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Summary 

Most of the world’s soil resources are of poor condition and with an expanding 

population it is important to improve soil management. Activities of microorganisms 

living in soil are essential for soil and plant health, and study of soil microorganisms can 

give important information of microbial diversity and function, which can give status of 

soil condition.  

Next-generation sequencing give us the opportunity to study soil microorganisms at the 

most basic level. Illumina MiSeq is the most used sequencing platform. It provides a lot 

of data output but is limited by short read length. Oxford Nanopore MinION is the newest 

third generation sequencing technology which offers long-read sequences, but a main 

disadvantage is a relatively low read accuracy.  

We used Illumina MiSeq and Oxford MinION to compare the taxonomic resolution of 

bacteria by sequencing of soil samples. Additionally, the soil samples were subject to 

different treatments: pesticide, fertilizer, pesticide*fertilizer and untreated, to see if it 

influenced the microbial community.  

The two technologies got very similar results at both alpha- and beta diversity analyses. 

Application of fertilizer gave a significant effect on the microbial community at both 

technologies. Different phyla were dominating within the two sequencing platforms. 

Proteobacteria dominated with the MinION analysis, while Actinobacteria dominated 

with the Illumina MiSeq analysis. However, we conclude that there was not a difference 

in the taxonomic resolution between Illumina MiSeq and Oxford MinION. 
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1. Introduction  

The soil contains a great diversity of organisms and is essential for all life on earth. Soil 

provides important ecosystem services like water regulation, erosion control, and climate 

regulation, and is important to human health. Large quantities of food are derived from 

the soil because it provides the right condition for plant growth (Brevik et al., 2018). The 

complex soil organic matter is a storage of nutrients, where physical-chemical processes 

control nutrient sorption and availability for the plant roots. This soil function, to support 

and sustain plant growth, is accomplished by a cooperation between the plant itself, the 

soil mineral matrix and microbes (Brevik et al., 2020). A healthy soil produces healthy 

crops that in turn feed people and animals. The Food and Agriculture Organisation for 

the United Nations (FAO) has raised a concern regarding soil health. Their report from 

2015 says that one-third of earth’s land is acutely degraded, and with an expanding 

population it is important to improve the soil health and create a sustainable soil 

management (FAO & ITPS, 2015).  

 

Microbes in soil are central to soil and plant health. They act as decomposers of dead 

plants and animals, creating organic matter. The degradation of dead material release 

nutrients that enhance soil fertility and finally improves plant productivity (Mohanram & 

Kumar, 2019). In the rhizosphere, soil bacteria surround plant roots and interact with 

them. Through processes like nitrogen fixation and solubilization of phosphorus 

compounds, vital molecules are converted to a form accessible to the plant. Pathogens 

are prevented to infect plant roots as soil bacteria fight for nutrients and space, and 

produce antibiotics (Khatoon et al., 2020). 

 

The soil microbial community can be influenced by soil variables, e.g., pH, carbon-to-

nitrogen ratio, and available phosphorus, which will vary with the use of fertilizers and 

pesticides. Study of microorganisms in soil can give important information of composition 

and function of microbial populations, which can give status of soil condition (Hermans 

et al., 2017). So far only a few soil microorganisms have been studied in the lab due to 

challenges in replicating their natural environment (Solden et al., 2016). However, 

culture-independent techniques, using molecular analyses have been developed. Next-

generation sequencing gives the opportunity of differentiating terrestrial life forms at the 
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most fundamental level. This technology offers massively parallel sequencing of 

DNA/RNA, which can reveal the hereditary and biochemical properties of microorganisms 

(Heather & Chain, 2016). To identify microbial communities in different environments, 

metabarcoding is widely used, where barcode means a short variable gene region. The 

process of metabarcoding includes DNA extraction from a sample and amplification by 

polymerase chain reaction (PCR), using specific primers which amplify the target gene 

region. The amplified products are sequenced and then characterized using bioinformatic 

tools (Orgiazzi et al., 2015). 

 

The 16S ribosomal RNA gene of prokaryotes is largely used as the target gene when 

studying microbial taxonomy. This gene is part of the small ribosomal subunit present in 

all prokaryotic cells and have useful characteristics for bacteria identification, like its small 

size (~1500 bp) and its nine variable regions (V1-V9) flanked by conserved stretches 

(Figure 1) (Santos et al., 2020). 

 

Figure 1: The 16S rRNA gene (1500 bp) consist of 9 variable regions (V1-V9) and conserved regions (blue) (figure by 

Jorunn Hellekås).  

