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ABSTRACT Deep learning, as one of the currently most popular computer science research trends, improves
neural networks, which has more and deeper layers allowing higher abstraction levels and more accurate
data analysis. Although deep convolutional neural networks, as a deep learning algorithm, has recently
achieved promising results in data analysis, the requirement for a large amount of data prevents its use
in medical data analysis since it is challenging to obtain data from the medical field. Breast cancer is a
common cancer in women. To diagnose this kind of cancer, breast cell shapes in histopathology images
should be examined by senior pathologists. The number of pathologists per population in the world is not
enough, especially in Africa, and human mistake may occur in diagnosis procedure. After the evaluation
of deep learning methods and algorithms in breast histological data processing, we tried to improve the
current systems’ accuracy. As a result, this study proposes two effective deep transfer learning-based models,
which rely on pre-trained DCNN using a large collection of ImageNet dataset images that improve current
state-of-the-art systems in both binary and multiclass classification. We transfer pre-trained weights of
the ResNet50 and DesneNet121 on the Imagenet as initial weights and fine-tune these models with a
deep classifier with data augmentation to detect various malignant and benign samples tissues in the two
categories of binary classification and multiclass classification. The proposed models have been examined
with optimized hyperparameters in magnification-dependent and magnification-independent classification
modes. In the multiclass classification, the proposed system achieved up to 98% accuracy. As for binary
classification, the proposed system provides up to 100% accuracy. The results outperform previous studies
accuracies in all defined performance metrics in breast cancer CAD systems from histological images.

INDEX TERMS Breakhis dataset, breast cancer, CNN, computer-aided diagnosis (CAD), medical image
classification, densNet, ResNet.

I. INTRODUCTION
Breast cancer (breast carcinoma) is the most common type
of cancer in women, and it is the most dangerous cancer,
together with lung cancer [1], [2]. Early detection of this type
of cancer is crucial to reduce the mortality rate since breast
cancer is often treatable when it is diagnosed early. Cancer
starts from a benign state and, without appropriate treatment
at the early stages, it becomes malignant. A common way
to detect breast cancer is histological biopsy evaluation [3].
An Experienced pathologist evaluates breast histopathology
images in various levels of magnification. Some times there
is a need for complementary imageries like mammography to
determine whether the sample tissue is malignant or not.
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APPEARANCES OF CANCER
When the breast cells start to grow abnormally, breast cancer
occurs. The infected cells divide more frequently than normal
healthy cells and form a mass or lump. The cells may spread
to the lymph nodes first, and then other parts of the human
body.

HISTOPATHOLOGICAL EXAMINATION
A histological biopsy is a thorough examination of a sam-
pled tissue under a microscope. The minimum magnification
requirement for a proper diagnosis is 40×. However, the sus-
pected areas have to be magnified to 100×, 200×, and 400×
in order to enable the pathologist to evaluate cell shape [2].

A. PROBLEM STATEMENT
The diagnosis procedure of breast cancer is operator depen-
dent and requires an experienced pathologist. However, some
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FIGURE 1. Examples of benign types of breast cancer in histopathology
images in different magnifications.

FIGURE 2. Examples of malignant types of breast cancer in
histopathology images in different magnifications.

human factors like exhaustion and insufficient concentration
could cause the misdetection of samples type within long and
continuous procedures. In the case of misdetection, cancer
may grow, and the survival rate in that condition is low. Some
countries have very few pathologists per population. There is
only one pathologist for every 100,000 and 130,000 in Africa
and China, respectively [4]. In order to counteract the lack
of experienced pathologists, the possibility of human error,
the time-consuming process of screening samples, and the
high cost, several Computer-Aided Diagnosis (CAD) tech-
niques for early and automatic detection of breast cancer have
been proposed and evaluated by researchers in the past [5].
These techniques can significantly help the early diagnosis of
cancer. However, they are challenging to implement.Machine
learning approaches nowadays are frontier in the CAD trend.
With the rise of deep learning (as a part of the machine learn-
ing family), many studies have used this method in order to
precisely detect samples type in histology images. However,
The variety of cells size, shape, color, and scale in the his-
tological images from one side and the complex structure of
human body cells, low image quality, and similarity between
benign and malignant samples from the other side can make
the task challenging and prevent achieving high accuracy.
Additionally, the lack of extensive and labeled datasets has
also created another big challenge for thementioned problem.

B. RELATED WORKS
HISTOPATHOLOGY DATASETS
The main source for any CAD system is both data col-
lection and labeling within real decision-making situations
by experts. There are only three datasets for breast cancer
histopathological diagnosis; Mitosatypia [6], Bioimaging [7],
and SSAE [8]. They are not only not fully available but also
have some clinical value issues [9]. Apart from availability
and clinical issues, They contain 120, 1401, and 37 images
from one magnification level, respectively, which is a meager
amount of data. The newest public histopathological breast
cancer dataset, known as BreakHis, was released in 2016 and
had the highest clinical value [5]. It has 7909 images in
four magnification levels (40×, 100×, 200×, and 400×).

