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Summary:  

With the advancement of control system, Model Predictive Control has taken over the mainstream PID 

controller because of its more efficient and advanced control over the multivariable process. The Quadruple 
Tank process represents the multivariable process, which has 2 input, 2 output and 4 states. The complexity 

of the control system is handled in a more optimal way with the help of DeltaV MPC system. 

The main goal of the thesis is to develop a model that handles the disturbance and the constraints parameter 

of the Quadruple Tank process. The DeltaV offers a robust controller after successfully developing the 

model. The controller handles the interaction between the process variables in the best possible way to reach 

its desired output. The setpoint and the disturbance are handled in a quite satisfactory manner. The step 

response model for the model developed in the DeltaV system can give a wide operational range, which 

helps to develop a more robust controller for any situation. After successfully performing the test process, 

the DeltaV uses the FIR and ARX model to identify the step response model, which will eventually create 

the optimal controller for the process.  

Even though the model showed a satisfactory result but some more development can be achieved by 

manipulating the instruments such as the pump or the sensor, which will enlarge the operational region as 

well as handling the disturbances more profoundly. 
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 Nomenclature 
𝛾     = The coefficient for the flow proportion of three-way valve  

𝑞𝑖  = Flow from the tanks 

Kp = Pump gain 

𝑚̇ = Mass flow 

𝑉̇ = Volumetric flowrate 

𝑎𝑑= Cross-sectional area of the valve 

𝑐𝑑= valve coefficient 

𝛿𝑝= valve pressures drop 

A = Tank area 

L= Prediction horizon 

𝑥𝑘 = state of the process 

𝐽𝑘  = Objective function 

𝐶𝑖= extended controllability matrix 

𝐷𝐶𝑀 = impulse response matrices 

u = process input 

y = process output 

d = Dead time 

𝐸𝑝 = The error vector of dimension p 

Γ𝑙𝑙 = Penalty matrix for POM 

Γ𝑦 = Penalty matrix for POE 
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ARX- Auto-Regressive with eXternal inputs 

AV- Constraint Variable 

CV- Controlled Variable 

DV- Disturbance Variable 

FIR- Finite Impulse Response 

LP- Linear Programming 

MIMO- Multiple Input Multiple Output 

MPC - Model Predictive Control 

MV- Manipulated Variable 

P&ID- Piping and Instrumentation Diagram 

POM- Penalty on Moves  

POE- Penalty on Error  

SISO- Single Input Single Output 

SP- Setpoint  

TSS- Time to Steady State 
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1 Introduction 
In the 21st century, global engineering has evolved for multidimensional purposes. With the 

evolvement of engineering, the industrial process has gained its peak at its highest. 

Multifunctional equipment introduced MIMO process, which can efficiently take control of the 

system. But conventional PID has its own limitation to control the multivariable process along 

with cross-coupling as it can generally work on a single-loop controller because of their 

limitation over receiving information of one process variable. With time industrial interest has 

moved to a multivariable process to make production and control systems more convenient. 

With the rising interest in the multivariable control system, Karl Henrik Johanson introduced 

the Quadruple tank process back in 1998. The quadruple tank process is a multivariable process 

with four cross-connected tanks which can induce multivariable characteristics.  

In this introductory chapter, an overview of the quadruple tank process and its functionality, 

how it can be controlled with Model predictive control, especially with the DeltaV control 

system, will be discussed. 

1.1 Background 

The oil, gas, chemical industries, refineries, food industries have developed their control 

system to bring out more efficiency. To make this happen process control section has 

introduced MIMO (Multiple Input Multiple Output). The process got complex with more than 

one input and output. Each input can control multiple output signals. So the complexity of the 

control system because of multiple interactions between input and output makes it difficult in 

comparison to the general SISO system. So to understand the problem and make it easily 

accessible as mentioned earlier, The four tank system has been introduced. The simulation 

results of the quadruple tank process have been presented in [1]. Experimental results of the 

quadruple tank process have been published by e.q David Di Ruscio who presented a Model 

Predictive Control algorithm with integral action with experimental results obtained from the 

quadruple tank process in [2]. A linear discrete-time state-space realization of the Kalman filter 

used on the quadruple tank process was presented in [3]. 

System identification and model predictive control of the quadruple tank process model 
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was covered in [4], and system identification has also been covered in [5]. 

In USN, the four-tank system has been developed, and a different controller along with 

Multivariable PI(D) had been introduced to solve different linear and non-linear models [3]. 

Besides different control module has been tested on the rig such as IMC( Internal Model 

control), DMC(Dynamic Matrix Control) and also The model predictive controller with 

integral action. 

Even though the previously different controller has been working on the Quadruple tank, a 

proper DeltaV controller with MPC pro has never been introduced to test with. So, the thesis 

will lead to a proper investigation of how the controller will handle the multivariable system. 

1.2 Objectives 

 

The main objective is to find a proper model that can control the four-tank system efficiently 

with the DeltaV controller's MPC Pro block. As the quadruple tank has 2 output, 2 input, and 

4 states, it is necessary to have a proper model to control the system in a way that can handle 

all the parameter changes as especially the disturbance. With the help of the MPC Pro block in 

DeltaV, the system-wide range of data will be gathered, and with the state estimation and step 

response model, a proper model is needed to be developed. And to make sure the model which 

has been created has to be robust for any circumstances. So, in detail, the objectives can be 

achieved by ensuring the proper control variable, manipulated variable, disturbance variable, 

and a proper constraint, which will lead to the design of a controller by the MPC pro block for 

the advance control system. A proper stable system has to be achieved with manual calibration 

to start the test section. After the test process, a proper system identification in DeltaV from 

the subspace model will be made. This will give a model that will generate the controller for 

the quadruple tank system. The main goal is to have a controller that will handle any kind of 

sudden change or a wider operational range for practical use in industry. 
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1.3 Thesis Outline 

 

The whole thesis description will be discussing the whole scenario from the development of 

model establishment to practical implementation of the model to the DeltaV. Each part of the 

description will be divided into a different section. 

Chapter 1 will provide an overview of the outline for the quadruple tanks system and the 

previous work that had been done on this system. 

Chapter 2 will give a detailed overview of the quadruple tank system describing the hardware 

as well as the behaviour of the process 

In chapter 3 describes the model development of the MPC from the non-linear and non-linear 

model. 

Chapter 4will give a brief discussion about the MPC strategy in DeltaV. 

In chapter 5, the Configuration of MPC in DeltaV has been discussed. The step test strategies 

have been discussed precisely in this chapter 

Chapter 6 will give an in-depth comparison of different model verification and its result 

Chapter 7 will discuss the results, and the problem has been faced as a discussion throughout 

the thesis 

In chapter 8 concludes the overall thesis result finishing with some recommendations for future 

work.   
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2 System overview 
 

This chapter will give an overview of the Quadruple tank process describing the comprehensive 

overall aspects of the physical system as well as its mathematical functions, the hardware 

descriptions, and the software that will be used. The process is located at Emerson’s Porsgrunn 

office. To have a proper module, all the physical equipment must be tested properly so that 

they do not have any difficulties, and that will lead to developing a controller for the system 

with the DeltaV MPC after developing a proper module.  

 

 

2.1 Quadruple Tank process 

 

The physical rig of the quadruple tank process consists of four tanks, which is a multivariable 

process. The four-tank system is built in a way so that they are cross-coupled. The input for the 

process, which is controlling the overall system, is two pumps. The system has a reservoir, 

which is shown in figure 2.1, reserves the liquid for the whole system. Each pump work on the 

reservoir to pump water to one upper tank as well as one diagonally implemented lower tank. 

Two valves work as three-way valves to distribute the water to all the tanks. Each valve is 

connected to an upper tank and a diagonally situated lower tank. The distribution of water is 

determined or controlled by the position of the three-way valve. A signal to the three-way valve 

controls the opening of the valves for the upper tank. Every tank has discharge valves which 

can be manipulated manually. The upper tank will flow out the water to the lower tank, which 

will eventually introduce the disturbance to the system. The lower tank flows out the water to 

the reservoir. 
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Tank 1
Tank 2

Tank 3 Tank 4

C1 C2

C3 C4

γ1

γ2

Kp1 Kp2

Reservoir

 

Figure 2.1 Quadruple tank process diagram 

 

 

 

Each valves discharge coefficient for the water discharge can be defined 𝑐𝑤𝑖 for the discharge 

valve i., the gain for the pump can be defined as Kp.  The coefficient for the flow proportion of 

the three-way valve is γ. Where γ= 0 means all the flow of water will go to the upper tank, and 

γ=1 means all the flow will go to the lower tank. So, for each valve, the γ can be defined as the 

equation mentioned in (2.1) 

𝛾1 =
𝑞1

𝑞1 + 𝑞4
, 𝛾2 =

𝑞2

𝑞2 + 𝑞3
 (2.1) 
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Where 𝑞𝑖 described as the flow from the tanks, and i defined as the tank number. As a result, 

the upper tank flow can be described as 0 ≤ 𝛾 ≤ 1, and that gives us the proportion for the 

lower tanks is (1-γ). 

 

As the primary concern is to control the lower tanks, including the disturbance added by the 

upper tanks, so the lower tanks parameter is considered as the controlled variable. Among the 

two pumps, the pump 1 delivers water to tank 1 and 4, and on the other hand, pump 2 provides 

the water to the tank 2 and 3. So the cross-coupling process gives us a complex multivariable 

process. 

 

2.2 Hardware 

 

The hardware of the quadruple tank consists of 2 pumps, 4 tanks, 4 level sensors, 6 flow 

sensors, and a two three-way valve. The measurement of the water level is captured by the 

ultrasonic sensors, which represent the level with voltage from 0 to 10v that has been converted 

to 0 to 332 mm as level. The flow sensor operates with frequency from 0 Hz to 60 Hz, and then 

it has been translated to a voltage signal of operating range between 0v to 5v using an Arduino. 