The variable regions can be used to distinguish between different bacterial species 

because of different evolutionary development. The conserved regions make it possible 

to use universal designed primers that will be able to bind to a wide variety of DNA 

templates for identification of many microorganisms (Santos et al., 2020). When 

sequencing the 16S rRNA gene, similar sequence variants are often clustered into 

operational taxonomic units (OTUs), where each cluster represent a taxonomic unit of a 

bacteria species or genus. The OTUs are generated to chosen threshold lines (e.g. 97% or 

99%) for comparison with reference databases (Johnson et al., 2019). Different 

sequencing methods exists, and the concept of sequencing by synthesis is commonly 

used. Here, the template strand is used to synthesise a new DNA strand, and the 

nucleotides are monitored when they are incorporated, creating the new strand. This 

sequencing method is offered by companies like Thermo Fisher (e.g., Ion Torrent) and 

Illumina. A newer sequencing method is single-molecule sequencing which are used by 
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Oxford Nanopore Technologies. This method monitors single nucleotides as the template 

strand passes an ionic current through a nanopore (McCombie et al., 2019).  

 

Illumina is a widely used second generation sequencing technology, and the company 

offers different sequencing platforms like the MiniSeq, MiSeq and NextSeq, where the 

sequencing length varies between the platforms. For analyses with Illumina, the DNA 

samples are amplified by PCR, and the PCR-products are cleansed. Then, library 

preparation starts with fragmentation of amplified DNA, followed by ligation of adaptor 

sequences to each end of the DNA fragments. The prepared DNA and necessary reagents 

are then loaded into the sequencer and further to a solid-surface flow cell coated with 

primers complementary to the adaptor sequences. The fragmented DNA binds to the 

primers at the cell surface and is amplified by a DNA polymerase, producing clusters of 

millions of copies of the initial DNA fragment (Figure 2A). The fragments are then 

sequenced using sequencing-by-synthesis (SBS) chemistry. Fluorescently labelled 

nucleotides (A, C, G and T) are monitored as they are incorporated one base at a time, 

creating a new DNA strand (Figure 2B and 2C) (Quainoo et al., 2017).  

 

Figure 2: Illumina sequencing. A: The flow cell has clusters of millions of copies of the initial DNA. B: Nucleotides are 

incorporated base per base. C: The incorporated nucleotides are monitored by a computer (figure by Jorunn 

Hellekås). 

Illumina MiSeq sequencing (hereinafter referred to as MiSeq) produces short reads, 

approximately 300 bp. When targeting the 16S rRNA gene, only sub-regions of the gene 

are sequenced, such as V4 or V6, or two variable regions, such as V3-V4. Taxonomy is 

assigned based on these short variable regions (Johnson et al., 2019). A lot of data output 



 

  

___ 

9 
 

(20 GB) is produced as the system can run up to 96 samples at the same time, with a read 

accuracy of 99.9%. Also, a benefit of MiSeq sequencing is that many bioinformatic tools 

and programs are designed to process sequencing data from variable region V3 and V4 

(Santos et al., 2020).  

 

Oxford Nanopore Technologies (ONT) made the small, portable MinION sequencer 

platform commercially available in 2014 (hereinafter referred to as MinION) (Rang et al., 

2018). The sequencing principle involves nanopore technology and differ from Illumina 

technologies as a single molecule of DNA is detected without chemical labelling the 

sample. The MinION device consist of a flowcell with sensors and nanopores, where the 

flowcell is inserted into the device before each sequencing run. Barcodes and adaptors 

are ligated to the DNA samples during library preparation. The adaptors will interact with 

proteins attached to the nanopores so the DNA strand can enter the pores (Figure 3A). 

The nanopores has an ionic current which are disrupted when a nucleotide traverses it 

and is displayed as a “squiggle” plot (Figure 3B). Each base type is linked to a characteristic 

alteration in the current (squiggles), allowing sequencing of the DNA strand as it moves 

through the nanopore (Plesivkova et al., 2019). 

 

Figure 3: MinION sequencing. A: The DNA strand is moving through the nanopore disturbing the ionic current in a 

base-specific manner. B: The passing nucleotides are monitored as a squiggle plot (figure by Jorunn Hellekås). 

The MinION can sequence thousands of basepairs in one run and hence the whole 16S 

rRNA gene can be sequenced. The detection of nucleotides passing the nanopores gives 

results in real time. This gives the opportunity to start data analysis early in the process, 

and also stop the sequencing when sufficient results are obtained (Santos et al., 2020). A 
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known problem of sequencing with MinION is high error rates of up to 15% per base 

(Quainoo et al., 2017; Rang et al., 2018). However, ONT constantly evolves their 

technology, and reports that new chemistry of the flow cell is coming soon with a read 

accuracy of up to 99% (Oxford Nanopore Technologies, 2020). 

 

Identification of bacteria at species level can be crucial in several situations. For instance, 

outbreaks at hospitals require quick information to infer transmission dynamics and 

identify species with potential antibiotic resistance genes (McGann et al., 2016). 