Following the fact that our primary research dataset is
BreakHis, we reviewed the previous studies mostly on the
BreakHis dataset in both binary and multiclass classification.

In the binary classification, the aim is to make an algorithm
that can predict whether a sample tissue is benign or malig-
nant. In the multiclass classification, the aim is to make an
algorithm that can predict the exact subtype of tissues. These
subtypes are; Adenosis (A), Fibroadenoma (F), Phyllodes
Tumor(PT), and Tubular Adenoma (TA) as benign’s sub-
types, and Papillary Carcinoma (PC), Mucinous Carcinoma
(MC), Ductal Carcinoma (DC), and Lobular Carcinoma (LC)
as malignant’s subtypes.

BINARY CLASSIFICATION
In the binary classification, the aim is to make an algorithm
that is able to predict whether a sample tissue is benign or
malignant.

MODELS
BreakHis authors were the first group that evaluated their
dataset using a deep learning-based CAD system. They
entrusted features extraction and classification to a deep
CNN [5]. They were able to improve their results by using
the AlexNet network for transfer learning. The study [10]
evaluated CNN with multiple handcrafted features and com-
pared the results with those provided with raw images. They
achieved their best results by using residual blocks inspired
by ResNet. Study [11] tried to find the best CNN model
for this classification task and compared models such as
AlexNet, ResNet, and GoogleNet. Their results are showing
ResNet as the best model. The latter study also insists on
the necessity of data augmentation, fine-tuning all layers, and
providing large Whole Slide Images (WSI) instead of small
patches. Thework [9] chose the Inception-v3model as amore
efficient CNN in comparison with shallower models.

Study [12] has evaluated AlexNet and DeCAF feature
extractor by transfer learning strategy. This approach enabled
them to extract features from the last layer of the pre-trained
AlexNet and use it for training their classifier. Authors
in [13] evaluated the effect of different dimensional reduc-
tion methods on extracting features: Correlation-Based Fea-
ture Selection(CBFS), Gaussian Random Projection(GPR),
and Principal Component Analysis(PCA). This study used
pre-trained VGG for its purpose. Study [14] found the last
convolutional layer in a model provides more important fea-
tures in comparison to the final fully connected layers. Study
[15] introduced a dual-stage fine-tuning that retrains a fully
connected layer first and then the network thoroughly. The
research [16] showed that fine-tuning on the last three layers
of pre-trained AlexNet network works better than the Sup-
port Vector Machine (SVM) classification of concatenated
features extracted from two pre-trained networks.

Study [17] introduced a model called deep domain
knowledge-based features that mitigates the gap between
the extracted features and the required specific domain that
comes from using a pre-trained network on other datasets.
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FIGURE 3. A: Adaptation layer design, B: Flow of the model [18].

The latter study retrained the pre-trained CNN on the
BreakHis dataset for efficient feature extraction. Study [18]
evaluated the post encoded CNN features with Fisher Vec-
tor(FV). This study extracted a set of local features from
the last convolutional layer of the model to encode local
features to the FV descriptor. This approach raised the issue of
high dimensionality in the data, meaning that the number of
dimensions is hugely high; therefore, calculations increases
in the time complexity. This issue is solved by embedding
each block of the FV into a lower level dimensional feature
space through a dimensionality reduction algorithm based on
a multi-layer neural network model [19].

The study [20] proposed a model to capture multi-scale
features by using different convolution models to ease the
transition between the last convolutional and fully connected
layers. Study [21] proposed a modified CNN that consid-
ers subclass information and label of each image as prior
knowledge. Authors of this study claimed that their modified
CNN could learn features distance better in binary classifi-
cation. Research [22] introduced a CNN that is divided into
a convolutional layer, pooling, and fully connected layer,
and multiple hyper-parameters were tested to find the most
suitable architecture for the BreakHis classification task. This
new-designed convolutional model(NDCNN) was able to
achieve up to 90% accuracy in binary classification. Follow-
ing the fact that there may be some benign part in malignant
sample images, adopting a patch-based approach becomes
challenging.

Study [23] tried to overcome this challenge and introduced
a Multiple Instance Learning(MIL) approach for random
patches(64 × 64) extraction. Research [24] continued the
MIL approach and proposed a Multiple Instance Pooling
layers (MIP) to select themost distinctions feature and extract
it instead of the extraction of every feature. They did it by
modifying the loss function to higher activation instances.

Study [25] proposed a framework to avoid mislabeling
occurs when using a patch-based approach. This framework
ignores less representative samples(high confidence samples
with lower entropy)and reduces the annotation cost. The
remaining samples are given to the model for automatic
annotation.

