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ABSTRACT: 

High-voltage direct current (HVDC) using voltage source converter (VSC) in transmission systems applications are currently a competitive 
alternative to the traditional AC transmission systems, especially for offshore wind power applications. The increases of rated power and 
distance to the shore have made VSC-HVDC transmission systems economically more efficient than the conventional solution based on AC 
lines. Locating a fault in a submarine DC line must be fast and accurate because of the high cost of the submarine repairs as well as the 
operation cost (not-supplied energy). This paper proposed a fault location methodology based on artificial neural networks (ANN) for VSC-
HVDC transmission system. The methodology only uses instantaneous values of electrical quantities (voltage and current) at one of the VSC 
terminal eliminating the problem of synchronisation. The proposed methodology has been tested and demonstrated using a typical VSC-HVDC 
test network, and simulation results show the appropriate performance of the methodology. 
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1.- INTRODUCTION  
 
Nowadays, the HVDC technology (High Voltage Direct Current) is in constant development [1]. This type of system is the most 
appropriate configuration to transport energy through long distances, since the rated power does is not limited by the distance in this 
type of lines [2], unlike the HVAC whose transport capacity decreases as the distance increases. Besides, the inductance in HVAC 
systems provokes phase lag between both terminals, causing instability in the system. This phenomenon does not occur in HVDC 
systems. Another advantage over HVAC systems is that DC systems allow connecting areas that function at different frequency [3]. 
In economic terms, an HVDC system has a lower cost of investment and greater efficiency for lines of high length [4]. Also, thanks to 
technological advances in power electronics, this technology is suitable for the synchronisation of renewable plants with the grid [5], 
including offshore wind farms. HVDC systems can be classified according to two main types of technologies: LCC (Line Commutated 
Converter), based on thyristors, and VSC (Voltage Source Converter), based on IGBTs. The last one is the most 
used nowadays due to its versatility, a lower rate of harmonic distortion and the capability to control active and reactive power [6], in 
contrast to the LCC which only controls active power [7]. Also, thanks to the improvement of the multilevel-modular VSC, LCC have 
not the advantage of efficiency anymore. However, the VSC-HVDC technology has disadvantages such as the complexity of the 
protection systems and their vulnerability to faults. The short-circuit current remains uncontrolled during a fault in DC. The current 
flows through the antiparallel diodes even when the IGBTs are opened, whereas, in case of thyristors, current can be cut off 
controlling the angle of fire [8]. Moreover, in long submarine DC cables, it is difficult to accurately estimate the location of a fault in 
order to repair it and restore the service. For this reason, the operation of these VSC-HVDC systems requires reliable, fast and 
accurate location methods to keep system stability [9]. Among all the existent methods of fault location, it should be mentioned 
(i) method of travelling waves and (ii) failure analysis method. The first method [10-11] is complicated because it requires much 
information about the dynamics of the current during the fault, and voltage sensors prepared for high frequencies. The second 
method is based on the system parameters and the electrical magnitudes during the fault. This one deal with the uncertainty of the 
electrical parameters of the system [12] and the de-synchronisation between the two measures at both terminals of the system. 
 
This article proposes a methodology to estimate the location of a fault in a point-to-point-type bipolar VSC-HVDC system. The 
methodology is based on Artificial Neural Networks (ANN), which are fed with magnitudes of voltage and current during the transient 
of a fault. This technique has been used in many research works with very satisfactory results. However, one of the main problems 
of this type of networks is the complexity of the design process. There is not any guide about how to build an ANN, including all its 
parameters and key factors which must be considered for their calculation or estimation [13-17]. Artificial Intelligence, especially the 
neural networks, are demonstrating their effectiveness in several sectors of electrical engineering, despite being in the early stages 
of development in this field. For this reason, this paper has two objectives, firstly, estimating the location of a fault in a VSC-HVDC 
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system and secondly, the step-by-step design of the ANN, obtaining all its parameters, in order to facilitate the design of these 
algorithms to the researchers, and promote its penetration in the electrical engineering.  

