
 
www.usn.no  

 

Faculty of Technology, Natural sciences and Maritime Sciences 
Campus Porsgrunn 

 

 

FMH606 Master's Thesis 2021 

Electric Power Engineering 

 

Digital Twin for Industrial Induction 
Heating Equipment 

 

 

 

 

 

  

 

 

 

 

Ragnhild Eilertsen Moldesæther 

 

 



 
www.usn.no  

 

The University of South-Eastern Norway takes no responsibility for the results and 

conclusions in this student report. 

Course: FMH606 Master's Thesis, 2021 

Title: Digital Twin for Industrial Induction Heating Equipment 

Number of pages: 100 (87 + Appendices) 

Keywords: Digital twin, Induction heating, IoT, MQTT 

 

Student: Ragnhild Moldesæther 

Supervisor:   Kjetil Svendsen, with Co-supervisor Nils-Olav Skeie 

External partner:   EFD Induction 

  

  

 

Summary:  

EFD Induction want to look at the possibility of developing a digital twin for their 

induction heating equipment. A digital twin has a variety of usages, such as 

monitoring, predictive maintenance, and testing what-if scenarios. This thesis will 

study how a digital twin can be developed for the benefit of the customers of EFD 

Induction regarding testing of their induction heating application and compare with 

existing testing methods. 

A digital twin has been developed, consisting of an Application Model, Converter 

Model, Set Point Controller, Data Storage and Converter Interface. The focus has 

been on a connection between the programs through a central hub, called Data 

Exchange, with the implementation of an IoT messaging protocol.   

A connection between the models has been established, and a base for the digital twin 

for induction heating equipment has been developed. Testing of the real application 

and the digital twin have been executed to compare the temperature development in 

the application. The usage for the digital twin for customers at this stage, is 

monitoring the induction heating process when testing. For future work, a Model 

Parameter Tuner can be included as an additional building block in the digital twin 

for optimizing the parameters in the Application Model. 



  Preface 

3 

Preface 
This thesis was written in spring 2021 to complete the master’s degree in Electrical Power 

Engineering at USN (University in South-Eastern Norway). The thesis has given me the 

opportunity to explore the digital twin technology and implement it into a real process. I have 

been fortunate to receive new knowledge in technology that has advanced in the recent years 

and are continuing to expand to include even more usages. I want to thank Dmitry Ivanov at 

EFD Induction for sharing the application model he has developed, which has been a big 

importance of the digital twin. Co-supervisor Nils-Olav Skeie has assisted me with his 

knowledge in programming, especially in C#, and databases. And finally, my supervisor Kjetil 

Svendsen, for his commitment to this thesis and giving me support throughout the process.  

They have given me valuable inputs and guidance, and I am thankful for their help and support 

during this experience. 

 

Porsgrunn, 18.05.21 

 

Ragnhild Moldesæther 

 

 

 

 



  Contents 

4 

Contents 
 

Preface ................................................................................................................... 3 

Contents ................................................................................................................. 4 

Nomenclature ........................................................................................................ 6 

1 Introduction ..................................................................................................... 13 

1.1 Background ........................................................................................................................... 13 
1.2 Task description ................................................................................................................... 14 
1.3 Objectives .............................................................................................................................. 14 
1.4 Report Structure ................................................................................................................... 14 

2 Theory .............................................................................................................. 15 

2.1 Induction Heating Equipment .............................................................................................. 15 
2.1.1 Electromagnetic Induction ........................................................................................... 15 
2.1.2 Eddy Currents................................................................................................................ 16 
2.1.3 Skin Depth ...................................................................................................................... 16 
2.1.4 Induction Heating Equipment ...................................................................................... 17 
2.1.5 Testing and evaluating of induction heating equipment .......................................... 19 

2.2 Heat transfer .......................................................................................................................... 19 
2.2.1 Conduction .................................................................................................................... 19 
2.2.2 Convection and Radiation ............................................................................................ 20 

2.3 Modelling ............................................................................................................................... 20 
2.4 Digital Twin ............................................................................................................................ 21 

3 Implementation of the Digital Twin ................................................................ 23 

3.1 System Design ...................................................................................................................... 23 
3.2 Data Exchange with MQTT ................................................................................................... 25 

3.2.1 Data Exchange with MQTT ........................................................................................... 25 
3.2.2 Set up of MQTT Broker ................................................................................................. 26 
3.2.3 Connection to broker .................................................................................................... 26 
3.2.4 Publish to topic ............................................................................................................. 27 
3.2.5 Quality of Service (QoS) ............................................................................................... 27 
3.2.6 Subscribe to topic ......................................................................................................... 28 

3.3 Application Model ................................................................................................................. 28 
3.3.1 Heat transfer through workpiece ................................................................................. 28 
3.3.2 Application Model with Python .................................................................................... 31 
3.3.3 Application Model with Python using FEniCS ........................................................... 38 

3.4 Converter Model .................................................................................................................... 43 
3.4.1 Introduction to the Converter Model ........................................................................... 43 
3.4.2 Converter Model with Python ...................................................................................... 45 

3.5 Set Point Controller with C# ................................................................................................ 48 
3.5.1 Set Point Controller ...................................................................................................... 48 
3.5.2 Set Point Controller with Timer ................................................................................... 50 
3.5.3 Set Point Controller with Display ................................................................................ 52 

3.6 Model Parameter Tuner ........................................................................................................ 54 
3.7 Data Storage .......................................................................................................................... 54 

3.7.1 Data Storage Model with Python ................................................................................. 55 
3.8 Converter Interface with Raspberry Pi 3 ............................................................................ 57 

3.8.1 Complete Setup of the Raspberry Pi 3 ........................................................................ 57 
3.8.2 Headless setup of the Raspberry Pi 3 ......................................................................... 57 



  Contents 

5 

3.8.3 Install MQTT on Raspberry Pi 3 ................................................................................... 57 
3.8.4 Raspberry Pi 3 with Automation HAT ......................................................................... 58 
3.8.5 Converter Interface for Digital Twin ............................................................................ 62 

4 Testing of the Digital Twin of Induction Heating Equipment ...................... 64 

4.1 Introduction to the setup and experiments ........................................................................ 64 
4.2 Heating System ..................................................................................................................... 65 
4.3 Workpieces and Heating coils ............................................................................................. 67 

4.3.1 Workpieces .................................................................................................................... 67 
4.3.2 Heating coils .................................................................................................................. 68 

4.4 Real-time data with MODBUS .............................................................................................. 69 
4.5 Preparations before experiment .......................................................................................... 70 
4.6 Experiments of the real converter ....................................................................................... 76 

4.6.1 Comments on the experiments .................................................................................... 77 
4.6.2 Results of the experiments .......................................................................................... 78 

5 Conclusion ...................................................................................................... 81 

5.1 Conclusion ............................................................................................................................ 81 
5.2 Future work ........................................................................................................................... 82 

References ........................................................................................................... 84 

6 Appendices ...................................................................................................... 88 

 

  



  Nomenclature 

6 

Nomenclature 
 

Symbol Explanation and units 

AC  Alternating current [A] 

AI Artificial Intelligence  

AR Argumented Reality 

CPS Cyber-Physical-System 

CSV Comma-Separated Values 

DC Direct current [A] 

emf Electromotive Force 

FEM Finite Element Method 

GUI Graphical User Interface 

GPIO General Purpose Input/Output 

IP Internet Protocol 

IoT Internet-Of-Things 

M Workpiece of magnetic material 

MQTT Message Queuing Telemetry Transport 

ML Machine Learning 

NM Workpiece of non-magnetic material 

PDE Partial Differential Equation 

PWM Pulse Width Modulation 

Pdis Heat dissipated by Joule losses [W] 

QoS Quality of Service 

SQL Structured Query Language 



  Nomenclature 

7 

TCP Transmission Control Protocol 

 

 

 

  



 1 Introduction 

8 

List of figures 
 

Figure 2.1: Illustration of a heating coil with supply of AC current with induced eddy current 

in the workpiece ....................................................................................................................... 17 

Figure 2.2: Illustration of a frequency converter ..................................................................... 18 

Figure 2.3: Illustration of a Digital Twin with different usages it covers ................................ 21 

Figure 3.1: Building blocks of Digital Twin ............................................................................ 23 

Figure 3.2: Information flow between the models of the Digital Twin ................................... 24 

Figure 3.3: Illustration of client/broker communication in MQTT ......................................... 25 

Figure 3.4: Content of a CONNECT message ......................................................................... 26 

Figure 3.5: Content of a CONNACK message ........................................................................ 26 

Figure 3.6: Content of a PUBLISH message ........................................................................... 27 

Figure 3.7: Content of a SUBSCRIBE message ...................................................................... 28 

Figure 3.8: Illustration of heat flow in workpiece ................................................................... 30 

Figure 3.9:Communication between Set Point Controller and Application Model through 

Data Exchange ......................................................................................................................... 31 

Figure 3.10: Flow Diagram of communication between MQTT and Application Model in the 

Python script ............................................................................................................................ 32 

Figure 3.11: Classes in the Python script for the Application model ...................................... 33 

Figure 3.12: Calculation of heat flow, Joule losses and the change in internal energy under 

class Model .............................................................................................................................. 34 

Figure 3.13: Declaring variables for MQTT Paho client ......................................................... 34 

Figure 3.14: Defining function for connecting to MQTT broker ............................................ 35 

Figure 3.15: Function from Paho client library for subscribing in Python .............................. 35 

Figure 3.16: Paho client library for running the MQTT functions in Python .......................... 35 

Figure 3.17: Mosquitto client function 'mosquitto_pub' in the Windows command line for 

publish value of current ........................................................................................................... 36 

Figure 3.18: Message received in the subscribing topic in the Spyder environment .............. 36 

Figure 3.19: Function from Paho client library for publishing in Python ............................... 36 

Figure 3.20: Mosquitto client function ‘mosquitto_sub’ for subscribing on topic 

‘temperatureT1’ in Windows command line ........................................................................... 37 

Figure 3.21: Mosquitto client function ‘mosquitto_sub’ for subscribing on topic 

'temperatureT2' in Windows command line ............................................................................ 37 



 1 Introduction 

9 

Figure 3.22: Information flow between Set Point Controller, Converter Model, and the 

Application Model ................................................................................................................... 38 

Figure 3.23: Defined variables for the Paho client library ....................................................... 39 

Figure 3.24: Paho client functions for handling received messages ........................................ 39 

Figure 3.25: Functions from the FEniCS library implemented in the Application Model ...... 39 

Figure 3.26: Function under Class TransientSolver for solving numerical solution of the 

temperature .............................................................................................................................. 40 

Figure 3.27: Class Material for defining material properties ................................................... 40 

Figure 3.28: the PDE is solved for each time step and published to topic by MQTT ............. 41 

Figure 3.29: Result from simulation of the Application Model with the FEniCS library ....... 41 

Figure 3.31: Illustration of the communication between the Converter and Application model

.................................................................................................................................................. 43 

Figure 3.32: Output circuit of the converter ............................................................................ 44 

Figure 3.33: Definitions of the variables for Paho client library in the Converter Model ....... 45 

Figure 3.34: Using functions from Paho Client library for connecting and subscribing to 

topics ........................................................................................................................................ 46 

Figure 3.35: Function for calculations in the Converter Model ............................................... 47 

Figure 3.36: GUI for inputs to the model ................................................................................ 48 

Figure 3.37: M2MQTT client library in Visual Studios .......................................................... 48 

Figure 3.38: Functions in the M2MQTT library for MQTT connection in Visual Studios ..... 49 

Figure 3.39: Functions in the M2MQTT library for publishing messages .............................. 49 

Figure 3.40: GUI of the Set Point Controller with timers implemented. ................................. 50 

Figure 3.41: Function behind Power button in the GUI application........................................ 50 

Figure 3.42: Event handler when the first timer is enabled in the GUI application ................ 51 

Figure 3.43: Event handler when the second timer is enabled in the GUI application ............ 51 

Figure 3.44: Start of sequence from the Set Point Controller .................................................. 52 

Figure 3.45: Set Point Controller including display of parameters ......................................... 52 

Figure 3.46: Information flow to the Set Point Controller through the Data Exchange .......... 53 

Figure 3.47: Function for handling received messages to the Set Point Controller ................ 53 

Figure 3.48: If-statement for report handling to the Data Storage model ................................ 54 

Figure 3.49: Function for 'Quit' button clicked ........................................................................ 54 

Figure 3.50: Snippet of messages that are handled through MQTT in the Data Storage Model

.................................................................................................................................................. 55 

Figure 3.51: Defined parameters in class DataStorage that is to be stored in the model......... 56 



 1 Introduction 

10 

Figure 3.52: Functions for writing to file under class DataStorage ......................................... 56 

Figure 3.53: Parameters written to the CSV file opened in Excel ........................................... 57 

Figure 3.54: MQTT communication between computer and Raspberry Pi 3 .......................... 58 

Figure 3.55: The Automation HAT board attached to the Raspberry Pie Model B+ board .... 59 

Figure 3.56: A wire connected between the analog input channel and 5 V channel on the 

Automation HAT board ........................................................................................................... 60 

Figure 3.57: Python script created in Nano editor with libraries for MQTT and Automation 

HAT included........................................................................................................................... 61 

Figure 3.58: Subscribing on topic 'test' in the Windows command line .................................. 61 

Figure 3.59: Python script in Raspberry Pi for controlling relay at power on signal .............. 62 

Figure 3.60: Python script in Raspberry Pi for reading analog inputs from the converter ...... 63 

Figure 4.1: Illustration of the connection between the hardware, including communication 

protocols MQTT and MODBUS ............................................................................................. 64 

Figure 4.2: Control panel of the Sinac SM 18/25 Twin ........................................................... 66 

Figure 4.3:  Workpieces of magnetic (M) and non-magnetic (NM) material, and long and 

short coil to be used in the experiments ................................................................................... 67 

Figure 4.4: Long coil to be used in the experiments ................................................................ 69 

Figure 4.5: Python script with MODBUS client library implemented .................................... 70 

Figure 4.6: Raspberry 3 Model B+ board for analog output ................................................... 71 

Figure 4.7: Python library for the Raspberry Pi GPIO pins ..................................................... 71 

Figure 4.8: RC circuit with Op-Amp to filter the PWM signal from the Raspberry Pi ........... 72 

Figure 4.9: Circuit diagram of how the PWM signal from the Raspberry Pi is filtered and 

converted, before sending analog set point current to the converter ....................................... 73 

Figure 4.10: Wired connections between the analog inputs and digital outputs of the 

Automation HAT board and the real converter ....................................................................... 74 

Figure 4.11: Full setup of the experiment ................................................................................ 75 

Figure 4.12: Plot of temperature development at outer surface of magnetic (M) and non-

magnetic (NM) workpieces during a 5-minute interval from power on signal ....................... 78 

Figure 4.13: Comparison between NM workpiece and the Application Model (DT) ............. 79 

Figure 6.1: Start up MQTT Mosquitto Broker......................................................................... 90 

Figure 6.2: Allow anonymous set to false in the configuration file......................................... 90 

Figure 6.3: Enable password file and path in the configuration file ........................................ 90 

Figure 6.4: Test of Mosquitto client function 'mosquitto_pub' in Windows command line ... 91 

Figure 6.5: Test of Mosquitto client function 'mosquitto_sub' in Windows command line .... 91 

Figure 6.6: Ubuntu terminal as an interface to the Linux operating system ............................ 92 



 1 Introduction 

11 

Figure 6.7: Run Python script with FEniCS from Ubuntu terminal ........................................ 92 

Figure 6.8: Raspberry Pie 3 Model B+ board .......................................................................... 93 

Figure 6.9: Full set-up of the Raspberry Pi 3 ........................................................................... 94 

Figure 6.10: Raspberry Pi Imager is used for writing the operating system over to a SD card

.................................................................................................................................................. 95 

Figure 6.11: Desktop of the Raspbian operating system ......................................................... 96 

Figure 6.12: wpa_supplicant.conf file to define wireless network[48] ................................... 97 

Figure 6.13: Raspberry Pi Configuration from the command line .......................................... 98 

Figure 6.14: Remote access to the Raspberry Pi using Windows SSH Client ........................ 99 

Figure 6.15: Configuration for DHCP ................................................................................... 100 

 

  



 1 Introduction 

12 

List of tables 
Table 4.1: Equipment used in the experiments ........................................................................ 65 

Table 4.2: Technical data of Sinac 18/25 SM Twin ................................................................ 65 

Table 4.3: Geometric data of workpieces ................................................................................ 67 

Table 4.4: The material properties of 42CrMo4[40] and Stainless Steel 316L[41] ................ 68 

Table 4.5: Experiments executed and result of maximum temperature and power output in 

each experiment ....................................................................................................................... 76 

 



 1 Introduction 

13 

1 Introduction 
Introduction to the master thesis is given in the first chapter. The background behind digital 

twin and the connection to this thesis is explained, with reference to the task descriptions. 