Foodborne pathogens can cause disease, and it is therefore important to find the source 

of transmission in order to prevent further damage (Quick et al., 2015). Moreover, soil 

borne pathogens may threaten plant health and hence crop production (De Corato, 

2020). However, it can be challenging to receive sequencing results and classify at species 

level. Johnson et al. (2019) performed an in-silico experiment to test if different sub-

regions of the 16S rRNA gene could provide accurate, taxonomic classification at the 

species-level. They achieved poor results and concluded that partial sequencing of the 

16S rRNA gene cannot discriminate between species. Also, some studies claims that the 

16S rRNA gene alone is not sufficient for species identification, since the sequence 

similarity varies substantially between genera and species (Cusco et al., 2018; Srinivasan 

et al., 2015).  

 

The aim of this study was to compare the diversity estimates and taxonomic resolution 

determined by sequencing of soil samples with Illumina MiSeq and ONT MinION. 

Additionally, the soil was subject to different treatments, to see if it influenced the 

microbial community. The whole 16S rRNA gene was sequenced with the MinION, while 

the variable regions V3-V4 were sequenced with MiSeq.   
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2. Materials and methods 

2.1. Soil sampling and treatments 

Mixed soil from location 59.3868012, 9.2255803 in Midt-Telemark was distributed into 

12 pallets (400L x 12) in mid-June 2020. Horse pasture mix (SPIRE) was sowed in all 12 

pallets. Each pallet got 5 grams of seed sown evenly according to the manufacturer’s 

description. The soil was watered every other day until grass sprouts. Then the pallets 

were subject to various treatments: three pallets were treated with pesticide (Roundup 

Glyphosate mixed with water (1:100)), three pallets were treated with mineral fertilizer 

(60-gram Yara “25-2-6”), three pallets were treated with both pesticide and mineral 

fertilizer, and three pallets remained untreated. The treatments of fertilizer and pesticide 

were done according to the manufacturer’s description.  

In the autumn of 2020, soil for DNA analysis (10-25 gram) was collected in plastic tubes 

from the middle of the 12 pallets in two rounds. We left out one sample because further 

analysing required a maximum of 23 samples plus negative control. Their sample ID are 

listed in Table 1. The samples were stored in the freezer (-80 Co) until DNA extraction.  

Table 1: Table of the 23 collected soil samples with sample ID and type of treatment.  

Sample ID Treatment Sample ID Treatment 

MUTP1_0909 Untreated MUTP1_0211 Untreated  

MUTP2_0909 Untreated MUTP2_0211 Untreated 

MUTP3_0909 Untreated  MUTP3_0211 Untreated 

MFP1_0909 Fertilizer MFP1_0211 Fertilizer 

MFP2_0909 Fertilizer MFP2_0211 Fertilizer 

MFP3_0909 Fertilizer MFP3_0211 Fertilizer 

MPP1_0909 Pesticide MPP1_0211 Pesticide 

MPP2_0909 Pesticide MPP2_0211 Pesticide 

MPP3_0909 Pesticide MPP3_1510 Pesticide 

MPFP1_0909 Pesticide + Fertilizer MPFP1_0211 Pesticide + Fertilizer 

MPFP2_0909 Pesticide + Fertilizer MPFP2_0211 Pesticide + Fertilizer 

MPFP3_0909 Pesticide + Fertilizer   
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2.2. Microbial DNA extraction 

DNA was extracted from 0.25 g of soil using the DNeasy PowerMax Soil kit (QIAGEN, 

Germany) following manufacturer’s instructions. DNA yield (ng/µl) and purity (A260/280) 

were quantified spectrophotometrically with a NanoDrop Lite Spectrophotometer 

(Thermo Fisher Scientific, USA). DNA yield was also quantified fluorometrically with a 

Qubit 3.0 fluorometer (Invitrogen, USA). Both NanoDrop and Qubit were used according 

to manufacturer’s protocols. Extracted DNA was stored in the freezer (-20 Co) until 

further analysing.  

 

2.3. Illumina MiSeq sequencing 

The extracted DNA samples were placed in a 96-well plate, where each sample had a 

minimum amount of 200 ng DNA, and sent to the Norwegian Sequencing Centre (NCS) 

(Oslo, Norway). Here, the DNA samples were subject for 16S DNA library preparation and 

sequenced on an Illumina MiSeq instrument (Illumina, USA) with a 300-bp paired end 

reads (MiSeq v3 chemistry) with 10% PhiX spike-in. NSC followed the protocol of Fadrosh 

et al. (2014) to prepare amplicon libraries of the V3-V4 region (approx. 469 bp) of the 

prokaryotic 16S rRNA gene. A positive control sample (ZymoBIOMICS Microbial 

Community DNA standard II, Zymo Research) and a negative control sample (H2O) was 

included. The 16S amplification primer sequences were as follows: 

- 319F forward primer: 5’ ACTCCTACGGGAGGCAGCAG 3’  

- 806R reverse primer: 5’ GGACTACNVGGGTWTCTAAT 3’  

The sequencing results were received as FASTQ files.  

