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A pertinent question in cavity optomechanics is whether reaching the regime of large single-photon coop-
erativity, where the single-photon coupling rate exceeds the geometric mean of the cavity and mechanical
decay rates, can enable any new phenomena. We show that in some multimode optomechanical systems, the
single-photon cooperativity can indeed be a figure of merit. We first study a system with one cavity mode and
two mechanical oscillators, which combines the concepts of levitated optomechanics and coherent scattering
with standard dispersive optomechanics. Later, we study a more complicated setup involving three cavity modes
which does not rely on levitated optomechanics and only features dispersive optomechanical interactions with
direct cavity driving. These systems can effectively realize the degenerate or the nondegenerate parametric
oscillator models known from quantum optics, but in the unusual finite-size regime for the fundamental mode(s)
when the single-photon cooperativity is large. We show that the response of these systems to a coherent optical
probe can be highly nonlinear in probe power even for average photon occupation numbers below unity.
The nonlinear optomechanical interaction has the peculiar consequence that the probe drive will effectively
amplitude-squeeze itself. For large single-photon cooperativity, this occurs for small occupation numbers,
which enables observation of nonclassical antibunching of the transmitted probe photons due to a destructive
interference effect. Finally, we show that as the probe power is increased even further, the system enters a critical
regime characterized by intrinsically nonlinear dynamics and non-Gaussian states.
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I. INTRODUCTION

In single-mode dispersive cavity optomechanics [1], the
oscillatory motion of a mechanical element modulates the
resonance frequency of an electromagnetic cavity mode. This
simple interaction has enabled quantum ground-state cooling
[2,3] and squeezing [4–6] of a motional mode of microme-
chanical objects consisting of macroscopic numbers of atoms.
It has also provided another way to manipulate the quantum
noise properties of light [7–9] and to observe quantum cor-
relations between radiation and motion [10,11]. Extending
the system to several mechanical and optical modes has even
made it possible to entangle mechanical modes of remote
physical objects [12,13].

The radiation pressure interaction between motion and
radiation is characterized by a single-photon coupling rate g0,
which is the cavity frequency shift caused by the size of the
quantum zero-point motion of the mechanical oscillator. In all
experiments to date, this coupling rate is orders of magnitude
smaller than the linewidth κ of the cavity mode. However,
coherent driving of the cavity mode will produce an effective
linear coupling between mechanical and optical fluctuations
with a coupling rate g0

√
npht, where npht is the average number

of photons in the cavity. This enables reaching the regimes of
large cooperativity [2,3,14], strong coupling [15,16], and even
ultrastrong coupling [17].

The enhanced coupling rate nevertheless comes at the price
of linearized dynamics such that the optomechanical system in
some sense behaves more classically. One way to appreciate
this is to note that g0 ∝ √

h̄ whereas npht ∝ h̄−1, such that the

enhanced coupling rate is independent of h̄ [1]. Observing
quantum effects then requires some kind of quantitative com-
parison, e.g., to rule out classical noise [18,19]. Alternatively,
one needs to drive the system with quantum states or take
advantage of measurement-induced nonlinearities [12,20].

Effects due to the intrinsic nonlinear interaction between
mechanical and optical fluctuations are generally expected to
become relevant in the single-photon strong coupling regime
g0 � κ [21–28]. We note, however, that some exceptions to
this requirement have been predicted in cases of optical [29]
or mechanical [30] parametric driving, in systems driven close
to an instability [31,32], or in carefully designed multimode
systems [33,34].

Although reaching the single-photon strong coupling
regime of optomechanics is difficult, there is great experi-
mental progress on reducing the mechanical dissipation rates
in optomechanical systems. Quality factors Qm � 108 have
been reported for flexural modes in dielectric membranes
[35–38] or nanobeams [39], and localized acoustic modes in
suspended photonic crystals can have quality factors as large
as Qm ∼ 1010 [40]. In light of this, one may wonder whether
any new phenomena can be realized in the regime where the
single-photon optomechanical cooperativity

C0 = 4g2
0

κγ1
(1)

exceeds unity, where γ1 is the mechanical decay rate. Several
experiments have in fact reached this regime. Most of them
are in the unresolved sideband regime where the cavity decay
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rate κ is much larger than the mechanical resonance frequency
[41–45]. However, a value of C0 ∼ 8 has been reported for
a trampoline membrane-in-the-middle setup where the me-
chanical resonance frequency and the cavity decay rate were
comparable [35].

To our knowledge, the single-photon cooperativity (1) does
not play any significant role in the single-mode optomechan-
ical system as long as g0 � κ . The relevant figure of merit is
in fact the enhanced cooperativity C = C0npht. A large C0 can,
of course, be advantageous since it requires less circulating
power in the cavity mode, but it does not bring on any new
phenomena. An exception would be if the mechanical and
cavity resonance frequencies are comparable such that two-
photon creation-annihilation processes become relevant [46],
but this is typically far from the case.

In this paper, we aim to study the simplest multimode
optomechanical system where the single-photon cooperativity
C0 is a genuine figure of merit. To do this, we will have to
assume experimental setups beyond what has already been
realized, but we will restrict ourselves to the weak coupling
limit g0�κ . Unlike previous proposals for realizing nonlinear
effects in the weak coupling limit [29–34], our proposal
benefits from the smallness of the mechanical decay rate
γ1. The purpose of our study is to stimulate further work,
both theoretical and experimental, toward bringing cavity
optomechanics into the nonlinear regime.

We will start by studying a system where one cavity mode
couples to two mechanical oscillators, one of which is the
motion of a nanoparticle levitated by an optical tweezer.
Optically levitated nanoparticles have recently been cooled
to the motional ground state [47] by the so-called coherent
scattering technique [48–51]. We consider such a setup where
tweezer photons can scatter into an undriven cavity mode due
to the motion of a nanoparticle. The system is thus distinct
from that of dispersive optomechanics of a driven cavity with
two mechanical oscillators [52,53] and we will explain why
this is important. Nevertheless, since dispersive and driven
optomechanics is more common in experiments, we also show
that our model can be realized in such systems as well.
However, we argue that this might require complicated setups
involving three cavity modes.

The multimode systems we study will be shown to ef-
fectively realize the degenerate or the nondegenerate para-
metric oscillator models known from quantum optics with
nonlinear media [54–57]. We will see that for sufficiently
large single-photon cooperativity C0, these models are real-
ized in the so-called finite-size regime for the fundamental
mode [55,58–60]. This is an unusual regime in the con-
text of nonlinear media and has not been studied in much
detail.