Objectives of the thesis and how it differs from previously implementations is defined. At last, 

an overview of the report structure is given.  

1.1 Background 

Our society is now transforming into the fourth industrial revolution, where the digital and real 

world are being combined in a cyber-physical system (CPS). With Internet-of-Things (IoT), 

physical devices can be connected through internet and share data. Artificial Intelligence (AI) 

and Machine Learning (ML) uses mathematical algorithms to make machines learn and 

develop themselves. These technologies open the possibilities for new inventions and creation 

of technologies that make production more effective. For companies to be relevant and 

competitive, they are in a need to digitalize their business. Digital Twin is a concept that has 

advanced in the recent years, especially due to IoT. This is a technology that creates a virtual 

representation of a physical product or process, by combining different building blocks from 

both the digital and real world.  

Several sectors are taking advantage of implementing a digital twin in their process. The 

aerospace industry was the pioneers in implementing digital twin in their systems in the 

1970s, even if the concept was not established at that time. NASA had simulators with 

matching conditions of a real-life spacecraft to train their astronauts for different scenarios, 

which prevented failure for Apollo 11 and 13 [1]. The manufacturing industry has been 

taking this technology most in use, particularly in the automobile industry such as Volvo and 

Maserati. Maserati made a digital twin of their vehicle for testing the aerodynamics effect on 

the vehicle in a virtual air tunnel. This helped Maserati in reducing cost in the testing and 

design phase and reducing the development time. Volvo wanted to increase their flexibility in 

the manufacturing site for their customers to offer solutions based on their choices, making 

quality control critical. A digital twin improved the overall efficiency and saved cost [2]. 

Health care is the sector that may benefit the most of this technology by predictive care and 

personalized medication. By increasing use of wearable devices amongst individuals, it is 

possible to collect data and have storage of historical information [3]. The health care 

industry sees a lot of potential in this technology for improving patient care and hospital 

planning and is discovering processes than can be optimized by implementing a digital twin. 

Siemens Healtineers have made a digital twin of the radiology operations in the Mater Private 

Hospital in Dublin, Ireland [4]. This improved the efficiency of the utilization and reduced 

the patient waiting time and staffing cost. 

EFD induction want to look at the possibilities of creating a digital twin for their induction 

heating products. Predicting operations of their products in actual applications can be 

challenging. By developing better simulators, the testing and evaluating of their products and 

applications can be improved. The simulators need to interact with the real world by sensors 

sending information in real-time and compared with the physical product. This is a technology 

that has potential to make testing and evaluating of their products easier for their customers.  



 1 Introduction 

14 

1.2 Task description 

The signed task description of the master thesis is in Appendix A. 

1.3 Objectives 

The main objective of the master thesis is to develop a digital twin for the induction heating 

equipment at EFD Induction. A digital twin can consist of different building blocks and 

represent a variety of processes. This thesis will make an overview of the building blocks and 

investigate the usage of a potential digital twin at EFD Induction. Since the induction heating 

process depends on material of the workpiece and type of coil to be used in testing, which will 

make the modelling of the application complex, the focus of this thesis has been on the 

communication between the different models. When a connection between the models have 

been established, the models can be improved for a better fit for each application. This thesis 

has for that reason no strict objectives on developing models that are accurate for the real 

application, but rather a starting point for developing the models into a complete digital twin.  

Compared to digital twin developed in other industries, the focus of developing this digital twin 

will be at the customer and how a digital twin can make testing and evaluating of the induction 

heating equipment beneficial and easier for them. The digital twin will be designed as a tool 

for the customer to use for monitoring and controlling the testing of their application. Instead 

of testing in lab, the customer can use their own computer to test and simulate their application 

with different scenarios. This will make the process more efficient and less time consuming, 

considering no travelling expenses and the testing can be executed at their own premises. 

A literature survey of existing testing and evaluating methods of induction heating applications 

is to be executed for research. The existing testing method will be compared with the testing 

of a digital twin. In addition, a literature survey on how digital twins can be modelled and what 

tools to use is also to be executed. 

1.4 Report Structure 

Chapter 2 explains the theory of the induction heating process, modelling and digital twin 

technology.  

Chapter 3 investigate the different building blocks of the digital twin. Each of the building 

blocks are explained in the subchapters with how they are developed.  

Chapter 4 compare the testing of the real application against the digital twin. 

Chapter 5 gives a conclusion for this thesis and propose future work of the digital twin. 



 2 Theory 

15 

2 Theory 
In this chapter, the theory behind the induction heating equipment and digital twin is 

explained.  Electromagnetic induction, eddy currents, skin effect and heat transfer are the 

physics behind the induction heating equipment which make this application induce heating 

in the workpiece without contact. Mathematical models will be developed for the purpose of 

having a digital twin to represent this process. 

2.1 Induction Heating Equipment 

2.1.1 Electromagnetic Induction 

It has been known that current induce a magnetic field, but due to the research of scientists 

Joseph Henry and Michael Faraday it was shown that also the magnetic field can induce 

current. But the current was only induced when the magnetic field changed over time. 

Faradays law, which is the central principle of electromagnetic induction, states[5]:  

“The induced emf ε in a closed loop equals the negative of the time rate of change of 

magnetic flux through the loop” and is given by the formula: 

 
𝜀 = −

∆ΦB

∆t
 

(2.1) 

Where: 

- ε: Emf - electromotive force 

- ∆ΦB: Change in magnetic flux 

- ∆t: Change in time 

Emf causes electrons to move and form a current and is required to make a current flow in a 

circuit. This formula let us calculate how much emf, and therefor how much current, that will 

be induced in a loop of wire by a change in magnetic flux. If the magnetic field is constant, 

Emf can also be induced by changing the area of the loop or changing the angle between the 

loop and the magnetic field.  

Magnetic flux, 𝛷𝐵, is a measure of the magnetic field running through a loop of wire and 

most directly induces emf. 

Magnetic flux through element of area 𝑑𝐴: 

 𝑑𝛷𝐵 = 𝐵⃗⃗ ∙ 𝑑𝐴 = 𝐵⊥ ∙  𝑑𝐴 = 𝐵 ∙ 𝑑𝐴 ∙  cos (2.2) 

Where: 

- 𝐵⃗⃗: Magnetic field 

- 𝑑𝐴: Element of area A 

- cos: Angle between 𝐵⃗⃗ and 𝑑𝐴 

There are three factors that affect the magnetic field, and therefore the magnetic flux: 



 2 Theory 

16 

- The strength of the magnetic field, B 

- The area of the loop, A 

- The angle between the magnetic field and the coil, cos 

From the formula (2.2) it is shown that the maximum magnetic flux occurs when the coil is 

perpendicular to the magnetic field ( = 0° and cos  = 1). And the minimum magnetic field 

occur when the coil is parallel to the magnetic field ( = 90° and cos  = 0). 

While Faradays law (2.1) tells us how much emf and current is induced, Lenz law gives an 

alternative method for determining the direction of the induced emf or current [5]: 

“The direction of any magnetic induction effect is such to oppose the cause of the effect”. 

This means that if the magnetic flux is decreasing through a loop of wire over time, the emf 

will increase accordingly. Depending on if the magnetic flux is decreasing or increasing, the 

current will go, respectively, in clockwise or counterclockwise direction according to the 

right-hand rule to oppose the change.  

2.1.2 Eddy Currents 

The current that is induced in the workpiece by the varying magnetic field is called eddy 

currents. It is called eddy currents due to the swirling pattern in the volume of the material. 

Eddy currents circulate through the workpiece and produces heat due to the resistance of the 

material [5]. The heat dissipated is called Joule losses and are given by the formula: 

 

 𝑃𝑑𝑖𝑠 = 𝐼2 ∙ 𝑅 (2.3) 

 

2.1.3 Skin Depth 

The skin effect causes the current density of the eddy currents to be larger at the surface of 

the workpiece. In the center of workpiece, the eddy currents get cancelled out because of the 

opposite directions of current flow. The depth of this larger distribution of eddy currents is 

called skin depth. 

By the formula for skin depth, 𝛿, it is shown that the skin depth is dependent on the 

frequency: 

 

𝛿 = √
2 ∙ 𝜌

𝜔 ∙ 𝜇
= √

2 ∙ 𝜌

2 ∙ 𝜋 ∙ 𝑓 ∙ 𝜇
 

(2.4) 

Where: 

- 𝜌 is the resistivity of the material of the workpiece 

- 𝜔 is the angular frequency, which is equal to 2πf 

-  𝜇 is the permeability of the material 



 2 Theory 

17 

As seen by the formula (2.3), when the frequency increases, the skin depth will become 

smaller, and the opposite with decreasing frequency. This formula is valid as long as the skin 

depth is smaller than the radius of the workpiece to be heated [6].  

2.1.4 Induction Heating Equipment 

The induction heating equipment is based in the theory of electromagnetic induction, eddy 

currents and skin depth resulting in Joule losses. With these effects it is possible to heat the 

workpiece with the purpose of changing the material properties, without needing to use open 

fire. Figure 2.1 illustrates the process of heating a workpiece by induction. 

 

 

Figure 2.1: Illustration of a heating coil with supply of AC current with induced eddy current in the workpiece 

An AC current (alternating current) will flow through the coil of the induction heating 

equipment, generating a magnetic field. When the workpiece is exposed to the changing 

magnetic field by the AC current in the coil, eddy currents is induced and starts circulating in 

the workpiece. This produces Joule heating in the surface of the workpiece, with the skin 

depth depending on how high frequency of the AC current is set to run in the coil. The 

heating is produced exactly where the workpiece is exposed to the magnetic field of the coil, 

allowing for a precise execution. The workpiece to be heated must be of conductive material 

to allow the induced current to flow. The amount of heat dissipated depends on the resistivity 

of the material, with a higher resistance more heat is dissipated.  

 



 2 Theory 

18 

While the coil is part of the output circuit, the frequency converter is an important component 

of the induction heating equipment. Since the frequency is contributing to deciding how deep 

the eddy currents will flow in the workpiece and dissipate heat, a frequency converter is 

needed to adjust the frequency for the application. 

 

 

Figure 2.2: Illustration of a frequency converter 

 

The basic components of a frequency converter are a rectifier, DC-link and a converter, 

shown in Figure 2.2. From the mains, an AC power is supplied to the equipment. To be able 

to adjust the frequency for the specific application, the voltage needs to be converted to DC 

voltage. The rectifier is a diode bridge which allows only one direction of the AC wave to let 

through. The result is a constant DC voltage. To filter the AC ripple, a DC link with a 

capacitor is between the rectifier and converter. The DC voltage is then converted back to AC 

by the rectifier. The rectifier consists of transistors that switch on and off and will replicate an 

AC current. Even if the output is not real AC, the switching on and off will act as an AC 

current and induce current in the workpiece.  Before the current enter the coil, a step-up 

transformer converts the primary current to a higher secondary current by a ratio depending 

on the transformer’s windings [7].  

2.1.4.1 Applications of the induction heating equipment 

The induction heating equipment has several advantages over other heating equipment. 

Instead of using open fire to heat, the induction equipment heats only the workpiece itself. 

This reduces the risk for the personnel for burns and intoxication from gas. The heating is 

centered where it is needed and will give an accurate and controllable application [6].  

Induction heating equipment is used in many applications for heating conductive metals, such 

as hardening, brazing and welding. Hardening involves rapid heating and cooling of the 

material to increase the hardness and durability of steel, and is widely used by car 

manufactures [8]. Brazing joins to metal pieces together by melting a filler in between by 

induction heating [9]. Induction welding is used to heat the edges of pipes and tubes to then 

join them [10]. Induction heating also extends to tempering, bonding and other applications 

involving heating conductive metals.  

 



 2 Theory 

19 

2.1.5 Testing and evaluating of induction heating equipment 

EFD induction have a range of standard induction heating equipment that can be used in a 

variety of processes, from heating of small components to large manufacturing processes. 

When a customer wants an induction heating equipment for their application, it normally 

involves testing in lab, depending on how customized the solution needs to be. In the lab, 

there is specialized personnel in power electronics, metallurgy, and power-control software, 

which together will design the most efficient solution.   

Both the power source and heating coil can be customized for the specific solution. The 

heating coil can be designed to have any shape that is necessary for heating the workpiece. A 

typical heating coil will have a round shape and surrounds the workpiece, but the coil can be 

designed to any shape fitted for the solution. The power source depends on how high 

frequency and power the workpiece requires to achieve the optimal depth and structure from 

the heating. Computer simulation in advance removes trial and error-processes of the 

physical heating coil and reduce cost and time by not testing on real workpieces.  

Other companies that supply induction heating equipment design their equipment in a similar 

way, by using computer simulation in advanced and testing in lab for process development 

such as Inductoheat [11] and Plustherm [12]. 

2.2 Heat transfer 

The three mechanisms of heat transfer are conduction, convection, and radiation.  

2.2.1 Conduction 

When heat flow from a hot region to a colder region by direct contact, the heat transfer 

through the material is by conduction. There is no movement of mass, but the atoms in the 

hotter regions have more kinetic energy which is transferred to the atoms in the cooler region. 

The heat transfer is only when there is a temperature difference, and the direction is always 

from higher to lower temperature.  

 𝑄

𝐴
= −𝑘 ∙

𝑑𝑇

𝑑𝑥
 

(2.5) 

Q [W] is the heat flow rate and Q/A [W/𝑚2] is the heat flux. The constant k [W/m·K] is the 

thermal conductivity of the material and dT [K] is the temperature difference. The negative 

sign show that the heat flow is always in the direction of decreasing temperature. When the 

heat flow (Q) is negative, the heat is flowing out of the system. If the heat flow is positive, 

the heat is flowing into the system [13].  

Conduction is the main heat transfer mechanism in the induction heating process since the 

heat is developed in the material of the workpiece and is transferred by direct contact to the 

colder regions in the bulk volume. 



 2 Theory 

20 

2.2.2 Convection and Radiation 

Convection is the heat transfer by movement of mass from one region to another. The 

convection can either be forced or free. Forced convection is when the flow is caused by a 

blower or a pump. Free convection is a natural flow, like hot air rising upwards. Heat transfer 

caused by electromagnetic waves such as visible light, is called radiation [13].  

Convection will be the main heat transfer mechanism when the heat has been distributed in 

the workpiece, and heat is flowing out from surface to the ambient and the workpiece 

eventually return to room temperature.  

2.3 Modelling 

The Digital Twin consist of building blocks that together complete the real asset. What type 

of building blocks the Digital Twin have depend on the product or process it is developed to 

represent. In this case, the digital twin will replicate the induction heating process. Software 

models for the converter and application is then necessary to simulate this process. These 

models will be mathematical models with inputs of data and outputs of the solution, which 

are solved through equations. The mathematical models can be grouped to be either physic-

based or data-driven, based on knowledge about the system to simulate.   

2.3.1.1 Physic-Based Model 

A physic-based model is a conventional mathematical model. With this approach the physics 

is explained through equations which normally involves assumptions to get a solution. Due to 

often complex differential equations, the solution needs to be solved numerically. Methods 

that are commonly used for numerical solutions are FEM (Finite Element Method), FDM 

(Finite Difference Method) and FVM (Finite Volume Method). With increasing complexity 

of the equations, the more demanding the computation gets, and the solutions may get 

unstable and have errors. However, computational efficiency has over the years increased to 

handle more advanced and demanding equations, making physic-based models a good option 

for developing a digital twin [3]. Since the physics behind the converter is well known, it is 

natural to develop a physic-based model for this process. The application depends on what 

material to heat and will be more difficult to model because of unknown parameters that 

affect the temperature development, but a physic-based model is a good starting point for this 

process. 