The manipulated variable is the pumps that can be controlled with the voltage range of 0V to 

10V. To operate the pump a Boolean signal is sent. The ideal speed of the pump is equivalent 

to 2v. The three-way valve is used by translating its operating voltage to app measurement, 

which indicates the range from 0 to 1. As discussed earlier, if the operating point is 1 it means 

only the lower tank is opened. But with the increased signal from zero to 1, the three-way valve 

distributes water to the upper tank as well. And the discharge valve of each tank is kept in a 

proper position so that the tank does not go empty or fulfilled while it’s in its controlled 

operation mode. 
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Figure 2.2 shows the P&ID diagram of the physical process leading the sensors, actuators, 

pumps and their precise position on the rig. 

 

 

 

 

Tank 1

P1

FT1
LT1 LT2 FT2

FT3 FT4

LT3 LT4

γ2

γ1

Tank 2

Tank 3 Tank 4
FT5 FT6

Reservoir

P2

 

Figure 2.2 P&ID Diagram of quadruple tank 
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P&ID symbol list has been discussed here 

Tag Description             Comment 

LT1 Level transmitter 1 Measures level in tank 1 

LT2 Level transmitter 2 Measures level in tank 2 

LT3 Level transmitter 3 Measures level in tank 3 

LT4 Level transmitter 4 Measures level in tank 4 

FT1 Flow transmitter 1 Measures flow to tank 1 

FT2 Flow transmitter 2 Measures flow to tank 2 

FT3 Flow transmitter 3 Measures flow to tank 3 

F14 Flow transmitter 4 Measures flow to tank 4 

FI5 Flow transmitter 5 Measures flow from pump 1 

FT6 Flow transmitter 6 Measures flow from pump 2 

γ1 Three-way valve 1 Splits flow from pump 1 

γ2 Three-way valve 2 Splits flow from pump 2 

P1 Pump 1             Pumps water to tank 1 and 4 

P2 Pump 2             Pumps water to tank 2 and 3 



 3 Model development  

14 

3 Model development 
This section will cover the theoretical model development of the system. It will be divided into 

two sections. One will describe the non-linear model development, and the other will describe 

the linear model development. 

 

 

3.1 Non-linear model 

 

Different model has been established for the quadruple tank system in different works of 

literature.  

 

The four-tank system is a dynamic process means which will change with time, so it is 

compulsory to have proper knowledge of how the system behaves with time. The primary 

model that has been established here is obtained from the first principle of the law of mass. 

With the similarities between the mass flow equation and the process of the quadruple tank, it 

can easily be said that the accumulated mass of a tank is equal to mass flow into the tank minus 

the mass flow out of the tank. As the water in each tank has a constant density, so the level of 

the water follows the accumulated mass of the tanks water, which gives us the equation 3.1 

𝑑𝑚

𝑑𝑡
= 𝑚̇𝑖𝑛 − 𝑚̇𝑜𝑢𝑡 

(3.1) 

𝑚̇𝑖𝑛 = mass flow into the tank 

𝑚̇𝑜𝑢𝑡 = mass flow out of the tank 

Converting the mass terms to the volumetric flow gives us 

𝜌
𝑑𝑉

𝑑𝑡
= 𝑉̇𝑖𝑛𝜌 − 𝑉̇out𝜌

𝐴
𝑑ℎ

𝑑𝑡
= 𝑉̇𝑖𝑛 − 𝑉̇out

𝑑ℎ

𝑑𝑡
=

𝑉̇in − 𝑉̂out

𝐴

 

(3.2) 
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h= water level of the tank 

𝑉̇𝑖𝑛  = incoming volumetric flow rate to the tank 

𝑉̇out = outgoing volumetric flow rate of the tank 

A= area of the tank 

As the system consisting of the four tanks has the same area, so A1=A2=A3=A4=A. 

To establish the model, it is necessary to have a clear idea about the inflow and outflow of the 

tanks. The upper tank gets the water through the pump from the reservoir. The flow into the 

upper tanks is the ratio of the distributed water coming from the pump through the three-way 

valve, and the flow out of the upper tank is the water going through the discharge valve 

connected to the end of the tank. The lower tank also has distributed water through the three-

way valve in addition to the discharge flow of the upper tank, and the flow out for the lower 

tank can be described as the discharge flow of water through the discharge valve. So, it is 

necessary to include the pumps, three-way valves, and the discharge valves. 

Using the Bernoullis equation [6], the flow can be determined through the discharge valve. 

𝑉̇ = 𝑎𝑑𝑐𝑑√
2

𝜌
𝛿𝑝 

(3.3) 

𝑉̇= volumetric flow rate of the valve 

𝑎𝑑= cross-sectional area of the valve 

𝑐𝑑= valve coefficient 

𝛿𝑝= valve pressures drop 

The pressure drop must be considered here, which is equal to the hydrostatic pressure of the 

bottom of the tank because of the atmospheric pressure which is present above the water 

column and on the outlet of the valve. 

So, after simplifying the valve equation and collecting all the constants, the resulting equation 

developed in the equation (3.4). The flow here is dependent on the level. 
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𝑉̇ = 𝑐√ℎ (3.4) 

c= 𝑎𝑑𝑐𝑑√2𝑔 where g= gravity constant. 

As the pump step response is not infinitely fast, the pump dynamics must be considered. But 

through the test process, it showed that even though the pump reaches its steady states fast 

enough to the related controlled variable of the tanks water level, which takes higher time to 

reach its stable states. So, neglecting the pump dynamics will reduce2 extra states to establish 

the model. Considering the input and the output response, which is almost linear with a constant 

gain of the pump, each tank has been modelled separately, and the combination of the 

expressions merged into one gives the following continuous-time model for the tanks. 

𝑑ℎ1(𝑡)

𝑑𝑡
=

1

𝐴
[𝐾𝑝1(1 − 𝛾1)𝑢1(𝑡) − 𝑐1√ℎ1(𝑡)]

𝑑ℎ2(𝑡)

𝑑𝑡
=

1

𝐴
[𝐾𝑝2(1 − 𝛾2)𝑢2(𝑡) − 𝑐2√ℎ2(𝑡)]

𝑑ℎ3(𝑡)

𝑑𝑡
=

1

𝐴
[𝐾𝑝2𝛾2𝑢2(𝑡) + 𝑐1√ℎ1(𝑡) − 𝑐3√ℎ3(𝑡)]

𝑑ℎ4(𝑡)

𝑑𝑡
=

1

𝐴
[𝐾𝑝1𝛾1𝑢1(𝑡) + 𝑐2√ℎ2(𝑡) − 𝑐4√ℎ4(𝑡)]

 

 

 

(3.5) 

As it is stated on Johansson [7] the quadruple tank process has its minimum and its non-

minimum phase depending on the multivariable zero’s location. 

The system is at its minimum phase when the corresponding equation in (3.6) satisfied 

0 < 𝛾1 + 𝛾2 < 1 (3.6) 

and the system to its non-minimum phase when equation (3.7) is satisfied 

1 < 𝛾1 + 𝛾2 ≤ 2 (3.7) 

As per Johansson statement the controllability of the tank is easy when it is in its minimum 

phase. For the whole experiment, the 𝛾1 & 𝛾2 is kept 0.7 and 0.8 for all simulations. 

As the model is in its continuous form but to implement it should be transformed into the 

discrete form. As a continuous-time model can be discretized using the forward Euler’s method 

shown in equation (3.8) 
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𝑑ℎ(𝑡)

𝑑𝑡
=

ℎ(𝑘+1) − ℎ(𝑘)

Δ𝑡
 

(3.8) 

 

 

ℎ(𝑘+1) = next time step 

ℎ(𝑘) = present time step 

Δ𝑡 = step size 

Applying the Euler’s method to the equation (3.5) gives the equation (3.7) 

ℎ1(𝑘+1) = ℎ1(𝑘) +
Δ𝑡

𝐴
[𝐾𝑝1(1 − 𝛾1)𝑢1(𝑘) − 𝑐1√ℎ1(𝑘)]

ℎ2(𝑘+1) = ℎ2(𝑘) +
Δ𝑡

𝐴
[𝐾𝑝2(1 − 𝛾2)𝑢2(𝑘) − 𝑐2√ℎ2(𝑘)]

ℎ3(𝑘+1) = ℎ3(𝑘) +
Δ𝑡

𝐴
[𝐾𝑝2𝛾2𝑢2(𝑘) + 𝑐1√ℎ1(𝑘) − 𝑐3√ℎ3(𝑘)]

ℎ4(𝑘+1) = ℎ4(𝑘) +
Δ𝑡

𝐴
(𝐾𝑝1𝛾1𝑢1(𝑘) + 𝑐2√ℎ2(𝑘) − 𝑐4√ℎ4(𝑘)]

 

 

 

(3.9) 

 So, equation (3.7) gives the non-linear model of the system. 

 

3.2 Linear model 

 

To have a linear MPC, it is necessary to develop a linear approximation of the non-linear model. 

To obtain the model the non-linear model has been 1st linearized and then discretized. The 

linearization can be achieved by the approximation of the non-linear continuous-time 

differential equations. With the implementation of the first two-term of the Taylor series 

expansion [8] time differential equation of the continuous linear model is developed in equation 

(3.10) 

𝑑ℎ(𝑡)

𝑑𝑡
= 𝑓(ℎ𝑜 , 𝑢𝑜) +

∂𝑓

∂ℎ
|
(ℎ𝑜,𝑢𝑜)

(ℎ(𝑡) − ℎ𝑜) +
∂𝑓

∂𝑢
|
(ℎ𝑜,𝑢𝑜)

(𝑢(𝑡) − 𝑢𝑜) 
3.10 
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ℎ𝑜= nominal value of state h 

𝑢𝑜= nominal value of state u 

The value of ℎ𝑜 & 𝑢𝑜 refers to the operating point of the corresponding states. The equation 

(3.10) can be rewritten by putting the values of ℎ(𝑡) = (𝛿ℎ(𝑡) + ℎ𝑜) and 𝑢(𝑡) =

(𝛿𝑢(𝑡) + 𝑢𝑜). 

