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Summary:  

Hydrogen as an energy carrier is one of the available alternatives to fossil fuels for 

decarbonizing the global energy system. Regarding to the very low volumetric energy 

content of gaseous hydrogen, for practical and economical storage, it has to be either 

pressurized at ambient temperature (Compressed Gaseous Hydrogen – CGH2) or 

liquefied at cryogenic temperatures (Liquid Hydrogen – LH2). On the subject of CGH2, 

using high-pressure hydrogen reservoirs from 250 𝑀𝑃𝑎 up to 70 𝑀𝑃𝑎 is conventional; 

and among these, utilizing 70 −𝑀𝑃𝑎 hydrogen reservoirs as fuel cells in transportation 

or as storage tanks, for instance, in local hydrogen refueling stations is the common 

approach. 

Having a leakage in such a high-pressure reservoir will form shock waves in front of the 

released hydrogen causing a temperature rise which may be intensified by existing 

obstacles in that environment; the presence of these obstacles and confinement may also 

enhance the hydrogen-air mixing. Because of the wide flammability range of hydrogen, 

this might lead to its spontaneous ignition if these high-temperature, well-mixed regions 

could last as long as the hydrogen-air induction time. In this thesis, it is tried to 

numerically investigate the possibility of this kind of scenario.  

In order to simulate a 70 −𝑀𝑃𝑎 hydrogen release into the air (treated as a dual pseudo 

species), in the initial attempts, the USN-FLIC code was tried, but because the results 

were not convincing, it was decided to use the OpenFOAM software as an alternative. 

Considering the restrictions of the solvers of OpenFOAM (v.7), combinations of solvers 

along with new thermophysical models are used to be able to overcome the so-called 

Riemann problem of shock waves in a non-ideal, multi-component, non-reacting mixture. 

Furthermore, to validate this method, the shock-tube problem is solved and the results are 

compared with available data of similar cases. 

According to the results, potentially hazardous regions are formed in the domain that are 

mostly related to the interaction of the reflected, rarefaction, and normal shock waves 

inside the flow field. Although there are some inconsistencies between the results of the 

simulations in estimating the flow properties, generally, the risk of hydrogen auto-ignition 

in these regions is quite high. But for having a better understanding about the effects of 

distances between wall boundaries, it is shown that the simulation should be done in three-

dimensions. 
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Nomenclature 
Abbreviations 

USN  University of South-Eastern Norway 

CGH2  Compressed Gaseous Hydrogen 

LH2  Liquid Hydrogen 

MIE  Minimum Ignition Energy 

CFD  Computational Fluid Dynamics 

FLACS Flame Acceleration Simulator 

TVD  Total Variation Diminishing 

MUSCL Monotonic Upstream-centered Scheme for Conservation Laws 

ALE  Arbitrary Lagrangian-Eulerian method 

LES  Large-Eddy Simulation 

ODE  Ordinary Differential Equation 

PDF  Partial Differential Equation 

FVM  Finite Volume Method 

FDM  Finite Difference Method 

FLIC  Flux-Limiter Centered scheme 

OpenFOAM Open-source Field Operation and Manipulation 

OF  OpenFOAM 

EOS  Equation of State 

PBiCGStab Preconditioned Bi-conjugate Gradient Stabilized solver 

CJ  Chapman-Jouguet theory 

 

Dimensionless quantities 

𝑅𝑒  Reynolds number 

𝑃𝑟  Prandtl number 

𝐷𝑎  Dahmkohler number 

𝑃𝑒  Peclet number 

Symbols 

𝑢𝑖  Velocity 

𝑡  Time 
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𝑓  Flux 

𝑆  Source term 

𝑎  Shock speed 

𝑥  Space variable 

Ω  Control volume 

𝜕Ω  Control surface 

𝑇𝑉  Total variation 

𝜏  Induction time 

𝐴𝛼 , 𝐵𝛼 , 𝐶𝛼 , 𝐷𝛼 Coefficients of the induction time equation 

𝑆𝐿  Laminar flame velocity 

𝑆𝑇  Turbulent flame velocity 

𝑇0  Initial temperature 

𝑇  Temperature 

𝑝0  Initial pressure 

𝑝  Pressure 

𝛾  Isentropic expansion factor 

𝑐𝑝  Specific heat capacity at constant pressure 

𝑐𝑣  Specific heat capacity at constant volume 

𝑀𝑊  Molecular weight 

𝑅  Universal gas constant 

𝜌  Density 

𝑥𝐻2 , 𝑥𝑂2 , 𝑥𝑁2 Molar concentrations 

𝜙  Flow property 

Γ  Diffusion coefficient 

𝐿  Characteristic length 

𝐷  Mass diffusion coefficient 

𝜇  Dynamic viscosity 

𝑘  Thermal conductivity 

𝛼  Thermal diffusivity 

𝑍  Compressibility factor 

𝑛  Number of moles 

𝐼, 𝑉  Inviscid, Viscous 
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𝑌𝑖  Mass fraction of species 𝑖 

𝐸  Total Energy 

𝑅𝑖  Reaction rate of species 𝑖 

Ψ  Compressibility 

𝐴𝑠, 𝑇𝑠  Sutherland coefficients 

𝐻  Enthalpy 

𝑆  Entropy 

𝑘  Turbulent kinetic energy 

𝜔  Specific dissipation rate 

휀  Turbulent dissipation 

𝐶𝜇  Coefficient for calculating specific dissipation rate 

𝐼  Flow intensity 

𝐶𝑝
0  ideal-gas specific heat capacity at constant pressure 

𝐻0  ideal-gas enthalpy 

𝑆0  ideal-gas entropy 
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1 Introduction 
These days that human societies struggling with the challenge of meeting the growing energy 

demand while addressing the global warming concerns, hydrogen is among the best solutions 

that we have for carrying and storing clean renewable energy to decarbonize the global energy 

system. However, because of the characteristics of this chemical substance, at least during the 

past one hundred years, there have always been reports of major hydrogen explosions due to 

leakage or even during an operation such as depressurizing vessels [1], [2]. In the following, 

the scientific principles behind this hazard as well as some studies that were conducted to 

improve our fundamental understanding of such phenomenon will be investigated. At last, also, 

the scenario of this project will be defined.  

1.1 Chemical and Physical Aspects of Hydrogen Hazard 

From the chemical aspect point of view, on the one hand, as depicted in Figure 1.1, the 

minimum ignition energy of gaseous hydrogen (at 29% hydrogen-air volumetric ratio) is much 

lower than the other common fuels like natural gas, on the other hand, its flammability range 

is much wider than the others; this combination makes hydrogen violently combustible. 

(a) (b) 
Figure 1.1: (a) Minimum ignition energy (MIE)  (b) Volumetric flammability limit range of different fuels [3] 

Although as it is discussed in Appendix A, the standard condition values indicated in the above 

diagrams are highly affected by the pressure, temperature, and also concentration of reactants 

(hydrogen and air), evaluations of the hydrogen explosion hazard have generally shown that 

the risk is quite high; as mentioned in the work of Bain et al., statistically, around 80% of 

industrial hydrogen leaks eventually ignite [4]. 

 
Figure 1.2: Comparison between the gravimetric energy density (energy content per mass) and the volumetric 

energy density (energy content per volume) of several fuels (based on lower heating values) [5] 
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From another point of view, as seen in Figure 1.2, because of the low volumetric energy content 

of the gaseous hydrogen in comparison to other traditional fossil fuels, during the past century 

along with technological advancements in hydrogen storing, it has always been tried to store 

hydrogen more efficiently. As a result of this effort, with the physical-based storage approach1, 

the pressure of the hydrogen reservoirs has become higher and higher through this period which 

potentially makes them more and more dangerous [5]–[7]. 

In Figure 1.3, the pressure, temperature, and density ranges of hydrogen reservoirs under 

different storage conditions are demonstrated. Nowadays, the first two methods, i.e. liquefying 

at cryogenic temperatures (Liquid Hydrogen – LH2) and pressurizing at ambient temperature 

(Compressed Gaseous Hydrogen – CGH2), are the conventional ones for everyday usage. 

 
Figure 1.3: Storage density of hydrogen under certain pressure and temperature conditions [7] 

 

1.2 High-Pressure Hydrogen Release 

On the subject of compressed gaseous hydrogen which is the focus of this project, as it was 

mentioned, there have been many reports about the high-pressure hydrogen release throughout 

the history of hydrogen consumption that have continued even until recently. According to 

Astbury and Hawksworth, among the gaseous hydrogen releases that lead to an explosion, in 

 

1 In general, two main storage approaches have been pursued during this time, the physical-based storage and the 

material-based storage.CGH2, LH2, and cryo-compressed are the subcategories of the physical-based one. On the 

other side, adsorption-based storage (storing hydrogen on the surface of solids) and absorption-based storage 

(storing hydrogen within solids) are the subcategories of the material-based one [5]. For more details, you can 

look at Figure B.1 in Appendix B. 
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only 13.6% of cases, the source of ignition was identified which is around 21% less than that 

of non-hydrogen releases [1], [2]. This statement clearly specifies why numerous studies have 

been conducted on the subject of finding hydrogen ignition sources. Apart from some 

exceptional studies which have tried to investigate and explain the desired hydrogen explosion 

analytically, these researches are categorized into 3 main categories which will be discussed 

from section 1.2.1 to 1.2.3. Also based on the conventional classification done by Astbury and 

Hawksworth, the postulated mechanisms of hydrogen ignition can be divided into 5 main 

groups [2]: 

• Reverse Joule-Thomson Effect 

• Electrostatic Ignition 

• Diffusion Ignition 

• Sudden Adiabatic Compression 

• Hot Surface Ignition 

The subject that will be covered by this project, is basically related to diffusion ignition. This 

term was first suggested by Wolanski and Wojcicki in 1972 [8]. And it refers to a situation in 

which releasing high-pressure hydrogen into an oxidizer leads to forming shock waves in front 

of the hydrogen jet. These shock waves increase the temperature at the contact surface and 

because of the heat and mass diffusion to this hydrogen-oxidizer mixture, the temperature 

increment could finally ignite this combustible mixture without any external source [1], [8]. 

1.2.1 Experimental Studies 

The first category, which specifically the oldest investigations were carried out based on, is the 

experimental method. In this category, initially, it is tried to investigate the incident and find 

the possible explosion scenarios, after that the researchers try to make laboratory models of 

those scenarios and examine each of them to find the most possible reason behind the 

explosion. Also, there are cases that only hypothetical setups are examined in the laboratory to 

find the real ignition scenario of those cases to improve our fundamental knowledge of 

hydrogen explosion. Among the latter kind of studies, the work of Dryer et al. (2007) is quite 

unique. Because it was one of the first researches that try to investigate high-pressure hydrogen 

releases into usual kinds of workplace environments and “determine the envelope of design 

parameters”1 for those places [1], [9]. This research is particularly relevant to the present thesis 

since, in contrast to other reviewed studies, the effect of the downstream obstructions is 

included in it. 

Despite all major incidents and their subsequent experimental investigations listed in the HSE 

spontaneous ignition of hydrogen literature review (2008) that apparently most of them 

happened due to an electrostatic ignition or a spark caused by a collision, Dryer et al. showed 

in their project that a high-pressure hydrogen release may lead to spontaneous ignition, under 

certain circumstances [1]. According to Dryer et al., the main parameters that provide a short 

mixing time scale in the contact surface which is a prerequisite of a diffusion ignition are the 

“pressure boundary failure geometry, multi-dimensional shock-boundary, and shock-shock 

 

1 The parameters that should be taken into account when an industrial area, in where high-pressure hydrogen 

vessels are going to be used, is being designed; such as the temperature and the pressure of that environment, or 

the arrangement of the devices which corresponds to the downstream obstructions that will be discussed. 
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interactions in addition to molecular diffusion”. Also, it is worth mentioning that the main 

achievement of their work was to show the importance of the effect of geometry on the 

explosion enhancement, both the aperture geometry and the downstream obstructions. Based 

on that, the minimum required pressure of compressed gaseous hydrogen for having a 

spontaneous ignition is “dictated by the reflected shock and shock-shock interactions” which 

are affected by the geometry [9]. However, in general, the auto-ignition was only observed in 

cases with a release pressure of more than 20 bar [8]. 

1.2.2 Numerical Studies 

The second category, which specifically the recent investigations mostly were carried out based 

on, is the numerical method. In this category, the scenarios of real or hypothetical cases are 

studied by numerical methods, or more accurately, it is tried to simulate the cases by 

computational fluid dynamics (CFD) methods. The present project approach is also based on 

this method. The main obstacle in the way of the numerical simulation of a high-pressure 

hydrogen release is the so-called Riemann problem which will be discussed in the next chapter. 

To overcome this problem, several numerical methods and CFD software have been proposed 

that will be mentioned in the following.  

One of the most recent incidents, which was investigated by the Gexcon1 company, is an 

explosion that happened at a hydrogen refueling station in Kjørbo, Norway (June 2019); for 

the simulation of this case, they used a particular CFD software called FLACS2. They showed 

that the reason behind the explosion was a failure in the assembly of the high-pressure hydrogen 

reservoir of this station in which a low torque bolt led to hydrogen leakage and after around 4 

seconds an ignition occurred, probably because of an electrostatic discharge [6], [11]. 

The following numerical studies which were conducted in the past decades are those which 

tried to simulate high-pressure hydrogen release in an unconfined environment. Therefore, they 

did not consider the effect of existing obstacles in the domain, and their only focus was to 

investigate the hydrogen jet condition and the probable ignition in the immediate vicinity of 

the leakage.  

The first one is a study by Liu et al. in which they tried to use a direct numerical method to 

investigate the spontaneous ignition of a high-pressure hydrogen release into the air; the point 

is they utilized a NON-MUSCL TVD3 scheme for convective fluxes of the flow. Also, they 

used a detailed chemical kinetics mechanism with 18 elementary reactions and 9 species for 

capturing the onset of the possible combustion. Besides, it is claimed that for predicting a 

correct temperature in the 2D-simulation, they had to use a uniform rectangular mesh size of 

10 𝜇𝑚. They repeated the simulation for 3 different initial hydrogen pressure (10, 40, and 70 

MPa) and a small leakage with the diameter of 1 𝑚𝑚. Their main achievement was that 

although the shock-induced ignition occurs at the front region of the contact surface in 40 and 

 

1 https://www.gexcon.com/ 

2 Flame Acceleration Simulator (FLACS) is a commercial CFD software developed by Gexcon which is 

particularly used in the field of gas explosion and dispersion [10]. 

3 The Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) scheme, and Total Variation 

Diminishing (TVD) schemes will be discussed in the next chapter. 

https://www.gexcon.com/
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70 MPa cases, the local combustion is quenched due to forming the 𝐻2𝑂 molecules (which 

reduce the temperature) and the unsteady nature of the flow in that region [12].  

The second work is a project done by Xu et al. in which they utilized a modified version of 

KIVA-3V1 CFD software. Their main approach was to apply a “mixture-averaged multi-

component” method, that has higher-order numerical schemes in comparison with the original 

KIVA-3V, for solving the species transport equation of ideal gases by overcoming the false 

numerical diffusion; along with using a detailed chemical reaction mechanism with 21 steps 

and 8 species. The mentioned numerical scheme is based on the Arbitrary Lagrangian-Eulerian 

(ALE) method in which in the first step (Lagrangian phase), there is no convective flux across 

the cell boundaries, and cell vertices move with the fluid flow; in the second step (rezone 

phase), the flow field is considered frozen and the cell vertices move to a new computational 

mesh. Their general scenario was a release of pressurized hydrogen through a tube, initially 

filled with stagnant air, into an open space [8]. Their relevant case studies are tabulated in the 

following: 

Table 1.1: Computational Parameters of the case studies [8] 

Parameters Case 1 Case 2 Case 3 
Release Pressure (𝒃𝒂𝒓) 40 70 70 

Tube Diameter (𝒄𝒎) 1 1 1 

Length of Tube (𝒄𝒎) 2 2 6 

Diameter of Simulated Open Space (𝒄𝒎) 16 16 16 

Length of Simulated Open Space (𝒄𝒎) 10 10 10 

Number of Grids 1,600,000 800,000  

Minimum Grid Spacing (𝝁𝒎) 20 40  

They tried to investigate the effects of the release pressure and also the length of the tube on 

occurring self-ignition. Based on their results, with a sufficient tube length and initial pressure 

(in this study 6 𝑐𝑚 and 70 𝑏𝑎𝑟), the auto-ignition takes place inside the tube. In Case 1, there 

was no auto-ignition. However, in Case 2, a self-ignition initially occurs at the center of the 

contact surface because of the turbulence-enhanced mixing, but by decreasing the temperature 

due to dilution of the contact surface mixture, as well as the flow divergence, the flame is 

quenched [8]. 

Another research that is going to be reviewed is a project carried out by Maxwell and 

Radulescu. With referring to the Liu et al. and Xu et al. work, they began the project with the 

claim that numerical studies which had been conducted until that time on the subject of high-

pressure hydrogen release, did not have sufficient resolution, i.e. necessary solver accuracy to 

capture spontaneous ignition. For overcoming this issue, they presented a model consisting of 

several independent, approximate steps written in the C++ language in association with using 

the Cantera libraries for evaluating thermodynamic properties. In this method, the ignition of a 

highly reactive homogenous hydrogen-air mixture is taking into account along with a realistic 

expansion rate derived from the shock-tube problem. They repeated the simulations for the 

 

1 The KIVA family software, developed by Los Alamos National Laboratory, is a commercial CFD software 

basically focused on simulating complex flow and combustion processes in internal combustion engines. 

https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual-property/software-

tools/kiva/index.php 

https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual-property/software-tools/kiva/index.php
https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual-property/software-tools/kiva/index.php
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initial hydrogen-air pressure ratios from 75 to 800 and based on their results, as shown in 

Figure 1.4 with a dashed line, by increasing the pressure ratio the critical hole size decreases; 

also, they indicated that the pressure ratio controls the shock strength while the hole size 

controls the hydrogen expansion rate [13]. 

 
Figure 1.4: Critical hole sizes1 for various pressure ration (initial hydrogen pressure/ambient air pressure) [13] 

As the last review of this section, a paper by Bragin and Molkov is going to be studied here. 

Their intention was to propose a numerical model for simulating the release of high-pressure 

hydrogen that can achieve the same results as the conducted experimental studies; for this 

purpose, they compared their results mainly with two studies done by Mogi et al. (2008) and 

Golub et al. (2007). An LES2 modeling concentrating on simulating vortices as accurate as 

possible along with a 21-step chemical reaction mechanism with 37 elementary reactions was 

the method used by them in FLUENT 6.3.26 CFD software. In general, this study can be 

divided into 2 sections, the first one is the spontaneous ignition in tubes which has 

approximately the same results as the discussed work done by Xu et al.; while the second one 

is the transition of this spontaneous ignition into a sustained jet fire out of the tubes which 

despite the Xu et al. study, they have shown that can be achieved. The initial hydrogen pressure 

for the latter part was 145 𝑏𝑎𝑟 which was released in a tube with the length and width equal to 

185 and 4 𝑚𝑚, respectively. The remarkable point is that in this research the grid resolution is 

much coarser than the other studies in this section; even after two steps of grid refinement, the 

cell sizes were in the order of hundreds of micrometers. Eventually, they concluded that the 

key point to this transition is the initial jet formation close to the tube exit in where formed 

vortices separate the flame jet into upstream and downstream combusting regions, and while 

the downstream one is blown away, the upstream region is stabilized [14]. 

1.2.3 Combined Studies 

The last category of studies is a combination of the previous two ones in which it is tried to 

validate the results of each part with another one by carrying out the same case scenario 

experimentally or numerically. 

 

1 Critical hole size is the hole size below which the ignition is quenched. 

2 Large-Eddy Simulation 
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Among the best instances of this category, there are studies done by the same group of 

researchers known as Golub et al. which were conducted mostly in the first decade of the 21st 

century. The scenario of all these investigations was releasing of pressurized hydrogen through 

a tube into an oxidizer. The main focus, also, was to find a relation between the pressure ratio 

(𝑃𝐻2/𝑃_𝐴𝑖𝑟), the temperature of gases, the nozzle diameter, and the tube length.  

In the earlier studies, they emphasized the importance of the effect of initial temperature on 

hydrogen shock-induced ignition. Based on that, with hydrogen and air initial temperature of 

300 𝐾, for nozzle diameters more than 3 𝑚𝑚 and the pressure ratio between 150 and 400 the 

ignition takes place, but for the sizes equal or less than 2.6 𝑚𝑚 the combustion is quenched. 

By increasing the initial temperature to 400 𝐾, even for a 2 𝑚𝑚 nozzle and 200 pressure ratio, 

the ignition occurs. For the simulations of this study, they used the mentioned ALE algorithm 

together with a chemical kinetics model including 9 elementary reactions in FORTRAN-90. 

Also, it is important to note that the grid resolution of these cases was between 10 − 40 𝜇𝑚 

[15], [16]. 

In the later studies, they emphasized the importance of the tube length effect. As discussed also 

in other studies, the tube length and the required release pressure to spontaneously ignite 

hydrogen, are inversely related to each other; the more the tube length, the less the required 

pressure. 

Table 1.2: Summary of the research experimental results (ignition occurrence inside the tube is marked with 

Yes and No) [17] 

Tube 
Pressure 

[atm] 

Distance Between Diaphragm And Pressure Transducer 

[mm] 

Rectangular 

 

 43 93 143 

 

29 No No No 

34 No No Yes 

40 No Yes Yes 

54 Yes Yes Yes 

Cylindrical 

 33 47 90 135 

38 No No No No 

40 No No No Yes 

52 No No Yes Yes 

80 No Yes Yes Yes 

96 Yes Yes Yes Yes 
 

All experiments and simulations are done for a tube cross-sectional area equal to 20 𝑚𝑚2 
which means the diameter of the cylindrical tube and the length of the rectangular tube are 

equal to 5.05 and 4.47 𝑚𝑚, respectively. As seen in Table 1.2, the spontaneous ignition at the 

same distance from the burst disk occurs in the rectangular tube at lower pressures than the 

cylindrical one. The other major achievements of this study regarding the pressure ratio are 

that below 96 𝑎𝑡𝑚 for the cylindrical tube and 54 𝑎𝑡𝑚 for the rectangular one, no ignition will 

take place inside a tube with 33 and 43 𝑚𝑚 length, respectively. In addition to this, below 

40 𝑎𝑡𝑚 for the cylindrical tube and 34 𝑎𝑡𝑚 for the rectangular one, no ignition will occur 

inside a tube even as long as 135 and 143 𝑚𝑚, respectively. At last it should be mentioned 

that their numerical results showed acceptable agreement with the experimental results [17], 

[18]. 
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1.3 Defining the Present Project Scenario 

Almost in all reviewed studies in this chapter, spontaneous ignition of high-pressure hydrogen 

was investigated either inside and outside a release tube or outside a high-pressure chamber, 

close to the burst disk (diaphragm). Despite all these, the downstream flow field conditions far 

from the release point which is affected by the shock waves, and also the effects of existing 

obstacles and subsequently reflected shock waves and rarefaction waves in this area are what 

this project is focused on. On the other hand, the desired hydrogen pressure for this project, 

70 𝑀𝑃𝑎, is determined by the maximum conventional pressure that is used for hydrogen 

storage, especially in transportation (Table 1.3). 

Table 1.3: Different types of hydrogen compressed tank [19] 

Cylinder 

Types 
Materials Features Applications 

Hydrogen storage 

pressure and mass 

percent (𝑾𝑻%) 

Type I All metal 
Heavy 

Internal corrosion 

For industrial, not suited 

for vehicular use 

17.5-20 𝑀𝑃𝑎 

1 𝑊𝑇% 

Type II 
Metal liner with 

hoop wrapping 

Heavy 

Short life due to internal 

corrosion 

Not Suited for vehicular 

use 
26.3-30 𝑀𝑝𝑎 

Type III 
Metal liner with full 

composite wrapping 

Lightness 

High burst pressure 

No permeation 

Galvanic corrosion 

between liner and fiber 

Suited for vehicular use 

25-75% mass gain over 

I and II 

35 𝑀𝑃𝑎: 3.9 𝑊𝑇% 

-70 𝑀𝑃𝑎: 5 𝑊𝑇% 

Type IV 
Plastic liner with full 

composite wrapping 

Lightness 

Lower burst pressure 

Permeation through liner 

High durability against 

repeated charging 

Simple manufacturability 

Longer life than Type 

III (no creep fatigue) 

70 𝑀𝑃𝑎: more than 

5 𝑊𝑇% 

 

According to all these, the proposed scenario for this project is a release of 70 −𝑀𝑃𝑎 hydrogen 

into the atmospheric air in a semi-confined environment with an existing obstacle right ahead 

of the hydrogen jet. The detailed geometry and the reasons for choosing it will be discussed in 

the next chapter. 
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2 CFD Background 
In this chapter, it is tried to address the Riemann problem topic which was mentioned in section 

1.2.2 Numerical Studies. For this purpose, at first, the fundamental physical and numerical 

reasons behind this issue will be discussed. After that, the main approach for solving this 

problem and finally the relevant Riemann solvers to this project will be investigated. 

2.1 Conservation Laws and Characteristic Curves 

Physical conservation laws in the context of mathematics can be written in 3 different forms. 

