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Summary: 

Model Predictive Control (MPC) is a well-established technology for advanced control of many 
industrial processes. One of its main benefits is the ability to handle process constraints. However, 
accuracy of the process model is critical to the output of standard/nominal MPC, and typically many 
sources of uncertainty exist. Even though it has some degree of inherent robustness—under quite 
strict assumptions—performance is usually insufficient for nonlinear systems. 

The main goal of this thesis is to study existing robust Nonlinear Model Predictive Control (NMPC) 
approaches, specifically multi-stage NMPC and min-max NMPC, and design a robust controller for 
a real industrial process. 

To this end, a literature review was conducted, covering the most prominent robust MPC 
techniques available today as well as the challenges involved. Then ways of addressing the issues 
of computational complexity and conservativeness were explored briefly. Finally, based on the 
acquired knowledge, robust NMPC was implemented on an oil production optimization case study. 

Simulation results showed that, in contrast to standard NMPC, both multi-stage NMPC and its min-
max variation can ensure constraint satisfaction for all possible values of the uncertainties—if 
properly designed. In terms of conservativeness, both performed equally well, but it was clear that 
multi-stage NMPC is the more computationally attractive choice. 

It was also seen that there exist methods for successfully dealing with the inevitable loss of 
performance resulting from robust NMPC; results suggest that if an efficient implementation is 
carried out, for certain cases, even real-time implementation may be possible. 

Overall, the thesis findings indicate that robust NMPC is an essential tool for advanced control of 
industrial processes and that the multi-stage NMPC approach in particular is rather promising. 
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1 Introduction 

1.1 Motivation 

Model Predictive Control (MPC) is a well-established technology used for advanced control of many 

industrial processes. One of its major advantages is the ability to handle process constraints. However, 

performance of standard/nominal MPC depends heavily on the accuracy of the process model and 

typically many sources of uncertainty exist, e.g., incomplete plant dynamics, uncertain model 

parameters, uncertain variable disturbances, etc. Even though standard MPC is known to possess a 

degree of inherent robustness, if state or terminal constraints are present in combination with a short 

prediction horizon, the ability to handle process constraints may be lost [1]. And in any case, for 

nonlinear systems, its performance—under the presence of uncertainties—is usually not sufficient. 

The subject of robust Nonlinear Model Predictive Control (NMPC) has received a lot of attention in 

recent years. Unlike standard NMPC, robust NMPC is designed to be resilient in the face of uncertainty; 

the Optimal Control Problem (OCP) is formulated such that constraints are satisfied for all possible 

values of the uncertainty. Although a variety of robust schemes have been proposed, and all of them 

promise robust constraint satisfaction, they are not without their drawbacks. 

1.2 Aim and Scope of the Thesis 

The aim of this thesis is to investigate existing robust NMPC techniques and apply some of these to a 

real industrial case study. The work involves 

• Reviewing the literature on robust NMPC techniques, particularly non-conservative ones, 

• Implementing multi-stage and min-max NMPC on an industrial case study, and 

• Analysing and comparing the performance of the two techniques. 

Computational complexity and conservativeness are two of the biggest issues concerning the practical 

implementation of robust NMPC in an industrial setting. Therefore, additionally a brief review of 

potential methods for dealing with these issues is conducted and accordingly an effort is made to 

incorporate/implement them in the simulation studies. 

1.3 Structure of the Thesis 

After this introductory chapter the thesis is organized as follows. 

Chapter 2 presents a literature review of the most prominent robust NMPC techniques available 

today. Chapter 3 introduces the theoretical framework of the considered robust NMPC techniques—

multi-stage NMPC and min-max NMPC. It also presents several ways of improving the performance of 

robust NMPC and provides details of implementation. Chapter 4 presents the central results of this 

thesis. It details the application of robust NMPC to a challenging industrial case study, investigates the 

various aspects of the NMPC approaches, and compares their performance. And finally, chapter 5 

presents the main conclusions and directions for future work. 
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2 Literature Review 
Even though a wide range of robust NMPC methods exist, most of the literature is dominated by three 

specific ones: min-max NMPC, tube-based NMPC, and multi-stage NMPC; all three deal with cases 

where the uncertainty lies within a specified bounded set and all three try to guarantee robust 

constraint satisfaction. These techniques are the focus of this chapter. 

2.1 Min-Max NMPC 

The classical min-max MPC formulation [2] uses an open-loop decision variable for optimizing the 

open-loop performance. It aims to find a single sequence of control inputs, which minimizes the cost 

associated with the worst-case scenario of the uncertainty, and also satisfies the constraints for all 

possible scenarios; the fact that feedback is present in the sliding-horizon implementation is ignored. 

This results in extreme conservativeness in the optimal solution. Furthermore, in most cases the 

control strategy becomes inapplicable due to infeasibilities that occur during optimization: if the 

spread of the state trajectories is large, it may be impossible to satisfy the constraints for all possible 

scenarios at once [3]. 

To deal with these issues, closed-loop min-max NMPC formulations, which take into account the fact 

that new information will be available in the next timestep have also been proposed [3] [4]. They are 

sometimes referred to as “feedback MPC” methods. In these, the optimization is done over a 

sequence of feedback control laws—as opposed to a sequence of control inputs—that can limit the 

spread of the state trajectories. While the performance is improved in terms of conservativeness and 

feasibility, the complexity of the resulting OCP—which could also possibly be infinite-dimensional for 

nonlinear systems [5]—makes min-max feedback NMPC computationally intractable. 

Another method of min-max feedback MPC for linear systems, which is based on the representation 

of the uncertainty using a scenario tree, is proposed in [6]. Instead of optimizing over a sequence of 

feedback policies, like [3] and [4] does, it optimizes over a set of control input sequences, each 

corresponding to a different scenario. It is shown that robust constraint satisfaction for all possible 

realizations of the uncertainty can be ensured by including only the extreme realizations, which occur 

at the vertices of the uncertainty set, in the scenario tree. But the same is not true when nonlinearity 

is present. Hence, this method cannot be applied to nonlinear systems. Moreover, the resulting 

problem is still computationally expensive when a larger prediction horizon is involved. 

2.2 Tube-Based NMPC 

An alternative to min-max NMPC, which guarantees recursive feasibility, is tube-based NMPC [7]. Set-

theoretic methods are at the foundation of this technique. It tries to maintain the trajectory of the 

system within a tube-shaped region centred around the nominal trajectory. This is achieved with the 

use of two controllers: the nominal controller and the ancillary controller. The nominal controller 

generates the central trajectory by solving the nominal NMPC problem with tightened constraints—

uncertainties, which disturb the nominal trajectory, are ignored. Then the ancillary controller ensures 
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that the disturbed trajectory of the actual system stays close to the computed nominal trajectory, 

within the said tube-shaped region. 

There are several methods for determining the uncertainty region around the nominal trajectory, as 

well as various ancillary controllers; several variants of tube-based NMPC that mainly differ in these 

regards exist [8] [9]. However, for nonlinear systems, finding the necessary elements for the design of 

tube-based NMPC is typically very difficult. Furthermore, despite the fact that it guarantees robust 

constraint satisfaction, tube-based NMPC does not address the problem of achieving optimal 

operation under the presence of uncertainties [10]. 

2.3 Multi-Stage NMPC 

In contrast to tube-based NMPC, multi-stage NMPC deals with achieving optimal operation under the 

presence of uncertainty. It can be viewed as an adaptation of the min-max feedback MPC method for 

linear systems presented in [6], for nonlinear systems, which also addresses the problems present in 

[6]; it, too, relies on the representation of the uncertainty by a scenario-tree and explicitly takes into 

account the fact that new information will be available in the next timestep and hence the 

corresponding control moves can be adapted accordingly in the future [11]. This approach is 

considered to lead to a non-conservative solution.  

It is important to note, however, that multi-stage NMPC guarantees constraint satisfaction only for 

those values of the uncertainty considered in the generation of the scenario tree [12] [10]. In the case 

of continuous-valued uncertainty, representing all possible scenarios in the tree is impractical. But 

even though the values of the uncertainties that produce the worst-case scenario could lie anywhere 

in the specified intervals, they often lie on the boundaries [13]—much like the case with linear systems 

[6]. Hence, combinations of the extreme values of the uncertain parameters should be included in the 

scenario tree to achieve robust constraint satisfaction [12]; this has been shown to work well in 

practice [11] [14]. Additionally, intermediate scenarios should also be included to increase 

performance [11]. A good rule of thumb is to include the combinations of the maximum, minimum 

and nominal values of the uncertain parameters in the scenario tree [15]; this provides a good trade-

off between performance and computational complexity. 

One of the main challenges with multi-stage NMPC is the exponential growth of the scenario tree with 

the number of possible realizations of the uncertainty considered in its creation and the length of the 

prediction horizon—which is also the case with [6]. This is dealt with the use of the robust horizon 

assumption [11]: branching of the tree occurs only up to a certain point in time (i.e., the robust 

horizon) and after this point, for the remainder of the prediction horizon, the uncertainty remains 

constant. This has its basis on the fact that, because of the presence of feedback in the sliding-horizon 

implementation, the scenario tree need not represent the far future accurately [12]. 

It is also worthy to note that multi-stage NMPC includes the standard NMPC formulation as well as a 

closed-loop min-max NMPC formulation in its framework [11].
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3 Background 
This chapter introduces the theoretical concepts that form the basis for conducting the final case 

study. The first section provides a brief introduction to each of the two robust NMPC strategies under 

consideration in this thesis: multi-stage NMPC and min-Max NMPC. The problems of computational 

complexity and conservativeness associated with them are addressed in the second section; several 

methods for dealing with these issues are discussed. The last section provides details of 

implementation. 

3.1 Introduction to Robust NMPC 

This section details the mathematical formulations of multi-stage NMPC and min-max NMPC. 

3.1.1 Multi-Stage NMPC 

In multi-stage NMPC, the uncertainty is modelled using a scenario tree, as shown in Figure 3.1. The 

tree is branched at all the nodes present at each timestep/stage; the number of branches per node 

equals the number of possible discrete values of the uncertainty and each node represents a possible 

state of the system at the corresponding timestep—the initial node represents the current state of 

the system, which is known.  

As explained in section 2.3, to limit the growth of the tree the robust horizon assumption is made: the 

tree stops branching, i.e., the uncertainty remains constant, after a certain point in time. 

 
Figure 3.1: Example scenario tree. [12] 

If the values of the uncertainties are not discrete, a good rule of thumb for creating the scenario tree 

is to include the combinations of the extreme and nominal values of the uncertainties. 
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The optimization problem resulting from the multi-stage NMPC approach is given in equation (3.1) - 

(3.4). 

min
𝑥𝑘+1

𝑗
,𝑢𝑘

𝑗
,∀(𝑗,𝑘)∈𝐼

∑ 𝜔𝑖𝐽𝑖(𝑋𝑖 , 𝑈𝑖)

𝑁

𝑖=1

 (3.1) 

subject to 

 𝑥𝑘+1
𝑗

= 𝑓 (𝑥𝑘
𝑝(𝑗,𝑘)

, 𝑢𝑘
𝑗

, 𝑑𝑘
𝑟(𝑗,𝑘)

), ∀ (𝑗, 𝑘 + 1) ∈ 𝐼 (3.2) 

 0 ≥ 𝑔 (𝑥𝑘+1
𝑗

, 𝑢𝑘
𝑗

, 𝑑𝑘
𝑟(𝑗)

), ∀ (𝑗, 𝑘) ∈ 𝐼 (3.3) 

 𝑢𝑘
𝑗

= 𝑢𝑘
𝑙  if 𝑥𝑘

𝑝(𝑗)
= 𝑥𝑘

𝑝(𝑙)
, ∀ (𝑗, 𝑘), (𝑙, 𝑘) ∈ 𝐼 (3.4) 

where 𝐽𝑖 and 𝜔𝑖 is the cost and probability of occurrence of the 𝑖th scenario; the rest of the notation is 

as described in [12].  

Equation (3.2) represents the state trajectory of the uncertain nonlinear system; equation (3.3) 

represents general, possibly nonlinear, constraints; and equation (3.4) represents the non-

anticipativity constraints, which enforces the fact that, at each timestep, the uncertainty is realized 

only after the control inputs have been decided and hence its value cannot be anticipated, i.e., the 

control inputs branching at the same parent node must be the same. 

3.1.2 Min-Max NMPC 

As discussed in section 2.1, the classical min-max MPC formulation, which optimizes over a single 

sequence of control inputs, is known to be either extremely conservative or simply infeasible, and the 

closed-loop min-max NMPC formulations, which optimize over a sequence of feedback control laws, 

are likewise typically computationally intractable. A more realizable option is the closed-loop min-max 

NMPC formulation present within the multi-stage NMPC framework; this is chosen for the purposes 

of simulation studies in this thesis. 

The min-max approach is obtained by simply replacing the summation in equation (3.1) with the 

maximization operator: 

min
𝑥

𝑘+1
𝑗

,𝑢
𝑘
𝑗

,∀(𝑗,𝑘)∈𝐼
max

 
𝜔𝑖𝐽𝑖(𝑋𝑖 , 𝑈𝑖) (3.5) 

subject to 

 𝑥𝑘+1
𝑗

= 𝑓 (𝑥𝑘
𝑝(𝑗,𝑘)

, 𝑢𝑘
𝑗

, 𝑑𝑘
𝑟(𝑗,𝑘)

), ∀ (𝑗, 𝑘 + 1) ∈ 𝐼 (3.6) 

 0 ≥ 𝑔 (𝑥𝑘+1
𝑗

, 𝑢𝑘
𝑗

, 𝑑𝑘
𝑟(𝑗)

), ∀ (𝑗, 𝑘) ∈ 𝐼 (3.7) 

 𝑢𝑘
𝑗

= 𝑢𝑘
𝑙  if 𝑥𝑘

𝑝(𝑗)
= 𝑥𝑘

𝑝(𝑙)
, ∀ (𝑗, 𝑘), (𝑙, 𝑘) ∈ 𝐼 (3.8) 

where the notation is the same as described in section 3.1.1. 

3.2 Improving the Performance of Robust NMPC 

This section looks at several methods that can be used to improve the performance of multi-stage and 

min-max NMPC in terms of computational complexity and conservativeness. 
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3.2.1 Computational Complexity 

3.2.1.1 Direct Multiple-Shooting Method for Transcribing the OCP into an NLP 

The dynamics of a system is typically described by a system of Ordinary Differential Equations (ODEs) 

or Differential Algebraic Equations (DAEs). Hence, the OCP associated with MPC will be infinite-

dimensional. The type of methods that are state-of-the-art for solving this type of problems are the 

so-called “direct methods,” which are also referred to as “discretize-optimize” approaches. In these, 

the continuous control trajectory is replaced with a parameterization, e.g., piecewise constant 

trajectory. This allows the reformulation/transcription of the original infinite-dimensional OCP into a 

finite-dimensional NLP, which can be solved using available NLP solvers. There are several ways in 

which transcription can be performed and the chosen method affects the solvability and scalability of 

the problem.   

Here, the focus is placed on two of the popular direct methods: direct single-shooting and direct 

multiple-shooting. Specifically, the advantages of using multiple-shooting over single-shooting, with 

multi-stage NMPC, is discussed. 

The main difference between the two methods is that in single-shooting only the control trajectory is 

discretized and used as decision variables, whereas in multiple-shooting both the control trajectory 

and state trajectory are discretized and used as decision variables; the reader is referred to [16] for 

more detailed descriptions. 

When solving NLPs produced using the single-shooting approach, most of the time is taken up by the 

sequential solution of initial value problems, which enforce the continuity of the state trajectory, at 

each iteration. While there are other disadvantages with single-shooting, in the context of multi-stage 

NMPC this constitute the main one: difficulty to parallelize; as much initial value problems as the 

number of scenarios must be solved at each iteration. 

In contrast, in the multiple-shooting approach the continuity of the state trajectory is enforced using 

a set of equality constraints; essentially the solution of the initial value problems at each iteration is 

parallelized. The resulting NLP is much larger but is known to converge faster to the optimal solution 

[17]. 

3.2.1.2 Automatic Differentiation (AD) for Calculation of Derivatives 

The NLP solver used in this work applies a gradient-based optimization algorithm, which requires 

derivative—first order and preferably also second order derivative—information of the objective 

function and the constraints. There exist three main methods for the computation of derivatives: 

numerical differentiation, symbolic differentiation, and automatic differentiation. The performance of 

the NLP solver is greatly affected by the efficiency and accuracy of the chosen method. 

Numerical differentiation provides only an approximation of the derivatives. While reasonable 

approximations may be obtained for first order derivatives, the errors present in approximations of 

higher order derivatives tend to be quite significant.  



3 Background 

9 

 

On the other hand, symbolic differentiation provides exact derivatives but, even for moderately 

complex functions, the produced symbolic expressions of the derivatives tend to be rather unwieldy 

and hence expensive to evaluate. 

Automatic differentiation too provides exact derivatives, however, unlike symbolic differentiation, 

generation of the expressions of derivatives is not the goal. Instead, the derivatives are computed 

through decomposition of the function into in a sequence of primitive operations (e.g., addition, 

subtraction, multiplication, etc.), which, when taken by themselves, are easily differentiable; the 

partial derivatives of the intermediate variables are combined using the chain rule to obtain the 

derivative of the original function. This method of derivative calculation is not only exact but is also 

very efficient. 

3.2.1.3 Grouping of Control Inputs 

Another potential method that can be used to tackle the problem of high computational cost 

associated with multi-stage NMPC is control input grouping [18]. In contrast to the direct multiple-

shooting approach, in this approach, cost reduction is achieved by reducing the size of the OCP. It is 

quite similar to the concept of control horizon, in which the degrees of freedom are reduced by taking 

the control input trajectory to be constant after a certain point in time—until the end of the prediction 

horizon.  

In this method the (discrete) control input, which maybe be a scalar or a vector, is grouped along the 

prediction horizon, and within each group the signal is kept constant. An example grouping scheme 

for a prediction horizon of 20 timesteps is illustrated in Figure 3.2; the case of standard NMPC is 

considered. As seen, the 20 discrete unknown values of the control signal are grouped into three 

blocks. This means that the number of decision variables in the OCP—corresponding to the control 

inputs—reduces from 20 to 3 (assuming the control input is a scalar), i.e., the size of the OCP reduces. 