After showing how our model maps onto the effective
parametric oscillator models, we study the response of the op-
tomechanical system to an optical coherent probe drive. This
is equivalent to studying second-order harmonic generation in
the effective models. We will see that in the regime of large C0,
the critical behavior known from mean-field theory [56,57]
is smeared out, predominantly by quantum fluctuations. For
sufficiently large probe drive, we show that the system reaches
a critical regime characterized by nonlinear interactions be-
tween optical and mechanical fluctuations.

a

x1

x2

FIG. 1. Schematic of the setup. A nanoparticle (green) is lev-
itated by an optical tweezer (red) and placed inside an optical
cavity with a movable mirror. Alternatively, one could consider both
mirrors fixed and include a dielectric membrane inside the cavity.
The undulating red arrows indicate that photons can scatter from the
tweezer beam and into the cavity mode due to interaction with the
nanoparticle.

We also show that the system has a highly nonlinear
response to the optical probe drive in a narrow frequency
window, which is a nonlinear version of optomechanically
induced transparency [14,61]. Similar effects have been stud-
ied in single-mode optomechanics [25–27], but unlike in
that case, the effect is here not limited by the smallness
of g0/κ . Due to the nonlinear interaction, the probe drive
will also tend to amplitude-squeeze itself. For large C0, this
autonomous squeezing is significant even in the regime of
cavity occupation numbers well below unity, and we will see
that it facilitates the observation of photon antibunching.

This paper is organized as follows. In Sec. II, we de-
scribe the optomechanical model which involves the levitated
nanoparticle. We then define the normal modes of the system
in Sec. III and derive a master equation expressed in terms
of these normal modes in Sec. IV. In Sec. V, we express the
nonlinear part of the optomechanical interaction in terms of
normal modes, where we recognize the effective parametric
oscillator models. We first study the steady state of the un-
driven effective models in Sec. VI, before we consider the
response to an optical probe drive in Sec. VII. In Sec. VIII,
we show how our model can also be realized in multimode,
driven, and dispersive optomechanics. Finally, we summarize
and discuss future possible directions in Sec. IX.

II. MODEL

We consider the system shown in Fig. 1, where a nanopar-
ticle levitated by an optical tweezer is placed inside an optical
cavity. The motion of the particle in the electromagnetic trap
can then cause scattering of tweezer photons into a cavity
mode. In addition to the levitated nanoparticle, we also as-
sume that the cavity mode is influenced by another mechanical
oscillator. This is depicted as a movable end mirror in Fig. 1,
but one could also imagine implementations with other types
of oscillators, e.g., membrane in the middle [35–37,62].

Note that we do not consider separate laser driving of the
optical cavity here, which means that all the photons that enter
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the cavity originate from the trapping field and have scattered
off of the nanoparticle.

A. System Hamiltonian

We will consider a setup where the trap laser is polarized
perpendicular to the cavity axis and where the nanoparticle is
positioned at a node of the optical cavity mode. In this case,
any scattering of photons from the trap laser into the optical
cavity (and vice versa) must be caused by the motion of the
nanoparticle [49,51]. In other words, there would be no direct
scattering from a static particle. Furthermore, the scattering of
photons into the cavity mode is only caused by motion along
the cavity axis [49,51]. For this reason, we need only consider
the motion of the nanoparticle along this axis, i.e., we can treat
it as a one-dimensional oscillator. We will also only consider
a single mode of the movable mirror’s motion, as well as a
single optical cavity mode.

The Hamiltonian is defined as H = Hfree + Hint,1 + Hint,2,
where

Hfree = −h̄�a†a + h̄ωm,1b†
1b1 + h̄ωm,2b†

2b2 (2)

contains the free harmonic oscillator Hamiltonians for the
cavity mode with photon annihilation operator a, a mechan-
ical mode of the mirror’s motion with phonon annihilation
operator b1, and a mechanical mode of the nanoparticle’s
motion with phonon annihilation operator b2. The detuning
� = ωtw − ωc is the difference between the optical trapping
laser frequency ωtw and the cavity resonance frequency ωc,
and the mechanical oscillators have resonance frequencies
ωm, j , j = 1, 2. We assume ωm,1, ωm,2 � ωtw, ωc.

We will also assume that the mirror mode frequency is
comparable to twice the nanoparticle mode frequency. Specif-
ically, we require

|ωm,1 − 2ωm,2| � ωm,2. (3)

We emphasize that there is no need for fine-tuning the relation
between the two mechanical frequencies, as long as (3) is
satisfied. We note that the nanoparticle’s resonance frequency
can to some extent be tunable [49,51]. In addition, a mirror or
a membrane in the middle will have several mechanical modes
that can couple to the same cavity mode. These properties
should make it feasible to meet the requirement (3).

The first part of the interaction Hamiltonian is

Hint,1 = h̄g0x1a†a. (4)

We let x j = b j + b†
j denote the position operator for oscillator

j in units of its zero-point motion. This is the standard
radiation pressure interaction between the movable mirror and
the optical cavity. As already mentioned, we will assume that
the single-photon coupling rate g0 is much smaller than the
decay rate of the optical cavity.

The second part of the interaction Hamiltonian is

Hint,2 = h̄Gx2(a + a†). (5)

This describes the interaction between the optical tweezer
field, the optical cavity field, and the motion of the levitated
nanoparticle, for the particular positioning and polarization
described above. It originates from the interference term
between the tweezer and the cavity field in the Hamiltonian

of the electromagnetic field, where the tweezer field has
been approximated by its average value. The coupling rate G
depends on a number of parameters [49,51]. Most importantly,
it is proportional to the square root of the laser power of
the tweezer and thus tunable. The term ∼b(†)

2 a† describes a
process where a tweezer photon scatters into the optical cavity
mode a while simultaneously annihilating (creating) a phonon
in the nanoparticle mode b2. We will assume below that it is
possible to reach the (many-photon) strong coupling regime,
where G exceeds the cavity decay rate. We neglect interaction
terms of higher order between modes a and b2, since we are
working in the limit of weak single-photon coupling.

We emphasize that the system we study is distinct from
simply having two mechanical oscillators couple to a driven
cavity mode. This is clear from the absence of a term H ′ =
h̄Gx1(a + a†) in the interaction Hamiltonian (4). In a standard
and coherently driven optomechanical system, such a term
originates from (4) when displacing the operator a → a + α

by its coherent amplitude α. The lack of this usual “linearized”
optomechanical interaction for mechanical mode b1 in this
case is due to the fact that we are not coherently driving the
cavity and that there is no direct scattering into the cavity
mode with our assumptions, only scattering caused by the
nanoparticle’s motion.