(I) Integral form, which is written based on a control volume (Ω) and the fluxes through its 

boundaries (𝜕Ω). (II) Conservative form, in which the divergence theorem is applied to the 

integral form to convert the surface integrals into volume integrals. (III) Primitive form, in 

which the chain rule is exerted on the divergence of fluxes in the conservative form. Each of 

these has its special advantages which makes it useful for a specific kind of numerical 

investigation of physical phenomena. As a simple example, a scalar one-dimensional 

conservation law is considered below. In this equation, 𝑢 is the conserved variable which is a 

function of time and space 𝑢(𝑡, 𝑥), 𝑆 is the source term, and 𝑓 is the flux. This equation can be 

written as [20], [21]: 

 

{
  
 

  
 (𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐹𝑜𝑟𝑚):              

𝑑

𝑑𝑡
∫𝑢 𝑑𝑥
Ω

+∫ 𝑓(𝑢). �⃑⃑� 𝑑𝑠
∂Ω

= ∫𝑆(𝑢) 𝑑𝑠
Ω

(𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝐹𝑜𝑟𝑚):    
𝜕𝑢

𝜕𝑡
+ ∇ ∙ 𝑓(𝑢) = 𝑆(𝑢)                                  

(𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝐹𝑜𝑟𝑚):          
𝜕𝑢

𝜕𝑡
+
𝑑𝑓

𝑑𝑢
∙ ∇𝑢 = 𝑆(𝑢)                                   

 (2.1) 

Characteristic curves or briefly characteristics are the curves (in the above case, they are lines) 

along which the PDEs in conservation laws become ODE1s, i.e. the dependent variable(s) 

becomes only a function of time. As an example, in the above Equations (2.1), if straight lines 

in the form of 𝑥 = 𝑎 ∙ 𝑡 + 𝑥0 in the 𝑡 − 𝑥 diagram, depicted in Figure 2.1, are taken into 

account, the dependent variable 𝑢 becomes a function of time 𝑢(𝑡, 𝑥(𝑡)) along these lines. So, 

the partial derivative 𝜕𝑢/𝜕𝑡 in (2.1) changes into the derivative 𝑑𝑢/𝑑𝑡. For  𝑎 = 𝑑𝑓/𝑑𝑢2  this 

derivative on the specific lines can be calculated based on the chain rule as follows [20], [21]: 
 

{
 
 

 
 𝑑𝑢

𝑑𝑡
=
𝜕𝑢

𝜕𝑡
=
𝜕𝑢(𝑡, 𝑥)

𝜕𝑡
=
𝜕𝑢

𝜕𝑡
×
𝜕𝑡

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
×
𝜕𝑥

𝜕𝑡
=
𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕𝑢

𝜕𝑥
  
𝑎=𝑑𝑓/𝑑𝑢
⇒         

𝑑𝑢

𝑑𝑡
=
𝜕𝑢

𝜕𝑡
+
𝑑𝑓

𝑑𝑢
∙
𝜕𝑢

𝜕𝑥

(𝑃𝑟𝑖𝑚𝑎𝑡𝑖𝑣𝑒 𝐹𝑜𝑟𝑚):
𝜕𝑢

𝜕𝑡
+
𝑑𝑓

𝑑𝑢
∙ ∇𝑢 = 𝑆(𝑢)  →   

𝜕𝑢

𝜕𝑡
+
𝑑𝑓

𝑑𝑢
∙
𝜕𝑢

𝜕𝑥
= 𝑆(𝑢)                                   

 

 𝑦𝑖𝑒𝑙𝑑𝑠
→    

𝑑𝑢

𝑑𝑡
= 𝑆(𝑢) (2.2) 

 

1 Ordinary Differential Equation 

2 This slope (𝑎) is also called the characteristic speed 
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Figure 2.1: Characteristic lines for the mentioned conservation law with 𝑎 > 0 and initial conditions: 

𝑡(0) = 0, and  𝑥(0) = 𝑥0 [21] 

The interpretation of Equation (2.2) is that we can analytically predict the behavior of the 

solutions in the continuous regions. For instance, in a very simple case if the source term 

𝑆(𝑢) = 0 which makes the derivative 
𝑑𝑢

𝑑𝑡
= 0, then the solution 𝑢 will be constant along all the 

characteristics. And as a result, given an initial profile 𝑢(𝑡(0), 𝑥) = 𝑢(0, 𝑥) = 𝑢0(𝑥) through 

the entire domain, the above conservation law (2.1) will just transfer this profile according to 

the 𝑎. For 𝑎 > 0 the profile will be translated to the right, for 𝑎 < 0 it will be translated to the 

left, and for 𝑎 = 0 it remains at the same point. The Burgers equation is a perfect example for 

this case in which the flux term 𝑓(𝑢) = 𝑢2/2, in addition to all the previous assumptions. 

 
(𝐵𝑢𝑟𝑔𝑒𝑟𝑠 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛):  

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0 (2.3) 

For such a case, if the initial profile 𝑢0(𝑥) is considered as the black curve in Figure 2.2 (a), 

the developed solution (the red curve) is simply a translation of the initial profile based on the 

slopes of the characteristics (𝑎 which is equal to 
𝑑𝑓

𝑑𝑢
= 𝑢) [20], [21]. 

 
(a) 

 
(b) 

Figure 2.2: (a) The 𝑢 − 𝑥 Diagram: the black curve is the initial profile 𝑢0(𝑥), and the red one is the developed 

solution after 2 seconds (b) The 𝑡 − 𝑥 Diagram: the contour is showing the solution 𝑢(𝑡, 𝑥), the black straight 

lines are the characteristics [20]  
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2.2 The Finite Volume Method (FVM) 

For continuous (smooth) regions in the domain, like what was discussed in the previous 

sections, even the simple Finite Difference Methods (FDM), which are basically the Taylor 

series approximations, are working for numerical investigation of conservation laws. But, if 

there are discontinuities in the domain, like shock waves, then the spatial and time derivatives 

of 𝑢 will not exist at those spots. In other words, the order of their approximation (the Taylor 

series approximation of spatial derivatives) will go to infinity. Thus, the last two forms of 

conservation laws, conservative form and primitive form, will not be applicable anymore. As 

the result, only the integral form is still valid and can be utilized for studying such cases. This 

is the milestone that numerical approaches must be changed from FDMs to FVMs. It is 

noteworthy that every FV scheme is not suitable for this kind of problems.  

As shown in Figure 2.3, in finite volume methods, the computational domain is divided into a 

finite number of control volumes. The properties of each volume (cell) are stored as volume-

averaged information in each cell (�̅�𝑖 for the 𝑖 − 𝑡ℎ cell) and then the solutions will be 

reconstructed at boundaries (reconstructed solution �̃�(�̅�𝑖 , �̅�𝑖+1) which is the solution at 𝑢𝑖+1 2⁄
). 

𝑑

𝑑𝑡
∫ 𝑢 𝑑𝑥
(𝑖+1)∆𝑥

(𝑖)∆𝑥

+ 𝑓(𝑢)│(𝑖)∆𝑥
(𝑖+1)∆𝑥

= 0 
𝑦𝑖𝑒𝑙𝑑𝑠
→    

𝑑

𝑑𝑡
(�̅�𝑖 ∙ ∆𝑥) = 𝑓 (𝑢𝑖−12

) − 𝑓 (𝑢
𝑖+
1
2
) (2.4) 

This approach is the same between all FV schemes, but what is different between them, as 

shown in Equation (2.4), is the method used to approximate the reconstructed solutions 

(𝑢𝑖∓1/2) as a function of averaged stored values (�̅�𝑖). Also, it is worth knowing that there are 

some FV schemes in which instead of trying to first reconstruct the solutions (𝑢𝑖∓1/2) and then 

compute the fluxes (𝑓(𝑢𝑖∓1/2)), they try to directly approximate numerical fluxes (𝑓𝑖∓1/2) [20]. 

 

(a) 

 

(b) 
Figure 2.3: (a) Finite difference approach vs. (b) Finite volume approach of storing properties in each cell [20] 

2.3 Non-Uniqueness of Solutions and the Entropy Condition 

As mentioned in the previous section, every FV scheme is not appropriate for dealing with 

sharp discontinuities. For example, using the simple Central Flux scheme (𝑢𝑖+1 2⁄
=
�̅�𝑖+�̅�𝑖+1

2
) 

for the Burgers equation with the below initial profile (Figure 2.4) will create oscillation at the 

shock wave. The reason behind this behavior is that the volume-averaged solution at the cell 
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composed of shock wave (�̅�𝑖) which is demonstrated by a red line, cannot satisfy the flux 

equation. According to the flux term of the Burgers equation 𝑓(𝑢) = 𝑢2/2, for these initial 

conditions flux will be 𝑓(𝑢) = 1/2 in the entire domain, but the approximated flux in the 𝑖 −
𝑡ℎ cell will be 𝑓(𝑢) = �̅�𝑖

2/2 which cannot be equal to 1/2 with utilizing the Central Flux 

scheme. 

There are simple adjustments for this situation, like the one used in the Upwind scheme. 

Regarding this scheme, for capturing the correct behavior of the shock wave, the direction in 

which the solution is bumping into the shock wave should take into account to approximate a 

correct value for the flux. Based on that, to reconstruct the solution at 𝑢𝑖−1 2⁄  and consequently 

approximate a correct flux at this interface, because 𝑎 = 𝑑𝑓 𝑑𝑢⁄ = 𝑢 > 0, the left value of the 

shock wave cell should be considered, and in the same way for the solution at 𝑢𝑖+1 2⁄ , the right 

value [20]. 

 
Figure 2.4: Initial profile 𝑢0(𝑥) of the Burgers equation 

 

Unfortunately, this kind of simple solution would not be always useful for large gradients and 

that is where the Riemann problem and subsequently Riemann solvers come into play. For 

instance, consider the below initial profile (Figure 2.5) for the Burgers equation which is again 

a discontinuity in the domain. But in this case, in contrast to the previous one, the solutions 

(information) are emanating from the shock wave, not running into the shock wave. 

 
Figure 2.5: Initial profile 𝑢0(𝑥) of the Burgers equation 
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The issue of such a case is that there is more than one solution for this problem based on the 

discussed schemes. However, among these solutions, there is only one physical possibility 

which is the aim of the Riemann solvers to find. If these solutions are drawn in the 𝑡 − 𝑥 

diagram, there are two main types of them. The first one is the stationary type which an example 

of those is shown in Figure 2.6 (a). Regarding this type, there is a stationary discontinuity from 

which characteristics emanating, i.e. the shock wave is creating information in the domain. 

This category of solutions is not physical because the entropy of the system is decreasing. In 

other words, the dissipation of the shock wave is negative. The other type which is a unique 

solution, as indicated in Figure 2.6 (b), is what is called expansion fan. This solution is a 

moving one which means after a while the steep slope of the discontinuity, which is infinite at 

the initial time, starts to flatten out. This one is the only physical solution to this problem 

because, despite the stationary solutions, the expansion fan conserves the entropy in the system. 

So, the limiter of the Riemann solvers is what is called the entropy condition. Analyzing the 

entropy of a possible solution is the criterion that determines whether a solution is physical or 

non-physical [20], [21]. 

 
(a) 

 
(b) 

Figure 2.6: Characteristic lines of (a) Non-physical and (b) Physical solutions of the Burger equation with the 

initial conditions shown in Figure 2.5 

One of the earliest numerical approaches for dealing with this problem was the entropy 

satisfying first-order Godunov numerical flux which guaranteed to have a physical solution. 

The Godunov scheme is basically a linear piecewise flux function. Based on that, for example 

for solving the Burgers equation mentioned above, the condition around the discontinuity is 

divided into 4 general cases for reconstructing the flux at the interface [20]: 

                    

{
 
 

 
 
𝑢𝐿 ≥ 0 , 𝑢𝑅 ≥ 0 ∶     𝑓𝑖+1/2 = 𝑓(𝑢𝐿)

𝑢𝐿 < 0 , 𝑢𝑅 < 0 ∶     𝑓𝑖+1/2 = 𝑓(𝑢𝑅)

𝑢𝐿 < 0 , 𝑢𝑅 ≥ 0 ∶     𝑓𝑖+1/2 = 0

𝑢𝐿 ≥ 0 , 𝑢𝑅 < 0 ∶    {
𝑢𝐿 + 𝑢𝑅 ≥ 0 ∶      𝑓𝑖+1/2 = 𝑓(𝑢𝐿)

𝑢𝐿 + 𝑢𝑅 < 0 ∶      𝑓𝑖+1/2 = 𝑓(𝑢𝑅)

 (2.5) 

2.4 Relevant Riemann Solvers to This Project 

During the past century and even still today, many efforts have been made to propose methods 

for solving the Riemann problem. In the following, some of these methods which are relevant 

to this project will be studied. 



2 CFD Background 

23 

2.4.1 The TVD Schemes 

Numerical schemes that use the total variation diminishing (TVD) capability are called TVD 

schemes. The TVD property of these schemes assures the numerical solution of avoiding 

spurious oscillations near the sharp discontinuities with preserving monotonicity. And this is 

achieved by diminishing the total variation of the conserved variable(s). Again if the Burgers 

equation is considered as an example, the total variation of 𝑢 will be defined as Equation (2.6) 

[22], [23]. 

 𝑇𝑉(𝑢(𝑡)) =∑|𝑢𝑖+1(𝑡) − 𝑢𝑖(𝑡)|

𝑖

 (2.6) 

Regarding the TVD method, this total variation of the solution must not increase: 

 
𝑇𝑉(𝑢(𝑡 + ∆𝑡)) ≤ 𝑇𝑉(𝑢(𝑡)) (2.7) 

In Equation (2.7), ∆𝑡 is a time step of the time discretization. It is proved that the TVD 

capability and monotonicity preserving are corresponding to each other. Monotonicity 

preserving of a numerical scheme means that if 𝑢(𝑡) is a monotonic function of space, then 

𝑢(𝑡 + ∆𝑡) will follow the same behavior [21], [23]. The Riemann solvers that will be discussed 

in the following are TVD schemes. 

2.4.2 The FLIC Scheme 

The Flux-Limiter Centered (FLIC) scheme, which will be used in the USN1_FLIC code 

simulation in the next chapter for coping with the Riemann problem, is a TVD second-order 

scheme introduced by Eleuterio F. Toro in 1999. It is a combination of “the 1st order accurate 

FORCE scheme and the 2nd order Richtmyer version of the Lax-Wendroff scheme”. In this 

method, it is tried to calculate the interface fluxes (𝑓𝑖+1/2) based on an equation in which the 

order of approximation can be changed according to the smoothness of the flow; For the regions 

with sharp discontinuities the order of the scheme will be one, while for the smooth regions it 

will tend to two [22]. This modifying is done by what is called flux limiter (∅). Flux limiters 

are calculated with different methods based on the gradients of the flow, and their responsibility 

is to make sure that the slopes of the piecewise approximations do not exceed a certain limit to 

secure the TVD solution. 

2.4.3 The MUSCL Scheme 

The Monotone Upstream–centered Scheme for Conservation Laws, or briefly the MUSCL 

scheme, which is also known as the Variable Extrapolation approach, was first introduced by 

Bram van Leer in 1979. The main idea behind that was to change the piecewise constant 

approximation of the first-order Godunov scheme by extrapolating the solutions at the 

interfaces to achieve a higher order of accuracy. Among the MUSCL schemes, there are several 

different ways for that extrapolation [21], [24]. In this thesis, the Kurganov and Tadmor central 

MUSCL schemes are those which will be used in the OpenFOAM simulation in Chapter 5. 

 

1 University of South-Eastern Norway 
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In this method, first the right and left extrapolated solutions at the interfaces (𝑢𝑗∓1/2
𝑅  and 𝑢𝑗∓1/2

𝐿  

in Figure 2.7 on the next page) will be calculated based on the averaged cell solutions (�̅�𝑖) and 

flux limiters. After that these extrapolated values will be put in a pair of equations to calculate 

the interface fluxes. These equations are a function of extrapolated solutions and the 

characteristic speeds at the interfaces (𝑎𝑖∓1/2) which will be used in conservation equations 

like Equation (2.4) [24]. 

 
Figure 2.7: Piecewise linear extrapolation of solutions in a MUSCL scheme [24] 
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3 USN-FLIC Code Simulations 
This chapter is about the USN-FLIC code and the procedure that has been undergone to 

simulate the defined scenario with it. In the beginning, the CFD theory of the code will be 

briefly investigated and after clarifying the simulations’ settings, the results and the required 

next steps will be discussed. 

3.1 The Code Properties and Governing Equations 

The USN-FLIC code, initially, was written in MATLAB to simulate gas explosions by using 

the discussed numerical FLIC scheme. The original code includes a combustion model in 

which a combined total reaction rate is used. This total reaction rate is the maximum reaction 

rate from chemical kinetics and from the mixing rate (turbulent combustion rates). And 

actually, it shows which reaction rate is dominant in each stage of the explosion [22]. The code 

can also perform the simulation in cylindrical coordinates. But the provided version of the 

USN-FLIC code for this project can only simulate two-dimensional CFD problems in a 

Cartesian coordinate without considering the heat releasing reaction. Thus, in fact, the provided 

code just studies the first step of the chemical reaction in which the reactants react to radicals 

without any heat release. 

The main steps of the utilized USN-FLIC code are as follows: 

1. Setting the initial conditions 

2. Creating the geometry of the computational domain 

3. Calculating the domain properties in a for-loop for a desired number of iterations 

3.1. Calculating the time step based on the Courant-Friedrich-Levi (CFL) number equal to 

0.1 for the first loop and 0.9 for others (according to the CFL number criterion, no wave 

should travel more than the characteristic length of a control volume) 

3.2. Calculating the induction time 𝜏 for a stoichiometric hydrogen-air mixture based on the 

following equation: 

𝜏 = 𝐴𝛼 (
𝑇

𝑝
) e

[−𝐵𝛼+
𝐶𝛼
𝑇 +𝐷𝛼(

𝑝
𝑝𝑎𝑡𝑚

)
2
𝑒
(
𝐸𝑎𝛼
𝑇 )

]
 3.1) 

For 𝐴𝛼 = 6.2335𝑒 + 10 [
𝑃𝑎

𝐾
. 𝑠], 𝐵𝛼 = 35.1715, 𝐶𝛼 = 8530.6 [𝐾], 𝐷𝛼 = 7.22𝑒 − 11, 

𝐸𝑎𝛼 = 21205 [𝐾]. 

3.3. Calculating 𝛼 based on the following equation. This variable shows the stage of the gas 

explosion. As it tends to 1the two-step combustion model shift from the radical 

production step to the heat release step: 

𝛼 = ∫1/𝜏 𝑑𝑡 (3.2) 

3.4. Calculating the density and the hydrogen-air laminar burning velocity for a 

stoichiometric mixture at a constant pressure based on the following equation: 

𝑆𝐿 = 2.38 (1 + 1.54 log10 (
𝑝

𝑝0
)) (

𝑇

𝑇0
)
0.43

 (3.3) 

For 𝑝0 = 𝑝, and 𝑇0 = 291 [𝐾]. 
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3.5. Calculating the hydrogen-air turbulent burning velocity based on the computed laminar 

burning velocity as: 

𝑆𝑇 = 𝑆𝐿 (1 + 𝐴
√𝑅𝑒 ∙ 𝑃𝑟

𝐷𝑎0.25
) (3.4) 

For 𝐴 = 0.52, Reynolds number 𝑅𝑒 =
𝑢′∙𝑙

𝜈
, Prandtl number 𝑃𝑟 =

𝜈

𝜅
, and Dahmkohler 

number 𝐷𝑎 =
𝛿

𝑢′∙𝜏𝑐
. 

3.6. Solving the conservation equations by applying the FLIC scheme on the y-direction 

variables’ discretizations and updating all variables (conservation equations will be 

discussed in the next chapter) 

3.7. Returning the value of the variables at “wall” boundaries to the initial settings 

3.8. Again, calculating the turbulent burning velocity 

3.9. Applying the FLIC scheme this time on the x-direction variables’ discretizations and 

updating all variables 

3.10. Repeating step 3.7 

The algorithm chart of the original USN-FLIC code is given in Appendix C. Furthermore, it is 

important to notice that the utilized equation of state in steps 3.6, and 3.9 to model the internal 

energy is the ideal gas law. But in the original USN-FLIC code, in order to simulate the higher 

temperatures more accurately, this equation is used along with applying variable 𝛾 = 𝑐𝑝/𝑐𝑣 

value. For this purpose, the heat capacities are calculated based on temperature-dependent 

polynomial functions. 

3.2 Simulation Setup 

3.2.1 Geometry and Boundary Conditions 

The geometry of this study, basically, was created according to the geometry of available 

apparatus in the combustion laboratory at USN to make further experimental investigations 

possible. The available system is a channel with a length, width, and height of 300, 10, and 

10 𝑐𝑚, respectively, and a set of nozzles with different diameters. Based on the mesh 

independence test, which will be discussed in the next section, the grid resolution for simulating 

(2D) the defined scenario should be at least 100 𝜇𝑚. Creating a mesh with the specified 

dimensions and grid resolution will generate 30,000,000 cells that its analysis is beyond the 

power of the provided computational system. On the other hand, the utilized USN-FLIC code 

was not able to use the axisymmetric boundary condition to facilitate having a large geometry. 

As the result of all these, a two-dimensional, semi-confined channel with the half size of the 

experimental one (150 × 5 𝑐𝑚2) was chosen to simulate the case. The hydrogen reservoir 

boundary starts from the beginning of the channel up to 75 𝑐𝑚 with a nozzle diameter of 

0.15 𝑐𝑚. The reason behind this long reservoir selection was to reduce the initial pressure 

gradient at the output of the reservoir to avoid solver divergence. Moreover, the desired 

obstacle was created as a plane wall with a 2.5 𝑐𝑚 height. The initial distance between the 

nozzle output and the obstacle was set to be 4 𝑐𝑚. The plan was to alter this distance to observe 
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the effect of that on the maximum temperature of the hydrogen-air mixture, although due to 

the results of the initial setup simulation, which will be given at the end of this chapter, this 

idea was given up. The schematic of the geometry is shown in Figure 3.1. 

 
Figure 3.1: Sketch of the created geometry for USN-FLIC code simulation 

3.2.2 Mesh 

As it was mentioned in the literature review section, a wide range of grid resolution from 

hundreds to tens of microns has been used for different numerical schemes and different goals. 

So, to find a proper mesh size without having experimental data for comparison, the best 

approach would be the mesh independence test. According to this method, some parameters 

from the results of the same simulations with different grid resolutions will be compared to 

each other to find a trend in which these parameters’ values tend to specific numbers. This 

trend and the mesh size corresponding to these specific numbers determine the proper grid 

resolution for that solver and case. As common choices, usually the inlet and outlet velocity 

and pressure profiles along with the average of them are considered.  In this study, in addition 

to the mentioned parameters the particle tracking function, which was written by the author for 

further studies of the USN_FLIC code, will also be used for this test.  The core section of the 

particle tracking code is given in  Appendix D. 

The mesh independence test results are as follows: 

 
(a) 

 
(b) 

Figure 3.2: (a) Outlet velocity profile (b) Outlet averaged velocity for different grid resolutions from 50 𝜇𝑚 up 

to 750 𝜇𝑚 
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(a) 

 
(b) 

Figure 3.3: (a) Inlet pressure profile (b) Inlet averaged pressure for different grid resolutions from 50 𝜇𝑚 up to 

750 𝜇𝑚 
 

 
Figure 3.4: The path lines of a specific particle in different grid resolutions from 50 𝜇𝑚 up to 750 𝜇𝑚 

 

As can be seen in Figure 3.2, by increasing the grid resolution over 500 𝜇𝑚 the outlet velocity 

has experienced a severe drop, however for higher resolutions the average outlet velocity 

values are approximately the same. On the other hand, for the inlet pressure shown in Figure 

3.3, the averages have more fluctuated, although it can be detected that the inlet pressure 

profiles are divided into two main groups. First, the pressures of the 50, 100, and 125 𝜇𝑚 

resolutions. Second, the pressures of the 250, 500, and 750 𝜇𝑚 resolutions. Furthermore, if 

the path lines of the specific particle at the inlet in Figure 3.4 are considered, it can be seen that 

the path lines of the 100, and 125 𝜇𝑚 are almost overlapped. With respect to all these, and 

other parameters’ diagrams which are not brought in here (like inlet velocity or outlet pressure, 

or even density profile), the 100 𝜇𝑚 grid resolution was chosen for the USN-FLIC code 

simulation. As the result, the total number of cells for a mesh with 𝑑𝑥 = 𝑑𝑦 = 1𝑒 − 04 will be 

almost 15000 × 500 which is 7,500,000. 
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3.2.3 Initial Conditions 

The initial conditions that should be determined for this simulation are tabulated below. The 

initial density of the hydrogen reservoir is set based on the ideal gas law for initial pressure 

𝑝𝐻2 = 70 [𝑀𝑃𝑎], and initial temperature 𝑇𝐻2 = 291 [𝐾]. The reason for this choice is that the 

code is using the ideal gas equation of state. Therefore, using the real-gas density (40 𝑘𝑔/𝑚3) 
at this pressure and temperature is interpreted a higher temperature by the solver. However, it 

is worth mentioning that another simulation based on the real density of hydrogen at this 

pressure and temperature (𝑟𝐻2 = 40 [𝑘𝑔 𝑚
3⁄ ]) was done, and the maximum temperature of this 

case was relatively 500 𝐾 higher than the main case (just for more illustration the flow 

properties’ diagrams at the same time as Figure 3.6 is given at the end of this chapter in Figure 

3.10). 
Table 3.1: Initial conditions of the USN-FLIC code simulation 

Air molecular 

weight [𝒌𝒈/𝒌𝒎𝒐𝒍] 
𝒎𝒘 29e-03 

Burned molecular 

weight [𝒌𝒈/𝒌𝒎𝒐𝒍] 
𝒎𝒘𝒃 29e-03 

Ambient initial 

pressure [𝑷𝒂]  
𝒑𝟎 1e+05 

Hydrogen 

reservoir initial 

pressure [𝑷𝒂] 

𝒑𝑯𝟐 700e+05 

Ambient initial 

temperature [𝑲] 
𝑻𝟎 291 

Hydrogen 

reservoir initial 

mass fraction 

𝒇𝑯𝟐 1 

Ambient initial 

density [𝒌𝒈/𝒎𝟑] 
𝒓𝟎 

𝑝0 ∙ 𝑚𝑤
8.314 𝑇0

 

Hydrogen 

reservoir initial 

density [𝒌𝒈/𝒎𝟑] 

𝒓𝑯𝟐 57.86 

Initial velocities 

[𝒎/𝒔] 
𝒖𝒙, 𝒖𝒚 0 

Heat capacity 

ratios 

𝜸𝒂𝒊𝒓, 𝜸𝑯𝟐 ,  

𝜸𝒃𝒖𝒓𝒏, 𝜸𝒖𝒏𝒃𝒖𝒓𝒏 
1.4 

3.3 Simulation Results and Discussion 

The temperature contours can be made from the simulation results (pressure, density, and 

hydrogen mass fraction) by using the following equation which is derived based on the ideal 

gas law: 

 
𝑇 =

𝑝

𝑅 ∙ 𝜌
(

1

𝑓𝐻2
𝑚𝑤𝐻2

+
1 − 𝑓𝐻2
𝑚𝑤𝐴𝑖𝑟

) 
(3.5) 

In this equation, 𝑝 and 𝜌 are the pressure and density of a cell (mixture), and 𝑅 =

8.314 [𝑘𝐽 (𝑘𝑚𝑜𝑙 ∙ 𝐾)⁄ ] is the universal gas constant. Hydrogen and air molecular weight are 

equal to 2𝑒 − 03 [𝑘𝑔/𝑘𝑚𝑜𝑙], and 29𝑒 − 03 [𝑘𝑔/𝑘𝑚𝑜𝑙], respectively. 