It is worthy to highlight that even though grouping gives rise to additional equality constraints—which 

may seem to increase in the size of the problem—the computation time required for solving the 

optimization problem is more dependent on the number of decision variables [18]. 

 
Figure 3.2: An example grouping of control inputs along a prediction horizon of 20 timesteps. [18] 

Each block may be chosen to be longer than the preceding block or to be the same length as the 

preceding block [18]. However, it is advisable to try several different sensible grouping schemes and 
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compare the results against the original results (i.e., without grouping) to select the most effective 

one.  

It is important to note that, in the case of multi-stage NMPC, grouping is done for each scenario, over 

the stages occurring after the robust horizon—not over the entire prediction horizon. 

3.2.2 Conservativeness 

It is known that all robust NMPC techniques result in an inevitable loss of optimality. So, even though 

multi-stage NMPC is known as a non-conservative method, it too will lead to some degree of 

conservativeness. Therefore, the best recourse is to remove as much uncertainty as possible through 

estimation, if the uncertainty does not vary over time [10]; whenever new information about the 

uncertainty is available it can be fed online to the multi-stage NMPC algorithm. The effectiveness of 

such an approach will be tested in this work.  

The online estimation method proposed in [19] is considered. In broad terms, the approach can be 

summarized as follows. At each timestep the process measurements are compared to the predictions 

from each scenario, and based on this comparison, a recursive Bayesian weighting scheme is used to 

assign weights to each of the scenarios; scenarios with a higher probability of being the true realization 

are assigned larger weights, whereas those with a lower probability are assigned smaller weights. 

When the weight assigned to a scenario falls below a specified threshold, that scenario is updated in 

the direction of the scenario with the largest weight (i.e., the most likely scenario) at the time. As a 

result, the span of the uncertainty space is reduced. Consequently, the span of the scenario tree is 

also reduced, resulting in a decrease in conservativeness (note: the fact that the span of the 

uncertainty space affects the degree of conservativeness will be demonstrated through simulation 

studies in the following chapter). For further details about this estimation method and its algorithm, 

the reader is referred to [19]. 

3.3 Implementation Details 

Based on the discussions in section 3.2, an effort is made to implement the NMPC schemes in a more 

efficient way. The details of the implementation are as follows. 

For discretizing the dynamics of the system, the Runge-Kutta fourth order (RK4) integration scheme is 

used together with the direct multiple-shooting approach. Interior Point (IP) methods have been 

shown to perform better than Sequential Quadratic Programming (SQP) methods at solving the large-

scale optimization problems resulting from multi-stage NMPC [11]. Hence, IPOPT [20] is used for 

solving the NLPs in this thesis and the CasADi framework [21] is used to automatically calculate and 

pass the first order and second order exact derivatives required by the solver.  

The real plant is simulated, with the calculated optimal control inputs, using also RK4. For simplicity, 

it is assumed that the exact measures of all the states are available at each time step; state-feedback 

MPC is used. 

All the implementations are carried out in MATLAB using a 4-core Intel i5 processor at 2.40 GHz, and 

8 GB of RAM. 
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4 Case Study - Oil Production Optimization 
This chapter presents the central case study in this thesis: optimization of oil production in a gas-lifted 

oil field. It constitutes a challenging real-world industrial case that involves highly nonlinear process 

dynamics and tight constraints; ensuring optimal operation of the plant through manual control is, in 

general, extremely difficult. The matters are further complicated by the presence of uncertainty in the 

system—which makes satisfaction of the tight constraints harder still. This chapter explores the 

possibility of employing NMPC for achieving the control objectives. Three different NMPC 

approaches—standard, multi-stage and min-max—are implemented on the oil production process 

and their performance, in the presence of the same uncertainty conditions, is analysed and compared. 

The first section of this chapter provides a description of the gas-lifted oil production process; the 

considered mathematical model and the modelled uncertainties are also introduced. This is followed 

by a preliminary study of the process dynamics, through open-loop simulation, in the second section 

of the chapter. Here, the simulation results are used to establish the need for dynamic optimal control.  

The third section describes the implementation of standard NMPC—whose formulation does not take 

into account the presence of uncertainties—on the oil production process. The resulting performance 

when uncertainty is absent vs. when it is present is evaluated. This leads to affirmation of the need 

for exploring the feasibility of robust NMPC techniques—which explicitly consider the uncertainties 

present in the system—for avoiding constraint violations. 

The fourth and fifth sections of this chapter deal with the implementation of the two robust NMPC 

approaches—multi-stage NMPC and min-max NMPC—on the process. It is shown that both 

approaches have superior performance compared to standard NMPC in that they ensure satisfaction 

of all the constraints in the presence of uncertainties. Also, a comparison of the performance of the 

two, taken by themselves, is made and the issues of computational complexity and conservativeness 

are briefly looked at. 

The simulation results are summarized in the final section of this chapter. 

4.1 Process Description 

Continuous extraction of oil from a reservoir causes a gradual reduction of reservoir pressure. Once 

the pressure drops below the point where it is no longer sufficient to lift the fluid column produced in 

an oil well, an artificial lift method must be used. The process investigated in this case study is the 

production of oil using the continuous-flow gas lift mechanism: a predominant artificial lift method 

used to keep up production when the natural flow of oil from a reservoir ceases (or drops below the 

desired rate). 

The principle of operation of the continuous-flow gas lift mechanism is illustrated in Figure 4.1. High-

pressure gas is injected into the hydrostatic column inside the tubing, from an appropriate distance 

down the well. The injected gas mixes with the produced oil and reduces the density of the hydrostatic 

column; consequently, the back pressure is reduced. The resulting differential pressure is what allows 

the continuation of fluid flow along the well. 
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Figure 4.1: Principle of operation of continuous-flow gas lift. [22] 

However, a higher gas injection rate does not always yield a higher oil production rate; Figure 4.2 

shows the relationship between the two quantities. It can be seen that an optimum gas injection rate, 

which maximizes oil production, exists. This optimum will be different for different oil wells, i.e., two 

unidentical wells will produce different amounts of oil when injected the same amount of lift-gas.  

 
Figure 4.2: Gas-lift performance curve of a typical oil well. [22] 

Given the fact that multiple unidentical wells are present in an oil field and that they all share the same 

source of lift-gas (at least in the case considered in this work), it is easily seen why proper control of 

the gas injection rate for each well is required. (Note: The need for dynamic control will be discussed 

in more details in section 4.2, in relation to the system considered in this work.) 
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4.1.1 Mathematical Model 

A simple model of a gas lifted oil field with five oil wells, which has been appropriately validated 

against data from a real oil field, is proposed in [22]. For the purposes of this case study, an adaptation 

of the said model is used. The adapted version is presented here. However, it should be noted that 

only the relevant equations are listed, along with the definitions of the variables and the set of model 

parameters used in this work. The reader is referred to [22] for further details about the model. 

A schematic of the oil field under consideration is given in Figure 4.3. The system consists of two oil 

wells, which share the same source of lift-gas. The fluid, i.e., the mixture of lift-gas, water and oil 

extracted from the reservoir, produced from both wells is sent to a separator, which separates it into 

its constituents; the lift-gas is recycled. 

 
Figure 4.3: Schematic of the oil field. Adapted from [22] 

The system is modelled by a set of differential-algebraic equations. It consists of six states 𝑚: mass of 

gas in the annulus 𝑚𝑔𝑎
𝑖 ; mass of gas in the tubing above the injection point 𝑚𝑔𝑡

𝑖 ; and mass of oil in the 

tubing above the injection point 𝑚𝑜𝑡
𝑖  (superscript 𝑖 denotes the 𝑖th oil well). These are all obtained 

using mass balance and are given by equation (4.1) - (4.3). 

�̇�𝑔𝑎
𝑖 = 𝑤𝑔𝑎

𝑖 − 𝑤𝑔𝑖𝑛𝑗
𝑖  (4.1) 

�̇�𝑔𝑡
𝑖 = 𝑤𝑔𝑖𝑛𝑗

𝑖 − 𝑤𝑔𝑝
𝑖  (4.2) 

�̇�𝑜𝑡
𝑖 = 𝑤𝑜

𝑖 − 𝑤𝑜𝑝
𝑖  (4.3) 
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where 𝑤𝑔𝑎
𝑖  is the mass flow rate of gas leaving the distribution pipeline and entering the annulus via 

the gas-lift choke valve, and it is taken as the control input; 𝑤𝑔𝑖𝑛𝑗
𝑖  is the mass flow rate of gas injected 

into the tubing, from the annulus, via the gas injection valve; 𝑤𝑔𝑝
𝑖  and 𝑤𝑜𝑝

𝑖  are the mass flow rates of 

gas and oil through the production choke valve; 𝑤𝑜
𝑖  is the mass flow rate of oil flowing into the tubing 

from the reservoir. The expressions required for the computation of these are given by equation (4.4) 

- (A.12). 

𝑤𝑔𝑖𝑛𝑗
𝑖 = 𝐾𝑖𝑌2

𝑖√𝜌𝑔𝑎
𝑖 max(𝑃𝑎𝑖𝑛𝑗

𝑖 − 𝑃𝑡𝑖𝑛𝑗
𝑖 , 0) (4.4) 

𝑤𝑔𝑝
𝑖 =

𝑚𝑔𝑡
𝑖

𝑚𝑔𝑡
𝑖 + 𝑚𝑜𝑡

𝑖
𝑤𝑔𝑜𝑝

𝑖  (4.5) 

𝑤𝑜
𝑖 = 𝑃𝐼𝑖max(𝑃𝑟 − 𝑃𝑤𝑓

𝑖 ) (4.6) 

𝑤𝑜𝑝
𝑖 =

𝑚𝑜𝑡
𝑖

𝑚𝑔𝑡
𝑖 + 𝑚𝑜𝑡

𝑖
𝑤𝑔𝑜𝑝

𝑖  (4.7) 

𝑌2
𝑖 = 1 − 𝛼𝑌 (

𝑃𝑎𝑖𝑛𝑗
𝑖 − 𝑃𝑡𝑖𝑛𝑗

𝑖

max(𝑃𝑎𝑖𝑛𝑗
𝑖 , 𝑃𝑎𝑖𝑛𝑗

𝑚𝑖𝑛)
) (4.8) 

𝜌𝑔𝑎
𝑖 =

𝑀(𝑃𝑎
𝑖 + 𝑃𝑎𝑖𝑛𝑗

𝑖 )

2𝑧𝑅𝑇𝑎
𝑖

 (4.9) 

𝑃𝑎𝑖𝑛𝑗
𝑖 = 𝑃𝑎

𝑖 +
𝑚𝑔𝑎

𝑖

𝐴𝑎
𝑖 𝐿𝑎_𝑡𝑙

𝑖
𝑔𝐿𝑎_𝑣𝑙

𝑖  (4.10) 

𝑃𝑡𝑖𝑛𝑗
𝑖 =

𝑧𝑚𝑔𝑡
𝑖 𝑅𝑇𝑡

𝑖

𝑀𝑉𝐺
𝑖

+
𝜌𝑚

𝑖 𝑔𝐿𝑡_𝑣𝑙
𝑖

2
 (4.11) 

𝑤𝑔𝑜𝑝
𝑖 = 10𝑁6𝐶𝑣(𝑢2

𝑖 )𝑌3
𝑖√𝜌𝑚

𝑖 max(𝑃𝑤ℎ
𝑖 − 𝑃𝑠, 0) (4.12) 

𝑃𝑤𝑓
𝑖 = 𝑃𝑡𝑖𝑛𝑗

𝑖 + 𝜌𝑜𝑔𝐿𝑟_𝑣𝑙
𝑖  (4.13) 

𝑃𝑎
𝑖 =

𝑧𝑚𝑔𝑎
𝑖 𝑅𝑇𝑎

𝑖

𝑀𝐴𝑎
𝑖 𝐿𝑎_𝑡𝑙

𝑖
 (4.14) 

𝑉𝐺
𝑖 = 𝐴𝑎

𝑖 𝐿𝑡_𝑡𝑙
𝑖 −

𝑚𝑜𝑡
𝑖

𝜌𝑜
 (4.15) 

𝜌𝑚
𝑖 =

𝑚𝑔𝑡
𝑖 + 𝑚𝑜𝑡

𝑖

𝐴𝑡
𝑖 𝐿𝑡_𝑡𝑙

𝑖
 (4.16) 

𝐶𝑣(𝑢1
𝑖 ) = {

0, 𝑢1
𝑖 < 5

0.111𝑢1
𝑖 − 0.556, 5 < 𝑢1

𝑖 < 50

0.5𝑢1
𝑖 − 20, 50 < 𝑢1

𝑖

 (4.17) 

𝑌3
𝑖 = 1 − 𝛼𝑌 (

𝑃𝑤ℎ
𝑖 − 𝑃𝑠

max(𝑃𝑤ℎ
𝑖 , 𝑃𝑤ℎ

𝑚𝑖𝑛)
) (4.18) 

𝑃𝑤ℎ
𝑖 =

𝑧𝑚𝑔𝑡
𝑖 𝑅𝑇𝑡

𝑖

𝑀𝑉𝐺
𝑖

−
𝜌𝑚

𝑖 𝑔𝐿𝑡_𝑣𝑙
𝑖

2
 (4.19) 

where 𝑌2
𝑖 is the gas expansion factor across the gas injection valve; 𝜌𝑔𝑎

𝑖  is the density of gas in the 

annulus; 𝑃𝑎𝑖𝑛𝑗
𝑖  is the pressure upstream of the gas injection valve—in the annulus; 𝑃𝑡𝑖𝑛𝑗

𝑖  is the pressure 

downstream of the gas injection valve—in the tubing; 𝑤𝑔𝑜𝑝
𝑖  is the mass flow rate of the mixture of gas 
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and oil through the production choke valve; 𝑃𝑤𝑓
𝑖  is the bottom hole pressure; 𝑃𝑎

𝑖  is the pressure 

downstream of the gas-lift choke valve; 𝑉𝐺
𝑖  is the volume of gas in the tubing above the injection point; 

𝜌𝑚
𝑖  is the average density of the mixture of oil and gas in the tubing above the injection point; 𝐶𝑣 is 

the production choke valve characteristic, which is a function of its opening, 𝑢2
𝑖 —𝑢2

𝑖  is taken to be 

100% for both valves, throughout this work and hence only the last equation of (A.12) is relevant; 𝑌3
𝑖 

is the gas expansion factor across the production choke valve; 𝑃𝑤ℎ
𝑖  is the pressure upstream of the 

production choke valve—in the tubing head. 

The complete set of model parameters used in this work is given in Table 4.1.  

Table 4.1: Parameters of the oil field model 

Parameter Description 
Value 

Unit 
well-1 well-2 

𝐾 Gas injection valve constant 68.43 67.82 √kgm3 bar⁄

hr
 

𝑃𝐼 Productivity index 2.51×104 1.63×104 kg hr⁄ bar⁄  

𝑃𝑟 Reservoir pressure 150 bar 

𝛼𝑌 A constant 0.66 0.66 - 

𝑃𝑎𝑖𝑛𝑗
𝑚𝑖𝑛 

Minimum pressure of lift-gas in the annulus, 
at the point of injection into the tubing 

0 0 bar 

𝑀 Molar mass of the lift-gas 0.020 kg/mol 

𝑧 Gas compressibility factor 1.3 - 

𝑅 Universal gas constant 8.3145 J K⁄ /mol 

𝑇𝑎 
Average temperature of lift gas in the 

annulus 
280 280 K 

𝐴𝑎 Cross sectional area of the annulus =
𝜋

4
(𝐼𝐷𝑎

2 − 𝑂𝐷𝑡
2) m2 

𝐿𝑎_𝑡𝑙 True/actual length of the annulus 2758 2559 m 

𝑔 Gravitational acceleration 9.8066 m2/s 

𝐿𝑎_𝑣𝑙 
Vertical length of the annulus from the well 

head to the point of injection 
2271 2344 m 

𝑇𝑡 Average temperature of fluid in the tubing 280 280 K 

𝐿𝑡_𝑣𝑙 
Vertical length of the tubing above the gas 

injection point 
2271 2344 m 

𝑁6 Gas lift choke valve constant 27.3 27.3  

𝑃𝑠 Pressure of the common gathering manifold 30 30 bar 

𝜌𝑜 Density of crude oil 700 kg/m3 

𝐿𝑟_𝑣𝑙 
Vertical length of the tubing below the gas 
injection point up to the reservoir opening 

114 67 m 

𝐴𝑡 Inner cross-sectional area of the tubing =
𝜋

4
𝐼𝐷𝑡

2 m2 

𝐿𝑡_𝑡𝑙 
Actual length of the tubing above the gas 

injection point 
2758 2559 m 

𝑃𝑤ℎ
𝑚𝑖𝑛 

Minimum pressure in the tubing at the well 
head 

0 0 bar 
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The mass flow rate of gas entering the distribution pipeline from the compressor 𝑤𝑔𝑐 is considered a 

known input disturbance to the process. Since both wells share the lift-gas supplied by the compressor 

and given the fact that the total mass flow rate of gas leaving the distribution pipeline at any time 

could not be greater than the mass flow rate of gas entering the pipeline, the constraint given by 

equation (4.22) exists. 

∑ 𝑤𝑔𝑎
𝑖

2

𝑖=1

≤ 𝑤𝑔𝑐  (4.20) 

Additionally, the presence of a processing capacity of 160 kg/s for the separator is assumed, i.e., the 

two oil wells should be operated such that their combined fluid production does not exceed the 

processing capacity of the separator. This gives rise to the constraint given by equation (4.23). 

∑ 𝑤𝑔𝑜𝑝
𝑖

2

𝑖=1

≤ 160 kg/s (4.21) 

The most significant differences in this adapted model in comparison to the original model can be 

listed as follows. 

• The presence of only two wells—Well 1 and Well 2 in [1 Tab. 2]—instead of five. The reduction 

is made to lower the computational cost associated with testing the different NMPC 

strategies; as stated in section 2, especially min-max and multi-stage NMPC, involve the 

solution of computationally complex NLPs.  

• The omission of the dynamics associated with the gas distribution manifold and the gas-lift 

choke valves. A control structure, such as the one used in [23], for maintaining the pressure 

inside the gas distribution manifold close to a given setpoint, in the events of fluctuations in 

the lift-gas supply, is assumed. Accordingly, the optimal lift-gas flow rates 𝑤𝑔𝑎
∗  found by the 

NMPC algorithm are intended to serve as set points to the PID controllers operating the gas-

lift choke valves. 