The absence of H ′ will be crucial to realize the effects
we study here. The reason is that for a red-detuned drive
(� < 0), such a term would lead to the well-known optome-
chanical damping of mode b1. Even if the detuning � is
far away from the optimal damping condition, the mechan-
ical linewidth broadening can be significant for sufficiently
large laser power. We wish, however, to preserve the narrow
linewidth of mode b1. This is why we have designed the
system such that modes a and b1 only interact through the
intrinsic, nonlinear radiation pressure interaction. We will
comment further on this issue in Sec. VI B.

B. Dissipation

We now describe the interaction of the cavity and mechan-
ical modes with their respective environments. While this in-
teraction is of the standard form, the strong coupling between
the oscillator b2 and the cavity mode a will give rise to unusual
terms in the effective master equation describing the system
[63]. To appreciate the physical origin of these effects, we
therefore include some details on how the interaction with the
environment is incorporated in the effective description of the
system.

For simplicity, we consider the cavity to be one-sided,
i.e., its only decay channel is to the electromagnetic con-
tinuum through one mirror (the left mirror in Fig. 1). This
assumption is not crucial to our results and the model can be
straightforwardly generalized to include other decay channels.
The external electromagnetic modes, and their coupling to
the cavity mode, are included by extending the Hamiltonian
with Hext,c = h̄

∑
k ωc,k f †

k fk + Hs−b,c, where the system-bath
interaction is

Hs−b,c =
∑

k

h̄λc,k ( f †
k a + a† fk ). (6)
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We have defined fk as the photon annihilation operator for
an external mode with frequency ωc,k . This is expressed in
terms of discrete modes labeled by the integer k, but we
will later take the continuum limit. Equation (6) describes the
bilinear interaction between the cavity mode and the outside
modes, where λc,k are coupling constants. We have neglected
two-photon creation (annihilation) processes f †

k a† ( fka), as
these are off-resonant by a frequency ∼2ωc and thus strongly
suppressed. To include dissipation properly in our setup, it is
crucial to note that when a, fk refer to the frame rotating at
the laser frequency, the mode frequencies ωc,k can be negative
[63].

The cavity mode will in practice only interact with outside
modes in a narrow frequency interval around ωc of width
�ωc. We may then approximate the coupling rates λc,k →
λc and the bath density of states ρc by constants in the
frequency interval of interest. This is equivalent to treating
the electromagnetic environment as a Markovian bath [64].
In the absence of optomechanical interaction, a single-photon
Fock state in the cavity will then decay at a rate

κ = 2πρcλ
2
c (7)

due to emission into the outside modes. We will refer to κ as
the cavity decay rate in the following. We assume ωm,2 � κ ,
such that both mechanical modes are in the resolved sideband
regime.

The interaction between the mechanical modes and their
environment is described in a similar way. This involves
adding Hext, j = ∑

k h̄ω j,kg†
j,kg j,k + Hs−b, j with

Hs−b, j =
∑

k

h̄λ j,k (g j,k + g†
j,k )x j (8)

to the total Hamiltonian, for both j = 1, 2. The environmental
mode frequencies ω j,k are now strictly positive. We do not per-
form the rotating-wave approximation at this point, since the
mechanical mode b2 may have support at negative frequencies
for a sufficiently large coupling rate G [63].

For simplicity, we will again apply the Markov approxima-
tion by replacing the coupling rates λ j,k → λ j by constants,
and assuming constant densities of states ρ j in the frequency
intervals of interest. This approximation may be less accurate
than for the cavity environment if G becomes comparable
to ωm,2, since the relevant frequency interval relative to
the absolute frequency scale ωm,2 is then larger [63]. How-
ever, the approximation may still be fairly good in the limit
G � ωm,2 that we consider below. More important, we do
not expect corrections to these approximations to affect our
conclusions in any significant way.

In the absence of optomechanical interactions, a single-
phonon Fock state in the mechanical mode b j will decay at
a rate

γ j = 2πρ jλ
2
j . (9)

We will refer to γ j as the intrinsic mechanical decay rate of
mode b j .

We assume h̄ωc � kBT , where T is temperature. The
unperturbed optical bath modes are then in the vacuum
state 〈 f †

k fk′ 〉 = 0. The mechanical bath modes may, on the
other hand, be thermally occupied, such that 〈g†

j,kg j,k′ 〉 =

nB(ω j,k )δk,k′ , where

nB(ω) = 1

eh̄ω/(kBT ) − 1
(10)

is the Planck distribution. We will in the following assume

γ jnB(ω) � κ, (11)

for ω on the order of ωm,1, ωm,2. Physically, this means that the
rate at which excitations enter the system due to thermal bath
phonons is much smaller than the rate at which they decay
through the cavity mirror. This is an experimentally relevant
assumption and is a prerequisite for optomechanical sideband
cooling to the motional ground state [2,3,47].

III. NORMAL MODES

In order to derive an effective model for our setup that
properly includes dissipation, we must first define the normal
modes of the system and express the system-bath interaction
in terms of these.

A. Diagonalization of bilinear terms

We choose the laser to be red detuned with respect to the
cavity. Specifically, we let

� = −(ωm,2 + δ), (12)

with |δ| � ωm,2. This means that the cavity mode a and the
mechanical mode b2 are degenerate (for δ = 0) or almost
degenerate (for δ �= 0). We will consider an effective coupling
rate G that exceeds the decay rates κ, γ2 of the individual
modes. We note that this regime of linear strong coupling
has been reached in various experimental implementations of
dispersive optomechanics, leading to normal-mode splitting
[15,16,65]. The normal modes, which are the long-lived exci-
tations of the system, can be thought of as hybrids of photons
and phonons.

In general, the operators a, b2 and the annihilation opera-
tors c± of the normal modes are related by a symplectic trans-
formation. This transformation can be somewhat unwieldy,
in particular for δ �= 0. However, since we will consider
coupling rates and detunings G, |δ| � ωm,2, we can calculate
the transformation perturbatively in G/ωm,2, |δ|/ωm,2. For
convenience, we define the parameters

q± = rG

(1 + r2)ω±,0
, (13)

p = rδ

(1 + r2)(ω−,0 + ω+,0)
, (14)

with

r = 2G/δ

1 + sgn(δ)
√

1 + (2G/δ)2
(15)

and

ω±,0 = ωm,2 + δ

2
±

√(
δ

2

)2

+ G2. (16)

Note that ω±,0 are the normal-mode resonance frequen-
cies one would find in the rotating-wave approximation
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x2(a + a†) ≈ b†
2a + a†b2. We will, however, go beyond that

approximation here.
To second order in q±, p, the transformation to bosonic

normal-mode operators c± is given by

a = 1 + 1
2 (q2

+ + p2)√
1 + r2

c+ − q+ − r p√
1 + r2

c†
+

− r
[
1 + 1

2 (q2
− + p2)

]
√

1 + r2
c− − p + rq−√

1 + r2
c†
−, (17)

b2 = 1 + 1
2 (q2

− + p2)√
1 + r2

c− + q− − r p√
1 + r2

c†
−

+ r
[
1 + 1

2 (q2
+ + p2)

]
√

1 + r2
c+ − p + rq+√

1 + r2
c†
+. (18)

We will limit ourselves to |δ| � G, in which case the parame-
ter r is of order 1. In this regime, the mechanical and optical
modes are always strongly hybridized.