Authors in [26] introduced an interesting method that used
the GoogleNet pre-trained model and trained the last layer
in a magnification-specific way. Then for testing, all four
magnification-specific-trained models aggregated by using

the majority voting rule. Every four magnification-specific
models prospect the test image, and if at least two of the
models have the same decision, that decision is being used
for the output of the network.

Research [27] fed handcrafted Tamura features instead of
raw image to a Deep Belief Network(DBN) that consists of
four Restricted Boltzmann Machines(RBM). Based on the
fact that autoencoders have shown interesting results in image
classification [28], the study [29] proposed a framework that
has a Landmark ISOMAP(L-ISOMAP) for extracting fea-
tures of histology images. This method was able to obtain
high accuracy.

PREPROCESSING METHODS
Some studies decided to utilize a prepossessing technique
on raw data to improve their results. Study [30] evaluated
the importance of data augmentation on 40× magnification
images on the result. Study [31] evaluated the effect of
cluster-transformed images with the use of different cluster-
ing algorithms and compared them with the same CNN with
raw images input.

Study [32] proposed a k-mean clustering on images
to highlight nuclei segmentation as preprocessing. This
study used a Discrete Wavelet Transform(DWT) to extract
features from cluster-transformed images. Support Vector
Machine(SVM) is chosen as a classifier with these features
in the latter study.

Research [37] worked on color texture variation of
histopathology images. This study evaluated the perfor-
mance of multiple color-texture descriptors with different
classifiers. The study did this step for each of the four
magnification levels and made an integrated model as a
magnification-independent model. Research [39] decided to
remove normalizing to help model learn color-texture vari-
abilities. This study found that performing the grayscale
transformation, as a stain normalization method, decreases
the accuracy of the results. Study [52] claims that conven-
tional normalization techniques increase the noise in the
image and introduce a new normalization technique that con-
trols the noise.

MULTICLASS CLASSIFICATION
In the multiclass classification, the aim is to make an algo-
rithm that is able to predict the exact type of sample tis-
sues from other types. The study [56] used K-Means and
autoencoder approached for image clustering and success-
fully classified histopathology images using InceptionRes-
Net2. Moreover, this study evaluated the effect of the data
augmentation method and was able to obtain 95.3% accuracy
for its best results.

Study [57] worked on obtaining two patches (patch sam-
pling) to prevent information loss. A CNN and K-means
algorithm were combined for this purpose. With the use of
ResNet50, first, essential features were extracted, and then
the model was tested, and 95% of accuracy for four breast
cancer types was achieved.
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TABLE 1. Classification models and results [9].

Further study [58] elevated the performance of classifi-
cation with the use of a DCNN with the gradient boosting
classifier. It used inception-300 × 300+GBT and achieved
93.5, 95.3, 96.1 and 91.1 accuracy on the 40X, 100X, 200X,
and 400X images, respectively.

In [27], an accuracy of 91% was achieved by the
use of a CNN with a mean-shift algorithm. Simi-
larly, paper [59] generated higher dimension features

for improving image classification accuracy. It achieved
87% accuracy.

Research [60] has used the nucleus-guided training of
CNN to diminish the noise, which is coming from stroma to
increase the CNN classification, together with reducing com-
putational time. In [35], classification accuracy was increased
with using ReLU to reduce vanishing gradient possibility.
It has used filters with various sizes of 3×3, 5×5, and 7×7.
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The proposed model obtained 93.2% accuracy in multiclass
classification.

In [61], a Nottingham Grading System (NGS) was pro-
posed to differentiate images into three subclasses. The study
[62] focused on histopathological image classification limi-
tations and successfully proposed an Enhanced Loss Func-
tion (ELF) method to increase the classifier’s performance.
It also shows that the ELF increases the accuracy of clas-
sification for 3% and duration of processing time up to
30-40 seconds.

In [63], two methods for the classification of histology
images have been proposed. The first method is reliant on
handcrafted features in which Hu moment, color histogram,
and Haralick texture are used for the extraction of features
from images of the BreakHis dataset. The extracted-features
were then utilized for training the classifier. The second
method is using transfer learning with the use of pre-trained
ResNet50, VGG16, and VGG19. This research achieved its
best result by transfer learning of the VGG16 network with a
linear Support Vector Machine (SVM). The accuracy of the
results has computed in two forms, (a) patch-based accuracies
(93.97% for 40×, 92.92% for 100×, 91.23% for 200×, and
91.79% for 400×); (b) patient-based accuracies (93.25% for
40×, 91.87% for 100×, 91.5% for 200×, and 92.31% for
400×) in the magnification-dependent category of histology
image classification. This study also claims that Fibro Ade-
noma and Mucous Carcinoma classes are the most difficult
to classify.