2.3.1.2 Data-Driven Model 

Data-driven models are developed for ML and AI, which needs a large amount of data to 

learn from and are trained to eventually execute tasks on their own. These types of models 

are normally used when there is not sufficient information about the system, and e.g. linear 

and nonlinear regression models are used to fit the data [14]. Databases are important to store 

the data, and it requires a lot of filtering to get data of good quality for the algorithms to work 

properly. Once the model is trained, it is stable and able to make predictions, and are well 

suited for digital twin technology[3].  

 



 2 Theory 

21 

2.4 Digital Twin 

The term “Digital Twin” first originated from Dr. Michael Grieves in 2003 at his course in 

Product Lifecycle Management (PLM) at the University in Michigan[15]. Grieves described 

the digital twin as a virtual representation of a physical product. The digital twin has evolved 

to not only represent products, but also processes and systems. IoT is the key for the 

advancement of digital twin technology, with widespread use of Wi-Fi and making it more 

affordable to collect data from sensors. For development of the digital twin, a model of the 

physical asset is connected to the real word enabled by data and IoT sensors with real-time 

information. This flow of updated information from sensor data gives the digital twin 

possibilities for optimizing performance and more informed decision making. This also 

allows the digital twin to predict how the asset will evolve or behave in the future  [3]. A 

digital twin can have many usages, such as monitoring, predictive maintenance, and testing 

what-if scenarios. With the increasing implementation of digital twins in different sectors, the 

usage is expected to grow into a variety of areas in the coming years. 

 

 

Figure 2.3: Illustration of a Digital Twin with different usages it covers 

 

Companies in all sectors of the industry can have an advantage of implementing a digital twin 

in their production. In the manufacturing industry, a digital twin can benefit the total life 

cycle of a product. It can benefit the design, prototyping and testing phase of a product, but 

also production and usage of the digital twin [16]. Testing of the digital twin with the use of 

software models in different scenarios gives information about unexpected behaviors and can 

be improved before production of the actual product. This will reduce the cost and material 

by not producing prototypes during development and testing. Predictive maintenance of a 

product can reduce cost by scheduling maintenance after receiving information from the 

digital twin about present status and prevent changing parts unnecessarily. This usage of a 



 2 Theory 

22 

digital twin is especially beneficial for offshore windfarms that is not easily accessed, which 

result in a high cost on maintaining the wind turbines [17]. A digital twin can be implemented 

for monitoring large system, such as cities, aircraft, and buildings, and remotely control by 

feedback mechanisms, which would not be possible in real-time physically [3]. It can be 

simulated as a full system, or divided into subsystems and simulate with different 

environments to monitor and predict behavior [16]. Equinor is developing smart platforms 

through a digital twin called Echo [18]. By using HoloLens, an AR (argumented reality) 

solution from Microsoft, operators can view a 3D model of the platform together with real 

images. This allows them to monitor the platform and execute quality control with updated 

changes, without construction drawings.  

There are different levels of digital twins that make them as detailed and complex as desired, 

without necessarily increase the complexity with a larger product or system. The digital twin 

is not required to be a representation of a complete asset but can represent parts that is of 

interest. Some examples in manufacturing are the propulsion system of a ship by Siemens 

[19], to a complete vehicle like Tesla. Every vehicle from Tesla receives updated software 

based on information from the vehicles sensor data to provide better service for the customer 

[20]. It has also been made a digital twin of big cities such as Singapore and Shanghai, to 

improve energy consumption and traffic flow [21]. Smart cities are increasing as a tool for 

planning and monitoring, and Dublin and Barcelona are currently in the development of  

designed their own smart cities [22].  

Digital twin technology is increasing as a part of the industry and is expected to replace many 

previous methods for optimizing production and processes. There are few limitations on what 

a digital twin can represent, and it can be as detailed and accurate to the real asset that it is 

desired, which make them applicable for a range of uses.   

 

 



 3 Implementation of the Digital Twin 

23 

3 Implementation of the Digital Twin 
In this chapter, the building blocks of the digital twin is described. A short first introduction to 

the complete system is given, before each model is described in detail in the subchapters, 

including tutorials for installing necessary software and set up of hardware.  

3.1 System Design 

 

Figure 3.1: Building blocks of Digital Twin 

 

The digital twin can be represented with the building blocks as shown in Figure 3.1. The 

different models are connected through a central hub, named Data Exchange, which will 

exchange the data flow. The Converter Model and Application Model will be the simulators 

of the actual system. These simulators will estimate how the system behaves when receiving 

inputs from the Set Point Controller. Real-time data is essential for the digital twin, and 

sensors from the real application will send information through the Data Exchange about the 

present status, and give the other models access to this information. Connection to the real 

system will be enabled by the Converter Interface. To store all information about the system 



 3 Implementation of the Digital Twin 

24 

and results after testing the application, a model for Data Storage is included. It is also of 

interest to optimize the Application Model from a Model Parameter Tuner by comparing the 

results from the Application Model and the real system with the error being as small as 

possible. To display and monitor the process, the Set Point Controller will also function as a 

user interface. The customer can then easily monitor the results from the experiments. 

 

 

 

Figure 3.2: Information flow between the models of the Digital Twin 

Figure 3.2 illustrates the information flow between the models of the Digital Twin. The main 

goal is to have a connection between these models to replicate the real induction heating 

process, and in the future improve the models to represent the actual application more 

accurately.  

Tools used for these models are Spyder with Python 3.7 and Visual Studios 2019 with C#. It 

has not been focused on a literature search for tools to use for developing digital twins, but 

rather use known tools that are non-commercial and focus on developing this digital twin. 

Spyder and Visual Studios are basic software that is free of charge and is therefore chosen as 

the tools for developing the digital twin. The models developed for this digital twin can be 

accessed from Github: https://github.com/ragnhildmold/MT-51-21.git 



 3 Implementation of the Digital Twin 

25 

3.2 Data Exchange with MQTT 

3.2.1 Data Exchange with MQTT 

To have a communication between the devices and exchange data, a messaging protocol 

called MQTT is used, which is a lightweight protocol for TCP/IP network (internet/intranet) 

used in many IoT devices. This allows several devices to be connected through internet, 

which is essential for IoT technology. MQTT authorize messages to be transported between 

clients connected through a network by a publish and subscribe model. There is no direct 

connection between the clients and messages are distributed through a server, named a 

broker. Clients can publish messages to a topic, while other clients can subscribe to the same 

topic and receive the messages, as shown in Figure 3.3. [23] 

 

Figure 3.3: Illustration of client/broker communication in MQTT 

As mentioned, a client can both be a publisher and a subscriber. The client can be any device 

that implements the MQTT library and is connected to a broker through internet. The MQTT 

library is available for several programming languages such as Python, C#, C++ and others. It 

is an easy and straightforward method and is applicable for a large range of devices [24]. 

The broker is responsible for receiving, filtering, and distributing the messages that are 

published and subscribed to a topic. It stores messages from all the clients that have an active 

session. The broker is also responsible for authentication and authorization of clients. All 

messages must go through a broker, which make it a central hub in MQTT [24]. Several 

brokers are available and open source for users, for example Mosquitto, HiveMQ and EMQ 

X.  

MQTT is available for most operating systems, such as Windows, Linux, and Mac OS. 

Raspbian, the operating system for Raspberry Pie, has also MQTT solutions for add-on 

boards to enable automation control and monitoring. This will be explained more in detail in 

section 3.8.3 regarding development of the Converter Interface. 



 3 Implementation of the Digital Twin 

26 

3.2.2 Set up of MQTT Broker 

Tutorial for setup of MQTT Broker is given in Appendix B. 

3.2.3 Connection to broker 

MQTT runs over TCP/IP (Transmission Control Protocol/Internet Protocol) protocol, which 

is necessary for internet access. TCP/IP defines how data is communicated through network. 

To establish connection in MQTT, the client and broker must have a TCP/IP stack. There is 

never direct connection between clients, but the information is delivered through the broker. 

To initiate connection to a broker, the client must send a CONNECT message. While the 

broker must respond with a CONNACK message and a status code. The CONNECT message 

is a request to connect to broker, and the CONNACK message is an acknowledgement to the 

connection. These messages are part of the MQTT control packet types in the protocol [25]. 

 

 

Figure 3.4: Content of a CONNECT message 

When the client sends the CONNECT message, some information is necessary for the broker 

to establish connection, mentioned in Figure 3.4. A client identifier (ClientId) gives 

identification and status of the client to the broker. The ClientId should be unique for the 

client. It is possible to send an empty ClientId, while that will result in a connection with no 

state. The consequences of this, is if the network connection is temporarily lost, the broker 

can refuse reconnection with the client [24].     

A clean session flag tells if the client wants a persistent session. The clean session can either 

be true or false. A clean session set to true, will result in a non-persistent session and the 

broker will not store any information from the client. This is a requirement when the ClientId 

is empty, or else the broker will reject the connection. When the clean session is set to false, 

the broker will store all information the client has subscribed with a QoS (Quality of Service) 

level of 1 or 2 [24]. QoS will be explained more in detail in 3.2.5. 

 

 

Figure 3.5: Content of a CONNACK message 



 3 Implementation of the Digital Twin 

27 

The brokers response with the CONNACK message (Figure 3.5), which contains two data 

entries; the session present flag and the connect return code. The session present flag tells if 

the client has a previous persistent session with the broker. If the clean session is set to true 

from the CONNECT message, the session present flag will always be set to false since there 

will never be a previous persistent session. If the clean session is set to false, the session 

present flag can either be true or false, depending if there is a previous persistent session and 

stored information from the broker [24]. 

The connect return code is a returned number which indicates a specified response. To have a 

successful connection, the return code needs to be 0 [24].  

 

3.2.4 Publish to topic 

 

 

Figure 3.6: Content of a PUBLISH message 

When the connection is established, the client can publish to a topic of interest. The client can 

only publish to one topic at a time and is not possible to publish to several topics. The 

message to be published by the client, known as the PUBLISH message (Figure 3.6), is 

required to contain some information. The topic for publish of message, payload, the QoS 

level and the retain flag must be set true or false. The payload is the actual message to be 

sent. MQTT is data-agnostic, meaning that information from different types of databases can 

be sent [26]. The QoS level indicated the quality of service of the message. When the retain 

flag is set to false, the message is not stored with the broker. Is the flag set to true, the 

message will be stored [27]. While the topic and payload are necessary to be defined for the 

PUBLISH package to be published, the QoS level and retain flag will by default be set to 0 

and false, respectively, if nothing else is specified. There can only be published one retained 

message at a time per topic by the broker. When a client start subscribing on a topic, the 

retained message will be published immediately.  

3.2.5 Quality of Service (QoS) 

The reliability of receiving the messages is handled through the Quality of Service (QoS) 

level. There are three levels of security in MQTT, from zero to two. QoS level 0 is the 

minimal level and have no guarantee that the message, the PUBLISH message, is delivered. 

There is no feedback if the message is received, and the message is not stored with the 

sender.  QoS level 1 guarantees delivery at least once. The sender then stores the message 



 3 Implementation of the Digital Twin 

28 

until it has received a response from the receiver, known as a PUBACK message. If the 

sender receives no response, the sender will resend the PUBLISH message. The highest level 

is QoS level 2, and this guarantees delivery exactly once. This is also the slowest and safest 

level. The sender and receiver have two sent/received flows, which will confirm the delivery. 

The receiver stores a reference to the original PUBLISH message to ensure that the message 

is not processed a second time. If the clients (sender and receiver) use different QoS level, the 

broker will use the lower level for delivery. Which QoS level to define, depends on the 

message to be delivered. If the messages are not of big importance and some can be lost 

occasionally, the level zero can be used. If it is important to receive the messages and it is 

possible to handle duplicates, the level 1 can be used. Level 2 is used when it is critical to 

receive the messages only once. Every level requires internet connection to be able to send 

the messages. But if there is offline clients, only level 1 and 2 can queue the messages and 

send when the client is available again [28].   

3.2.6 Subscribe to topic     

 

 

Figure 3.7: Content of a SUBSCRIBE message 

To receive a message from the topic of interest, the client must send a subscribe message to 

the broker, called a SUBSCRIBE message (Figure 3.7). This message contains the topic to 

subscribe to and the QoS level. Unlike for publishing messages, it is possible to subscribe to 

several topics. The broker will respond with a SUBPACK message, which is a confirmation 

of the subscription to the client [26].    

A feature that can be used in a subscribe function, is defining root topic and subtopics. The 

root topic is the main topic, while the subtopics are the lower levels of the root topic. By 

using a slash ‘/’, several subtopics can be defined under the root topic. To subscribe to all 

subtopics, a slash and hashtag ‘/#’ can be inserted after the root topic. This is called a 

wildcard and can only be used to subscribe to topics [29]. The subscriber will then receive all 

messages published to the root topic. 

3.3 Application Model 

3.3.1 Heat transfer through workpiece 

To see how the temperature distributes through the workpiece, the model is represented by a 

system of DAEs (Differential-Algebraic-Equations). This system contains differential and 

algebraic equations that explains mathematically how a dynamic system behaves. The heat 

flow in the workpiece is of interest and the thermal energy balance is an essential equation for 



 3 Implementation of the Digital Twin 

29 

this case. As stated by the first law of thermodynamics, the total energy of a closed system is 

constant, and energy can only be transformed from one form to another. The change of internal 

energy is equal the heat flow and work done by the system to the surroundings. The sum of 

heat flowing into the system will then be equal heat flowing out of the system.   

The thermal energy balance is stated as this: 

 𝑑𝑈

𝑑𝑡
= 𝐻𝑖

̇ − 𝐻𝑒̇ + 𝑊𝑣
̇ + 𝑊𝑓

̇ + 𝑄̇ 
(3.1) 

Where: 

- 
𝑑𝑈

𝑑𝑡
: Change of internal energy [J/s] 

- 𝐻𝑖
̇ : Influent enthalpy flow [J/s] 

- 𝐻𝑒̇: Effluent enthalpy flow [J/s] 

- 𝑊𝑣
̇ : Work of volume change [W] 

- 𝑊𝑓
̇ : Work of friction [W] 

- 𝑄̇: Heat flow [W] 

Since there is no mass flow in the workpiece, the terms 𝐻𝑖
̇  and 𝐻𝑒̇ can be neglected from the 

balance equation. There will also be no friction since there is no movement of mass and the 

volume of the workpiece will be constant and not expanded, thus the terms 𝑊𝑓
̇  and 𝑊𝑣

̇  can also 

be neglected.  

Because of these assumptions, the thermal energy balance can be reduced to only heat flow: 

  

 𝑑𝑈

𝑑𝑡
=  𝑄̇ 

(3.2) 

And the algebraic equations to represent the model will be: 

 

 𝑈 = 𝑚 ∙ 𝐻̂ (3.3) 

 

 𝑚 =  𝜌 ∙ 𝑉 (3.4) 

 

 𝑉 = 𝐴 ∙  ∆𝑥 (3.5) 

 

 𝐻𝑖̂ = 𝑐𝑝̂ ∙ (𝑇𝑖 − 𝑇°) (3.6) 

 



 3 Implementation of the Digital Twin 

30 

 𝑄𝑖
̇ = 𝐴 ∙ (𝑄𝑖−1

̈ − 𝑄𝑖
̈ ) (3.7) 

 

 
𝑄𝑖

̈ = −𝑘 ∙ (
𝑇𝑖+1 − 𝑇𝑖

𝑑𝑥
) 

(3.8) 

Where: 

- U: Internal energy [J] 

- m: Mass [g] 

- V: Volume [m3] 

- 𝐻𝑖̂: Specific influent enthalpy [J/g] 

- 𝑄𝑖
̇ : Heat flow [W] 

- 𝑄𝑖
̈ : Heat flux [W/m2] 

The source from the temperature increase in the workpiece is due to Joule heating. This 

originates from the power dissipated from the eddy currents flowing through the resistance of 

the material: 

 Joule heating = 𝑃𝑑𝑖𝑠𝑠 = 𝐼2 ∙ 𝑅 (3.9) 

 

The heat flow in the workpiece can be illustrated as in Figure 3.8. The heat affected volume 

will be the surface of the workpiece. While heat is dissipated by the induced current flowing in 

the material, the heat will start to flow inwards to the bulk volume by the temperature 

difference. 