𝑑𝛿ℎ(𝑡)

𝑑𝑡
=

∂𝑓

∂ℎ
|
(ℎ𝑜,𝑢𝑜)

𝛿ℎ(𝑡) +
∂𝑓

∂𝑢
|
(ℎ𝑜,𝑢𝜌)

𝛿𝑢(𝑡) 
(3.11) 

The approximation of the non-linear differential equation that has been shown in (3.11) gives 

the linear model equation in (3.12). 

𝑑𝛿ℎ1(𝑡)

𝑑𝑡
=

1

𝐴
[𝐾𝑝1(1 − 𝛾1)𝛿𝑢1(𝑡) −

𝑐1

2√ℎ1
𝑜
𝛿ℎ1(𝑡)]

𝑑𝛿ℎ2(𝑡)

𝑑𝑡
=

1

𝐴
[𝐾𝑝2(1 − 𝛾2)𝛿𝑢2(𝑡) −

𝑐2

2√ℎ2
0
𝛿ℎ2(𝑡)]

𝑑𝛿ℎ3(𝑡

𝑑𝑡
=

1

𝐴
[𝐾𝑝2𝑢2𝛾2𝛿𝑢2(𝑡) +

𝑐1

2√ℎ1
𝑜
𝛿ℎ1(𝑡) −

𝑐3

2√ℎ3
𝑜
𝛿ℎ3(𝑡)]

𝑑𝛿ℎ4(𝑡)

𝑑𝑡
=

1

𝐴
[𝐾𝑝1𝛾1𝛿𝑢1(𝑡) +

𝑐2

2√ℎ2
𝑜
𝛿ℎ2(𝑡) −

𝑐4

2√ℎ4
𝑜
𝛿ℎ4(𝑡)]

 

 

 

(3.12) 

 

The equation is expressed as the linear model equation, whereas if it needed to be described as 

a linear state-space model, the states, the derivatives, and the outputs as well as the input has 

to be expressed as a vector, and all the coefficient needs to be transformed into matrices which 

gives the state-space model. 

Applying the continuous-time state-space model, which is 

𝑥̇ = 𝐴𝑐𝑥 + 𝐵𝑐𝑢
𝑦 = 𝐶𝑐𝑥

 

 

Where 
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𝑥̇ =

[
 
 
 
 
 
 
 
 
𝑑𝛿ℎ1(𝑡)

𝑑𝑡
𝑑𝛿ℎ2(𝑡)

𝑑𝑡
𝑑𝛿ℎ3(𝑡

𝑑𝑡
𝑑𝛿ℎ(𝑡)

𝑑𝑡 ]
 
 
 
 
 
 
 
 

, 𝑥 = [

𝛿ℎ1(𝑡)

𝛿ℎ2(𝑡)
𝛿ℎ3(𝑡)
𝛿ℎ4(𝑡)

] , 𝑢 = [
𝛿𝑢1(𝑡)
𝛿𝑢2(𝑡)

] , 𝑦 = [
𝛿𝑦1(𝑡)
𝛿𝑦2(𝑡)

] , 𝐶𝑐 = [
0    0    1    0
0    0    0    1

] 

 

𝐴𝑐 =

[
 
 
 
 
 
 
 
 
 −

𝑐1

2𝐴√ℎ1
𝑜

0 0 0

0 −
𝑐2

2𝐴√ℎ2
0

0 0

𝑐1

2𝐴√ℎ1
𝑜

0 −
𝑐3

2𝐴√ℎ3

0

0
𝑐2

2𝐴√ℎ2

0 −
𝑐4

2𝐴√ℎ4
2]
 
 
 
 
 
 
 
 
 

, 𝐵𝑐 =

[
 
 
 
 
 
 
 
 
𝐾𝑝1(1 − 𝛾1)

𝐴
0

0
𝐾𝑝2(1 − 𝛾2)

𝐴

0
𝐾𝑝2𝛾2

𝐴
𝐾𝑝1𝛾

𝐴
0 ]

 
 
 
 
 
 
 
 

 

 

Using the Forward Euler’s method on this state-space model discretized model has been 

achieved in equation (3.13) 

𝑥(𝑘+1) = 𝑥(𝑘) + Δ𝑡[𝐴𝑐𝑥(𝑘) + 𝐵𝑐𝑢(𝑘)]

𝑦(𝑘) = 𝐶𝑐𝑥(𝑘)
 

 

𝑥(𝑘+1) = (𝐼 + Δ𝑡𝐴𝑐)𝑥(𝑘) + Δ𝑡𝐵𝑐𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑐𝑥(𝑘)
 

 

 

(3.13) 

 

Comparing the model with the standard form, which is 

𝑥(𝑘+1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑑𝑥(𝑘)
 

(3.14) 

The 𝐴𝑑 , 𝐵𝑑 , 𝐶𝑑  can be written as following𝐴𝑑 = (𝐼 + Δ𝑡𝐴𝑐), 𝐵𝑑 = Δ𝑡𝐵𝑐 and 𝐶𝑑 = 𝐶𝑐 . 
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4 Model predictive control 
This chapter will represent the concept of MPC with an explanation and illustration. The basic 

concept of MPC and its theory is going to be explained along with the explanation of how the 

prediction model is derived from the state-space model. In this chapter, the DeltaV MPC 

system will be introduced as well, along with the implementation algorithm of MPC in DeltaV. 

For the DeltaV MPC algorithm explanation, the DeltaV online is the reference document here. 

Most of the theory represented here for the model development of MPC in DeltaV is described 

with the help of DeltaV book online [9]. 

 

4.1 Introduction to MPC 

The evolution of MPC starts with the concept of optimal control theory developed back in 1960 

by Kalman et al [10]. In 1970 implementation of various MPC control had been reported. At 

that time, the technology was developed on the base of DMC (Dynamic matrix controller) and 

IDCOM (Identification and command) concept. The strategy behind the MPC was to develop 

a control system that could give a prediction on the systems' dynamic behaviour on the basis 

of its future control action with the help of keeping its predicted error minimized that subjects 

to process constraints. Later the QDMC (Quadratic Dynamic Matrix Control) had been 

developed and added to the MPC back in 1980. In 1990 a lot of strategies such as PCT, SMOC 

(Shell Multivariable Optimizing Controller), Predictive Control Strategy, HIECON 

(Hierarchical constraint control), RMPC (Robust model predictive control) had been included 

in MPC. Later in 1998, besides all these Dynamic Model Control Package, DMC- plus had 

been introduced to MPC. 

MPC works by defining each time step and using on those time steps to create and solve a new 

optimization problem. It makes a model by observing the system's dynamic behaviour over 

time and including all constraints and disturbances as well. The MPC can predict future states 

and outputs from the current scenario. With the help of a constructed model for the MPC 

optimization, it can predict the model’s behaviour, like how the outputs should be changed for 

the future over a prediction horizon. When the model has been developed, the MPC works over 

it to understands its dynamic behaviour and act over each control interval over the predicted 
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horizon by including new control input according to the change of the system due to any 

disturbance or sudden changes and fed it into the control system at each time step considering 

the constraints. Previously the PID control system has its popularity for its robust control 

system over SISO. But as the MIMO system has been introduced and it included the 

constraints, the PID couldn’t cope up with its limitation, and MPC takes over the place as it 

can easily handle constraints that are integrated into the MPC system. MPC can also control 

the MIMO system in a better way because of its advanced control architecture on handling the 

interaction of controller variables as well as delays.  

The traditional feedback loop controller determines the errors by measuring the difference 

between the setpoint and the process value and adjust thereby. On the other hand, MPC adjusts 

the error by determining the future setpoint, and the future predicted values (Blevins et al, 

2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 demonstrates the MPC controller principle where the feedback flow indicates two 

process inputs being the manipulated variable (MV) and the disturbance variable (DV), and the 

output process variable is the control variable (CV). The figure shows the CV prediction works 

on the process model over a prediction horizon, which gives the output of the CV. Then the SP 

prediction goes along with the same prediction horizon as earlier. Then comes the control 

algorithm where it detects the error by measuring the difference between the SP prediction and 

Figure 4.1: MPC Controller operation principle (Blevins et al, 2013) 

 



 4 Model predictive control  

22 

CV prediction, and at the same time, the algorithm works on keeping the error as minimum as 

possible with proper optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depending on the present scenario and calculation, the MPC controller predicts the dynamic 

behaviour of the process and calculate thereby. The future calculation does not change even 

the control horizon ends, which is defined by the sample number in a prediction horizon. When 

the prediction horizon moves forward, the MPC controller depending upon the model had been 

created, and the current situation predicts the future process output again and changes thereby. 

 

The major drawback of the MPC system is the model must be developed before the controller 

is implemented, which takes a lot of time. Furthermore, the computational time as well as real-

time applications on the implementation, is really an issue here. 

 

According to the (Di Ruscio, 2012) the MPC algorithm consists of the following: 

Figure 4.2:Illustration of MPC controller operation (Blevins et al, 2013). 
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• Cost Function 

The cost function or also known as the control objective defines the criteria by 

maximizing the product value while keeping the material cost minimum or in 

different approach in the control system is where the future output and specified 

reference helps to track an error which needs to be minimum. In both scenarios, 

the main objective function is solved by two famous methods, which are Linear 

Programming (LP) and Quadratic Programming (QP). In LP, the solution can be 

found in the inequality constraints and in QP does not depends that much on 

inequality constraints.  