In [64], a class Kernel Principle Component Analy-
sis (KPCA) is introduced for extracting features, and then
for each extracted feature, a KPCA model is trained. This
process is repeated for all the images in the dataset, and
finally, a pre-trained KPCA model makes the decision. This
approach achieved 92% accuracy in binary classification.

Research [5] has used a pre-trained AlexNet for binary
classification on the BreakHis dataset. The pre-trained
AlexNet uses sliding windows and random extraction
techniques.

In [12], linear regression and pre-trained CaffeNet was
used to extract features and classification. Study [35] used
a deep convolutional network that is able to learn discern-
ing features. It achieved an accuracy of 92-95% on various
magnification-level images in the BreakHis dataset.

C. MOTIVATION
Recent researches have shown that deep learning meth-
ods, particularly Convolutional Neural Networks (CNN), are
excessively effective for image analysis [12]. In fact, CNN
has become the frontier machine learning tool for computer
vision and image analysis. The recent breakthrough in deep
learning shows great potential to increase the performance of
applications. This advancement gravitated our attention and
curiosity to investigate and develop an efficient method based
on deep learning to help to solve a real-world problem in
medical data analysis. This work focuses on the automatic
detection of breast cancer in histopathology images.

D. CONTRIBUTIONS
Give the above, this work aims to:

• Develop a high accuracy method by improving previous
works’ accuracies.

• Minimize false-negative results.
• Experiment image magnification-dependent and inde-
pendent approaches.

• Define the exact sub-type of the sample tissues.

Achieving a high accuracy result helps the feasibility of CAD
systems for breast cancer recognition in medical practice.

E. APPROACH
In order to achieve the goals, a bottom-up development
approach is considered, and during each subsystem develop-
ment and integration, the Agile SCRUM methodology has
been chosen. The reason for choosing this methodology is
the type of project which is within software development.
SCRUM enables us to obtain the highest efficiency through
weekly sprints [65]. In each sprint, the work that has been
done in the previous week will be reviewed, and then a new
sprint will be defined for the following week. The subtasks
are:

• Survey the literature related to the topic.
• Evaluate image classification algorithms and state-of-
the-art deep learning methods.

• Choose the most suitable algorithm for image recogni-
tion and design a new CAD system based on the struc-
ture of the efficient algorithms for our specific problem.

• Develop a preprocessing technique for the preparation
of the dataset and experiments.

• Define a set of hyperparameters and optimize them for
our specific problem.

• Implement the chosen models with the optimized pre-
processing technique and hyperparameters for breast
cancer detection.

• Perform test and analysis of the chosen models to
achieve the highest accuracy.

• Conclude the study and suggest future work.

II. SYSTEM MODEL
A. TRANSFER LEARNING
The BreakHis dataset is relatively small to train a network
from scratch and achieve high accuracy results. A way to alle-
viate this problem is using transfer learning and fine-tuning
a pre-trained CNN [66]. A pre-trained CNN is trained on an
extensive dataset of various domains. The use of pre-trained
networks is widespread nowadays in computer vision tasks
[67]. Both ResNet and DenseNet are being used in this
research.

When training a plain networkwith a standard optimization
algorithm, as the number of layers increases, the training error
decreases in the beginning, but then it increases. In other
words, the training error is getting worse when picking too
deep networks. If we want a highly accurate model, we have
to have a deep neural network. A deep model can extract
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features better than shallow models by using the intermediate
hidden layers [68].

The ResNet50 network is made of residual blocks. In tra-
ditional (plain) neural networks, every layer is connected to
the next layer. In a network with the residual building blocks,
every block is connected to the next layer, but it is also directly
connected into the layer, which is 2-3 layers deeper, as a short-
cut connection. Figure 4 represents a residual block. Input
x is passed through a few convolutional layers (function f ),
and the result will become f (x). Although a traditional CNN
has the same logic, the ResNet then adds the original input
x to the result (f (x)), and becomes f (x)+ x. This addition is
element-wise addition (⊕). The information in x can follow a
shortcut to go much deeper into the neural network. So using
residual block allows us to train a much deeper network.
When CNN goes deeper, the path for information from the
input layer to the output becomes larger. This also happens
for gradient descent in the opposite direction, and it vanishes
before reaching the other side of the network. A ResNet
network can be made by taking many residual blocks and
stacking them together to form a network.

FIGURE 4. A residual block.

By taking the intermediate activations and letting them
go deeper into the neural network, it helps with vanishing
gradient problems and allows us to train a much deeper neural
network without loss of performance [69], [70].

Resnet50 has five stages, and each of these stages has
a residual block plus a convolutional block. Each residual
block also has three convolutional layers, and each convolu-
tional block also has three convolutional layers. ResNet50 has
approximately 23 million parameters for training.

