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Abstract—This paper presents a descriptive statistical analysis 

(DSA) of time-series of electro-mechanical quantities related to 

the frequency control (e.g. kinetic energy (KE), electrical 

frequency and power demand) of the Nordic power system (NPS). 

The idea of the DSA is to identify main observables features and 

patterns between these variables.  Historical data publicly 

available has been used in this research paper; pre-processing 

included evaluating and identify missing data, and it filled by 

using the linear interpolation. The DSA uses descriptive statistical 

indicators to obtaining observable features. The dispersion 

analysis is used to observes how affects the KE to the electrical 

frequency. The data is grouped by weeks, days and hours, and its 

correlation coefficient was calculated. A correlation analysis 

between the KE and the power demand was computed, and the 

linear regression was used to construct a prediction model. 

Index Terms—Correlation coefficients, dispersion analysis, 

statistical analysis, patterns, power system. 

I. INTRODUCTION 

The increasing connection of renewable generation sources 
(RES) in the power system has raised concerns to the 
transmission systems operators (TSOs) since the rotational 
inertia contribution of these kinds of generation sources are 
smaller (or even non-existent) than those of synchronous 
generators [1]. The low amount of inertia in the power system 
affects the electrical frequency response, and the power system 
becomes weak and less tolerant of disturbances. Therefore, the 
capability to estimate and track the inertia available in the 
power system in real-time would allow TSOs taking control 
actions as well as have more precise operational planning 
scenarios[2]. This research paper presents a descriptive 
statistical analysis (DSA) of time-series of electro-mechanical 
quantities related to the frequency control, specifically is 
looking for obtaining observable features (mean, standard 
deviation, correlation coefficients and dispersion of the data) 
and identifying patterns of three electro-mechanical variables 
of the Nordic power system (NPS): kinetic energy (KE), 
electrical frequency and power demand. If the observable 

features and patterns of these variables are identified, a model 
could be constructed that allows estimating and predicting the 
KE of the system using the electrical frequency measurements 
and the power demand forecast [2]. The main contributions of 
this research paper are: (i) it presents a statistical analysis of the 
three electro-mechanical variables (see Section II), (ii) the use 
of the presented DSA allowed obtaining observable features 
time-series of electro-mechanical quantities related to the 
frequency control in the NPS: kinetic energy (KE), electrical 
frequency and power demand. Getting the main observable 
features and patterns that will allow constructing a prediction 
model to estimate the KE. This paper is organised as follows: 
in Section II, a description of the historical data used for the 
DSA is given. Moreover, the pre-processing of the time-series 
data and the missing data filling is presented. Furthermore, the 
methods applied to realise the DSA described. Section III 
presents the results of the DSA of the KE, power frequency and 
power demand frequency. Finally, Section IV presents the 
conclusions. 

II. DESCRIPTIVE STATISTICAL ANALYSIS (DSA)  

This section is dedicated to introducing the implemented 
DSA together with the data used in this paper.  

A.  Historic data 

The historical data, publicly available of the NPS, is used in 
this paper. Essentially, three main electro-mechanical variables 
related to the frequency control are collected and analysed in 
this paper: the KE, the power demand (Pd) and the electrical 
frequency (f). Although a massive amount of data is available 
for illustrative purposes, this paper focuses on the data during 
the month of August 2019.  Only one-month time series data 
was used for the DSA to determinate if the features and patterns 
that will be found give relevant information that indicates that 
an extensive data set is worth analysing.  The historical time-
series of the KE and the electrical frequency were obtained 
from Finland´s TSO company (Fingrid) database [3]. The KE 
raw data resolution is one sample per minute, while the 
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electrical frequency data resolution is one sample every three 
minutes. Fingrid has no data about the power demand of the 
NPS; it is obtained from Nord Pool company database[4]. The 
power demand time-series has a resolution of one sample per 
hour. There is a clear problem with the granularity of the data. 

B. Pre-processing data 

Raw time-series has been collected and then imported from 
a .csv file into MATLAB®. The data structure selected was a 
matrix that contains seven columns: year (YY), month (MM), 
day (dd), day of the week (weekday or weekend), hour (hh), 
minute (mm), and variable values. Then, the matrix data 
structure was evaluated to identify potential missing data. The 
KE has 44,640 samples, of which 1.16% are missing samples. 
Meanwhile, the electrical frequency has 14,880, of which 
0.14% are missing samples. The power demand has 744 
samples, and it has no missing samples. Since the missing data 
rate, a simple process of filling the missing data was performed 
using the simplest principle, linear interpolation [5]. Due to the 
granularity of the data, time-series with different sample 
frequency, and to avoid adding noise or losing information, the 
time series were not resampled. The process used in this paper 
is: samples were taken from the variable with the highest 
sampling frequency corresponding to the time of the variable 
with lower sampling frequency. For instance, to perform the 
analysis between KE and the power demand, only the KE 
samples corresponding to each hour were taken to have the 
same resolution as the power demand, one sample per hour. 