As demonstrated in Figure 3.5, the temperature of the simulation reaches its maximum at 𝑡 =

8.1269𝑒 − 05 [𝑠] and this has happened only in one cell which is determined by a red circle 

in this figure. Not only the value of this temperature is doubtful since such a high temperature 

(> 5000 [𝐾]) was not recorded in the previous studies, but also how this happened is not 

acceptable. At this time, the temperatures of only 5 cells are above 2500 [𝐾]. 
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Figure 3.5: Temperature contour of the simulation at 𝑡 = 8.1269𝑒 − 05 [𝑠] 

 

If such these discontinuities are neglected and just the general trend of the flow is considered, 

it can be stated that the highest temperatures have happened several times in the order of 

4000 𝐾 and at the interactions between the shock waves and wall boundaries including the 

plane wall obstacle, the ceil of the channel, and the reservoir wall. An example of this 

phenomenon is illustrated in Figure 3.6. The highest temperature region is highlighted by a red 

circle in the temperature diagram, although this region is not important by itself because it can 

be seen that the corresponding area in the mass fraction diagram is pure air. So, there would 

not be any hydrogen spontaneous ignition hazard. However, this highest temperature can be 

considered as a criterion of shock waves intensity. 

 
Figure 3.6: Flow properties of the simulation at 𝑡 = 1.4958𝑒 − 03 [𝑠] 

 

The regions of interest in this project are those in which the hydrogen content of the mixture is 

in the range of hydrogen flammability and the temperature is higher than the hydrogen auto-

ignition temperature. As a rough approximation, if a threshold is applied to the temperature 

and pressure contours for 𝑇 > 858 [𝐾], and 0.05 < 𝑥𝐻2 < 0.75, then the regions of interest 

are achieved (these numbers are based on the section 1.1 discussion). The volumetric hydrogen 

concentration is calculated based on Equation (3.6) which is derived from combining the mole 



3 USN-FLIC Code Simulations 

31 

fraction and mass fraction equations and based on the fact that the molar and volumetric 

concentrations are corresponding to each other in the case of ideal gases. 

 
𝑥𝐻2 =

1

1 + ((
1
𝑓
− 1)

𝑚𝑤𝐻2
𝑚𝑤𝐴𝑖𝑟

)

 
(3.6) 

As can be observed in Figure 3.7, these regions which are almost located near the wall 

boundaries, have a pressure range of 1 to 75 𝑏𝑎𝑟, and a temperature range of 858 to 2400 [𝐾]. 
Even with raising the threshold, for example to 0.1 < 𝑥𝐻2 < 0.4, still these regions persist with 

almost the same temperature and pressure ranges, although their thickness is reduced. Just as 

an example among the main three regions of Figure 3.7, a random cell located inside the red 

circle is picked. The flow properties at this point are 𝑇 = 1347 [𝐾], 𝑝 ≈ 34 [𝑏𝑎𝑟], and 𝑥𝐻2 ≈

19.36 [%]. If these conditions are set as the initial conditions of a zero-dimensional kinetics 

simulation in the Cantera toolbox, as shown in Figure 3.8, such a hydrogen-air mixture only 

needs 12 𝜇𝑠 to ignite. And it is worth knowing that according to the USN-FLIC code simulation 

and the velocity of the flow at this spot and this time, the mixture has such induction time. 

Therefore, based on this simulation, even if the ignition does not happen or is blown away at 

the beginning of the high-pressure hydrogen release, there will be regions in the domain after 

a while, mainly near wall boundaries, which satisfy the initial conditions for a hydrogen 

spontaneous ignition. And it should be mentioned that this kind of self-ignition will be much 

more catastrophic than the initial ones, discussed in section 1.2. Because the mixture cloud in 

this scenario is expanded much further and as the result, there is more combustible mixture in 

the domain. 

 
Figure 3.7: The regions of interest with temperatures higher than 858 [𝐾], and hydrogen concentration between 

5% and 75% at 𝑡 = 1.4958𝑒 − 04 [𝑠] 
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Figure 3.8: Cantera zero-dimensional kinetics simulation results of hydrogen-air combustion with initial 

conditions of 𝑇0 = 1347 [𝐾], 𝑝0 = 34.076𝑒 + 05 [𝑃𝑎], and 𝑥𝐻2 = 19.357 [% 𝑖𝑛 𝑎𝑖𝑟] 
 

In addition to this scenario, as the flow propagates along the channel, it seems that there are 

regions in which air is trapped among the hydrogen cloud. At first glance, these areas seem to 

be potentially dangerous, but after calculating hydrogen concentrations for these regions, as 

demonstrated in Figure 3.9, the hydrogen content at these spots is much higher than the upper 

hydrogen flammability limit which makes them safe, at least in the investigated computational 

domain. 

 
Figure 3.9: Potentially hazardous regions in a developed flow in the channel at 𝑡 = 4.7604𝑒 − 04 [𝑠] 

 

Despite all the discussions in this section, as mentioned in the beginning the results of the USN-

FLIC code simulation seem to be overestimated. In order to make sure that the simulated 

temperature contours are showing values noticeably higher than the real case, validation with 

the shock-tube problem has been carried out for this method that its results will be exceptionally 

given in the next chapter because first, explanations about the utilized rigorous thermodynamic 
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models and the Helmholtz function should be given, the shock-tube problem can be discussed. 

Along with this validation, for the sake of having more data to compare and evaluating the 

results of the discussed method, it is tried to simulate the same scenario by using an open-

source C++ toolbox, called Open-source Field Operation and Manipulation (OpenFOAM) 

which is a CFD software. The results and discussions about this attempt will be presented in 

the next chapter. 

 
Figure 3.10: Flow properties of the simulation at 𝑡 = 1.4917𝑒 − 03 [𝑠], as a comparison to Figure 3.6



4 OpenFOAM Simulations 

34 

4 OpenFOAM Simulations 
This chapter is about what was done to enable OpenFOAM to simulate high-pressure hydrogen 

leakage into the air. The first half of this chapter is about the OpenFOAM solvers and 

thermophysical models including their constraints and governing equations, in addition to the 

reasons behind choosing the utilized solver. The second half is about the simulation results and 

their validation. 

 

4.1 Solver Selection 

There are several criteria for choosing a proper solver to simulate the desired scenario in 

OpenFOAM which is tried to categorize in the following subsections. For understanding the 

below discussion, in the beginning, it is important to note what equations exactly are going to 

be solved by the solver and these equations contain what mathematical terms. Generally, the 

equations solved in all CFD simulations are so-called the Navier–Stokes equations. This set of 

equations are in fact in the form of conservation equations discussed in Chapter 2. They are 

mainly 4 transport equations for mass, velocity, and energy. But in the case of having a 

compressible flow (variable density), an extra equation for relating the density to the 

temperature and pressure must be considered. The general form of these transport equations 

for a specific property of the flow (𝜙) can be written as Equation (4.1). In this equation Γ𝜙 is 

the diffusion coefficient of 𝜙 which will be viscosity (𝜇) in terms of momentum conservation 

equations and thermal conductivity (𝑘) in terms of energy conservation equation. In addition 

to these 5 equations (4 transport equations + 1 equation of state), in order to deal with the flow 

fluctuations (turbulence), the so-called Reynolds decomposition equations will also be 

considered which will be more explained in the turbulence model section [25]. 

𝜕(𝜌𝜙)

𝜕𝑡⏟  
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝜙 
𝑖𝑛 𝑓𝑙𝑢𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 
(𝑻𝒓𝒂𝒏𝒔𝒊𝒆𝒏𝒕 𝒕𝒆𝒓𝒎)

+ �⃑⃑� ∙ ∇(𝜌𝜙)⏟      
𝑁𝑒𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑓𝑙𝑜𝑤 𝑜𝑓 𝜙 
𝑜𝑢𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 
(𝑪𝒐𝒏𝒗𝒆𝒄𝒕𝒊𝒐𝒏 𝒕𝒆𝒓𝒎)

= ∇ ∙ (Γ𝜙∇𝜙)⏟      
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝜙 
𝑑𝑢𝑒 𝑡𝑜 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 
(𝒅𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 𝒕𝒆𝒓𝒎)

+ 𝑆𝜙⏟
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝜙 
𝑑𝑢𝑒 𝑡𝑜 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 
(𝑺𝒐𝒖𝒓𝒄𝒆 𝒕𝒆𝒓𝒎)

 

(4.1) 

Each solver in a CFD code makes its specific assumptions and utilizes special numerical 

schemes to manage each term of these equations. But this procedure is a compromise between 

the importance of these terms. Therefore, concerning having a stable and accurate solution in 

a specific case, according to the flow conditions a particular kind of solver should be chosen to 

emphasize particular aspects of the flow. 

4.1.1 Large gradients and Mass Convection 

First and foremost, as discussed in the previous chapters, the dominant phenomenon in this 

simulation is shock waves. Therefore, not only there will be sharp discontinuities in the flow, 

but also in a comparison between the convection and diffusion terms of conservation equations, 

the former one prevails which can be proved by calculating the Peclet number. Regarding the 

shock waves, it is known that at least there are regions in the hydrogen flow in which the flow 
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velocity is equal or greater than the speed of sound. So, as a rough estimate to compute the 

minimum Peclet number of the flow based on Equation (4.2), the velocity (𝑢) can be set as the 

speed of sound in hydrogen (at 1 𝑎𝑡𝑚, and 300 𝐾) which is around 1319 𝑚/𝑠, the 

characteristic length (𝐿) can be set as the grid resolution which is considered similar to the 

previous chapter 1𝑒 − 04 𝑚, and finally the mass diffusion coefficient (𝐷) should be set to 

6.1𝑒 − 05 𝑚2/𝑠 for hydrogen [26], [27]. Based on these values the Peclet number of the flow 

will be at least equal to 2162.3 which is much greater than zero.   

 𝑃𝑒 =
𝐿. 𝑢

𝐷
 (4.2) 

As a result of all these, the desired solver in addition to sharp discontinuities should also be 

able to handle the dominant convection term. In other words, in the best case for dealing with 

both issues, this solver should contain a Riemann scheme to solve the convective fluxes. 

4.1.2 Compressibility 

Hydrogen at low pressures like most gases behaves as an ideal gas, however, in this project, 

the pressure of the hydrogen reservoir is 70 𝑀𝑃𝑎. Thus, it is important to check whether the 

effect of compressibility is significant or not. For this purpose, usually, a parameter called 

compressibility factor (𝑍) is defined based on the following equation for gasses [28]. 

 
𝑍 =

𝑝 ∙ 𝑉

𝑛 ∙ 𝑅 ∙ 𝑇
=

𝑝

𝜌 ∙ (
𝑅
𝑀𝑊

) ∙ 𝑇
 

(4.3) 

In this equation, pressure (𝑝 [𝑃𝑎]), temperature (𝑇 [𝐾]), and density (𝜌 [𝑘𝑔/𝑚3]) are 

properties of the real gas, 𝑅 = 8.314 [𝑘𝐽 (𝑘𝑚𝑜𝑙. 𝐾)]⁄  is the universal gas constant, and 

𝑀𝑊 [𝑘𝑔/𝑘𝑚𝑜𝑙] is the molecular weight of the gas. Considering this equation, the hydrogen 

compressibility factor in various pressures and temperatures is shown in Figure 4.1. As the 

pressure goes up to 70 𝑀𝑃𝑎, the compressibility factor at 300 𝐾 tends to 1.46. 

 
Figure 4.1: Hydrogen compressibility factor in various pressures and temperatures [28] 

In order to make it clear how much error will be produced by using the ideal-gas EOS1 and 

neglecting the effect of the compressibility factor, a comparison has been made between the 

 

1 Equation of state 
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calculated density by the ideal-gas law and the real (actual) density of hydrogen. As illustrated 

in Figure 4.2 by yellow dots, when the pressure goes up to 70 𝑀𝑃𝑎 (at 300 𝐾), as it is expected 

based on the discussed compressibility factor, density will be calculated with almost 50% error 

by the ideal-gas law while a more accurate EOS like Abel-Nobel can compute this value with 

only 1% error. For hydrogen, the Abel-Nobel EOS is a better model for pressures less than 

200 𝑀𝑃𝑎 and temperatures higher than 150 𝐾 [29]. 

With respect to this discussion, the desired solver in addition to the previously mentioned 

features should also be able to consider compressibility. 
 

 

(a) 

 

(b) 

Figure 4.2: Relative density error in various pressures and temperatures for (a) ideal-gas EOS (b) Abel-Nobel 

EOS [29] 

4.1.3 Multi-Component Mixtures 

For simulating the intended scenario, the desired solver should be able to deal with multi-

component mixtures in which the concentration of each component is variable. As the result, 

the only option of OpenFOAM for considering such cases is what is called reactingMixture. 

Since in other types of mixtures implemented in OF1 like pureMixture, the concentrations of 

components are constant. Consequently, the desired solver has to solve the species transport 

equations, which enables the solver to also study the chemical kinetics in the simulation, if 

necessary. 

Furthermore, it is necessary to add that regarding the wide temperature range of this problem 

(extremely low temperatures in the expanded-hydrogen regions and very high temperatures in 

the compressed-air regions) considering a multi-phase scenario in the simulation would be a 

privilege to have more accurate results. But due to the complexity of this problem, this topic is 

neglected in this project. 

4.1.4 Final Decision 

Based on all these discussions, the best available, built-in solvers in OpenFOAM v.7 for this 

case are rhoCentralFoam and rhoPimpleFoam. Between these two, the former one is much 

 

1 OpenFOAM 
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more suitable for this project. Because rhoCentralFoam exclusively deals with the convective 

fluxes based on the Kurganov and Tadmor schemes which were discussed in Section 2.4.3. But 

unfortunately, neither of them can handle the mentioned reactingMixture. So, in fact, neither 

of them can be utilized for simulating this scenario. The possible approaches to encounter this 

problem were to either write an original solver by the author or search and find a properly 

developed solver by others and make it suitable for this specific scenario. With respect to the 

existing constraints, the second approach was chosen. 

4.2 Discovered Solvers and The Properties of the Chosen One 

According to OF being an open-source CFD code, in general1, there are several related 

developed solvers that can be found on the internet. A shortlist of them is given below: 

• rhoReactingCentralFoam [30] 

• hybridCentralSolvers [31] 

• pisoCentralFoam [32] 

• AeroFoam [33] 

• hyStrath [34] 

There were also other solvers, but due to lack of proper citation, they have not been listed here. 

Among these solvers, considering being matched with OF v.7 2 as well as being suitable for 

simulating most aspects of the desired scenario, the rhoReactingCentralFoam was chosen. This 

solver was initially implemented to capture hydrogen detonation and basically, it is a 

straightforward combination of rhoCentralFoam and reactingFoam solvers to gain benefits 

from both of them, the central upwind scheme from rhoCentralFoam, and the chemical kinetics 

from reactingFoam. Although this solver was the most recent one in the above shortlist and 

had the least problems during compilation and also needed the least adjustments to become 

generally appropriate, it has almost all the features that are needed to simulate the intended 

case except alowing to use a non-ideal equation of state. So, to cope with this problem, a new 

thermophysical model had to be implemented in OF which will be discussed later in Section 4. 

In the following, the main procedure carried out by this solver will be described. 

4.2.1 rhoReactingCentralFoam Governing Equations 

In rhoReactingCentralFoam solver, in each iteration after calculating the surface properties 

based on the primitive fields data, the following steps will be taken. It should be mentioned 

that in the following equations the subscripts 𝑖, 𝑗, and 𝑘 are showing a vector component along 

the 𝑖, 𝑗, and 𝑘 directions. However, the 𝐼, and 𝑉 subscripts are abbreviations for inviscid and 

viscous [35]. 

1. Solving mass conservation equations to provide a new value for density (𝜌). This equation 

will be solved based on the velocity of the previous time step. 
 

 
𝜕𝜌

𝜕𝑡
+
𝜕(𝑢𝑖𝜌)

𝜕𝑡
= 0 (4.4) 

 

1 Without considering the version of the utilized OpenFOAM. 

2 Having less trouble in compilation compare to the other solvers. 
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2. Solving momentum conservation equations to provide new values for the velocities (𝑢𝑖). 
This step will be done in two sections: 

2.1. Solving the inviscid momentum equation and updating the velocities values (𝑢𝑖) based 

on the updated density value from the previous step. 
 

 (
𝜕(𝜌𝑢𝑖)

𝜕𝑡
)
𝐼

+
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
+
𝜕𝑝

𝜕𝑥𝑖
= 0 (4.5) 

2.2. In the case of having a viscous flow, solving the diffusion correction equation based 

on the calculated velocities in the previous inviscid section (𝑢𝑖
𝐼) to find new values. 

 

 (
𝜕(𝜌𝑢𝑖)

𝜕𝑡
)
𝑉

−
𝜕

𝜕𝑥𝑗
(𝜇
𝜕𝑢𝑖
𝜕𝑥𝑗
) −

𝜕

𝜕𝑥𝑗
𝜇 (
𝜕𝑢𝑗

𝐼

𝜕𝑥𝑖
−
2

3

𝜕𝑢𝑘
𝐼

𝜕𝑥𝑘
𝛿𝑖𝑗) = 0 (4.6) 

3. Solving species transport equations to provide new values for the concentrations of each of 

the components (𝑌𝑖). This step, however, will be done in one of the following ways: 

3.1. In the case of having an inviscid flow, solving the inviscid species equations based on 

the updated density and velocities and renew the concentrations. 𝑅𝑌𝑖is the reaction rate 

of the species 𝑖. 

 
𝜕(𝜌𝑌𝑖)

𝜕𝑡
+
𝜕(𝜌𝑢𝑗𝑌𝑗)

𝜕𝑥𝑗
− 𝑅𝑌𝑖 = 0 (4.7) 

3.2. In the case of having a viscous flow, the above transport equation will have an extra 

diffusion correction term to calculate new concentrations. 
 

 
𝜕(𝜌𝑌𝑖)

𝜕𝑡
+
𝜕(𝜌𝑢𝑗𝑌𝑗)

𝜕𝑥𝑗
− 𝑅𝑌𝑖 −

𝜕

𝜕𝑥𝑗
(𝜇
𝜕𝑌𝑖
𝜕𝑥𝑗
) = 0 (4.8) 

4. Finally, solving the energy conservation equation to find new values for temperature and 

pressure. This step, like step 2, will be done in two sections: 

4.1. Solving the inviscid energy equation based on the updated density and velocities to 

find a new value for the total energy (𝐸). 
 

 (
𝜕(𝜌𝐸)

𝜕𝑡
)
𝐼

−
𝜕

𝜕𝑥𝑘
(𝑢𝑘(𝜌𝐸 + 𝑝)) −

𝜕

𝜕𝑥𝑖
𝜇𝑢𝑗 (

𝜕𝑢𝑗
𝜕𝑥𝑖

+
𝜕𝑢𝑖
𝜕𝑥𝑗

−
2

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗) = 0 (4.9) 

Then calculating a new temperature based on the following equation and updated total 

energy. 

 𝑇 =
1

𝐶𝑣
(𝐸 −

𝑢𝑘
2

2
) (4.10) 

4.2. In the case of having a viscous flow, then a diffusion correction equation will be solved 

for the temperature to correct the value.   

 (
𝜕(𝜌𝐶𝑣𝑇)

𝜕𝑡
)
𝑉

−
𝜕

𝜕𝑥𝑘
(𝑘
𝜕𝑇

𝜕𝑥𝑘
) = 0 (4.11) 

At last, the pressure will be calculated based on the EOS and the updated temperature. 

The diffusion coefficients (𝜇 and 𝑘) also will be updated based on this temperature. 
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4.3 Implementation of a New Thermophysical Model 

As it was mentioned in the previous section, for the chosen solver there was no thermophysical 

model to deal with non-ideal equations of state. Therefore, it was necessary to implement a 

suitable one based on the requirements of this project. Thermophysical models in OF are 

packages of numerical schemes that deal with the energy, heat, and physical properties of the 

case. In each package the following thermophysical properties should be determined [36]: 

• Selecting the class of the thermophysical model which controls the type of the mixture, 

reaction, and compressibility (set under the keyword type) 

• Selecting the mixture model which specifies the mixture composition (set under the 

keyword mixture) 

• Selecting the transport model which evaluates the diffusion coefficients, i.e. dynamic 

viscosity, thermal conductivity, and thermal diffusivity (set under the keyword transport) 

• Selecting the thermodynamic model to determine how to evaluate the specific heat capacity 

of the constituents (set under the keyword thermo) 

• Specifying the composition of each constituent (set under the keyword specie) 

• Selecting the equation of state (set under the keyword equationOfState) 

• Selecting the form of energy that is going to be used in the solution, either internal energy 

or enthalpy (set under the keyword energy) 

Among the built-in equations of state, the most proper one for coping with the compressibility 

of this simulation is the Peng-Robinson EOS. Thus, a new thermophysical model including the 

Peng-Robinson EOS was implemented by adding required entries in the corresponding paths 

and recompiling the basic, reactionThermo, and specie libraries of the thermophysicalModels 

library. The mentioned steps are concisely described below [37]: 

1. Path: 
$(WM_PROJECT_USER_DIR)/src/reactionThermo/psiReactionThermo/ 
psiReactionThermos.C 

Entry: 
makeReactionThermos 

( 

    psiThermo, 

    psiReactionThermo, 

    hePsiThermo, 

    reactingMixture, 

    sutherlandTransport, 

    sensibleInternalEnergy, 

    janafThermo, 

    PengRobinsonGas, 

    specie 

); 
 

2. Path: 
$(WM_PROJECT_USER_DIR)/src/thermophysicalModels/specie/inclu

de/thermoPhysicsTypes.H 

Entry: 
typedef 
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sutherlandTransport 

< 

 species::thermo 

 < 

  janafThermo 

  < 

   PengRobinsonGas<specie> 

  >, 

  sensibleInternalEnergy 

 > 

> nonIdealGasEThermoPhysics; 
 

3. Path: 
$(WM_PROJECT_USER_DIR)/src/thermophysicalModels/specie/inclu

de/reactionTypes.H 

Entry: 
typedef Reaction<nonIdealGasEThermoPhysics> 

nonIdealGasEReaction; 
 

4. Path: 
$(WM_PROJECT_USER_DIR)/src/thermophysicalModels/specie/react

ion/reactions/makeReactions.C 

Entry: 
makeReactions(nonIdealGasEThermoPhysics, 

nonIdealGasEReaction) 
 

5. Path: 
$(WM_PROJECT_USER_DIR)/src/thermophysicalModels/reactionTher

mo/chemistryReaders/chemistryReader/makeChemistryReaders.C 

Entry: 
makeChemistryReader(nonIdealGasEThermoPhysics); 

makeChemistryReaderType(foamChemistryReader, 

nonIdealGasEThermoPhysics); 
 

By implementing this thermophysical model, now everything is ready to step forward and 

simulate the desired scenario by the chosen solver. 

4.4 Initial Simulations Setups 

In the initial steps, two main simulations were done with OF to compare the initial hydrogen 

flow rate of a two-dimensional simulation with a pseudo-three-dimensional one. The boundary 

and initial conditions, and all the setups were exactly the same between these two, but the 

differences were that the first simulation was an axisymmetric 2D-simulation, however, the 

second one was axisymmetric by using a wedge geometry, and also in the pseudo-3D-

simulation for simplicity (without giving away the main goal) the obstacle was eliminated from 

the domain. 
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4.4.1 Geometry and Boundary Conditions 

4.4.1.1 Two-Dimensional 

The general shape of the simulation geometry was again chosen based on the available 

experimental apparatus in the Combustion Laboratory. But this time, the axisymmetric option 

was available. So, the geometry was created by the blockMesh tool of OF in 𝑥 − 𝑦 plane with 

considering the entire bottom boundary as symmetryPlane. Also, it is worth mentioning that 

the dimension of the geometry in 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 was chosen based on the fact that the surface 

of the nozzle, which is a rectangular surface in this case, is equal to the 3D circular one. Thus, 

the 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 dimension was set to 2.3562 𝑚𝑚. All the other dimensions and boundary 

conditions in 𝑥 − 𝑦 plane are the same as the previous simulation, shown in Figure 3.1. 

 
Figure 4.3: Boundary names conditions of the initial 2D-simulation 

(Dimensions are not real) 

4.4.1.2 Pseudo-Three-Dimensional 

As mentioned above the differences between the geometry of 2D- and pseudo-3D-simulations 

were, firstly, in the pseudo-three-dimensional wedge geometry the front and back boundary 

conditions were set as wedge patches instead of empty patches set in 2D-simulation. And 

secondly, the obstacle was eliminated from the domain to have a simpler geometry. For more 

illustration, a schematic of such a geometry and boundary conditions is shown in Figure 4.4. 

 
Figure 4.4: Boundary conditions of a two-dimensional wegde geometry [36] 
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As it is pointed out in Figure 4.4, the small angle between wedge planes must be less than 5° 
to have an accurate solution. In this simulation, the angle was set to be 1° which due to the 

Courant numbers makes the simulation too much time-consuming. 

The detailed boundary conditions of the main flow properties are tabulated below. 