Having described ResNet, in DenseNet, each layer has
additional inputs from all preceding layers (each layer gets
information directly from all previous layers). This makes the
neural network thin and compact(fewer channels). We have
a copy of all the previous layers in the current layer
(previous layers are concatenated into the current layer).
DenseNet simplifies the connectivity pattern among layers
in ResNet to ensure maximum information flow and needs

FIGURE 5. Densenet model’s structure.

fewer parameters than other CNNs, and there is no place for
redundant feature maps. However, its layers are narrow, and
they just add a few feature maps. DenseNet has a feature
layer(convolutional layer), multiple dense blocks (the con-
catenated layers), and a few transition layers among dense
blocks [71].

DenseNet achieves similar accuracy as ResNet with less
than half the amount of parameters [72]. DenseNet121 ver-
sion has been chosen among other DenseNet versions,
because it has around 1million parameters which are less than
the number of parameters in DenseNet196, DenseNet201,
DenseNet264.

In order to transfer learn and fine-tune, we make a new
layer to replace it with the fully connected layer (FC-1000)
in the resNet50 and DensNet121 architectures. The new top
layer has a fully connected layer (FC-8). Then we trans-
fer the weights and fine-tune the model with a new top
layer. It is done by training and backpropagation on the
resnet50 and DenseNet121 with the patch-balanced dataset.
Figure 5 presents our proposed model’s architecture for
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DenseNet121. The ResNet50 is also utilized in the same
structure.

Apart from DensNet and ResNet, we utilized some other
pre-trained networks to compare the results. Those networks
are ResNet101, VGG19, AlexNet, and SqueezeNet.

III. DATASET PREPARATION
A. DATASET PARTITIONING
Following the fact that the BreakHis dataset is not sub-
stantially large, the partitioning process is vital to fetch
the most out of the proposed model. We have divided the
dataset into train, validation, and test set with 6011, 1492,
and 406 images, respectively. This ratio has been chosen to
increase training efficiency as much as possible. Figure 2
shows BreakHis dataset partitioning in detail.

B. DATA AUGMENTATION
In order to increase the diversity in the BreakHis dataset and
boost the CAD systems’ performance, a data augmentation
method has been implemented. Every image in the training
set is first resized to 224 × 224 pixels. Then some of the
images horizontally flipped randomly. We also use the color
jitter for images. It changes the tone of the original color
based on Hue, Saturation, and Value (HSV). Some of the
training set images are also randomly rotated and cropped.
After these steps, the image is transformed into tensors
(matrices of numbers) and get normalized. Figure 7 shows a
batch of augmented data. As for the validation set, all images
are just getting normalized without any flipping, cropping,
or rotation. The test set is given to the trained model just after
resizing the image to the models required input size without
any change or edition (raw image).

IV. IMPLEMENTATION
A. HARDWARE AND SOFTWARE
The proposed model has been implemented, and the test
results were produced with a desktop with AMD Ryzen
Threadripper 1950X 16-Core Processor 3.40 GHz, 128 GB
Ram, and NVIDIA 1080ti GPU has used.

As for software, we have used PyTorch in the Jupyter
Notebook of Anaconda environment. The implementation
code of the proposed model is available in the GitHub
Repository.

B. HYPERPARAMETERS OPTIMIZATION AND SETTINGS
We define and tuned a set of hyperparameters and settings
for our specific task. Table 3 shows these optimized hyper-
parameters and settings. Setting-3 and setting-4 are the best
ones.

C. EVALUATION METRICS
In order to measure the accuracy of breast cancer CAD sys-
tems based on the chosen taxonomies, there are some metrics
for fair comparison among different CAD systems.

1) IMAGE-LEVEL ACCURACY (ILA)
The total number of correctly classified images divided by the
total number of images provides image-level accuracy, which
is considered as the main metric for our study. Equation 1
shows the way to calculate ILA.

ILA =
Icorrect
Itotal

(1)

2) PRECISION (POSITIVE PREDICTIVE VALUE)
The fraction of relevant samples among the retrieved samples.
Equation 2 represents the formula for calculation of precision.

Precision =
TruePositives

TruePositives+ FalsePositives
(2)

3) RECALL (Sensitivity)
The fraction of the total amount of relevant samples which
were actually retrieved. Equation 3 shows the formula for the
calculation of recall.

Recall=Sensitivity=
TruePositives

TruePositives+FalseNegatives
(3)

4) F1 SCORE
As a measurement of test accuracy, the F1 score is the har-
monic mean of precision and recall. Equation 4 shows the
formula for the calculation of the F1 score.

F1score =
2× Recall × Precision
Recall + Precision

(4)

V. RESULTS
We have done a set of various experiments with the most
promising set of hyperparameters shown in table 3 in both
binary and multiclass classification. The models have been
tested with different settings to achieve the highest accuracy.