 

2.4. Library preparation and ONT MinION sequencing 

For library preparation, we followed the Oxford Nanopore Technologies protocol “16S 

Barcoding Kit 1-24 SQK-16S024” (16S_g086_v1_revJ_14Aug2019) according to the 

manufacturer’s description. The extracted DNA samples were first amplified using long-

range PCR (Thermal cycler model PTC-200, MJ research, USA) in 50 µl volume containing 

10 ng of DNA and 25 µl LongAmp Hot Start Taq 2x Master Mix (Biolabs, New England) and 

10 µl of premade barcoded primers (16S Barcoding Kit 1-24 (SQK-16S024), Oxford 
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Nanopore) which amplified the 16S rRNA gene spanning the variable regions V1-V9. The 

PCR conditions were as follows 1 minute of initial denaturation at 95Co, 30 cycles of 20 

seconds denaturation at 95Co, 30 seconds of annealing at 55 Co and elongation for 2 

minutes at 65 Co, followed by a final extension of 5 minutes at 65 Co. We used 30 

amplification cycles instead of 25 cycles, which the protocol recommends, due to low 

output of PCR products. Each of the 23 amplified samples were diluted to a DNA 

concentration of around 10 ng/µl. The samples were then pooled using 2 µl from each. 

Subsequently, the pooled samples and necessary reagents were loaded on the MinION 

flow cell FLO-MIN106D (R9) (Oxford Nanopore Technologies, UK) and the sequencing was 

started. 

 

2.5. Bioinformatic and statistical analyses 

Illumina MiSeq 16S sequencing data processing  

Raw sequencing reads were demultiplexed and primers and barcodes were trimmed off 

using an inhouse software at the Norwegian Sequencing Centre (https://github.com/nsc-

norway/triple_index-demultiplexing/tree/master/src). Resulting FASTQ files were further 

pre-processed, quality filtered and analysed using the QIIME2 pipeline. Reads were 

truncated to 280 bases and paired sequence reads were joined, quality-filtered and 

chimeras were removed using DADA2 in the QIIME2 pipeline. Taxonomic classification of 

ASVs generated from DADA2 were done using the Naive Bayes classifier algorithm trained 

on data from SILVA v. 138 using the feature classifier in QIIME2.  

 

ONT MinION 16S sequencing data processing 

Raw FAST5 reads were basecalled, sorted by barcodes and converted to FASTQ files using 

the MinKNOW software (v. 20.06.4). Reads with a phred score <7 and a length lower than 

1200 and higher than 2000 bp were excluded from further analyses using the software 

EPI2ME. EPI2ME was further used to assign the nanopore reads to taxonomy using the 

16S module. Here, filtered reads were blasted against the NCBI 16S bacterial database 

and reads were assigned to taxonomic units based on sequence similarity.  

 

 

https://github.com/nsc-norway/triple_index-demultiplexing/tree/master/src
https://github.com/nsc-norway/triple_index-demultiplexing/tree/master/src
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Statistical analyses  

We used RStudio (RStudio, 2021) (v. 1.4.1103) for all statistical analyses. The samples 

were rarefied in order to account for differences in number of sequences obtained from 

the different samples.  

R package Phyloseq (https://github.com/joey711/phyloseq) was used to compare 

different estimates of the alpha diversity, i.e., the diversity within samples, and to plot 

the relative abundance of the different groups. We calculated the observed species 

richness, the abundance-based coverage estimator (ACE) and the Shannon index. 

Observed species richness reflect the number of species in the samples while ACE reflect 

the species relative abundance (number of individuals in each species). The Shannon 

index accounts for both species richness and their relative abundance. 
R package Vegan (https://github.com/vegandevs/vegan/) was used to calculate the beta 

diversity, i.e., the diversity between samples, in a Principal Coordinates Analysis (PCoA) 

plot of Bray-Curtis dissimilarities. The significance and the effect of treatments on the 

bacterial community (beta diversity) were calculated using PERMANOVA using the vegan 

R-package.   

 

 

https://github.com/joey711/phyloseq
https://github.com/vegandevs/vegan/
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3. Results 

The results of MiSeq sequencing ranged from about 20 000 reads (sample MFP2_0909) 

to just above 100 000 reads (sample MPFP2_0909) (Figure 4, left). MinION sequencing 

ranged from just below 50 000 reads (sample MUTP2_0909) to above 150 000 reads 

(sample MUTP1_0211), where over half of the samples had over 100 000 sequencing 

reads (Figure 4, right). Sample MUTP2_0211 got poorly sequencing results in the MinION 

sequencing and was removed for further analyses, giving us a total of 22 samples. 

 

Figure 4: Number of sequencing reads generated by MiSeq (left) and MinION (right). The 22 samples are represented 

on the horizontal line and number of reads on the vertical line.  