• The presence of a processing capacity constraint on the separator. This assumption is made in 

order to have a constraint through which model uncertainty could possibly manifest during 

NMPC (note: this will be made clearer later in this chapter, in the sections corresponding to 

implementation of the different NMPC schemes). 

• The assumption of a constant gas compressibility factor 𝑧, for simplicity. 

4.1.2 Uncertainties 

For the purposes of this work, only the uncertainty present in the Productivity Index (PI) value of the 

two wells is considered; everything else is assumed known/certain. It is also assumed that the PI is a 

time-invariant parameter. 

As stated in [22] the PI values of the considered wells have been found by aggregating a year’s worth 

of data from the real oil field. The values thus found are considered the nominal values. The two wells 

chosen for this work have the nominal values 2.51x104 kg/hr/bar and 1.63x104 kg/hr/bar. 

The uncertainty is modelled as the error in the PI value, 𝑑𝑃𝐼 = [𝑑𝑃𝐼
1 , 𝑑𝑃𝐼

2 ]. For both wells, it is 

considered to lie within the range 𝑑𝑃𝐼
𝑖 ∈ [−0.25, 0.25] × 104 kg/hr/bar (note: the scaling factor 
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× 104 is dropped from the notation for simplicity in the remainder of the report) and equal probability 

of occurrence is assumed for all possible values. The considered range corresponds to an uncertainty 

of ~±10% in the PI value of well-1 and to an uncertainty of ~±15% in the PI value of well-2. Figure 4.4 

provides a simple illustration of the resulting box uncertainty set containing all possible realizations of 

the uncertainty. 

 
Figure 4.4: Uncertainty space 

4.2 Openloop Simulation 

For a preliminary study of the oil field dynamics the nominal model of the plant (i.e., with the error in 

the PI value of the two wells taken to be 𝑑𝑃𝐼 = [0, 0]) is simulated in openloop. The lift-gas supply 

𝑤𝑔𝑐, which is the (known) input disturbance to the system, is changed as a step from 33,000 Sm3/hr 

to 36,000 Sm3/hr at 𝑡𝑖𝑚𝑒 = 15 hrs, and back to 33,000 Sm3/hr at 𝑡𝑖𝑚𝑒 = 30 hrs; and the total 

supply available at any time is distributed equally between the two wells. For solving the differential 

equations of the model, the RK4 integration scheme is used with a sampling time of 20 sec. A 

simulation timespan of 45 hrs is considered.  

The resulting dynamics of the oil field are shown in Figure 4.5. The principle of operation of the 

continuous-flow gas lift mechanism—detailed previously in section 4.1—can be clearly observed. 

When the supply of lift-gas to the annulus of each well is increased at 𝑡𝑖𝑚𝑒 = 15 hrs (first plot), the 

rate of injection into the tubing is, in turn, increased (second plot). More gas mixes with the produced 

oil causing further reduction of the density of the fluid columns (third plot). This means that the 

bottom hole pressure is also lowered further (fourth plot); the resulting increase in differential 

pressure causes more extraction of oil from the reservoir (last two plots). 

It is also important to note that, since they are not identical, the two wells produce different amounts 

of oil when supplied with the same amount of lift-gas. According to equation (4.6), the amount of oil 

produced by each well corresponds to its PI value (note: this statement holds because the amount of 

oil produced by a well is known to be most sensitive to its PI value, as opposed to, e.g., its dimensions); 

since well-1 has the higher PI value it is observed to produce more oil in Figure 4.5.  

At this point, it is readily seen that there may exist a possibility to achieve a higher production rate by 

allocating more of the available lift-gas to well-1 than to well-2. Figure 4.6 demonstrates that this 

indeed is a possibility: a higher production rate is observed when 55% of the available lift-gas is 

allocated to well-1 (the remaining 45% is allocated to well-2); conversely, a lower production rate is 

observed when more of the available lift-gas, 51%, is allocated to well-2. This establishes the fact that 

it is more economical to allocate more to well-1.  
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Figure 4.5: Openloop dynamics of the nominal oil field model under step changes in the input disturbance 

 
Figure 4.6: Total oil production corresponding to different allocations of the lift-gas supply 𝑤𝑔𝑐 = 36,000 Sm3/hr 

Naturally, there is a limit to which production can be maximized and this, too, is demonstrated in 

Figure 4.6: production corresponding to an allocation of 56% lift-gas to well-1 is lower in comparison 

to the case of 55%. That it is difficult to determine manually the point where the maximum lies is 

obvious.  

The task of operating the oil field is made even more difficult by several other facts: the availability of 

lift-gas varies over time, and at any time there could be an excess supply of gas. The fluid production 

rate could easily exceed the processing capacity of the separator, i.e., the constraint in equation (4.21) 

could easily be violated, when there is an excess supply. So, in addition to working out the most 
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economical distribution of gas available at any time, care should also be taken to ensure that the 

process operates within the specified bounds. And finally, on top of all that, there is also the fact that 

uncertainty is present in the system. 

It is glaringly obvious why manual operation of the plant is extremely challenging: production of oil 

should be optimized (i.e., maximum possible oil production should be achieved with the most 

economical usage of available lift-gas), under varying input disturbance conditions and under the 

presence of uncertainty, without violating any of the process constraints at any time. Hence, it is 

required to explore the possibility of employing NMPC for achieving optimal operation of the plant. 

4.3 Standard NMPC 

In this section the potential of employing standard NMPC for achieving optimal operation of the oil 

field is assessed. 

4.3.1 Optimal Control Problem 

The OCP for the oil field is formulated as given in equation (4.22) - (4.27). 

min
𝑚1,⋯,𝑚𝑁𝑝 ,𝑤𝑔𝑎,0,⋯,𝑤𝑔𝑎,𝑁𝑝−1

∑ −𝑤𝑜𝑝,𝑘+1𝑄𝑤𝑜𝑝,𝑘+1
T + 𝑤𝑔𝑎,𝑘𝑅𝑤𝑔𝑎,𝑘

T + Δ𝑤𝑔𝑎,𝑘𝑆Δ𝑤𝑔𝑎,𝑘
T

𝑁𝑝−1

𝑘=0

 (4.22) 

subject to 

 𝑚𝑘+1 = 𝑓(𝑚𝑘 , 𝑤𝑔𝑎,𝑘 , 𝑑𝑃𝐼,𝑘),  𝑘 = 0, ⋯ , 𝑁𝑝 − 1 (4.23) 

 ∑ 𝑤𝑔𝑎,𝑘
𝑖

2

𝑖=1

≤ 𝑤𝑔𝑐,𝑘 ,  𝑘 = 0, ⋯ , 𝑁𝑝 − 1 (4.24) 

 ∑ 𝑤𝑔𝑜𝑝,𝑘
𝑖

2

𝑖=1

≤ 160,  𝑘 = 0, ⋯ , 𝑁𝑝 − 1 (4.25) 

 −0.15 ≤ Δ𝑤𝑔𝑎,𝑘
𝑖 ≤ 0.15,  𝑘 = 0, ⋯ , 𝑁𝑝 − 1 (4.26) 

 0.323 ≤ 𝑤𝑔𝑎,𝑘
𝑖 ≤ 11.66,  𝑘 = 0, ⋯ , 𝑁𝑝 − 1 (4.27) 

where 𝑁𝑝 is the prediction horizon, and 𝑄, 𝑅 and 𝑆 are the tuning parameters. 

The main control objective is to maximize the total oil production of the oil field. Hence, −𝑤𝑜𝑝𝑄𝑤𝑜𝑝
𝑇  

is used as the cost function. Additionally, the penalty terms 𝑤𝑔𝑎,𝑘𝑅𝑤𝑔𝑎,𝑘
𝑇  and Δ𝑤𝑔𝑎𝑆Δ𝑤𝑔𝑎

𝑇  are 

introduced to limit excessive lift-gas utilization and to discourage large fluctuations in the control 

signals. 

The constraints in (4.23) - (4.25) constitute the oil-field model equations presented in section 4.1.1. 

(4.23) represents the state trajectory, which, in addition to the model equations, involves also the 

integration scheme. The fact that the total fluid production rate should not exceed the processing 

capacity of the separator is enforced by the inequality constraint in (4.25). It is important to note that, 

since the fluid production rate of the two wells 𝑤𝑔𝑜𝑝,𝑘
𝑖  is calculated using the process model, this 
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constraint is susceptible to model uncertainty. Hence, of all the constraints, it is the main one to look 

out for.  

The last two constraints in (4.26) and (4.27) enforce assumed physical limitations of the gas-lift choke 

valves: (4.26) represents the fact that the valves cannot be opened/closed at a rate higher than a 

certain maximum, and (4.27) represent the fact that there are limits on the extent to which the valves 

can be opened/closed. 

4.3.2 Simulation Results 

In all the simulation runs discussed in the remainder of this chapter, the available lift-gas supply is 

taken to be 𝑤𝑔𝑐 = 40,000 Sm3/hr. The process is first run in openloop until steady state is reached. 

During this period, only 80% of the lift-gas supply is utilized and this amount is distributed equally 

between the two wells.  

With said settings, the process operates within the specified bounds, but there is a lot of room for 

improvement: the total fluid production is much lower than the allowed maximum, which also means 

that the total oil production is lower than the possible maximum. The profit can be increased 

substantially by bringing the plant to operate closer to—ideally, at—its production capacity.  

Each of the different NMPC schemes explored in this work is tasked with figuring out how this may be 

done: by utilizing the remaining 20% of the lift-gas supply and/or by distributing the available gas in a 

more optimal manner between the two wells (as discussed in section 4.2, equal distribution is most 

likely not the optimal approach). Additionally, a step change in the gas supply is also introduced 

towards the end of each simulation run to further asses the effectiveness of each NMPC scheme. 

(Note: The point at which NMPC is switched on, after openloop operation, will be marked with a red 

dotted vertical line in all the plots.) 

In the rest of this section, how successfully standard NMPC handles the said task when no uncertainty 

is present and when uncertainty is present is studied.  

The tuning parameters 𝑄, 𝑅 and 𝑆 in equation (4.22) are chosen to be 𝐼2, 0.5𝐼2 and 50𝐼2, respectively. 

A sampling time of 20 sec and a prediction horizon of 𝑁𝑝 = 25 timesteps (~8.3 min) is used. These 

values are maintained throughout the case study. 

4.3.2.1 Performance When No Uncertainty is Present 

Figure 4.7 shows the performance of standard NMPC when there is no uncertainty. When switched 

on, the controller immediately starts tapping into the remaining 20% of the lift-gas supply in order to 

increase the oil production rate as soon as possible. When plant operation nears the production 

capacity, the controller starts adjusting the control inputs such that the maximum allowed fluid 

production rate is reached without any overshoot. The attained rate is maintained thereafter. Since 

the model predictions are 100% accurate, no constraint violations occur.  

It is important to note the influence of the penalty terms on performance. Action of the term 

𝑤𝑔𝑎,𝑘𝑅𝑤𝑔𝑎,𝑘
𝑇  in the objective function—which is used to enforce a more economical route—is evident 
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throughout the simulation run. It is more readily observable after the maximum production limit is 

reached: in order to maintain the production rate, only about 92% of the available lift-gas supply is 

utilized and more of this amount is allocated to well-1 than to well-2. Likewise, the term Δ𝑤𝑔𝑎𝑆Δ𝑤𝑔𝑎
𝑇  

can be credited, in no small part, for the smooth variation of the control inputs observed throughout.  

 
Figure 4.7: Performance of standard NMPC when no uncertainty is present, plant 𝑑𝑃𝐼 = controller 𝑑𝑃𝐼 = [0, 0] 

The smooth response to the step change in the lift-gas supply 𝑤𝑔𝑐 (i.e., the known input disturbance), 

which is introduced at about the 3.25-hour mark, further demonstrates the effectiveness of standard 

NMPC. 

In essence, standard NMPC effortlessly achieves optimal operation when no uncertainty is present. 

4.3.2.2 Performance When Uncertainty Is Present 

When plant-model mismatch exists, since the model predictions are not accurate, constraint 

violations may occur. To demonstrate this, the same case considered in section 4.3.2.1 is simulated, 

but now with plant 𝑑𝑃𝐼 = [0.13, 0.13]; the nominal values 𝑑𝑃𝐼 = [0, 0] are retained in the model. The 

results are shown in Figure 4.8. 

It can be seen that, in this case, the controller does not start to lower the control inputs until some 

time after the production limit is exceeded; for the most part, the controller doesn’t realize that the 

plant is operating outside the specified bounds and so no action is taken to bring it back within limits 

(the exceptions being the sudden dips in the control inputs, observed after the 1.5-hour mark. 

However, these too are likely not actions resulting from actual knowledge that the plant is operating 

outside the specified boundaries). This occurs due to state feedback: the process model, which is now 
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inaccurate, is used to compute the current fluid production rate from the state information fed back 

from the plant; the nominal PI values used in the computation 𝑃𝐼 = [2.51, 1.63] × 104 kg/hr/bar are 

lower than the actual PI values of the plant 𝑃𝐼 = [2.64, 1.76] × 104 kg/hr/bar so consequently, the 

computed fluid production rate is also lower than the actual. The same holds for the prediction of the 

state trajectory, which is why the production rate exceeds the allowed maximum in the first place. 

Since such constraint violations could be fatal in reality, performance of standard NMPC is not 

acceptable in this case. Instead, robust NMPC techniques that can account for the uncertainty present 

in the PI values, need to be explored. 

 
Figure 4.8: Performance of standard NMPC when uncertainty is present, plant 𝑑𝑃𝐼 = [0.13, 0.13], controller 𝑑𝑃𝐼 = [0, 0] 

4.4 Multi-Stage NMPC 

In this section the potential of employing multi-stage NMPC for achieving optimal operation of the oil 

field, under the presence of uncertainty, is assessed. 

4.4.1 Optimal Control Problem 

The optimization problem resulting from the multi-stage approach is given in equation (4.28) - (A.12). 

min
𝑚𝑘

𝑗
,𝑤𝑔𝑎,k

𝑗
∀(𝑗,𝑘)∈𝐼

∑ 𝜔𝑖 ∑ −𝑤𝑜𝑝,𝑘+1𝑄𝑤𝑜𝑝,𝑘+1
T + 𝑤𝑔𝑎,𝑘𝑅𝑤𝑔𝑎,𝑘

T + Δ𝑤𝑔𝑎,𝑘𝑆Δ𝑤𝑔𝑎,𝑘
T

𝑁𝑝−1

𝑘=0

𝑁

𝑖=1

 (4.28) 

subject to 

 m𝑘+1
𝑗

= 𝑓 (𝑚𝑘
𝑝(𝑗)

, 𝑤𝑔𝑎,𝑘
𝑗

, 𝑑𝑃𝐼,𝑘
𝑟(𝑗)

),  ∀ (𝑗, 𝑘 + 1) ∈ 𝐼 (4.29) 



4 Case Study - Oil Production Optimization 

24 

 

 
∑ 𝑤𝑔𝑎,𝑘

𝑖,𝑗

2

𝑖=1

≤ 𝑤𝑔𝑐,𝑘 ,  ∀ (𝑗, 𝑘) ∈ 𝐼 (4.30) 

 
∑ 𝑤𝑔𝑜𝑝,𝑘

𝑖,𝑗

2

𝑖=1

≤ 160,  ∀ (𝑗, 𝑘) ∈ 𝐼 (4.31) 

 −0.15 ≤ Δ𝑤𝑔𝑎,𝑘
𝑖,𝑗

≤ 0.15,  ∀ (𝑗, 𝑘) ∈ 𝐼 (4.32) 

 0.323 ≤ 𝑤𝑔𝑎,𝑘
𝑖,𝑗

≤ 11.66, ∀ (𝑗, 𝑘) ∈ 𝐼 (4.33) 

 𝑤𝑔𝑎,𝑘
𝑖,𝑗

= 𝑤𝑔𝑎,𝑘
𝑖,𝑙  if 𝑚𝑘

𝑝(𝑗)
= 𝑚𝑘

𝑝(𝑙)
 ∀ (𝑗, 𝑘), (𝑙, 𝑘) ∈ 𝐼 (4.34) 

The stage cost and the constraints are the same as considered in section 4.3.1, for standard NMPC, 

except for the non-anticipativity constraint given in equation (A.12). 

The weights of the scenarios 𝜔𝑗 are all chosen to be identical. 

4.4.2 Simulation Results 

Performance of multi-stage NMPC corresponding to several different cases is studied here:  

1. realizations of the uncertainty included in the scenario tree, 

2. realizations of the uncertainty not included in the scenario tree,  

3. different scenario tree designs (i.e., different sets of values of the uncertainty considered in 

the tree), 

4. different robust horizon lengths, and  

5. different ranges of the uncertainty. 

Furthermore, several ways of improving the performance, with respect to computational cost and 

conservativeness, are also explored: 

6. direct multiple-shooting for reducing computational cost 

7. grouping of control inputs for reducing computational cost 

8. estimation of the uncertainties for reducing conservativeness. 

4.4.2.1 Performance for Realizations of the Uncertainty Included in the Scenario Tree 

The scenario tree considered in this section is generated by combining the minimum, maximum and 

nominal values of the uncertainties. These are marked with ‘×’ in Figure 4.9, which provides a simple 

illustration of their relative positions in the uncertainty space. Since the PI values are assumed 

constant throughout the simulation timespan, the robust horizon is taken to be 𝑁𝑟 = 1, i.e., the 

branching of the scenario tree is done only once. These choices lead to 𝑁 = 5 discrete scenarios. 

 
Figure 4.9: Uncertainty space and the values of the uncertainty considered in the scenario tree. 
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Figure 4.10 shows the performance of multi-stage NMPC corresponding to different realizations of 

uncertainty that are explicitly represented in the scenario tree. No constraint violations are observed 

for any of the scenarios. It is seen, however, that this comes at the price of conservativeness, i.e., the 

obtained solution is suboptimal in comparison to the solution provided by standard NMPC using a 

perfect model of the system. Nevertheless, the simulation results prove that constraint satisfaction is 

indeed guaranteed for values of the uncertainty that are present in the scenario tree. 