Table 4.1: Details of the boundary conditions 

Boundary 

Names 

Boundary 

types 

Boundary Conditions of the Flow Properties 

U [𝒎/𝒔] p [𝑷𝒂] T [𝑲] 
H2, O2, N2, 

Ydefault  

[mass fraction] 

Top wall noSlip zeroGradient zeroGradient zeroGradient 

Bottom 

symmetry

Plane 

( / empty) 

symmetry

Plane 

( / empty) 

symmetry 

Plane 

( / empty) 

symmetry 

Plane 

( / empty) 

symmetry 

Plane 

( / empty) 

H2Inlet patch 

pressureDi

rectedInlet

Velocity 

fixedValue fixedValue fixedValue 

AirInlet patch inletOutlet totalPressure inletOutlet inletOutlet 

Outlet patch inletOutlet totalPressure inletOutlet inletOutlet 

reservoirWall wall noSlip zeroGradient zeroGradient zeroGradient 

Obstacle wall noSlip zeroGradient zeroGradient zeroGradient 

frontAndBack 
empty 

( / wedge) 

empty 

( / wedge) 

empty 

( / wedge) 

empty 

( / wedge) 

empty 

( / wedge) 

 

4.4.2 Mesh 

The grid resolution of these simulations at the center of the domain1 was uniformly set, based 

on the mesh independence test of the USN-FLIC code simulation, to 100 𝜇𝑚. Although, by 

using the grading meshes the cell sizes at 𝐴𝑖𝑟𝐼𝑛𝑙𝑒𝑡 and 𝑂𝑢𝑡𝑙𝑒𝑡 boundaries reached 200 𝜇𝑚. 

The type of the entire mesh is a structured quadrilateral mesh or more precisely structured 

hexahedron; because OF even considers 2D-simulations as 3D with one cell in the third 

direction (in this case 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛), so there is no actual 2D-mesh. 

Due to the very high resolution of the mesh and wide range of dimensions, it is not practical to 

show the generated mesh here. However, the total number of cells in these cases is 4,819,750. 

 

1 Between the outlet of the reservoir and the obstacle. 
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4.4.3 Initial Conditions 

The most important part of this section is the usage of the setFields dictionary. If the pressure 

of the hydrogen outlet had been set to a fixed value equal to 70 𝑀𝑃𝑎, the solver would have 

encountered an extremely large pressure gradient at this point, from 70 𝑀𝑃𝑎 to 0.1 𝑀𝑝𝑎 

(ambient pressure). Which may lead to solver divergence due to the fixed value of the outlet. 

Therefore, as it was also mentioned in Chapter 3, in order to prevent this scenario, a long entry 

was considered for the hydrogen in which the initial conditions were set to be equal to the 

reservoir conditions. But in this case, since the domain properties of this part are not fixed, a 

backward propagation of the pressure wave can form to the hydrogen inlet which allows the 

large pressure gradient be smoothly damped. 

Setting the initial conditions of a specific region in the computational domain can be done by 

utilizing the setFields dictionary in OF. Base on this, as can be observed in Figure 4.5 for the 

pressure, the initial conditions of the entire domain except for the hydrogen entry were set as 

𝑝 = 1𝑒 + 05 [𝑃𝑎], 𝑇 = 291 [𝐾], 𝑈 = 0 [𝑚/𝑠], 𝐻2 = 0, 𝑂2 = 0.21, and 𝑁2 = 0.79. However, 

for the hydrogen entry, the initial conditions were set to 𝑝 = 7𝑒 + 07 [𝑃𝑎], 𝑇 = 291 [𝐾] , 𝑈 =
0 [𝑚/𝑠], 𝐻2 = 1, 𝑂2 = 0, and 𝑁2 = 0. 

It is strange to mention that in the case of using ASCII format for writing the data in this 

simulation, the setFields dictionary will not perform properly at the explained initial conditions 

will not be generated. The reason behind this may be a large number of cells in the generated 

mesh. To avoid this problem the Binary format should be utilized. 

 
Figure 4.5: Pressure initial condition at the center of the domain 

4.4.4 System Sub-Dictionaries 

The settings of the solver and numerical schemes are generally determined in the system library. 

From case to case the including files in this library will be different, but for these simulations, 

the following setups have been adjusted. The details of the sub-dictionaries are given in 

Appendix E. 

4.4.4.1 controlDict 

The so-called global parameters of the main solver are configured in the controlDict dictionary. 

As well as specifying some routines in this file, like the time step which is set to be adjustable, 

what in this case is special is the usage of acoustic Courant number in addition to the discussed 
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CFL for adjusting the time step. And by doing this, the time step will be controlled by the speed 

of shock waves. The values of the maximum acoustic Courant number (maxAcousticCo) and 

the maximum central Courant number (maxCo) are set based on the other studies including the 

Courant number tests done by McGough [38]. 

Furthermore, the post-processing functions which will be used to analyze the results should be 

implemented in this file. The one that is used in this project is the minMaxMagnitude function 

to find the value and the location of the maximum temperature in each iteration. 

4.4.5 fvSchemes 

The numerical schemes used for each term of the transport equations are set in the fvScheme 

dictionary. As discussed before, the characteristic of all the solvers in the rhoCentralFoam 

family is that they use central upwind schemes (Kurganov and Tadmor) to deal with the 

convective fluxes. In addition to this, what in this simulation is special is the usage of the 

vanLeer scheme for divergence schemes (except for the velocity and 𝜏𝑀𝐶) and interpolation 

schemes. The vanLeer scheme is a TVD flux limiting scheme like other schemes discussed in 

Section 2.4, but it uses different criteria for limiting the convective fluxes at the interfaces. 

In the end, it is good to mention that the divergence schemes are numerical schemes concerned 

about the advection term of the transport equations while the interpolation schemes are the 

numerical schemes used to interpolate the flow properties’ values at the interfaces by using the 

averaged values at the cell centers. 

4.4.6 fvSolution 

The solvers utilized for each of the flow properties, as well as the tolerances in solving each 

equation and the parameters of the main solver algorithm (like SIMPLE, PIMPLE, etc.) are 

determined in the fvSolution dictionary. The special case in this section is the usage of the 

Preconditioned Bi-conjugate Gradient Stabilized (PBiCGStab) solver for velocity and species 

equations. The reason behind this is to accelerate and smooth the convergence procedure. 

Besides, due to the very large pressure gradients at the beginning of the simulation, the 

relaxationFactors has to be used to avoid the Floating point exception error. This sub-

dictionary by controlling the value of under-relaxation factors for the equation of each flow 

property will help to stabilize the solution. 

4.4.6.1 decomposeParDict 

At last, for accelerating the simulation and using all power of the computer system, the 

decomposePar dictionary was used to divide the computational domain into several sections 

and solve the transport equations in each section individually by a specific core of the CPU. In 

these simulations, the domain was divided by the simple method into 16 sections to simulate 

the case in the parallel mode. 
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4.4.7 Constant Sub-Dictionaries 

The constant dictionary in general contains all the physical and chemical information that is 

needed to solve the transport equations. Its sub-dictionaries would be different from case to 

case. But in the original rhoReactingCentralFoam tutorial, the subdictionaries are as follows: 

4.4.7.1 chemistryProperties 

In the case of considering chemical reactions in the simulation, the type of the reactions as well 

as the utilized solver for them and tolerances will be determined in the chemistryProperties 

dictionary. But in the initial simulations of this project, in order to simplify the simulations and 

achieving faster results, this option was deactivated by setting the chemistry entry to off. 

4.4.7.2 combustionProperties 

As the name implies, in the case of having combustion in the simulation the combustion model 

and its corresponding coefficients will be set in the combustionProperties dictionary. But as 

explained above any chemical reaction in the initial simulations of this project was neglected. 

4.4.7.3 reactions 

In the reactions dictionary, every species included in the simulation as well as their composing 

elements should be defined. Besides, the chemical kinetics of every reaction which is to be 

considered in simulation should be defined in detail (specifying the pre-exponential factor, 

activation temperature, etc.) under the keyword entry reactions. 

Although, as discussed above, the chemical reactions are neglected in this step, to be able to 

have multi-component mixtures with variable concentrations of the components, the elements 

and species should be determined in this dictionary. In this stage of the project, the considered 

species are 𝐻2, 𝑂2, and 𝑁2 and consequently, the composing elements will be 𝐻, 𝑂, and 𝑁. 

4.4.7.4 thermophysicalProperties and thermo.compressibleGas 

The thermophysicalProperties dictionary mainly contains the thermophysical model of the 

simulation which was discussed in Section 4.3. Also, it specifies the inertSpecie, the 

chemistryReader, foamChemistryFile, and foamChemistryThermoFile. The foamChemistryFile 

is pointed to the location of the reactions dictionary and the foamChemistryThermoFile is 

pointed to the location of the thermo.compressibleGas dictionary. The latter dictionary 

contains the coefficients that are needed for the utilized thermophysical model as we as the 

chemical properties of components (elements and species). 

The thermophysical model used in these two initial simulations is the one that was implemented 

in Section 4.3. the details of this model are as follows: 

• type: The type of the class of this model was set to hePsiThermo which is for reacting 

mixtures based on the compressibility (𝜓 = (𝑅𝑇)−1).  

• mixture: The mixture type was set to reactingMixture; as it was discussed, this feature of 

the utilized solver was the main reason behind this choice.  

• transport: The transport model was selected as sutherland in which the dynamic viscosity 

of each component for temperature 𝑇 is calculated based on the following equation [36]: 



4 OpenFOAM Simulations 

46 

 
𝜇 =

𝐴𝑠√𝑇

1 + 𝑇𝑠/𝑇
 (4.12) 

In this equation, 𝐴𝑠 and 𝑇𝑠 are the so-called Sutherland coefficients that should be 

determined for each component in the thermo.compressibleGas dictionary. After this, the 

thermal conductivity will be calculated based on this dynamic viscosity (𝜇) and the specific 

heat capacity at constant volume (𝐶𝑣) as follows: 

 
𝑘 = 𝜇 ∙ 𝐶𝑣(𝑝, 𝑇) (1.32 +

1.77𝑅

𝐶𝑣(𝑝, 𝑇)
) (4.13) 

If necessary, the thermal diffusivity (𝛼) will also be computed based on this calculated 

thermal conductivity (𝑘) and the specific heat capacity at constant pressure (𝐶𝑝). 

• thermo: the thermodynamic model was selected to be janaf in which the specific heat 

capacity at constant pressure (𝐶𝑝) for temperature 𝑇 is calculated based on the following 

polynomial which is for the ideal-gas part of 𝐶𝑝 (the real gas part will be added to this value 

based on the chosen equation of state) [36]: 

 𝐶𝑝 = 𝑅 ∙ ((((𝑎4𝑇 + 𝑎3)𝑇 + 𝑎2)𝑇 + 𝑎1) 𝑇 + 𝑎0) (4.14) 

In this equation, the 𝑎𝑖 coefficients are the so-called janaf coefficients that should be defined 

in the thermo.compressibleGas dictionary along with two more coefficients 𝑎5 and 𝑎6 which 

will be used to calculate the enthalpy and entropy based on the following equations (same 

as above these equations calculate the ideal-gas part of each value and the real-gas part will 

be added to them based on the utilized equation of state): 

 
𝐻

𝑅𝑇
= ((((

𝑎4
5
𝑇 +

𝑎3
4
)𝑇 +

𝑎2
3
)𝑇 +

𝑎1
2
)𝑇 + 𝑎0)𝑇 + 𝑎5 (4.15) 

 𝑆

𝑅
= (((

𝑎4
4
𝑇 +

𝑎3
3
) 𝑇 +

𝑎2
2
)𝑇 + 𝑎1)𝑇 + 𝑎0 ln 𝑇 + 𝑎6 (4.16) 

There are two sets of janaf coefficients for each component, and each set corresponds to a 

specific range of temperature. Thus, it is needed to specify the limits of these intervals as 

𝑇𝑙𝑜𝑤, 𝑇𝑐𝑜𝑚𝑚𝑜𝑛, and 𝑇ℎ𝑖𝑔ℎ. 

• equationOfState: The EOS of this model was set to be PengRobinsonGas which calculates 

the density generally based on the following relation: 

 
𝜌 =

1

𝑧 ∙ 𝑅 ∙ 𝑇
𝑝 (4.17) 

In which the compressibility factor (𝑧) is considered. In order to enable the Peng-Robinson 

EOS to calculate the real-gas part of thermophysical properties (e.g. as mentioned above for 

heat capacity, enthalpy, and entropy), some coefficients should be determined for each 

component in the thermo.compressibleGas dictionary. These coefficients are critical 

temperature 𝑇 [𝐾], critical molar volume 𝑉𝑐  [𝑚
3/𝑘𝑚𝑜𝑙], critical compressibility factor 𝑍𝑐, 

critical pressure 𝑝𝑐  [𝑃𝑎], and acentric factor 𝜔 which are determined based on [39], for this 

project. 



4 OpenFOAM Simulations 

47 

• energy: The energy equation solution was set as sensibleInternalEnergy and the reason was 

that based on the other studies this option will produce a less numerical error in comparison 

to the sensible enthalpy option. 

The utilized values for the initial simulations as the Sutherland and Janaf coefficients as well as 

the critical properties needed for the Peng-Robinson equation of state are given in Appendix F. 

4.4.7.5 turbulenceProperties 

As mentioned in Section 4.1, for considering turbulence in the flow some extra equations need 

to be derived and used in order to solve the fluctuation terms. All in all, there are two main 

approaches implemented in OF, the Reynolds-Averaged Simulation (RAS) and the Large Eddy 

Simulation (LES) modelings. Each of them uses a different set of equations to capture the 

turbulence. 

In the turbulenceProperties dictionary, this approach should be chosen. The model that is used 

in this project is called kOmegaSST. Which is a turbulence model for dealing with high 

Reynolds number flows. This turbulence model is actually a combination of the standard 𝑘 − 휀 
and 𝑘 − 𝜔 models in a way that gains the advantages of both models. Technically, it uses the 

𝑘 − 𝜔 model near the wall boundaries to capture the viscous sub-layer more accurately, while 

uses the 𝑘 − 휀 model away from these regions, i.e. in the far-field fully turbulent regions. The 

main reason behind this choice was that the 𝑘 − 𝜔 𝑆𝑆𝑇 model is more suitable than the others 

to deal with cases in which adverse pressure gradients, separations, swirls, and curvatures exist 

inside the flow field as what happens in this project due to the existence of the obstacle in the 

domain. The initial values of the 𝑘 and 𝜔 parameters were calculated based on the following 

equations. There are rough estimates to initiates solving the turbulent transport equations [25], 

[36]. In these equations, the values of the flow properties (𝑈, 𝑅𝑒) were put according to the 

USN-FLIC code simulation results.  

 
{𝑘 =

3

2
(𝑈𝐼)2      

𝐼 = 0.16𝑅𝑒−1/8
 (4.18) 

 
{𝜔 = 𝐶𝜇

−1/4 √𝑘

𝑙
𝐶𝜇 = 0.09        

  (4.19) 

The boundary and initial conditions of the turbulence parameters, the turbulent kinetic energy 

(𝑘), and the specific dissipation rate (𝜔), are tabulated on the next page in Table 4.2. 

 

Now that all the properties and settings of the mentioned simulations, 2D and pseudo-3D, have 

been discussed and the reasons behind all the decisions have been reviewed, the next step which 

is the results of these initial simulations can be taken into account. 
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Table 4.2: Details of the boundary and initial conditions of the turbulence parameters 

Boundary 

Names 

Boundary 

types 

Boundary Conditions of the Flow 

Properties 

Turbulent Kinetic 

Energy (𝒌 [𝒎𝟐/𝒔𝟐]) 
Specific Dissipation 

Rate (𝝎 [𝒔−𝟏]) 

Top wall 
kqRWallFunction 

(uniform  0.01) 

omegaWallFunction 

(uniform  0.1) 

Bottom 
symmetryPlane 

( / empty) 

symmetryPlane 

( / empty) 

symmetryPlane 

( / empty) 

H2Inlet patch zeroGradient zeroGradient 

AirInlet patch zeroGradient zeroGradient 

Outlet patch zeroGradient zeroGradient 

reservoirWall wall 
kqRWallFunction 

(uniform  254.217) 

omegaWallFunction 

(uniform 9.703e03) 

Obstacle wall 
kqRWallFunction 

(uniform  0.01) 

omegaWallFunction 

(uniform 0.1) 

frontAndBack 
empty 

( / wedge) 

empty 

( / wedge) 

empty 

( / wedge) 

4.5 Initial Simulations Results and Discussion  

In order to demonstrate the general structure of the results of these simulations, the flow 

properties of the 2D-simulation are shown in Figure 4.6. It is important to note that for having 

a better visualization of the changes of flow properties, except for the mass fraction diagram, 

other contours are shown in a logarithmic scale. As can be seen in Figure 4.6, the hydrogen-

air turbulent mixing is simulated far better than the USN-FLIC code simulation, and the 

wrinkling edges of the hydrogen cloud can be obviously observed in the hydrogen mass 

fraction diagram. Another significant aspect of these simulations is that the flow properties in 

the near-wall regions are calculated more accurately than the previous simulation results, and 

the reason is that in spite of the USN-FLIC code, the OF solver can handle the calculations of 

the transport equations in boundary layers by considering the viscous sub-layer1. As a result of 

this feature, it can be seen that in the near-wall regions not only there is a laminar thin layer of 

air compressed by the hydrogen cloud, but also there are spots where the air bubbles are trapped 

between the hydrogen cloud and walls. In general, this detailed information from the hydrogen-

air mixing procedure shows more potentially combustible regions in the flow than the USN-

FLIC code simulation results which will be discussed in the following. 

According to the 2D-simulation, the highest temperature of this scenario (2500 𝐾) occurs at 

the beginning of the hydrogen release, and after the shock waves hit the Obstacle and Top 

boundaries, the temperature in the near-wall regions could not exceed this highest temperature. 

 

1 It was mentioned in the turbulent properties section that on the features of using the 𝑘 − 𝜔 𝑆𝑆𝑇 turbulence 

model is that it can manage the viscous sub-layer better than the other RAS models. 
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Figure 4.6: Flow properties of the OF initial 2D-simulation at 𝑡 = 1.26𝑒 − 04 [𝑠] 

Another important facet of these simulations is that as the flow propagated through the channel, 

some regions were formed in which the pressure decreases far below the atmospheric pressure. 

For example, in the above diagrams, the minimum pressure of the flow field is equal to 

8700 𝑃𝑎 which is corresponding to 65.26 𝑚𝑚𝐻𝑔. And this matter is important according to 

the pressure effect on hydrogen self-ignition. As shown in Figure A.1 (Appendix A), it can be 

seen that when the pressure goes below 300 𝑚𝑚𝐻𝑔, the critical temperature for hydrogen 

spontaneous ignition starts to reduce. So, any further pressure reduction in the flow field below 

this 65.26 𝑚𝑚𝐻𝑔, could make the hydrogen-air mixture highly combustible which should be 

discovered by simulating this case over a longer time. 

Similar to what was done on the USN-FLIC code simulation results, if the areas with hydrogen 

concentration between 5 − 75 % are considered, as depicted in Figure 4.7, it can be observed 

that the temperature of these regions, especially behind the Obstacle, exceeds 1000 𝐾 which 

could lead to a hazard because this region due to the existence of the obstacle has the best 
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mixing conditions in the flow field. Considering a cell even with a very low hydrogen 

concentration in this region (0.05 < 𝑥𝐻2 < 0.75 and 𝑇 > 1000 [𝐾]), like the one with 7% 

hydrogen, 1152.34 𝐾 temperature, and 1.325 𝑀𝑃𝑎 pressure, shows that the spontaneous 

ignition of hydrogen can occur in less than 70 𝜇𝑠 in this area. 

 
Figure 4.7: Boundary edges of the hydrogen cloud with the hydrogen concentration between 5 − 75 % 

By using the Cantera chemical kinetics toolbox, it can be revealed that the combustion of this 

particular hydrogen-air mixture will happen like the following. Also, it is good to mention that 

although the 68 𝜇𝑠 induction time is relatively long, according to the existence of large eddies 

in this area, this could be achieved given that this sample point has the least hydrogen 

concentration. 

 
Figure 4.8: Cantera zero-dimensional kinetics simulation results of hydrogen-air combustion with initial 

conditions of 𝑇0 = 1152.34 [𝐾], 𝑝0 = 1.3257 [𝑀𝑃𝑎], and 𝑥𝐻2 = 7.157 [%], 𝑥𝑂2 = 20.887 [%] 

In the case of pseudo-3D simulation (Wedge), the results were very well matched with the 2D-

simulation. And this might be due to considering the same cross-section for the reservoir outlet 

in both simulations, as explained before. It should be reported that considering the maximum 

temperature of the simulation, the greatest difference between these two simulations was 

around 50 𝐾. Although the cross-sectional flow rate was exactly the same for both simulations 

at the reservoir outlet, the flow rate along the centerline of the channel was different. As 

demonstrated in the following diagrams, the decay of the initial pressure of flow along the 

centerline was faster in the pseudo-3D simulation which could be the effect of the 3D flow that 



4 OpenFOAM Simulations 

51 

takes more energy from the flow to propagates through the channel. Therefore, it can be said 

that the only difference between these two simulations will be the positions of the phenomena, 

i.e. shock waves and other changes in the flow field properties will happen in a shorter distance; 

consequently, if the same time step is considered in both simulations, the results of the 2D-

simulation will have higher values than the pseudo-3D one, as shown in the following. Thus, 

it can be concluded that for finding the effects of the distance between the reservoir outlet and 

the obstacle, simulation should be carried out in 3 dimensions while in order to just find the 

temperatures and pressures of the domain without considering the effect of this distance, 

simulation can be simply performed in 2 dimensions. 

  

  

  
Figure 4.9: Comparing the results of the (left) cylindrical axisymmetric and (right) two-dimensional simulations 
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After all, there are two main issues with these simulations which will be tried to explain in the 

following. As mentioned before, due to the size of the computational case (large domain + high 

grid resolution), in order to use all the power of the computer system, the parallel simulation 

method was used for this project. Therefore, it was very likely to terminate the simulation for 

visualizing the results and check them and then continue the same simulation from the last time 

step. But by using this solver, in the case of having any termination, some discontinuities were 

generated inside the flow field which was being expanded over time. This issue is depicted in 

Figure 4.10. These temperature contours belong to two consecutive time steps, Figure 4.10 (a) 

is the before termination diagram, and Figure 4.10 (b) is the after one. As can be seen some 

streaks with higher temperatures have been generated at the center of the second figure that are 

the described discontinuities. To ensure that these continuities are just related to the 

termination, this was done with other simulations and the same result was achieved. Based on 

some discussions related to the rhoCentralFoam, this may be due to the predicted fluxes at the 

interfaces. This problem could not be solved by the author and the only solution for that was 

to try to simulate the entire case, from the beginning up to the desired end time, without any 

termination. 

The second issue is that the minimum temperature of these simulations has reached the limit 

of the Janaf thermodynamic model of this case which is 250 𝐾. This could mean that the real 

minimum temperature is far below this limit which can affect all the simulation results. To deal 

with this problem either another set of Janaf coefficients with a wider range of temperature can 

be used to allow the solver goes below 250 𝐾, or another thermodynamic model with a wider 

operating range should be utilized. Unfortunately, both options are not available, so the only 

solution left is to implement a new thermodynamic model which will be discussed later in this 

chapter.   

 
(a) 

 
(b) 

Figure 4.10: Temperature contours of two consecutive time steps, (a) before and (b) after the simulation 

termination 
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4.6 Validation of the Method and the Shock-Tube Problem 

In order to validate this solver and its subsequent settings, the common shock-tube problem 

was used in this project. In this kind of test, usually, a one-dimensional, frictionless tube with 

a constant cross-section is considered in which half the tube is filled with a high-pressure fluid 

called the driver section, and the other half is filled with a low-pressure fluid called the driven 

section. And it is supposed that there is a membrane between these two sections to prevents 

them from mixing. At the beginning of the test, this membrane ruptures and the driver section 

expands which compresses the driven section and this procedure leads to a normal shock wave 

that propagates through the tube until it reaches the opposite side and reflects. The whole 

procedure, before the shock reaches the opposite end of the tube, divides the flow field into 4 

main sections that can be seen in Figure 4.11. After the normal shock hits the downstream end, 

the 5th region is generated inside the tube which is related to the fluids behind the reflected 

shock. The privilege of this test is that the expansion behind the normal shock can be studied 

as an isentropic expansion, so the flow field can be analyzed by the CJ-theory1 in which the 

entire phenomenon can be analytically solved without considering the chemical kinetics. And 

thus, by simulating the same shock-tube problem with a CFD code, the simulation results can 

be compared to these analytical solutions to ensure that the solver can manage such sharp 

discontinuities in a proper way. There are several shock-tube simulators on the internet like the 

Caltech shock and detonation toolbox [40] that can be used to get the analytical solution of a 

particular shock-tube problem. But the simulator that was utilized in this project is a code 

written by Are Mjaavatten. This solver depends on rigorous thermodynamic models for 

hydrogen and air which calculate the thermodynamic properties based on the particular 

Helmholtz functions for each species [41]. 

It is worth knowing that in this solver for calculating the properties of the 5th region it is 

assumed that the normal shock wave reaches the downstream end before it is disturbed by the 

reflection of the expansion fan from the upstream end [41]. 

 
Figure 4.11: (top) Shock-tube problem (middle) Characteristic curves (bottom) Pressure profile [42] 

 

1 Chapman-Jouguet theory 
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In the shock-tube problem defined for this section, the driver and driven fluids are respectively, 

70 −𝑀𝑃𝑎 hydrogen and 0.1 − 𝑀𝑃𝑎 air. There are differences between the analytical shock-

tube simulator and the simulation done by the 𝑟ℎ𝑜𝑅𝑒𝑎𝑐𝑡𝑖𝑛𝑔𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐹𝑜𝑎𝑚 solver. In addition 

to the fact that the former one solves this problem analytically and the latter solves it 

numerically, the thermodynamic models used to calculate the flow properties of this problem 

are different between these two, as mentioned before. Besides, the former solver considers air 

as a pseudo-single species while the latter solver considers air as a mixture of oxygen and 

nitrogen with specific1 concentrations of 21% and 79%, respectively. The results of the 

simulations with these two solvers as well as the shock-tube simulation results by the USN-

FLIC code are given in the next section.  

4.6.1 Comparison the Results 

The Mjaavatten shock-tube simulation results are given below. These simulations were carried 

out for different initial pressures of driver hydrogen from 1 𝑀𝑃𝑎 up to 70 𝑀𝑃𝑎 with an initial 

temperature of 291 𝐾. In all cases, the driven air was under the pressure and temperature of 

0.1 𝑀𝑃𝑎 and 291 𝐾, respectively. 