The variation in number of reads produced from each sample may affect further 

calculations of diversity estimates. To avoid this we rarefied the data, we also removed 

reads that did not assign to any domain such as bacteria and archaea and removed the 

taxa that was only found in very low frequency.  

3.1. Alpha diversity  

We compared different estimates of the alpha diversity: observed species richness, the 

Abundance-based Coverage Estimator (ACE) and the Shannon index, of the two 

technologies. 



___ 

16   
 

 

Figure 5: Alpha diversity analyses of the samples sequenced on MiSeq. The calculated analyses are Observed species 

richness, ACE, and Shannon index. The data points represent the 22 samples, and the different colours represent the 

four treatments: red = fertilizer, green = fertilizer*pesticide, blue = pesticide, and purple = untreated. 

MiSeq sequencing results showed that three of the samples treated with fertilizer had 

the lowest number of observed species (under 500) (Figure 5). The highest number of 

observed species (around 900) belonged to two samples treated with pesticide. The 

calculation of ACE was quite similar to the result of observed species and ranged from 

just above 400 to around 900. The Shannon index showed that the samples treated with 

both fertilizer and fertilizer*pesticide was more grouped than the rest of the samples 

which were spread out. 
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Figure 6: Alpha diversity analyses of the samples sequenced on MinION. The calculated analyses are Observed 

species richness, ACE, and Shannon index. The data points represent the 22 samples, and the different colours 

represent the four treatments: red = fertilizer, green = fertilizer*pesticide, blue = pesticide, and purple = untreated. 

Analyse results of observed species when sequencing on the MinION, showed that one 

sample was below 900 and the rest of the samples were between 900 and 1050 (Figure 

6). The abundance in ACE ranged from just above 1000 to around 1250. The Shannon 

index showed a grouping of the samples treated with fertilizer, except one outlier. The 

rest of the samples were spread out.  

3.2. Correlation test  

We ran a correlation test to check if the alpha diversity analyses from MinION and MiSeq 

were correlated. The calculations showed us that the correlation was not significant (p > 

0.05) (Table 2).  

Table 2: Calculated correlation of Observed species, ACE and Shannon index of the samples sequenced on MinION 

and MiSeq. The table show the t-value, p-value, 95% confidence interval and the correlation coefficient (R). 

 T P 95% CI R 

Observed: 1.3035 0.2072 -0.1607 0.6274 0.2798 

ACE: 1.1452 0.2657 -0.1938 0.6063 0.2481 

Shannon: 1.8331 0.0817 -0.0504 0.6905 0.3793 
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We made a correlation plot which visually suggested that some positive correlation was 

present (Figure 7).  

 

Figure 7: Correlation plot of observed (top), ACE (middle), and Shannon index (bottom) of the samples sequenced on 

MinION and MiSeq. MiSeq is represented on the horizontal line and MinION is represented on the vertical line. The 

data points represent the 22 samples.  
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From the correlation plot it was evident that two samples were outliers (two data points 

up left in the plots of observed species richness and ACE, sample MFP3_0909 and 

MFP2_0909) which may be the reason there was no significant correlation. We removed 

these two samples and calculated the correlation again.  

Table 3: Calculated correlation of Observed species, ACE and Shannon index of the samples sequenced on MinION 

and MiSeq after removing two outliers. The table show the t-value, p-value, 95% confidence interval and the 

correlation coefficient (R). 

 T P 95% CI R 

Observed: 3.0329 0.0072 0.1872 0.8145 0.5816 

ACE: 2.2136 0.0400 0.0252 0.7513 0.4626 

Shannon: 2.5797 0.0189 0.1000 0.7822 0.5195 

 

The correlation was now significant with all p-values < 0.05 and higher correlation 

coefficients compared to previous calculations (Table 3).  

 

3.3. Beta diversity  

We further calculated the beta diversity to see how divergent the samples and the two 

technologies were from each other.  
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Figure 8: PCoA plot of Bray-Curtis dissimilarity between microbial communities of the samples sequenced on MiSeq. 

The data points represent the 22 samples, and the different colours represent the four treatments: red = fertilizer, 

green = fertilizer*pesticide, blue = pesticide, and purple = untreated. 

We expected some tendency of clustering regarding soil samples with similar treatment. 

This was not seen visually in the PCoA plot of the MiSeq analysis. Most of the samples 

were centred and the different treatments overlapped each other (Figure 8).  

 

 

Figure 9: PCoA plot of Bray-Curtis dissimilarity between microbial communities of the samples sequenced on 

MinION. The data points represent the 22 samples, and the different colours represent the four treatments: red = 

fertilizer, green = fertilizer + pesticide, blue = pesticide, and purple = untreated. 

The samples analysed with MinION distinguished better the different treatments (Figure 

9). The samples within each treatment showed a tendency of grouping and there was not 
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much overlapping between the treatments. We did a PERMANOVA test to check if the 

different treatments of the soil gave a significant effect on the bacterial community of 

the samples sequenced on MiSeq and MinION. 