C. Methods 

The techniques used to perform the DSA from the electrical 
frequency, KE and Pd of the NPS are presented [6]. Following 
subsections show the main statistical methods used in this 
paper. For the sake of simplicity, let consider a set of observed 
values of a random variable in the form of x = {x1, x2, ... , xN}.  

The standard deviation (𝜎) is used to measure the time 
series data dispersion and  is calculated as follows: 
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where xi is the i-th observation of x and x  represents the mean 
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The correlation coefficient (): is a measure of the linear 
dependence between x and y, and it is computed as follows:  
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where xi is the i-th observed value, x  is the mean and σX is the 

standard deviation of x. Meanwhile, yi is the i-th observed value, 

y   is the mean and σY is the standard deviation of y. 
The linear regression is a statistical technique for 

investigating and modelling the relationship between x and y 
and its model is: 
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where ŷ is the predicted value from the fit, 0 1 = −y x  is the 

y-intercept and 
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slope. The suitability of the regression model can be expressed 
by computing the goodness of fit indicators: (i) the sum of 
square due to error (SSE) is a measure of the total deviation of 

ŷ  from the fit to the response values, (ii) the R2 is the measure 

of how effective is the fit to explain the variations of the data, 
the adjusted R2 is computed based on the residual degree of 
freedom and (iv) the root mean square error (RMSE) is an 
estimation of the standard deviation of the random components 
in the data.  

D. Relationship between KE, electrical frequency and power 

demand  

The variability of the electrical frequency in a power system 
depends mainly on two aspects: (i) the amount of KE stored in 
the rotating masses of the power system and (ii) the imbalance 
between the generation and the power demand. This relation 
can be represented with the swing equation [7]:  
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where f0  is the rated electrical frequency in p.u., H is the inertia 
constant in seconds.  Pm and  Pe are the mechanical power and 
electrical power in p.u., respectively. Since it is in terms of H, 
now the relationship between H and the KE most be defined.  
The inertia constant is commonly used as a measure of the 
stored energy in the rotating masses of the system and is 
calculated as follows [8]: 
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where Ekin is the KE stored in a rotating mass in W∙s. J is the 
moment of inertia expressed in kg∙m2,  ω0 is the rated speed in 
rad/s, and SB is the rated apparent power in MVA. Substituting 
(6) in (5) the swing equation can be written in terms of KE as 
[9]:  
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From (7), to maintain the electrical frequency into its 
nominal value, Pm and Pe must always be equal. Following an 
imbalance, df/dt will depend on the amount of KE stored in the 
rotating masses. If the KE is low, the electrical frequency 
variation will be higher. Otherwise, if the KE is significant, the 
electrical frequency variations will be small. In the NPS, to 
maintain the electrical frequency into its nominal range (49.9 - 
50.1 Hz)  the active power reserves available are used. If the 
power demand is higher or lower than expected, an imbalance 
occurs between the power demand and the scheduled 
production a frequency deviation is produced and the 
frequency-controlled reserves (FCR) are activated to regulate 
up, and a new balance is reached. If the frequency deviation 
remains, the TSOs manually activated the frequency 
restoration reserves (FRR) within 15 minutes [10].   



III. NUMERICAL RESULTS 

This section is dedicated to present the DSA that was 
realised to the KE, electrical frequency and power demand. It is 
performed a data dispersion analysis from KE and electrical 
frequency. Then, the correlation and the correlation coefficients 
of KE and power demand are computed for data grouped 
weekly, daily and hourly. 

A. Dispersion analysis  

The objective of carrying out the dispersion analysis of the 
KE and electrical frequency data is to verify if the time-series 
data of these variables follows the behaviour described by (12). 
If it is assumed that when existing a power imbalance produced 
by the power demand variation, this imbalance will be corrected 
in the next 15 minutes by the activation of FFR. Therefore, 
within 15 minutes periods, the generators power dispatch 
remains constant, and the deviation of the electrical frequency 
will depend on the KE stored in the generators. For this 
analysis, it is taken from KE data set only the samples that 
correspond whit the observations of the electrical frequency 
every 3 minutes. Therefore, KE has the same number of 
samples as the electrical frequency, which are 14,880 samples. 
Once the data has the same resolution, it is grouped every 15 
minutes, i.e., each group of data have five observations, and 
then mean, standard deviation and coefficient of variation are 
calculated. Table I presents the summary of the dispersion 
analysis results for the KE and electrical frequency of the NPS 
for August 2019. 