• Constraints 

Constraints can be defined as the limitation of a model or system that has to be 

fulfilled or satisfy. MPC has the ability to handle constraints as it is integrated into 

the system. In general, the constraints can be classified into two kinds- one is 

equality, and another one is inequality constraints. The equality constraints define 

the dynamic behaviour of the system, and the inequality constraints define the 

upper and the lower bound 

For example, the system input amplitude constraints can be written mathematically 

as 

 

 

Δ𝑢𝑘∣𝐿
𝑚𝑖𝑛 ≤ 𝑢𝑘∣𝐿 ≤ Δ𝑢𝑘∣𝐿

𝑚𝑎𝑥 (4.1) 

 

 

Also, the process output constraints can also be written as 

 

 

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑘+1∣𝐿 ≤ 𝑦𝑚𝑎𝑥 (4.2) 

 

Here 

 L= prediction horizon. 
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• Process model 

The MPC process model includes a future prediction control over a prediction 

horizon. The relation between the future process output and the input is described 

in the process prediction model. The Process Model can be developed through a 

different procedure such as impulse response model, step response, state-space 

model, DRX, ARMAX model etc. It is an integrated part of the process. 

 

  

4.1.1 Prediction model from the state-space model 

 

Among the popular methods of the MPC State-space model is the favoured one because of its 

straightforward derivation. Other models like ARX, transfer function, Finite Impulse Response 

(FIR) need to be transformed into the state-space model, and it's relatively more comfortable 

to use in MPC. 

The general form of the state-space model followed by 

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

𝑦𝑘 = 𝐷𝑥𝑘
 

(4.2) 

   

And the prediction model goes by 

 

𝑦𝑘+1∣𝐿 = 𝐹𝐿𝑢𝑘∣𝐿 + 𝑝𝐿  (4.3) 

Here 

𝐹𝐿 = [𝑂𝐿𝐵 𝐻𝐿
𝑑]

𝑝𝐿 = 𝑂𝐿𝐴𝑥𝑘
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𝑥𝑘 = state of the process, which can be calculated simply from the known past inputs and outputs 

as shown by Di Ruscio [11] 

𝑂𝐿 = observability matrix of A and D 

L= Prediction Horizon 

𝐹𝐿 ∈ ℝ𝐿𝑚×𝐿𝑟 which is a matrix derived from the process model 

𝐻𝐿
𝑑  = Toeplitz matrix of the impulse response 

𝑝𝐿 ∈ ℝ𝐿𝑚 is a vector of inputs and outputs 

 

If it is not possible to measure the state or compute it, then estimation using the state observer, 

for example, Kalman filter, is also an option. 

 

The objective function defined as follows 

 

 

𝐽𝑘 = (𝑦𝑘+1∣𝐿 − 𝑟𝑘+1∣𝐿)
𝑇𝑄(𝑦𝑘+1∣𝐿 − 𝑟𝑘+1∣𝐿) + 𝑢𝑘∣𝐿

𝑇 𝑃𝑢𝑘∣𝐿 (4.4) 

 

Here 

𝑢𝑘∣𝐿 and 𝑦𝑘∣𝐿  is the process input and output  

𝐽𝑘  = Objective function 

∣ 𝑟𝑘∣𝐿 = reference 

𝑄 ∣  and 𝑃 are symmetric and positive weighting matrices 

 

By reducing the standard form to a quadratic form and substituting 𝑝𝐿  in the function, the 

following form is 
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𝐽𝑘 = 𝑢𝑘∣𝐿
𝑇 𝐻𝑢𝑘∣𝐿 + 2𝑓𝑇𝑢𝑘∣𝐿 + 𝐽0 (4.5) 

 

Here  

𝐻 = 𝐹𝐿
𝑇𝑄𝐹𝐿 + 𝑃 

𝑓 = 𝐹𝐿
𝑇𝑄(𝑃𝐿 − 𝑟𝑘+1∣𝐿) 

𝐽0 = (𝑃𝐿 − 𝑟𝑘+1∣𝐿)
𝑇𝑄(𝑃𝐿 − 𝑟𝑘+1∣𝐿) 

By minimizing the 𝐽𝑘  objective function with respect to 𝑢𝑘∣𝐿 the optimization problem can be 

achieved. Here 𝑢𝑘∣𝐿
∗ = −𝐻−1𝑓. 

 

4.1.2 Prediction model from FIR and Step response model 

 

 

Another way of developing model of prediction is FIR and step response model. The state-

space model defined earlier gives an expression for 

𝑦𝑘 = 𝐷𝐴𝑖𝑥𝑘−𝑖 + 𝐷𝐶𝑖𝑢𝑘−𝑖∣𝑖 (4.6) 

𝐶𝑖= extended controllability matrix 

If the system is stable, then 𝐴𝑀 ≈ 0 when 𝑀 = 𝑖 ≥ 1 is large, which gives the following 

 𝑦𝑘 = 𝐷𝐶𝑀𝑢𝑘−𝑀∣𝑀 (4.7) 

Here 

𝐷𝐶𝑀 = impulse response matrices 

M = model horizon 

The equation gives the FIR model. The model can express 𝑦𝑘+1 and subtracting 𝑦𝑘 from the 

equation gives 

𝑦𝑘+1 = 𝑦𝑘 + 𝐶𝑀Δ𝑢𝑘+1−𝑀∣𝑀 (4.8) 
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Δ𝑢𝑘+1−𝑀∣𝑀 = 𝑢𝑘+1−𝑀∣𝑀 − 𝑢𝑘−𝑀|𝑀| (4.9) 

 

Equation (4.8) and (4.9) gives the prediction model 

4.2 Introduction to DeltaV MPC strategy 

 

DeltaV is a DCS automated platform for process management by Emerson. It has a very  

reliable platform to work in process interaction in a robust technical environment. DeltaV has 

a unique option to deal with the advanced control system. In advance control system, it has 

MPC block, which can deal with the interactive process, which needs to be controlled by 

keeping the disturbances as well as constraints into consideration.  

 

                                                Figure 4.3 MPC blocks in DeltaV 

 

Figure 4.3 shows the three kinds of MPC block available in DeltaV explorer, which are 

MPC (DeltaV v7 or later), MPCPro (DeltaV v9 or later) and MPCPlus (DeltaV v12 or later). 

The MPC block uses a wiring connection regarding the input and output, whereas MPC-Pro or 

MPC-Plus uses the user reference to indicate the input and output. In the DeltaV the advance 
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control system is consists of DeltaV predict, which includes the MPC block, and the other one 

is DeltaV predict pro, which consists of the MPC-pro and MPC-plus. All the MPC blocks have 

the dynamic controller, which calculates the control output, keeping error (the difference 

between the setpoint and the model prediction) minimum through linear modelling. Both 

DeltaV predicts, and the predict pro has a different application; for example, the DeltaV predict 

opens up in the control studio where it connects and defines the variables such as Control 

Variable, Disturbances or the Manipulated Variable through the wiring mainly in cascade 

system on the other side the DeltaV predict Pro includes the block in the control studio and 

define the variables through references. The variables have been described in the DeltaV 

explorer. Both have an advance control or advance control pro platform where the test 

procedure, as well as the development of the model can be configured. They also have different 

window such as the expert to manipulate the process variables and the simulation window as 

well. 

 

 The DeltaV Predict Pro can handle more process interaction than the DeltaV Predict, and it 

also has more optimization capabilities, which makes it more convenient when it comes to 

advance control. The MPC block in the DeltaV Predict has capacities up to 8x8 input/output 

process variable configuration. It has the capability of pushing the process variable to its 

maximized ability by maintaining the process with its constraints. It runs in the controller studio 

or in the application station. The DeltaV Predict Pro has more extensive capabilities when it 

comes to processing the variables as it has a 40x80 input/output configuration. The MPC Pro 

and MPC Plus have Linear programming embedded in the system to support the process 

optimization. They can define at most 5-objective function. As the MPC- plus can work online, 

it has the ability to determine any changes or operating constraints or integrating process. MPC- 

plus can execute only in the application station. 

The MPC block consists of the following input 

• Controlled variable (CNTRL): The MPC input which has to maintain the setpoint 

by manipulating the MV 

• Disturbance (DSTRB): The input which has impact on constraints and the 

controlled parameter. 
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• Constraint (CNSTR): the constraints variable is the operating limit for the 

controlled variable 

And the output is the following one 

• Manipulated variable (MNPLT): the MPC output, which is adjusted for the desired 

controlled setpoint, needs to be achieved automatically or manually by the operator. 

 

 

4.2.1 Model development and identification in DeltaV 

 

In the DeltaV predict or predict pro application, the model development goes through the step 

response method, which is configured in the application. The application runs a test process 

that has an automated step response to work on the process and gives the data for the model 

development. But external data can also generate the model. 

For the SISO system, the prediction model for the process output can be written in the general 

form as follows- 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵Δ𝑢𝑘 + 𝐹Δ𝑤𝑘 (4.10) 

 

𝑦𝑘 = 𝐶𝑥𝑘 (4.11) 

 

Here 

• 𝑥𝑘 = [𝑦0, 𝑦1, 𝑦𝑖 , … 𝑦𝑝−1]
1
 is the vector for the future prediction at time k = 0,1---, i---

,p-1 steps ahead. 

• A is here the shift operator which is 𝐴𝑥𝑘 = [𝑦1, 𝑦2, … 𝑦𝑖 , … , 𝑦𝑏−1, 𝑦𝑝−1]
𝑇
 

• B is the vector for the step response coefficient of p where 𝐵 = [𝑏0, 𝑏1, … 𝑏𝑖 , … , 𝑏𝑝−1]
𝑇
 

• Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 is process input/output change in controller output at constant time k 
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• Δ𝑤𝑘 = 𝑦𝑝 − 𝑦𝑚 is considered as the noise or the disturbance or model inaccuracy 

measured by calculating the difference between process output measurement and model 

output. 

