCalc) is used to calculate time for RMSE generated up to 12th 

order. Benchmark Tool’s main macro is @benchmark, which is used to see the total time taken 

to complete a process in Julia. 

3.2.2.1 Simulation results 

 

Table 3-2: Validation results 
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Figure 3-4:RMSE vs 3rd model order 

 

Figure 3-5:RMSE vs 6th model order 
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Figure 3-6:RMSE vs  9th model order 

 

Figure 3-7:RMSE vs  12th model order 
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 Running  the hybrid model(mechanistic + data-driven/empirical/machine 
learning model) using linear regression 

 

Figure 3-8:Hybrid model 

In this section, the estimated parameters(𝛽) from the data-driven model are combined with an 

analytic model termed as a hybrid model, and Julia is used to execute it, as seen below. 

 

Using function(Timecalc) the time required to run the model is seen. Benchmark Tool’s main 

macro is @benchmark, which is used to see the total time taken to complete a process in Julia. 
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Table 3-3: Benchmark results  non-ideal heat exchanger with linear regression 

3.3 Non-linear Regression 

Nonlinear regression is a mathematical model that uses a generated line to match an equation 

to a set of data. Nonlinear regression, unlike linear regression, which uses a straight-line 

equation, reveals correlation across a curve, rendering it nonlinear in the parameter. 

A simple nonlinear regression model is expressed as[16]: 

𝑌 = 𝑓(𝑥, 𝛽) +  ε 3-31 

Where: 

𝑥 is a vector of P predictors 

𝛽 is a vector of K predictors 

𝑓 is the known regression function and 

 𝜀 is the error term 

Apart from nonlinear regression models, multivariate adaptive regression splines (MARS), 

classification and regression trees (CART), and prediction pursuit regression (PPR) have all 

been implemented into chemometrics, and they have gained less consideration than linear 

statistical methods and neural networks for empirical modeling. A popular context that 

highlights the similarities and differences between analytical modeling approaches such as 

CART and PPR can be used to gain insight into the relationship between them. The paradigm 

is built on the idea that all empirical modeling approaches can be expressed as a weighted sum 

of basis functions. Both empirical modeling approaches can be interpreted as a weighted sum 

of basis functions, according to the framework as[17]: 

�̂�𝑘 = ∑ 𝛽𝑚𝑘∅𝑚(𝜑𝑚(𝛼; 𝑋)

𝑀

𝑚=1

 

3-32 
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Where the kth expected performance  is denoted by �̂�𝑘, 𝛽𝑚𝑘 is the output weight, α as matrix 

function parameters, 𝑋 are the inputs and input transformation denoted by ∅𝑚 and.As 

implemented in chemometrics, the neural network is implemented for empirical modeling in 

our task. 

 Neural networks 

In nonlinear approximation and pattern recognition, neural networks have been extensively 

used. Neural networks can be thought of as a nonlinear  input and output paradigm when used 

for forecasting[18]. 

 

Figure 3-9:multi-layer neural network[19] 
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Figure 3-10:simple mechanism[16] 

 

Neural networks are made from layers of neurons. The main processing units of the system are 

the neurons. In the input layer it receives the input, the output layer estimates our final output. 

In between exist the hidden layers which perform most of the computations required by our 

network. When the input is fed to each neuron of the first layer neurons of one layer are 

interconnected to neurons of the next layer through channels. Each of those channels is 

assigned a numerical value which is known as weight. The inputs are multiplied by the weights, 

and the sum is given to the hidden layer neurons as input. Each of those neurons is related to a 

numerical value which is known as bias, which is then added to the input sum. This value is 

then tried and true a  function called the activation function.[20]

 

Figure 3-11:Various activation function[21] 
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The output of the activation function decides if the neuron will get activated or not. An 

activated neuron transmits information to the neurons of the following layer over the channels. 

This is often called forward propagation within the output layer the neuron with the very best 

value fires and determines the output the values are probable. Initially, when output is predicted 

and it is a wrong prediction, it is not the end because the model needs to be trained. At this 

training process together with the input, the network result is fed to that the expected output 

and compared against the output to understand the error. In prediction, the magnitude of the 

error suggests if our predicted values are bigger or smaller than expected results. Here indicates 

the direction and magnitude of change to reduce the error. This information is  transferred 

backward through our network which is known as backpropagation. Now supported by this 

information, the weights are adjusted. This cycle of forwarding propagation and 

backpropagation is iteratively performed with number of inputs. This process goes on  until 

our weights are assigned such that the network can predict the output correctly [18]. 
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 Non-linear Regression of Counter Current Heat Exchanger model 

Given the success of an explicit data-driven approach for the non-ideal heat exchanger model 

using linear regression, it is still worth considering using non-linear regression for the optimal 

match. So, an explicit data-driven model for the non-ideal heat exchanger model is built in this 

section. To shorten the solution time, a correction expression to the optimal heat exchanger 

model is used. 