Another important observation is that the degree of conservativeness is different for different 

realizations of the uncertainty. The highest is observed for 𝑑𝑃𝐼 = [−0.25, −0.25]. It is of interest to 

further investigate the conservativeness in the solution for this case; the results are compared with 

the corresponding results for the ideal case using standard NMPC, i.e., when no uncertainty is present, 

in Figure 4.11. It can be seen that optimality is severely affected by the need to account for the 

presence of uncertainty: in the ideal case, standard NMPC can make the plant produce oil at a rate of 

∑ 𝑤𝑜𝑝
𝑖 ~151 kg/s; but when uncertainty is present and accounted for using multi-stage NMPC, 

production drops down to ∑ 𝑤𝑜𝑝
𝑖 ~143 kg/s. Hence, it can be concluded that, even though multi-

stage NMPC is less conservative than other robust NMPC approaches, conservativeness could still be 

a concern depending on the actual value of the uncertainty. 

4.4.2.2 Performance for Realizations of the Uncertainty Not Included in the Scenario Tree 

In Figure 4.10, it is seen that for one of the realizations 𝑑𝑃𝐼 = [0.25, 0.25] the plant is operated at the 

boundary. This indicates that, of the five scenarios considered in the scenario tree, the one 

corresponding to this value of the uncertainty is the worst-case scenario (the one corresponding to 

𝑑𝑃𝐼 = [−0.25, −0.25] is the best; the highest level of conservativeness is observed for it). However, 

it is not known whether it is the worst-case scenario out of all the possibilities. So, even though 

constraint satisfaction is guaranteed for values of the uncertainty explicitly included in the scenario 

tree, nothing can be said for the values that are not. 

It is required to ensure constraint satisfaction also for values that are not explicitly included in the 

scenario tree. To do this, the same scenario tree—described in section 4.4.2.1—is used and multi-

stage NMPC is tested for 32 different realizations that are evenly distributed in the uncertainty space. 

Figure 4.12 shows the corresponding results, together with the results for realizations that are 

included in the scenario tree.  

It is seen that all the constraints are satisfied also for realizations that are not explicitly included in the 

scenario tree. Furthermore, the plant is not operated at the boundary for any of these—only for 𝑑𝑃𝐼 =

[0.25, 0.25], which is explicitly included. This suggests that the scenario corresponding to 𝑑𝑃𝐼 =

[0.25, 0.25] is indeed the worst possible scenario (the scenario corresponding to 𝑑𝑃𝐼 =

[−0.25, −0.25] also appears to be the best possible scenario; the highest level of conservativeness is 

still observed for it), which, in turn, suggests that robust constraint satisfaction is ensured for all 

possible values of the uncertainty. However, it is important to note that these simulation results do 

not provide conclusive evidence for this; only a small subset of the uncertainty space has been 

considered here. 
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Figure 4.10: Performance of multi-stage NMPC for each realization of the uncertainty present in the scenario tree 

 
Figure 4.11: Performance of standard NMPC when no uncertainty is present, and performance when uncertainty is present 

and accounted for using multi-stage NMPC. Plant 𝑑𝑃𝐼 = [−0.25, −0.25]. 
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Figure 4.12: Performance of multi-stage NMPC for different realizations of the uncertainty. Grey lines correspond to 

realizations that are not present in the scenario tree, and coloured lines correspond to the ones that are. 

 
Figure 4.13: Performance of standard NMPC (controller 𝑑𝑃𝐼 = [0, 0]) and multi-stage NMPC corresponding to the same 

realization of the uncertainty 𝑑𝑃𝐼 = [0.13, 0.13] 
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Figure 4.13 provides a comparison of the performance of standard NMPC (controller 𝑑𝑃𝐼 = [0, 0]) and 

multi-stage NMPC corresponding to the same realization of the uncertainty 𝑑𝑃𝐼 = [0.13, 0.13]—

which is the same value considered in section 4.3.2.2. Multi-stage NMPC successfully handles the 

uncertainty, albeit with a small level of conservativeness, whereas standard NMPC completely fails. 

4.4.2.3 Influence of the Scenario Tree Design on Performance 

To study the effect of scenario tree design on performance, four different trees are considered. 

Schematic representations of these are shown in Figure 4.14. The resulting performance of multi-stage 

NMPC with each of the trees, corresponding to the same realization 𝑑𝑃𝐼 = [0.20, 0.20], are compared 

in Figure 4.15. 

 
Figure 4.14: Several scenario trees with different values of the uncertainty taken into account and 𝑁𝑟 = 1 

 
Figure 4.15: Performance of multi-stage NMPC with different scenario tree designs. Plant 𝑑𝑃𝐼 = [0.20, 0.20]. 

In section 4.4.2.2 the worst-case scenario was established to be 𝑑𝑃𝐼 = [0.25, 0.25]. However, Tree-1 

does not take this into consideration. Hence, multi-stage NMPC with Tree-1 could result in constraint 
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violations as demonstrated in Figure 4.15. This further emphasizes the importance of including the 

combinations of the extreme values of the uncertainties in the scenario tree.  

As for the other three trees—all of which include the extreme values—the performance appears to 

be identical; inclusion of intermediate values does not improve performance. Tree-2 provides good 

performance at a lower computational cost, so it will be used in the remainder of the case study. 

4.4.2.4 Influence of the Robust Horizon Length on Performance 

Even though the 𝑃𝐼 is a constant—but uncertain—parameter, performance of multi-stage NMPC with 

a robust horizon 𝑁𝑟 = 1 need not necessarily be the best: branching of the scenario tree does not 

solely represent (possible) time-variance of the uncertainties; it also represents the fact that a new 

tree is considered at the next timestep [12]. Taking the robust horizon as 𝑁𝑟 = 1 is equivalent to 

making the inaccurate assumption that different control inputs can be taken at the next timestep, 

depending on the uncertainty, when in truth the new tree at the next timestep will enforce that all 

control inputs in the first stage be the same [10]. 

To study the effect of robust horizon on performance, three different robust horizons are tested for 

the same realization of the uncertainty 𝑑𝑃𝐼 = [0.13, 0.13]. Figure 4.16 provides a comparison of the 

results. Performance for all three cases seems identical. However, upon close inspection, it is seen 

that increasing the robust horizon leads to higher conservativeness. Given this, and the fact that it also 

leads to higher computational cost, it is easy to conclude that 𝑁𝑟 = 1 is the best choice in this case; it 

will be used in the remainder of the case study. 

 
Figure 4.16: Performance of multi-stage NMPC with different robust horizons 𝑁𝑟. Plant 𝑑𝑃𝐼 = [0.13, 0.13]. 
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4.4.2.5 Influence of the Range of Uncertainty on Performance 

In section 4.1.2 the uncertainty ranges were established to be 𝑑𝑃𝐼
𝑖 ∈ [−0.25, 0.25], which equates to 

an uncertainty of ~±10% in the PI value of well-1 and an uncertainty of ~±15% in the PI value of well-

2. But here, a case where 𝑑𝑃𝐼
𝑖 ∈ [−0.375, 0.375] (i.e., a 150% increase in range) is also considered; 

the corresponding uncertainties in the PI value of well-1 and well-2 are ~±15% and ~±23%, 

respectively.  

A comparison of the performance for each case is shown in Figure 4.17. Naturally, a higher degree of 

conservativeness is observed for the case with the higher uncertainty; for the considered realization 

𝑑𝑃𝐼 = [0.13, 0.13] the total oil production is seen to be lower by about 1% in comparison.  

In section 4.4.2.1 it was remarked that multi-stage NMPC produces different degrees of 

conservativeness for different realizations of the uncertainty, and for some the degree of 

conservativeness is quite significant and hence could be a problem. The observation made here adds 

onto this fact: even though multi-stage NMPC is less conservative compared to other robust NMPC 

approaches, conservativeness could still be a problem depending on the actual value of the 

uncertainty and the range of the uncertainty. 

 
Figure 4.17: Performance of multi-stage NMPC for different ranges of the uncertainty and for plant 𝑑𝑃𝐼 = [0.13, 0.13]. 

(Note: The scenario tree for both cases is generated using the minimum, maximum and nominal values of the 
corresponding uncertainty range, and 𝑁𝑟 = 1.) 
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4.4.2.6 Direct Multiple-Shooting for Reducing Computational Cost 

The advantages of using the direct multiple-shooting strategy over the direct single-shooting strategy 

were discussed in detail in section 3.2.1.1, and up until this point it has been used throughout the case 

study. But here, for comparison purposes, multi-stage NMPC is implemented with direct single-

shooting. Computation times for simulating the same scenario with each shooting strategy are 

compared in Table 4.2. 

Table 4.2: Comparison of the average computation time per iteration of multi-stage NMPC with single-shooting and 
multiple-shooting 

 
Robust 
horizon 

𝑵𝒓 

No. of 
decision 
variables 

Average time taken 
to solve the NLP at 

each time step 

Ratio between the 
average times 

𝒕𝒎𝒖𝒍𝒕𝒊−𝒔𝒉: 𝒕𝒔𝒊𝒏𝒈𝒍𝒆−𝒔𝒉 

Direct multiple-shooting 
1 

1022 0.2539 
1:2 

Direct single-shooting 242 0.5095 

Direct multiple-shooting 
2 

5062 0.8467 
1:3 

Direct single-shooting 1162 2.4086 

It is evident that, even though it results in a much larger NLP, the multiple-shooting strategy facilitates 

faster convergence to the optimal solution. The improvement in computation time makes real-time 

implementation possible even for a robust horizon 𝑁𝑟 = 2. 

4.4.2.7 Grouping of Control Inputs for Reducing Computational Cost 

As discussed in section 3.2.1.3, grouping of control inputs is another method that can be used for 

cutting down the computational cost. For demonstrating its effectiveness with multi-stage NMPC, one 

case of grouping is presented here. The original case, without grouping, is compared with the 

considered case of grouping in Table 4.3. (Note: With multi-stage NMPC, only the control inputs 

corresponding to the stages occurring after the robust horizon, i.e., 𝑤𝑔𝑎,𝑘 = [𝑤𝑔𝑎,𝑘
1 , 𝑤𝑔𝑎,𝑘

2 ] for 𝑘 =

1, ⋯ ,24 in equation (4.28), are grouped.) 

Table 4.3: Comparison of the number of decision variables in the original (non-grouped) OCP and the grouped OCP 

 
No. of 
groups 

No. of control inputs 𝒘𝒈𝒂 = [𝒘𝒈𝒂
𝟏 , 𝒘𝒈𝒂

𝟐 ] 

per group (listed in the order they 
appear along the prediction horizon) 

No. of decision variables 
corresponding to the 

control inputs 

Without 
grouping 

24 [1, …, 1] 242 

With 
grouping 

8 [2, 2, 2, 2, 2, 4, 4, 6] 82 

The resulting performance of multi-stage NMPC with control input grouping is compared with the 

original performance (i.e., without control input grouping) in Figure 4.18; the average time taken to 

solve the NLP at each time step in each case is provided in the legend. It can be seen that, although 

control input grouping introduces an extra assumption to the OCP, with a proper choice of grouping 
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scheme, more or less the same original performance can be achieved at an even lower computational 

cost than achieved with just direct multiple-shooting. 

 
Figure 4.18: Performance of multi-stage NMPC with and without control input grouping. Plant 𝑑𝑃𝐼 = [0.13, 0.13]. 

4.4.2.8 Estimation of the Uncertainties for Reducing Conservativeness 

It was seen in section 4.4.2.1 and 4.4.2.5 that the conservativeness of multi-stage NMPC could still be 

a potential concern, even though it is known to be less conservative than other robust control 

approaches. Since the PI parameter is time-invariant, the performance could be improved by 

estimating the uncertainty online, as discussed in section 3.2.2. Here the estimation technique 

proposed in [19] is tested.  

The estimation algorithm is implemented together with the multi-stage NMPC algorithm to update 

the scenario tree online; the results are compared to the case without online estimation in Figure 4.19. 

The parameters 𝐾, 𝛿, and 𝛼 in [19] are chosen to be 2, 10−10, and 0.3, respectively and the estimation 

algorithm is turned on near the 1.25-hour mark (marked with a red dotted vertical line in all the plots 

in Figure 4.19). 

After estimation is started, a gradual reduction in conservativeness can be seen; more and more of 

the available lift-gas is utilized to increase the total oil production. On the flip side, sudden fluctuations 

in the control signals result from updating of the scenario tree. However, this may be inconsequential 

in comparison to the production increase. 
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All in all, the simulation results suggest that significant improvements in performance could be 

achieved by employing estimation techniques together with multi-stage NMPC whenever possible.  

 
Figure 4.19: Performance of multi-stage NMPC with online update of scenario tree and with fixed scenario tree. Plant 

𝑑𝑃𝐼 = [−0.25, 0.25]. 

4.5 Min-max NMPC 

In this section how the closed-loop min-max NMPC variation of multi-stage NMPC stacks up against 

the original formulation is evaluated. 

4.5.1 Optimal Control Problem 

The closed-loop min-max NMPC formulation is obtained by simply replacing the summation in (4.28) 

with the maximization operator: 

min
𝑚𝑘

𝑗
,𝑤𝑔𝑎,k

𝑗
∀(𝑗,𝑘)∈𝐼

max
 

𝜔𝑖 ∑ −𝑤𝑜𝑝,𝑘+1𝑄𝑤𝑜𝑝,𝑘+1
T + 𝑤𝑔𝑎,𝑘𝑅𝑤𝑔𝑎,𝑘

T + Δ𝑤𝑔𝑎,𝑘𝑆Δ𝑤𝑔𝑎,𝑘
T

𝑁𝑝−1

𝑘=0

 (4.35) 

subject to 

 m𝑘+1
𝑗

= 𝑓 (𝑚𝑘
𝑝(𝑗)

, 𝑤𝑔𝑎,𝑘
𝑗

, 𝑑𝑃𝐼,𝑘
𝑟(𝑗)

),  ∀ (𝑗, 𝑘 + 1) ∈ 𝐼 (4.36) 

 
∑ 𝑤𝑔𝑎,𝑘

𝑖,𝑗

2

𝑖=1

≤ 𝑤𝑔𝑐,𝑘 ,  ∀ (𝑗, 𝑘) ∈ 𝐼 (4.37) 
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∑ 𝑤𝑔𝑜𝑝,𝑘

𝑖,𝑗

2

𝑖=1

≤ 160,  ∀ (𝑗, 𝑘) ∈ 𝐼 (4.38) 

 −0.15 ≤ Δ𝑤𝑔𝑎,𝑘
𝑖,𝑗

≤ 0.15,  ∀ (𝑗, 𝑘) ∈ 𝐼 (4.39) 

 0.323 ≤ 𝑤𝑔𝑎,𝑘
𝑖,𝑗

≤ 11.66, ∀ (𝑗, 𝑘) ∈ 𝐼 (4.40) 

 𝑤𝑔𝑎,𝑘
𝑖,𝑗

= 𝑤𝑔𝑎,𝑘
𝑖,𝑙  if 𝑚𝑘

𝑝(𝑗)
= 𝑚𝑘

𝑝(𝑙)
 ∀ (𝑗, 𝑘), (𝑙, 𝑘) ∈ 𝐼 (4.41) 

4.5.2 Simulation Results 

Performance of min-max NMPC and multi-stage NMPC, with the same scenario tree—generated using 

the combinations of the extreme values and the nominal values of the uncertainties and 𝑁𝑟 = 1—

corresponding to each of the two extreme realizations of the uncertainty, i.e., 𝑑𝑃𝐼 = [0.25, 0.25] and 

𝑑𝑃𝐼 = [−0.25, −0.25], is compared. The results are shown in Figure 4.20 and Figure 4.21; the average 

time taken to solve the NLP at each time step in each case is provided in the legends. 

As expected, min-max NMPC, too, ensures robust constraint satisfaction for all possible values of the 

uncertainty. While performance appears to be more or less the same in terms of conservativeness, 

the benefit of multi-stage NMPC can be seen in the form of reduced computational cost: multi-stage 

NMPC is approximately 4x faster. 

 
Figure 4.20: Performance of min-max and multi-stage NMPC for plant 𝑑𝑃𝐼 = [0.25, 0.25] 
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Figure 4.21: Performance of min-max and multi-stage NMPC for plant 𝑑𝑃𝐼 = [−0.25, −0.25] 

4.6 Discussion 

This chapter constituted the main results of this thesis; the implementation of two robust NMPC 

techniques—multi-stage and min-max—to an industrial case study was detailed and the resulting 

performance was evaluated. 

Firstly, the ideal operation of the plant and the need for addressing the uncertainties was 

demonstrated through the implementation of standard NMPC: it was seen to work perfectly when 

knowledge about the plant was considered exact (i.e., no uncertainty), but constraint violations were 

observed when uncertainty was introduced. 

Then multi-stage NMPC was implemented, and its performance was assessed. Simulation results 

proved that it leads to better performance than standard NMPC; it is capable of successfully handling 

the uncertainties and ensuring robust constraint satisfaction. More specifically, it was affirmed that 

inclusion of the combinations of the extreme values of the uncertainties in the scenario tree ensures 

robust constraint satisfaction for all possible realizations of the uncertainty—conversely, exclusion 

results in constraint violations (for some values of the uncertainty). Inclusion of intermediate values 

and extension of the robust horizon length was found to have little effect on the performance, and 

hence it was established that the scenario tree generated using the combinations of the extreme and 

nominal values, and a robust horizon of one timestep was the best choice—simulation results showed 

that it provides good performance at lower computational cost. 
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Despite the fact that multi-stage NMPC is considered a non-conservative robust control scheme it was 

clear that the solution will still have some degree of conservativeness in order to ensure robust 

constraint satisfaction. Comparison of the performance for the best-case scenario and the 

corresponding ideal performance—that could be achieved with standard NMPC—made it clear that 

conservativeness could be a potential problem, especially if the span of uncertainty is high—because 

the higher the uncertainty, the greater the degree of conservativeness. 

This chapter also provided some insight into efficient implementation of robust NMPC. It was shown 

that the direct multiple-shooting approach and grouping of control inputs provides significant 

improvements in computational speed over simple implementations using the direct single-shooting 

approach. Efficient implementation becomes more important when problems with longer prediction 

horizons and more uncertainties are considered.  