• 𝐹 = [𝑓0, 𝑓1, 𝑓𝑖 …𝑓𝑝−1], 0 < 𝑓𝑖 < 1 is the filter for Δ𝑤𝑘  

• 𝐶 is defined as 𝑦0 = 𝐶𝑥𝑘+1 the operator for the current model output 

For m input and n output process vector 𝑥𝑘 has n*p dimension. B vector is then converted into 

a matrix of dimension n*p rows and m columns. 

 In DeltaV Finite Impulse Response (FIR) and Auto-Regressive with eXternal inputs (ARX) 

methods are used to identify the step response model for the model development. These 

methods are used for step response models, which define the future process output and future 

control process input relationship. The two modelling techniques are used to transfer the 

identified information from the FIR to ARX. FIR has the upper hand while it comes to required 

preliminary knowledge, which is not needed here, while ARX makes the calculation easier as 

it uses fewer coefficients. FIR, for example, can give overfitting problems if it needs to deal 

with the full default prediction horizon in DeltaV. 

But using a shorter prediction horizon, FIR can identify dead time measurement, and ARX can 

determine better. For the SISO process, the FIR model can be described as follows 

Δ𝑦𝑘 = ∑ 

𝑝

𝑖=1

ℎ𝑖Δ𝑢𝑘−1 

 

(4.12) 

 

Here 

Δ𝑦𝑘  = change in process output at a time constant k.  

ℎ𝑖 = coefficient of the identified model impulse response 

Δ𝑢𝑘−1= change of process input at time k-1 and p in prediction horizon. 

And for the SISO model ARX model is defined as follows 

 𝑦𝑘 = ∑  𝑉
𝑖=1 𝑎𝑖𝑦𝑘−1 + ∑  𝐴

𝑖=1 𝑏𝑖𝑢𝑘−𝑑−𝑖 (4.13) 
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u = process input 

y = process output 

A and V are the autoregressive and moving average order of the ARX model, which has a 

default value of 4 

𝑎𝑖 and 𝑏𝑖 = model coefficient 

d = Deadtime 

if the process is a MIMO process in both input and output, Superposition is applied in FIR and 

ARX model. 

4.2.2 Dynamic Controller 

 

While developing the controller in the MPC or MPC Pro block, the number of MV should be 

equal or greater than the number of CV so that the dynamic controller become square. If the 

MV’s are fewer than the CV’s, it will provide limited compensation for the block. But in the 

MPC plus, the MV does not need to greater or equal as all the output and input will go to the 

controller. The previous chapter described the dynamic relationship between the input and 

outputs. Even though the implementation might differ in a different block, but the dynamic 

controller is the same. 

A step response vector can be created in every Δt seconds, which can be defined as a vector of 

a like following: 

𝑎 =

[
 
 
 
 
 
𝑎1

𝑎2

𝑎3

⋮
⋮

𝑎𝑛]
 
 
 
 
 

 

 

The a vector should be identified in every pair of input/output. In DeltaV n= 120 and Δt = 

(Time to Steady State (TSS)) / n, here, TSS is defined as a change of time when the MV starts 

after CV hits the steady-state value. 
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The future values of the output CV are predicted from the vector a. A Prediction vector has 

been created upon the change in input MV regarding the response of CV which defines the 

future changes in CV. ΔCV(t+p) is defined in the incremental form as following: 

Δ𝐶𝑉(𝑡 + 𝑝) =

[
 
 
 
 
 
Δ𝐶𝑉1

Δ𝐶𝑉2

Δ𝐶𝑉3

⋮
⋮

Δ𝐶𝑉𝑛]
 
 
 
 
 

 

Here n defines the prediction changes in the prediction horizon. 

 

The process steady state can be redefined by considering the prediction horizon p and the 

control horizon c as follows. 

 

Δ𝐶𝑉(𝑡 + 𝑝) = 𝐴 ∗ Δ𝑀𝑉(𝑡 + 𝑐) (4.15) 

 

Here 

A= gain matrix  

A can also be referred as the dynamic matrix 

𝐴 = [

𝑎11 ⋯ 𝑎1𝑚

⋯ ⋯ ⋯
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

] 

The move plan can be defined as Δ𝑀𝑉(𝑡 + 𝑐) vector of changes in manipulating variable m 

 

Δ𝑀𝑉(𝑡 + 𝑐) =

[
 
 
 
 
 
Δ𝑚𝑣1

Δ𝑚𝑣2

Δ𝑚𝑣3

⋮
⋮

Δ𝑚𝑣𝑚]
 
 
 
 
 

 

 

(4.15) 
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For every change of controller output 𝑚𝑣𝑖 over the control horizon is defined as  

Δ𝑚𝑣𝑖 = ∑ 

𝑗=1

Δ𝑚𝑣𝑖(𝑡 + 𝑗), 𝑖 = 1,2,3, … ,𝑚 (4.16) 

The changes should satisfy on both MV’s limits 

Δ𝑀𝑉𝑚𝑖𝑛 ≤ Δ𝑀𝑉current + Δ𝑀𝑉(𝑡 + 𝑐) ≤ Δ𝑀𝑉𝑚𝑎𝑥  (4.17) 

And CV’s defines following 

Δ𝐶𝑉𝑚𝑖𝑛 ≤ Δ𝐶𝑉current + Δ𝐶𝑉(𝑡 + 𝑝) ≤ Δ𝐶𝑉𝑚𝑎𝑥  (4.18) 

 

The Δ𝑀𝑉(𝑡 + 𝑐) has shown the credential and the A has been used to calculate the Δ𝐶𝑉(𝑡 +

𝑝). The Δ𝑀𝑉(𝑘) vector of future moves needs to be found which minimize the deviation 

between the setpoint trajectory R(k) and the prediction vector Δ𝐶𝑉(𝑘) : 

 

𝑚𝑖𝑛[(Δ𝐶𝑉(𝑘) − 𝑅(𝑘))2], 𝑘 = 1,2,3,… , 𝑝 (4.19) 

 

It can also be defined as the following one by substituting Δ𝐶𝑉(𝑘) 

 

𝑚𝑖𝑛[(𝐴 ∗ Δ𝑀𝑉(𝑘) − 𝑅(𝑘))2] (4.20) 

 

This referred to a dynamic objective function including a least square problem and that gives 

the solution as: 

 

Δ𝑀𝑉 = (𝐴𝑇𝐴)−1𝐴𝑇𝐸𝑝(𝑘) (4.21) 

 Here  

𝐸𝑝 is the error vector of dimension p. 
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By adding a penalty on Δ𝑀𝑉(𝑘)this solution often leads to a oscillatory moves which gives 

more stable solution as the following: 

 

𝑚𝑖𝑛[(𝐴 ∗ Δ𝑀𝑉(𝑘) − 𝑅(𝑘))2 + (Γ𝑢Δ𝑀𝑉(𝑘))2] (4.22) 

 

Here 

Γ𝑙𝑙 = diag (𝑇1,…,
𝑙𝑙 Γ𝑐)

𝑙𝑙 is the penalty matrix for the Penalty of moves (POM) which is used to 

decrease the element changes in Δ𝑀𝑉(𝑘), k = 1,2,3….,c. 

 

By introducing a penalty on the error for the prediction and setpoint the objective function 

becomes the following 

 

𝑚𝑖𝑛[(Γ𝑦(𝐴 ∗ Δ𝑀𝑉(𝑘) − 𝑅(𝑘)))2 + (Γ𝑢Δ𝑀𝑉(𝑘))2] (4.23) 

 

Here 

Γ𝑦 = diag (Γ1,…,
𝑦

Γ𝑝)
𝑦

 is the Penalty matrix o the Penalty on Error (POE) 

The new dynamic objective function solution refers to the MPC algorithm which is 

unconstrained and gives the following 

 

Δ𝑀𝑉 = (𝐴𝑇Γ𝑦𝑇Γ𝑦𝐴 + Γ𝑢𝑇Γ𝑢)−1𝐴𝑇Γ𝑦𝑇Γ𝑦𝐸𝑝(𝑘) (4.24) 

Here 

Δ𝑀𝑉 = (Δ𝑀𝑉(𝑘), Δ𝑀𝑉(𝑘 + 1), Δ𝑀𝑉(𝑘 + 2),… , Δ𝑀𝑉(𝑘 + 𝑐) 

The equation (4.24) describes all the step response models of inputs and outputs and it is useful 

for controlling the process. 
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The two factors of penalty here (POM) and (POE) are known as the tuning parameters to adjust 

the models robustness and the response speed. If the objective function needs to be smaller, the 

following the (POM) and (POE) has to be changed like the (POM) Γ𝑢 needs to be increased 

during each element of Δ𝑀𝑉(𝑘) needs to be decreased. This will make the controller less 

aggressive. But if the controller needs to be more aggressive, POE Γ𝑙𝑙  has to be increased by 

keeping the Δ𝑀𝑉(𝑘) larger, and this will make the objective function smaller. 

 

The equation in (4.24) can be applied for the MPC and MPC Pro block. After generating or 

defining the step response method, then the model can be generated. In MPC or MPC Pro, after 

generating the model, the POM or the POE cannot be changed in MPC or in the MPC pro block 

online. If they need to be changed, they must be done by modifying the model again and 

regenerating and downloading the model. 