 

Figure 3-12:explicit data driven model using non-linear regression. 
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 Non-linear regression in Julia implementation 

 

 

The function(normalize) is used to normalize the value of X in the code above. As previously 

said, epochs are chosen, as well as a node with the activation function tanh for the first layer 

and identity for the second layer. The model is eventually conditioned, and the error is 

measured. 

The below code's function (TimeCalc) is used to calculate time for RMSE generated up to 

the15th node. Benchmark Tool’s main macro is @benchmark, which is used to see the total 

time taken to complete a process in Julia. 
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 Training  the data-driven model 

In this section, the model is trained  with multiple epochs  in Julia which can be seen in section 

3.3.3 and the results obtained are summarized. 

3.3.4.1 Simulation results 

 

Table 3-4:validation results with 50000 epochs 
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           Epochs=50  

Node=20 

 

Figure 3-13:RMSE vs node with 500 epochs 

           Epochs=500           

           Node=20 

 

 

 

Figure 3-14:RMSE vs node with 5000 epochs 
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                 Epochs=50000      

     Node=15 

 

Figure 3-15:RMSE vs node with 50000 epochs 

                  Epochs=50000     

                  Node=15 

 

Figure 3-16:RMSE vs node with 50000 epochs 
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 Running the hybrid(mechanistic + data-driven/empirical/machine 
learning model) 

 

 

Figure 3-17:Hybrid model 

 

 

The estimated parameters from data-driven model are combined with analytic model which is 

termed as hybrid model Figure 3-17 and Julia is used to execute it, as seen below. 

 

 

Using function(Timecalc) the time required to run the model is seen. Benchmark Tools main 

macro is @benchmark, which is used to see the total time taken to complete a process in Julia. 
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Table 3-5:Benchmark results  non-ideal heat exchanger with non-linear regression 
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4 Results and Discussion 
This chapter summarizes the conclusions of the previous chapters' research and addresses the 

most important findings. The relation between the analytic and numeric solutions of the 

counter-current heat exchanger models is discussed first. Second, the counter-current heat 

exchanger model's regression findings are analyzed and clarified. Third, the hybrid models' 

execution speeds and the numeric solution of the non-ideal heat exchanger model are 

contrasted. 

4.1 Analytic vs. Numeric Solution of the Counter-current Heat 
Exchanger Model 

An overview of the thermal model of an air-cooled synchronous generator was given in Chapter 

2, along with ideal and non-ideal heat exchanger models. Also addressed was the effect of 

temperature dependency in the basic heat capacities of air and water on the heat exchanger sub-

model solution. It was specifically addressed how, based on the assumption of temperature 

dependency in the specific heat capacities, a linear/nonlinear two-point boundary value 

problem might arise. 

 

Model Median time Mean time 

The numeric solution when �̂�𝑝 4.665 ms 5.877 ms 

The numeric solution when �̂�𝑝(𝑡) 39.947 ms 38.786 ms 

The Analytic solution 22.601 μs 23.118 μs 

Table 4-1: Summary of the benchmark results of Chapter 2. 

 

 

Table 4.1 shows that the numeric solution when specific heat capacities are temperature 

dependent is 4 to 5 times slower than the numeric solution when specific heat capacities are 

not temperature dependent. In the situation of temperature independence in the specific heat 

capacity of water and air , Table 4.1 reveals that the analytic solution is around 200 to 300 

times quicker than the numeric approach. This supports the necessity for an explicit data-driven 

model to reduce the heat exchanger model's solution time which is done in chapter 3. 
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4.2 Regression of the Counter-Current Heat Exchanger Model 

One of the primary goals of this project is to shorten the time it takes to solve the non-ideal 

heat exchanger model (the case of temperature dependency in the specific heat capacity of air 

and water), as described in Chapter 3. Specifically, linear, and nonlinear regression was used 

to build explicit data-driven models for the non-ideal heat exchanger model, which were then 

represented as a correct expression for the ideal heat exchanger model. 

 Results and discussion of the linear regression of the counter-current 
heat exchanger model 

 

order Median Time Mean Time RMSE 

3rd 6.447 ms  8.712 ms 0.01610987759101991 

6th 80.537 ms 83.536 ms 8.720849925285297e-15 

9th 322.650 ms 338.899 ms 1.1073878713191111e-13 

12th 1.097 s 1.148 s 1.3036504819103911e-12 

Table 4-2:Computational time along with RMSE different order 

Table 4-2 displays the summarized time i.e., minimum time, median time, mean time, and 

maximum time calculated with benchmark methods, as well as the RMSE calculated for each 

order to determine the right suit. It can also be seen in Figure 3-4,Figure 3-5 , Figure 3-7 and 

Figure 3-7 which graphically depicts the relationship between RMSE and different order. i.e., 

3rd, 6th, and 12th respectively. 