A. BINARY CLASSIFICATION
We have conducted different models with optimized hyper-
parameters to predict whether the sample tissues are benign
or malignant. We first tested our different models in a
magnification-dependent way on 40×, 100×, 200×, and
400× set of images separately.

MAGNIFICATION DEPENDENT- 40X
We tested two optimized hyperparameter settings (set-
ting 3, setting 4) on our presented modified CNNs (2-layers
designed from scratch, pre-trained ResNet50, and pre-trained
DenseNet121) for our specific problem. Table 4 presents the
models and achieved accuracies. As can be seen, model-3 and
model-4 obtained 98.98% and 100% ILA accuracy, respec-
tively. These results are improving state-of-the-art results on
both the BreakHis dataset and every automatic breast cancer
recognition studies. The result of model-4 was confirmed by
repeating the experiments. The code for these experiments is
available in GitHub CAD-40X-Binary Repository.
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FIGURE 6. Plain, ResNet, and DensNet networks concepts.

TABLE 2. BreakHis dataset partitioning ratio in detail.

MAGNIFICATION DEPENDENT- 100X
The experiments for 40× images have been repeated for
100× magnification level images with optimized CNNs,
hyperparameters, and data augmentations. Table 5 represents
the results and settings. Model-4 has obtained 100% accu-
racy with setting 3. The result of the model-3 and model-
4 also improving state-of-the-art results in beast cancer CAD

systems. The code for these experiments is available in
GitHub CAD-100X-Binary Repository.

MAGNIFICATION DEPENDENT- 200X
The proposed models have experimented with the same
approach as 40× and 100× experiments. The results are
slightly lower than 40× and 100×. Model-4 achieved an
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FIGURE 7. A batch of augmented data from BreakHis dataset.

TABLE 3. Different tested settings.

TABLE 4. Different tested models on 40× magnification images of BreakHis dataset.

TABLE 5. Different tested models on 100× magnification images of BreakHis dataset.

accuracy of 98.08%, which is the highest result in the 200×
experiments. The code for these experiments is available in
GitHub CAD-200X-Binary Repository.

MAGNIFICATION DEPENDENT- 400X
As for the 400X class, the tested models and settings are
shown in table 7. The accuracy of 98.99% was achieved with
model-4 and was confirmed by repeating the experiments.

The code for these experiments is available in GitHub CAD-
400X-Binary Repository.

MAGNIFICATION INDEPENDENT- 40×, 100×, 200×,
AND 400X
The proposed CNNs are trained and tested with all of the
BreakHis dataset images regardless of their magnifications.
Table 8 represents the models, settings, and accuracy of the
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TABLE 6. Different tested models on 200× magnification images of BreakHis dataset.

TABLE 7. Different tested models on 400× magnification images of BreakHis dataset.

results. The model-3 achieved an accuracy of 99.26%, which
improves state-of-the-art results. We also have used more
pre-trained models in this section to compare more results.
The code for these experiments is available in GitHub CAD-
Magnification-Independent-Binary Repository.

B. MULTICLASS CLASSIFICATION
The second set of experiments have been done in multiclass
classification type. First, the experiment for each magnifi-
cation group has been performed and, then the models have
been tested in magnification independent way.

MAGNIFICATION DEPENDENT- 40X
Table 9 represents the settings and models that have been
experimented. The highest accuracies come from model-
3 and model-4 (same as binary classification). However,
in multiclass classification, model-3 has achieved higher
accuracy than model-4. These results are also improving
state-of-the-art results in CAD for breast cancer. The code
for these experiments is available in GitHub CAD-40X-
Multiclass Repository.

MAGNIFICATION DEPENDENT- 100X
Table 10 presents the results of the experiments on the 100×
magnification images. Model-3 achieved the highest accu-
racy, with 97.14% ILA. The code for these experiments is
available in GitHub CAD-40X-Multiclass Repository.

MAGNIFICATION DEPENDENT- 200X
Table 11 shows the tested models on 200× set of mag-
nifications. Model 3 obtained 95.19% accuracy, which is
the highest accuracy among others. The code for these

experiments is available in GitHub CAD-40X-Multiclass
Repository.

MAGNIFICATION DEPENDENT- 400X
Table 12 exhibits the results of applying our proposed mod-
els on the 400× set of magnifications. The code for these
experiments is available in GitHub CAD-40X-Multiclass
Repository.

MAGNIFICATION INDEPENDENT- 40×, 100×,
200×, AND 400X
The proposed models have been experimented in a magnifi-
cation independent way, and the results are shown in table 13.
The code for these experiments is available in GitHub CAD-
Magnification-Independent-Multiclass Repository.