 

Figure 3.8: Illustration of heat flow in workpiece 

 



 3 Implementation of the Digital Twin 

31 

3.3.2 Application Model with Python 

The first Application Model will be a simple simulator of the heating process. To start this 

process, an alternating current will flow in the coil and induce eddy currents in the surface of 

the workpiece. Heat will be dissipated at the surface due to the resistance as the induced 

current is flowing through the material. The heat will flow inwards in the workpiece by 

conduction since there will be a temperature difference. Heat will always flow from hotter to 

colder regions until there is no longer a temperature difference. The heat will then flow to the 

surroundings and the temperature in the workpiece will return to room temperature. For this 

simulator, the workpiece is divided in two elements. One element is the surface of the 

workpiece and the other element is the bulk volume of the workpiece. Each element is 

assumed homogenous and treated with constant properties. The thermal energy balance is 

used at each element and the sum of heat flow is calculated over time. From this change in 

heat flow over time, the temperature in the elements can be estimated.  

 

 

Figure 3.9:Communication between Set Point Controller and Application Model through Data Exchange 

 

The Application Model will receive a setpoint current Iset from the Set Point Controller and 

estimate the temperature T and publish back through Data Exchange, as illustrated in Figure 

3.9. The Application Model is built in the Spyder environment using Python as the 

programming language. Since this is a basic model and the workpiece are not known, some 

simplifications have been done in the script: 

- The induced current is the same as the coil current. 

- The mass and heat capacity are combined in one factor, mc, when calculating internal 

energy: 

 𝑈 = 𝑚 ∙ 𝑐𝑝̂ ∙ (𝑇 − 𝑇°) = 𝑚𝑐 ∙ (𝑇 − 𝑇°) (3.10) 

- The heat flux is joined in the heat flow equation by combining the thermal 

conductivity and geometric properties in one factor, k: 

 

 
𝑄̇𝑖 = (

𝑘 ∙ 𝐴

𝑑𝑥
) ∙ (𝑇𝑖+1 − 𝑇𝑖) = 𝑘 ∙ (𝑇𝑖+1 − 𝑇𝑖) 

(3.11) 

The material properties depend on what workpiece is to be heated. But the mechanism of heat 

flow will still be the same due to the heat flow equation. The heat will start to flow as long 

there is a temperature difference. The first element in the outer surface will have an increase 

in temperature since the induced current will dissipate power as heat in the element. Heat 



 3 Implementation of the Digital Twin 

32 

always flows from hotter to colder regions, and due to this difference, the heat will start to 

flow inwards the bulk volume by conduction. The temperature in the second element will 

then start to increase. This flow of heat will continue until there is no temperature difference 

between the elements and the temperature is the same. This application model is to give a 

representation of how the temperature in the workpiece will respond to the change in current 

in the coil.  

 

 

Figure 3.10: Flow Diagram of communication between MQTT and Application Model in the Python script 

The flow diagram in Figure 3.10 illustrates the basic steps in the Application Model. At first 

the Application Model connects to the MQTT broker and subscribe to the topic ‘current’ for 

receiving new value for the current from the Set Point Controller through Data Exchange. 

This new value is updated in the model and included in the calculation of Joule losses and 

change in energy in the elements. The new temperature in the elements is then updated and 

published to the topics ‘temperatureT1’ and ‘temperatureT2’. 



 3 Implementation of the Digital Twin 

33 

 

 

Figure 3.11: Classes in the Python script for the Application model 

The script has two classes, show in Figure 3.11. One class is for the elements the workpiece 

is divided into. In this class the variables for the thermal energy balance are defined with 

initial values and functions for calculating the initial temperature, and the temperature as the 

internal energy starts to change by the heat flow. The other class is for the total model. The 

elements are defined as e1 and e2 and calls to the Element class for it to initiate the functions.  

 

 

 



 3 Implementation of the Digital Twin 

34 

 

Figure 3.12: Calculation of heat flow, Joule losses and the change in internal energy under class Model 

Figure 3.12 show the function for calculation of the heating process under class ‘Model’ and 

will be the main task of the simulator. In this function the heat flow and Joule losses are 

calculated. For each time step, the internal energy is calculated and the temperature in each 

element will be recalculated.  

 

 

Figure 3.13: Declaring variables for MQTT Paho client 

To connect to a MQTT broker, the Paho client library is implemented in the Python script 

(Figure 3.13). This is a MQTT client library which provides functions to publish and 

subscribe to topics which are necessary for a client/broker connection [30].  

Since the Mosquitto software is installed, ‘localhost’ can be used as MQTT broker. Defining a 

port is normally not necessary, and port 1883 will always be chosen as default if nothing else 

is defined. The topics to publish and subscribe to must be defined. Since the workpiece is 

represented with two elements, there will be a temperature calculated in each element. Each 

calculated temperature must then be published to a topic for each element. The messages 

published from the Set Point Controller to the topic ‘current’, will be received to this model by 

the subscribe function.  



 3 Implementation of the Digital Twin 

35 

At last, a client id must be specified. This client id should be unique for each client and broker 

to ensure that the messages are stored and information on what state the client is (connected or 

disconnected). The client id can also be left blank, which will result in that the broker doesn’t 

store any messages or state. [24] 

 

 

Figure 3.14: Defining function for connecting to MQTT broker 

Before the client can publish messages or subscribe to topic, the client needs to initiate a 

connection to the broker by sending a CONNECT message, shown in Figure 3.14. In general, 

if the CONNECT message is malformed or uses too much time to send, the broker closes the 

connection [24]. A client object is created for the call-back function, ‘on_connect’. This 

callback function is to ensure successful connection to the broker. If the return code (rc) is 

equal zero, the connection is successful. To verify this connection, the call-back is bonded. 

Now the client is safe to connect to the broker [31].  

When there is a connection to the broker, the client can subscribe to the topic ‘current’ and 

receive messages (Figure 3.15). 

 

Figure 3.15: Function from Paho client library for subscribing in Python  

The ‘on_message’ is a call-back function for when a message is received from the broker. 

The received value ‘float(msg.payload.decode()’ will be set as the new value ‘x.current’ in 

the script for calculating Joule losses and temperature as shown in Figure 3.12. 

 

 

Figure 3.16: Paho client library for running the MQTT functions in Python 

When the connection is established, the loop can start and run the script (Figure 3.16). By 

using the ‘mosquitto_pub’ function in the Windows command line, as seen in Figure 3.17, a 

new value of the current is published to the topic ‘current’. 



 3 Implementation of the Digital Twin 

36 

 

Figure 3.17: Mosquitto client function 'mosquitto_pub' in the Windows command line for publish value of 

current 

Since this model subscribe to the same topic, the messages are received in the IPython 

console in the Spyder environment (Figure 3.18). 

 

 

Figure 3.18: Message received in the subscribing topic in the Spyder environment 

After the temperature has been calculated, the values will be published to the topics that are 

defined (Figure 3.19). The publish function can have four parameters; topic, payload, QoS 

level and retain flag. The parameters that are required is the topic and payload, which is the 

message to be sent. 

 

 

Figure 3.19: Function from Paho client library for publishing in Python 

To display the temperature calculated in the first element, the ‘mosquitto_sub’ function can 

be used in the Windows command line. As mentioned earlier, the topic must be the same 

topic the model publishes to, which is ‘temperatureT1’ and ‘temperatureT2’. 

 



 3 Implementation of the Digital Twin 

37 

 

Figure 3.20: Mosquitto client function ‘mosquitto_sub’ for subscribing on topic ‘temperatureT1’ in Windows 

command line 

 

Figure 3.21: Mosquitto client function ‘mosquitto_sub’ for subscribing on topic 'temperatureT2' in Windows 

command line 

The temperatures are recalculated and published every second. The defined initial value of 

the current is 0 and the temperature of the workpiece will be equal the ambient temperature, 

which is defined as 20°C. When the value of the current is published to the topic, the value in 

the model is updated to 1000 A in the ‘on_message’ function shown in Figure 3.15.  



 3 Implementation of the Digital Twin 

38 

This will increase the Joule heating and cause the temperature increase in the first element 

(Figure 3.20), which then will cause a temperature increase in the second element by 

calculated heat transfer (Figure 3.21).  

3.3.3 Application Model with Python using FEniCS 

To build a more realistic and accurate application model of the heating process of the 

workpiece, FEniCS has been implemented in the Python script. Dmitry Ivanov at EFD 

Induction has shared his model with FEniCS implemented, which has been further developed 

for this Application Model. FEniCS is a software library for solving partial differential 

equations (PDEs) using the finite element methods (FEM) [32]. The PDE to be solved is the 

heat equation, which is one-dimensional and time-dependent differential equation, and is 

expressed as: 

 𝜕𝑢

𝜕𝑡
= 𝑘 ∙

𝜕2𝑢

𝜕𝑥2
 

(3.12) 

FEniCS consists of several components that have different roles and together form the 

software. The benefit of implementing FEniCS in the Python script, is the simplification of 

the programming code. Even if it is a complex mathematical code to program, the FEniCS 

library helps with keeping the code short and compact without complicated coding [32].   

FEniCS is currently not available for Windows. To get access to the FEniCS software library, 

the program must be run in a Linux operating system. Instead of having a virtual machine, 

Windows Subsystem for Linux (WSL) gives access to Linux software programs in the 

Windows environment through a Linux distributor. Ubuntu is chosen as a Linux distributor 

since it is user-friendly and suitable for beginners. A tutorial for installing FEniCS in Ubuntu 

is given in Appendix C. 

 

 

Figure 3.22: Information flow between Set Point Controller, Converter Model, and the Application Model 

In the previous Application Model, the current was the input to the calculations. In this 

model, the frequency will also be a necessary input for the calculations. Figure 3.22 

illustrates the information flow through the Data Exchange. The setpoint current Iset is 

delivered from the Set Point Controller to the Converter Model. This model will calculate the 



 3 Implementation of the Digital Twin 

39 

maximum current that can run in the coil, including the frequency. These parameters are then 

published to the Application Model through Data Exchange.  

The Paho client library is imported in the model to use the functions for MQTT 

communication, seen in Figure 3.23.  

 

Figure 3.23: Defined variables for the Paho client library 

The Application Model will subscribe to the topics that the Converter Model will publish to 

with the updated values of current and frequency.  

 

Figure 3.24: Paho client functions for handling received messages 

The received parameters from the Converter Model will be updated in the Application Model 

through the ‘on_message’ function, shown in Figure 3.24.  

 

Figure 3.25: Functions from the FEniCS library implemented in the Application Model 



 3 Implementation of the Digital Twin 

40 

Figure 3.25 show the implementation of FEniCS in the Application Model. FEM requires the 

PDE to be expressed as a variational problem. To formulate it as a variational problem, the 

PDE first needs to be multiplied with a test function ‘self.v’. The resulting equation is 

integrated over the domain, denoted with the differential element dx, and the second 

derivatives is partial integrated. The trial function ‘self.T’ is the unknown function to be 

approximated. The test and trial function belongs to the function space ‘self.V’, which 

defines the properties of the function. A mesh will be created, while ‘Lagrange’ is the type of 

the finite element and ‘1’ is the degree of the element. The element will be a one-dimensional 

triangle with nodes at the three vertices. The source term ‘self.r’ has an expression object 

representing a formula and the degree of accuracy. The formula is a mathematical expression 

defining a known analytical solution of the PDE, which is ‘x’.  ‘self.F’ defines the equation to 

be solved for each time step ‘dt’ in the loop and is assigned to ‘self.Tsol’ for each numerical 

solution of the temperature, to contain the previous value, seen in Figure 3.26 [32].  

 

Figure 3.26: Function under Class TransientSolver for solving numerical solution of the temperature 

The material properties of the workpiece to simulate is given in its own class, shown in 

Figure 3.27. Stainless Steel 316L is the material of the workpiece in this case.  

 

Figure 3.27: Class Material for defining material properties 

For each time step, the matrix is compiled and solves a new solution for the temperature, seen 

in Figure 3.28. In addition, the temperature is published to the topic ‘appmodel/temp’ by the 

publish function. 



 3 Implementation of the Digital Twin 

41 

 

Figure 3.28: the PDE is solved for each time step and published to topic by MQTT 

The benefit with FEM is the possibility to observe the temperature distribution inwards the 

workpiece. This model takes one point at the surface and simulate the distribution inwards in 

one dimension. This is not possible with a normal temperature sensor. The result from the 

simulation is shown in Figure 3.29, where the temperatures are represented by the y-axis, and 

the depth by the x-axis.  

 

Figure 3.29: Result from simulation of the Application Model with the FEniCS library 



 3 Implementation of the Digital Twin 

42 

 

 

3.3.3.1 Limitations of the Application Model 

In the Application Model, the material properties are set constant throughout the total 

simulation and it does not consider magnetic properties. In the real material, most of the 

material properties will change as it gets heated.  The resistivity in the material will increase 

as the temperature increase, causing higher Joule heating and thus a higher temperature in the 

material. As the temperature increase, the specific heat capacity will also change. The amount 

of energy required for the material to increase the temperature by 1 K will decrease as it is 

heated, resulting in a higher temperature rise. The change of these properties will have a more 

notable effect when the temperature reaches around 100 °C. After this temperature range, the 

temperature rise will become more nonlinear due to these effects. However, in the 20-100 °C 

temperature range, the material properties do not have a noticeable change regarding 

nonmagnetic materials. The temperature rise can then be said to be approximately linear. The 

reason for this is that the nonmagnetic material has material properties that are more resistant 

to heat, such as larger heat capacity and lower thermal conductivity. The Application Model 

is therefore valid in the temperature range up to 100 °C compared with heating of a non-

magnetic material.  

The design of the heating coil has also an effect on the temperature distribution in the 

material. When a current run in the coil, a magnetic field is generated. The strength of this 

field is derived from Amperes law for a long solenoid [33]: 

 
∮ 𝐻𝑑𝑠 =

𝑁 ∙ 𝐼

𝐿
 

(3.13) 

- H: Magnetic field strength [A/m] 

- N: Number of turns of the coil  

- I: Current through the coil [A] 

- L: Length of coil [m] 

The magnetic field enclosed by the integration path is the sum of the number of turns and 

current per unit length. With a longer coil, the magnetic field strength will be weaker than by 

a shorter coil. The current density will be more intense with a shorter coil, causing larger 

temperature differences between the segments outside that are not affected by the coils 

magnetic field. A shorter coil will be more difficult to model since the magnetic field lines 

has different curvatures as the field distances from the coil. The Application Model assumes 

an infinitely long coil with a uniform magnetic field in all segments. This will result in 

magnetic field lines with similar intensity along the coil. The edges will normally have the 

highest current density since the magnetic fields will be the densest in this area, causing a 

stronger magnetic field. Since it is one dimensional, it only calculates the temperature 

distribution from the surface of the workpiece and inwards. 



 3 Implementation of the Digital Twin 

43 

3.4 Converter Model 

The Converter Model will be a model of the frequency converter and adjust the frequency for 

the application to be tested. The real converter will be set at a voltage level at a given 

frequency and then be tuned until it achieves resonance. The current that can run in the coil is 

determined by the available voltage in the output circuit and total resistance. By adjusting the 

output voltage, the current in the coil is set as close to the set point current by considering the 

limitations. If the total resistance becomes too high, the current will be adjusted by the 

available output voltage and total resistance. It will also consider the total power output.  

 

 

Figure 3.30: Illustration of the communication between the Converter and Application model 

 

Figure 3.30 illustrates the communication between the Converter and Application Model 

through MQTT. At first, the Converter Model receives a set point current, Iset, and a power 

ON signal from the Set Point Controller. The Converter Model publish a test current and 

frequency to the Application Model, which will recalculate with the new values. The 

inductance and resistance of the workpiece to be tested will be updated, and published back 

to the Converter Model, in addition to the total resistance. After recalculating in the 

Converter Model, the maximum current in the coil and frequency is published back to the 

Application Model.  

3.4.1 Introduction to the Converter Model 

 



 3 Implementation of the Digital Twin 

44 

 

Figure 3.31: Output circuit of the converter 

Figure 3.31 illustrates the output circuit of the converter. The output circuit is an LRC circuit, 

with capacitor, inductor, and resistor in series. The purpose of this is to achieve resonance, 

where the total impedance is at its lowest and current at its maximum. The inductive and 

capacitive reactance depends on the frequency. As shown in Equations (3.14) and (3.15), by 

increasing the frequency, the inductive reactance will proportionally increase. While the 

capacitive reactance will decrease inversely proportional as the frequency increase.  