Table 4: Summary of PERMANOVA test of soil treatments on the microbial community of the samples analysed with 

MiSeq. The table show Df: degrees of freedom, SS: sum of squares, MS: mean of squares, F-statistics, R2 and P-value. 

Treatment Df SS MS F R2 P-value 

Fertilizer 1 0.183 0.183 2.770 0.119 0.001 

Pesticide  1 0.083 0.083 1.263 0.054 0.17 

Fertilizer*Pesticide  1 0.084 0.084 1.266 0.054 0.155 

Residuals 18 1.189 0.066 0.773   

Total  21 1.538     

 

The PERMANOVA test of the samples analysed with MiSeq showed that treatment with 

fertilizer gave a significant effect on the microbial community (p = 0.001) while treatment 

with pesticide and the interaction between the two treatments were not significant (p > 

0.05) (Table 4). This was similar to the samples analysed with MinION. The PERMANOVA 

test showed that treatment with fertilizer gave a significant effect on the microbial 

community (p = 0.001) while the other treatments did not (p > 0.05) (Table 5).  

Table 5: Summary of PERMANOVA test of soil treatments on the microbial community of the samples analysed with 

MinION. The table show Df: degrees of freedom, SS: sum of squares, MS: mean of squares, F-statistics, R2 and P-

value. 

Treatment Df SS MS F R2 P-value 

Fertilizer 1 0.085 0.085 2.585 0.112 0.001 

Pesticide  1 0.046 0.046 1.380 0.060 0.089 

Fertilizer*Pesticide  1 0.037 0.037 1.122 0.049 0.27 

Residuals 18 0.594 0.033 0.780   

Total  21 0.762     
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3.4. Dominating groups of bacteria  

We analysed which groups of bacteria that were dominating in the soil samples. The 

abundance of the different phyla varied between the two technologies (Figure 10).  

 

Figure 10: The figures show 9 phyla with highest abundance when analysed with MinION (top) and MiSeq (bottom). 

The four boxes represent the different treatments, and the columns represent the 22 samples which are listed on the 

horizontal line. The different colours represent the phyla written to the right of the figures.  

The analyses with MinION showed that Proteobacteria had the greatest abundance 

(Figure 10, top). The three phyla with lowest abundance were Bacteroidetes, 

Gemmatimonadetes and Nitrospirae. In general, there was no clear pattern regarding soil 

treatment and phyla. This also applied to the samples analysed with MiSeq (Figure 10, 
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bottom). Here, Bacteroidota, Methylomirabilota and Myxococcota were the three phyla 

with lowest abundance. The phylum Chloroflexi made up a relatively large proportion of 

the phyla detected with MiSeq but was not represented by MinION. Further on, 

Actinobacteriota had the greatest abundance with MiSeq while the same phylum had 

quite low abundance with MinION. We investigated Actinobacteria to see how bacteria 

families within this phylum distributed between the two technologies. 

 

Figure 11: The figures show 9 top families within the phylum Actinobacteria when analysed with MinION (top) and 

MiSeq (bottom). The four boxes represent the different treatments, and the columns represent the 22 samples which 

are listed on the horizontal line. The different colours represent the families written to the right of the figures. 

The relative abundance of reads assigned to Actinobacteria was higher when analysed 

with MiSeq than with MinION (Figure 11). The families Micrococcaceae and 

Nocardioidaceae were the only ones detected at top 9 families by both MinION and 
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MiSeq. The black area (other) represents other bacteria families with lower abundance 

than the 9 top families. MinION had a great proportion of “unassigned” reads (Figure 11, 

top). This means that the reference database used did not have the information required 

to classify the reads at the family level.  

We further investigated Proteobacteria, which had a great abundance when analysed 

with MinION. 

 

Figure 12: The figures show 9 top families within the phylum Proteobacteria when analysed with MinION (top) and 

MiSeq (bottom). The four boxes represent the different treatments, and the columns represent the 22 samples which 

are listed on the horizontal line. The different colours represent the families written to the right of the figures. 

The relative abundance of reads assigned to Proteobacteria was higher when analysed 

with MinION than with MiSeq (Figure 12). However, the relative abundance of 

unassigned reads was higher when analysed with MinION than with MiSeq. The family 
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Xanthomonadaceae had a higher abundance in the samples treated with fertilizer and 

fertilizer*pesticide than the other treatments at both technologies. We decided to look 

into Xanthomonadaceae at species level in order to compare the species determination 

with the two technologies.  

 

Figure 13: The figures show 9 top species within the family Xanthomonadaceae when analysed with MinION (top) and 

MiSeq (bottom). The four boxes represent the different treatments, and the columns represent the 22 samples which 

are listed on the horizontal line. The different colours represent the species written to the right of the figures. 