C. EVALUATION OF RESULTS
The results of the experiments are promising. After a closer
look at the misclassified images, it is revealed that they are
more and less the same in most of the models, meaning the
model is working quite well, and the dataset is not broad
enough to increase the variety of learning. The confusion
matrix is provided for the top twomodels in themagnification
independent multiclass classification category. It shows the
Lobular Carcinoma (LC) (malignant) is the most difficult
tissue for classification. This difficulty comes from its very
complicated cell structure in comparison to other malignant
tissues [73]. Although the cell structure is more tricky in
LC, there are only 626 LC images available in the dataset,
which is extremely low for making a robust classifier for
this category. Interestingly, most of the mislabeled images
are predicted as Ductal Carcinoma (DC). This comes from a
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TABLE 8. Different tested models on all of the images of BreakHis dataset.

TABLE 9. Different tested models on 40× magnification images of BreakHis dataset in multiclass category.

TABLE 10. Different tested models on 100× magnification images of BreakHis dataset in multiclass category.

TABLE 11. Different tested models on 200× magnification images of BreakHis dataset in multiclass category.

large number of images for ductal carcinoma in the BreakHis
dataset and the similarity of malignant sample tissues. Our
proposed models are solving the difficulty of classification in
Fibro Adenoma (FA) and Mucous Carcinoma (MC) classes,
which study [63] has mentioned. The misclassified images
are mostly benign samples that are predicted as malignant.
Although this is an anomaly, there are meager cases of
false-negative prediction (malignant samples that are pre-
dicted as benign by the proposed models), which is the worst
condition for a CAD system.

The evaluation of all the experiments is showing the
Model-4 with setting-3 is the best model for binary classi-
fication. In the multiclass classification, the Model-3 with
setting-3 has outperformed other models. The models are
designed to be flexible, meaning it is possible to combine
both model-3 and model-4 as a bigger model to boost our
CAD system’s performance. Figure 9 visualizes the average
performance of our pre-trained models.

As can be seen in the figure 9, the Densnet121 based
models (model-4 and model-6) work slightly better than
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FIGURE 8. Confusion matrix of magnification independent model-3 and model-4 on the BreakHis
dataset in multiclass category.
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TABLE 12. Different tested models on 400× magnification images of BreakHis dataset in multiclass category.

TABLE 13. Different tested models on all of the images of BreakHis dataset.

FIGURE 9. Average performance of the models.

ResNet50 based models (model-3 and model-5). The recall
has the highest accuracy in all models showing that
the possibility of having false-negative results is meager.

By comparing obtained-results in each magnification class,
It shows a 2-layers CNN (model-1 and model-2) is outper-
forming pre-trained AlexNet (model-8).
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Considering state-of-the-art results, which were achieved
on BreakHis dataset and provided in table 1 and our
best-achieved results (model-3 and model-4), our models are
improving state-of-the-art results in both binary and multi-
class scheme and magnification dependent and independent
categories. We considered the same dataset as previous state-
of-the-art studies, presented their methods, and improved the
classification accuracies.

During the development, we implemented the bottom-up
integration and testing approach. We split a CAD system
into subsystems; Preprocessing, path/slides, feature extractor,
transfer learning CNN, and postprocessing. Each part was
individually tested with a range of configurations while other
subsystems had a fixed configuration. By monitoring the
changes in the outcome, we optimized each subsystem indi-
vidually first and then integrated them to make a specialized
CAD system for our specific problem. Finally, the subsys-
tems were integrated to make a system, and the final system
was evaluated. This systems engineering approach helped us
to achieve our goal, together with Agile SCRUM methodol-
ogy for software development.

Our main contributions in this research are the pro-
posed models with optimized hyperparameters, which is a
unique design for this specific problem. Previous studies
have used ResNet networks but were not able to achieve
high accuracy, mainly because of improper tuning and patch
extraction approaches. Our tuning is unique to our model
and has not being used in the past. Our study has utilized
DesneNet121 CNN for the classification for the first time.
However, most of the previous works have implemented
ResNet, VGG, AlexNet, and CaffeNet for their model. The
difficulty of working with the DenseNet and the large vol-
ume of the network may be the reason for not utilizing the
DenseNet for the specific problem. Our study shows that
not only is it feasible to utilize DenseNet for breast cancer
histological diagnosis, but it is also possible to create high
accuracy models. Our results are improving state-of-the-art
results in all classifications (both binary and multiclass),
which is very important when applying artificial intelligence
in the medical domain.

VI. CONCLUSION
In this work, different methods and solutions for automatic
detection of breast cancer in histopathology images have been
investigated. The aim of this work was to develop a high
accuracy method that can detect cancer at early stages, define
the exact type of the samples, and improve previous works
results.

We first surveyed the literature on the topic to find out
previous approaches for solving the problem, together with
state-of-the-art CAD systems for breast cancer recognition.
Drew on the literature review, we proposed different models
for automatic breast cancer diagnosis based on deep learn-
ing framework and transfer learning framework. Then we
presented and analyzed our image preprocessing methods

(Data augmentation, dimension reduction, etc.). Moreover,
the design methodologies of deep neural networks were pre-
sented. Next, the architecture of ResNet50 and DenseNet121,
which were our main deep learning models, were utilized for
the transfer learning framework.