TABLE I.  DISPERSION ANALYSIS OF THE KE AND ELECTRICAL FREQUENCY 

FOR AUGUST 2019. 

  

Figure 1.  The mean and standard deviation of (a) KE and (b) electrical 

frequency for the first five hours of August 2019. 

In Table I, the maximum standard deviation of KE is 3.130 
GW∙s and its maximum deviation concerning to the mean is 
1.854%. These two indicators remain low within 15 minutes 
periods. Therefore, the KE tend to be close to the mean, and it 

can be concluded that the KE remains constant within 15 
minutes periods and its variations depend on the change of 
power setpoint in the generators. Meanwhile, mean values of 
the electrical frequency are not into its nominal range, and this 
means that the among of KE is not enough to maintain the 
electrical frequency into its nominal values. Fig. 1 represents 
the standard deviation of KE and the electrical frequency in 15 
minutes periods for the first five hours of August 2019.  

 

The variation of the electrical frequency for 15 minutes 
periods does not depend exclusively on the variation of the KE. 
Observing hours 2:30, 2:45, 3:00, 3:30, 3:45, 4:00, 4:15, 
4:30and 4:45, in Fig. 1 (a) the standard deviation is zero, i.e., 
the KE values remain constant within these periods, while the 
standard deviation of the electrical frequency for the same time 
periods is different from zero (see Fig. 1 (b)), which indicates 
that other factors like load-self regulation and the change in the 
power demand are causing these deviations. 

B. Correlation analysis  

The correlation analysis was used to determinate the degree 
of dependency of KE and the power demand of the NPS. 
Besides, the regression coefficients were computed to 
investigate whether it is possible to obtain a reliable prediction 
model. The time-series data of KE must be in the same 
resolution of the power demand to perform the correlation 
analysis, and since the power demand times-series data has a 
resolution of one sample per hour, to having the KE in the same 
resolution, it is taken the KE samples that correspond for each 
hour. Therefore, KE  has 744 samples, equal to Pd.  

All month considering weekends and without weekends:  In 
this analysis, the measurements of all month were taken. Fig. 2 
presents the time-series data grouped by weeks; it can be 
observed that KE and Pd follow two kinds of patter depending 
if it is weekdays or weekend days. Pd and KE present its lowest 
values between 0:00 to 5:00 hours; then they start to increase 
until reaching their maximum values around 10:00 hours and 
remains around these values until  21:00 hours when they begin 
to decrease to the minimum amount, each weekday follow this 
behaviour. On the other hand, on weekend days Pd and KE 
present its lowest values between 0:00 to 5:00 hours, then they 
start to increase until they reach their maximum value. 
However, the hours of the maximum values are different on 
Saturday and Sunday. These difference in the patterns are 
expected since the human activities are differents during the 
weekdays and weekend days, i.e., on weekdays the Pd 
consumption is defined by scheduled activities such as work 
hours, school hours, business opening and closing hours. 
Meanwhile, on weekends there are no specific activities 
planned [11].  

Fig. 3 shows the correlation between KE and Pd of the NPS 
and the slopes of the linear regression for August 2019. The 
correlation coefficient, ρ,  for this data set considering 
weekends is 0.8438 and without weekend days is 0.8536. ρ is 
higher when weekend days are despised than when they are 
admitted. The increase ρ when weekends are not considering 
indicates that the KE and Pd on weekends have no defined 
patterns, unlike weekdays, where the power demand follows the 
same pattern every 24 hours.  

Variable 

 

Mean 

Standard 

deviation 

 (σ) 

Coefficient of 

variation (ν) 

Max Min  Max Min  Max Min  

KE [GWs] 206.600 127.600 3.130 0.000 1.854% 0.000% 

f  [Hz] 50.115 49.876 0.071 0.002 0.140% 0.004% 



 

Figure 2.  (a) KE and (b) Pd grouped by weeks. 

 

Figure 3.  Correlation between KE and Pd: considering weekends (dark blue 

marks and red line) and without weekends (blue marks and dark line) of 

August 2019. 