 𝑋𝐿 = 2𝜋𝑓𝐿 (3.14) 

 
𝑋𝐶 =

1

2𝜋𝑓𝐶
 

(3.15) 

At the point where the inductive and capacitive reactance are equal, resonance occur. There 

will be no phase difference between voltage and current since the capacitor and inductor 

cancel each other out. The voltage from the converter will then be the same as the voltage 

over the workpiece. The frequency when resonance occur can then be derived as in Equation 

(3.16).   

 

 
𝑋𝐿 = 𝑋𝐶  →   2𝜋𝑓𝐿 =

1

2𝜋𝑓𝐶
 → 𝑓 =  

1

2𝜋√𝐿𝐶
  

(3.16) 

The total impedance will be at its minimum with only resistance in the circuit, which will 

give the maximum current at the given voltage [34]. 

There are several limitations on how high the current can be set to run in the coil. In the script 

there are three currents that must be calculated: 

- Maximum current through capacitor, Ic 

- Maximum current regarding power, Ieffect 

- Maximum current from the converter based on the voltage, IAC 

The maximum current flowing through the capacitor will be the source voltage over the 

capacitive reactance: 



 3 Implementation of the Digital Twin 

45 

 
𝐼𝑐 =

𝑉𝐴𝐶

𝑋𝐶
 

(3.17) 

To avoid damage to the capacitor, the voltage over the component cannot exceed a certain 

limit. The capacitor can handle voltage peaks, but a consistent higher voltage will cause 

failure and must be considered when calculating the maximum current in the coil. 

The maximum current regarding power will be the squared of the total resistance in the 

circuit over the power: 

 

𝐼𝑒𝑓𝑓𝑒𝑐𝑡 = √
𝑅𝑡𝑜𝑡𝑎𝑙

𝑃
 

(3.18) 

And the maximum output current from the converter will be the source voltage over the total 

resistance in the circuit: 

 
𝐼𝐴𝐶 =

𝑉𝐴𝐶

𝑅𝑡𝑜𝑡𝑎𝑙
 

(3.19) 

The maximum current that can run in the coil, must be the minimum of the three currents 

calculated to avoid not exceeding any limitations. Before the current is to run in the coil, it 

must be transformed by multiplying with the transformer ratio ‘N’. 

3.4.2 Converter Model with Python 

Same as with the Application Model, the Converter Model is built in the Spyder environment 

using Python as the programming language. The Paho Client library for MQTT is 

implemented in the model and variables are defined as in Figure 3.32. 

 

Figure 3.32: Definitions of the variables for Paho client library in the Converter Model 

The Converter Model will subscribe to the topics ‘setpoint/power/convmodel’ and 

‘setpoint/current’ and receive messages published by the Set Point Controller. Messages 

received from topics ‘appmodel/resistance’ and ‘appmodel/inductance’ are published from 

the Application Model. After calculations, The Converter Model will then publish to topics 

‘convmodel/current’ and ‘convmodel/frequency’ subscribed in the Application Model. 



 3 Implementation of the Digital Twin 

46 

 

Figure 3.33: Using functions from Paho Client library for connecting and subscribing to topics 

Values that are received through the defined topics are handled as shown in Figure 3.33. To 

start the calculations, the Converter Model must first receive a power on signal from the Set 

Point Controller. Together with the received value from the mentioned topics, the power on 

signal must be set as 1 before the received value is updated as the new value in the script and 

the calculations can be executed.  



 3 Implementation of the Digital Twin 

47 

 

Figure 3.34: Function for calculations in the Converter Model 

The function for calculation is shown in Figure 3.34. The capacitance ‘C’ and transformer 

ratio ’N’ are parameters from the converter, while the inductance ‘L’ and resistance ‘R’ is 

received from the Application Model. ‘L’ must be transformed to primary value by ‘N’ when 

calculating the resonance frequency. From the received values, the three different currents are 

calculated, including the frequency and power. The minimum current of those that are 

calculated, is the maximum current that can run in the coil. If the setpoint current is lower 

than the maximum current, this will be set as the current to run in the coil since it will not 

cause any conflict with the limitations.  Together with the calculated frequency, these values 

will be published to the topics defined in Figure 3.32. 

It is also of interested to calculate the total power that will be generated by the applied current 

to compare with the actual converter.  

  

  

 

 

 

 



 3 Implementation of the Digital Twin 

48 

3.5 Set Point Controller with C# 

The Set Point Controller will be the user interface for the customer. This controller will 

deliver settings for the application to be tested and display the results. To build this model, 

Microsoft Visual Studios with C# is used. The purpose of this is to make a GUI (Graphic 

User Interface) to make it more user-friendly for a potential customer.  

3.5.1 Set Point Controller  

The first version of the Set Point Controller is shown in Figure 3.35. The settings the user 

insert in the textboxes will be publish to the topics of interest and received by the other 

models through Data Exchange. For the GUI to be able to have communication with the other 

clients, a MQTT client library must be implemented in the program. M2MQTT is a client 

library that works well with C# and is used for this model [35].  

 

 

Figure 3.35: GUI for inputs to the model 

 

 

The M2MQTT client library must be installed through the NuGet Package Manager in Visual 

Studios to get access to the tools, shown in Figure 3.36.  

 

 

Figure 3.36: M2MQTT client library in Visual Studios 

 

Figure 3.37 show the functions for MQTT connection in Visual Studios. For each time the 

model starts, a unique client ID is generated and connected to the broker. 

 



 3 Implementation of the Digital Twin 

49 

 

Figure 3.37: Functions in the M2MQTT library for MQTT connection in Visual Studios 

This model will only publish messages to the Application Model and will not subscribe to 

any topics. Since there are three values to publish, there must be three publish functions with 

three corresponding topics for the values. The functions for publishing the settings is shown 

in Figure 3.38. 

 

Figure 3.38: Functions in the M2MQTT library for publishing messages 

 

When the ‘Ok’ button is clicked, these functions will be executed. The values that are 

inserted in the textboxes, is published to the corresponding topics, and subscribed to in the 

Application Model.  



 3 Implementation of the Digital Twin 

50 

3.5.2 Set Point Controller with Timer 

In the real application the converter will run in a sequence with the power going on and off. 

To develop the Set Point Controller, two timers is implemented in the model. One timer 

retains the power on with the set point current for a given interval. After the interval, a 

second timer is enabled. The second timer retains the power off and current at zero. When the 

second interval is completed, the first timer is enabled again. The switching between these 

two timers continue until the power button is clicked to stop both the timers. The GUI 

application is shown in Figure 3.39. 

 

Figure 3.39: GUI of the Set Point Controller with timers implemented. 

The Power button is a checkbox, appearing as a button. When the button is checked, a 

function to start the sequence is activated as shown in Figure 3.40.  

 

Figure 3.40: Function behind Power button in the GUI application 



 3 Implementation of the Digital Twin 

51 

The first timer is enabled and ticks an event handler which will execute a function after the 

interval is completed. This event handler is shown Figure 3.41, with an if-statement for the 

Converter Model checkbox. The Converter checkbox has also the same if-statement.  

 

Figure 3.41: Event handler when the first timer is enabled in the GUI application 

If one checkbox, or both, is checked, the Set Point Controller will publish a power on signal 

and current to the subscribers. After the interval, the second timer is enabled. The time 

entered in the ‘Time ON’ textbox, will be set as the interval for when the second timer will be 

enabled. This will tick the next event handler, shown in Figure 3.42.  

 

Figure 3.42: Event handler when the second timer is enabled in the GUI application 

The Set Point Controller will publish a power off signal and current with value zero to the 

subscribers. After this is executed, the first timer will be reenabled and the sequence will start 

over again. This will continue until the Power button is checked again, and the else-statement 

shown in Figure 3.40 will be executed. 

An example of the application is shown in Figure 3.43. The label ‘Status’ indicates what 

power signal is sent to the subscribers.  



 3 Implementation of the Digital Twin 

52 

 

Figure 3.43: Start of sequence from the Set Point Controller 

3.5.3 Set Point Controller with Display 

It is of interest to display the results when testing both the digital twin and the real application 

for comparison, as seen in Figure 3.44.  

 

Figure 3.44: Set Point Controller including display of parameters 

The Set Point Controller must then subscribe to the parameters from the real application and 

the digital twin, as showed in Figure 3.45. To store the data from the testing, the name of the 

file to write is also included and published to the Data Storage model.   



 3 Implementation of the Digital Twin 

53 

 

Figure 3.45: Information flow to the Set Point Controller through the Data Exchange 

Figure 3.46 show the function for handling received messages from a selection of topics 

subscribed in the Set Point Controller, here the topics for receiving temperatures from the 

Application Model and the real application. The message associated with the topic is 

displayed in the corresponding textbox in the GUI.  

 

Figure 3.46: Function for handling received messages to the Set Point Controller 



 3 Implementation of the Digital Twin 

54 

The report enabling and name of file is handled as shown in Figure 3.47. When the ‘Power’ 

button in the GUI is checked, the name of the file and signal to report is published. The Data 

Storage model will subscribe to these topics and receive the signal and name. It is important 

that the name of the file when entered in the textbox ends with ‘.csv’, in order that the Data 

Storage model handles it as a CSV-file. 

 

Figure 3.47: If-statement for report handling to the Data Storage model 

A ‘Quit’ button is also included in the GUI. When this button is clicked, the Set Point 

Controller will publish a message to the subscribing models connected through the Data 

Exchange to end the simulation, and close the application, seen in Figure 3.48.  

 

Figure 3.48: Function for 'Quit' button clicked 

3.6 Model Parameter Tuner 

It has not been developed an own model for Model Parameter Tuner in this thesis. It would 

been ideal to have a model parameter tuner for adjusting the parameters according to the 

application to be tested. A simplification is to include a factor for e.g., adjusting the magnetic 

field strength according to the coil used for the application. With a factor equal 1, the 

magnetic field strength would be according to a long coil. By reducing this factor to adapt to 

the application, the magnetic field is reduced, and less heat is dissipated. 

3.7 Data Storage 

It is desirable to store the data that are produced from the simulations. This can be achieved 

by either using a database or log the data in a CSV (Comma Separated Values) file. MQTT 

broker do not have a mechanism to store data that are distributed through it, but it is possible 

to use a MQTT client as a storage by subscribing to topics and receiving the data [36].  

Ideally an SQL (Structured Query Language) database would be used for data storage. SQL 

is a language that are designed to work and communicate with databases. It can either be 

SQL or NoSQL, depending on the application. Difference between SQL and NoSQL is the 



 3 Implementation of the Digital Twin 

55 

system of storing data. SQL is used for rational databases, where the data is stored in tables. 

The tables have key elements that links them together to avoid duplications [37]. While 

NoSQL is non-rational and object-based database, and there is no fixed system of storing the 

data. NoSQL is more dynamic, where different types of unstructured data can be stored in the 

database [38]. For the development of the digital twin, NoSQL would be the preferred 

database to use for data storage. The reason behind is that NoSQL is better suited for real 

time and fast data, which is important for the digital twin.  

A simplification of a data storage is having a model that logs data in a CSV file. CSV file is a 

text file that separate values by commas. The file writes one line for each data record and is 

table-based [39]. The CSV file is compatible with Microsoft Excel and can be converted to a 

spreadsheet. This is an easy method for organizing and storing the data that are flowing 

through the Data Exchange.  

3.7.1 Data Storage Model with Python 

The Data Storage Model is built in the Spyder environment using Python as the programming 

language. The Paho MQTT Client library is implemented in the script to receive the values 

that are published from the other models. Figure 3.49 show a snippet of the subscribing topics 

that receive values to be handled by the Data Storage Model.  

 

Figure 3.49: Snippet of messages that are handled through MQTT in the Data Storage Model 

All the parameters that are flowing through the Data Exchange is received in the Data 

Storage Model and is defined in the ‘DataStorage’ class, seen in Figure 3.50. 



 3 Implementation of the Digital Twin 

56 

 

Figure 3.50: Defined parameters in class DataStorage that is to be stored in the model 

The name of the file and signal for ‘ReportEnable’, is given from the Set Point Controller. 

When ‘ReportEnable’ is set to true, the function ‘WriteFileOnTime’ is enabled, shown in 

Figure 3.51. The header is written at the top and defines all the parameters for each column. 

For each time stamp, the time and value of the parameters are written to the CSV file on one 

line. In addition, if parameters are changed since the previous received value, the function 

‘WriteToFileOnChange’ will be called.  

 

Figure 3.51: Functions for writing to file under class DataStorage 

Figure 3.52 show the CSV file opened in Excel when parameters have been written to the 

file.  Each parameter has its own column with the row being filled from each sample with a 

time stamp.  



 3 Implementation of the Digital Twin 

57 

 

Figure 3.52: Parameters written to the CSV file opened in Excel 

 

 

3.8 Converter Interface with Raspberry Pi 3 

To have connection to the real converter, Raspberry Pi 3 is included to function as the 

Converter Interface. With the add-on board, Automation HAT, inputs and outputs from the 

real converter can be connected to the channels of the board. The Raspberry Pi 3 will also act 

as the MQTT broker for the digital twin and ensure connection between all the models the 

digital twin consists of.   

Appendix D and E will give a tutorial on how Raspberry Pi 3 is set up, both a complete set up 

and a headless setup. Explanation and tutorial for installing the Mosquitto software and 

Automation HAT board is given in this subchapter.  

3.8.1 Complete Setup of the Raspberry Pi 3 

Tutorial for a complete setup of the Raspberry Pi 3 is given in Appendix D. 

3.8.2 Headless setup of the Raspberry Pi 3 

Tutorial for a headless setup of the Raspberry Pi 3 is given in Appendix E. The Raspberry Pi 

3 will be used with a headless setup for the Converter Interface. 

3.8.3 Install MQTT on Raspberry Pi 3 

Mosquitto is installed on the Raspberry Pi 3 since it will act as MQTT broker for the 

experiments. The Mosquitto software is available from the Raspbian repository and is 

installed on the Raspberry Pi by entering the command in command line: 

‘sudo apt-get install mosquitto’ 

It is also desirable for the Raspberry Pi 3 to be able to publish and subscribe to topics, and 

therefore the client software is also installed by the command: 

‘sudo apt-get install mosquitto-clients’ 

The Raspberry Pi 3 can now act as a broker by using its own IP address as host address and 

use the functions for publishing and subscribing to topics, as shown in Figure 3.53. 



 3 Implementation of the Digital Twin 

58 

 

Figure 3.53: MQTT communication between computer and Raspberry Pi 3 

3.8.4 Raspberry Pi 3 with Automation HAT 

Automation HAT (Hardware Attached on Top) is an add-on board for the Raspberry Pi, 

shown in Figure 3.54. This board is for monitoring and automation control and can be 

attached to the Raspberry Pi by fitting the board to the GPIO pins. Components included on 

the Automation HAT board is three relays, three ADC (analog to digital converter) inputs, 

three sinking outputs, three digital inputs and 18 LED indicators.  

 



 3 Implementation of the Digital Twin 

59 

 

Figure 3.54: The Automation HAT board attached to the Raspberry Pie Model B+ board 

Before installing the software for the Automation HAT, it is recommended to update the 

Raspbian operating system. By entering ‘sudo apt update’ in the command line, the list of 

packages that need upgrading is displayed. Entering ‘sudo apt full-upgrade’ will upgrade the 

packages. 

Pimoroni has made a Python library for the Automation HAT and is installed through the 

URL link by typing[40]: 

‘curl https://get.pimoroni.com/automationhat/ | bash’ 

After reboot, the Automation HAT board is ready for use. 

3.8.4.1 Test of Automation HAT with MQTT 

A wire is connected between the analog input and 5 V channel to measure the voltage, and 

publish the values using the Raspberry Pi 3 as a MQTT broker. 