We can see that the time required to compute error increases as the order increases, while the 

RMSE decreases up to the sixth order and then steadily increases after that. In 6th order, the 

optimal match for an explicit data-driven model can be seen. 

 Results and discussion of the nonlinear regression of the counter-current 
heat exchanger model 

Epochs=50000 

node Mean Time RMSE 

1st 71.494 s 0.5548718311388271    

5th 105.891 s 0.000922273658861804 

10th 146.797 s 0.0006590233056936986 



 4 Results and Discussion 

 

50 

14th 160.483 s 0.0005423131502707424 

Table 4-3:Computational time along with RMSE for different node 

Table 4-3 displays the summarized time calculated with benchmark methods, as well as the 

RMSE calculated for each node to determine the right suit. Figure 3-13 shows that with 50 

epochs, the error is higher. If the number of epochs increases, the error decreases, as seen in 

Figure 3-14. Figure 3-15 shows a good match by using different epochs for a total of 50000 

epochs. We can see that the time required to compute error increases as the node increases. The 

14th node, the optimal match for an explicit data-driven model can be seen with minimum 

RMSE. 

 

 Comparison of the Execution Speed of the data-driven models 

We can see the least error at 6th order for linear regression and 14th node for nonlinear 

regression, as mentioned in 3.2.2 and 3.3.4, which is then used to develop a hybrid model. 

 

Model Mean Time Median Time 

Data-driven(linear regression model) 80.573ms 83.536ms 

Data-driven(non-linear regression model) 160.483 s 164.378ms 

Table 4-4:benchmark results for data-driven model 

As indicated in Table 4-4, it appears that linear regression yielded the lowest error when 

compared to nonlinear regression with less computing time for these data-driven models. 

 

 Comparison of the Execution Speed of the Hybrid model (mechanistic + 
data-driven/empirical/machine learning model) and the Numeric Non-
Ideal Heat Exchanger Models 

In 3.2.3 and 3.3.5 the hybrid and numeric non-ideal heat exchanger models were compared in 

terms of execution speed.  

model Mean Time Median Time 

hybrid(linear regression model) 181.100 μs 183.113 μs 

hybrid(non-linear regression model) 1.697 ms 1.732 ms 

The numeric solution when �̂�𝑝(𝑡)  39.947 ms 38.786  ms 
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The Analytic Solution 22.601 μs 23.118 μs 

Table 4-5:Benchmark result for hybrid model 

To build the hybrid model, correction factors from data-driven models were employed, and the 

computing time after solving the hybrid model is displayed in Table 4-5. We can observe that 

the solution time has improved significantly and is now around 220  times quicker than 

Numeric Non-ideal heat exchanger models. 
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5 Conclusion 
This thesis provides an overview of the thermal model of an air-cooled synchronous generator 

provided by [1] and explored by [2], as well as a discussion of the heat exchanger sub-probable 

model's extension to the scenario of temperature dependency in the specific heat capacities of 

air and water. Furthermore, explicit data-driven models were constructed using linear and 

nonlinear regression for a range of situations and stated as a correction expression to the ideal 

heat exchanger model to speed up the solution time of the non-ideal heat exchanger sub-model. 

Furthermore, the numeric solution of the nonlinear two-point boundary value issue was 

compared to the hybrid(mechanistic + data-driven/empirical/machine learning model)models 

in terms of execution speed and the hybrid models were shown to have a quicker execution 

time. 
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6 Future work 
Following things can be done. 

1. When solving the generator's dynamic thermal model, a hybrid model may be 

employed to see the computing time and remove the nonlinear two-point boundary 

value problem. 

2. More experimental data may be used to assess the hybrid model's computational time. 
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Appendices A 
Masters task description 
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Appendices B 
Julia code used in this thesis are  linked below: 

  

counter current 

linear regression 

nonlinear regression 

Time comparison 

 

https://github.com/prakashdhakal123/master-thesis/blob/9461c2b28756a008d4631e11a9a08efb29f0c05a/counter%20current.ipynb
https://github.com/prakashdhakal123/master-thesis/blob/9461c2b28756a008d4631e11a9a08efb29f0c05a/linear%20regression.ipynb
https://github.com/prakashdhakal123/master-thesis/blob/9461c2b28756a008d4631e11a9a08efb29f0c05a/non%20linear%20regression.ipynb
https://github.com/prakashdhakal123/master-thesis/blob/9461c2b28756a008d4631e11a9a08efb29f0c05a/speed%20comparison.ipynb