In terms of the normal-mode operators, we can now write
the bilinear part of the system Hamiltonian as

Hfree + Hint,2 = h̄ω+c†
+c+ + h̄ω−c†

−c− + h̄ωm,1b†
1b1. (19)

The normal-mode resonance frequencies are

ω± = ω±,0 − r2(4G2 + δ2)

2(1 + r2)2ωm,2
(20)

to second order in G/ωm,2, |δ|/ωm,2. From Eq. (16), we note
that the the normal-mode frequency splitting depends on G
and can thus be controlled by adjusting the tweezer laser
power.

B. Dissipation

We may now express the system-bath interaction Hamil-
tonians in terms of the normal-mode operators c±. To first
order in q±, p, the interaction with the optical bath in Eq. (6)
becomes

Hs−b,c = h̄
√

κ

2πρc(1 + r2)

∑
k

{ f †
k c+ − r f †

k c−

− (q+ − r p) f †
k c†

+ − (p + rq−) f †
k c†

− + H.c.}. (21)

The first line is similar to the original system-bath interaction
in Eq. (6) and describes processes where normal-mode parti-
cles are destroyed and photons are created in the optical bath.

The second line in Eq. (21), on the other hand, describes
processes where both normal-mode particles and bath photons
are created. These processes can also be resonant, as there are
modes fk with negative resonance frequencies. Such a process
is illustrated in Fig. 2. The consequence is that even if the
bath modes fk are originally in the vacuum state, dissipation
can lead to nonzero occupation of the normal modes. This
effect has been referred to as quantum heating [63] and is
related to the concept of quantum activation [66]. We note that
even though it is useful to think of this as pairs of particles
created from vacuum, the actual origin of all photons in this
model is the trap laser. This is because the optomechanical
interactions conserve photon numbers as long as ωm,1, ωm,2 �
ωc. These two-particle creation processes can be thought of as

ω− ω+0−ω−

f†
k c†−

FIG. 2. Illustration of quantum heating. In a dissipative pair
creation process, a photon is emitted into the bath and a particle is
created in normal mode c−. Such processes contribute to an effective
nonzero thermal occupation of the normal modes.

strong-coupling generalizations of correlated red- and blue-
shifted photons emitted from weakly coupled optomechanical
systems [67].

The interaction with the mechanical bath of mode b2 in
Eq. (8), with j = 2, becomes

Hs−b,2 = h̄
√

γ2

2πρ2(1 + r2)

∑
k

{[r(1 − q+) − p]g†
2,kc+

+ (1 + q− − r p)g†
2,kc− + H.c.}, (22)

again to first order in q±, p. Here, we have performed the
rotating-wave approximation after expressing the system-bath
interaction in terms of normal-mode operators [63]. The
rationale for this is that the modes g2,k all have positive
resonance frequencies, such that two-particle creation terms
are off resonant by �ωm,2.

IV. EFFECTIVE MODEL

A. Quantum Langevin equations

We can now derive quantum Langevin equations for
the normal-mode operators c± by using input-output theory
[64,68]. To do this, we define the optical bath input noise

ξ (t ) = − i√
2πρc

∑
k

e−iωc,k (t−t0 ) fk (t0) (23)

and the mechanical bath input noise

η2(t ) = − i√
2πρ2

∑
k

e−iω2,k (t−t0 )g2,k (t0), (24)

where t0 is a time in the distant past. The occupation numbers
of the bath modes at time t0 are assumed to be the unper-
turbed ones, i.e., 〈 f †

k (t0) fk′ (t0)〉 = 0 and 〈g†
2,k (t0)g2,k′ (t0)〉 =

nB(ω2,k )δk,k′ .
The quantum Langevin equations then become

ċ+ = −
(

κ+
2

+ iω+

)
c+ + κ+−

2
c− + κ̃+−

2
c†
−

+ √
κ

ξ + (q+ − r p)ξ †

√
1 + r2

+ √
γ2

r(1 − q+) − p√
1 + r2

η2

+ i

h̄
[Hint,1, c+] (25)
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and

ċ− = −
(

κ−
2

+ iω−

)
c− + κ+−

2
c+ − κ̃+−

2
c†
+

− √
κ

rξ − (p + rq−)ξ †

√
1 + r2

+ √
γ2

1 + q− − r p√
1 + r2

η2

+ i

h̄
[Hint,1, c−], (26)

where we have exploited q±, |p| � 1. We have introduced the
normal-mode decay rates

κ+ = κ + r2γ2

1 + r2
≈ κ

1 + r2
, (27)

κ− = r2κ + γ2

1 + r2
≈ r2κ

1 + r2
, (28)

which are both on the order of the cavity decay rate κ with our
assumptions γ2 � κ , r ∼ O(1). This means that the normal-
mode particles predominantly decay as photons. For δ = 0,
i.e., r = 1, the decay rates are κ± ≈ κ/2.

The quantum Langevin equations also contain dissipative
terms that are off-diagonal in normal-mode index, governed
by the parameter κ+− = r(κ − γ2)/(1 + r2). There are also
two-mode dissipative squeezing terms proportional to κ̃+− =
[p + r(q+ + q−)/(1 + r2)]κ . However, in the regime κ �
|ω+ − ω−| � ωm,2 we consider here, these unconventional
dissipative terms will be off-resonant, and we thus neglect
them in the following.

B. Effective master equation

Let us now for a moment ignore the presence of mechanical
mode b1, i.e., remove the last term in Eqs. (25) and (26). Cal-
culating the average occupation numbers of the normal modes
nth,± ≡ 〈c†

±c±〉0, where the subscript 0 indicates absence of
interaction with mode b1, then gives

nth,± ≈ r±2γ2nB(ω±)

κ
+ r2(4G2 + r±2δ2)

4(1 + r2)2ω2
m,2

. (29)

The first term comes from coupling to the thermal bath of os-
cillator b2. The second term originates from the pair creation
terms in Eq. (21), i.e., the quantum heating effect.