A simple online estimation technique was implemented together with multi-stage NMPC, to narrow 

the span of the uncertainties, and in turn the span of the scenario tree. The results suggest that, for 

problems involving time-invariant uncertain parameters, the performance could be improved through 

the use of such extensions. 

Lastly, multi-stage NMPC was compared with its closed-loop min-max variation. Even though 

performance of both was seen to be more or less identical in terms of robust constraint satisfaction 

and conservativeness, results suggest that multi-stage should be preferred over min-max since 

comparable performance could be achieved at a substantially lower computational cost. 
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5 Conclusion 

5.1 Conclusion 

The main goal of this thesis was to investigate and implement robust NMPC, specifically multi-stage 

NMPC and min-max NMPC. To this end, a literature review on existing robust NMPC techniques was 

carried out and multi-stage and min-max NMPC methods were studied in-depth. Additionally, a brief 

review of methods available for dealing with the issues of computational complexity and 

conservativeness of the robust NMPC techniques was also conducted. Based on the acquired 

knowledge, robust NMPC was implemented on a challenging industrial case study. 

Simulation results showed both multi-stage NMPC and min-max NMPC to be capable of ensuring 

robust constraint satisfaction for all possible values of the uncertainties—in contrast to standard 

NMPC. The performance of both was seen to be identical in terms of conservativeness, however it 

was evident that multi-stage NMPC is the more computationally attractive choice. 

It was also demonstrated that there exist methods to successfully deal with the inevitable loss of 

performance resulting from robust NMPC; the results also suggest that if an efficient implementation 

is carried out, for certain cases, even real-time implementation may be possible. 

All in all, it can be concluded that robust NMPC is an essential tool for advanced control of industrial 

processes and that the multi-stage NMPC approach, in particular, is rather promising— if designed 

properly it may be applied for real-time robust control of certain processes. 

5.2 Future Work 

In the oil production optimization case study, several simplifying assumptions were made in order to 

maintain focus on the main task—implementation of robust NMPC—and to make it achievable within 

the given timeframe. Further work on robust control of the oil production process could involve 

loosening these assumptions and dealing with a more complete representation of the real system. 

Specifically, the following ideas are proposed. 

It was assumed that the optimal flow rates provided by NMPC serve as setpoints to PID controllers, 

which are coupled together to form a control structure for maintaining the pressure inside the gas 

distribution manifold near a given setpoint. Such a control structure would typically be used in reality 

and so it would be interesting to implement it along with the developed robust controller and test the 

performance of the entire control system. 

State feedback was used in the design of the controller, i.e., it was considered that the exact states of 

the system are available at each timestep. In practice, however, this is not true. Since state information 

is required by the controller an estimation strategy must be used. Simulation studies have shown that 

multi-stage NMPC can be applied in combination with state estimation [24], however deterioration of 

performance due to propagation of measurement noise is reported and it is pointed out that in certain 

cases explicit consideration of measurement noise and estimation errors in the design of the scenario 
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tree may be required. Hence, the developed controller should be tested with output feedback (i.e., 

state estimation based on noisy measurements) to see if the performance is acceptable or 

modification of the scenario tree is necessitated. 

Finally, in order to reduce the computational cost associated with testing, it was also assumed that 

the PI parameter was the only source of uncertainty and that there were only two wells present in the 

oil field—instead of five. Even though the methods considered in this thesis for reducing 

computational cost makes real-time implementation of multi-stage NMPC possible under the 

assumptions made, the problem may very well be intractable if more wells and more uncertainties 

were considered. Hence, it is important to look into more efficient ways of implementation—e.g., the 

performance resulting from full discretization of system dynamics using the orthogonal collocation 

approach is said to be superior to that achieved with direct multiple-shooting [10] [12]. 
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Appendix A 

Case Study - Reservoir Control 
The main case study presented in this thesis involved continuous-valued uncertainties. Even though 

the simulation results suggested that the developed multi-stage NMPC could ensure robust constraint 

satisfaction for all possible values of the uncertainty, there is no real guarantee for this.  

The reservoir control case study presented here is particularly interesting because the involved 

uncertainty takes only a finite (and fairly manageable) number of discrete values. Hence, if 

implemented properly, multi-stage NMPC could guarantee robust constraint satisfaction for all 

possible values of the uncertainty and also ensure optimal operation under the presence of 

uncertainty.  

Some preliminary results using deterministic NMPC, leading up to robust NMPC, are presented and 

discussed in the following sections. 

A.1 Process Description 

The case study presented here involves the control of the floodgate of a reservoir. A simple illustration 

of the considered system is given in Figure A.1. There are two inflows into the reservoir: the inflow 

from the Hjartsjå river and the inflow from the Hjartdøla hydropower station. The forecasts of these 

inflows are used for control purposes, and they constitute the main sources of uncertainty in the 

system. 

 
Figure A.1: Illustration of the reservoir 

Source: Skagerak Energi 

The control task here is to manipulate the floodgate such that the water level in the reservoir is 

maintained between the minimum and maximum prescribed levels, while also ensuring that the 

outflow from the reservoir is above a specified seasonal minimum and is stable. The main operational 

challenge is preventing abrupt drops in the reservoir outflow during low waterflow periods—which 

can lead to stranded fish and river mussels. This control task is made extremely difficult due to the 

presence of uncertainty.  
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The dynamics of the reservoir are described by the following mathematical model (source: Skagerak 

Energi). 
𝑑ℎ

𝑑𝑡
=

1

�̃�
(𝑄𝑖𝑛𝑓 + 𝑄𝑝𝑟𝑜𝑑 − 𝑄𝑓𝑙𝑜𝑜𝑑 − 𝑄𝑔𝑎𝑡𝑒) (A.1) 

ℎ𝑖𝑛 = min
 

(max
 

(0, ℎ − 𝐿𝑅𝑉) , ℎ𝑖𝑛,𝑚𝑎𝑥) (A.2) 

𝐴 = max
 

(𝐴𝑚𝑖𝑛, 106 ∙ 𝑎 ∙ 𝑏 ∙ ℎ𝑖𝑛
𝑏−1) (A.3) 

ℎ𝑜𝑢𝑡,𝑔 = max
 

(0, ℎ − (ℎ𝑔,𝑡𝑜𝑝
𝑚𝑠𝑙 − ℎ𝑔)) (A.4) 

𝑄𝑔𝑎𝑡𝑒 = 1.84 ∙ 𝐿1 ∙ ℎ𝑜𝑢𝑡,𝑔
1.5  (A.5) 

ℎ𝑜𝑢𝑡,𝑂𝐹1 = max
 

(0, ℎ − 𝑂𝐹𝑇1
𝑚𝑠𝑙) (A.6) 

ℎ𝑜𝑢𝑡,𝑂𝐹2 = max
 

(0, ℎ − 𝑂𝐹𝑇2
𝑚𝑠𝑙) (A.7) 

𝑄𝑓𝑙𝑜𝑜𝑑 = 1.8(𝐿1 ∙ ℎ𝑜𝑢𝑡,𝑂𝐹1
1.5 + 𝐿2 ∙ ℎ𝑜𝑢𝑡,𝑂𝐹2

1.5 ) (A.8) 

The variables that appear in the model equations are described in Table A.1 and the parameters are 

described in Table A.2. 

Table A.1: Variables of the reservoir model 

 Variable Description Unit 

Differentia
l state 

ℎ Reservoir water level m MSL 

Algebraic 
states 

ℎ𝑖𝑛 Water level inside the reservoir m 

𝐴 
Surface area of water in reservoir at the 

current level ℎ 
m2 

ℎ𝑜𝑢𝑡,𝑔 
Water level relevant to outflow through 

gate  
m 

𝑄𝑔𝑎𝑡𝑒 Outflow through gate m3/s 

ℎ𝑜𝑢𝑡,𝑂𝐹1 
Water level relevant to outflow through 

overflow channel 1 
m 

ℎ𝑜𝑢𝑡,𝑂𝐹2 
Water level relevant to outflow through 

overflow channel 2 
m 

𝑄𝑓𝑙𝑜𝑜𝑑 Outflow through overflow channels m3/s 

Control 
input 

ℎ𝑔 Gate opening m 

Disturbanc
es 

𝑄𝑖𝑛𝑓 Inflow from Hjartsjå river m3/s 

𝑄𝑝𝑟𝑜𝑑 
Inflow from Hjartdøla hydropower 

station 
m3/s 

Table A.2: Parameters of the reservoir model 

Paramet
er 

Description Value Unit 

𝐿𝑅𝑉 Lower regulated value 155.7 m MSL 

𝐻𝑅𝑉 Higher regulated value 157.5 m MSL 

ℎ𝑖𝑛,𝑚𝑎𝑥 
Maximum possible water level of the 

reservoir 
𝐻𝑅𝑉 + 3 − 𝐿𝑅𝑉 

= 4.8 
m 

𝐴𝑚𝑖𝑛 
Minimum possible surface area of 

water in the reservoir 
103 m2 

𝑎 A constant 0.0474 - 
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𝑏 A constant 1.6898 - 

ℎ𝑔,𝑡𝑜𝑝
𝑚𝑠𝑙  Gate opening – top position 157.37 m MSL 

𝐿1 Width of the gate 12 m 

𝑂𝐹𝑇1
𝑚𝑠𝑙 Overflow threshold 1 157.5 m MSL 

𝑂𝐹𝑇2
𝑚𝑠𝑙 Overflow threshold 2 158.5 m MSL 

𝐿2 Width of the overflow channel 11 m 

A.2 Standard NMPC 

Performance of deterministic NMPC applied to the reservoir process is investigated here.  

The cost function minimized at each timestep is chosen as 

min
ℎ1,⋯,ℎ𝑁𝑝 ,ℎ𝑔,0,⋯,ℎ𝑔,𝑁𝑝−1

∑ (ℎ𝑘+1 − ℎ𝑠𝑒𝑡)𝑄(ℎ𝑘+1 − ℎ𝑠𝑒𝑡)T + Δℎ𝑔,𝑘𝑅Δℎ𝑔,𝑘
T

𝑁𝑝−1

𝑘=0

 (A.9) 

where ℎ𝑠𝑒𝑡 is the reservoir level setpoint. 

The cost function includes a tracking term (ℎ𝑘+1 − ℎ𝑠𝑒𝑡)𝑄(ℎ𝑘+1 − ℎ𝑠𝑒𝑡)T for the reservoir level and 

a regularization term Δℎ𝑔,𝑘𝑅Δℎ𝑔,𝑘
T  for the control signal. The tuning parameters 𝑄 and 𝑅 are chosen 

to be 1 and 0.3, respectively. 

The relevant process constraints are as follows. 

0 ≤ ℎ𝑔 ≤ 1.5 (A.10) 

𝐿𝑅𝑉 ≤ ℎ ≤ 𝐻𝑅𝑉 (A.11) 
1 ≤ 𝑄𝑜𝑢𝑡 (A.12) 

The simulation results obtained using actual recorded inflows are shown in Figure A.2; a timestep of 

one hour, a prediction horizon length of 13 days, and a simulation timespan of one month (Dec 2020) 

is considered. 

It is important to first note that the inflow from the hydropower station 𝑄𝑝𝑟𝑜𝑑 fluctuates quite rapidly 

between 10 – 30 m3/s. The effect of these fluctuations on other variables is readily seen. It is more 

clearly reflected in the reservoir outflow 𝑄𝑜𝑢𝑡: 𝑄𝑜𝑢𝑡 closely resembles 𝑄𝑝𝑟𝑜𝑑. Given the setpoint 

tracking term in the objective function, this behaviour is expected; when the inflow to the reservoir 

changes, to maintain the level near the setpoint, the outflow is adjusted by manipulating the 

floodgate. In comparison to 𝑄𝑝𝑟𝑜𝑑, the inflow from the river 𝑄𝑖𝑛𝑓 is observed to have little impact on 

performance; this is because it is more stable and has a lower range of variability (at least during the 

period considered here). 

During the period between Dec 08 and 14 there is a noticeable tracking error. The source of this error 

is obvious: 𝑄𝑝𝑟𝑜𝑑 is more or less at its maximum level throughout. The two inflows combined together 

cause the control signal to saturate at its maximum limit; since the outflow cannot be increased 

further, the reservoir level is raised past the setpoint. In contrast, during the period between Dec 19 

and 21, the setpoint is tracked perfectly; the input disturbance 𝑄𝑜𝑢𝑡 = 0.  

All in all, given the rapid variations in the input disturbance, the setpoint tracking performance of 

standard NMPC could be deemed quite good. And even if the performance is not perfect with regard 

to setpoint tracking, the success in satisfying the process constraints should be appreciated; none of 

the constraints are violated throughout the simulation run. 
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A.3 Discussion 

On the whole, the results presented here indicated that operation of the reservoir could benefit from 

implementation of standard NMPC, if there are no uncertainties associated with the system. But when 

uncertainty is introduced, the performance will surely deteriorate and constraint violations may occur; 

both the state and reservoir outflow constraints given by equation (A.11) and (A.12) are susceptible 

to uncertainty. Essentially, there might not be any advantage to using standard NMPC. Hence, it is of 

interest to investigate the feasibility robust NMPC. 

Unlike the oil production case study, the uncertainties here take discrete values; the inflows to the 

reservoir are available as an ensemble forecast consisting of 50 members, over a timespan of about 

13 days. When developing a multi-stage NMPC the scenario tree would branch only at the initial node 

and would ideally include 50 scenarios—each corresponding to a different ensemble member; the 

robust horizon assumption is not applicable here. 

Even though there are only a finite number of possible scenarios, since the considered prediction 

horizon is quite long, the resulting optimization problem would still be quite large—in fact, it would 

be substantially larger than those encountered in the oil production case study—if all the scenarios 

are considered. While the strategies discussed in this thesis for reducing computation time may prove 

to be useful here—especially the control input grouping strategy—it is advisable to further investigate 

ways for dealing with this. 

Finally, it should be noted that the simulation study conducted here is only a preliminary investigation 

intended to see how effective NMPC is at meeting the most basic control requirements. Indeed, the 

OCP formulation could—and should—be tweaked for better performance, particularly with regard to 

controlling the reservoir outflow, which was not addressed here. Furthermore, the study considered 

only the inflow data records for the month of December; it is important to also study the performance 

of standard NMPC for the flood seasons and adjust the optimization problem formulation accordingly. 
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Appendix B 

MATLAB Files 
A list of all the MATLAB script and function files used to produce the results of this thesis is given in 

Table B.1. 

Table B.1: MATLAB files 

 File name Description 

Common 
files 

oil_field_model.m 
Function used to implement the oil field 
model equations. 

update_states.m 
Function used to implement the RK4 
scheme. 

make_w_gc.m 
Function used to create the input 
disturbance to the process. 

calculate_output.m 
Function used to calculate the outputs of 
the process. 

Files 
specific 

to 
standard 

NMPC 

settings_standard_NMPC.m 
Script used to specify the settings and 
generate data. 

create_NLP_prob_standard_NMPC.m Function used to create the NLP problem. 

compute_both_standard_NMPC.m 
Function used to evaluate the objective 
function and the constraints. 

standard_NMPC.m 
Script used to implement the sliding 
horizon strategy. 

Files 
specific 

to multi-
stage 
NMPC 

settings_multi_stage_NMPC.m 
Script used to specify the settings and 
generate data. 

create_NLP_prob_multi_stage_NMPC.m Function used to create the NLP problem. 

compute_both_multi_stage_NMPC.m 
Function used to evaluate the objective 
function and the constraints. 

multi_stage_NMPC.m 
Script used to implement the sliding 
horizon strategy. 

Main files 

openloop_simulation.m 
Main script used to produce the openloop 
simulation results. 

openloop_plus_NMPC.m 
Main script used to produce both standard 
NMPC and multi-stage NMPC results. 
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oil_field_model.m 

function  [dm, w_op, w_gop] = oil_field_model(m, w_ga, d_PI) 

 

% NOTE: 

%     * This function can accept matrix inputs. But make sure rows of m, 

%       w_ga & d_PI correspond to instances. 

% 

%     * Outputs are row vectors or, for matrix inputs, their instances are 

%       arranged in rows. 