 

2.- MATERIAL AND METHODS 
 
The ANN is an ideal tool for locating faults in VSC-HVDC systems, as they can model complex highly-nonlinear systems without a 
unique equation. The ANN is trained to learn a response based on several datasets of input and output data. The most extended 
ANN is the Multi-Layer Perceptron (MLP). The perceptrons in a layer of the MLP are entirely connected to the next one, and a 
weight (wi) is associated with each connection. During the learning process, ANN is fed with a vector of inputs (p) and 
another with the desired outputs (a).  Learning occurs when the weights of the connections are modified depending on the error at 
the output of the ANN in relation to the desired output. In the MLP, to obtain such errors, it is used the backpropagation algorithm. 
Once the ANN is trained, a new input can be introduced to obtain the estimation output. The proposed methodology is based on the 
selection of the training data, the creation of the ANN and the development of the training process of the ANN. 
 

2.1.- TRAINING DATA 
 
In this subsection, it is detailed the selection of the input vector of the ANN, (p), and the desired output vector (a).  
For that purpose, the magnitudes of voltage and current have to be measured during a fault in the VSC-HVDC converting station: V= 

[v1, v2, …, vns]T (1), I= [i1, i2, …, ins]T (2) where ns is the number of samples in a time interval δt, at the sampling frequency fs. It is 
important to remember that the values of voltage and current depend on the position, xi, and the resistance, Rf, of the fault for the 
different training cases. Both vectors (1) and (2) compose the inputs vector, pxRf = [VxRf IxRf]T (3), where the superscript x represents 
the positions of the faults considered, x = [x1, x2, …, xn]T (4), and Rf represents the fault resistance, Rf = [Rf1, Rf2, … Rfn]T (5). The 
desired output vector (a), represents the position of the fault, a = x = [x1, x2, …, xn]T (6). 

 
2.2.- CREATION OF A ANN 
 
The ANN is defined in terms of the number of neurons distributed on the layers, the connections, and the weights. The data is 
introduced in the input layer; it passes through the hidden layer and, finally, the product exits through the output layer. The ANN can 
be classified into (i) Feed-forward (henceforth FF) and (ii) Feed-back (henceforth FB). In FF networks, any output is an input of any 
neuronal unit of the same layer or layers above. The information only circulates from the neurons of the input layer toward the 
output. In FB networks, the outputs of the neurons can be inputs for units at the same or previous levels. 
For this paper, FF networks have been implemented. They are classified as: Feed-forward net (FFN) and Cascade-forward 
net (CFN).  
 

• In an FFN, the input is connected to a group of hidden layers which use a sigmoid transfer function. They are connected to 
an output layer which uses a linear function. Every neuron has a weight defined by the vector w; w =[w1,1, w1,2, ..., 

w1,R]T (7), b represents the bias and n = w⋅p + b (8) the net inflow. 

• CFN is similar to an FFN, except by an additional connection between the entrance and the output layer, without passing 
through the hidden layers.  

 
Furthermore, it has been shown that any architecture similar to MLP requires a maximum of two hidden layers. In addition, since only 
one hidden layer is enough to obtain optimum results [18], only one will be used. 
The inputs of the neurons have an associated weight which changes in the learning process. These weights are obtained iteratively 
so as the error is minimised. Nevertheless, in the previous step, it can happen an undesired phenomenon called overfitting, that 
causes the ANN memorises the training data. This would cause the loss of generalisation of the ANN and consequently the capacity 
to learn new cases. To avoid this, the input data is divided into: (i) Training group, (ii) Validation group and (iii) Test group. The first 
one is used to train the ANN and allows the weights to vary depending on their characteristics and values. The second group is used 
to adjust certain parameters associated with the training. The third one is used to check the reliability of the ANN for inputs which 
have not previously used. 
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2.3.- PROCESS OF TRAINING THE ANN  
 
The selected training algorithm is Levenberg-Marquardt, as it is powerful and provides outstanding results [19]. In addition, it should 
be highlighted the use of the algorithm backpropagation (BP), based on the method of the gradient descent, due to its excellent 
performance on the resolution of complex problems. This algorithm has two stages: (i) Learning forward, and (ii) Learning 
backwards. In the first stage, the input patterns are in the first layer of the ANN, that spreads the values through all layers to the 
output. In the second stage, the obtained output and the desired one are compared, generating an error value for every neuron of 
the last layer. These errors are transmitted from the output layer to each one of the neurons of the intermediate layer. This process is 
repeated layer by layer until completing the whole network. Based on that error, the weights of each neuron are readjusted 
minimising the error. The function of the error to be minimised can be expressed in such a variety of ways, highlighting: (i) Average 
quadratic error (MSE), (ii) Root of the mean square error (RMSE) and (iii) Mean absolute error (MAE):  
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Where M is the number of variables and P is the number of patterns. In addition, yij is the j-th component of the desired output for 
the i-th pattern, and tij the j-th component of the actual output for the i-th pattern. 
 