Note that with our assumptions γ2nB(ω±) � κ , r ∼ O(1),
and G, |δ| � ωm,2, the occupation numbers nth,± � 1. In
other words, absent nonlinear interaction terms or external
driving, the state of the normal modes will be close to vacuum.
In experiments to date [47,49,50], the main contributions to
the first term in Eq. (29) come from background gas collisions
and heating from photon recoil. Here, we will simply assume
that these can be made very small.

In principle, there will also be correlations between the
normal modes since they couple to common baths. However,
as we consider normal-mode frequency splitting ω+ − ω− �
κ±, we can ignore this in the following.

Based on the above considerations, we can think of the
normal-mode dissipation as if they couple to separate and
uncorrelated thermal baths with occupation numbers nth,±. We
may then write down an effective quantum master equation for

the system density matrix ρ:

ρ̇ = − i

h̄
[H, ρ]

+
∑
σ=±

κσ {(nth,σ + 1)D[cσ ] + nth,σD[c†
σ ]}ρ

+ γ1{(nth,1 + 1)D[b1] + nth,1D[b†
1]}ρ, (30)

with D[o]ρ = oρo† − (o†oρ + ρo†o)/2. While this equation
can be used to calculate the system dynamics, we note that it
obscures the fact that photons are emitted into the optical bath
not only at ω±, but also at −ω±, and that there are correlations
between photons emitted at positive and negative frequencies.

V. RESONANT NONLINEAR INTERACTIONS

Having established the effective description in terms of
normal modes, we proceed to discuss the nonlinear interaction
between the normal modes and mechanical mode b1.

A. Effective interaction Hamiltonian

We now express the Hamiltonian (4) describing interaction
between the cavity mode and the mirror’s motion in terms of
normal-mode operators. This gives

Hint,1 = h̄x1[g+c†
+c+ + g−c†

−c− + g+−(c†
+c− + c†

−c+)]

+ h̄g̃+(c† 2
+ b1 + b†

1c2
+) + h̄g̃−(c† 2

− b1 + b†
1c2

−)

+ h̄g̃+−(c†
+c†

−b1 + b†
1c−c+). (31)

We have neglected terms of the type c2
+b1, which will be

off resonance by roughly 2ωm,1, according to the frequency
relation (3). The first line in Eq. (31) contains standard radi-
ation pressure interaction terms for both normal modes with
g+ = g0/(1 + r2) and g− = r2g0/(1 + r2), as well as cross
terms familiar from two-mode optomechanics [23,24] with
g+− = −rg0/(1 + r2). These terms are all off resonance by
∼ωm,1 with our assumptions and will not play a significant
role. In the second line of (31), we recognize the degenerate
parametric oscillator Hamiltonian for both normal modes.
These describe processes where two normal-mode particles
are created and one b1 phonon is destroyed, as illustrated in
Fig. 3(a), and vice versa. The effective coupling rates are

g̃+ = − r(G − rδ/2)

(1 + r2)2ωm,2
g0, (32)

g̃− = r2(rG + δ/2)

(1 + r2)2ωm,2
g0, (33)

and the processes are resonant when

|ωm,1 − 2ω±| � κ±. (34)

For this resonance condition to be satisfied, the frequency of
mechanical mode b1 must be in the vicinity of 2ωm,2. This
is the reason for the requirement (3). However, fine-tuning
of the bare frequencies is not a requirement, since (34) can
in principle be met by adjusting the tweezer laser power and
detuning. We also emphasize that the resonance condition
only needs to be satisfied to well within the normal-mode
linewidths κ± ∼ O(κ ).
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b1
ωm,1 = 2ω−

0 ω− ω+

ωm,1 = ω+ + ω−

(a)

(b)

c† 2
−

c†− c†+

b1

ω− ω+0

FIG. 3. Illustration of resonant processes described by the non-
linear optomechanical interaction Hint,1. (a) The process c† 2

− b1, where
a phonon is annihilated and two particles are created in normal mode
c−. (b) The process c†

+c†
−b1, where a phonon is annihilated and one

particle is created in each normal mode.

The third line of (31) is the nondegenerate parametric
oscillator Hamiltonian. This describes processes as shown
in Figure 3(b) where one b1 phonon is annihilated and one
particle is created in each normal mode, and vice versa. The
effective coupling rate is

g̃+− = − rδ

2(1 + r2)ωm,2
g0, (35)

which is nonzero only for detuning δ �= 0. The processes are
resonant if the relations

|ωm,1 − (ω+ + ω−)| � κ+, κ− (36)

are satisfied.

B. Simplified model

The interaction Hamiltonian (31) can be simplified de-
pending on the choice of frequency relations between the
modes. Let us first consider the frequency relation |ωm,1 −
2ω−| � κ− such that the nonlinear interaction ∝g̃− between
normal mode c− and mechanical mode b1 is resonant. We
may then neglect the terms ∝g̃+, g̃+−, as their effect will be
insignificant compared to those of terms ∝g̃− in the regime
G/κ � 1.

In the limit g2
0/(κωm,1) � 1 that we consider here, the off-

resonant radiation pressure terms in the first line of (31) will
only become significant if the mechanical mode b1 is excited
to very large amplitudes [42,69–71]. If we limit ourselves to
states with phonon numbers

n1 <
κωm,1

g2
0

, (37)

we can ignore the terms ∝g+, g−, g+−. We will comment
on the validity of this assumption when we consider specific
states below. In total, the interaction Hamiltonian reduces to

Hint,1 = h̄g̃−(c† 2
− b1 + b†

1c2
−) (38)

with these assumptions.
Similarly, with the resonance condition (36) and the same

restriction (37) on mechanical phonon numbers, the effective
nonlinear interaction Hamiltonian becomes

Hint,1 = h̄g̃+−(c†
+c†

−b1 + b†
1c−c+), (39)

i.e., the nondegenerate parametric oscillator model.

VI. COOLING BY PHOTON-PAIR EMISSION

We now move on to examine the properties of our effective
models. In this section, we start by considering the steady state
of the system without any additional driving.

A. Adiabatic elimination

We consider first the degenerate parametric oscillator
Hamiltonian assuming the frequency relation ωm,1 − 2ω− �
κ−. The choice of resonance with mode c− is arbitrary—we
could just as well have chosen the other normal mode c+.