 3 Implementation of the Digital Twin 

60 

 

Figure 3.55: A wire connected between the analog input channel and 5 V channel on the Automation HAT 

board 

  

To create a Python script on the Raspberry Pi 3, Nano editor is used. This is command-line 

editor which is necessary when the Raspberry Pi is set up headless. Nano is installed by 

default with the Raspbian operating system. The Python script for testing is created by 

typing: 

‘sudo nano test.py’ 

After the file is created, the Nano editor appear in the command window. The test script will 

read value from the first analog input channel and publish to the topic defined. Libraries 

included in the script is Paho MQTT Client and Automation HAT, seen in Figure 3.56. 



 3 Implementation of the Digital Twin 

61 

 

Figure 3.56: Python script created in Nano editor with libraries for MQTT and Automation HAT included 

‘value = automationhat.analog.one.read()’ is a function from the Automation HAT library 

which reads the value from the channel. The first channel is referenced to by ‘one’, and the 

other channels would be referenced by ‘two’ and ‘three’. 

After saving the script, the Python script is executed by typing ‘python3 test.py’ in the 

command line. From the Windows command line, the Raspberry Pi’s IP address and topic to 

subscribe is defined, and the voltage measured from the channel is published, shown in 

Figure 3.57.   

 

Figure 3.57: Subscribing on topic 'test' in the Windows command line 



 3 Implementation of the Digital Twin 

62 

3.8.5 Converter Interface for Digital Twin 

The Raspberry Pi 3 will handle the power on signal from the Set Point Controller and read 

the current, frequency and power from the converter by the three analog inputs of the 

Automation HAT board. Based on the script, shown in Figure 3.57, it is developed to read on 

all channels for the converter, and controlling relay at power on signal. 

 

Figure 3.58: Python script in Raspberry Pi for controlling relay at power on signal 

To handle the power on signal from the Set Point Controller, the relay on the Automation 

HAT board will turn on and close the circuit by the function ‘automationhat.relay.two.on()’, 

shown in Figure 3.58. Same with power off signal, the function 

‘automationhat.relay.two.off()’ will turn off the relay and open the circuit.  

Since the power of the converter normally will be off, the relay on the Automation HAT 

board will be connected to normally open and close when the power on signal is published. 



 3 Implementation of the Digital Twin 

63 

 

Figure 3.59: Python script in Raspberry Pi for reading analog inputs from the converter 

Figure 3.59 show the functions for reading the analog input channels on the Automation HAT 

boards. In addition, the current, power and frequency must be scaled according to the real 

converter to replicate the actual values.  

 

 



 4 Testing of the Digital Twin of Induction Heating Equipment 

64 

4 Testing of the Digital Twin of Induction 
Heating Equipment 

In this chapter the testing of the induction heating equipment is compared with the digital 

twin. The preparations for the setup and equipment used in the experiments are explained, 

including heating system, coils, and workpieces. At last, the results from the experiments are 

displayed and compared with the results from the digital twin. 

4.1 Introduction to the setup and experiments 

The experiments will be executed in the Application lab at EFD Induction. By the Converter 

Interface with the Raspberry Pi 3 and Automation HAT board, this model will remotely 

control the real converter and deliver set point settings from the Set Point Controller. Real 

temperature measurements from the workpiece will be stored in the Data Storage model and 

be used to compare with temperature results from the Application Model. 

 

Figure 4.1: Illustration of the connection between the hardware, including communication protocols MQTT and 

MODBUS 

The setup of the installation will be as illustrated in Figure 4.1. Settings for the experiment 

will be executed from the digital twin’s Set Point Controller and published through MQTT. 

The connection to the real converter is enabled through the Converter Interface with 

Raspberry Pi 3 and the Automation HAT board with wired connection. To measure the 

temperature development, thermocouples are attached to the workpiece and displayed on a 

monitor. The temperature measurements from the monitor are sent to the computer by the 



 4 Testing of the Digital Twin of Induction Heating Equipment 

65 

communication protocol MODBUS. Equipment used in the installation are listed in Table 4.1 

and will be explained in the coming subchapters. 

Table 4.1: Equipment used in the experiments 

Manufacturer Product Description 

EFD Induction Sinac SM 18/25 Twin Heating System 

Cooperheat STORK Tau Thermocouple Attachment 

Unit 

Yokogawa SMART DAC+ GP20 Temperature Display 

 

4.2 Heating System 

The heating system used for the experiments is the Sinac SM 18/25 Twin heating generator. 

This model is for medium frequency heating applications and have a maximum output power 

of 25 kW. Technical data for this model is given in Table 4.2. 

Table 4.2: Technical data of Sinac 18/25 SM Twin 

Model Sinac SM 18/25 Twin 

Maximum output power 25 kW 

Continuous output power 18 kW 

Frequency range 10-25 kHz 

Inside this generator, a frequency converter and capacitor are included. By having the 

capacitor in series or parallel, the generator can either be serial- or parallel-compensated. 

Setup of the generator can be done either local or remotely. By a touch screen, the setup can 

easily be done through the control panel, shown in Figure 4.2. 



 4 Testing of the Digital Twin of Induction Heating Equipment 

66 

 

Figure 4.2: Control panel of the Sinac SM 18/25 Twin 

For the experiments, the setup will be controlled remotely through the second output.  



 4 Testing of the Digital Twin of Induction Heating Equipment 

67 

4.3 Workpieces and Heating coils 

 

Figure 4.3:  Workpieces of magnetic (M) and non-magnetic (NM) material, and long and short coil to be used in 

the experiments 

4.3.1 Workpieces 

Two hollow cylinders with the same proportions are used in the experiments as workpieces, 

shown to the left in Figure 4.3. The geometric data of the workpieces are given in Table 4.3. 

Table 4.3: Geometric data of workpieces 

Length [cm] 15 

Outer radius [cm] 7.2 

Inner radius [cm] 5.2 

 

The difference between the workpieces are the material properties. Stainless steel 316L and 

42CrMo4 are the two materials to be used in the experiments. None of these materials have 

linear temperature rise when heated up, but Stainless Steel 316L have a slower temperature 

rise than 42CrMo4 until 100 °C. Because of the slow temperature rise in this range, the rise 

can be said to be approximately linear. The Application Model can then be used for 

comparison in this range. With 42CrMo4 the temperature rise is higher and nonlinear, 

making the Application Model less good fit for comparison. Stainless Steel 31L will therefore 



 4 Testing of the Digital Twin of Induction Heating Equipment 

68 

be of most interest in the experiments. The comparison between Stainless Steel 316L and 

42CrMo4 is given in Table 4.4.  

 

Table 4.4: The material properties of 42CrMo4[41] and Stainless Steel 316L[42] 

Material Magnetic 

Properties 

Specific 

Heat 

Capacity 

[J/(kg·K) 

Thermal 

Conductivity 

[W/m·K] 

Resistivity 

[µΩ·m] 

Density 

[kg/m3] 

Stainless 

Steel 316 

Non-

Magnetic 

500          

(0-100°C) 

14 0.74 8000 

42CrMo4 

Steel 

Magnetic 460-480 

(50-100°C) 

40-45 0.20 7800 

 

Stainless Steel 316L have a higher heat capacity than 41CrMo4, meaning it requires more 

energy to increase the temperature by one degree. In addition, it has a lower thermal 

conductivity then 41CrMo4. This contributes to the lower temperature rise. 

4.3.2 Heating coils 

Two different coils are being used in the induction system, shown at the right side beside the 

workpieces in Figure 4.3. The first coil used in the experiments are the short coil with a 

smaller length. This coil will give a higher current density in a smaller area of the workpiece, 

causing a larger temperature difference between the different segments of the workpiece. The 

second coil has a longer length, shown also in Figure 4.4. This will cause a lower current 

density in the workpiece and a lower temperature increase. The heat will be distributed more 

evenly in the workpiece and a smaller temperature difference between the segments. The 

Application Model assume the workpiece is homogenous with the same temperature 

distribution inwards at every segment. The long coil will therefore be of most interest for the 

experiment since it is more applicable for the Application Model and give results that can be 

used for comparison.   



 4 Testing of the Digital Twin of Induction Heating Equipment 

69 

 

Figure 4.4: Long coil to be used in the experiments 

 

4.4 Real-time data with MODBUS 

STORK TAU (Thermocouple Attachment Unit) allows direct attachment to the workpiece by 

thermocouples. The thermocouples is placed at the outer surface of the workpieces and is 

attached by the capacitive discharge method and creates a welded connection [43]. To display 

the temperature, the thermocouples is connected to SMART DAC + GP20. This is a recorder 

that display the data through its channels. SMART DAC+ GP20 allows communication 

through the MODBUS TCP protocol by Ethernet connection. MODBUS TCP is a 

communication protocol based on the client/server model. This protocol is widely used in 

communication between automation equipment [44]. SMART DAC+ GP20 will act as the 

server, while the computer will be the client to request information. One requirement is that 

both server and clients are in the same IP network. To enable this communication, Python has 

a MODBUS client library named pyModbusTCP which is installed by ‘pip install 

PyModbusTCP’ [45]. This library is implemented in the script, shown in Figure 4.5. 



 4 Testing of the Digital Twin of Induction Heating Equipment 

70 

 

Figure 4.5: Python script with MODBUS client library implemented 

The function ‘ModbusClient’ has the IP address of the server defined, which is the SMART 

DAC+ GP20. Port 502 is the default port for connection to the client. Auto open is set to 

‘True’, to keep the connection always open and not close after each request. 

‘c.read_holding_registers(2, 1)’ is the function for reading values from the SMART DAC+ 

GP20 at channel 2 and one temperature value [46]. The temperature values will be published 

every 0.1s by MQTT to the Set Point Controller and be displayed and monitored at the 

interface.  

 

4.5 Preparations before experiment 

The main challenge of the setup is the need of an analog output from the Automation HAT 

board on the Raspberry Pi 3 to the converter. When the power on signal is sent to the 

converter, it will also need a set point current for the application. The Automation HAT board 

does not have an analog output, but it is possible to use the GPIO pins of the Raspberry Pi 3. 

Since the GPIO pins is required for the Automation HAT board, a second Raspberry Pi 3 is 

setup to have available GPIO pins for the analog output, shown in Figure 4.6. This will be in 

a separate circuit from the other Raspberry Pi 3 and will be connected directly to the real 

converter. Another possibility is to set the set point current on the converter manually before 

the power on signal is sent.  



 4 Testing of the Digital Twin of Induction Heating Equipment 

71 

 

Figure 4.6: Raspberry 3 Model B+ board for analog output 

To send the set point current from the Raspberry Pi 3, the signal needs to be converted to an 

analog signal by PWM.  The Raspberry Pi 3 Model B+ board shown in Figure 4.6 has 

available GPIO pins for PWM. RPi.GPIO is a Python library which allows the GPIO pins on 

the Raspberry Pi 3 board to be controlled and is installed by default with the Raspbian 

operating system [47].  

 

 

Figure 4.7: Python library for the Raspberry Pi GPIO pins 

 



 4 Testing of the Digital Twin of Induction Heating Equipment 

72 

Figure 4.7 show the Python script for controlling the GPIO pins of the Raspberry Pi 3. Pin 12 

is the channel on the Raspberry Pi 3 GPIO pins, available for PWM signal. GPIO.setmode is 

set to use the BCM (Broadcom SOC Channel) channel names. GPIO.setup defines the 

channel name and signal as output. GPIO.PWM enables the toggling of the output pin at the 

defined frequency. Pwm.start start the PWM mode with a duty cycle that is defined between 

0 and 100 precent [47]. 

The PWM signal needs to be filtered and converter into an analog signal. This is achieved by 

the RC circuit with operational amplifier shown in Figure 4.8. 

 

Figure 4.8: RC circuit with Op-Amp to filter the PWM signal from the Raspberry Pi 

The green and brown wire is connected from the Raspberry Pi 3 GPIO pins; pin 12 and 

ground, respectively. The PWM signal is filtered by the resistor and capacitor in parallel, 

before its amplified by the Op Amp, MC 33074. Out from the Op Amp, the red, black, and 

green wire is connected directly to the converter. Figure 4.9 illustrates the filtering and 

converting of the PWM signal from the Raspberry Pi 3 to the converter.  



 4 Testing of the Digital Twin of Induction Heating Equipment 

73 

 

Figure 4.9: Circuit diagram of how the PWM signal from the Raspberry Pi is filtered and converted, before 

sending analog set point current to the converter 

 

As mentioned eariler, the Raspberry Pi 3 with the Automation HAT board will function as the 

Converter Interface. Figure 4.10 show the wired connections between the Converter Interface 

and the real converter. To read the current, frequency and power from the converter, the 

Automation HAT board has three analog inputs. The green, red, and white wire read the 

current, frequency and power from the converter, respectively. The relay is output to the real 

converter and set the power on/off. Since the power of the converter is normally off, the relay 

on the Automation HAT board is connected to normally open (NO) and closes when a power 

on signal is received through MQTT to the COM terminal with the green wire to the 

converter. The NO terminal with the brown/yellow wire is connected to the 24V channel 

from the converter. 



 4 Testing of the Digital Twin of Induction Heating Equipment 

74 

 

Figure 4.10: Wired connections between the analog inputs and digital outputs of the Automation HAT board and 

the real converter 

An overlook of the connections between the hardware is shown in Figure 4.11. The 

secondary Raspberry Pi 3 board with the connections to the circuit for converting to analog 

signal is most adjacent, then the Raspberry Pi 3 with the Automation HAT board attached. 

Both circuits have wired connections to the real converter. The workpiece to be tested has 

wired connection to the SMART DAC+ GP20, attached by thermocouples.  



 4 Testing of the Digital Twin of Induction Heating Equipment 

75 

 

Figure 4.11: Full setup of the experiment 

 

 

 

 

 

 

 

 

 

 

 

 



 4 Testing of the Digital Twin of Induction Heating Equipment 

76 

4.6 Experiments of the real converter 

The experiments that were executed of the real converter are listed in Table 4.5, including 

result of the maximum temperature and power output from each experiment. The data 

recording starts when the power signal is set on from the Set Point Controller and each of the 

experiment are recorded for five minutes in the Data Storage model to have the same 

comparisons between all the results.  

Table 4.5: Experiments executed and result of maximum temperature and power output in each experiment 

Nr. Current 

Set Point 

Time 

Power 

On 

Material: 

Magnetic/Non-

Magnetic 

(M/NM) 

Coil: 

Short/Long 

Max. 

Power 

[kW] 

Max. 

Temperature 

[°C] 

1. 15 A 2 s M Short 1.6 36.4 

2. 15 A 2 s NM Short 1.725 40.7 

3. 15 A 10 s M Short 1.65 60.7 

4. 15 A 10 s NM Short 0.6 38.7 

5. 15 A 2 s M Long 2.2 34.7 

6. 15 A 2 s NM Long 0.675 25.6 

7. 15 A 10 s M Long 2.22 61.6 

8. 15 A 10 s NM Long 0.675 29.8 

9. 30 A 2 s M Short 4.825 65.4 

10. 30 A 2 s NM Short 1.6 38.3 

11. 30 A 10 s M Short 4.925 148.9 

12. 30 A 10 s NM Short 1.6 48.5 

13. 30 A 2 s M Long 6.3 55.4 

14. 30 A 2 s NM Long 1.925 41.9 

15. 30 A 10 s M Long 6.5 121.6 

16. 30 A 10 s NM Long 1.875 74.7 



 4 Testing of the Digital Twin of Induction Heating Equipment 

77 

18. 45 A 2 s NM Short 3.3 45 

19. 45 A 10 s M Short 9.65 275.6 

20. 45 A 10 s NM Short 3.325 76 

21. 45 A 2 s NM Long 3.85 73 

21. 45 A 10 s M Long 11.9 200.9 

22. 45 A 10 s NM Long 3.725 59.4 

23. 60 A 2 s NM Short 5.525 51.4 

24. 60 A 10 s NM Short 5.6 113 

25. 60 A 2 s NM Long 6.025 41.9 

26. 60 A 10 s NM Long 6.075 85.7 

27. 45 A 2 x 10 s NM Long 3.725 81.6 

4.6.1 Comments on the experiments 

Ideally the workpieces should be at room temperature before every experiment to have the 

similar temperature development from start. In the experiments there are only one workpiece 

of each material to experiment on and it will then not be possible to have the same temperature 

of the workpieces at start of every experiment. To cool down the workpieces after an 

experiment, they have been submerged in water and then placed on the floor to stabilize the 

surface temperature before the next experiment. Especially if the workpiece has been heated 

up to several hundred degrees, this process of reaching room temperature again can take hours. 