As in the MPC plus block, the dynamic controller's subsection does not need to be squared 

mentioned earlier, and all the MV inputs directly go into the dynamic controller; the objective 

function for the MPC Plus block differs slightly than the usual equation of objective function 

defined in (4.23). So, the difference has a change in the interaction between the optimizer and 

the dynamic controller. The MPC pro and the MPC plus blocks optimizer calculate a steady-

state for each MV. Referring to the constrained MPC algorithm, the dynamic objective function 

for the MPC plus must be modified as follows: 

 

𝑚𝑖𝑛 [(Γ𝑦(𝐴 ∗ Δ𝑀𝑉(𝑘) − 𝑅(𝑘)))2 + (Γ𝑢Δ𝑀𝑉(𝑘))2 + (Γ0(∑Δ𝑀𝑉(𝑘) − Δ𝑀𝑉𝑇))
2
] (4.25) 

Here 

Δ𝑀𝑉𝑇 = Optimal target change of MV, which is calculated by the optimizer. 

Γ0 = Large penalty on error parameter and not usually used in the tuning parameter. 

Then the optimizer calculates all the steady-state values through the modification, which forces 

the dynamic controller. Δ𝑀𝑉𝑇 can drive the process to its optimized state by changing all the 
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inputs. As the MPC Plus block works on the equation (4.24) in every execution it then allows 

the POE and the POM to change online. In PMC Plus, all the step gain can also be changed 

while the model is online in DeltaV. 

 

4.2.3 Optimization 

The main objective of optimization for a process is to maximize the product value and to 

minimize the production cost. The MPC block in the DeltaV is designed in a way to have the 

pusher capability, which allows the parameter either to be maximized or to be minimized 

through a simple optimization method. If the target rate is changed in the process, the MPC 

controller will push the parameters so that the target is achieved. 

 

Handling of Output Constraint 

The MPC controller handles the constraints in a way that if the predicted constraints break the 

limit, it changes the working setpoint of the controlled variables as following 

 

Δ𝑆𝑃𝐶𝑉 = −𝑟𝐺𝐶𝑉−𝐴𝑉Δ𝐴𝑉 (4.26) 

 

Here 

• Δ𝑆𝑃𝐶𝑉  = change of setpoint of the CV 

• Δ𝐴𝑉 = predicted steady-state constraint violation magnitude 

• 𝐺𝐶𝑉−𝐴𝑉 = 𝐺𝐶𝑉−𝑀𝑉/𝐺𝐴𝑉𝐴𝑉 is the gain relationship between AV and CV, fixed CV’s 

setpoint for any violation of the constraints. 

• 𝑟 = relaxation factor 
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In the optimization process if the limits of the constraints violated the return of the working 

setpoint changes in a sequence, for example, a process has 3 MV’s and 2 CV”s, so the third 

MV will work as the optimizing MV while another CV will be working as the virtual parameter 

as the shadow of the third MV. 

The following steps are taken if the stated problem occurs 

1. The First MV values go out of limit as it does not match the number of CV 

2. To obtain the controllability, the CV setpoint is moved out from the optimal state by 

sacrificing the optimal control 

3. The Excessive MV needs to move so that it can achieve the new setpoint for the virtual 

CV 

4. As the excessive MV moves so, it causes a change in both 1st and 2nd CV 

5. By pushing the 1st and 2nd CV back to its setpoints, the first MV moves to the point of 

limit direction. 

 

The Linear Programming (LP) is embedded in the MPC block for process optimization.  

The objective function is mainly used to express the profit and so the general problem can be 

described as (Lie,2013). 

𝑚𝑖𝑛𝑓(𝑥) = 𝑐𝑇𝑥 (4.27) 

Subjects to, 

𝐴𝑒𝑥 = 𝑏𝑒

𝐴𝑖𝑥 ≤  𝑏𝑖

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝐻

 

(4.28) 

Where 

𝑓(𝑥) = objective function 

C = cost or profit vector 
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x = optimization variable 

𝐴𝑒𝑥 = 𝑏𝑒  are the equality constraints 

𝐴𝑒𝑥 ≤  𝑏𝑒  are the inequality constraints 

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝐻  is known as bounds which is also a kind of inequality constraint. 

 

So the objective function for maximizing product or minimizing raw material cost can be 

defined following way: 

 

𝑄𝑚𝑖𝑛 = −𝑈𝐶𝑉𝑇∗Δ𝐶𝑉(𝑡 + 𝑝) + 𝑈𝑀𝑉𝑇 ∗ Δ𝑀𝑉(𝑡 + 𝑐) (4.29) 

 

Here  

UCV = cost vector for a unit change in CV process value 

UMV = cost vector for a unit change in MV process value. 

 

Now applying the objective function regarding the MV gives the following equation 

 

𝑄𝑚𝑖𝑛 = −𝑈𝐶𝑉−∗𝐴∗Δ𝑀𝑉(𝑡 + 𝑐) + 𝑈𝑀𝑉𝑇 ∗ Δ𝑀𝑉(𝑡 + 𝑐) (4.30) 

 

For a two-dimensional problem such as 2 input and 2 output process, the LP solution is always 

located at one of the vertices. The following figure describes the problem 
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Figure 4.4  Optimization problem of a two-dimensional system 

The straight lines represent the two Control variables (CV) and the two Manipulated variables 

(MV), and they represent the following equations: 

 

𝐶𝑉1𝑚𝑖𝑛 = 𝑎11𝑀𝑉1 + 𝑎12𝑀𝑉2𝐶𝑉1𝑚𝑎𝑥 = 𝑎11𝑀𝑉1 + 𝑎12𝑀𝑉2 (4.31) 

 

𝐶𝑉2𝑚𝑖𝑛 = 𝑎21𝑀𝑉1 + 𝑎22𝑀𝑉2𝐶𝑉2𝑚𝑎𝑥 = 𝑎21𝑀𝑉1 + 𝑎22𝑀𝑉2 (4.32) 

 

MV 2 

CV 1 min 

MV 1 min 
CV 1 max CV 2 max MV 1 max 

MV 2 max 

CV 2 min 

MV 2 min 

MV 1 

Objective function 

LP Optimal solution 
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The optimal solution is located at one of the vertices marked by arrows. To find this solution, 

the LP algorithm calculates the objective function for an initial vertex and improves the 

solution every step until it determines the vertex with the maximum (or minimum) value of the 

objective function as the optimal solution. In addition to constraints and economic objectives, 

the Predict Pro Optimizer also accounts for controlled objectives that include target setpoints 

for any selected CV, preferred settling values and equalizing for selected MVs.  

Optimal MV values are applied to the MPC Pro control as the target MV values to be achieved 

within the control horizon. If the MPC controller is squared as in the MPC Pro block, the 

number of MVs is equal to the number of CVs; then, MV targets can be effectively achieved 

by changing the CV value. The CV values then follow: 

ΔCV = A∗ΔMVT (4.33) 

 

Here 

ΔMVT = optimal MV target 

ΔCV = the change of CV to achieve the optimal MV 

The MPC Plus controller applies both CV and MV targets as optimizer objectives with any 

configuration. This approach improves constraint handling. Additionally, MPC Plus generates 

the controller online, which accounts for actual constraints and objectives.  

The option to include both CV and MV targets can be selected as well for offline MPC Pro 

controller generation. This improves constraint handling; however, since the controller is 

generated offline, it may not perform as well as the MPC Plus controller. Specifically, the MPC 

Pro controller will not use unconstrained MVs to compensate for constrained MVs, including 

MVs that are constrained by the Rate of Change (Max MV Move Per Sec) limit.  

 

The MPC Pro algorithm working with the optimizer has two main objectives:  

• Minimize CV control error with minimal MV moves within operational constraints 

• Achieve optimal steady state MV values set up by the optimizer and target CV values 

calculated directly from MV values. 



 4 Model predictive control  

41 

 

In operation, the optimizer sets up and updates the steady state targets for the MPC 

unconstrained controller at every scan, thus MPC controller executes the unconstrained MPC 

Pro algorithm or the constrained MPC Plus algorithm. Since the targets are set in a manner that 

accounts for constraints, as long as a feasible solution exists, the controller works within 

constraint limits. Optimization, therefore, is an integral part of the MPC controller. The 

integrated MPC controller and optimizer performs the following sequence of operations each 

scan: 

1. Update CV and DV measurement 

2. Update CV prediction 

3. Determine optimal MV steady-state targets and calculate CV targets by running LP 

optimizer 

4. Determine dynamic MV outputs accounting for CV and MV targets by running the 

MPC controller 

5. Update CV 

The figure below gives an overview of the communication between the optimizer and MPC 

algorithm as well as the integrated operation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Optimizer 

Step 4 

 
MPC 

 Step 1 &2 Step 4 & 5 

MV current limit 

CV predictions 

CV limits 

MV limits 

MV and CV 

optimal target 

CV manual targets Next CV 

Figure 4.5 MPC and Optimizer communication 
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In some situations, the optimizer cannot find the optimal solution as the constraints limit is so 

tight. In such cases, the optimizer relaxes the system constraints by changing set points to range 

control (if defined) and/or abandoning some lower priority constraints.  

Poor conditioning is another typical problem an optimizer has to deal with. As with the MPC 

algorithm, poor conditioning manifests itself as excessive changes in calculated MV targets, 

even for minor correction of constraints. In this approach, poor conditioning can be removed 

dynamically by changing the configuration of active constraints (abandoning some constraints) 

or by removing the association between Constraint or Controlled variables and Manipulated 

variables that have excessive moves.  

 

4.2.4 Offline controller (MPC Pro) 

After the model has been generated using the process model and the controller design, the MPC 

Pro controller has been generated. It can minimize the square error of controller variables and 

also the squared values of the changes in a manipulated variable over the control horizon 

prediction by providing stable operation and acceptable performance over a wide range of 

process parameter changes. 