In the regime γ1nth,1, g̃− � κ− that we consider, the state
of the normal mode c− will be largely unaffected by the
interaction as long as the system is not driven. After moving
to rotating frames such that c− → e−iωm,1t/2c− and b1 →
e−iωm,1t b1, adiabatic elimination [72] of the mode c− from
Eq. (30) gives an effective master equation for the reduced
density matrix ρm of the mechanical mode:

ρ̇m = γ̃1{(ñth,1 + 1)D[b1] + ñth,1D[b†
1]}ρm.

From this, we can conclude that the mechanical mode b1 is in
a thermal state with an average occupation number

ñth,1 = 〈b†
1b1〉 = γ1nth,1

γ̃1
, (40)

where the effective mechanical linewidth is defined as

γ̃1 = γ1 + 4g̃2
−

κ−
(1 + 2nth,−). (41)

We have neglected terms ∝n2
th,− � 1, which is a good approx-

imation as long as n2
th,− � ñth,1.

The physical interpretation of Eqs. (40) and (41) is that
the mechanical mode is cooled as a result of the nonlinear
interaction. The additional decay rate

�1 = 4g̃2
−

κ−
(42)
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appearing in Eq. (41) is due to spontaneous emission of two
normal-mode particles that subsequently decay, primarily as
photons into the optical bath. The last term 2�1nth,− results
from additional stimulated emission caused by the (small)
thermal occupation of the normal mode c−.

For completeness, let us also consider the nondegenerate
case (39) with the resonance condition (36). Adiabatic elimi-
nation of the normal modes again leads to a thermal mechan-
ical state with average occupation number (40). However, the
effective mechanical linewidth now becomes

γ̃1 = γ1 + 4g̃2
+−

κ+ + κ−
(1 + nth,+ + nth,−). (43)

The interpretation is the same—the mechanical mode is
cooled by processes where one phonon is converted to two
normal-mode particles that subsequently decay. The differ-
ence is that the two normal-mode particles now enter separate
modes at separate frequencies.

The validity of our simplified models relies on the as-
sumption (37). We note that this is satisfied as long as
ñth,1 � κωm,1/g2

0. The latter is a very large number in the
weak coupling regime, such that this can be fulfilled even for
significant thermal occupation of the mechanical baths.

B. Effective cooperativity

In the following, we will again focus on the degenerate
parametric oscillator interaction (38) with ωm,1 ≈ 2ω−. We
now define an effective cooperativity C− as the ratio between
the decay rate �1 due to the above-mentioned spontaneous
two-photon emission and the intrinsic mechanical decay rate
γ1, giving

C− = �1

γ1
= 4g̃2

−
κ−γ1

. (44)

Note that ñth,1 ≈ nth,1/C− for nth,− � 1. To relate to previous
work on the degenerate parametric oscillator, C− � 1 corre-
sponds to the so-called finite-system-size parameter regime
for the fundamental mode [55,58–60].

For the simplified case of detuning δ = 0, i.e., r = 1, we
have g̃− = g0G/(4ωm,2) and κ− ≈ κ/2, which gives

C− = 2

(
G

4ωm,2

)2

C0. (45)

Here, C0 is the single-photon optomechanical cooperativity
defined in Eq. (1). We have already assumed the parameter
hierarchy κ < G < ωm,2, so a natural choice for G would be
the geometric mean of κ and ωm,2. If we let G = (8pκωm,2)1/2

with p be a dimensionless number of order unity, we get

C− = p
κ

ωm,2
C0. (46)

From this, we see that the effective cooperativity C− can
exceed unity, but only if the single-photon cooperativity is
large, i.e., C0 > ωm,2/κ � 1.

Let us now contrast this with what would happen in a
different model with direct driving of an optical cavity dis-
persively coupled to two mechanical oscillators. One would
then have an additional term H ′ = h̄Gx1(a + a†) in the orig-
inal Hamiltonian, which would renormalize the mechanical

a
x1

x2Ωp

FIG. 4. Schematic of a modified setup with a membrane in the
middle rather than a movable end mirror. The response to an optical
probe can be measured either in transmission or reflection.

decay rate γ1 → γ1 + G2κ/(2q ω2
m,2) due to up- and down-

conversion of drive photons, with q being a dimensionless
number of order unity [25]. Equation (45) would then give
C− < q(g0/κ )2 � 1 in the limit of weak single-photon cou-
pling. This shows that if we want to realize a large effective
cooperativity associated with the nonlinear and resonant inter-
action processes, it is essential to not have any direct driving
of the cavity mode.

VII. SECOND-ORDER HARMONIC GENERATION

In this section, we analyze the behavior of our system
when subjected to an optical probe. We again focus on the
degenerate parametric oscillator model (38) with ωm,1 ≈ 2ω−,
but note that the results presented can be straightforwardly
generalized to the nondegenerate model as well.

We will now consider a setup with a two-sided cavity such
that light can be detected in transmission. This is, for example,
possible if, rather than a movable end mirror as in Fig. 1,
mode b1 is a flexural mode of a dielectric membrane inside
the cavity. Such a modified setup is illustrated in Fig. 4.

A. Optical probe

To probe the system, we add a coherent optical drive at a
frequency ωp = ωtw + ωm,1/2 + �p, where we define �p as
the probe detuning. In the frame rotating at ωtw, in which (2),
(4), and (5) are expressed, this corresponds to adding a term

Hprobe = ih̄�p(ei(ωm,1/2+�p)t a − e−i(ωm,1/2+�p)t a†). (47)

to the Hamiltonian. Expressing this in terms of the operators
c± gives rise to drive terms for both normal modes. However,
the probe will be off resonance with the normal mode fre-
quency ω+, such that roughly half of the probe power will
be promptly reflected from the cavity. This is not relevant
to the response of mode c−, but it will influence the overall
transmitted or reflected probe power.

We now write down the quantum Langevin equations
corresponding to the effective master equation (30) with the
addition of the coherent probe. In the frame rotating at ωp,
i.e., c− → e−i(ωm,1/2+�p)t c− and b1 → e−i(ωm,1+2�p)t b1, they
become

ċ− = −κ−
2

c− − 2ig̃−c†
−b1 + �− + √

κ−ζ−, (48)

ḃ1 = −
(

γ1

2
− 2i�p

)
b1 − ig̃−c2

− + √
γ1η1, (49)
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when we, for simplicity, assume |�p| � κ− and define

�− = r
[
1 + 1

2 (q2
− + p2)

]
√

1 + r2
�p. (50)

We have also defined standard Gaussian white noise operators
that satisfy the commutation relations

[ζ−(t ), ζ †
−(t ′)] = [η1(t ), η†

1(t ′)] = δ(t − t ′) (51)

and have the properties

〈ζ †
−(t )ζ−(t ′)〉 = nth,− δ(t − t ′), (52)

〈η†
1(t )η1(t ′)〉 = nth,1 δ(t − t ′). (53)

Note that ζ is defined so as to comply with the effective master
equation (30) and can thus not be directly read out from the
original quantum Langevin equation (26).