The training method which has been implemented is the so-called cross-validation, due to the good practical results [20]. It consists 
in training the network k =10 times, calculating the errors in each case and, subsequently, obtaining the global error. This method 
avoids the overfitting and, in consequence, the loss of generalisation. 
 

3.- SIMULATION AND TRAINING OF THE ANN  
 
The test system consists of a system of two VSC-HVDC converter stations, bi-polar type (± 640 kV), identified by the transmitter and 
receiver terminals, connected by a submarine 100-km-long cable per pole. 

 
Fig. 1. Test system. 

 
The system has the following parameters: DC power of 1000 MW, AC voltage (line-line) of 133 kV, DC voltage (line-line) of 640 
kV DC, wire resistance of 0.0186 Ω/km, the inductance of the DC cable of 7.87641x10-4 H/km, capacitance of the DC cable of 0.21 
µF/km and frequency on the AC side of 50 Hz. The system has been developed using the software PSCAD, where EMT-type 
simulations of a phase-to-ground fault have been performed. 
 
The input vector, pxRf = [VxRf IxRf]T (12), is a data window of 1.0 ms with a sampling frequency of 20 kHz, using voltage (V) and 
current (I) measured from a terminal. The input vector can be interpreted as a set of sub-vectors pxRf where x represents the exact 
location of the fault and Rf the resistance of fault. The training values of Rf are Rf = [0.0, 5.0,10.0]T Ω (13). For submarine lines, the Rf 
values are low (iron or sea water between conductor and screen) [21-23]. 
 

The length of the input vector for each Rf and x, is 2n×1 = 401 samples. Faults every 1km along the whole line, so there are 99 
vectors for each Rf (297 vectors). 
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              (14) 

 

The desired output vector contains the fault distances measured in per unit for every Rf value; a = [x1/l, x2/l, … xn/ l]T (15). The first 
99 items correspond to Rf = 0 Ω, from 100th to 198th correspond to Rf = 5 Ω, and the remaining values correspond to Rf = 10 Ω.  
Once the input vector and desired output vectors are created from PSCAD simulations results, for the development of the ANN is 
used Matlab Neural Network Toolbox. 
 
The input data is divided into 237 vectors for training, 30 for validation and 30 for testing, avoiding overfitting of the ANN. 
 
As there is no guide about how to calculate specific parameters of the ANN, it was decided to conduct several studies in order to 
obtain the number of hidden layers, the limits of training criteria (LCE) and the number of neurons per layer. 
 

3.1. CALCULATION OF THE LIMITS OF TRAINING CRITERIA 

 

These are going to be determined from the correlation coefficient, R, which establishes the proximity between the obtained and 
desired outputs. To calculate the number of neurons in the hidden layer, it is used ad hoc rules which, although not being 
mathematically justifiable, have demonstrated excellent results [18]. The Rule of the geometric pyramid sets the number of neurons 

for an unique hidden layer as: = *
c

N N M (16), with M as the number of output neurons and N as the number of input variables. 

In this case, N = 40 and M = 1, it results as NC = 6.32. As it is not an exact value, the next integer values, by default and excess, are 
selected: 5, 6 and 7 neurons. From these, several tests are performed to calculate the LCE. 
 
For this purpose, with an ANN with CFN structure and Nc = 6, the following steps are followed:  
 

• Fixing the LCE to the default values set out by Matlab  

• Training the ANN 10 times 

• Checking the first of the ten training carried out, and determining for which of the five LCE the process has stopped  

• Increasing the value of the LCE that has caused the stop 

• Return to the second step 
 

The criterion for finishing the loop is a maximum number of twelve iterations. The reason is that the time required by the ANN to be 
trained with very restrictive criteria is very high. Once all the steps have been done, the process is repeated for NC = {5, 7} and, 
similarly, for FFN.  
 