The bulk volume will have a higher temperature than the surface temperature when the 

workpiece has been cooled down in water and will affect the temperature development when 

heated again. When a workpiece has been heated up sufficiently, the material properties have 

been permanently changed and will not give the same results when the process is repeated. To 

limit the heating of the workpieces, the setpoint currents has been relatively low to avoid too 

much power dissipated at the surface of the workpieces. The purpose of heating the workpieces 

has been to observe the respond in the materials compared to the Application Model with the 

different settings. Since the material properties change as the workpiece is heated, the 

Application Model will not be valid at high temperature since the properties are set as constant.   

When simulating the Application Model, the frequency was set equal as in the experiment of 

the real application in the Converter Model. The Converter Model depends on receiving 

resistance and inductance of the workpiece from the Application Model to calculate the 

frequency. It was of more interest to compare the temperature development between the 

Application model and the real application, and it was therefore necessary to have identical 

settings when testing. 



 4 Testing of the Digital Twin of Induction Heating Equipment 

78 

The set point current from the Set Point Controller had a deviation from the real settings on the 

Sinac heating system. This may result from error in the circuit that replicate the AC current. 

The set point current was therefore set manually from the control panel to have the same setting.     

4.6.2 Results of the experiments 

4.6.2.1 Comparison between magnetic (M) and non-magnetic (NM) workpieces 

 

Figure 4.12: Plot of temperature development at outer surface of magnetic (M) and non-magnetic (NM) 

workpieces during a 5-minute interval from power on signal 

The results from all the experiments are plotted in the same diagram, shown in Figure 4.12. To 

separate between the long and short coil, the results from the short coil has stapled lines, while 

the long coil has a full line. The maximum temperature was reached from the experiment ‘45A-

10s-M-short’ at 275 °C which was expected since the workpiece is magnetic, and the coil was 

short. The following experiments with the highest temperature are the same workpiece with 

different settings and coil. For the non-magnetic material, the maximum temperature reached 

is 87 °C with the experiment ‘60A-10s-NM-short’.  

All the experiments show the same pattern in the temperature development, with a steep 

temperature rise when the power is set on and a drop when the power is off. Except ‘45A-

2x10s-NM-long’, which have a sequence with power on and off with 10s interval before 

stabilizing. 



 4 Testing of the Digital Twin of Induction Heating Equipment 

79 

It is a higher temperature difference between the outer surface and the bulk volume in the 

beginning that results in a higher heat transfer by conduction. When the heat has started to flow 

inwards, the temperature difference gets smaller. Since the difference is smaller, the heat 

conduction will also be smaller. After the heat has been distributed in the workpiece, the heat 

will start to flow to the surroundings by convection. This process is slower since only the 

surface of the workpiece is exposed to the air and temperature development slows down with 

a small decrease of temperature with time.  

Different factors can contribute to errors in the measurement of the real application. Heat 

transfer from the workpiece is by natural convection, but it can be affected by the ventilation 

system or someone passing by at the moment of measuring. The measurement device, 

STORK TAU, was calibrated recently before the experiments and should measure the 

temperatures with good accuracy, but there is a possibility that the device did not measure 

accurately. There may also be a time delay of receiving the measurement through the MQTT 

and MODBUS protocols, resulting in a wrong impression of the temperature development.  

4.6.2.2 Comparison between the non-magnetic (NM) workpiece and the Application 
Model 

 

Figure 4.13: Comparison between NM workpiece and the Application Model (DT) 

 

Figure 4.13 show the comparison between the non-magnetic (NM) material and the Application 

Model (DT), with set point current Iset = 60 A and simulation time t = 10s. While the non-

magnetic material has a maximum temperature at 85°C from the experiment, the Application 

Model reached a maximum temperature at 377 °C with the same settings. 



 4 Testing of the Digital Twin of Induction Heating Equipment 

80 

The results from the Application Model show that the heat transfer is much higher in the model 

than in the real application or at a higher speed. It stabilizes back to the initial temperature after 

a couple of minutes, while the workpiece has a much slower decline in the temperature fall. 

To demonstrate how a change in material properties or setting influence the simulation results 

of the Application Model, the resistivity and frequency was changed isolated. First the 

resistivity was decreased by a tenth, keeping the other settings the same. Then the same with 

the frequency, decreasing it by a tenth and keeping the other setting the same. The temperature 

decreased to 115 °C and 108 °C at maximum temperature regarding resistivity and frequency, 

respectively. The decrease in frequency is shown to have more impact on the temperature than 

the resistivity. This demonstrates that the parameters can be adjusted to replicate the real 

temperature development.  

The deviation results from several factors, such as different material properties, magnetic 

properties, heat transfer, computational error, and time delay through MQTT. As mentioned 

earlier, it is challenging to develop a model that simulates the real application because it 

depends on the material of the workpiece and there are unknown parameters that may influence 

the temperature development.   

 

 



 5 Conclusion 

81 

5 Conclusion 
The last chapter of this thesis will give a conclusion of the usage of the digital twin at this 

stage and how it can benefit the customers of EFD Induction, and proposals for future work 

of the development of the digital twin. 

5.1 Conclusion 

The focus of this thesis has been on developing a digital twin for the induction heating 

equipment. A digital twin can have a variety of uses, and in this case the digital twin has been 

mainly used for monitoring the induction heating process when testing. This digital twin has 

been developed to be a base for the induction heating equipment, with the building blocks 

consisting of an Application Model, Converter Model, Set Point Controller, Data Storage and 

Converter Interface, and a connection between the models through the Data Exchange model. 

The digital twin has compared the temperature distribution between the real application and 

the Application Model and is a starting point for further development. It could eventually 

include more usages, such as testing what-if scenarios. As long a communication between the 

models have been established, there is a lot of potential of including additional models, such 

as a Model Parameter Tuner, and advancing the digital twin to represent a real application. 

In the experiments, the digital twin was able to deliver set point settings from the Set Point 

Controller to the real converter through the Converter Interface and store the results from the 

experiments in the Data Storage model. The Set Point Controller received and displayed the 

parameters from the real application, making it easy to monitor the experiments. It was also 

able to publish a sequence with the power going on and off, through the implementation of 

timers in the model. The Converter Model was able to calculate the frequency, power and the 

current in the coil and communicate with the other models through Data Exchange. Since it 

requires information about the resistance and inductance of the workpiece, The Converter 

Model was not included in the experiments with the digital twin. It became more of an 

interest to compare the temperature development between the Application Model and the real 

application with the same settings. The Converter Interface with the Raspberry Pi 3 enabled 

the connection to the real converter and handled the power on and off signal from the Set 

Point Controller by the relay closing and opening on the Automation HAT board. Through 

the analog inputs on the Automation HAT board, the current, power and frequency was 

published through the Data Exchange and displayed in the Set Point Controller. Since there is 

not an available analog output on the Raspberry Pi 3, an additional Raspberry Pi 3 was 

included with available GPIO pins. With the help of an RC circuit for filtering and converting 

the PWM signal to an analog signal, it was able to deliver the set point current to the real 

converter. But since there was a deviation from the actual set point current, it was rather set 

manually on the control panel of the converter. 

Results from the Application Model compared with the real application did correspond and 

showed similar temperature development, while not accurately. When the power ‘on’ signal 

with the set point current was published, the Application Model had a similar response as the 

real application with a rapid temperature increase in the workpiece, and a steady temperature 

decrease after the power was set off. The comparison between the temperature developments 

had a deviation, which was as expected since the Application Model has limitations regarding 



 5 Conclusion 

82 

constant material properties and neglecting magnetic properties. It is also shown how 

dependent the temperature development is on the material of the workpiece to be tested, 

comparing Stainless Steel 316L and 42CrMo4. This makes it challenging to develop a model 

that simulate the real application, since it is nonlinear and there are unknown parameters that 

have an influence on the temperature development. The shape of the coil had also an impact 

on the temperature development, where the experiments with the shorter coil resulted in a 

higher temperature increase than the experiments with the longer coil. It is therefore limited 

on what application the digital twin can be used for testing. The results after testing with 

different frequency and resistivity in the Application Model, showed that by adjusting the 

parameters it could be possible to replicate the temperature development from the real 

applications. A Model Parameter Tuner would be beneficial for the digital twin to optimize 

the parameters for the Application Model. The benefit with the Application Model is that it is 

possible to simulate how the temperature distribution is inwards in the workpiece, which is 

not possible with conventional temperature measurement with thermocouples that is attached 

on the surface. This can be valuable information when testing an application.  

Literature survey on existing methods for testing and evaluating induction heating equipment 

showed that testing of application in other companies is executed in a similar way as in EDF 

Induction, with computer simulation in advance and testing the application in lab. It has not 

been focused on a literature survey on tools for developing digital twins in this thesis. The 

focus has rather been on developing the digital twin for this process and using known tools 

that is non-commercial and can easily be downloaded by the costumers of EFD Induction.  

EFD Induction would benefit with having a digital twin regarding their customers. A digital 

twin would make them more attractive when choosing a manufacturer for developing their 

induction heating application. By having a digital twin that is accessible for the customers, 

they will be more involved in the process of testing their application and potentially develop 

a better solution. This will also improve their experience and impression of EFD Induction 

and would more likely choose EDF Induction when developing a new application at a later 

stage. It would also been beneficial if the digital twin could replace the testing of the real 

application in a lab. Often the workpieces that has been tested on, is no longer usable and 

must be replaced. This can be expensive if a lot of testing is required for the application, or 

the workpiece to be tested is of a large scale and cannot be easily replaced. 

5.2 Future work 

To replicate the real application more accurately, the Application Model should calculate the 

inductance and resistance of the workpiece to be tested from the material properties. The 

Converter Model will then be able to calculate the resonance frequency, power and current in 

the coil more accurately. Another possibility is to store information from previous 

experiments with real applications to train the Application Model by ML with a data-driven 

model to acknowledge realistic temperature distribution in the workpiece to be tested.   

For controlling and monitor the induction heating process, the Set Point Controller should 

have a chart for plotting the results from both the digital twin and the real application. It 

could also be accessible from a web-browser to have an easy access. The customer can then 

easily monitor the results from different scenarios when testing.   



 5 Conclusion 

83 

A Model Parameter Tuner has not been developed in this Digital Twin. If this were included, 

it would benefit the Application Model for adjusting the parameters for the workpiece to be 

tested and simulate more accurately for the application. 

The Data Storage model could be improved by developing a NoSQL database to store the 

data. This could have a module for generate reports of the testing of the application from the 

database.  

 

 

 

 

 

 



 

 

  References 

84 

References 
 

[1] VikramD, “Apollo 13: The First Digital Twin,” Simcenter, Apr. 14, 2020. 

https://blogs.sw.siemens.com/simcenter/apollo-13-the-first-digital-twin/ (accessed May 

04, 2021). 

[2] “Application of Digital Twin in Industrial Manufacturing,” FutureBridge, Feb. 06, 2020. 

https://www.futurebridge.com/industry/perspectives-mobility/application-of-digital-twin-

in-industrial-manufacturing/ (accessed May 04, 2021). 

[3] A. Rasheed, O. San, and T. Kvamsdal, “Digital Twin: Values, Challenges and Enablers 

From a Modeling Perspective,” IEEE Access, vol. 8, pp. 21980–22012, 2020, doi: 

10.1109/ACCESS.2020.2970143. 

[4] “Digital Twin – Top Use Cases in Healthcare,” Mar. 05, 2021. 

https://www.einfochips.com/blog/digital-twin-top-use-cases-in-healthcare/ (accessed 

May 04, 2021). 

[5] H. D. Young and R. A. Freedman, “Electromagnetic Induction,” in University Physics 

with Modern Physics, 13th edition., vol. 2, 2 vols., San Francisco, CA: Pearson Education 

Limited, 2012. 

[7] “What is Frequency Converter? How it works?” http://www.frequencyinverter.org/what-

is-frequency-converter-how-it-works-631601.html (accessed Feb. 23, 2021). 

[8] “Induction hardening,” EFD Induction. https://www.efd-induction.com/en/induction-

heating-applications/induction-hardening (accessed May 13, 2021). 

[9] “Induction brazing,” EFD Induction. https://www.efd-induction.com/en/induction-

heating-applications/induction-brazing (accessed May 13, 2021). 

[10] “Induction welding,” EFD Induction. https://www.efd-induction.com/en/induction-

heating-applications/induction-welding (accessed May 13, 2021). 

[11] “Inductoheat - Induction Process Development Laboratory,” Inductoheat Inc. 

https://www.inductoheat.com/services/induction-process-development-laboratory/ 

(accessed Apr. 29, 2021). 

[12] “Plustherm. Your indiviual Induction Heating Solutions,” Your induction solution 

finder. https://www.plustherm.com/ (accessed Apr. 29, 2021). 

[13] H. D. Young and R. A. Freedman, “Temperature and Heat,” in University Physics 

with Modern Physics, 13th edition., vol. 1, 2 vols., San Francisco, CA: Pearson Education 

Limited, 2012. 

[14] “Mathematical Modeling - MATLAB & Simulink Solutions.” 

https://se.mathworks.com/solutions/mathematical-modeling.html (accessed May 03, 

2021). 

[15] Dr. M. Grieves, “Digital Twin: Manufacturing Excellence through Virtual Factory 

Replication.” 2003. 



 

 

  References 

85 

[16] R. Minerva, G. M. Lee, and N. Crespi, “Digital Twin in the IoT Context: A Survey on 

Technical Features, Scenarios, and Architectural Models,” Proc. IEEE, vol. 108, no. 10, 

pp. 1785–1824, Oct. 2020, doi: 10.1109/JPROC.2020.2998530. 

[17] “Digital Twin Example - How Does the Technology Works?,” 4subsea. 

https://www.4subsea.com/digital-twin-example-article/ (accessed May 12, 2021). 

[18] “Echo — Equinors digitale tvilling - En interaktiv 3D-modell i lommen - 

equinor.com.” https://www.equinor.com/no/magazine/echo-equinors-digital-twin.html 

(accessed May 14, 2021). 

[19] “The Future of Mobility: Tomorrow’s Ships: Born in an Ocean of Data,” siemens.com 

Global Website. https://new.siemens.com/global/en/company/stories/research-

technologies/digitaltwin/future-of-mobility-efficiency-for-shipping.html (accessed May 

12, 2021). 

[20] “Modern manufacturing’s triple play: Digital twins, analytics, IoT.” 

https://www.sas.com/en_us/insights/articles/big-data/modern-manufacturing-s-triple-

play-digital-twins-analytics-iot.html (accessed May 04, 2021). 

[21] “5 Real World Examples of Digital Twins,” PALAMIR ... smart resilient cities. 

https://www.palamir.com/news/5-real-world-examples-of-digital-twins (accessed May 

04, 2021). 

[22] “Digital twin cities and the future of urban planning.” 

https://www.itu.int:443/en/myitu/News/2020/10/21/14/15/Digital-twin-cities-Microsoft-

Bentley-Systems (accessed May 12, 2021). 

[23] “MQTT,” Wikipedia. Jan. 21, 2021. Accessed: Feb. 10, 2021. [Online]. Available: 

https://en.wikipedia.org/w/index.php?title=MQTT&oldid=1001776985 

[24] T. H. Team, “Client, Broker / Server and Connection Establishment - MQTT 

Essentials: Part 3.” https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-

connection-establishment (accessed Feb. 16, 2021). 

[25] “MQTT Version 3.1.1.” http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-

os.html#_Toc398718028 (accessed Mar. 09, 2021). 

[26] T. H. Team, “MQTT Publish, Subscribe & Unsubscribe - MQTT Essentials: Part 4.” 

https://www.hivemq.com/blog/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe 

(accessed Mar. 09, 2021). 

[27] steve, “MQTT Publish and Subscribe Beginners Guide,” Jun. 04, 2018. 

http://www.steves-internet-guide.com/mqtt-publish-subscribe/ (accessed Mar. 09, 2021). 

[28] T. H. Team, “Quality of Service 0,1 & 2 - MQTT Essentials: Part 6.” 

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels 

(accessed Feb. 23, 2021). 

[29] T. H. Team, “MQTT Topics & Best Practices - MQTT Essentials: Part 5.” 

https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices 

(accessed Mar. 11, 2021). 