The POM parameter is the most convenient tuning parameter for the controller. The higher the 

value of POM gives a slow controller with a wide stability margin. This setting makes the 

controller insensitive to change if the process has errors. But with low POM makes the 

controller fast with a narrow stability margin. The dead time should be considered as a major 

factor for calculating the POM. Gain also influence the POM. The following equation the 

controller is designed for the worst-case, ensuring its robust controller operation: 

 

𝑃𝑂𝑀𝑖 = 3(1 +
6(𝐷𝑇𝑖 + Δ𝐷𝑇𝑖)

𝑝
+

3(𝐺𝑖 + Δ𝐺𝑖)(𝐷𝑇𝑖 + Δ𝐷𝑇𝑖)

𝑝
) 

(4.34) 
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5 Configuring MPC in DeltaV 
 

This chapter will briefly discuss the MPC configuration in the DeltaV. From configuring the 

MPC Pro block following by configuring the model parameters as well as configuring the step 

test procedure. 

5.1 Configuring the MPC Pro block 

In this thesis, the MPC pro has been used. The MPC block has only an optimization option for 

CV, but MPC pro or the MPC plus can handle MV, CV and even the AV. In MPC Pro or the 

MPC plus optimization objectives can easily be changed as well as the parameter properties 

can also be redefined. 

At the very first, the MPC Pro block has been appointed under a new area Named 

FOUR_TANK_MPC as MPC_LOOP_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After getting into the control studio of MPC_LOOP_1 other parameter can be assigned 

Figure 5.1 MPC assignment under area 
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Which has been discussed in the following section 

5.2 Parameter configuration 

 

After going to the configuration of the MPC pro block parameter such as CV, DV, MV, AV 

has been assigned through the reference for the output or input. 

All the input and output such as Pump 1 and 2, Ultrasonic level sensor, two three-way valve 

and the flow transmitters have been configured before under area TANKS_AND_FLOW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this test, the control variables mean the tanks water level needs to be controlled are tank 3 

and tank 4. The CV 1 and CV 2 are following by the tank3 and tank 4 level parameters. The 

reference has been taken from the alarm parameter of tank level denote as LI-3 and LI-4 as the 

alarm value has been forwarded to the parameter value (PV) from output from the level sensor. 

Figure 5.2 all different inputs and outputs 
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                                                             Figure 5.3 reference for CV 

 

So the reference for the CV has been referred to as the ALM_IN for the MPC Pro parameter. 

 

 

                                                  Figure 5.4 CV  output for the MPC block configuration 
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Manipulated variables are the Pump output of Pump 1 and 2. Here for the reference output 

RCAS_IN has been used. This mode is similar to the CAS, except the setpoint is supplied by 

an external program. 

 

                                  Figure 5.5 MV  output for the MPC block configuration 

 

The disturbances are the incoming water from the tank 1 and 2 through their discharge valve. 

The discharge valve has been kept in a constant position. 

 

 

                                         Figure 5.6 DV output for MPC block configuration. 

 

In this model, the constraints could be ignored as the tank level needed to be controlled. But 

still, the constraints had been configured the level of tank 3 and 4 and configured as  
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                                                Figure 5.7 AV parameters for MPC configuration 

 

 

 

 

5.3 Step test setup 

 

After completing all the parameter configuration in the MPC Pro block, the test procedure has 

been set up. In the Advance control system- the test setup window had been configured with 

all the input-output parameters. After selecting all the parameters, the time to steady-state 

(TSS) had been given to 500 sec. The TSS is the estimated time to respond to the input change 

for the process. The DeltaV gives a recommended TSS of 39 minutes for all the tests. The step 

size had been given differently at a different time for the testing process to get the most reliable 

model. The more the step size, the wider the range can be controlled by the model. Initially, 

the step size had been selected 5% for all the variables. Later it had been increased by following 

sequence 5,8,10,12. In the end, the 12% step change shows the highest wider range for the 

model and had been used for further test and model generation. 
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                                                       Figure 5.8 Test setup in DeltaV pro 
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6 Modelling and verification 
 

This chapter will be discussing the step test, verification of the model. In the step test, an 

automatic step testing procedure will be conducting. It will result in creating a model using the 

methods discussed in chapter 4. After the testing process, the MPC pro will generate the model. 

For the model verification outputs of the actual process and the predicted process output is 

compared. 

 

6.1 Step test 

 

To develop the model step test is the most crucial.one. A step test will provide a random square 

time step change for the model to estimate the model parameter to develop a proper model. 

Different step test has been tested to find a proper model. Before running the test, the model is 

kept to its most possible steady-state. The results of different step test will be discussed later in 

this chapter. A green area will appear after the test is completed, which indicates the data area 

that has been taken into consideration to develop the model. For the final model development, 

12% step size has been selected for wider model development. Even though different level for 

tank 3 and tank 4 has been balanced to find the most optimal model but 20 cm or the 200mm 

has shown the most optimal solution for creating the better model. 

 

                                                    Figure 6.1 step test for model development 
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In figure 6.1 the green area indicated the time for the test. It can also be manually adjusted if 

a particular portion of the test user wants to get rid of or include if it's wanted.  

 

6.2 Model verification 

After generating a different model, they have compared for the optimal model by their error 

and gain parameters. In this chapter, all the identified models in the different scenarios are 

verified to find out the prediction model accuracy. Model accuracy is determined by comparing 

how much close is the real value to its prediction value. Even the consistency for several 

running of the test procedure under unchanged conditions shows the accuracy of the model. 

The model identification is solved by DeltaV Predict Pro with its embedded functions. For the 

model verification in this test, original data has been used for model verification. The DeltaV 

Predict Pro can also gather data from an external source or can manipulate the data.  The model 

accuracy is normally determined by errors such as mean squared error, which is the square of 

error of the difference between real and the process value. The step response model can be 

expressed by a first-order transfer function model, which is followed by 

 

𝐻(𝑠) =
𝐾

𝜏𝑠 + 1
𝑒−𝑇𝑑𝑠  

(6.1) 

 

Here 

K= process gain 

𝜏 = time constant 

𝑒−𝑇𝑑𝑠 = time delay 

For the step test various test has been performed which is described in brief here 

6.2.1 Model without disturbance (test-1) 

In this test, no disturbance had been added just to assure that the model has been created 

properly. 
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In figure 6.2, the hierarchic structure of the model is shown. As for this test, the procedure 

constraint is not that important that had been discussed earlier, so the main focus will be on the 

control section. 

 

                                                    Figure 6.2 Hierarchic structure for model 1 

 

Figure 6.3 shows the identification for the control parameter of tank 3 for test 1. This looks a 

good precision as the prediction and the actual process follows each other with a minimal 

squared error of 7.93. 

 

                          

                                                         Figure 6.3 Tank 3 identification 

Figure 6.4 shows the identified control variable of tank 4, which looks like a good model as its 

gain and error is satisfactory. The square error for this control parameter is 8.24. 

 

Control 

Constraint 
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                                                  Figure 6.4 tank 4 identification 

 

6.2.2 Model with low-level balance (test 2) 

 

From this test, the disturbance had been added. For this particular test, the balance point has 

been kept quite low, which is almost 15 cm or 150 mm. But this test gives a lot of problems as 

the pump could not cope up with the low input signal. This will be discussed more in brief in 

the discussion. Figure 6.5 shows the tank 3 identification, which is quite poor with squared 

error of 28.45. 

                              

                                                   Figure 6.5 Tank 3 identification (test-2) 
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The following figure 6.6 shows the verification of the control parameter of tank 4 having a 

square error of 25.73. 

                               

                                                      Figure 6.6 tank 4 identification (test-2) 

Even though it shows the prediction follows the actual parameter, but as the pump could not 

pump enough water to the disturbance tank, so for this test, the whole disturbance was almost 

neglected. Only when the step change was used to give a higher peak, for example, from 43% 

to 55% of the pump output signal, the disturbance could only be added as it had a supply of 

water on a higher input signal for the pump. But for the lower step-change step, which went 

lower than 35%, could not introduce disturbance. 

 

6.2.3 Model with midpoint balance (test 3) 

For this test, the level for both tanks had been kept to its middle portion, which was 20 cm. to 

maintain the level for 20 cm in both tank 3 and tank 4 , pump 1 and pump 2 respectively 

maintained an input signal of 58% for both of them. 

Figure 6.7 shows the hierarchy of model. Here the question mark shows the step response has 

not been identified properly or has identified poorly, which needs to be corrected. 
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But this can also be neglected here. Because for tank 3 it shows a question mark on the level 

in tank 2 means for tank 3, tank 2 could not contribute enough, which resulted in poor 

identification. But this does make sense as for the control of level in the tank the tank 2 level 

does not have that much importance, and this also explains the further question marks. 

 

Figure 6.8 shows the identification of the tank 3 control parameter, which looks quite good 

with a lower square error of 5.24. and the figure also shows how good the prediction follows 

the actual values here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Hierarchy of test 3 

Figure 6.8 Tank 3 identification (test-3) 
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And when it comes to the identification of tank 4, figure 6.9 shows a low square error of 7.36. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 shows the tank 3 response model. The red area of pump 2 indicates that this model 

has been identified as the most significant for the control process variable. As discussed earlier, 

the pump 2 is responsible for controlling the level of tank 3 so it validates the statement. The 

blue area shows that this parameter is also identified for the process control parameter. 

 

 

                                                   Figure 6.10 Step response of tank 3 (test-3) 

 

The lighter blue colour identifies that the parameter is questionable. 

Figure 6.9 tank 4 identification (test-3) 
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Figure 6.11 shows the tank 4 response model. The pump 1 identified as the most significant 

parameter as the pump 1 control the tank 4. 

 

 

 

 

 

                                                     Figure 6.11 Step response of tank 4 (test-3) 

 

 

6.2.4 Model with high-level balance (test 4) 

 

For the last test, the level for both tanks had been kept high. It had been kept to 25 cm, which 

is almost 250 mm. to maintain this level pump input signal was almost 65%. 