B. Classical approximation

The optical probe will not only lead to a nonzero normal
mode coherence 〈c−〉, but will also cause coherent mechanical
oscillations such that 〈b1〉 �= 0. We argued in Sec. VI that the
thermal motion of the oscillator alone will not affect the mode
c− significantly. It is only when driven to coherent amplitudes
much larger than the thermal motion that the oscillator can
begin to influence the mode c−. As a first approximation, it
thus seems reasonable to simply replace the operator b1 with
a complex number, i.e., b1 → −iβ.

The most naive thing we can do is to also replace c− by
a complex number, c− → α−, thereby ignoring quantum and
thermal fluctuations in mode c−. In the steady state and with
these approximations, Eqs. (49) give

β = g̃−
γ1/2 − 2i�p

α2
−, (54)

and the normal mode amplitude is determined by the third-
order equation

α− = α
(0)
−

1 + 2C−|α−|2/(1 − 4i�p/γ1)
, (55)

according to Eq. (48). Here, we have defined

α
(0)
− = 2�−

κ−
, (56)

which is the coherent amplitude of normal mode c− in the
absence of interactions.

Equation (55) shows that the coherent response of normal
mode c− is nonlinear in probe power within a narrow fre-
quency interval. This effect, which we analyze further below,
can be viewed as a nonlinear version of optomehanically
induced transparency [14,61], i.e., a suppression of coherence
due to destructive interference. A similar phenomenon was
studied theoretically for strongly driven single-mode optome-
chanics [25–27]. We note that for small C−|α−|2, Eq. (55)
reproduces Eq. (12) in Ref. [25].

Let us for a moment consider the case when the probe is
on resonance, i.e., �p = 0. It is then well known [56,57] that
the steady-state solutions (54) and (55) become unstable at a

critical probe drive, which in the limit κ− � γ1 corresponds
to

α
(0)
− = α

(0)
−,crit ≡

√
2

C−
. (57)

At this drive strength, the mechanical oscillation amplitude
reaches the critical value

β = βcrit = κ−
4g̃−

, (58)

again assuming κ− � γ1. We note that βcrit � 1 with our
assumptions. For probe strengths beyond the critical value,
the system can settle into a limit cycle characterized by self-
pulsing of the coherent amplitudes [56,57]. However, in the
limit κ− � γ1, the amplitudes of the limit-cycle oscillations
decrease and eventually become smaller than the size of
thermal or vacuum fluctuations [58].

The above approximation fails to account for the fact
that the mechanical oscillator is damped due to spontaneous
conversion of phonons to pairs of normal mode particles,
as discussed in Sec. VI. Naively, one would think that this
approximation becomes invalid for sufficiently small intrinsic
mechanical decay rates γ1 such that the effective cooperativity
C− ∼ 1. However, we will see below that, due to the coherent
mechanical oscillations, the additional damping channel even-
tually becomes relevant even for arbitrarily small C−.

Earlier, we restricted our model to phonon numbers such
that (37) is valid. At the critical mechanical amplitude (58),
we have

g2
0

κωm,1
|βcrit|2 ∼ κωm,1

G2
. (59)

This means that the assumption (37) is valid for β � βcrit as
long as G � √

κωm,1, which fits well with our assumption of
a parameter regime κ < G < ωm,1.

C. Semiclassical approximation

We will now include fluctuations in mode c−. This means
that we retain the operator ζ− in Eq. (48). However, we
still ignore fluctuations in mode b1, replacing the operator
b1 → −iβ with a constant complex number as before. Equa-
tion (48) then becomes the standard equation of motion for a
degenerate parametric amplifier, but one where the squeezing
parameter β actually depends on the probe drive and must be
determined self-consistently. In other words, the depletion of
the harmonic amplitude β due to decay back to the funda-
mental mode c− must be taken into account, as was done in
Refs. [58,59].

It is convenient to rescale the mechanical amplitude to the
critical value through the definition

B = β

βcrit
. (60)

Solving Eq. (48) then gives the normal mode coherence

α− = 〈c−〉 = 1 − B

1 − |B|2 α
(0)
− (61)
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and the average occupation number

n− = 〈c†
−c−〉 = |α−|2 + nth,− + |B|2/2

1 − |B|2 . (62)

We also calculate the expectation value

σ− = 〈c2
−〉 = α2

− − nth,− + 1/2

1 − |B|2 B. (63)

By taking the expectation value of Eq. (49) and inserting
(63), we get the following self-consistency equation for the
coherent mechanical amplitude:[

1 − 4i�p

γ1
+ C−(1 + 2nth,−)

1 − |B|2
]

B = 4(1 − B)2�̃2
−

(1 − |B|2)2
. (64)

Here, we have rescaled the drive parameter

�̃− =
√
C−
2

α
(0)
− =

√
2C−

�−
κ−

(65)

such that �̃− = 1 at the critical drive strength. The first term
in the parentheses on the left-hand side of (64) originates from
the intrinsic mechanical damping, whereas the last term in
the parentheses describes additional nonlinear damping due
to emission of incoherent normal mode particles. We see that
for mechanical amplitudes |B| � 1, the latter is relevant when
the cooperativity C− becomes comparable to one, as expected.
In general, it is relevant when 1 − |B|2 � C−.

We display the numerical solution to the self-consistency
equation, Eq. (64), as a function of probe drive strength in
Fig. 5(a). We have limited ourselves to |B| < 1 and �p = 0,
in which case one can show that Eq. (64) has a fixed point such
that B = |B|. For small cooperativity C−, we see that |B| fol-
lows the classical solution (54) for small drive strengths, but
deviates from it when approaching the critical drive strength
�̃− = 1. For larger cooperativities, the deviation from the
classical solution is more pronounced and evident also for
small drive strengths.

For �p = 0 and B = |B| real, we can find an analytic
solution to Eq. (64) in the regime C− � 1 − |B|2. This can
be written

|B| = 1
2 [

√
(1 + λ)2 + 4λ − (1 + λ)] (66)

when defining λ = 4�̃2
−/[C−(1 + 2nth,−)]. Taking the limit

λ → ∞ gives |B| → 1, reproducing the behavior shown in
Fig. 5(a).

We see that for any nonzero C−, the mechanical coher-
ence will never reach the critical value |B| = 1. However,
the approximation b1 → −iβ will break down as |B| gets
sufficiently close to 1, at which point mechanical fluctuations
must also be taken into account [58,59]. We will comment
further on this in Sec. VII E.