Regarding the results, it can be seen that the ANN provides practically the same output in each training regardless of the LCE. The 
chosen LCE are: Iterations=1000, Performance=0, Gradient=1.00x10-6 and Number of checks=1000, due to the lower simulation 
time consumption. Then, for which structure of ANN the correlation coefficients are closer to one and for which number of NC it 
happens. Thus, the best results are obtained from the configuration FFN, Nc = 5 and CFN, Nc = 6.  

 

3.2. CALCULATION OF THE NUMBER OF NEURONS IN THE HIDDEN LAYER 

 

The objective of this subsection is to check if the value of NC established in the previous subsection is correct, since the indexes R in 
some cases are similar. For this purpose, errors MAE, MSE and RMSE are calculated. 
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 FFN CFN 

Nc 5 6 7 5 6 7 

MAE 6.47x10-4 7.07x10-4 0.004 0.0256 0.0021 0.0043 

MSE 3.00x10-5 4.28x10-5 0.0012 0.0016 1.86×10-4 5.86×10-4 

RMSE 0.0055 0.065 0.0346 0.0400 0.0136 0.0242 

Table 1. MAE, MSE and RMSE errors according to structure and hidden neurons. 
 

The lowest errors have been obtained from the structures and Nc obtained on the previous sub-section; therefore, the values 
FFN, Nc = 5 and CFN, Nc = 6 are fixed. 
 

3.3. RESULTS OF THE TRAINING OF THE ANN 
 
Once all parameters have been established, the next step is to train the network applying the cross-validation method. 
The following figures show the regression lines for each structure depending on Rf.  
 

  
Fig. 2. Regression line for FFN (left) and CFN (right). 

 

These lines establish the relation between the estimated and the actual length. Fig. 2 shows that, for all values of Rf, estimations are 
very close to the actual values. Thus, it has been demonstrated the power of the ANN created for each structure. 
To check the robustness of the ANN, errors and correlation coefficients are calculated.  
 

Errors Correlation coefficient 

Structure MSE (pu) RMSE (pu) MAE (pu) R 

FFN 5.453×10-4 0.0234 0.0058 0.9965 

CFN 0.0906 0.3009 0.0333 0.8730 

Table 2. Errors and correlation coefficient for both structures. 
 
Table 2 shows that the structure FFN provides the best estimations due to its lower errors and higher correlation coefficient. 

 

3.3.1. ANN performance for noisy input signals 

 

Trainings in the previous section use ideal signals, this means without considering the measurement error of the equipment (noise of 
a signal). Although it can be filtered, it is not possible to eliminate it completely. In this subsection, it is analysed the behaviour of the 
ANN when the input signals are altered with noise. This allows the analysis of the robustness and power of the ANN for each 

structure. A vector of noise Θ(µ,) is added to the input vector (p). The noise vector is randomly generated with a gaussian 

distribution of average (µ) zero and standard deviation σ = ±1%. The new noisy signal (pΘ) is used for training for each structure 
and method.  
 
After adding this noise, the errors and correlation coefficients are calculated.  
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Errors  Correlation coefficient 

Structure MSE (pu) RMSE (pu) MAE (pu) R 

FFN 0.0305 0.1746 0.0289 0.9551 

CFN 7.7335 2.7809 0.3050 0.7081 

Table 3. Errors and correlation coefficient for noisy inputs far both structures. 
 

As expected, the noise has led to an increase in the errors of both structures. For CFN a high increase in the errors is produced 
compared to Table 2, and therefore it does not provide reasonable estimations after disturbing the signal. This is also reflected in the 
correlation coefficient, which is further from the unit. However, in FFN case, the increment of the errors has been slight, and its 
correlation coefficient is still close to the unit. This way, it is demonstrated the power of the created ANN with FFN which, despite 
having modified its input, still provides very good estimations. 
 

3.3.2. Adding new inputs to the trained ANN  

 

The objective of this subsection is to determine the response of the ANN, previously trained with Rf = [0, 5, 10] Ω, when new inputs 
are introduced. For this purpose, two scenarios are analysed: 
 

• New input with Rf close to the values used in the training process 

• New input with Rf distant from the values used in the training process 
 

3.3.2.1. New input with low Rf  
 
Table 4 shows, the relative error of the estimation of the fault location according to Rf.  Five locations (x) and six values of Rf have 

been selected.  
 