[30] R. Light, paho-mqtt: MQTT version 5.0/3.1.1 client class. Accessed: May 16, 2021. 

[Online]. Available: http://eclipse.org/paho 



 

 

  References 

86 

[31] “Paho Python MQTT Client - Working with Connections,” Aug. 20, 2016. 

http://www.steves-internet-guide.com/client-connections-python-mqtt/ (accessed Feb. 16, 

2021). 

[32] H. P. Langtangen and A. Logg, “Solving PDEs in Python – The FEniCS Tutorial 

Volume I,” p. 153. 

[33] H. D. Young and R. A. Freedman, “Sources of Magnetic Field,” in University Physics 

with Modern Physics, 13th edition., vol. 2, 2 vols., San Francisco, CA: Pearson Education 

Limited, 2012. 

[34] H. D. Young and R. A. Freedman, “Alternating Current,” in University Physics with 

Modern Physics, 13th edition., vol. 2, 2 vols., San Francisco, CA: Pearson Education 

Limited, 2012. 

[35] eclipse/paho.mqtt.m2mqtt. Eclipse Foundation, 2021. Accessed: May 16, 2021. 

[Online]. Available: https://github.com/eclipse/paho.mqtt.m2mqtt 

[36] “A Guide to Logging MQTT Sensor Data,” Mar. 19, 2018. http://www.steves-

internet-guide.com/logging-mqtt-sensor-data/ (accessed Apr. 11, 2021). 

[37] J. Coe, “SQL Basics — Hands-On Beginner SQL Tutorial Analyzing Bike-Sharing,” 

Dataquest, Feb. 01, 2021. https://www.dataquest.io/blog/sql-basics/ (accessed Apr. 14, 

2021). 

[38] “SQL vs NoSQL: What’s the Difference Between SQL and NoSQL.” 

https://www.guru99.com/sql-vs-nosql.html (accessed Apr. 14, 2021). 

[39] “Comma-separated values,” Wikipedia. Mar. 23, 2021. Accessed: Apr. 14, 2021. 

[Online]. Available: https://en.wikipedia.org/w/index.php?title=Comma-

separated_values&oldid=1013831687 

[40] pimoroni/automation-hat. Pimoroni Ltd, 2021. Accessed: May 16, 2021. [Online]. 

Available: https://github.com/pimoroni/automation-hat 

[41] “Ovako 42CrMo4 EN10083-3 Steel.” 

http://www.matweb.com/search/datasheet.aspx?matguid=6dc42d4c5aa647e28ebac62f1bc

34336 (accessed Apr. 28, 2021). 

[42] “AISI Type 316L Stainless Steel, annealed sheet.” 

http://www.matweb.com/search/datasheet_print.aspx?matguid=1336be6d0c594b55afb5c

a8bf1f3e042 (accessed Apr. 28, 2021). 

[43] “Stork Cooperheat | Thermocouple Attachment Unit (230V a.c.) - Stork.” 

https://www.stork.com/en/cooperheat-equipment-shop/thermocouple-attachment-unit-

battery-recharge-supply-230v-ac (accessed Apr. 27, 2021). 

[44] “MODBUS – protokoll for industriell kommunikasjon | WAGO NO.” 

https://www.wago.com/no/modbus (accessed Apr. 19, 2021). 

[45] L. Lefebvre, pyModbusTCP: A simple Modbus/TCP library for Python. Accessed: 

May 13, 2021. [Online]. Available: https://github.com/sourceperl/pyModbusTCP 

[46] “Welcome to pyModbusTCP’s documentation — pyModbusTCP 0.1.10 

documentation.” https://pymodbustcp.readthedocs.io/en/latest/ (accessed Apr. 27, 2021). 



 

 

  References 

87 

[47] “Control Raspberry Pi GPIO Pins from Python,” ICS - Integrated Computer 

Solutions. https://www.ics.com/blog/control-raspberry-pi-gpio-pins-python (accessed 

Apr. 25, 2021). 

[48] “mosquitto.conf man page,” Eclipse Mosquitto, Apr. 06, 2021. 

https://mosquitto.org/man/mosquitto-conf-5.html (accessed Apr. 14, 2021). 

[49] “Setting up a Raspberry Pi headless - Raspberry Pi Documentation.” 

https://www.raspberrypi.org/documentation/configuration/wireless/headless.md 

(accessed Mar. 24, 2021). 

[50] “IP Address - Raspberry Pi Documentation.” 

https://www.raspberrypi.org/documentation/remote-access/ip-address.md (accessed Mar. 

24, 2021). 

[51] “Equip Raspberry Pi with a static IP address,” IONOS Digitalguide. 

https://www.ionos.com/digitalguide/server/configuration/provide-raspberry-pi-with-a-

static-ip-address/ (accessed Mar. 24, 2021). 

 



 

 

  References 

88 

6 Appendices 
Appendix A Task description of the master’s thesis 

 

 



 

 

  References 

89 

 

 



 

 

  References 

90 

Appendix B Set up of MQTT Broker 

Mosquitto is installed to function as the MQTT Broker in the connection between the models 

of the Digital Twin. Mosquitto is part of the Eclipse foundation and can be installed through 

their homepage. The software is open-source and can be installed on a wide range of 

platforms, including Windows and Linux distributions.  

When installing Mosquitto, there is an option to automatically start up the broker when 

starting the machine. It this is not chosen, the Mosquitto broker can be started by entering in 

the command line as administrator, shown in Figure 6.1. If the Mosquitto broker service is to 

stop, ‘net stop mosquitto’ is entered. 

 

Figure 6.1: Start up MQTT Mosquitto Broker 

With the install of Mosquitto, a configuration file is included in the Mosquitto folder. There 

is no need to edit this file for the Mosquitto broker to start and the complete file is 

commented out. Depending on what changes that need to be made, the respective line can be 

uncommented and edited. This applies if there is need for authentication with the use of 

username and password. ‘allow_anonymous’ is a Boolean value that can set to true or false 

[48].  

 

Figure 6.2: Allow anonymous set to false in the configuration file 

If set to false, no other clients can connect to the broker without providing username and 

password. A username/password file can be created in a text file with the format 

username:password, and located in the Mosquitto folder. 

 

Figure 6.3: Enable password file and path in the configuration file 

When another client is connecting to the broker, the client must specify username and 

password for access.  

With the Mosquitto software, there is also included MQTT client tools. ‘mosquitto_pub’ is a 

function for publishing message to a topic. An example is shown in Figure 6.4. In this 

function, there are different flag options. The flags that are the most basic and necessary for 

publishing a message is -h Host address, -t Topic and -m Message Payload.  Host address will 

be the address of the broker. Since Mosquitto Broker is installed on the computer, localhost 

can be used as host address. By default, localhost will always be chosen as host address if 

nothing else is specified. Topic is defined as ‘test’ for this purpose, while the message of 

payload to be sent is ‘hello’.  



 

 

  References 

91 

 

Figure 6.4: Test of Mosquitto client function 'mosquitto_pub' in Windows command line 

After entering, the message will be published to the topic. To receive the message that have 

been sent, the ‘mosquitto_sub’ function can be used for subscribing to the topic. Figure 6.5 

show the function with the necessary flags, -h and -t, to receive the message ‘hello’. It is 

important that the same host address and topic is defined as in the ‘mosquitto_pub’ function 

to receive the message, since it is the broker that distributes the messages that are being 

published and is the connection between the clients.  

 

 

Figure 6.5: Test of Mosquitto client function 'mosquitto_sub' in Windows command line 

There are multiple public brokers available that are open for everyone to use. Some examples 

are: ‘test.mosquitto.org’, ‘broker.hivemq.com’ and ‘iot.eclipse.org’. If the purpose of the 

MQTT communication is for testing and exploring the functions, the public brokers are fine 

to use. But for publishing and subscribing on important and sensitive information, a localhost 

with MQTT broker installed should be used. 

 

 

 

 

 

 

 

 

 

 



 

 

  References 

92 

Appendix C Installing FEniCS in Ubuntu 

To get access to the FEniCS software library, the program must be run in a Linux operating 

system. Instead of having a virtual machine, Windows Subsystem for Linux (WSL) gives 

access to Linux software programs in the Windows environment through a Linux distributor. 

Ubuntu is chosen as a Linux distributor since it is user-friendly and suitable for beginners.  

 

 

Figure 6.6: Ubuntu terminal as an interface to the Linux operating system 

Figure 6.6 show the terminal for Ubuntu. In this shell, commands can be written and 

executed. The FEniCS library is installed through Ubuntu by the command lines: 

sudo add-apt-repository ppa:fenics-packages/fenics 

sudo apt-get update 

sudo apt get install fenics 

sudo apt-get dist-upgrade 

FEniCS is then added to Ubuntu’s list of software sources and is added to Python by the 

command line: 

python3 -c ‘import fenics’ 

The application model in Python with the imported FEniCS library can now be run in the 

Ubuntu terminal by changing directory to the file location in Windows. 

 

Figure 6.7: Run Python script with FEniCS from Ubuntu terminal 

 



 

 

  References 

93 

Appendix D Complete set up of Raspberry Pie 3 

Raspberry Pi 3 is a small computer that can be programmed to execute tasks specified by the 

user. Figure 6.8 show the Raspberry Pi 3 on a model B+ board. The board has a 64-bit quad-

core processor, 1 GB RAM, micro SD port, 40 pin GPIO header, four USB ports, one HDMI 

port and Ethernet connection. This board also comes with the possibility to connect through 

wireless network. For power supply, a micro USB port is accessible. 

 

Figure 6.8: Raspberry Pie 3 Model B+ board 

 

A full first set up of the Raspberry Pi 3 is shown in Figure 6.9. This includes computer 

mouse, keyboard, Ethernet cable and HDMI cable to a monitor.  



 

 

  References 

94 

 

Figure 6.9: Full set-up of the Raspberry Pi 3 

For the Raspberry Pi to function, the SD card must have the operating system installed. There 

are several Linux-based operating systems that are available, such as Raspbian, Ubuntu and 

Windows IoT Core. Raspbian is the operating system that are recommended for the 

Raspberry Pi since it is especially designed for this hardware. 

To install Raspbian operating system, the SD card must first be inserted in a SD card port on 

a computer. When the SD card is inserted, a folder named ‘boot’ is shown. This is a folder 

containing files that are formatted with the FAT file system. This means that the files are 

visible on both Windows and Linux machines. Boot is another word for start up, and this 

folder will store the necessary files for the operating system to start up. The operating system 

is an image that must be downloaded and installed on the SD card. Raspberry Pi Imager is a 

program that can be downloaded in Windows and is a card reader that writes the image to the 

SD card, shown in Figure 6.10. 



 

 

  References 

95 

 

Figure 6.10: Raspberry Pi Imager is used for writing the operating system over to a SD card 

 The operating system is chosen from a list, then the storage, which will be the inserted SD 

card. When this is chosen, the image can be written to the SD card by clicking ‘Write’.  

It can be a benefit to have an empty SD card when installing the operating system to avoid 

any issues. SD Memory Card Formatter is a program that can be downloaded in Windows for 

formatting the SD card and erase all previous files. 

On the underside of the Raspberry Pi there is a microSD port where the SD card with the 

installed Raspbian will be inserted. Since there is no power switch, the Raspberry Pi will turn 

on as soon as the power supply is connected. It is therefore important to do all other 

connections before the power supply is connected to ensure no damage to other components. 

When starting the Raspberry Pi, a rainbow is first displayed at the monitor before the desktop 

of the Raspbian operating system appears, shown in Figure 6.11. 



 

 

  References 

96 

 

Figure 6.11: Desktop of the Raspbian operating system 

The Raspberry Pi is now ready for the initial setup. The setup includes choosing country, 

language, and time-zone. A new password is recommended for the Raspberry Pi which is 

necessary when there is a remote access. Then the Raspberry Pi needs to be connected to a 

network. For the Model B+ board it is possible to connect to a wireless network, which is 

chosen here. To know the IP address of the Raspberry Pi, enter ‘hostname -I’ in the command 

line and the IP address will be revealed.  

At last, there is a check for update and install of software, and a reboot of the Raspberry Pi.  

The Raspberry Pi is now finished with the setup and ready for use. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  References 

97 

 

Appendix E Headless setup of the Raspberry Pi 3 

To have remote access to the Raspberry Pi, the Raspberry Pi is also configured to have a 

headless setup. A headless setup means a setup of the Raspberry Pi without monitor, mouse, 

and keyboard. The purpose is to control and monitor the Raspberry Pi from another 

computer.  

For the computer to get access to the Raspberry Pi, there must be defined a file in the boot 

folder with information about the wireless network. To edit the boot folder, The SD card 

must be inserted back in the computer. Inside this folder, a new text file named 

‘wpa_supplicant.conf’ must be defined. 

 

Figure 6.12: wpa_supplicant.conf file to define wireless network[49] 

In the ‘wpa_supplicant.conf’ file shown in Figure 6.12, the lines that needs to be edited are 

‘country’ with country code, and ‘ssid’ and ‘psk’ under ‘network’ with name and password of 

the wireless network. When this is edited, the file must be saved as a text file and the SD card 

can be removed. Next time the Raspberry Pi starts up with the SD card, this file will be 

copied to the operating system and use the defined settings to connect to the network [49]. 

To remotely access the command line of the Raspberry Pi, SSH (Secure Shell) must be 

enabled. Inside the boot folder, a file named ‘ssh’ must be created. The content of the file is 

not of importance as the Raspberry Pi only detects the file name and then deletes the file. 

From the desktop this can be edited in the Raspberry Pi Configuration Tool. This is done by 

entering ‘sudo raspi-config’ in the command line and the Raspberry Pi configuration is 

launched, shown in Figure 6.13. 



 

 

  References 

98 

 

Figure 6.13: Raspberry Pi Configuration from the command line 

By entering ‘3 Interface Options’ and then navigate to SSH, SSH can be disabled/enabled.  

It is important to note the IP address of Raspberry Pi when the access is done remotely for the 

first time. In this case, the first set up was with the monitor included where the IP address 

could be revealed from the command line. With a headless setup, this will not be possible. 

The IP address can then be found in the router’s list of connected devices by login on the 

computer [50].  

SSH is included in Windows 10 by default, but this can be checked by going to Settings > 

Apps > Apps and Features > Optional Features and search for OpenSSH Client and install if 

not included. 

In the Windows command line, type ‘ssh pi@pi-address’, press enter and then type in the 

password for the Raspberry Pi. If there is a successful connection, the Raspberry Pi will be 

remotely accessed as shown in Figure 6.14. 



 

 

  References 

99 

 

Figure 6.14: Remote access to the Raspberry Pi using Windows SSH Client 

Each time the Raspberry Pi is connected to the network, it is given an IP address by the 

router. To be able to access the Raspberry Pi headless and ensure connection, the IP address 

must then be static. By entering ‘ifconfig’ in the command line of the Raspberry Pi, the IP 

address is shown under ‘wlan0’, which stands for wireless LAN. This is the IP address given 

by the router for connecting to the network through the DHCP server. This server has a range 

of IP addresses it gives to clients when connecting to the network and to avoid that other 

clients will cause conflict with the Raspberry Pi, an IP address outside the server’s range 

should be chosen. A login to the router at the web browser will give information about the 

DHCP server and its IP address range. The Raspberry Pi also have a range of IP addresses. 

The static IP address must then be outside the DHCP server range but still inside the 

Raspberry PI range.  

By entering ‘sudo nano /etc/dhcpcd.conf’ in the command line in the Raspberry Pi it is 

possible to configurate the static IP address by editing the dhcpcd.conf file shown in Figure 

6.15. 



 

 

  References 

100 

 

Figure 6.15: Configuration for DHCP 

On top of the file, the static IP address is assigned to the Raspberry Pi. The address of the 

router and domain name server (DNS) are both the same in this case. The file can now be 

saved by ctrl + X and entering ‘Yes’ for the changes to be saved. The Raspberry Pi also needs 

to be rebooted [51].  

Since there is no power switch on the Raspberry Pi, the commands ‘sudo poweroff’ and ‘sudo 

reboot’ can be entered in the command line. It is not recommended to pull out the power 

supply while the Raspberry Pi is on, as it can cause damage to components and the SD card.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 