As can be observed in Figure 4.12, on the next page, the temperature of the compressed air 

behind the reflected shock increases up to 4729 𝐾, while the temperature of the expanded 

hydrogen drops down to 131.8 𝐾. The temperature behind the normal shock, however, remains 

around 2400 𝐾. In addition to these, the pressure behind the reflected shock intensified up to 

around 42 𝑀𝑃𝑎, in the case of having 70 −𝑀𝑃𝑎 initial hydrogen pressure. As well as these, 

the same simulations were performed by the rhoReactingCentralFoam solver in OF which its 

results will be discussed in the following. 

 

 

1 Based on mass fraction 
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Figure 4.12: The simulation results of the shock-tube simulator (written by A. Mjaavatten) 

 

The OF simulations were carried out with almost the same settings discussed in Section 4.4. 

The difference is that the turbulence was deactivated for this section to consider a laminar flow. 

Also, the geometry in this section is a one-dimensional tube with a 1 𝑚 length. As it was 

expected according to the discussion about the utilized thermodynamic model in Section 4.5, 

the solver encountered a problem in calculating the temperature for the initial hydrogen 

pressure equal to 70 𝑀𝑃𝑎. This happened after around 0.2 𝑚𝑠 of simulation when the normal 

shock wave reflected from the downstream end and the temperature tended to decrease below 

250 𝐾 which is the limitation of the utilized Janaf coefficients for thermodynamic model.  
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If this part is neglected, there was another major problem in all the OF shock-tube simulations 

even down to 100 𝑀𝑃𝑎 hydrogen initial pressure, and that was about passing through the initial 

membrane position. 

 

 

 
Figure 4.13: rhoReactingCentralFoam shock-tube simulation results 

As can be observed in Figure 4.13, at the center of the shock-tube, all the flow properties flatten 

out for some distance, like a choked flow, and it is important to note that these flat parts 

expanded over time and became longer and longer. The reason behind this behavior may be 

passing through a cross-section with Mach number equal to 1. Although as it is shown, the 

Mach number of the flow is not exactly equal to 1 at these points, it is just behind this value 



4 OpenFOAM Simulations 

57 

and that is what always happens at the front of the initial membrane location. To make sure 

that other parameters like the grid resolution or the width of the channel (however, it is one-

dimensional) are not the reason for this problem, other shock-tube simulations with different 

such parameters were carried out, but in all the cases, this problem was discovered. Therefore, 

it should be considered that the solver may have some problems in dealing with transonic flows. 
 

 
Figure 4.14: Pressure and temperature profile of the OF shock-tube simulation after the normal shock hits the 

downstream end of the tube 

 

All in all, it is important to add that the predicted pressures, temperatures, and velocities in the 

OF shock-tube simulation are almost the same as the Mjaavatten shock-tube results, despite all 

the mentioned problems. Even behind the reflected shock wave, as shown in Figure 4.14, the 

maximum of the temperature and pressure stayed on track. And this point is important since 

the results of the USN_FLIC code shock-tube simulation with the same initial conditions are 

far away from these values of the flow properties. Thus, the results of the USN_FLIC code 

simulation of the main scenario will also not be reliable anymore.  

The results of the USN_FLIC code shock-tube simulation for two different time steps, 

corresponding to the time steps of the demonstrated OF simulation results, are shown in Figure 

4.15 (a) and (b). Although these results do not have the same problems as the OF simulation, 

the values of the flow properties are overestimated. As can be seen, the temperature of the 

compressed air before the normal shock reaches the end is around 3000 𝐾 which have a 500 𝐾 

difference with above simulations, while after reflection this difference becomes even much 

more since the temperature of the compressed air reaches 7000 𝐾. 
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(a) 

 
(b) 

Figure 4.15: USN_FLIC code shock-tube simulation results (a) before the normal shock reaches the 

downstream end (b) after the normal shock reaches the downstream end 

 

According to all these discussions, it can be concluded that if the problems of the OF solver 

can be fixed, then it could be a proper option to simulate the original case. In order to stretch 

the limits of the thermodynamic model utilized in rhoReactingCentralFoam solver, new 

thermodynamic and transport models were tried to implement in OF v.7 which will be 

explained in the next section.
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4.7 Implementation of the New Thermodynamic and Transport Models 

Regarding the thermodynamic and transport models, there are plenty of equations and 

approaches to estimating the thermophysical properties of individual species. In an extreme 

case, each of these species can have its own particular equation to calculate its thermodynamic 

and transport properties as accurately as possible. But in this project, in order to have a general 

model for a wide range of temperatures, in the beginning, it was tried to implement the so-

called NASA-7 and NASA-9 equations [43], [44]. 

4.7.1 nasa9Poly Thermodynamic Model 

There are equations and their corresponding coefficients published by NASA for calculating 

the thermodynamic properties of species. These equations in general are in the same form as 

the polynomials used in the Janaf thermodynamic model. But for simulating the properties in 

a wider range of temperatures, the NASA polynomials use more terms for calculations. The 

total number of coefficients in these equations is 9 and that is why this model is called 

nasa9Poly thermodynamic model. The equations are as follows [44]: 

{
  
 

  
 
𝐶𝑝
0(𝑇)

𝑅
= 𝑎1𝑇

−2 + 𝑎2𝑇
−1 + 𝑎3 + 𝑎4𝑇 + 𝑎5𝑇

2 + 𝑎6𝑇
3 + 𝑎7𝑇

4                                            

𝐻0(𝑇)

𝑅𝑇
= −𝑎1𝑇

−2 + 𝑎2 ln 𝑇 /𝑇 + 𝑎3 + 𝑎4𝑇/2 + 𝑎5𝑇
2/3 + 𝑎6𝑇

3/4 + 𝑎7𝑇
4/5 + 𝑏1/𝑇

𝑆0(𝑇)

𝑅
= −𝑎1𝑇

−2/2 − 𝑎2𝑇
−1 + 𝑎3 ln 𝑇 + 𝑎4𝑇 + 𝑎5𝑇

2/2 + 𝑎6𝑇
3/3 + 𝑎7𝑇

4/4 + 𝑏2    

 (4.20) 

In these relations, 𝐶𝑝
0(𝑇), 𝐻0(𝑇), and 𝑆0(𝑇) are the ideal-gas part of, respectively, the specific 

heat capacity at constant pressure, the enthalpy, and the entropy. The advantage of using this 

model is that the ideal-gas part of the thermodynamic properties of most species can be 

calculated from 200 𝐾 up to 20,000 𝐾. And for doing so 3 sets of 9 coefficients for 3 different 

ranges of temperatures will be used. These ranges are usually categorized to 200 − 1000 𝐾, 

1000 − 6000 𝐾, and finally 6000 − 20,000 𝐾. These specific NASA-9 coefficients are 

tabulated in [44]. Besides, the detailed C++ dictionary implemented for this thermodynamic 

model in order to use for OF simulations is given in Appendix G. 

4.7.2 nasaPoly Transport Model 

In addition to the discussed thermodynamic polynomials, there is another set of equations and 

their corresponding coefficients for calculating the transport properties of individual species, 

i.e. the diffusion coefficients. These equations and coefficients, also, published by NASA and 

their estimations are much more accurate than the utilized Sutherland transport model. The 

temperature ranges of these polynomials, however, are not as wide as the thermodynamic 

model. Therefore, they just need 2 sets of coefficients, usually from 200 − 1000 𝐾, and from 

1000 − 5000 𝐾. These equations and their coefficients are related to what is called the NASA-

7  thermodynamic model which is the older version of NASA-9 with polynomials that only 

need 7 coefficients. But, the transport polynomials of NASA-7 only use 4 coefficients in order 

to calculate the transport properties and that is why this implemented model is just called the 

nasaPoly transport model. The equations of this model are as follows[43]: 
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ln 𝜇
ln 𝑘
} = 𝐴 ln 𝑇 +

𝐵

𝑇
+
𝐶

𝑇2
+ 𝐷 (4.21) 

The sets of coefficients for calculating dynamic viscosity (𝜇) and thermal conductivity (𝑘) will 

be different. The detailed C++ dictionary implemented for this transport model in order to use 

for OF simulations is given in Appendix H. 

It is also important to note that a new thermophysical model based on these two new 

thermodynamic and transport models had to be implemented in OF just like what was done in 

Section 4.3 to make them functional. 

4.8 Generating New Sets of Coefficients for the New Models 

As described above, the implemented thermodynamic and transport models have much wider 

operational ranges as well as more accurate estimation results. Nevertheless, their temperature 

ranges still are not sufficient, particularly for simulating very low hydrogen temperature. 

Therefore, to cope with this issue, it was tried to find new sets of coefficients for the new 

thermodynamic and transport models for covering temperatures below 200 𝐾. 

In the case of the nasa9Poly thermodynamic model, the idea was to use the feature of this 

model that can have 3 different sets of coefficients for 3 consecutive ranges of temperature. As 

discussed in the previous section, the original category is [200 − 1000] 𝐾, [1000 − 6000] 𝐾, 

and finally [6000 − 20000] 𝐾. But even for the shock-tube problem, according to the 

mentioned results, the maximum temperature does not go above 5000 𝐾. So, in fact, the last 

temperature interval is not useful for this project and these ranges can be shifted like this: 

[𝑏𝑜𝑖𝑙𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 300] 𝐾, [300 − 1000] 𝐾, and finally [1000 − 6000] 𝐾. However, 

for using this new category, a new set of coefficients should be derived for the first temperature 

interval (from the boiling point up to 300 𝐾 ). This new set should be consistent with the other 

coefficients and can be used in Equation (4.20). 

In the other case, the nasaPoly transport model, the idea was to just try to stretch the lower 

interval down to the boiling point. Because this transport model, despite the thermodynamic 

model, can only use 2 sets of coefficients for 2 consecutive ranges of temperatures. Therefore, 

the transport model intervals should be shifted like this: [𝑏𝑜𝑖𝑙𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 1000] 𝐾, 

and [1000 − 6000] 𝐾. These sets, also, should be consistent with Equation (4.21). 

The reason behind choosing the boiling point as the lower limit of all these intervals is that 

below this temperature the phase of the species will change so there would be a large jump in 

the thermophysical properties of species before and after this temperature. 

After all, in order to generate the discussed coefficients, 3 databases were written in Python for 

hydrogen, oxygen, and nitrogen. And the goal was to compare the species properties from 

different available datasets to make sure that the new sets of coefficients, which are intended 

to derive, are conforming with the real values. The compared datasets for each of these species 

are as follows: 

• Hydrogen: 

1. NASA-7 [43] 

2. NASA-9 [44] 

3. JANAF Thermochemical Tables [45] 
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4. U.S. National Bureau of Standard (NBS) [27] 

5. National Institute of Standards and Technology (NIST) [46] 

6. Fundamental EOS for Hydrogen (Leachman EOS) [47] 

7. OpenFOAM v.7 (Janaf and Sutherland models) 

• Oxygen: 

1. NASA-7 [43] 

2. NASA-9 [44] 

3. JANAF Thermochemical Tables [45] 

4. U.S. National Bureau of Standard (NBS) [48] 

5. National Institute of Standards and Technology (NIST) [46]  

6. Thermodynamic Functions for Oxygen (Woolly EOS) [49] 

7. OpenFOAM v.7 (Janaf and Sutherland models) 

• Nitrogen: 

1. NASA-7 [43] 

2. NASA-9 [44] 

3. JANAF Thermochemical Tables [45] 

4. U.S. National Bureau of Standard (NBS) [48] 

5. National Institute of Standards and Technology (NIST) [46]  

6. Reference EOS for Nitrogen (Span EOS) [50] 

7. OpenFOAM v.7 (Janaf and Sutherland models) 

As an example of all these data and relations, the values of the specific heat capacity at constant 

pressure (𝐶𝑝), and the dynamic viscosity (𝜇) for hydrogen, based on the mentioned references, 

are shown in Figure 4.16 and Figure 4.17. 

At last, for generating new sets of coefficients, the focus was on the particular equations of 

state for each of these species (Leachman EOS for 𝐻2, Woolly EOS for 𝑂2, Span EOS for 𝑁2). 
Because these equations can model low temperatures very well. Therefore, a program was 

written in Python in order to generate these coefficients by using the method of least squares 

in a way that the derived coefficients are not only fit into the coefficients of the polynomials of 

the new thermophysical models (Equation (4.20), and Equation (4.21)) but also consistent with 

the discussed specific equations of state. 

As can be seen in Figure 4.16 and Figure 4.17, the derived coefficients are very well 

overlapped with the desired models, even at low temperatures down to the boiling point. 

Therefore, it seems that they are reliable and ready to utilize as the coefficients of the new 

thermodynamic and transport models which will be done in the next section for simulating the 

same shock-tube problem with the new thermophysical model. 
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Figure 4.16: Hydrogen specific heat capacity profile from different datasets 

 

 
Figure 4.17: Hydrogen dynamic viscosity profile from different datasets 
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4.9 Shock-Tube Simulation with the New Thermophysical Model 

For the shock-tube simulation with the new thermophysical model containing the new 

nasa9Poly thermodynamic model and nasaPoly transport model as well as the new generated 

sets of coefficients, the general settings are the same as before; and the only difference is the 

usage of these new models. The detailed coefficients in the thermo.compressibleGas dictionary 

for this simulation is given in Appendix I. 

As an illustration, the new shock-tube simulation results are shown in Figure 4.18. In order to 

be comparable with previous results, the same time steps as in Figure 4.13, and Figure 4.14 

are chosen. As can be observed the discussed flat lines at the center of the tube converts to 

some noises and despite the previous simulation, the solver can roughly keep track of the 

isentropic expansion. The temperature of the compressed air before and after the normal shock 

reflection is still at the same range as the results of the Mjaavatten shock-tube solver. However, 

there are two issues with this simulation. first, the flow properties especially after the normal 

shock reflection are noisier and more unstable than the results of the previous simulation. As 

well as this, the pressure profile after the reflection is not as accurate as before. 

 
(a) 

 
(b) 

Figure 4.18: Pressure and Temperature profiles of the OF shock-tube simulation results with the new 

thermophysical model (a) before normal shock reaches the downstream end (b) after it hits the end 
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Although these shock-tube simulations are only one-dimensional and there is no such a thing 

as constriction of the cross-section, still the cross-sectional flow rate [
𝑘𝑔

𝑚2∙𝑠
] of these simulations 

can be a good criterion to study the choked flow. In Figure 4.19 the flow rate profile of the OF 

shock-tube simulations with the new and old thermophysical models are drawn. As can be seen, 

the new thermophysical model (the blue line) can smoothly pass through the local maximum, 

while the old one (the red line) as it goes to the maximum, at some point it could not increase 

any more, and for some distance, the flow rate remains constant. This, finally, leads to different 

predictions for the locations of the contact surface (between hydrogen, oxygen, and nitrogen) 

and normal shock wave. 

 
Figure 4.19: Cross-sectional flow rate of the OF simulations with two different thermophysical models 

The main results of all these 4 shock-tube simulations that have been so far considered are 

tabulated in Table 4.3. All in all, apparently, the combination of the rhoReactingCentralFoam 

solver and the new thermophysical model can have more accurate simulation results, although 

it seems more unstable than the previous OF shock-tube simulation. Thus, the next step would 

be checking this new method for simulating the main scenario which will be discussed in the 

next section. 

Table 4.3: Comparison between the results of the shock-tube simulations 

Shock-Tube  

Simulation 

 

Flow Property 

Mjaavatten 

Solver 

USN-FLIC 

Code 

OpenFOAM 

(Janaf + Sutherland) 

OpenFOAM 

(nasa9Poly + nasaPoly) 

Temperature behind the 

normal shock [𝑲] 
2434 3000 2720 2360 

Temperature behind the 

reflected shock [𝑲] 
4729 7070 5000 (upper limit) 4950 

Expanded driver fluid 

temperature [𝑲] 
131.8 127 250  (lower limit) 120 

Normal shock pressure 

[𝑴𝑷𝒂] 
5.295 5.602 6.088 5.1 

Reflected shock pressure 

[𝑴𝑷𝒂] 
41.91 55.57 49 ≈ 50 (large fluctuation) 
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4.10  Final Simulation Results and Discussion 

In the first attempt for simulating the main scenario by using the new thermodynamic and 

transport models along with the newly generated coefficients, exactly the same settings as the 

previous main simulation was used; except for utilizing this new thermophysical model. 

Unfortunately, the solution was diverged after just simulating 1.4 𝜇𝑠 with the Floating point 

exception error. 

After this, to avoid getting this error and to have a more stable solution the relaxationFactors 

for all equations were reduced. But even this change could not help the solver to pass the initial 

steps. Since it seemed that the problem is related to the hydrogen output (from the reservoir), 

so another strategy was chosen to deal with the initial extremely large gradient. The approach 

was to change the shape of the reservoir output from a rectangular one to a conical one. As can 

be seen in Figure 4.20, the reservoir output will not have a sharp break and can lead the flow 

more smoothly. Fortunately, this method was successful and the solver could pass the initial 

time steps. 

  
Figure 4.20: Changing the reservoir output (reservoirWall) from a rectangular shape into a conical one 

But, unfortunately, this time after around 87 𝜇𝑠, the solver reaches a point that cannot find the 

accurate temperature (tolerance <  1𝑒 − 04) by less than 100 iterations. So, the following error 

was popped up: Maximum number of iterations exceeded: 100. This error is related to the 

thermo dictionary in which the solver tries to find the actual temperature by guessing an initial 

temperature and then after calculating the internal energy (or enthalpy in other cases) and 

consequently specific heat capacity at constant volume (or constant pressure in other cases), 

compute a new temperature and if the difference between the initial one and the calculated one 

was less than 1𝑒 − 04, then accept that temperature. The maximum number of this kind of 

iteration is set to be 100. So, if a divergent solution is triggered by a reason, after some point 

the solver could not calculate the accurate temperature in less than 100 iterations. And that is 

what happened in this case. 

According to the boundaries of the hydrogen cloud, or more precisely, to the edges of the 

developed flow, at the last step of the above simulation, it seemed that the reason behind this 

divergence is the grading that was used in generating the mesh to have a less number of total 

cells. Therefore, it was decided to eliminate this grading and generate a new uniform structured 

mesh with a grid resolution of 100 𝜇𝑚. As far as the time constraints of this project have 

allowed simulating this final case, fortunately, there was no problem during the simulation. 

Nevertheless, because this solver and its settings showed a lot of instabilities in simulations, 

the author could not be sure that if there was more time for running the simulation, no error 

would occur. 
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After all, the total number of cells in the newly generated mesh was 7,475,050. Therefore, not 

only the simulation itself but also even visualizing the results took much more time than before. 

During the run time, totally, 1.03𝑒 − 04 𝑠 could be simulated. By using the minMaxMagnitude 

post-processing function, it was revealed that the maximum temperature has happened at 

7.58𝑒 − 05 𝑠, and its value reached 2214.25 𝐾. But in this simulation, despite all the previous 

simulations the temperature reached its maximum after the reflected shock from the Top 

combined with the rarefaction shock from the Obstacle which is shown by a black circle in 

Figure 4.21 (a). Also as can be seen in this figure, temperature values reach the lower limit of 

the utilized thermophysical model which is 50 𝐾; this is not a good sign for a simulation, since 

most probably this means that the actual temperature of the expanded hydrogen is different 

than 50 𝐾 (not necessarily colder). 

 
(a) 

 
(b) 

 
(c) 

Figure 4.21: Temperature profile at 𝑡 = 7.6𝑒 − 5 [𝑠] in (a) final simulation (b) final simulation with adjusted 

temperature interval (c) initial 2D-simulation 

In order to better visualizing the comparison between the results of this simulation and the 

initial 2D-simulation, the temperature range of Figure 4.21 (a) is changed to the interval of the 

temperature of the initial simulation, [250 − 2500] 𝐾, which is shown in Figure 4.21 (b). And 

finally, at the bottom of this figure, Figure 4.21 (c), the result of the initial 2D-simulation at 

the same time is shown. As can be observed from these temperature contours, hydrogen flow 
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in the initial simulation has propagated more than the final one. The reason behind this behavior 

could be the noticeable difference between the estimated viscosity by the nasaPoly and 

Sutherland transport models. The former model, as can be seen in Figure 4.17, calculates 

higher values in every temperature in comparison to the latter one. 

To have a general overview from the flow structure of this simulation, the flow properties at 

the last simulated time step is shown in the following diagrams. As can be seen in the above 

diagram, one of the characteristics of this simulation is that the edges of hydrogen cloud are 

not as wrinkled as the initial simulation which could be again due to the viscosity difference 

between these two simulations. Also, it is obvious that changing the shape of the reservoir 

outlet made a difference in the flow field, especially, in front of the outlet. 

 

 

 

 

 
Figure 4.22: Flow properties of the OF final 2D-simulation at 𝑡 = 1.03𝑒 − 04 [𝑠] 
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Comparing the flow properties along the center line, in addition to the fact that the positions of 

the shock waves in the initial simulation is further than the final one away from the reservoir 

outlet, reveals one more point. This point is more obvious in the below diagrams of Figure 

4.23, as can be seen in the initial simulation at the first discontinuity in the pressure profile, the 

temperature remained untouched while in the final simulation this is accompanied with a 

temperature jump. 

  

  
Figure 4.23: Comparing the results of the (left) final and (right) initial OF simulations 

 

At last, considering the stream path of the flow, just like before, shows a large eddy behind the 

Obstacle with a high temperature that is demonstrated in Figure 4.24. 

 
Figure 4.24: Stream lines at 𝑡 = 1.03𝑒 − 04 𝑠 in the final OF simulation 
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5 Conclusion 
Nowadays, hydrogen is considered as one of the available, sustainable solutions to reduce the 

carbon footprint from industrial and even individual and daily activities. Therefore, conducting 

studies like the present project is crucial for acquiring a sufficient understanding of hydrogen 

behavior and its potential hazards under different circumstances. One of the major risks in 

utilizing hydrogen is its spontaneous ignition which can be occurred during any kind of 

hydrogen release. 

In the present project, the main goal was investigating the relatively long-term effects of the 

downstream obstructions on this auto-ignition phenomenon in a high-pressure hydrogen 

release into the air. The initial hydrogen pressure considered for this study was 70 𝑀𝑃𝑎 which 

is among the highest pressures used in CGH2 reservoirs. 

This investigation was carried out with 2 different sets of CFD codes, the USN-FLIC code, and 

OpenFOAM. In the case of OpenFOAM, due to the lack of a proper built-in solver, a recently 

developed solver was used, and for improving its abilities new sets of thermophysical models 

were implemented. Also, it was tried to demonstrate the strengths and weaknesses of each of 

these solvers in simulating this extreme case. 

On the basis of the results and their validations, it can be concluded that the USN-FLIC code, 

with presented settings, is not able to predict reasonable flow properties for the scenario of two-

dimensional 70 −𝑀𝑃𝑎 hydrogen release into the air. Although the general flow structures, 

such as shock waves, reflections, etc. were simulated successfully with this code without 

having spurious oscillations, the flow properties, like temperature, were overestimated by this 

code. The main reason could be using the ideal-gas equation of state and neglecting the 

compressibility effects. 

In the USN-FLIC code simulation case, although the simulation itself was faster than other 

cases in this study, the size of the generated data was too large even with compressing which 

made it difficult to transfer and to establish the post-processing section. 

Regarding the OpenFOAM simulations, the combination of rhoReactingCentralFoam solver 

along with the first thermophysical model (including the Janaf thermodynamic model, 

Sutherland transport model, and Peng-Robinson equation of state) generated reasonable flow 

properties for the main scenario, although further investigations into the shock-tube validation 

test revealed that this solver and thermophysical model are not capable of smoothly passing 

through a sonic condition and keep the isentropic expansion curve in shape. Besides, in both 

the main scenario and shock-tube simulations, the temperature of the flow reached the 

limitations of temperature ranges in the thermodynamic model. Therefore, the results of the 

main scenario simulation with this OpenFOAM setting, also, could not be reliable. However, 

it should be mentioned that this combination of rhoReactingCentralFoam solver and the 

described thermophysical model, produced very stable solutions which should be considered 

for further studies. 

Furthermore, it was shown that two-dimensional cylindrical axisymmetric simulation affects 

the flow propagation in a way that every phenomenon happens as same as the two-dimensional 

simulation but at a shorter distance. Thus, for investigating the distance effect of the 

downstream obstructions the simulation should be done in three-dimensions. 
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According to the results of the OpenFOAM simulation with rhoReactingCentralFoam solver 

and the second thermophysical model (including the implemented nasa9Poly thermodynamic 

model, nasaPoly transport model, and the Peng-Robinson equation of state), although this 

setting could relatively smoothly pass through the sonic condition and had the best conformity 

to the Mjaavatten shock-tube solver among the utilized solvers in this project, its solutions 

produced more instabilities in comparison to the previous OpenFOAM simulation. These 

instabilities which showed themselves as a noisy solution in the shock-tube simulation, 

especially after the reflection, led to several divergences in the main scenario simulation and 

made it very difficult to run the simulation for a long time. However, in the last case, at least 

as far as the time constraints of this project had allowed running the simulation, no problem 

occurred. 

In general, the latter OpenFOAM simulation setting predicted lower temperatures for the flow 

field, and despite the former one the maximum temperature did not occur at the beginning of 

the hydrogen release, instead, it happened due to the interaction of the shock waves reflected 

from the downstream obstructions. At last, it should be mentioned that the OpenFOAM 

simulations were much more time consuming than the USN-FLIC code, and also visualizing 

the results needed a lot of computer power and time. 

All in all, simulating such a high-pressure hydrogen release in a large domain and with a high 

grid resolution needs not only a stable, precise solver but also a lot of time and computer power. 

According to the general flow structure, the obtained results proved that there are potentially 

dangerous regions inside the domain that are formed due to the existence of the obstacles and 

confinement. However, because each of these solvers and methods had its own problems and 

also estimated different flow properties, the hazard rate of this scenario cannot be proved with 

high certainty. 
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6 Recommendations 
As it was discussed in the previous chapters, there are several uncertainties over the results of 

the simulations and one of the reasons is the very high initial hydrogen pressure in this project 

which also leads to a very wide temperature range in the flow field. To deal with these issues 

and develop this study, some tips will be recommended in the following: 

1. OpenFOAM +: Two main communities develop the OpenFOAM code, the 

OpenFOAM Foundation1 , and the ESI group2. Although initially OF was released by 

the former group, these days the OF versions of the latter group provide more flexibility 

and options for the user. Thus, there are lots of solver-developers who are currently 

working on this version. So, changing from the former version of OF to the latter one 

could give more accessibility to the new solvers.  