The samples analysed with MinION had a higher relative abundance of reads assigned to 

Xanthomonadaceae compared to the samples analysed with MiSeq (Figure 13). At both 

technologies, the relative abundance of reads assigned were higher in the samples 

treated with fertilizer and fertilizer*pesticide than in the untreated and pesticide treated 
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samples. The analyses with MiSeq had a greater proportion of unknown reads than 

MinION. Another example of species’ level was within the family Bacillaceae. 

 

Figure 14: The figures show 9 top species within the family Bacillaceae when analysed with MinION (top) and MiSeq 

(bottom). The four boxes represent the different treatments, and the columns represent the 22 samples which are 

listed on the horizontal line. The different colours represent the species written to the right of the figures. 

The analyses of Bacillaceae resulted in almost only unknown reads when analysed with 

MiSeq (Figure 14, bottom) and the few species represented belonged to the genus 

Bacillus. The analyses of Bacillaceae with MinION revealed several species (Figure 14, top) 

and the relative abundance of reads was higher compared to MiSeq.  
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4. Discussion 

Soil microorganisms has several important roles, e.g. being decomposers and living in 

symbiose with plants, providing them nutrients and protecting them from pathogens 

(Khatoon et al., 2020). To understand and possibly improve the soil health, it is important 

to study soil microorganisms and learn more about their role in the ecosystem. Accurate 

data is crucial, and choice of method can be important. Next-generation sequencing can 

give us insight at the most basic level, and have made it possible to investigate microbial 

populations in their natural environment (Boers et al., 2019). Illumina MiSeq is one of the 

most popular sequencing platforms. It provides cheap and accurate data but is limited by 

the short sequencing length. An alternative to Illumina MiSeq is the Oxford MinION which 

deliver long, real-time reads (Quainoo et al., 2017).  

 

The results of the alpha diversity analyses showed us that there was little variation 

between the two technologies. The highest number of observed species was 900 and 

1050 when analysed with MiSeq and MinION, respectively. The difference can be 

explained by both longer and higher number of reads that were analysed with MinION. 

The correlation analyses between the two technologies were significant after removing 

two outliers. This is comparable with a study where 50 fecal samples were analysed with 

MinION and MiSeq (Wei et al., 2020). The authors found a significant correlation (p = 

0.0076) of the taxonomic profiles at the genus level. However, their species-level 

assignment showed a substantial difference between MinION and MiSeq (p = > 0.1). 

 

The taxonomic identification of bacteria at phyla level showed some differences between 

the two technologies. In particularly, Actinobacteria had greater abundance when 

analysed with MiSeq (approx. 40%) than with MinION (<15%) while Proteobacteria had 

greater abundance with MinION (30-60%) than with MiSeq (<30%). Chloroflexi was not 

one of the 9 top phyla detected with MinION but got quite large abundance with MiSeq 

(approx. 10-40%). The different abundancy between the phyla may be due to the 

reference databases used. We used SILVA and NCBI for taxonomic assignment for MiSeq 

and MinION analyses, respectively. NCBI 16S database contains around 18 000 16S 

ribosomal RNA reference sequences (O’Leary et al., 2016), while SILVA database contains 

190 000 sequences. This skewed distribution of sequences may lead to different 
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dominating groups of bacteria and hence lead to different taxonomic assignment 

(Nygaard et al., 2020; Park & Won, 2018).  

The choice of primer pairs may also affect the different taxonomic outcome, as they 

represent different regions of the 16S rRNA gene. Wasimuddin et al. (2020) tested four 

commonly used primer pairs in their study. They found that the primer pair 515F-806R 

revealed highest microbial diversity, and that the primer pair 799F-1193R was biased 

towards the genus Bacillus and hence detected fewer reads of all other genera. Also, 

Heikema et al. (2020) tested the ONT 16S rRNA gene primers on five pure cultures and 

found that both forward and reverse primer were not compatible with the 16S rRNA gene 

of the genus Corynebacterium.  

 

At species level, MiSeq got large proportions of unknown reads. This may be due to that 

the SILVA database do not classify further than the genus level (Balvočiūtė & Huson, 

2017). MinION revealed a slightly higher abundancy at species level than MiSeq (Figure 

14). However, it is difficult to determine whether these results are reliable because of 

MinION’s high error rates (Rang et al., 2018). In addition to the high error rates, MinION 

is also limited by the shortage of bioinformatic tools to correctly process long-read 

amplicon sequences. Most of the available software for taxonomic assignment are 

designed to process data from short-read sequences e.g., reads from Illumina MiSeq. This 

makes it challenging to perform valid taxonomic analyses of long-read sequences. 

Additionally, many reference databases consist mainly of fragments of the 16S rRNA gene 

and lack amounts of full-length sequences gene. This also may limit the taxonomic 

identification’s reliability when analysing the full sequence of the gene (Santos et al., 

2020).  