 

Figure 6.12 shows the identification of the control variable of tank 3. Even though the level 

had been kept quite high, it still shows a satisfactory result. The square error for tank 3 is 7.85, 

which is comparatively higher than test 3 but lower than test 2. 
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Figure 6.13 shows the identification of tank 4 with a square error of 16.74. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 identification of tank 3 (test 4) 

Figure 6.13 Identification of tank 4 9test 4) 
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The response model for tank 3 is displayed in figure 6.14. Even though the most significant 

manipulated variable has been identified properly, but it has a question mark on other variable 

parameters. Other blue areas can indicate the inconsistent related to the control parameter tank 

3. 

 

 

                                                     Figure 6.14 Step response of tank 3 (test 4)  

 

Figure 6.15 shows the response model of tank 4. Like the previous one, pump 1 has been 

identified properly as the most significant variable, but other parameters could not be identified 

properly. 

 

 

 

 

                                               Figure 6.15 Response model of tank 4 (test 4) 

 

 

6.3 Overview of the model verification 

 

Several models have been created to find the most optimal one. In this chapter, the main three 

scenarios have been highlighted, even though for each scenario, several tests had been 
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performed. Many tests have to be excluded from reporting as those tests gave unsatisfactory 

results, including unnecessary or abnormal process values used to occur. Testing on a real 

process is always challenging as the operating condition varies so often. Even in this real 

process, the sensor also gave some problems regarding data output, which will be discussed in 

the discussion. 

1. Test 2: For test 2, the balance level was kept low, gave comparatively the worst model 

among the three. Because of the Pumps shortcoming, it affected the whole model 

prediction. Even though the prediction parameter follows the actual values, but the 

square error is quite high for this model. The gain, which is shown later, is also 

moderate. But because of the high square error the model accuracy is poor. 

2. Test 3:  This test gives the most optimal solution for the model. It has the highest 

accuracy with relatively better gain. Even the response model also shows a better 

prediction in this test scenario. 

3. Test 4: the test scenario gives a moderate model. The identified control variable shows 

moderates precision and accuracy. But the gain factor is poor as well as the square error 

is comparatively poor to test 3. The response model shows a lot of questionable factors, 

as well. 

 

 

Table 6.1: Comparing gain and time constant for different test 

 Test 2 Test 3 Test 4 

Tank 3 K=1.63 

𝜏= 47.36 

K= 1.52 

𝜏= 52.13 

K=2.31 

𝜏= 41.62 

Tank 4 K=1.83 

𝜏= 49.42 

K=1.24 

𝜏= 45.71 

K=1.83 

𝜏= 48.60 
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6.4 Test case simulation  

 

This subsection will describe the simulation done on the simulator as well as on the real 

process. All the tests had gone through a simulator to find out which model gives the most 

reliable and optimal solution. 

The test 3 scenario has been taken into consideration for the final model. In this model, the 

balance level is 20 cm or the 200mm. The three-way valve had been kept to 0.8 for both of 

them to have the flow of water in all the tanks. The POM has been set to 0.50 initially for the 

simulator, and later in the real process, the POM has been raised 0.65, which gives the 

robustness a more aggressive and better model. 

6.4.1 Setpoint response with a simulator 

With the DeltaV Predict Pro the simulator is used to determine the robustness of the model. 

The simulator actually gives a real process like a scenario in which the operator can predict 

how the model will behave in the real process. It is recommended to test the model through the 

simulator for a safe run. 

 

Figure 6.16 Simulation of test case 3 in the simulator 
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Initially the level for both tank 3 and tank 4 had been 245 mm. By taking the mode from manual 

to auto in the simulator app gives the user accessibility to give a setpoint. To perform the 

simulation the setpoint had been set to 150mm in both tank 3 and tank 4. The model has reached 

the setpoint within 2.5 minute. The manipulated variable also changes accordingly to reach the 

setpoint. 

 

6.4.2 Setpoint handling in real process  

 

After successfully testing the model in the simulator, the model has been tested on the real 

process. All the test scenario has been tested for the model development but as the test 3 gives 

the most optimal model even though all the model that had been generated from the tests only 

the one that has been taken under consideration is shown here.  

 

                                    Figure 6.17 shows how the model can handle the real process 

 

The level was steady at 190 mm. the setpoint has been set to 240 by changing the operating 

mode to auto. The setpoint also takes almost 2.5 minutes to reach its desire value. In this 

particular simulation, the disturbance has not changed. 
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6.4.3 Setpoint handling with changing disturbance in the real process 

This test has been performed to see how the model can handle the situation when the 

disturbance is changed. The disturbance is added from the upper tanks. And the three-way 

valve here plays a vital role as hen the input to the valves decreases to zero from 1, the water 

supply increases in the upper tank and decreases in the lower tank. Figure 6.18 shows the 

setpoint handle with changing disturbance. 

 

Figure 6.18 Simulation for setpoint tracking with disturbance changes in the real process 

 

Because of the problem in data reading in sensor 4 for tank 5 there are lots of drops-in level 

measurements. This situation has occurred at the last moment. It shows that when the 

disturbance, which is eventually the input signal to the three-way valve, has been decreased 

to 0.45 the model changes its parameter to reach its setpoint. 
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7 Results and discussion 
This chapter will give an overview of the outcome results and the discussion.  

 

The model prediction process in DeltaV uses the step response model. So, identifying the 

proper step size is a crucial part of the model development. If the step size is too small, it will 

make the model a narrower one, which will not be able to handle a wide range of changes 

regards to water level. It will hinder the output changes as the step size was small, so it cannot 

develop the model for a sudden big change in the parameter. If the step size is too big, the 

model will introduce non-linear effects, which will also affect the model. So different step size 

has been tested over several test scenarios, and it shows 12% step size gives the most optimal 

solution to build the model. Test 2, with middle point steady water level, gives the most 

sophisticated model, which has been identified as the final model. Other tests have been 

ignored for its unusual or irregular parameters. Step test 2 has been selected for its lower square 

error and better gain parameter. Even though the integrated and recommended robustness for 

the final model had been set to 0.5, but raising it to 0.65 gives better stability with lower dead 

time to reach the setpoint more easily and quickly.  

The simulator test shows that the model takes almost 2.5minute to reach its setpoint when the 

disturbance is constant. In the real process, the model also shows a similar result where it takes 

almost 2.5 minutes to reach the setpoint. But different noise affects the model as well. For 

example, when the disturbance has been changed, it shows a longer period to reach its setpoint. 

 

 

The whole model development process faced a lot of problems. Some major problems and 

shortcoming is discussed through the bullet point: 

• As the ultrasonic sensor's output value varies from 4-20 mA it's not feasible to show 

the output value in the process. So, the output value has been scaled to mm. 

• The ultrasonic level sensor has a Deadband, which is 12mm for the lower limit and 

335mm for the higher limit. The sensor cannot read beyond this level from its mounting 

point in the real process. 
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•  The pumps don’t give proper output if the signal goes lower than 35%. This created a 

lot of problems while testing the step response. And if the input signal goes lower than 

42% it cannot supply water to the upper tanks even though the signal to the three-way 

valves has been changed from .80 to .60. 

• The sensor for tank 4 was giving a reading with a sudden drop in values. This problem 

has been identified as a hardware issue. Several connection issues such as loose 

connection to the mainboard had been fixed, but still, the problem did not solve. Figure 

6.17 shows a sudden drop in value reading in the sensor of tank 4. 

• As the test procedure has been done at the end of the time period, it was not possible to 

introduce a filter to the tank 4 sensors. Even though the Moving Average Filter has been 

set to every sensor, but a band filter would solve the problem more easily. Or a different 

approach can also be eliminating the error values from the data by accessing the data 

server. Accessing the historian data might solve the problem which was not possible 

due to the time limitation. 

• While trying to test some more scenarios such as low level on tank 4 and high level on 

tank 4 or high level on tank 3 and low level on tank 4 became troublesome because of 

the tank 4 sensors faulty reading. Even though the sudden drop in the data does not 

affect the whole data that much, but still this does not give a proper model. so such a 

scenario had to avoid because of time limitation. 

• When the disturbance is changed by changing the input signal of the three-way valve, 

the model can operate up to its input signal to 0.4. if the signal goes lower than 0.4 the 

model becomes unstable. This problem could be solved by testing in a different scenario 

where the three-way valve input signal is kept to 0.3. but as the pump cannot deliver 

water to the upper tank. [12] 
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8 Conclusion and future work 
 

Conclusion along with the future work which will refurbish the model for more robustness is 

discussed here. 

 

8.1 Conclusion 

The quadruple tank process represents the multivariable process very well. The MPC model 

has been created on the base of the first principle of the linear model. the MPC system is 

embedded in the DeltaV system with integral action gives a moderate model to develop the 

controller for the four-tank rig. Different test scenario leads the way to develop the most 

optimal model. after so many test a reasonable moderate model has been selected for generating 

the controller. The results have shown the success of the controller both in the simulator as 

well as in the real-life process. Although some difficulties have occurred during the process on 

which some of them took a lot of time to solve, and some showed future work which will lead 

the improvement in the future, a satisfactory model has been implemented. The step response 

model showed some questionable parts, which were also solved by manipulating some data. A 

satisfactory operational range also showed success while operating the controller. But due to 

some lacking of sensors as well as on the pump, different scenarios could not give a satisfactory 

result. Test 3 has been confirmed as the final model, which showed a minimum square error 

with good process gain. It also shows minimal process time to reach the setpoint. 

 

8.2 Future work 

Some changes over the model and the rig will give a more robust model such as 

• Solving the problem with the motor, which had been discussed earlier that it could not 

deliver water to the upper tank at low voltage, will give a wider range and more stable 

model for sudden disturbance 

• The sensor on tank 4 needs to be fixed for a more accurate model. 
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• The MPC Plus block might give some better models as it can handle the constraint and 

other process parameters online rather than offline. 

• Working on the lower input value for the three-way valve will give a more robust model 

for a higher disturbance.[13] 
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Appendix A Project task description 

 

 



 

 

  Appendices 

69 

 