2. New Solver: As the author was working on a new solver based on the combination of 

the PIMPLE algorithm and rhoCentralFoam solver, which was unfortunately not 

prepared for this report, it seems that using such an algorithm improves the calculations 

of the pressure.   Which may solve the sonic problem of the rhoReactingCentralFoam 

solver and improve the stability of the solution. 

3. New Thermophysical Model: Implementing discontinuous thermophysical functions 

for species in order to calculate the flow properties more accurately especially at 

extremely low and high temperatures can improve the results of these simulations. But 

it should be taken into account that considering these temperature ranges is 

corresponding to dealing with changing phase and also dissociation of the species. 

Therefore, in general, adding the chemical reactions to the simulations will definitely 

create great impacts on the results. 

4. C++ Cantera Toolbox: Using the Cantera toolbox along with the OpenFOAM 

software and combining them in a new solver for dealing with the chemical kinetics 

aspect of the simulation could improve solving the species transport equations and 

giving a better estimation from species concentrations. 

5. Geometry: In this study, the effects of some parameters like the nozzle diameter or the 

distance between the hydrogen output and the obstacle did not investigate. But these 

parameters will certainly play an important role in forming the potentially hazardous 

regions. Therefore, considering them as variables would be a major step. However, it 

will definitely consume a lot of time to simulate. 

6. Experimental Test: Conducting limited experimental studies for the same scenarios 

will provide excellent sources for validating the results of the simulations.

 

1 www.openfoam.org 

2 www.openfoam.com 

file:///C:/Users/KA/Documents/Keivan/After%20Iran/Norway/USN/Semesters/04/05%20-%20Report/www.openfoam.org
file:///C:/Users/KA/Documents/Keivan/After%20Iran/Norway/USN/Semesters/04/05%20-%20Report/www.openfoam.com
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8 Appendices 
 

Appendix A Hydrogen Spontaneous and Pilot Ignition Limits 

 

A.1 Hydrogen Spontaneous Ignition Limits 

First of all, the hydrogen spontaneous ignition limits often called explosion limits in a 

homogeneous stoichiometric hydrogen-oxygen mixture should theoretically be examined. If a 

spherical vessel containing this mixture take into account, as seen in Figure A.1, there are three 

limits to the explosion of this mixture. The first limit is related to the wall effect; it is known 

that the production of radical molecules is proportional to the volume of the vessel and the 

destruction of them is related to the surface of the vessel; as the pressure goes down in this 

region, the effect of the surface becomes more and more important and for this reason, the 

destruction of the radicals becomes dominant and therefore more temperature will be needed 

to run away [26], [51]–[53].  

 

Figure A.1: Explosion limits of a stoichiometric hydrogen-oxygen mixture in a spherical KCl-coated vessel of 

7.4 cm diameter [51] 
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The second limit is related to the balance of chain branching and chain termination reactions; 

in this section, the (R A.1) and (R A.2) reactions compete with each other: 

{
𝐻 + 𝑂2 +𝑀 → 𝐻𝑂2 +𝑀   (𝐶ℎ𝑎𝑖𝑛 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

𝐻 + 𝑂2 → 𝑂𝐻 + 𝐻               (𝐶ℎ𝑎𝑖𝑛 𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔)    
 

(R A.1) 

(R A.2) 

As the pressure goes up, the chain termination reaction (R A.1) becomes the dominant reaction, 

and the hydrogen radicals are consumed to produce slow hydrogen peroxide radicals (𝐻𝑂2). 
And that is why the tendency of explosion is decreasing with increasing the pressure in this 

region. Finally, the third limit is related to the chain branching reactions in which the hydrogen 

peroxide radicals (𝐻𝑂2), first convert to the hydrogen peroxide molecules (𝐻2𝑂2) and then for 

each molecule, two hydroxide radicals (𝑂𝐻) will be produced and for this reason the explosion 

in this region is called chain branching explosion [26], [51]–[53]. 

All in all, to report the critical temperature of hydrogen spontaneous ignition at atmospheric 

pressure, because of the safety considerations, the most violently reacting mixture, which is the 

stoichiometric one, in a very large volume where the wall effects can be neglected is taken into 

account. Based on these considerations, the critical temperature is typically reported to be 

585℃ [52]. 

 

A.2 Hydrogen Minimum Ignition Energy (MIE) 

As indicated in Figure A.2, the minimum ignition energy of hydrogen is highly affected by the 

hydrogen concentration in the mixture and the optimal combustion condition is at around 29% 

hydrogen concentration. 

 
Figure A.2: MIE of 𝐻2 − 𝑂2 − 𝑁2 mixture with fixed ratio of 𝑂2 / (𝑂2 +𝑁2)  =  0.35 for various 𝐻2 and 𝑂2 

concentrations and four different gap distances [54] 

 

A.3 Hydrogen Flammability limits 

Hydrogen flammability limits will be shifted by changing the pressure and temperature of the 

hydrogen-air mixture, although as expected based on the logarithmic scale of the pressure axis 

and the linear scale of the temperature axis of Figure A.1, the effects of changing the 

temperature are much stronger than the pressure changes. The tabulated data below confirms 

this statement. 
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Table A.1: Temperature effects on hydrogen flammability limits at atmospheric pressure [52] 

Temperature 

[℃] 

Lower 

Flammability 

Limit 

[% volume] 

Higher 

Flammability 

Limit 

[% volume] 

Limiting Air 

Concentration 

[% volume] 

Limiting 

Oxygen 

Concentration 

[% volume] 

20 4.1 75.6 20.4 4.3 

100 3.4 77.6 19.1 4.0 

200 2.9 81.3 15.0 3.2 

300 2.0 83.9 10.9 2.3 

400 1.4 87.6 6.2 1.3 
 

Table A.2: Pressure effects on hydrogen flammability limits at 20℃ [52] 

Pressure [bar] 

Lower 

Flammability 

Limit 

[% volume] 

Higher 

Flammability 

Limit 

[% volume] 

Limiting Air 

Concentration 

[% volume] 

Limiting 

Oxygen 

Concentration 

[% volume] 

1 4.3 78.5 21.5 4.5 

10 4.9 72.4 27.6 5.8 

100 5.8 74.1 25.9 5.4 

 

In the below diagrams the effects of changing the concentration of reactants (𝐻2, 𝑂2, 𝑎𝑛𝑑 𝑁2) 
in two different temperatures, 20℃ and 400℃, and atmospheric pressure on the flammability 

limits are shown. 

 
Figure A.3: Flammability diagram for 𝐻2 − 𝑂2 − 𝑁2 mixture at 20℃ and atmospheric pressure [52] 
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Figure A.4: Flammability diagram for 𝐻2 − 𝑂2 − 𝑁2 mixture at 400℃ and atmoshpheric pressure [52]
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Appendix B Hydrogen Storage Approaches 

 

 

Figure B.1: Subcategories of the two main hydrogen storage approaches, physical-based storage and material-

based storage [5]
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Appendix C The Algorithm (Flowchart) of the Original USN-FLIC Code 

 

 
Figure C.1: Flowchart of the original USN-FLIC code [22]



 

 

  8 Appendices 

82 

Appendix D The Core Section of the Particle Tracking function 

 

This function is written based on the variables of the USN-FLIC code and in order to run it 

needs (I) the initial position of the specific particle (X_p_0, Y_p_0), (II) the time when the 

particle was at this point (t_p_0), (III) the real time of the simulation (time), (IV) and the 

stored velocity matrices in x and y directions (ux and uy) corresponding to this time, (V) and 

finally, the grid resolutions (dx, dy). 

 

function [X_p,Y_p,time_p] = pathLine(X_p_0,Y_p_0,time,time_0,t_p_0,ux,uy,j,dx,dy) 
  

%%%%%%%%%%%%%%%%%%%%%%%%%%% Particle Tracking %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This function is written to find the pathline (particle tracking) of a  % 

% specified particle with entering the initial location(X0_p,Y0_p) of that% 

% particle in the domain.                                                 % 

% Keivan A.Gh   May,2020                                                  % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

fileName_ux_0 = ['C:\Users\...\ux_',num2str(j-0.5),'.mat']; 

fileName_uy_0 = ['C:\Users\...\uy_',num2str(j-0.5),'.mat']; 

  

ux_0 = importdata(fileName_ux_0); 

uy_0 = importdata(fileName_uy_0); 

  

dt_p = time - t_p_0; 

ii = fix(X_p_0); 

jj = fix(Y_p_0); 

  

%% 

ux_ave = (ux_0(ii,jj)+ux_0(ii+1,jj)+ux_0(ii,jj+1)+ux_0(ii+1,jj+1))/4; 

uy_ave = (uy_0(ii,jj)+uy_0(ii+1,jj)+uy_0(ii,jj+1)+uy_0(ii+1,jj+1))/4; 

  

X_p = (ux_ave * dt_p)/dx + X_p_0; 

Y_p = (uy_ave * dt_p)/dy + Y_p_0; 

  

if X_p >= ii+1 

    dt_x = ((ii+1) - X_p_0)*dx/ux_ave; 

elseif X_p < ii 

    dt_x = (ii - X_p_0)*dx/ux_ave; 

else 

    dt_x = dt_p; 

end 

  

if Y_p >= jj+1 

    dt_y = ((jj+1) - Y_p_0)*dy/uy_ave; 

elseif Y_p < jj 

    dt_y = (jj - Y_p_0)*dy/uy_ave; 

else 

    dt_y = dt_p; 

end 

  

if dt_x == 0 && dt_y == 0 

    ux_ave_0 = (ux_0(ii-1,jj-1)+ux_0(ii,jj-1)+ux_0(ii-1,jj)+ux_0(ii,jj))/4; 

    uy_ave_0 = (uy_0(ii-1,jj-1)+uy_0(ii,jj-1)+uy_0(ii-1,jj)+uy_0(ii,jj))/4; 

    if ux_ave_0 >= 0 && uy_ave_0 >=0 

         

        dt_x = dt_p; 

        dt_y = dt_p; 

        dt_p = min([dt_x,dt_y,dt_p]); 

         

        X_p = X_p_0; 

        Y_p = Y_p_0; 
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    elseif ux_ave_0 >= 0 && uy_ave_0 < 0 

         

        dt_x = dt_p; 

        dt_y = -dy/uy_ave_0; 

        dt_p = min([dt_x,dt_y,dt_p]); 

         

        X_p = X_p_0; 

        Y_p = (uy_ave_0 * dt_p)/dy + Y_p_0; 

         

    elseif ux_ave_0 < 0 && uy_ave_0 >= 0 

         

        dt_x = -dx/ux_ave_0; 

        dt_y = dt_p; 

        dt_p = min([dt_x,dt_y,dt_p]); 

         

        X_p = (ux_ave_0 * dt_p)/dx + X_p_0; 

        Y_p = Y_p_0; 

    else 

        dt_x = -dx/ux_ave_0; 

        dt_y = -dy/uy_ave_0; 

        dt_p = min([dt_x,dt_y,dt_p]); 

         

        X_p = (ux_ave_0 * dt_p)/dx + X_p_0; 

        Y_p = (uy_ave_0 * dt_p)/dy + Y_p_0; 

         

    end 

     

elseif dt_x == 0 && dt_y ~= 0 

    ux_ave_0 = (ux_0(ii-1,jj)+ux_0(ii,jj)+ux_0(ii-1,jj+1)+ux_0(ii,jj+1))/4; 

    uy_ave_0 = (uy_0(ii-1,jj)+uy_0(ii,jj)+uy_0(ii-1,jj+1)+uy_0(ii,jj+1))/4; 

     

    Y_p = (uy_ave_0 * dt_p)/dy + Y_p_0; 

    if Y_p >= jj+1 

        dt_y = ((jj+1) - Y_p_0)*dy/uy_ave_0; 

    elseif Y_p < jj 

        dt_y = (jj - Y_p_0)*dy/uy_ave_0; 

    else 

        dt_y = dt_p; 

    end 

     

    if ux_ave_0 >= 0 

         

        dt_x = dt_p; 

        dt_p = min([dt_x,dt_y,dt_p]); 

         

        X_p = X_p_0; 

        Y_p = (uy_ave_0 * dt_p)/dy + Y_p_0; 

    else 

        dt_x = -dx/ux_ave_0; 

        dt_p = min([dt_x,dt_y,dt_p]); 

         

        X_p = (ux_ave_0 * dt_p)/dx + X_p_0; 

        Y_p = (uy_ave_0 * dt_p)/dy + Y_p_0; 

    end 

     

elseif dt_x ~= 0 && dt_y == 0 

    ux_ave_0 = (ux_0(ii,jj-1)+ux_0(ii+1,jj-1)+ux_0(ii,jj)+ux_0(ii+1,jj))/4; 

    uy_ave_0 = (uy_0(ii,jj-1)+uy_0(ii+1,jj-1)+uy_0(ii,jj)+uy_0(ii+1,jj))/4; 

     

    X_p = (ux_ave_0 * dt_p)/dx + X_p_0; 

    if X_p >= ii+1 

        dt_x = ((ii+1) - X_p_0)*dx/ux_ave_0; 

    elseif X_p < ii 

        dt_x = (ii - X_p_0)*dx/ux_ave_0; 

    else 
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        dt_x = dt_p; 

    end 

     

    if uy_ave_0 >= 0 

         

        dt_y = dt_p; 

        dt_p = min([dt_x,dt_y,dt_p]); 

         

        X_p = (ux_ave_0 * dt_p)/dx + X_p_0; 

        Y_p = Y_p_0; 

    else 

        dt_y = -dy/uy_ave_0; 

        dt_p = min([dt_x,dt_y,dt_p]); 

         

        X_p = (ux_ave_0 * dt_p)/dx + X_p_0; 

        Y_p = (uy_ave_0 * dt_p)/dy + Y_p_0; 

    end 

else 

    dt_p = min([dt_x,dt_y,dt_p]); 

     

    X_p = (ux_ave * dt_p)/dx + X_p_0; 

    Y_p = (uy_ave * dt_p)/dy + Y_p_0; 

end 

  

time_p = t_p_0 + dt_p; 

%[X_p Y_p time_p]
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Appendix E Settings of the System Sub-Dictionaries 

 

E.1 controlDict 
/*--------------------------------*- C++ -*----------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  7 

     \\/     M anipulation  | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      controlDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

application     rhoReactingCentralFoam; 
 

startFrom       latestTime; 
 

startTime       0; 
 

stopAt          endTime; 
 

endTime         1e-04; 
 

deltaT          1e-09; 
 

writeControl    adjustableRunTime; 
 

writeInterval   5e-07; 
 

purgeWrite      0; 
 

writeFormat     binary; 
 

writePrecision  8; 
 

writeCompression off; 
 

timeFormat      general; 
 

timePrecision   6; 
 

graphFormat     raw; 
 

runTimeModifiable  true; 
 

adjustTimeStep   yes; 
 

useAcousticCourant  yes; 
 

maxCo            0.1; 
 

maxDeltaT        1e-06; 
 

maxAcousticCo  0.1; 
 

functions 

{ 

 #includeFunc residuals 
  

 #includeFunc minMaxMagnitude 

} 

 

 

// ************************************************************************* // 
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E.2 fvSchemes 
/*--------------------------------*- C++ -*----------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  7 

     \\/     M anipulation  | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvSchemes; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

fluxScheme      Kurganov; 
 

ddtSchemes 

{ 

    default         Euler; 

} 
 

gradSchemes 

{ 

    default         Gauss linear; 

} 
 

divSchemes 

{ 

    default         none; 

    div(tauMC)      Gauss linear; 

    div(phi,O2)     Gauss vanLeer01; 

    div(phi,H2)     Gauss vanLeer01; 

    div(phi,H2O)    Gauss vanLeer01; 

    div(phi,N2)     Gauss vanLeer01; 

    div(phi,Yi_h)   Gauss vanLeer01; 
 

    div(phi,k)      Gauss vanLeer; 

    div(phi,omega)  Gauss vanLeer; 

} 
 

laplacianSchemes 

{ 

    default         Gauss linear uncorrected; 

} 
 

interpolationSchemes 

{ 

    default         linear; 

    reconstruct(rho)vanLeer; 

    reconstruct(U)  vanLeerV; 

    reconstruct(T)  vanLeer; 

    reconstruct(Yi) vanLeer; 

} 
 

snGradSchemes 

{ 

    default         uncorrected; 

} 
 

wallDist 

{ 

    method meshWave; 

} 

 

// ************************************************************************* // 
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E.3 fvSolutions 
/*--------------------------------*- C++ -*----------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  7 

     \\/     M anipulation  | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvSolution; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

solvers 

{ 

    "(rho|rhoU|rhoE)" 

    { 

        solver          diagonal; 

    } 
 

    U 

    { 

        solver          PBiCGStab; 

        preconditioner  DIC; 

        tolerance       1e-15; 

        relTol          0; 

    } 
 

    "(k|epsilon|omega)" 

    { 

        solver          smoothSolver; 

        smoother        symGaussSeidel; 

        tolerance       1e-06; 

        relTol          0.01; 

    } 
 

    "(k|epsilon|omega)Final" 

    { 

        $U; 

        tolerance       1e-06; 

        relTol          0; 

    } 
 

    h 

    { 

        $U; 

        tolerance       1e-10; 

        relTol          0; 

    } 
 

    e 

    { 

        $U; 

        tolerance       1e-10; 

        relTol          0; 

    } 
  

    "(O2|H2|H2O|N2|Yi)" 

    { 

        solver          PBiCGStab; 

        preconditioner  DILU; 

        tolerance       1e-10; 

        relTol          0; 

    } 

} 
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CENTRAL 

{ 

} 
 

relaxationFactors 

{ 

    equations 

    { 

        ".*"            0.3; 

    } 

} 
 

 

// ************************************************************************* //
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Appendix F thermo.compressibleGas Dictionary for the Initial Simulations 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  7 

     \\/     M anipulation  | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "constant"; 

    object      thermo.compressibleGas; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

O2 

{ 

    specie 

    { 

        molWeight       31.9988; 

    } 

    thermodynamics 

    { 

        Tlow            200; 

        Thigh           5000; 

        Tcommon         1000; 

        highCpCoeffs    ( 3.28253784 0.00148308754 -7.57966669e-07 2.09470555e-10 

   -2.16717794e-14 -1088.45772 5.45323129 ); 

        lowCpCoeffs     ( 3.78245636 -0.00299673416 9.84730201e-06 -9.68129509e-09 

   3.24372837e-12 -1063.94356 3.65767573 ); 

    } 

    transport 

    { 

        As              1.512e-06; 

        Ts              120; 

    } 

    elements 

    { 

        O               2; 

    } 

    equationOfState 

    { 

   Tc        154.6; 

   Vc        73.4e-03; 

 Zc        0.288; 

   Pc        50.43e05; 

   omega       0.022; 

    } 

} 

 

H2 

{ 

    specie 

    { 

        molWeight       2.01594; 

    } 

    thermodynamics 

    { 

        Tlow            200; 

        Thigh           5000; 

        Tcommon         1000; 
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        highCpCoeffs    ( 3.3372792 -4.94024731e-05 4.99456778e-07 -1.79566394e-10 

   2.00255376e-14 -950.158922 -3.20502331 ); 

        lowCpCoeffs     ( 2.34433112 0.00798052075 -1.9478151e-05 2.01572094e-08  

   -7.37611761e-12 -917.935173 0.683010238 ); 

    } 

    transport 

    { 

        As              6.362e-07; 

        Ts              72; 

    } 

    elements 

    { 

        H               2; 

    } 

    equationOfState 

    { 

   Tc        33.19; 

   Vc        64.1e-03; 

 Zc        0.305; 

   Pc        13.13e05; 

   omega      -0.216; 

    } 

} 

 

N2 

{ 

    specie 

    { 

        molWeight       28.0134; 

    } 

    thermodynamics 

    { 

        Tlow            250; 

        Thigh           5000; 

        Tcommon         1000; 

        highCpCoeffs    ( 2.92664 0.0014879768 -5.68476e-07 1.0097038e-10  

   -6.753351e-15 -922.7977 5.980528 ); 

        lowCpCoeffs     ( 3.298677 0.0014082404 -3.963222e-06 5.641515e-09  

   -2.444854e-12 -1020.8999 3.950372 ); 

    } 

    transport 

    { 

        As              1.512e-06; 

        Ts              120; 

    } 

    elements 

    { 

        N               2; 

    } 

    equationOfState 

    { 

   Tc        126.2; 

   Vc        89.2e-03; 

 Zc        0.289; 

   Pc        34.00e05; 

   omega       0.038; 

    } 

} 

 

// ************************************************************************* //
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Appendix G Implemented nasa9Poly Thermodynamic Model 

 
G.1 nasa9PolyThermo.C 
 

/*---------------------------------------------------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Copyright (C) 2011-2018 OpenFOAM Foundation 

     \\/     M anipulation  | 

------------------------------------------------------------------------------- 

License 

    This file is part of OpenFOAM. 
 

    OpenFOAM is free software: you can redistribute it and/or modify it 

    under the terms of the GNU General Public License as published by 

    the Free Software Foundation, either version 3 of the License, or 

    (at your option) any later version. 
 

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

    for more details. 
 

    You should have received a copy of the GNU General Public License 

    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 

Keivan A.Gh / 28, Oct, 2020:  

Description: Tcommon1 and Tcommon2 could be the same for those elements and binary 

   molecules that do not have 3 different regions! For these kind of 

   data midCpCoeffs could be the same as highCpCoeffs. 
 

\*---------------------------------------------------------------------------*/ 
 

#include "nasa9PolyThermo.H" 

#include "IOstreams.H" 
 

// * * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * // 
 

template<class EquationOfState> 

void Foam::nasa9PolyThermo<EquationOfState>::checkInputData() const 

{ 

    if (Tlow_ >= Thigh_) 

    { 

        FatalErrorInFunction 

            << "Tlow(" << Tlow_ << ") >= Thigh(" << Thigh_ << ')' 

            << exit(FatalError); 

    } 
 

    if (Tcommon1_ <= Tlow_) 

    { 

        FatalErrorInFunction 

            << "Tcommon1(" << Tcommon1_ << ") <= Tlow(" << Tlow_ << ')' 

            << exit(FatalError); 

    } 
 

 if (Tcommon2_ < Tcommon1_) 

    { 

        FatalErrorInFunction 

            << "Tcommon2(" << Tcommon2_ << ") < Tcommon1(" << Tcommon1_ << ')' 

            << exit(FatalError); 

    } 

  

    if (Tcommon2_ > Thigh_) 

    { 

        FatalErrorInFunction 

            << "Tcommon2(" << Tcommon2_ << ") > Thigh(" << Thigh_ << ')' 

            << exit(FatalError); 

    } 

} 
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// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 

template<class EquationOfState> 

Foam::nasa9PolyThermo<EquationOfState>::nasa9PolyThermo(const dictionary& dict) 

: 

    EquationOfState(dict), 

    Tlow_(readScalar(dict.subDict("thermodynamics").lookup("Tlow"))), 

    Thigh_(readScalar(dict.subDict("thermodynamics").lookup("Thigh"))), 

    Tcommon1_(readScalar(dict.subDict("thermodynamics").lookup("Tcommon1"))), 

    Tcommon2_(readScalar(dict.subDict("thermodynamics").lookup("Tcommon2"))), 

    highCpCoeffs_(dict.subDict("thermodynamics").lookup("highCpCoeffs")), 

    midCpCoeffs_(dict.subDict("thermodynamics").lookup("midCpCoeffs")), 

    lowCpCoeffs_(dict.subDict("thermodynamics").lookup("lowCpCoeffs")) 

{ 

    // Convert coefficients to mass-basis 

    for (label coefLabel=0; coefLabel<nCoeffs_; coefLabel++) 

    { 

        highCpCoeffs_[coefLabel] *= this->R(); 

    midCpCoeffs_[coefLabel] *= this->R(); 

        lowCpCoeffs_[coefLabel] *= this->R(); 

    } 

 

    checkInputData(); 

} 
 

 

// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 

template<class EquationOfState> 

void Foam::nasa9PolyThermo<EquationOfState>::write(Ostream& os) const 

{ 

    EquationOfState::write(os); 

 

    // Convert coefficients back to dimensionless form 

    coeffArray highCpCoeffs; 

    coeffArray midCpCoeffs; 

    coeffArray lowCpCoeffs; 

    for (label coefLabel=0; coefLabel<nCoeffs_; coefLabel++) 

    { 

        highCpCoeffs[coefLabel] = highCpCoeffs_[coefLabel]/this->R(); 

    midCpCoeffs[coefLabel] = midCpCoeffs_[coefLabel]/this->R(); 

        lowCpCoeffs[coefLabel] = lowCpCoeffs_[coefLabel]/this->R(); 

    } 
 

    dictionary dict("thermodynamics"); 

    dict.add("Tlow", Tlow_); 

    dict.add("Thigh", Thigh_); 

    dict.add("Tcommon1", Tcommon1_); 

    dict.add("Tcommon2", Tcommon2_); 

    dict.add("highCpCoeffs", highCpCoeffs); 

    dict.add("midCpCoeffs", midCpCoeffs); 

    dict.add("lowCpCoeffs", lowCpCoeffs); 

    os  << indent << dict.dictName() << dict; 

} 
 

 

// * * * * * * * * * * * * * * * Ostream Operator  * * * * * * * * * * * * * // 
 

template<class EquationOfState> 

Foam::Ostream& Foam::operator<< 

( 

    Ostream& os, 

    const nasa9PolyThermo<EquationOfState>& jt 

) 

{ 

    jt.write(os); 

    return os; 

} 

 

// ************************************************************************* //



 

 

  8 Appendices 

93 

G.2 nasa9PolyThermo.H 
 

/*---------------------------------------------------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Copyright (C) 2011-2019 OpenFOAM Foundation 

     \\/     M anipulation  | 

------------------------------------------------------------------------------- 

License 

    This file is part of OpenFOAM. 
 