 

%-------------------------------------------------------------------------- 

% Extracting info. from the inputs 

%-------------------------------------------------------------------------- 

    % Finding the number of instances 

    no_inst = size(m,1); 

 

    % Extracting the 3 states separately from m 

    no_wells = 2; 

    m_ga = m(:, 1            :no_wells); 

    m_gt = m(:, no_wells+1   :2*no_wells); 

    m_ot = m(:, 2*no_wells+1 :end); 

 

%-------------------------------------------------------------------------- 

% Parameters 

%-------------------------------------------------------------------------- 

    % Well      = [Well1    Well2] 

    PI_nominal  = [2.51     1.63]*1e4.*ones(no_inst,1); %[kg/hr/bar] 

    PI          = PI_nominal + d_PI*1e4; 

    L_a_tl      = [2758     2559].*ones(no_inst,1); %[m] 

    L_t_tl      = L_a_tl; %[m] 

    L_a_vl      = [2271     2344].*ones(no_inst,1); %[m] 

    L_t_vl      = L_a_vl; %[m] 

    ID_t        = [6.18     6.18]*0.0254.*ones(no_inst,1); %[m] 

    A_t         = pi/4*ID_t.^2; 

    ID_a        = [9.63     9.63]*0.0254.*ones(no_inst,1); %[m] 

    OD_t        = [7.64     7.64]*0.0254.*ones(no_inst,1); %[m] 

    A_a       = pi/4*(ID_a.^2 - OD_t.^2); 

    L_r_vl      = [114      67].*ones(no_inst,1); %[m] 

    K           = [68.43    67.82].*ones(no_inst,1); %[sqrt(kg*m3/bar)/hr] 

    T_a         = [280      280].*ones(no_inst,1); %[K] 

    T_t         = [280      280].*ones(no_inst,1); %[K] 

    u_2         = [100      100].*ones(no_inst,1); %[%] 

 

    P_r         = 150; %[bar] 

    P_s         = 30; %[bar] 

    N_6         = 27.3; 

    alpha_Y     = 0.66; 

    rho_o       = 700; %[kg/m3] 

    M           = 20*1e-3; %[kg/mol] 

    z           = 1.3; 

    P_ainj_min  = 0; %[bar] 

    P_wh_min    = 0; %[bar] 

    R           = 8.31446261815324; %[J/K/mol] 

    g           = 9.80665; %[m/s2] 

 

%-------------------------------------------------------------------------- 
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% Algebraic equations 

%-------------------------------------------------------------------------- 

                P_a = z*m_ga*R.*T_a./(M*A_a.*L_a_tl)*1e-5; %[bar] (6) 

 

            P_ainj = P_a + m_ga*g.*L_a_vl./(A_a.*L_a_tl)*1e-5; %[bar] (11) 

 

                V_G = A_t.*L_t_tl - m_ot/rho_o; %[m3] (eq. after 13) 

 

                rho_m = (m_gt + m_ot)./(A_t.*L_t_tl); %[kg/m3] (eq. after 15) 

 

            P_tinj = (z*m_gt*R.*T_t./(M*V_G) + rho_m*g.*L_t_vl/2)*1e-5; %[bar] (17) 

 

        Y_2 = 1 - alpha_Y*(P_ainj - P_tinj)./max(P_ainj, P_ainj_min); %[const.] (eq. after 

10) 

 

        rho_ga = M*(P_a + P_ainj)*1e5./(2*z*R*T_a); %[kg/m3] (12) 

 

    w_ginj = K.*Y_2.*sqrt(rho_ga.*max(P_ainj - P_tinj, 0))/3600; %[kg/s] (10) 

    %---------------------------------------------------------------------- 

        P_wf = P_tinj + rho_o*g*L_r_vl*1e-5; %[bar] (18) 

 

    w_o = PI.*max(P_r - P_wf, 0)/3600; %[kg/s] (19) 

    %---------------------------------------------------------------------- 

            P_wh = (z*m_gt*R.*T_t./(M*V_G) - rho_m*g.*L_t_vl/2)*1e-5; %[bar] (16) 

 

        Y_3 = 1 - alpha_Y*(P_wh - P_s)./max(P_wh, P_wh_min); %[const.] (eq. after 20) 

 

    w_gop = 10*N_6*(0.5*u_2 - 20).*Y_3.*sqrt(rho_m.*max(P_wh - P_s, 0))/3600; %[kg/s] (20) 

    %---------------------------------------------------------------------- 

    w_gp = m_gt./(m_gt + m_ot).*w_gop; %[kg/s] (21) 

    %---------------------------------------------------------------------- 

    w_op = m_ot./(m_gt + m_ot).*w_gop; %[kg/s] (22) 

 

%-------------------------------------------------------------------------- 

% Differential equations 

%-------------------------------------------------------------------------- 

    dm_ga = w_ga - w_ginj; %[kg/s] (9) 

    dm_gt = w_ginj - w_gp; %[kg/s] (23) 

    dm_ot = w_o - w_op; %[kg/s] (24) 

 

    dm = [dm_ga, dm_gt, dm_ot]; 

update_states.m 

function m_next = update_states(m0, w_ga, d_PI, dt) 

 

% RK4 algorithm 

 

dm1 = oil_field_model(m0, w_ga, d_PI); 

dm2 = oil_field_model(m0+0.5*dt*dm1, w_ga, d_PI); 

dm3 = oil_field_model(m0+0.5*dt*dm2, w_ga, d_PI); 

dm4 = oil_field_model(m0+dt*dm3, w_ga, d_PI); 

 

m_next = m0 + dt/6*(dm1 + 2*dm2 + 2*dm3 + dm4); 
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make_w_gc.m 

function w_gc = make_w_gc(type, w_gc_val_rat, t) 

 

% Length of w_gc 

len = length(t) - 1; 

 

% Extract w_gc values and step ratio separately 

w_gc_val    = w_gc_val_rat(:,1); 

step_ratio  = w_gc_val_rat(:,2); 

 

% Change the units of input disturbance values 

w_gc_val = w_gc_val*0.83/60/60; %[kg/s] 

 

switch type 

    case 'constant' 

        w_gc = w_gc_val*ones(len,1); %[kg/s] 

 

    case '1step' 

        % Lengths of the steps 

        step_len1 = floor(len*step_ratio(1)/sum(step_ratio)); 

        step_len2 = len - step_len1; 

 

        % Input disturbance 

        w_gc = [w_gc_val(1)*ones(step_len1,1); 

                w_gc_val(2)*ones(step_len2,1)]; %[kg/s] 

 

    case '2step' 

        % Lengths of the steps 

        step_len1 = floor(len*step_ratio(1)/sum(step_ratio)); 

        step_len2 = floor(len*step_ratio(2)/sum(step_ratio)); 

        step_len3 = len - step_len1 - step_len2; 

 

        % Input disturbance 

        w_gc = [w_gc_val(1)*ones(step_len1,1); 

                w_gc_val(2)*ones(step_len2,1); 

                w_gc_val(3)*ones(step_len3,1)]; %[kg/s] 

end 

calculate_output.m 

function [w_op, w_gop] = calculate_output(m) 

 

% NOTE 

%     * w_ga & d_PI is not required for calculating w_op & w_gop using the 

%       oil_field_model; they are required only for calculating the 

%       derivatives of the states. So, this function passes a dummy_w_ga & 

%       a dummy_d_PI to oil_field_model. 

 

dummy_w_ga = zeros(size(m,1),2); 

dummy_d_PI = zeros(size(m,1),2); 

 

[~, w_op, w_gop] = oil_field_model(m, dummy_w_ga, dummy_d_PI); 
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settings_standard_NMPC.m 

%-------------------------------------------------------------------------- 

% Settings 

%-------------------------------------------------------------------------- 

    timespan = 4.5*60*60; %[s] 

    Np = 25; %[time steps] 

    %---------------------------------------------------------------------- 

    % Control input grouping 

    % Specify group lengths as a vector, groups. If there's no grouping, 

    % set groups = 0. 

    % NOTE: sum(groups) should be = Np 

    groups = 0; 

%     groups = [1 3 9 12]; %25 

    %---------------------------------------------------------------------- 

    % Well          = [Well1    Well2] 

    d_PI_controller = [0        0]; %*1e4 [kg/hr/bar] 

    %---------------------------------------------------------------------- 

    % Select the type of input disturbance, w_gc 

    % NOTE: 1st column of w_gc_val correspond to value of w_gc in Sm3/hr 

    %       2nd column of w_gc_val correspond to ratio of step lengths 

%     w_gc_type = 'constant';    w_gc_val = [  40000, 1]; 

    w_gc_type = '1step';       w_gc_val = [ 40000, 3; 

                                            35000, 1.5]; 

%-------------------------------------------------------------------------- 

% Creating other necessary data 

%-------------------------------------------------------------------------- 

    % No. of decision variables, Ndv 

    if groups == 0 % When there is no grouping 

        Ndv = Np; 

    else % When there is grouping 

        Ndv = length(groups); 

    end 

    %---------------------------------------------------------------------- 

    % NOTE: The same d_PI_plant used for openloop simulation is used 

    % Well          = [Well1    Well2] 

    d_PI_plant      = d_PI_plant_OL; %*1e4 [kg/hr/bar] 

    %---------------------------------------------------------------------- 

    % NOTE: The same dt used for openloop simulation is used 

    dt = dt_OL; %[s] 

 

%-------------------------------------------------------------------------- 

% Confirming the settings 

%-------------------------------------------------------------------------- 

    if groups ~= 0 % If there is grouping 

        if sum(groups) ~= Np % and if the group lengths don't add up to the length of the 

prediction horizon 

            error('Group lengths do not add up to the length of the prediction horizon') 

        end 

    end 

 

    % Displaying & writing the settings to a file 

    fileID = fopen('saved_settings\my_settings_file.txt','w'); 

    fprintf(fileID, 'NMPC SETTINGS \n'); 

    fprintf(fileID, ' Np              : %d timesteps      \n',    Np); 

    fprintf(fileID, ' I/P grouping : %s                \n',    mat2str(groups)); 

    fprintf(fileID, ' Ndv             : %d              \n',   Ndv*2); 
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    fprintf(fileID, ' dt             : %g s              \n',    dt); 

    fprintf(fileID, ' PH length       : %g min         \n',    round(Np*dt/60,1)); 

    fprintf(fileID, ' timespan      : %g hrs            \n',    timespan/60/60); 

    fprintf(fileID, ' d_PI_controller :                  \n'); 

    fprintf(fileID, '                %7g %7g           \n',  d_PI_controller); 

    fprintf(fileID, ' d_PI_plant    :                   \n'); 

    fprintf(fileID, '                %7g %7g             \n',  d_PI_plant); 

    fprintf(fileID, ' w_gc            : %s, %s Sm3/hr  \n',    w_gc_type, 

mat2str(w_gc_val(:,1))); 

    type('saved_settings\my_settings_file.txt'); 

 

    % Prompting the user to confirm the settings 

    disp(' ') 

    disp('Please make sure the above settings are okay. Then press any key to start the 

simulation OR press ctrl + c to stop execution.') 

    pause 

    disp(' ') 

    disp('Formulating the NLP problem & setting up the optimizer...') 

 

%-------------------------------------------------------------------------- 

% Creating other necessary data (cont.) 

%-------------------------------------------------------------------------- 

    no_wells = 2; 

    t = 0:dt:timespan; %[s] 

    %---------------------------------------------------------------------- 

    % NOTE: The final states from the openloop simulation are used as the 

    % initial states for MPC 

    m0 = m_OL(end,:); 

    %---------------------------------------------------------------------- 

    w_gc = make_w_gc(w_gc_type, w_gc_val, t); 

 

    % + (Np-1) copies of the last w_gc value 

    w_gc = [w_gc; 

            w_gc(end)*ones(Np-1,1)]; 

    %---------------------------------------------------------------------- 

    % Starting point for the optimizer 

    % NOTE: The last w_ga and m from the openloop simulation are used as 

    % the starting point for the optimizer 

    w_ga_ini = w_ga_OL(end,:).*ones(Ndv,1); 

    m_ini = m_OL(end,:).*ones(Np+1,1); 

create_NLP_prob_standard_NMPC.m 

function NLP_prob = create_NLP_prob_standard_NMPC(dt, Np, Ndv, groups, d_PI_controller, 

no_wells) 

 

% Importing CasADi 

addpath('C:\Program Files\MATLAB\casadi-windows-matlabR2016a-v3.5.5') 

import casadi.* 

 

%-------------------------------------------------------------------------- 

% Defining symbols 

%-------------------------------------------------------------------------- 

    % w_ga [Ndv, w_ga] 

    w_ga = SX.sym('w_ga', Ndv, no_wells); 

        % vect_w_ga 

            % Transposing w_ga -- for easy extraction of the 1st optimal 
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            % control move, w_ga_ast(1,:), from the optimal solution, 

            % x_ast, given by the NLP_solver) 

            vect_w_ga = w_ga'; 

            vect_w_ga = vect_w_ga(:); 

 

    % m [(Np+1) x m] 

    m = SX.sym('m', Np+1, 3*no_wells); 

        % vect_m 

        vect_m = m(:); 

 

    % Decision variables, x = [w_ga; m] 

    x = [   vect_w_ga; 

            vect_m]; 

    %---------------------------------------------------------------------- 

    % m0 [1 x 3*no_wells] 

    m0 = SX.sym('m0', 1, 3*no_wells); 

 

    % w_ga_last [1 x no_wells] 

    w_ga_last = SX.sym('w_ga_last', 1, no_wells); 

 

    % Parameters, p = [m0, w_ga_last] 

    p = [m0, w_ga_last]; 

%-------------------------------------------------------------------------- 

 

% Computing the objective function, F, and the constraints, G 

[F, G] = compute_both_standard_NMPC(Np, dt, m0, m, w_ga, groups, d_PI_controller, w_ga_last); 

 

% Creating the NLP problem 

NLP_prob = struct('f', F, 'x', x, 'g', G, 'p', p); 

compute_both_standard_NMPC.m 

function [F, G] = compute_both_standard_NMPC(Np, dt, m0, m, w_ga, groups, d_PI_controller, 

w_ga_last) 

 

% Importing CasADi 

addpath('C:\Program Files\MATLAB\casadi-windows-matlabR2016a-v3.5.5') 

import casadi.* 

 

%-------------------------------------------------------------------------- 

% Finding the information needed for evaluating the objective function & 

% constraints 

%-------------------------------------------------------------------------- 

    % w_ga_reconst [Np x w_ga] 

    if groups ~= 0 % if there is grouping reconstruct w_ga 

        w_ga_reconst = repelem(w_ga,groups,1); 

    else 

        w_ga_reconst = w_ga; 

    end 

    %---------------------------------------------------------------------- 

    % Openloop simulation over the PH 

 

        % Preallocation for continuity constraints (process dynamics), G1 

        % [(Np+1) x (dv_m - pred_m)] 

        G1 = SX.sym('G1', (Np+1), length(m0)); 

        G1(1,:) = m(1,:) - m0; % 1st continuity constraint (length(m0) number of them) 

 



Appendix B 
MATLAB Files 

57 

 

        % For each time step over the prediction horizon 

        for k = 1:Np 

 

            m_kp1 = update_states(m(k,:), w_ga_reconst(k,:), d_PI_controller, dt); 

 

            % (k+1)th continuity constraint 

            G1(k+1,:) = m(k+1,:) - m_kp1; 

 

        end 

 

        [w_op, w_gop] = calculate_output(m(2:end,:)); 

    %---------------------------------------------------------------------- 

    % oil_prod [Np x oil_prod] 

    oil_prod = sum(w_op,2); 

 

    % fluid_prod [Np x fluid_prod] 

    fluid_prod = sum(w_gop,2); 

 

    % delta_w_ga [Np x delta_w_ga] 

    delta_w_ga = w_ga_reconst(1,:) - w_ga_last; 

    delta_w_ga = [  delta_w_ga; 

                    w_ga_reconst(2:end,:) - w_ga_reconst(1:end-1,:)]; 

 

    % sum_w_ga [Np x sum_w_ga] 

    sum_w_ga = sum(w_ga_reconst,2); 

%-------------------------------------------------------------------------- 

 

% Objective function, F 

Q = 1; 

R = 0.5; 

S = 50; 

F = sum(-Q*oil_prod.^2 + R*sum(w_ga_reconst.^2,2) + S*sum(delta_w_ga.^2,2)); 

 

% Inequality constraints, G2 

G2 = [  fluid_prod; 

        delta_w_ga(:); 

        sum_w_ga]; 

 

% Constraints, G 

G = [   G1(:); 

        G2]; 

standard_NMPC.m 

% Importing CasADi 

addpath('C:\Program Files\MATLAB\casadi-windows-matlabR2016a-v3.5.5') 

import casadi.* 

 

% Fetching the settings and other required data 

settings_standard_NMPC 

 

% Creating the NLP problem 

NLP_prob = create_NLP_prob_standard_NMPC(dt, Np, Ndv, groups, d_PI_controller, no_wells); 

 

% Specifying NLP solver options 

options = struct; 

options.ipopt.max_iter = 5000; 
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options.ipopt.print_level = 0; % 3, 5(default), upto 12 

options.print_time = false; 

options.ipopt.fixed_variable_treatment = 'make_constraint'; 

options.ipopt.warm_start_init_point = 'yes'; 

 

% Creating the NLP solver 

NLP_solver = nlpsol('NLP_solver', 'ipopt', NLP_prob, options); 

 

% Container for arguments passed to NLP_solver 

% args {lbx, ubx, lbg, ubg, x0, p, lam_x0, lam_g0} 

args = struct; 

 

% Specifying the bounds of the NLP problem 

 

    % Bounds on the decision variables 

    %       LBX     <= x                <= UBX 

    %       0.323   <= w_ga             <= 11.66 [Ndv*no_wells] 

    %       0       <= m                <= inf      [(Np+1)*(3*no_wells)] 

    args.lbx = repelem([0.323; 0],      [Ndv*no_wells, (Np+1)*(3*no_wells)]); 

    args.ubx = repelem([11.66; inf],    [Ndv*no_wells, (Np+1)*(3*no_wells)]); 

 

    % Bounds of the constraints 

    %       LBG     <= G(x, p)          <= UBG 

    %       0       <= dv_m - pred_m    <= 0        [(Np+1)*(3*no_wells)] 

    %       0       <= fluid_prod       <= 160      [Np] 

    %       -0.15   <= delta_w_ga       <= 0.15     [Np*no_wells] 

    %       0       <= sum_w_ga        <= w_gc     [Np] 

    args.lbg = repelem([0; 0; -0.15; 0],    [(Np+1)*(3*no_wells), Np, Np*no_wells, Np]); 

    args.ubg = repelem([0; 160; 0.15],      [(Np+1)*(3*no_wells), Np, Np*no_wells]); 

 

%-------------------------------------------------------------------------- 

% Running standard NMPC 

%-------------------------------------------------------------------------- 

    loop_length = length(t)-1; 

 

    % Preallocating 

    m               = zeros(loop_length+1,length(m0)); m(1,:) = m0; 

    w_ga            = zeros(loop_length,no_wells); 

    loop_time       = zeros(loop_length,1); 

    controller_time = zeros(loop_length,1); 

 

    % Initializing the ODE solver used for simulating the real plant 

    update_plant = @(m0_k, w_ga_k)update_states(m0_k, w_ga_k, d_PI_plant, dt); 

 

    % Announcing the start of simulation 

    disp(' ') 

    disp('Starting standard NMPC...') 

    disp(datetime('now')) 

 

    elapsedTime = tic; 

    % Sliding horizon strategy 

    for k = 1:loop_length 

        tic 

 

        if k == 1 % lam_x0 & lam_g0 needed for warm-start not known 

            args.x0 = [w_ga_ini(:); m_ini(:)]; 

            args.p = [m(k,:), w_ga_OL(end,:)];  
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            args.ubg(end+1:end+Np) = w_gc(k:k+Np-1); 

 

            opt_time = tic; 

            % Solving the NLP problem 

            sol = NLP_solver(   'x0',       args.x0,... 

                                'p',        args.p,... 

                                'lbx',      args.lbx,... 

                                'ubx',      args.ubx,... 

                                'lbg',      args.lbg,... 

                                'ubg',      args.ubg); 

            opt_time = toc(opt_time); 

        else 

            args.x0 = sol.x; 

            args.p = [m(k,:), w_ga(k-1,:)]; 

            args.ubg(end-Np+1:end) = w_gc(k:k+Np-1); 

            args.lam_x0 = sol.lam_x; 

            args.lam_g0 = sol.lam_g; 

 

            opt_time = tic; 

            % Solving the NLP problem 

            sol = NLP_solver(   'x0',       args.x0,... 