Based upon an extensive study on various deep convo-
lutional neural network techniques, we developed a very
effective transfer learning architecture that consists new
fully-connected classifier and an input layer that is com-
bined with pre-trained DenseNet121 and ResNet50 models.
We introduced the dataset for our study (BreakHis), the short-
comings of the dataset, and specified our training set, vali-
dation set, and test set in detail. We then implemented our
proposed framework in Python with PyTorch in the Jupyter
notebook of anaconda. Following the fact that hyperparam-
eters in CNNs are very important to the efficiency of the
model, we provide a set of hyperparameters (learning rate,
pooling size, learning rate scheduling, etc.). We optimized
a set of hyperparameters and tested them on a fraction of
the BreakHis dataset. After finding the best settings for our
hyperparameters, we define nine models and experiment with
those models with our best hyperparameters settings.

We achieved the accuracy of 100%, 100%, 99.02%,
and 99.48% for 40×, 100×, 200×, and 400× images
in magnification-dependent binary classification, respec-
tively. As for multiclass classification, 98.43%, 98.54%,
97.53%, and 97.40% accuracies for 40×, 100×, 200×,
and 400× images in the magnification-dependent category
has obtained. In the magnification-independent category,
we achieved an accuracy of 99.50% and 97.72% for binary
andmulticlass classification, respectively. All of our results in
all categories and magnification dependent and independent
are well improving state-of-the-art results. This promising
result is another leap toward digitalization and convincing
medical experts to trust CAD systems for breast cancer detec-
tion.

Although this study evaluated the proposed models on the
best available dataset for breast histological images, it is still
may not be broad enough research. The BreakHis dataset was
made from only 82 patients, which makes the data diversity
extremely limited. The dataset does not provide any informa-
tion about the number of images from each specific patient
to calculate Patient-Level Accuracy (PLA). The proposed
model is showing promising results, but before using it in
real-world examples, it has to be tested with a few more
datasets to compare the results and increase the variety of
data.

Moreover, the proposed models are working less accu-
rately in 400× images. This contradicts the fact that ‘‘if
the training data contains great detail (such as 400× breast
histopathology image), the CNN network performs better in
predictions’’. The 400× images providing higher magnifi-
cation and more details, but the system is actually working
worse in this group of images. The investigation of lower
accuracy in the 400× image can be another future work.
However, the reason can be the total number of parameters
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of ResNet50 and DenseNet121, which is not much enough to
cover the great detail 400× images thoroughly.

APPENDIX
ABBREVIATION
AI Artificial Intelligence
ANN Artificial Neural Network
CAD Computer Aided Diagnosis
CBFS Correlation-Based Feature Selection
CNN Convoloutinal Neural Network
ConvNet Convolutional Networks
DBN Deep Belief Network
DCNN Deep Convolutional Neural Network
DWT Discrete Wavelet Transform
ELF Enhanced Loss Function
F1 F1 Score
FC Fully Connected
FV Fisher Vector
GPR Gausian Random Projection
HSV Hue, Saturation,and Value
ILA Image-Level Accuracy
KPCA Kernel Principle Component Analysis
L-ISOMAP Landmark ISOMAP
MIB Magnification Independent Binary

classification
MIL Multiple Instance Learning
MIM Magnification Independent Multiclass

classification
MIP Multiple Instance Pooling layer
MSB Magnification Specific Binary classification
MSM Magnification Specific Multiclass

classification
NDCNN New-Designed Convolutional Neural Network
NGS Nottingham Grading System
PCA Principal Component Analysis
PLA Patient-Level Accuracy
RBM Restricted Boltzmann Machines
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
SVM Support Vector Machine
TL Transfer Learning
WSI Whole Slide Image

Preprocessing:
CE Contrast Enhancement
DAB Data Augmentation with Balancing
DA Data Augmentation
ETB E-AHE and TB-HAT techniques
GSC Gray Scale Conversion
KM K-Mean clustering
MVD Multilevel Variational mode Decomposition
RGBT RBG channel Transformation
Res Resizing
SMI Subtract Mean Image
SN Stain Normalization

Patch Extraction:
GSC Gray Scale Conversion

P Patch extraction
RND Random
SQ deviding to non-overlapping Square tiles
SW Sliding Window

Features Extractors:
BE Binarization Encoding
DR Dimension Reduction
DWT Discrete Wavelet Transform
FD Fractal Dimension
HI Histogram Information
JCTF Joint Color Texture Features
LPQ Local Phase Quantization
PFTAS Parameter-Free Threshold Adjacency Statistics
PWT Pyramid Structure Wavelet Transform
Tam Tamura features
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