    OpenFOAM is free software: you can redistribute it and/or modify it 

    under the terms of the GNU General Public License as published by 

    the Free Software Foundation, either version 3 of the License, or 

    (at your option) any later version. 
 

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

    for more details. 
 

    You should have received a copy of the GNU General Public License 

    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 

Keivan A.Gh / 28, Oct, 2020: 

Class 

    Foam::nasa9PolyThermo 
 

Description 

    JANAF tables based thermodynamics package (with 9 Coefficients) templated 

    into the equation of state. 
 

SourceFiles 

    nasa9PolyThermoI.H 

    nasa9PolyThermo.C 
 

\*---------------------------------------------------------------------------*/ 
 

#ifndef nasa9PolyThermo_H 

#define nasa9PolyThermo_H 
 

#include "scalar.H" 

#include "FixedList.H" 
 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

namespace Foam 

{ 
 

// Forward declaration of friend functions and operators 
 

template<class EquationOfState> class nasa9PolyThermo; 
 

template<class EquationOfState> 

inline nasa9PolyThermo<EquationOfState> operator+ 

( 

    const nasa9PolyThermo<EquationOfState>&, 

    const nasa9PolyThermo<EquationOfState>& 

); 
 

template<class EquationOfState> 

inline nasa9PolyThermo<EquationOfState> operator* 

( 

    const scalar, 

    const nasa9PolyThermo<EquationOfState>& 

); 
 

template<class EquationOfState> 

inline nasa9PolyThermo<EquationOfState> operator== 

( 

    const nasa9PolyThermo<EquationOfState>&, 
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    const nasa9PolyThermo<EquationOfState>& 

); 
 

template<class EquationOfState> 

Ostream& operator<< 

( 

    Ostream&, 

    const nasa9PolyThermo<EquationOfState>& 

); 
 

 

/*---------------------------------------------------------------------------*\ 

                           Class nasa9PolyThermo Declaration 

\*---------------------------------------------------------------------------*/ 
 

template<class EquationOfState> 

class nasa9PolyThermo 

: 

    public EquationOfState 

{ 
 

public: 
 

    // Public data 
 

        static const int nCoeffs_ = 9; 

        typedef FixedList<scalar, nCoeffs_> coeffArray; 
 

 

private: 
 

    // Private Data 
 

        // Temperature limits of applicability of functions 

        scalar Tlow_, Thigh_, Tcommon1_, Tcommon2_; 
 

        coeffArray highCpCoeffs_; 

        coeffArray midCpCoeffs_; 

        coeffArray lowCpCoeffs_; 
 

 

    // Private Member Functions 
 

        //- Check that input data is valid 

        void checkInputData() const; 
 

        //- Return the coefficients corresponding to the given temperature 

        inline const coeffArray& coeffs(const scalar T) const; 
 

 

public: 
 

    // Constructors 
 

        //- Construct from components 

        inline nasa9PolyThermo 

        ( 

            const EquationOfState& st, 

            const scalar Tlow, 

            const scalar Thigh, 

            const scalar Tcommon1, 

            const scalar Tcommon2, 

            const coeffArray& highCpCoeffs, 

            const coeffArray& midCpCoeffs, 

            const coeffArray& lowCpCoeffs, 

            const bool convertCoeffs = false 

        ); 
 

        //- Construct from dictionary 

        nasa9PolyThermo(const dictionary& dict); 
 

        //- Construct as a named copy 

        inline nasa9PolyThermo(const word&, const nasa9PolyThermo&); 
 
 

    // Member Functions 
 

        //- Return the instantiated type name 
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        static word typeName() 

        { 

            return "nasa9Poly<" + EquationOfState::typeName() + '>'; 

        } 
 

        //- Limit the temperature to be in the range Tlow_ to Thigh_ 

        inline scalar limit(const scalar T) const; 
 

 

        // Access 
 

            //- Return const access to the low temperature limit 

            inline scalar Tlow() const; 
 

            //- Return const access to the high temperature limit 

            inline scalar Thigh() const; 
 

            //- Return const access to the common1 temperature 

            inline scalar Tcommon1() const; 

    

   //- Return const access to the common2 temperature 

            inline scalar Tcommon2() const; 
 

            //- Return const access to the high temperature poly coefficients 

            inline const coeffArray& highCpCoeffs() const; 

    

   //- Return const access to the middle temperature poly coefficients 

            inline const coeffArray& midCpCoeffs() const; 
 

            //- Return const access to the low temperature poly coefficients 

            inline const coeffArray& lowCpCoeffs() const; 
 

 

        // Fundamental properties 
 

            //- Heat capacity at constant pressure [J/kg/K] 

            inline scalar Cp(const scalar p, const scalar T) const; 
 

            //- Absolute Enthalpy [J/kg] 

            inline scalar Ha(const scalar p, const scalar T) const; 
 

            //- Sensible enthalpy [J/kg] 

            inline scalar Hs(const scalar p, const scalar T) const; 
 

            //- Chemical enthalpy [J/kg] 

            inline scalar Hc() const; 
 

            //- Entropy [J/kg/K] 

            inline scalar S(const scalar p, const scalar T) const; 
 

            #include "HtoEthermo.H" 
 

 

        // Derivative term used for Jacobian 
 

            //- Derivative of Gibbs free energy w.r.t. temperature 

            inline scalar dGdT(const scalar p, const scalar T) const; 
 

            //- Temperature derivative of heat capacity at constant pressure 

            inline scalar dCpdT(const scalar p, const scalar T) const; 
 

 

        // I-O 
 

            //- Write to Ostream 

            void write(Ostream& os) const; 
 

 

    // Member Operators 
 

        inline void operator+=(const nasa9PolyThermo&); 
 

 

    // Friend operators 
 

        friend nasa9PolyThermo operator+ <EquationOfState> 

        ( 

            const nasa9PolyThermo&, 

            const nasa9PolyThermo& 

        ); 
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        friend nasa9PolyThermo operator* <EquationOfState> 

        ( 

            const scalar, 

            const nasa9PolyThermo& 

        ); 
 

        friend nasa9PolyThermo operator== <EquationOfState> 

        ( 

            const nasa9PolyThermo&, 

            const nasa9PolyThermo& 

        ); 
 

 

    // Ostream Operator 
 

        friend Ostream& operator<< <EquationOfState> 

        ( 

            Ostream&, 

            const nasa9PolyThermo& 

        ); 

}; 
 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

} // End namespace Foam 
 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

#include "nasa9PolyThermoI.H" 
 

#ifdef NoRepository 

    #include "nasa9PolyThermo.C" 

#endif 
 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

#endif 
 

// ************************************************************************* // 

 

 

 

G.3 nasa9PolyThermoI.H 
 

/*---------------------------------------------------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Copyright (C) 2011-2018 OpenFOAM Foundation 

     \\/     M anipulation  | 

------------------------------------------------------------------------------- 

License 

    This file is part of OpenFOAM. 
 

    OpenFOAM is free software: you can redistribute it and/or modify it 

    under the terms of the GNU General Public License as published by 

    the Free Software Foundation, either version 3 of the License, or 

    (at your option) any later version. 
 

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

    for more details. 
 

    You should have received a copy of the GNU General Public License 

    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 

Keivan A.Gh / 28, Oct, 2020: 
 

\*---------------------------------------------------------------------------*/ 
 

#include "nasa9PolyThermo.H" 

#include "specie.H" 
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// * * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * // 
 

template<class EquationOfState> 

inline Foam::nasa9PolyThermo<EquationOfState>::nasa9PolyThermo 

( 

    const EquationOfState& st, 

    const scalar Tlow, 

    const scalar Thigh, 

    const scalar Tcommon1, 

    const scalar Tcommon2, 

    const typename nasa9PolyThermo<EquationOfState>::coeffArray& highCpCoeffs, 

    const typename nasa9PolyThermo<EquationOfState>::coeffArray& midCpCoeffs, 

    const typename nasa9PolyThermo<EquationOfState>::coeffArray& lowCpCoeffs, 

    const bool convertCoeffs 

) 

: 

    EquationOfState(st), 

    Tlow_(Tlow), 

    Thigh_(Thigh), 

    Tcommon1_(Tcommon1), 

    Tcommon2_(Tcommon2) 

{ 

    if (convertCoeffs) 

    { 

        for (label coefLabel=0; coefLabel<nCoeffs_; coefLabel++) 

        { 

            highCpCoeffs_[coefLabel] = highCpCoeffs[coefLabel]*this->R(); 

        midCpCoeffs_[coefLabel] = midCpCoeffs[coefLabel]*this->R(); 

            lowCpCoeffs_[coefLabel] = lowCpCoeffs[coefLabel]*this->R(); 

        } 

    } 

    else 

    { 

        for (label coefLabel=0; coefLabel<nCoeffs_; coefLabel++) 

        { 

            highCpCoeffs_[coefLabel] = highCpCoeffs[coefLabel]; 

        midCpCoeffs_[coefLabel] = midCpCoeffs[coefLabel]; 

            lowCpCoeffs_[coefLabel] = lowCpCoeffs[coefLabel]; 

        } 

    } 

} 
 

 

template<class EquationOfState> 

inline const typename Foam::nasa9PolyThermo<EquationOfState>::coeffArray& 

Foam::nasa9PolyThermo<EquationOfState>::coeffs 

( 

    const scalar T 

) const 

{ 

    if (T < Tcommon1_) 

    { 

        return lowCpCoeffs_; 

    } 

 else if (T < Tcommon2_) 

 { 

    return midCpCoeffs_; 

 } 

    else 

    { 

        return highCpCoeffs_; 

    } 

} 
 

 

// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 

template<class EquationOfState> 
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inline Foam::nasa9PolyThermo<EquationOfState>::nasa9PolyThermo 

( 

    const word& name, 

    const nasa9PolyThermo& jt 

) 

: 

    EquationOfState(name, jt), 

    Tlow_(jt.Tlow_), 

    Thigh_(jt.Thigh_), 

    Tcommon1_(jt.Tcommon1_), 

    Tcommon2_(jt.Tcommon2_) 

{ 

    for (label coefLabel=0; coefLabel<nCoeffs_; coefLabel++) 

    { 

        highCpCoeffs_[coefLabel] = jt.highCpCoeffs_[coefLabel]; 

    midCpCoeffs_[coefLabel] = jt.midCpCoeffs_[coefLabel]; 

        lowCpCoeffs_[coefLabel] = jt.lowCpCoeffs_[coefLabel]; 

    } 

} 
 

 

// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::limit 

( 

    const scalar T 

) const 

{ 

    if (T < Tlow_ || T > Thigh_) 

    { 

        WarningInFunction 

            << "attempt to use nasa9PolyThermo<EquationOfState>" 

               " out of temperature range " 

            << Tlow_ << " -> " << Thigh_ << ";  T = " << T 

            << endl; 

 

        return min(max(T, Tlow_), Thigh_); 

    } 

    else 

    { 

        return T; 

    } 

} 
 

 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::Tlow() const 

{ 

    return Tlow_; 

} 
 
 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::Thigh() const 

{ 

    return Thigh_; 

} 
 

 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::Tcommon1() const 

{ 

    return Tcommon1_; 

} 
 

 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::Tcommon2() const 

{ 

    return Tcommon2_; 

} 
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template<class EquationOfState> 

inline const typename Foam::nasa9PolyThermo<EquationOfState>::coeffArray& 

Foam::nasa9PolyThermo<EquationOfState>::highCpCoeffs() const 

{ 

    return highCpCoeffs_; 

} 
 

 

template<class EquationOfState> 

inline const typename Foam::nasa9PolyThermo<EquationOfState>::coeffArray& 

Foam::nasa9PolyThermo<EquationOfState>::midCpCoeffs() const 

{ 

    return midCpCoeffs_; 

} 
 
 

template<class EquationOfState> 

inline const typename Foam::nasa9PolyThermo<EquationOfState>::coeffArray& 

Foam::nasa9PolyThermo<EquationOfState>::lowCpCoeffs() const 

{ 

    return lowCpCoeffs_; 

} 
 

 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::Cp 

( 

    const scalar p, 

    const scalar T 

) const 

{ 

    const coeffArray& a = coeffs(T); 

    return 

        ((((a[6]*T + a[5])*T + a[4])*T + a[3])*T + a[2]) 

        + (a[0]/T + a[1])/T 

        + EquationOfState::Cp(p, T); 

} 
 

 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::Ha 

( 

    const scalar p, 

    const scalar T 

) const 

{ 

    const coeffArray& a = coeffs(T); 

    return 

    ( 

       ((((a[6]/5.0*T + a[5]/4.0)*T + a[4]/3.0)*T + a[3]/2.0)*T + a[2])*T 

   + (-a[0]/T + a[1]*log(T)) 

   + a[7] 

    )  + EquationOfState::H(p, T); 

} 
 

 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::Hs 

( 

    const scalar p, 

    const scalar T 

) const 

{ 

    return Ha(p, T) - Hc(); 

} 
 

 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::Hc() const 

{ 

    const coeffArray& a = lowCpCoeffs_; 

    return 

    ( 
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        ((((a[6]/5.0*Tstd + a[5]/4.0)*Tstd + a[4]/3.0)*Tstd + a[3]/2.0)*Tstd  

       + a[2])*Tstd  

       + (-a[0]/Tstd + a[1]*log(Tstd)) 

       + a[7] 

    ); 

} 
 

 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::S 

( 

    const scalar p, 

    const scalar T 

) const 

{ 

    const coeffArray& a = coeffs(T); 

    return 

    ( 

       (((a[6]/4.0*T + a[5]/3.0)*T + a[4]/2.0)*T + a[3])*T + a[2]*log(T) 

   + (-a[0]/2.0/T - a[1])/T 

       + a[8] 

    )  + EquationOfState::S(p, T); 

} 
 

 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::dGdT 

( 

    const scalar p, 

    const scalar T 

) const 

{ 

    const coeffArray& a = coeffs(T); 

    return -( 

     ((-a[0]/T + a[1]*log(T))/T + a[2] + a[7]/T)/T  

     + a[3]/2 + T*(a[4]/3 + T*(a[5]/4 + T*a[6]/5)) 

        ); 

} 
 

 

template<class EquationOfState> 

inline Foam::scalar Foam::nasa9PolyThermo<EquationOfState>::dCpdT 

( 

    const scalar p, 

    const scalar T 

) const 

{ 

    const coeffArray& a = coeffs(T); 

    return 

        ( 

   (((4*a[6]*T + 3*a[5])*T + 2*a[4])*T + a[3]) 

     + ((-2*a[0]/T - a[1])/T)/T 

    ); 

} 
 

 

// * * * * * * * * * * * * * * * Member Operators  * * * * * * * * * * * * * // 
 

template<class EquationOfState> 

inline void Foam::nasa9PolyThermo<EquationOfState>::operator+= 

( 

    const nasa9PolyThermo<EquationOfState>& jt 

) 

{ 

    scalar Y1 = this->Y(); 

 

    EquationOfState::operator+=(jt); 

 

    if (mag(this->Y()) > small) 

    { 

        Y1 /= this->Y(); 
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        const scalar Y2 = jt.Y()/this->Y(); 
 

        Tlow_ = max(Tlow_, jt.Tlow_); 

        Thigh_ = min(Thigh_, jt.Thigh_); 
 

        if 

        ( 

            nasa9PolyThermo<EquationOfState>::debug 

         && notEqual(Tcommon1_, jt.Tcommon1_) 

        ) 

        { 

            FatalErrorInFunction 

                << "Tcommon1 " << Tcommon1_ << " for " 

                << (this->name().size() ? this->name() : "others") 

                << " != " << jt.Tcommon1_ << " for " 

                << (jt.name().size() ? jt.name() : "others") 

                << exit(FatalError); 

        } 

   

  if 

        ( 

            nasa9PolyThermo<EquationOfState>::debug 

         && notEqual(Tcommon2_, jt.Tcommon2_) 

        ) 

        { 

            FatalErrorInFunction 

                << "Tcommon2 " << Tcommon2_ << " for " 

                << (this->name().size() ? this->name() : "others") 

                << " != " << jt.Tcommon2_ << " for " 

                << (jt.name().size() ? jt.name() : "others") 

                << exit(FatalError); 

        } 
 

        for 

        ( 

            label coefLabel=0; 

            coefLabel<nasa9PolyThermo<EquationOfState>::nCoeffs_; 

            coefLabel++ 

        ) 

        { 

            highCpCoeffs_[coefLabel] = 

                Y1*highCpCoeffs_[coefLabel] 

              + Y2*jt.highCpCoeffs_[coefLabel]; 

 

   midCpCoeffs_[coefLabel] = 

                Y1*midCpCoeffs_[coefLabel] 

              + Y2*jt.midCpCoeffs_[coefLabel]; 

      

            lowCpCoeffs_[coefLabel] = 

                Y1*lowCpCoeffs_[coefLabel] 

              + Y2*jt.lowCpCoeffs_[coefLabel]; 

        } 

    } 

} 
 

 

// * * * * * * * * * * * * * * * Friend Operators  * * * * * * * * * * * * * // 

 

template<class EquationOfState> 

inline Foam::nasa9PolyThermo<EquationOfState> Foam::operator+ 

( 

    const nasa9PolyThermo<EquationOfState>& jt1, 

    const nasa9PolyThermo<EquationOfState>& jt2 

) 

{ 

    EquationOfState eofs = jt1; 

    eofs += jt2; 
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    if (mag(eofs.Y()) < small) 

    { 

        return nasa9PolyThermo<EquationOfState> 

        ( 

            eofs, 

            jt1.Tlow_, 

            jt1.Thigh_, 

            jt1.Tcommon1_, 

            jt1.Tcommon2_, 

            jt1.highCpCoeffs_, 

            jt1.midCpCoeffs_, 

            jt1.lowCpCoeffs_ 

        ); 

    } 

    else 

    { 

        const scalar Y1 = jt1.Y()/eofs.Y(); 

        const scalar Y2 = jt2.Y()/eofs.Y(); 
 

        typename nasa9PolyThermo<EquationOfState>::coeffArray highCpCoeffs; 

        typename nasa9PolyThermo<EquationOfState>::coeffArray midCpCoeffs; 

        typename nasa9PolyThermo<EquationOfState>::coeffArray lowCpCoeffs; 
 

        for 

        ( 

            label coefLabel=0; 

            coefLabel<nasa9PolyThermo<EquationOfState>::nCoeffs_; 

            coefLabel++ 

        ) 

        { 

            highCpCoeffs[coefLabel] = 

                Y1*jt1.highCpCoeffs_[coefLabel] 

              + Y2*jt2.highCpCoeffs_[coefLabel]; 

      

   midCpCoeffs[coefLabel] = 

                Y1*jt1.midCpCoeffs_[coefLabel] 

              + Y2*jt2.midCpCoeffs_[coefLabel]; 

 

            lowCpCoeffs[coefLabel] = 

                Y1*jt1.lowCpCoeffs_[coefLabel] 

              + Y2*jt2.lowCpCoeffs_[coefLabel]; 

        } 
 

        if 

        ( 

            nasa9PolyThermo<EquationOfState>::debug 

         && notEqual(jt1.Tcommon1_, jt2.Tcommon1_) 

        ) 

        { 

            FatalErrorInFunction 

                << "Tcommon1 " << jt1.Tcommon1_ << " for " 

                << (jt1.name().size() ? jt1.name() : "others") 

                << " != " << jt2.Tcommon1_ << " for " 

                << (jt2.name().size() ? jt2.name() : "others") 

                << exit(FatalError); 

        } 
   

  if 

        ( 

            nasa9PolyThermo<EquationOfState>::debug 

         && notEqual(jt1.Tcommon2_, jt2.Tcommon2_) 

        ) 

        { 

            FatalErrorInFunction 

                << "Tcommon2 " << jt1.Tcommon2_ << " for " 

                << (jt1.name().size() ? jt1.name() : "others") 

                << " != " << jt2.Tcommon2_ << " for " 
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                << (jt2.name().size() ? jt2.name() : "others") 

                << exit(FatalError); 

        } 
 

        return nasa9PolyThermo<EquationOfState> 

        ( 

            eofs, 

            max(jt1.Tlow_, jt2.Tlow_), 

            min(jt1.Thigh_, jt2.Thigh_), 

            jt1.Tcommon1_, 

            jt1.Tcommon2_, 

            highCpCoeffs, 

            midCpCoeffs, 

            lowCpCoeffs 

        ); 

    } 

} 
 

 

template<class EquationOfState> 

inline Foam::nasa9PolyThermo<EquationOfState> Foam::operator* 

( 

    const scalar s, 

    const nasa9PolyThermo<EquationOfState>& jt 

) 

{ 

    return nasa9PolyThermo<EquationOfState> 

    ( 

        s*static_cast<const EquationOfState&>(jt), 

        jt.Tlow_, 

        jt.Thigh_, 

        jt.Tcommon1_, 

        jt.Tcommon2_, 

        jt.highCpCoeffs_, 

        jt.midCpCoeffs_, 

        jt.lowCpCoeffs_ 

    ); 

} 
 

 

template<class EquationOfState> 

inline Foam::nasa9PolyThermo<EquationOfState> Foam::operator== 

( 

    const nasa9PolyThermo<EquationOfState>& jt1, 

    const nasa9PolyThermo<EquationOfState>& jt2 

) 

{ 

    EquationOfState eofs 

    ( 

        static_cast<const EquationOfState&>(jt1) 

     == static_cast<const EquationOfState&>(jt2) 

    ); 

 

    const scalar Y1 = jt2.Y()/eofs.Y(); 

    const scalar Y2 = jt1.Y()/eofs.Y(); 

 

    typename nasa9PolyThermo<EquationOfState>::coeffArray highCpCoeffs; 

    typename nasa9PolyThermo<EquationOfState>::coeffArray midCpCoeffs; 

    typename nasa9PolyThermo<EquationOfState>::coeffArray lowCpCoeffs; 
 

    for 

    ( 

        label coefLabel=0; 

        coefLabel<nasa9PolyThermo<EquationOfState>::nCoeffs_; 

        coefLabel++ 

    ) 

    { 

        highCpCoeffs[coefLabel] = 

            Y1*jt2.highCpCoeffs_[coefLabel] 
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          - Y2*jt1.highCpCoeffs_[coefLabel]; 
     

        midCpCoeffs[coefLabel] = 

            Y1*jt2.midCpCoeffs_[coefLabel] 

          - Y2*jt1.midCpCoeffs_[coefLabel]; 

 

        lowCpCoeffs[coefLabel] = 

            Y1*jt2.lowCpCoeffs_[coefLabel] 

          - Y2*jt1.lowCpCoeffs_[coefLabel]; 

    } 
 

    if 

    ( 

        nasa9PolyThermo<EquationOfState>::debug 

     && notEqual(jt2.Tcommon1_, jt1.Tcommon1_) 

    ) 

    { 

        FatalErrorInFunction 

            << "Tcommon1 " << jt2.Tcommon1_ << " for " 

            << (jt2.name().size() ? jt2.name() : "others") 

            << " != " << jt1.Tcommon1_ << " for " 

            << (jt1.name().size() ? jt1.name() : "others") 

            << exit(FatalError); 

    } 
  

    if 

    ( 

        nasa9PolyThermo<EquationOfState>::debug 

     && notEqual(jt2.Tcommon2_, jt1.Tcommon2_) 

    ) 

    { 

        FatalErrorInFunction 

            << "Tcommon2 " << jt2.Tcommon2_ << " for " 

            << (jt2.name().size() ? jt2.name() : "others") 

            << " != " << jt1.Tcommon2_ << " for " 

            << (jt1.name().size() ? jt1.name() : "others") 

            << exit(FatalError); 

    } 
 

    return nasa9PolyThermo<EquationOfState> 

    ( 

        eofs, 

        max(jt2.Tlow_, jt1.Tlow_), 

        min(jt2.Thigh_, jt1.Thigh_), 

        jt2.Tcommon1_, 

        jt2.Tcommon2_, 

        highCpCoeffs, 

        midCpCoeffs, 

        lowCpCoeffs 

    ); 

} 
 

 

// ************************************************************************* //
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Appendix H Implemented nasaPoly Transport Model 

 
H.1 nasaPolyTransport.C 

 
/*---------------------------------------------------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Copyright (C) 2011-2018 OpenFOAM Foundation 

     \\/     M anipulation  | 

------------------------------------------------------------------------------- 

License 

    This file is part of OpenFOAM. 

 

    OpenFOAM is free software: you can redistribute it and/or modify it 

    under the terms of the GNU General Public License as published by 

    the Free Software Foundation, either version 3 of the License, or 

    (at your option) any later version. 

 

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

    for more details. 

 

    You should have received a copy of the GNU General Public License 

    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

 

Keivan A.Gh / 15, Nov, 2020: 
 

\*---------------------------------------------------------------------------*/ 
 

#include "nasaPolyTransport.H" 

#include "IOstreams.H" 
 

// * * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * // 
 

template<class Thermo> 

void Foam::nasaPolyTransport<Thermo>::checkInputData() const 

{ 

    if (Tlow_ >= Thigh_) 

    { 

        FatalErrorInFunction 

            << "Tlow(" << Tlow_ << ") >= Thigh(" << Thigh_ << ')' 

            << exit(FatalError); 

    } 
 

    if (Tcommon_ <= Tlow_) 

    { 

        FatalErrorInFunction 

            << "Tcommon(" << Tcommon_ << ") <= Tlow(" << Tlow_ << ')' 

            << exit(FatalError); 

    } 
 

    if (Tcommon_ > Thigh_) 

    { 

        FatalErrorInFunction 

            << "Tcommon(" << Tcommon_ << ") > Thigh(" << Thigh_ << ')' 

            << exit(FatalError); 

    } 

} 
 

 

// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 

template<class Thermo> 

Foam::nasaPolyTransport<Thermo>::nasaPolyTransport(const dictionary& dict) 

: 

    Thermo(dict), 
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    Tlow_(readScalar(dict.subDict("transport").lookup("Tlow"))), 

    Thigh_(readScalar(dict.subDict("transport").lookup("Thigh"))), 

    Tcommon_(readScalar(dict.subDict("transport").lookup("Tcommon"))), 

    highMuKappaCoeffs_(dict.subDict("transport").lookup("highMuKappaCoeffs")), 

    lowMuKappaCoeffs_(dict.subDict("transport").lookup("lowMuKappaCoeffs")) 

{ 

    checkInputData(); 

} 
 

 

// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 

template<class Thermo> 

void Foam::nasaPolyTransport<Thermo>::write(Ostream& os) const 

{ 

 os  << this->name() << endl; 

     os  << token::BEGIN_BLOCK  << incrIndent << nl; 

  

 Thermo::write(os); 
 

    dictionary dict("transport"); 

    dict.add("Tlow", Tlow_); 

    dict.add("Thigh", Thigh_); 

    dict.add("Tcommon", Tcommon_); 

    dict.add("highMuKappaCoeffs",highMuKappaCoeffs_); 

    dict.add("lowMuKappaCoeffs",lowMuKappaCoeffs_); 

     

 os  << indent << dict.dictName() << dict; 

 os  << decrIndent << token::END_BLOCK << nl; 

} 
 

 

// * * * * * * * * * * * * * * * Ostream Operator  * * * * * * * * * * * * * // 
 

template<class Thermo> 

Foam::Ostream& Foam::operator<< 

( 

    Ostream& os, 

    const nasaPolyTransport<Thermo>& npt 

) 

{ 

    npt.write(os); 

    return os; 

} 
 

 

// ************************************************************************* // 

 

 

H.2 nasaPolyTransport.H 
 

/*---------------------------------------------------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Copyright (C) 2011-2019 OpenFOAM Foundation 

     \\/     M anipulation  | 

------------------------------------------------------------------------------- 

License 

    This file is part of OpenFOAM. 
 