                                'p',        args.p,... 

                                'lbx',      args.lbx,... 

                                'ubx',      args.ubx,... 

                                'lbg',      args.lbg,... 

                                'ubg',      args.ubg,... 

                                'lam_x0',   args.lam_x0,... 

                                'lam_g0',   args.lam_g0); 

            opt_time = toc(opt_time); 

        end 

 

        % Extracting the 1st optimal control move, w_ga_ast 

        w_ga_ast = full(sol.x(1:no_wells))'; 

 

        % Applying the first (optimal) control move to the plant, i.e., 

        % sliding one timestep forward 

        m(k+1,:) = update_plant(m(k,:), w_ga_ast); 

 

        % Storing variables of interest 

        w_ga(k,:) = w_ga_ast; 

        controller_time(k) = opt_time; 

        loop_time(k) = toc; 

    end 

    elapsedTime = toc(elapsedTime); 

 

    % Announcing the end of simulation 

    disp('Standard NMPC complete!') 

    fprintf(['Elapsed time = \n\n',... 

           '       %g min\n\n'], round(elapsedTime/60,1)); 

    disp('Please wait for the plots of the results...') 

%-------------------------------------------------------------------------- 

 

% Writing elapsedTime to file 

fprintf(fileID, ' Elapsed time    : %g min', round(elapsedTime/60,1)); 

fclose(fileID); 

 

% Preparing to plot the results 
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    % Removing m0 from m (Reason: m0 is not required when combining with 

    % openloop simulation results) 

    m = m(2:end,:); 

 

    % Calculating the outputs 

    [w_op, w_gop] = calculate_output(m); 

 

    % Removing the + (Np-1) copies of the last w_gc value 

    w_gc = w_gc(1:end-(Np-1)); 

settings_multi_stage_NMPC.m 

%-------------------------------------------------------------------------- 

% Settings 

%-------------------------------------------------------------------------- 

    timespan = 3*60*60; %[s] 

    Nr = 1; %[time steps] 

    Np = 25; %[time steps] 

    %---------------------------------------------------------------------- 

    % Control input grouping 

    % Specify group lengths as a vector, groups. If there's no grouping, 

    % set groups = 0. 

    % NOTE: sum(groups) should be = Np-Nr 

    groups = 0; 

%     groups = [2 4 8 10]; %24 

%     groups = [2 2 2 2 2 4 4 6]; %24 

    %---------------------------------------------------------------------- 

    % Specify the values of the uncertainties included in the scenario tree 

    % Well          = [Well1    Well2] 

    d_PI_controller = [ +0.25  +0.25; 

                        -0.25  +0.25; 

                        0     0; 

                        +0.25  -0.25; 

                        -0.25   -0.25]; %*1e4 [kg/hr/bar] 

    %---------------------------------------------------------------------- 

    % Select the type of input disturbance, w_gc 

    % NOTE: 1st column of w_gc_val correspond to value of w_gc in Sm3/hr 

    %       2nd column of w_gc_val correspond to ratio of step lengths 

%     w_gc_type = 'constant';    w_gc_val = [  40000, 1]; 

    w_gc_type = '1step';       w_gc_val = [ 40000, 2; 

                                            33000, 1]; 

%-------------------------------------------------------------------------- 

% Creating other necessary data 

%-------------------------------------------------------------------------- 

    % No. of uncertainties included in the scenario tree, Nd 

    Nd = size(d_PI_controller,1); 

    %---------------------------------------------------------------------- 

    % No. of scenarios, Ns 

    Ns = Nd^Nr; 

    %---------------------------------------------------------------------- 

    % No. of decision variables, Ndv 

 

        % No. of decision variables in the head-part, Nhead_dv 

        Nhead_dv = (1-Nd^Nr)/(1-Nd); 

 

        % No. of decision variables in the tail-part, Ntail_dv 
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        if groups == 0 % When there is no grouping 

            Ntail_dv = Ns*(Np-Nr); 

        else % When there is grouping 

            Ntail_dv = Ns*length(groups); 

        end 

 

    Ndv = Nhead_dv + Ntail_dv; 

    %---------------------------------------------------------------------- 

    % NOTE: The same d_PI_plant used for openloop simulation is used 

    % Well          = [Well1    Well2] 

    d_PI_plant      = d_PI_plant_OL; %*1e4 [kg/hr/bar] 

    %---------------------------------------------------------------------- 

    % NOTE: The same dt used for openloop simulation is used 

    dt = dt_OL; %[s] 

 

%-------------------------------------------------------------------------- 

% Confirming the settings 

%-------------------------------------------------------------------------- 

    if groups ~= 0 % If there is grouping 

        if sum(groups) ~= (Np-Nr) % and if the group lengths don't add up to the tail length, 

(Np-Nr) 

            error('Group lengths do not add up to the tail length, (Np-Nr) = %d', Np-Nr) 

        end 

    end 

 

    % Displaying & writing the settings to a file 

    fileID = fopen('saved_settings\my_settings_file.txt','w'); 

    fprintf(fileID, 'MULTI-STAGE NMPC SETTINGS \n'); 

    fprintf(fileID, ' Nr              : %d                \n',    Nr); 

    fprintf(fileID, ' Np              : %d %s             \n',   Np, mat2str([ones(1,Nr), 

groups])); 

    fprintf(fileID, ' Nd              : %d              \n',   Nd); 

    fprintf(fileID, ' Ns              : %d              \n',   Ns); 

    fprintf(fileID, ' Ndv             : %d              \n',   Ndv*2); 

    fprintf(fileID, ' dt              : %g s              \n',   dt); 

    fprintf(fileID, ' PH length       : %g min           \n',    round(Np*dt/60,1)); 

    fprintf(fileID, ' timespan        : %g hrs          \n',    timespan/60/60); 

    fprintf(fileID, ' d_PI_controller :                   \n'); 

    fprintf(fileID, '                   %7g %7g             \n',  d_PI_controller'); 

    fprintf(fileID, ' d_PI_plant      :                   \n'); 

    fprintf(fileID, '                  %7g %7g             \n',    d_PI_plant); 

    fprintf(fileID, ' w_gc            : %s, %s Sm3/hr     \n',    w_gc_type, 

mat2str(w_gc_val(:,1))); 

    type('saved_settings\my_settings_file.txt'); 

 

    % Prompting the user to confirm the settings 

    disp(' ') 

    disp('Please make sure the above settings are okay. Then press any key to start the 

simulation OR press ctrl + c to stop execution.') 

    pause 

    disp(' ') 

    disp('Formulating the NLP problem & setting up the optimizer...') 

 

%-------------------------------------------------------------------------- 

% Creating other necessary data (cont.) 

%-------------------------------------------------------------------------- 

    no_wells = 2; 
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    t = 0:dt:timespan; %[s] 

    %---------------------------------------------------------------------- 

    % NOTE: The final states from the openloop simulation are used as the 

    % initial states for MPC 

    m0 = m_OL(end,:); 

    %---------------------------------------------------------------------- 

    w_gc = make_w_gc(w_gc_type, w_gc_val, t); 

 

    % + (Np-1) copies of the last w_gc value 

    w_gc = [w_gc; 

            w_gc(end)*ones(Np-1,1)]; 

    %---------------------------------------------------------------------- 

    % Starting point for the optimizer 

    % NOTE: The last w_ga and m from the openloop simulation are used as 

    % the starting point for the optimizer 

    w_ga_ini = w_ga_OL(end,:).*ones(Ndv,1); 

    m_ini = m_OL(end,:).*ones(Ns*(Np+1),1); 

    %---------------------------------------------------------------------- 

    % d_PI combinations (throughout the horizon) for all the scenarios 

 

        % d_PI position combinations [scenarios x Np] 

 

            % Position no.s over the robust horizon [scenarios x Nr] 

            d_PI_posi_comb = unique(rem(nchoosek(0:Ns-1,Nr),Nd)+1,'rows'); 

 

            % Adding the position no.s over the remaining Np-Nr stages 

            % (const. disturbance) 

            d_PI_posi_comb = [d_PI_posi_comb, repmat(d_PI_posi_comb(:,end),1,Np-Nr)]; 

 

        % d_PI (value) combinations [scenarios x d_PI x Np] 

 

            d_PI_comb = d_PI_controller(d_PI_posi_comb(:),:); 

            d_PI_comb = reshape(d_PI_comb,Ns,Np,size(d_PI_controller,2)); 

            d_PI_comb = permute(d_PI_comb,[1 3 2]); 

    %---------------------------------------------------------------------- 

    % w_ga position combinations (throughout the horizon) for all the 

    % scenarios 

    % w_ga_posi_comb [scenarios x Np] 

    % This is required for reconstructing w_ga using w_ga values returned 

    % by the optimizer 

 

    if groups == 0 % When there's no grouping 

 

        % w_ga position numbers 

        dv = (1:Ndv)'; 

 

        % No. of decision variables per stage 

        Ndv_stage = [Nd.^(0:Nr-1), Ns*ones(1,Np-Nr)]; 

 

        % No. of repetitions of one decision variable in each stage 

        rep_stage = [Nd.^flip(1:Nr), ones(1,Np-Nr)]; 

 

        % No. of repetitons per decision variable 

        rep_dv = repelem(rep_stage, Ndv_stage)'; 

 

        w_ga_posi_comb = repelem(dv, rep_dv); 

        w_ga_posi_comb = reshape(w_ga_posi_comb, Ns, Np); 
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    else % When there is grouping 

 

        % Head-part 

 

            % w_ga position numbers 

            dv_head = (1:Nhead_dv)'; 

 

            % No. of decision variables per stage 

            Ndv_stage = Nd.^(0:Nr-1); 

 

            % No. of repetitions of one decision variable in each stage 

            rep_stage = Nd.^flip(1:Nr); 

 

            % No. of repetitons per decision variable 

            rep_dv = repelem(rep_stage, Ndv_stage)'; 

 

            w_ga_posi_comb_head = repelem(dv_head, rep_dv); 

            w_ga_posi_comb_head = reshape(w_ga_posi_comb_head, Ns, Nr); 

 

        % Tail-part 

 

            % w_ga position numbers 

            dv_tail = (Nhead_dv+1:Ndv)'; 

 

            w_ga_posi_comb_tail = reshape(dv_tail, Ns, length(groups)); 

            w_ga_posi_comb_tail = repelem(w_ga_posi_comb_tail,1,groups); 

 

        w_ga_posi_comb = [w_ga_posi_comb_head, w_ga_posi_comb_tail]; 

    end 

create_NLP_prob_multi_stage_NMPC.m 

function NLP_prob = create_NLP_prob_multi_stage_NMPC(dt, Np, Ns, Ndv, w_ga_posi_comb, 

d_PI_comb, no_wells) 

 

% Importing CasADi 

addpath('C:\Program Files\MATLAB\casadi-windows-matlabR2016a-v3.5.5') 

import casadi.* 

 

%-------------------------------------------------------------------------- 

% Defining symbols 

%-------------------------------------------------------------------------- 

    % w_ga [Ndv, w_ga] 

    w_ga = SX.sym('w_ga', Ndv, no_wells); 

        % vect_w_ga 

            % Transposing w_ga -- for easy extraction of the 1st optimal 

            % control move, w_ga_ast(1,:), from the optimal solution, 

            % x_ast, given by the NLP_solver) 

            vect_w_ga = w_ga'; 

            vect_w_ga = vect_w_ga(:); 

 

    % m {(Np+1) x [Ns x m]} 

    m = SX.sym('m', Ns, 3*no_wells, (Np+1))'; 

        % vect_m 

            % Converting m from {(Np+1) x [Ns x m]} to [Ns*(Np+1) x m] 

            vect_m = vertcat(m{:}); 
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            vect_m = vect_m(:); 

 

    % Decision variables, x = [w_ga; m] 

    x = [   vect_w_ga; 

            vect_m]; 

    %---------------------------------------------------------------------- 

    % m0 [1 x 3*no_wells] 

    m0 = SX.sym('m0', 1, 3*no_wells); 

 

    % w_ga_last [1 x no_wells] 

    w_ga_last = SX.sym('w_ga_last', 1, no_wells); 

 

    % Parameters, p = [m0, w_ga_last] 

    p = [m0, w_ga_last]; 

%-------------------------------------------------------------------------- 

 

% Computing the objective function, F, and the constraints, G 

[F, G] = compute_both_multi_stage_NMPC(Np, Ns, dt, m0, m, w_ga, w_ga_posi_comb, d_PI_comb, 

w_ga_last); 

 

% Creating the NLP problem 

NLP_prob = struct('f', F, 'x', x, 'g', G, 'p', p); 

compute_both_multi_stage_NMPC.m 

function [F, G] = compute_both_multi_stage_NMPC(Np, Ns, dt, m0, m, w_ga, w_ga_posi_comb, 

d_PI_comb, w_ga_last) 

 

% Importing CasADi 

addpath('C:\Program Files\MATLAB\casadi-windows-matlabR2016a-v3.5.5') 

import casadi.* 

 

%-------------------------------------------------------------------------- 

% Finding the information needed for evaluating the objective function & 

% constraints 

%-------------------------------------------------------------------------- 

    % w_ga_reconst {Np x [Ns x w_ga]} 

    w_ga_reconst = cell(Np,1); 

    for k = 1:Np 

        w_ga_reconst{k} = w_ga(w_ga_posi_comb(:,k),:); 

    end 

    %---------------------------------------------------------------------- 

    % Openloop simulation over the PH 

 

        % Preallocation 

 

            % Continuity constraints (process dynamics), G1 

            % {(Np+1) x [Ns x (dv_m - pred_m)]} 

            G1 = SX.sym('G1', Ns, length(m0), (Np+1))'; 

            G1{1} = m{1} - repelem(m0,Ns,1); % 1st continuity constraint (Ns*length(m0) 

number of them) 

 

            % w_op {(Np+1) x [Ns x w_op]} 

            w_op = SX.sym('w_op', Ns, size(w_ga,2), (Np+1))'; 

 

            % w_gop {(Np+1) x [Ns x w_gop]} 

            w_gop = SX.sym('w_gop', Ns, size(w_ga,2), (Np+1))';   % [w_op{1}, w_gop{1}] = 
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calculate_output(m{1}); 

 

            % NOTE: 1st cell of w_op & w_gop is not used. They're used to 

            % make the openloop simulation loop's notation look better (k+1 

            % instead of k). 

 

        % For each time step over the prediction horizon 

        for k = 1:Np 

 

            m_kp1 = update_states(m{k}, w_ga_reconst{k}, d_PI_comb(:,:,k), dt); 

 

            % (k+1)th continuity constraint 

            G1{k+1} = m{k+1} - m_kp1; 

 

            [w_op{k+1}, w_gop{k+1}] = calculate_output(m{k+1}); 

 

        end 

    %---------------------------------------------------------------------- 

    % oil_prod [Ns*Np x oil_prod] 

        % Converting w_op from {(Np+1) x [Ns x w_op]} to [Ns*Np x w_op] 

        w_op = vertcat(w_op{2:end}); 

    oil_prod = sum(w_op,2); 

 

    % fluid_prod [Ns*Np x fluid_prod] 

        % Converting w_op from {(Np+1) x [Ns x w_gop]} to [Ns*Np x w_gop] 

        w_gop = vertcat(w_gop{2:end}); 

    fluid_prod = sum(w_gop,2); 

 

    % delta_w_ga [Ns*Np x delta_w_ga] 

    delta_w_ga = w_ga_reconst{1} - repelem(w_ga_last,Ns,1); 

    delta_w_ga = [  delta_w_ga; 

                    vertcat(w_ga_reconst{2:end}) - vertcat(w_ga_reconst{1:end-1})]; 

 

    % w_ga_reconst [Ns*Np x w_ga] 

    w_ga_reconst = vertcat(w_ga_reconst{:}); 

 

    % sum_w_ga [Ns*Np x sum_w_ga] 

    sum_w_ga = sum(w_ga_reconst,2); 

%-------------------------------------------------------------------------- 

 

% Objective function, F 

    Q = 1; 

    R = 0.5; 

    S = 50; 

    w_s = ones(1,Ns); % Weights assigned to the cost of each scenario 

 

        % Cost at each timestep, F_k = [Ns x Np] 

        F_k = -Q*oil_prod.^2 + R*sum(w_ga_reconst.^2,2) + S*sum(delta_w_ga.^2,2); %[Ns*Np x 

F_k] 

        F_k = reshape(F_k,Ns,Np); 

 

        % Cost of each scenario, F_s [Ns x F_s] 

        F_s = sum(F_k,2); 

 

    F = w_s*F_s; 

 

% Inequality constraints, G2 
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    G2 = [  fluid_prod; 

            delta_w_ga(:); 

            sum_w_ga]; 

 

% Constraints, G 

    % Converting G1 from {(Np+1) x [Ns x (symb_m - pred_m)]} to 

    % [Ns*(Np+1) x (symb_m - pred_m)] 

    G1 = vertcat(G1{:}); 

 

    G = [   G1(:); 

            G2]; 

multi_stage_NMPC.m 

% Importing CasADi 

addpath('C:\Program Files\MATLAB\casadi-windows-matlabR2016a-v3.5.5') 

import casadi.* 

 

% Fetching the settings and other required data 

settings_multi_stage_NMPC 

 

% Creating the NLP problem 

NLP_prob = create_NLP_prob_multi_stage_NMPC(dt, Np, Ns, Ndv, w_ga_posi_comb, d_PI_comb, 

no_wells); 

 

% Specifying NLP solver options 

options = struct; 

options.ipopt.max_iter = 5000; 

options.ipopt.print_level = 0; % 3, 5(default), upto 12 

options.print_time = false; 

options.ipopt.fixed_variable_treatment = 'make_constraint'; 

options.ipopt.warm_start_init_point = 'yes'; 

 

% Creating the NLP solver 

NLP_solver = nlpsol('NLP_solver', 'ipopt', NLP_prob, options); 

 

% Container for arguments passed to NLP_solver 

% args {lbx, ubx, lbg, ubg, x0, p, lam_x0, lam_g0} 

args = struct; 

 

% Specifying the bounds of the NLP problem 

 

    % Bounds on the decision variables 

    %       LBX     <= x                <= UBX 

    %       0.323   <= w_ga          <= 11.66 [Ndv*no_wells] 

    %       0       <= m              <= inf      [Ns*(Np+1)*(3*no_wells)] 

    args.lbx = repelem([0.323; 0],      [Ndv*no_wells, Ns*(Np+1)*(3*no_wells)]); 

    args.ubx = repelem([11.66; inf],    [Ndv*no_wells, Ns*(Np+1)*(3*no_wells)]); 

 

    % Bounds of the constraints 

    %       LBG     <= G(x, p)          <= UBG 

    %       0       <= dv_m - pred_m    <= 0        [Ns*(Np+1)*(3*no_wells)] 

    %       0       <= fluid_prod       <= 160      [Ns*Np] 

    %       -0.15   <= delta_w_ga      <= 0.15     [Ns*Np*no_wells] 

    %       0       <= sum_w_ga       <= w_gc     [Ns*Np] 

    args.lbg = repelem([0; 0; -0.15; 0],    [Ns*(Np+1)*(3*no_wells), Ns*Np, Ns*Np*no_wells, 

Ns*Np]); 
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    args.ubg = repelem([0; 160; 0.15],      [Ns*(Np+1)*(3*no_wells), Ns*Np, Ns*Np*no_wells]); 

 

%-------------------------------------------------------------------------- 

% Running multi-stage NMPC 

%-------------------------------------------------------------------------- 

    loop_length = length(t)-1; 

 

    % Preallocating 

    m               = zeros(loop_length+1,length(m0)); m(1,:) = m0; 

    w_ga            = zeros(loop_length,no_wells); 

    loop_time       = zeros(loop_length,1); 

    controller_time = zeros(loop_length,1); 

 

    % Initializing the ODE solver used for simulating the real plant 

    update_plant = @(m0_k, w_ga_k)update_states(m0_k, w_ga_k, d_PI_plant, dt); 

 

    % Announcing the start of simulation 

    disp(' ') 

    disp('Starting multi-stage NMPC...') 

    disp(datetime('now')) 

 

    elapsedTime = tic; 

    % Sliding horizon strategy 

    for k = 1:loop_length 

        tic 

 

        if k == 1 % lam_x0 & lam_g0 needed for warm-start not known 

            args.x0 = [w_ga_ini(:); m_ini(:)]; 

            args.p = [m(k,:), w_ga_OL(end,:)]; 

            args.ubg(end+1:end+Ns*Np) = repelem(w_gc(k:k+Np-1),Ns); 

 

            opt_time = tic; 

            % Solving the NLP problem 

            sol = NLP_solver(   'x0',       args.x0,... 