Location of the fault, x (km) Rf  (Ω) 

0 2.5 5 7.5 10 15 

5 4.724 3.050 2.565 2.444 2.840 8.519 

25 0.138 0.012 0.082 0.230 0.334 0.622 

50 0.008 0.026 0.035 0.037 0.035 0.029 

75 0.093 0.053 0.044 0.063 0.107 0.266 

100 0.235 0.076 9.7x10-5 0.019 0.034 0.373 

Table 4. Results of the % of relative error in the location of the fault. 
 

Results show that the higher Rf the more significant errors. However, the ANN still provides reasonable estimates since these errors 
are not very high. It is important to note that, for Rf values higher than 15 Ω, errors will gradually increase as the training have been 
conducted with Rf = [0, 5, 10] Ω. In the case of submarine cable, the Rf values are low, so the ANN with FFN structure provides 
reasonable estimates for new inputs with low Rf. 
 
Even so, the response of the ANN for inputs with high Rf is analysed. New inputs for fault resistances from Rf = 0 Ω to Rf = 100 Ω 
(increments of 2.5 Ω) are introduced. This way it is determined how it is affected the estimation of the ANN as Rf reaches very 
different values from the training one.  Fig. 3 shows estimations of the ANN according to RF for a real length of the fault of 75 km. 
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Fig. 3. Estimated lengths according to the original Rf value. 

 
In Fig. 3 It is noted that, the closer Rf values to those used during practice, the closer estimations to the actual length.  
 

3.3.2.2. New inputs with high Rf  
 
In Fig. 3 it can be observed that, as the Rf value of the new input increases, the estimated lengths gradually diverge from the actual 
length. Nevertheless, their relative errors are not high. For example, for Rf = 50 Ω, the estimated length is 77.5 km. This means a 
relative error of 3.3 %. In the case of Rf = 100 Ω, the estimated length is 82.15 km, which means a relative error of 9.5 %. Analysing 
these errors, the power of the ANN trained in this article is demonstrated, since it can achieve errors lower than 10 %, even when 
new inputs with values of Rf far from those used during the training are added. 
 
Finally, it is decided to carry out the last study to show that, depending on the data used for training, the obtained estimations will 
differ. For this purpose, a new ANN is created and trained in this subsection. The differences with respect to the ANN used 
throughout this research are the Rf training values. In this ANN, the new input vector is composed of the voltage and current values 
for each location, x, now with Rf = [75, 85, 100] Ω. Once trained, the response of the ANN for inputs with high Rf is analysed. New 
inputs for fault resistances from Rf = 0 Ω to Rf = 100 Ω (increments of 2.5 Ω) are introduced. Fig. 4 shows the estimations of the new 
ANN according to Rf for a real length of 75 km. 
 

 
Fig. 4. New Lengths estimated by the new ANN according to the Rf value. 

 
Fig. 4 shows that for inputs with Rf values close to those used during training, the estimations are very accurate.  
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4. CONCLUSIONS 
 

This article provides a methodology for estimating the location of a fault in a VSC-HVDC system. For this purpose, several faults 
along the line are simulated with PSCAD in order to record voltage and current magnitudes. From these magnitudes, the vectors of 
inputs and desired output are built. Then the ANN is constructed using the Matlab Neural Network Toolbox. The calculation and 
selection of all its parameters are detailed. The chosen training method is cross-validation, with k=10 iterations, since this avoids 
overfitting of the network. In addition, a section has been added where the influence of the noise in signals is studied, as well as its 
effect on the regression lines and estimations. Without noise, both FFN and CFN structures present very good estimations, but FFN 
results are accurate. By disturbing with noise, CFN does not provide as reasonable estimates, while FFN still provides excellent 
results, demonstrating the power of the ANN with FFN. Furthermore, for different inputs from those used during training, the ANN 
provides satisfactory results, demonstrating its power. This has been tested for values between Rf = 0 Ω and Rf = 15 Ω, as in 
submarine cables the Rf that low.  
 
Finally, the last case is studied, that reflects the importance of the training data setup according to the new inputs to estimate. It is 
demonstrated that the relative errors increase as the inputs differ from the data used during the training. In spite of that, errors 
remain below 10 %, which reflects the robustness of the ANN created. 
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