    OpenFOAM is free software: you can redistribute it and/or modify it 

    under the terms of the GNU General Public License as published by 

    the Free Software Foundation, either version 3 of the License, or 

    (at your option) any later version. 
 

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

    for more details. 
 

    You should have received a copy of the GNU General Public License 
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    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 

Keivan A.Gh / 15, Nov, 2020: 

Class 

    Foam::nasaPolyTransport 
 

Description 

    Transport package using NASA polynomial functions for 

 \c mu and \c kappa. 
 

Usage 
 

    \table 

        Property    | Description 

        highMuKappaCoeffs<8>| Dynamic viscosity + Thermal Conductivity polynomial  

      coefficients from Tcommon to Thigh 

        lowMuKappaCoeffs<8> | Dynamic viscosity + Thermal Conductivity polynomial  

      coefficients from Tlow to Tcommon 

    \endtable 

 

    Example of the specification of the transport properties: 

    \verbatim 

    transport 

    { 

        highMuKappaCoeffs<8> ( 0.70504381, 0.36287686e+02, -0.72255550e+04, 

      0.41921607, highkappaCoeff, highkappaCoeff, 

      highkappaCoeff, highkappaCoeff ); 

        lowMuKappaCoeffs<8> ( 0.68887644, 0.48727168e+01, -0.59565053e+03, 

0.55569577, lowkappaCoeff, lowkappaCoeff, 

lowkappaCoeff, lowkappaCoeff ); 

    } 

    \endverbatim 

 

    The polynomial expressions are evaluated as so: 

 

        \f[ 

           if (T < Tcommon) 

     { 

      \mu    = exp(0.68887644*log(T) + 0.48727168e+01/T + - 

      0.59565053e+03/T^2 + 0.55569577)*1e-7 

     } 

     else 

     { 

      \mu    = exp(0.70504381*log(T) + 0.36287686e+02/T + - 

      0.72255550e+04/T^2 + 0.41921607)*1e-7 

     } 

        \f] 

 

        \f[ 

           if (T < Tcommon) 

     { 

      \kappa    = exp(...)*1e-4 

     } 

     else 

     { 

      \kappa    = exp(...)*1e-4 

     } 

        \f] 

 

Note 

    - Dynamic viscosity polynomial coefficients evaluate to an expression in 

      [Pa.s]. 

    - Thermal conductivity polynomial coefficients evaluate to an expression in 

      [W/m/K]. 

 

SourceFiles 

    nasaPolyTransportI.H 
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    nasaPolyTransport.C 
 

\*---------------------------------------------------------------------------*/ 
 

#ifndef nasaPolyTransport_H 

#define nasaPolyTransport_H 
 

#include "scalar.H" 

#include "FixedList.H" 
 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

namespace Foam 

{ 
 

// Forward declaration of friend functions and operators 
 

template<class Thermo> class nasaPolyTransport; 
 

template<class Thermo> 

inline nasaPolyTransport<Thermo> operator+ 

( 

    const nasaPolyTransport<Thermo>&, 

    const nasaPolyTransport<Thermo>& 

); 
 

template<class Thermo> 

inline nasaPolyTransport<Thermo> operator* 

( 

    const scalar, 

    const nasaPolyTransport<Thermo>& 

); 
 

template<class Thermo> 

Ostream& operator<< 

( 

    Ostream&, 

    const nasaPolyTransport<Thermo>& 

); 
 

 

/*---------------------------------------------------------------------------*\ 

                           Class nasaPolyTransport Declaration 

\*---------------------------------------------------------------------------*/ 
 

template<class Thermo> 

class nasaPolyTransport 

: 

    public Thermo 

{ 
 

public: 
 

    // Public data 
 

        static const int nCoeffs_ = 8; 

        typedef FixedList<scalar, nCoeffs_> coeffArray; 
 

 

private: 
 

    // Private Data 
 

        // Temperature limits of applicability of functions [K] 

        scalar Tlow_, Thigh_, Tcommon_; 

   

  // Coefficient arrays consist of both dynamic viscosity and 

  // thermal consuctivity coefficients for different temperature range 

         coeffArray highMuKappaCoeffs_; 

         coeffArray lowMuKappaCoeffs_; 
 

 

    // Private Member Functions 
 

        //- Check that input data is valid 

        void checkInputData() const; 
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        //- Return the coefficients corresponding to the given temperature 

        inline const coeffArray& coeffs(const scalar T) const; 
 

 

public: 
 

    // Constructors 
 

        //- Construct from components 

        inline nasaPolyTransport 

        ( 

            const Thermo& t, 

            const scalar Tlow, 

            const scalar Thigh, 

            const scalar Tcommon, 

            const coeffArray& highMuKappaCoeffs, 

            const coeffArray& lowMuKappaCoeffs 

        ); 
 

        //- Construct as a named copy 

        inline nasaPolyTransport(const word&, const nasaPolyTransport&); 
   

  //- Construct from dictionary 

        nasaPolyTransport(const dictionary& dict); 
 

  //- Construct and return a clone 

        inline autoPtr<nasaPolyTransport> clone() const; 
 

        // Selector from dictionary 

        inline static autoPtr<nasaPolyTransport> New(const dictionary& dict); 
 

 

    // Member Functions 
 

        //- Return the instantiated type name 

        static word typeName() 

        { 

            return "nasaPoly<" + Thermo::typeName() + '>'; 

        } 
 

        //- Limit the temperature to be in the range Tlow_ to Thigh_ 

        inline scalar limit(const scalar T) const; 
 

 

        // Access 
 

            //- Return const access to the low temperature limit 

            inline scalar Tlow() const; 
 

            //- Return const access to the high temperature limit 

            inline scalar Thigh() const; 
 

            //- Return const access to the common temperature 

            inline scalar Tcommon() const; 
 

            //- Return const access to the high temperature poly coefficients 

            inline const coeffArray& highMuKappaCoeffs() const; 

    

   //- Return const access to the low temperature poly coefficients 

            inline const coeffArray& lowMuKappaCoeffs() const; 
 

 

        // Fundamental properties 
 

            //- Dynamic viscosity [kg/m/s] 

            inline scalar mu(const scalar p, const scalar T) const; 
 

            //- Thermal conductivity [W/m/K] 

            inline scalar kappa(const scalar p, const scalar T) const; 
 

        //- Thermal diffusivity of enthalpy [kg/m/s] 

            inline scalar alphah(const scalar p, const scalar T) const; 
 

   // Species diffusivity 

   // inline scalar D(const scalar p, const scalar T) const; 
 

        // I-O 
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            //- Write to Ostream 

            void write(Ostream& os) const; 
 

 

    // Member Operators 
 

        inline void operator+=(const nasaPolyTransport&); 

        inline void operator*=(const scalar); 
 

 

    // Friend operators 
 

        friend nasaPolyTransport operator+ <Thermo> 

        ( 

            const nasaPolyTransport&, 

            const nasaPolyTransport& 

        ); 
 

        friend nasaPolyTransport operator* <Thermo> 

        ( 

            const scalar, 

            const nasaPolyTransport& 

        ); 
 

 

    // Ostream Operator 
 

        friend Ostream& operator<< <Thermo> 

        ( 

            Ostream&, 

            const nasaPolyTransport& 

        ); 

}; 
 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

} // End namespace Foam 
 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

#include "nasaPolyTransportI.H" 
 

#ifdef NoRepository 

    #include "nasaPolyTransport.C" 

#endif 
 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

#endif 
 

// ************************************************************************* // 

 

 

H.3 nasaPolyTransportI.H 
 
/*---------------------------------------------------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Copyright (C) 2011-2018 OpenFOAM Foundation 

     \\/     M anipulation  | 

------------------------------------------------------------------------------- 

License 

    This file is part of OpenFOAM. 
 

    OpenFOAM is free software: you can redistribute it and/or modify it 

    under the terms of the GNU General Public License as published by 

    the Free Software Foundation, either version 3 of the License, or 

    (at your option) any later version. 
 

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

    for more details. 
 

    You should have received a copy of the GNU General Public License 
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    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

  

Keivan A.Gh / 15, Nov, 2020: 
 

\*---------------------------------------------------------------------------*/ 
 

#include "nasaPolyTransport.H" 

#include "specie.H" 
 

// * * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * // 
 

template<class Thermo> 

inline Foam::nasaPolyTransport<Thermo>::nasaPolyTransport 

( 

    const Thermo& t, 

    const scalar Tlow, 

    const scalar Thigh, 

    const scalar Tcommon, 

    const typename nasaPolyTransport<Thermo>::coeffArray& highMuKappaCoeffs, 

    const typename nasaPolyTransport<Thermo>::coeffArray& lowMuKappaCoeffs 

) 

: 

    Thermo(t), 

    Tlow_(Tlow), 

    Thigh_(Thigh), 

    Tcommon_(Tcommon) 

{ 

 for (label coefLabel=0; coefLabel<nCoeffs_; coefLabel++) 

        { 

            highMuKappaCoeffs_[coefLabel] = highMuKappaCoeffs[coefLabel]; 

            lowMuKappaCoeffs_[coefLabel] = lowMuKappaCoeffs[coefLabel]; 

        } 

} 
 

 

template<class Thermo> 

inline const typename Foam::nasaPolyTransport<Thermo>::coeffArray& 

Foam::nasaPolyTransport<Thermo>::coeffs 

( 

    const scalar T 

) const 

{ 

    if (T < Tcommon_) 

    { 

        return lowMuKappaCoeffs_; 

    } 

    else 

    { 

        return highMuKappaCoeffs_; 

    } 

} 
 

 

// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 

template<class Thermo> 

inline Foam::nasaPolyTransport<Thermo>::nasaPolyTransport 

( 

    const word& name, 

    const nasaPolyTransport& npt 

) 

: 

    Thermo(name, npt), 

    Tlow_(npt.Tlow_), 

    Thigh_(npt.Thigh_), 

    Tcommon_(npt.Tcommon_) 

{ 

    for (label coefLabel=0; coefLabel<nCoeffs_; coefLabel++) 

    { 

        highMuKappaCoeffs_[coefLabel] = npt.highMuKappaCoeffs_[coefLabel]; 
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        lowMuKappaCoeffs_[coefLabel] = npt.lowMuKappaCoeffs_[coefLabel]; 

    } 

} 
 

template<class Thermo> 

inline Foam::autoPtr<Foam::nasaPolyTransport<Thermo>> 

Foam::nasaPolyTransport<Thermo>::clone() const 

{ 

    return autoPtr<nasaPolyTransport<Thermo>> 

    ( 

        new nasaPolyTransport<Thermo>(*this) 

    ); 

} 
 

 

template<class Thermo> 

inline Foam::autoPtr<Foam::nasaPolyTransport<Thermo>> 

Foam::nasaPolyTransport<Thermo>::New 

( 

    const dictionary& dict 

) 

{ 

    return autoPtr<nasaPolyTransport<Thermo>> 

    ( 

        new nasaPolyTransport<Thermo>(dict) 

    ); 

} 
 

// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 

template<class Thermo> 

inline Foam::scalar Foam::nasaPolyTransport<Thermo>::limit 

( 

    const scalar T 

) const 

{ 

    if (T < Tlow_ || T > Thigh_) 

    { 

        WarningInFunction 

            << "attempt to use nasaPolyTransport<Thermo>" 

               " out of temperature range " 

            << Tlow_ << " -> " << Thigh_ << ";  T = " << T 

            << endl; 

 

        return min(max(T, Tlow_), Thigh_); 

    } 

    else 

    { 

        return T; 

    } 

} 
 

 

template<class Thermo> 

inline Foam::scalar Foam::nasaPolyTransport<Thermo>::Tlow() const 

{ 

    return Tlow_; 

} 
 

 

template<class Thermo> 

inline Foam::scalar Foam::nasaPolyTransport<Thermo>::Thigh() const 

{ 

    return Thigh_; 

} 
 

 

template<class Thermo> 

inline Foam::scalar Foam::nasaPolyTransport<Thermo>::Tcommon() const 

{ 

    return Tcommon_; 

} 
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template<class Thermo> 

inline const typename Foam::nasaPolyTransport<Thermo>::coeffArray& 

Foam::nasaPolyTransport<Thermo>::highMuKappaCoeffs() const 

{ 

    return highMuKappaCoeffs_; 

} 
 

 

template<class Thermo> 

inline const typename Foam::nasaPolyTransport<Thermo>::coeffArray& 

Foam::nasaPolyTransport<Thermo>::lowMuKappaCoeffs() const 

{ 

    return lowMuKappaCoeffs_; 

} 
 

 

template<class Thermo> 

inline Foam::scalar Foam::nasaPolyTransport<Thermo>::mu 

( 

    const scalar p, 

    const scalar T 

) const 

{ 

    const coeffArray& a = coeffs(T); 

    return (exp(a[0]*log(T) + (a[1] + a[2]/T)/T + a[3]))*1e-07; 

} 
 

 

template<class Thermo> 

inline Foam::scalar Foam::nasaPolyTransport<Thermo>::kappa 

( 

    const scalar p, 

    const scalar T 

) const 

{ 

    const coeffArray& a = coeffs(T); 

    return (exp(a[4]*log(T) + (a[5] + a[6]/T)/T + a[7]))*1e-04; 

} 
 

 

template<class Thermo> 

inline Foam::scalar Foam::nasaPolyTransport<Thermo>::alphah 

( 

    const scalar p, 

    const scalar T 

) const 

{ 

    return kappa(p, T)/this->Cp(p, T); 

} 
 

 

// * * * * * * * * * * * * * * * Member Operators  * * * * * * * * * * * * * // 
 

template<class Thermo> 

inline void Foam::nasaPolyTransport<Thermo>::operator+= 

( 

    const nasaPolyTransport<Thermo>& npt 

) 

{ 

    scalar Y1 = this->Y(); 
 

    Thermo::operator+=(npt); 
 

    if (mag(this->Y()) > small) 

    { 

        Y1 /= this->Y(); 

        scalar Y2 = npt.Y()/this->Y(); 
 

        Tlow_ = max(Tlow_, npt.Tlow_); 

        Thigh_ = min(Thigh_, npt.Thigh_); 
 

        if 

        ( 

            nasaPolyTransport<Thermo>::debug 
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         && notEqual(Tcommon_, npt.Tcommon_) 

        ) 

        { 

            FatalErrorInFunction 

                << "Tcommon " << Tcommon_ << " for " 

                << (this->name().size() ? this->name() : "others") 

                << " != " << npt.Tcommon_ << " for " 

                << (npt.name().size() ? npt.name() : "others") 

                << exit(FatalError); 

        } 
 

        for 

        ( 

            label coefLabel=0; 

            coefLabel<nasaPolyTransport<Thermo>::nCoeffs_; 

            coefLabel++ 

        ) 

        { 

            highMuKappaCoeffs_[coefLabel] = 

                Y1*highMuKappaCoeffs_[coefLabel] 

              + Y2*npt.highMuKappaCoeffs_[coefLabel]; 

 

            lowMuKappaCoeffs_[coefLabel] = 

                Y1*lowMuKappaCoeffs_[coefLabel] 

              + Y2*npt.lowMuKappaCoeffs_[coefLabel]; 

        } 

    } 

} 
 

 

template<class Thermo> 

inline void Foam::nasaPolyTransport<Thermo>::operator*= 

( 

    const scalar s 

) 

{ 

    Thermo::operator*=(s); 

} 
 

 

// * * * * * * * * * * * * * * * Friend Operators  * * * * * * * * * * * * * // 
 

template<class Thermo> 

inline Foam::nasaPolyTransport<Thermo> Foam::operator+ 

( 

    const nasaPolyTransport<Thermo>& npt1, 

    const nasaPolyTransport<Thermo>& npt2 

) 

{ 

    Thermo t 

    ( 

        static_cast<const Thermo&>(npt1) 

   + static_cast<const Thermo&>(npt2) 

    ); 
 

    if (mag(t.Y()) < small) 

    { 

        return nasaPolyTransport<Thermo> 

        ( 

            t, 

   0, 

            npt1.Tlow_, 

            npt1.Thigh_, 

            npt1.Tcommon_, 

            npt1.highMuKappaCoeffs_, 

            npt1.lowMuKappaCoeffs_ 

        ); 

    } 

    else 

    { 
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        scalar Y1 = npt1.Y()/t.Y(); 

        scalar Y2 = npt2.Y()/t.Y(); 
 

        typename nasaPolyTransport<Thermo>::coeffArray highMuKappaCoeffs; 

        typename nasaPolyTransport<Thermo>::coeffArray lowMuKappaCoeffs; 
 

        for 

        ( 

            label coefLabel=0; 

            coefLabel<nasaPolyTransport<Thermo>::nCoeffs_; 

            coefLabel++ 

        ) 

        { 

            highMuKappaCoeffs[coefLabel] = 

                Y1*npt1.highMuKappaCoeffs_[coefLabel] 

              + Y2*npt2.highMuKappaCoeffs_[coefLabel]; 

 

            lowMuKappaCoeffs[coefLabel] = 

                Y1*npt1.lowMuKappaCoeffs_[coefLabel] 

              + Y2*npt2.lowMuKappaCoeffs_[coefLabel]; 

        } 
 

        if 

        ( 

            nasaPolyTransport<Thermo>::debug 

         && notEqual(npt1.Tcommon_, npt2.Tcommon_) 

        ) 

        { 

            FatalErrorInFunction 

                << "Tcommon " << npt1.Tcommon_ << " for " 

                << (npt1.name().size() ? npt1.name() : "others") 

                << " != " << npt2.Tcommon_ << " for " 

                << (npt2.name().size() ? npt2.name() : "others") 

                << exit(FatalError); 

        } 
 

        return nasaPolyTransport<Thermo> 

        ( 

            t, 

            max(npt1.Tlow_, npt2.Tlow_), 

            min(npt1.Thigh_, npt2.Thigh_), 

            npt1.Tcommon_, 

            highMuKappaCoeffs, 

            lowMuKappaCoeffs 

        ); 

    } 

} 
 

 

template<class Thermo> 

inline Foam::nasaPolyTransport<Thermo> Foam::operator* 

( 

    const scalar s, 

    const nasaPolyTransport<Thermo>& npt 

) 

{ 

    return nasaPolyTransport<Thermo> 

    ( 

        s*static_cast<const Thermo&>(npt), 

        npt.Tlow_, 

        npt.Thigh_, 

        npt.Tcommon_, 

        npt.highMuKappaCoeffs_, 

        npt.lowMuKappaCoeffs_ 

    ); 

} 
 

 

// ************************************************************************* //
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Appendix I  The thermo.compressibleGas Dictionary 

 
This dictionary contains the last version of the generated coefficients for the implemented 

nasa9Poly thermodynamic model and nasaPoly transport model. 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | Website:  https://openfoam.org 

    \\  /    A nd           | Version:  7 

     \\/     M anipulation  | 

\*---------------------------------------------------------------------------*/ 

/*---------------------------------------------------------------------------*\ 

 Keivan A.Gh    | November 2020 

       | Version: 1 

 These Coefficients are based on NASA 7 transport polynomials and NASA 9  

 thermo polynomials, in combination with specific ideal gas equation of  

 state for each of these species. (H2: Leachman, O2:Woolly, N2:Span) 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "constant"; 

    object      thermo.compressibleGas; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

O2 

{ 

    specie 

    { 

        molWeight        31.99880; 

    } 

    thermodynamics 

    { 

        Tlow             10; 

        Thigh            6000; 

        Tcommon1         300; 

        Tcommon2          1000; 

        highCpCoeffs     (-1.037939022e+06 2.344830282e+03 1.819732036 

       1.267847582e-03 -2.188067988e-07 2.053719572e-11  

      -8.193467050e-16 -1.689010929e+04 1.738716506e+01 ); 

        midCpCoeffs       (-3.425563420e+04 4.847000970e+02 1.119010961  

                            4.293889240e-03 -6.836300520e-07 -2.023372700e-09  

                            1.039040018e-12 -3.391454870e+03 1.849699470e+01 ); 

        lowCpCoeffs      (-0.17648260350863987 0.6683783566972065  

                            3.4751127770152572 0.0004090685462294075  

                           -2.7857436034490034e-06 6.673120289909645e-09  

                            6.120975676491904e-13 -1046.9564617109088  

                            4.811436023617842 ); 

    } 

    transport 

    { 

        Tlow               90.2; 

        Thigh               6000; 

        Tcommon            1000; 

  highMuKappaCoeffs ( 0.63839563 -0.12344438e+01 -0.22885810e+05  

                            0.18056937e+01 0.80805788 0.11982181e+03  

                           -0.47335931e+05 0.95189193 ); 

  lowMuKappaCoeffs ( 0.6148139161181673 -55.019686999527096  

                            710.3199361179903 2.0000703788706247 0.772734006169922  

                           -49.134046555034466 395.2853478841008 1.314544457729383  

                           ); 
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    } 

    elements 

    { 

        O                2; 

    } 

    equationOfState 

    { 

        Tc                154.6; 

        Vc                73.4e-03; 

        Zc                0.288; 

        Pc                50.43e05; 

        omega              0.022; 

    } 

} 
 

H2 

{ 

    specie 

    { 

        molWeight        2.01588; 

    } 

    thermodynamics 

    { 

        Tlow             50; 

        Thigh            6000; 

        Tcommon1          300; 

        Tcommon2         1000; 

        highCpCoeffs      ( 5.608128010e+05 -8.371504740e+02 2.975364532  

                            1.252249124e-03 -3.740716190e-07 5.936625200e-11  

                           -3.606994100e-15 5.339824410e+03 -2.202774769 ); 

        midCpCoeffs      ( 4.078323210e+04 -8.009186040e+02 8.214702010  

                           -1.269714457e-02 1.753605076e-05 -1.202860270e-08  

                            3.368093490e-12 2.682484665e+03 -3.043788844e+01 ); 

   lowCpCoeffs      ( 181.9135344883896 27.079531981481814 1.3104682284562241  

                            0.011220776470717864 1.611217017433592e-05  

                           -1.9240810285965655e-07 3.0193152336728514e-10  

                           -947.6966125079408 5.383975661362266 ); 

    } 

    transport 

    { 

        Tlow               20.4; 

        Thigh               6000; 

        Tcommon            1000; 

        highMuKappaCoeffs ( 0.70504381 0.36287686e+02 -0.72255550e+04 0.41921607  

                            0.74368397 -0.54941898e+03 0.25676376e+06  

                            0.35553997e+01 ); 

        lowMuKappaCoeffs ( 0.6756835522136462 -2.871663879485968  

                           -51.92244186666171 0.6527632646934771 0.6999799625099263  

                           -26.239569737479016 308.1554996341592 3.588781793251602  

                           ); 

    } 

    elements 

    { 

        H                2; 

    } 

    equationOfState 

    { 

        Tc     33.19; 

        Vc     64.1e-03; 

        Zc     0.305; 

        Pc     13.13e05; 

        omega    -0.216; 

    } 

} 
 

N2 
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{ 

    specie 

    { 

        molWeight        28.01340; 

    } 

    thermodynamics 

    { 

        Tlow             20; 

        Thigh            6000; 

        Tcommon1  300; 

        Tcommon2         1000; 

        highCpCoeffs      ( 5.877124060e+05 -2.239249073e+03 6.066949220  

                           -6.139685500e-04 1.491806679e-07 -1.923105485e-11  

                            1.061954386e-15 1.283210415e+04 -1.586640027e+01 ); 

        midCpCoeffs      ( 2.210371497e+04 -3.818461820e+02 6.082738360  

                           -8.530914410e-03 1.384646189e-05 -9.625793620e-09  

                            2.519705809e-12 7.108460860e+02 -1.076003744e+01 ); 

   lowCpCoeffs      ( 1.3915354401621036 -0.16209310172173885  

                            3.5066025887212535 -0.00011438881321350624  

                            9.974493397669226e-07 -3.8988785307732025e-09  

                            5.764382510995432e-12 -1043.3066964252632  

                            3.0742897156394626 ); 

    } 

    transport 

    { 

        Tlow             77.3; 

        Thigh   6000; 

        Tcommon          1000; 

        highMuKappaCoeffs ( 0.65060585 0.28517449e+02 -0.16690236e+05  

                            0.15223271e+01 0.65147781 -0.15059801e+03  

                           -0.13746760e+05 0.21801632e+01 ); 

        lowMuKappaCoeffs ( 0.570825726949261 -73.15782924390622 1731.509463097786  

                            2.1561587209523765 0.795646255032684  

                           -1.2864274422960777 -881.7940891215968  

                            1.0196220007343342 ); 

    } 

    elements 

    { 

        N                2; 

    } 

    equationOfState 

    { 

        Tc     126.2; 

        Vc     89.2e-03; 

        Zc     0.289; 

        Pc     34.00e05; 

        omega    0.038; 

    } 

} 

 

// ************************************************************************* // 

 