                                'p',        args.p,... 

                                'lbx',      args.lbx,... 

                                'ubx',      args.ubx,... 

                                'lbg',      args.lbg,... 

                                'ubg',      args.ubg); 

            opt_time = toc(opt_time); 

        else 

            args.x0 = sol.x; 

            args.p = [m(k,:), w_ga(k-1,:)]; 

            args.ubg(end-Ns*Np+1:end) = repelem(w_gc(k:k+Np-1),Ns); 

            args.lam_x0 = sol.lam_x; 

            args.lam_g0 = sol.lam_g; 

 

            opt_time = tic; 

            % Solving the NLP problem 

            sol = NLP_solver(   'x0',       args.x0,... 

                                'p',        args.p,... 

                                'lbx',      args.lbx,... 

                                'ubx',      args.ubx,... 

                                'lbg',      args.lbg,... 

                                'ubg',      args.ubg,... 

                                'lam_x0',   args.lam_x0,... 

                                'lam_g0',   args.lam_g0); 
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            opt_time = toc(opt_time); 

        end 

 

        % Extracting the 1st optimal control move, w_ga_ast 

        w_ga_ast = full(sol.x(1:no_wells))'; 

 

        % Applying the first (optimal) control move to the plant, i.e., 

        % sliding one timestep forward 

        m(k+1,:) = update_plant(m(k,:), w_ga_ast); 

 

        % Storing variables of interest 

        w_ga(k,:) = w_ga_ast; 

        controller_time(k) = opt_time; 

        loop_time(k) = toc; 

    end 

    elapsedTime = toc(elapsedTime); 

 

    % Announcing the end of simulation 

    disp('Multi-stage NMPC complete!') 

    fprintf(['Elapsed time = \n\n',... 

           '       %g min\n\n'], round(elapsedTime/60,1)); 

    disp('Please wait for the plots of the results...') 

%-------------------------------------------------------------------------- 

 

% Writing elapsedTime to file 

fprintf(fileID, ' Elapsed time    : %g min', round(elapsedTime/60,1)); 

fclose(fileID); 

 

% Preparing to plot the results 

 

    % Removing m0 from m (Reason: m0 is not required when combining with 

    % openloop simulation results) 

    m = m(2:end,:); 

 

    % Calculating the outputs 

    [w_op, w_gop] = calculate_output(m); 

 

    % Removing the + (Np-1) copies of the last w_gc value 

    w_gc = w_gc(1:end-(Np-1)); 

openloop_simulation.m 

% clear 

% clc 

 

%-------------------------------------------------------------------------- 

% Settings 

%-------------------------------------------------------------------------- 

    timespan = 100; %[hr] 

    dt = 20; %[s] 

    %---------------------------------------------------------------------- 

    % Well     = [Well1    Well2] 

%     d_PI_plant  = [+0.25    +0.25]; %*1e4 [kg/hr/bar] 

%     d_PI_plant  = [-0.25    +0.25]; %*1e4 [kg/hr/bar] 

    d_PI_plant  = [0        0];     %*1e4 [kg/hr/bar] 

%     d_PI_plant  = [+0.25    -0.25]; %*1e4 [kg/hr/bar] 

%     d_PI_plant  = [-0.25    -0.25]; %*1e4 [kg/hr/bar] 
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%     d_PI_plant  = [+0.13    +0.13]; %*1e4 [kg/hr/bar] 

    %---------------------------------------------------------------------- 

    % Select the type of input disturbance, w_gc 

    % NOTE: 1st column of w_gc correspond to value of w_gc in Sm3/hr 

    %       2nd column of w_gc correspond to ratio of step lengths 

%     type = 'constant';    w_gc_val = [  40000, 1]; 

    % type = '1step';       w_gc_val = [  40000, 1; 

    %                                     36000, 2]; 

    type = '2step';       w_gc_val = [  40000, 1; 

                                        36000, 1; 

                                        40000, 1]; 

    %---------------------------------------------------------------------- 

    % Specify the percentage distribution of w_gc to each well 

    % NOTE: Sum should be <= 100% 

    % Well     = [Well1    Well2] 

    w_gc_dist  = [40    40]; %[%] 

 

%-------------------------------------------------------------------------- 

% Confirming the settings 

%-------------------------------------------------------------------------- 

    if sum(w_gc_dist) > 100 % if % distribution of w_gc to each well adds up to more than 

100% 

        error('Percentage distribution of w_gc to each well cannot add up to more than 100%') 

    end 

 

    % Displaying the settings 

    fprintf('OPENLOOP SIMULATION SETTINGS \n') 

    fprintf(' dt          : %g s                  \n', dt) 

    fprintf(' timespan : %g hrs                \n', timespan) 

    fprintf(' w_gc        : %s, [%s] Sm3/hr       \n', type, join(string(w_gc_val(:,1))," 

")) 

    fprintf(' w_ga        : [%s]%%*w_gc           \n', join(string(round(w_gc_dist,1))," ")) 

    fprintf(' d_PI_plant  : [%s]*1e4 [kg/hr/bar]  \n', join(string(d_PI_plant)," ")) 

 

    % Prompting the user to confirm the settings 

    disp(' ') 

    disp('Please make sure the above settings are okay. Then press any key to start the 

simulation OR press ctrl + c to stop execution.') 

    pause 

 

%-------------------------------------------------------------------------- 

% Creating other necessary data 

%-------------------------------------------------------------------------- 

    t = 0:dt:timespan*60*60; %[s] 

 

    % Well      = [Well1    Well2] 

    m_ga     = [20636    19331]; %[kg] 

    m_gt       = [1205     1174]; %[kg] 

    m_ot       = [21824    19325]; %[kg] 

    m0 = [m_ga, m_gt, m_ot]; 

 

    w_gc = make_w_gc(type, w_gc_val, t); %[kg/s] 

 

    w_ga = w_gc_dist/100.*w_gc; %[kg/s] 

 

%-------------------------------------------------------------------------- 
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% Running openloop simulation 

%-------------------------------------------------------------------------- 

    % Initializing the ODE solver 

    update_states = @(m0_k, w_ga_k)update_states(m0_k, w_ga_k, d_PI_plant, dt); 

 

    % Preallocation 

    m = zeros(length(t),length(m0));    m(1,:) = m0; 

 

    % For each time step within the simulation timespan 

    for k = 1:length(t)-1 

        m(k+1,:) = update_states(m(k,:), w_ga(k,:)); 

    end 

 

    [w_op, w_gop] = calculate_output(m); 

 

%-------------------------------------------------------------------------- 

% Plotting the results 

%-------------------------------------------------------------------------- 

    timestamps = t/60/60; %[hrs] 

    x_label = 'Time [hr]'; 

    legend_labels = {'well 1','well 2'}; 

 

    figure 

    tiledlayout(2,1,'Padding','compact', 'TileSpacing','compact') 

    nexttile; 

    plot(timestamps,sum(w_op,2)) 

    title('Total oil production rate, \Sigma w_{op}^i'); 

    ylim('padded'); xlim('tight') 

    ylims = ylim; x = diff(ylim)*0.1; ylim([ylims(1)-x, ylims(2)+x]) 

    ylabel('[kg/s]') 

    grid on 

    xlabel('time [hrs]') 

 

    nexttile 

    plot(timestamps,sum(w_gop,2)); 

    title('Total fluid production rate \Sigma w_{gop}^i'); 

    xlim([timestamps(1), timestamps(end)]); 

    yline(160,'--r') 

    ylabel('[kg/s]'); 

    xlabel('time [hrs]') 

    grid on 

openloop_plus_NMPC.m 

clear 

 

% Choose 

%     NMPC = 'standard'; 

    NMPC = 'multi_stage'; 

 

%-------------------------------------------------------------------------- 

% Running openloop simulation 

%-------------------------------------------------------------------------- 

    openloop_simulation 

 

%-------------------------------------------------------------------------- 

% Getting confirmation from the user to start NMPC 
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%-------------------------------------------------------------------------- 

    disp(' ') 

    disp('Has the openloop simulation reached steady state? Press any key to initiate MPC OR 

press ctrl + c to stop execution.') 

    pause 

    disp(' ') 

    disp('Initiating NMPC...') 

 

%-------------------------------------------------------------------------- 

% Clearing the workspace for running NMPC 

%-------------------------------------------------------------------------- 

    % Close figure from openloop simulation 

    close 

 

    % Delete unnecessary variables in the workspace 

    clearvars -except NMPC t m w_op w_gop w_gc w_ga d_PI_plant dt w_gc_dist 

 

    % Renaming variables from openloop simulation 

    % NOTE: Only the last x samples are kept 

    x = 45; 

    t_OL            = t(end-(x+1)+1:end) - t(end-(x+1)+1);  clear t; 

    m_OL            = m(end-(x+1)+1:end,:);                 clear m; 

    w_op_OL         = w_op(end-(x+1)+1:end,:);           clear w_op; 

    w_gop_OL        = w_gop(end-(x+1)+1:end,:);           clear w_gop; 

    w_gc_OL         = w_gc(end-x+1:end,:);                  clear w_gc; 

    w_ga_OL         = w_ga(end-x+1:end,:);                  clear w_ga; 

    d_PI_plant_OL  = d_PI_plant;                           clear d_PI_plant; 

    dt_OL           = dt;                                   clear dt; 

    w_gc_dist_OL = w_gc_dist;                            clear w_gc_dist; 

 

%-------------------------------------------------------------------------- 

% Running NMPC 

%-------------------------------------------------------------------------- 

    if strcmp('standard',NMPC) 

        standard_NMPC 

    elseif strcmp('multi_stage',NMPC) 

        multi_stage_NMPC 

    end 

 

%-------------------------------------------------------------------------- 

% Combining the results from openloop simulation and NMPC 

%-------------------------------------------------------------------------- 

    % Renaming variables from NMPC 

    t_MPC           = t;            clear t; 

    m_MPC           = m;            clear m; 

    w_op_MPC        = w_op;         clear w_op; 

    w_gop_MPC       = w_gop;        clear w_gop; 

    w_gc_MPC        = w_gc;         clear w_gc; 

    w_ga_MPC        = w_ga;         clear w_ga; 

    dt_MPC          = dt;           clear dt; 

    elapsedTime_MPC = elapsedTime;  clear elapsedTime; 

 

    % Shifting t_MPC to start at the point where openloop simulation ended 

    t_MPC   = t_MPC + t_OL(end); 

 

    % Combining the data 

    t       = [ t_OL, t_MPC(2:end)]; 
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    m       = [ m_OL; 

                m_MPC]; 

    w_op    = [ w_op_OL; 

                w_op_MPC]; 

    w_gop  = [ w_gop_OL; 

                w_gop_MPC]; 

    w_gc    = [ w_gc_OL; 

                w_gc_MPC]; 

    w_ga    = [ w_ga_OL; 

                w_ga_MPC]; 

 

%-------------------------------------------------------------------------- 

% Plotting the combined results 

%-------------------------------------------------------------------------- 

    timestamps = t/60/60; %[hrs] 

    legend_labels = {'well-1','well-2'}; 

 

    figure; 

    tiles = tiledlayout(5,1); 

 

%  if strcmp('standard',NMPC) 

%         title(tiles, sprintf([  'dt = %g s, (d_{PI})_{plant} = %s*1e4\n',... 

%                             'Openloop simulation: w_{ga} = w_{gc}*%s%%\n'... 

%                             'NMPC: Np = %d %s, PH length = %g min, (d_{PI})_{controller} = 

%s*1e4, exec.t = %g min'],... 

%                             dt_OL, mat2str(d_PI_plant),... 

%                             mat2str(round(w_gc_dist_OL,1)),... 

%                             Np, mat2str(groups), round(Np*dt_MPC/60,1), 

mat2str(d_PI_controller), round(elapsedTime_MPC/60,1))) 

%     elseif strcmp('multi_stage',NMPC) 

%         title(tiles, sprintf(['dt = %g s, (d_{PI})_{plant} = %s*1e4\n',... 

%                             'Openloop simulation: w_{ga} = w_{gc}*%s%%\n'... 

%                             'NMPC: Nr = %d, Np = %d %s, Nd = %d, Ns = %d, Ndv = %d, PH 

length = %g min, timespan = %g min, exec.t = %g min'],... 

%                             dt_OL, mat2str(d_PI_plant),... 

%                             mat2str(round(w_gc_dist_OL,1)),... 

%                             Nr, Np, mat2str([ones(1,Nr), groups]), Nd, Ns, Ndv*2, 

round(Np*dt_MPC/60,1), timespan/60, round(elapsedTime_MPC/60,1))) 

%     end 

 

    ax1 = nexttile; 

    plot(timestamps, sum(w_gop,2)) 

    yline(160,'--r') 

    xline(timestamps(length(t_OL)-1),'--r') 

    ylim('padded'); xlim('tight') 

    ylabel('\Sigma w_{gop}^i [kg/s]') 

    grid on 

 

    ax2 = nexttile; 

    plot(timestamps, sum(w_op,2)) 

    xline(timestamps(length(t_OL)-1),'--r') 

    ylim('padded'); xlim('tight') 

    ylabel('\Sigma w_{op}^i [kg/s]') 

    grid on 

 

    ax3 = nexttile; 

    plot(timestamps, w_op) 
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    xline(timestamps(length(t_OL)-1),'--r') 

    legend(legend_labels, 'Location','eastoutside') 

    ylim('padded'); xlim('tight') 

    ylabel('w_{op}^i [kg/s]') 

    grid on 

 

    ax4 = nexttile; 

    plot(timestamps(1:end-1), w_ga) 

    xline(timestamps(length(t_OL)-1),'--r') 

    legend(legend_labels, 'Location','eastoutside') 

    ylim('padded'); xlim('tight') 

    ylabel('w_{ga}^i [kg/s]') 

    grid on 

 

    ax5 = nexttile; 

    plot(   timestamps(1:end-1), round(w_gc,4),... 

            timestamps(1:end-1), round(sum(w_ga,2),4)) 

    xline(timestamps(length(t_OL)-1),'--r') 

    legend({'w_{gc}', '\Sigma w_{ga}^i'}, 'Location','eastoutside') 

    ylim('padded'); xlim('tight') 

    ylabel('w_{gc}, \Sigma w_{ga}^i [kg/s]') 

    grid on 

    xlabel('time [hrs]') 

 

    linkaxes([ax1 ax2 ax3 ax4 ax5],'x') 

 

%-------------------------------------------------------------------------- 

% Saving the results 

%-------------------------------------------------------------------------- 

%     if strcmp('standard',NMPC) 

%         filename = sprintf('/dt = %g s, Np = %d %s, PH length = %g min, d_PI_plant = %s, 

d_PI_controller = %s, exec.t = %g min',... 

%                             dt_MPC, Np, mat2str(groups), round(Np*dt_MPC/60,1), 

mat2str(d_PI_plant), mat2str(d_PI_controller), round(elapsedTime_MPC/60,1)); 

%     elseif strcmp('multi_stage',NMPC) 

%         filename = sprintf('/dt = %g s, Nr = %d, Np = %d %s, Nd = %d, Ns = %d, Ndv = %d, PH 

length = %g min, d_PI_plant = %s, exec.t = %g min',... 

%                             dt_MPC, Nr, Np, mat2str([ones(1,Nr), groups]), Nd, Ns, Ndv*2, 

round(Np*dt_MPC/60,1), mat2str(d_PI_plant_OL), round(elapsedTime_MPC/60,1)); 

%     end 

% 

%     save(append('saved_results',filename,'.mat')) 

%     savefig(gcf, append('saved_plots',filename,'.fig')) 

%     exportgraphics(gcf, append('saved_plots',filename,'.emf')) 

%     

movefile('saved_settings/my_settings_file.txt',append('saved_settings',filename,'.txt'),'f'); 
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