 

Modified methods to improve the accuracy of MinION sequencing are tested by several 

scientists. One concept is rolling circle amplification (RCA). Single-stranded DNA is 

amplified repeatedly in circles, creating a long DNA-strand which contain the target 

sequence multiple times. The replicated sequences generate more reliable consensus 

reads. Increasing the number of RCA fragments increased the median accuracy value to 

97% (Li et al., 2016) and 97.6% when sequencing on MinION (Baloğlu et al., 2020). 

However, consensus sequence building with RCA is a time-consuming step. Another 



 

  

___ 

29 
 

modified method is tested by Karst et al. (2021). They have developed a new amplicon 

sequencing approach where the DNA template is tagged with unique molecular 

identifiers (UMIs) during PCR. UMIs are like sample barcodes consisting of random bases 

and are part of the primers. Each target DNA molecule is tagged with a unique UMI, and 

the UMI is carried forward to a second round of PCR. After sequencing, the reads are 

grouped by what UMI they have retained and that allow us to generate high quality 

consensus sequences. When Karst et al. (2021) tested this method with UMIs and 

MinION, they sequenced full-length ribosomal RNA operons (~4400bp) in a mock 

microbial community and achieved results with a mean residual error rate under 0.005%.  

The length of the target sequence may also affect the accuracy of MinION sequencing. 

Cusco et al. (2018) used MinION to sequence the full-length 16S rRNA (1500 bp) and the 

16S-ITS-23S region from the rRNA operon (4300 bp) from an isolate of Staphylococcus 

pseudintermedius. The amplicons from the 16S-ITS-23S region and the 16S rRNA gene 

were assigned correctly to bacterial species in 98% and 68%, respectively.  

 

We treated the soil with both pesticide (glyphosate) and mineral fertilizers. The PCoA plot 

of Bray-Curtis dissimilarities (beta diversity) did not reveal a clear pattern with the 

samples analysed with MiSeq but showed a slight tendency of clustering based on the 

different treatments when analysed with MinION. However, the calculated results from 

the PERMANOVA tests showed very similar results between the two technologies. The 

samples treated with fertilizer gave a significant effect on the microbial community (p = 

0.001) when analysed with both MinION and MiSeq. We also saw that the family 

Xanthomonadaceae got a greater abundance in the samples treated with fertilizer and 

fertilizer*pesticide than the other treatments at both technologies. This is contradictory 

results to a meta-analysis by Bebber and Richards (2020). They examined the impacts of 

organic and mineral fertilizers on soil microbial diversity, in comparison with unfertilized 

controls. The collected data from 31 studies revealed that there was no significant 

difference in taxonomic diversity for prokaryotes between soil treated with mineral 

fertilizer and control soil.  

The PERMANOVA tests showed us that application of glyphosate gave no significant 

effect on the microbial community (p > 0.05). This is comparable with previous studies. 

Guijarro et al. (2018) investigated soil bacterial communities in two agricultural soil with 
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5 and almost 10 years of glyphosate application history, and a soil without previous 

exposure to glyphosate. In their study, they sprayed glyphosate over parts of the three 

soils and analysed collected soil samples before and after applied glyphosate. The results 

showed that the relative abundance of specific taxa could not be associated to glyphosate 

dissipation. Instead, they found that differences in bacterial community structure were 

strongly correlated with soil organic matter, cation exchange capacity, pH, and clay 

content. Although Guijarro et al. (2018) did not receive significant results regarding 

glyphosate, application of the pesticide may have an indirect effect on the soil microbial 

community. Schlatter et al. (2017) also found that repeated glyphosate applications had 

minimal impact on soil bacterial communities and diversity. However, a small increase of 

copiotrophic bacteria, which thrives in carbon rich soil, occurred. Schlatter et al. (2017) 

concluded that dying roots after application of glyphosate were colonized by fast-growing 

copiotrophic bacteria like Proteobacteria and Bacteroidetes. 
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5. Conclusion 

We compared two next-generation sequencing technologies, MiSeq and MinION, by 

sequencing 22 soil samples for bacterial identification based on 16S rRNA gene targeting. 

The results of the alpha diversity were similar between the two technologies. Also, the 

beta diversity analyses based on effect of the treatments showed us same results for both 

technologies, where application of fertilizer gave a significant effect on the microbial 

community. When analysing bacteria groups, different phyla were dominating within the 

two sequencing platforms. However, we conclude that there was not a difference in the 

taxonomic resolution between Illumina MiSeq and Oxford MinION.  

Sequencing with Illumina MiSeq produce a lot of data output with high accuracy but is 

limited by the short-read length and poor taxonomic classification at species level (Santos 

et al., 2020). MinION is restricted by its’ high error rates. However, it retains advantages 

like its portability and real-time sequencing (Rang et al., 2018). Long-read amplicon 

sequencing is upcoming, and further improvements of the nanopore technology will 

make Oxford MinION a serious competitor to the short-read sequencing platforms in near 

future.  
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