Since this value of correlation shows that exist a 
dependency between the Pd and KE, now it is essential to 
investigate whether this dependency allows making a reliable 
prediction model. It is known that the RMSE value is related to 
the degree of complexity of the model, i.e., to the degree of the 
linear regression model [12]. The degree of the linear regression 
model was chosen as one since the RMSE reduction between 
one and nine degrees is 3.5% and it is not worth adding 
complexity to the model if the decrease of RMSE is not 
significant. The results of performing the linear regression for  
KE and power demand data are summarised in Table II.  

TABLE II.  INDICATORS OF THE LINEAR REGRESSION OF KE AND POWER 

DEMAND FOR AUGUST 2019. 

Indicator Values considering 

weekends 

Values without 

weekends 

SSE 7.206×104 3.838×104 

R2 0.712 0.729 

Adjusted R2 0.711 0.728 

RMSE 9.855 8.543 

From Table II, the values of SSE indicate that the linear 
regression model has a high error component due to the fit only 
can represent 72.9% of the total variation in the data about the 
average. Moreover, when it is not considered the weekend 
measurements in the prediction model, the SSE and RMSE 
indicators decrease 46.7% and 13.3%, respectively. These 
results lead to conclude that it is advisable to consider creating 
two separate prediction models, one to represent the behaviour 
of the weekend days and another to describe the weekdays. 

1) Data grouped by week: In this study, the data were 

grouped by weeks, and its correlation coefficients were 

computed. From Fig. 2, in each week, both KE and Pd have the 

same periodic variations over 24 hours, and graphically it can 

be concluded that both follow the same pattern every 24 hours. 

The correlation coefficient calculation was carried out to 

validate the above conclusion. The correlation coefficients 

without weekends have values between 0.85 and 0.92, as 

shown in Fig. 4. These coefficients show a strong correlation 

between KE and power demand, and it can be concluded that 

the four weeks of August follows the same pattern. Meanwhile, 

the correlation coefficients considering weekends have values 

between 0.84 and 0.89. The correlation decreases around 3% 

when weekends are included, and it indicates that weekday and 

weekend days have not the same patter. 

 

Figure 4.  The correlation coefficients (KE, Pd) of the four weeks. 

 

Figure 5.  (a) KE and (b) Pd grouped by days considering weekends. 

 



2) Data grouped by day: in this study, the data were 

grouped by days, and its correlation coefficients were 

computed. Fig. 5 presents the data of KE and the Pd of August 

2019, including the measurements of weekends. In this figure, 

it is shown that two groups of data are formed: (i) weekdays 

around the mean and (ii) weekend days below the mean. 

Graphically it could be concluded that these two variables 

follow different patterns, a pattern representing weekdays and 

another pattern describing the weekend days.  

The correlation coefficient between KE and Pd are presented 

in Fig. 6. The lowest values of the correlation coefficients, 

around 0.6, are those that correspond to the weekend days and 

it is expected since on weekends there are not defined patterns. 

Otherwise, weekdays have the highest correlation coefficient 

values, around 0.9. Therefore, these variables follow the same 

pattern in weekdays. 

 

Figure 6.  The correlation coefficient (KE, Pd) of days of August 2019.  

3) Data grouped by hours: The correlation coefficient for 

the data grouped by hours is shown in Fig. 7. The range of 

values of the correlation coefficients that were considered with 

strong correlation is between 0.76 and 0.91, which correspond 

to the time range between 5:00 and 18:00 hours. The KE and 

power demand follow the same pattern and between 5:00 and 

18:00 hours the hours are the same for all the month without 

considering the measures of weekend days.  

 

Figure 7.  The correlation coefficient (KE, Pd) per hour without weekends. 

IV. CONCLUSION 

Based on the methods applied for the DSA, it is concluded 
that the KE values remain constant within 15 minutes periods 
since the maximum coefficient of variation does not exceed 2%, 
which means that the data are close to the mean. Besides, for 
the same 15 minutes periods, when the KE remains constant, 
i.e., the standard deviation is zero, the electrical frequency 
continues to vary. These variations manifest that the electrical 
frequency variation not only depends on the KE change; it also 
depends on load self-regulation and the difference in the power 
demand. The power demand and the KE have a strong 
correlation and follow the same pattern over 24 hours in 

weekdays. Otherwise, on weekend days, these variables do not 
follow the same pattern over 24 hours and therefore have a 
weak correlation. It suggests that it is necessary to create two 
separate models to represent the data: weekdays model and 
weekend days model. Although in this paper, it just analysed 
the electromechanical variables of one month, it is obtained 
relevant information about the behaviour of the variables 
between, minutes, hours, days and weeks. It was found that 
depends on the time scale it can be extracted specific 
information of the power system and hence create a particular 
model that related these variables.  
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