In Fig. 6, we plot the normal mode coherent amplitude
|α−| as a function of detuning �p for different values of
cooperativity C− and drive strengths �̃−. This shows a dip
around �p = 0 due to destructive interference, whose width
is given by the effective mechanical linewidth. This is the
nonlinear analog of optomechanically induced transparency
[25–27] referred to above. We observe that both the size and
the width of the dip depend on drive strength �̃−. In Fig. 5(b),
we display the relative suppression of coherence α−/α

(0)
− at

C− = 0
C− = 0.1
C− = 1
C− = 10

α−
α

(0)
−

|B|

Ω̃−

C− = 0
C− = 0.1
C− = 1
C− = 10

C− = 0
C− = 0.1
C− = 1
C− = 10

(a)

(b)

(c)

C−n−,inc

2

FIG. 5. (a) Coherent response of the mechanical oscillator vs
optical probe drive strength for �p = 0. (b) Coherent response of
normal mode c− for �p = 0 vs optical probe drive strength nor-
malized to the coherence in absence of interactions. (c) Normalized
average occupation number of incoherent normal mode particles vs
drive strength for �p = 0. We have assumed nth,− = 0.01.

the bottom of the dip, i.e., for �p = 0, as a function of drive
strength. We note that as �̃− → ∞ and B → 1, Eq. (61) gives
α−/α

(0)
− → 1/2.

The interference dip shown in Fig. 6 can occur even
for cooperativities C− < 1 when compensating with stronger
probe drives. However, it is worth noting that in the regime
C− � 1, the normal mode has a significant nonlinear response
already in the few-particle regime. This is clear from noting
that when �̃− = 1, we have |α(0)

− |2 = |α(0)
−,crit|2 = 2/C−.

The nonlinear mechanical damping due to quantum and
thermal fluctuations leads to pairs of incoherent normal mode
particles. In Fig. 5(c), we show the incoherent contribution to
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Δp/γ1

C− = 0.1

C− = 1

Ω̃− = 0.1
Ω̃− = 0.5

Ω̃− = 0.1
Ω̃− = 0.5

Ω̃− = 1

Ω̃− = 1

|α−|
α

(0)
−

|α−|
α

(0)
−

FIG. 6. Coherent response of normal mode c− vs probe detuning
�p, shown for different optical probe drive strengths and normalized
to the coherence in absence of interactions. This can be viewed as a
nonlinear version of optomechanically induced transparency. In this
case, both the depth and width of the transparency dip depends on
probe power. Note that for C− � 1, the response is strongly nonlinear
in probe power even in the few-photon regime |α−| � 1.

the average occupation number n−, defined as

n−,inc = n− − |α−|2 (67)

normalized to |α(0)
−,crit|2 = 2/C−. Again, we see that the rela-

tive deviations from the classical result grow for increasing
C−. The critical behavior at �̃− = 1 predicted by classical
theory is smeared out, mainly due to quantum fluctuations.

D. Photon antibunching

The degenerate parametric amplifier is known to exhibit
squeezing, meaning that fluctuations in one quadrature of
the mode c− will be suppressed at the expense of amplified
fluctuations in the conjugate quadrature. The unusual feature
in our case is that the phase and amplitude of the squeezing
parameter are not externally controlled parameters, but they
are dependent on the probe drive itself. This has the useful
consequence that the normal mode will always be amplitude
squeezed, as long as |�p|/γ1 � max(1, C−), irrespective of
the phase of the probe drive. Furthermore, for large coopera-
tivity C−, the normal mode will feature significant amplitude
squeezing for a wide range of drive strengths in the few-
photon regime |α−| � 1. The system can then display the

C− = 0
C− = 0.1
C− = 1
C− = 10

Ω̃−

g
(2)
−

C− = 0
C− = 0.1
C− = 1
C− = 10

nth,− = 0.01

nth,− = 0.001

(a)

(b)

g
(2)
−

FIG. 7. The second-order coherence at zero time vs optical
probe drive strength. The normal mode c− is automatically am-
plitude squeezed. For C− � 1, this occurs over a wide range of
drive strengths in the few-photon regime α− � 1, giving rise to
antibunching.

nonclassical phenomenon of antibunching due to destructive
two-photon interference [73–77].

We define the second-order coherence at zero time as

g(2)
− = 〈c† 2

− c2
−〉

〈c†
−c−〉2

(68)

for the normal mode c−, which can be measured through
coincidence counting on the photons exiting the cavity in
transmission. In the approximation b1 → −iβ, the normal
mode c− is in a Gaussian state, such that higher order corre-
lation functions can be expressed as second-order correlation
functions. Assuming �p = 0, this gives

g(2)
− = 1 + 2α2

−(n−,inc + σ−,inc) + n2
−,inc + σ 2

−,inc

(α2− + n−,inc)2
, (69)

where α− is real and we have defined σ−,inc = σ− − α2
−. We

note that σ−,inc is negative, which means that antibunching,
i.e., g(2)

− < 1, is possible for a particular set of parameters.
Figure 7 shows the equal time second-order coherence g(2)

−
as a function of drive strength for different values of cooper-
ativity C− and for different values of thermal occupation nth,−
in the normal mode. We observe significant antibunching for
cooperativities C− � 1.

For mechanical amplitudes |B| � 1 and in the limits
C− � 1, nth,− → 0, Eqs. (64) and (61) give |B| ≈ 2α2

−. This
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corresponds to the optimal amount of squeezing required
for minimizing g(2)

− in the limit of small occupation α2
− � 1

and for nth,− → 0 [77]. In our case, the optimal mechanical
amplitude self-adjusts to the probe drive without the need
for independent tuning of an external squeezing parameter.
From Fig. 7, we observe that for nonzero nth,−, the optimal
squeezing is not necessarily reached by maximizing C−.

Not surprisingly, the antibunching effect vanishes as the
thermal occupation number nth,− increases [77]. For this
reason, one would ideally want to go the limit nth,− → 0.
However, we must remember that both the resonant nonlin-
ear interaction and the quantum heating contribution to the
thermal occupation originate from the counter-rotating terms
in the original Hamiltonian (5). If we, for example, let r = 1,
we get nth,− � G2/(4ω2

m,2), which again gives

C− <
C0nth,−

2
. (70)

This shows that the limit nth,− → 0 requires the single-photon
cooperativity C0 → ∞ in order to reach C− ∼ 1.

E. The nonlinear regime

We have so far neglected fluctuations around the large
coherent mechanical amplitude, in which case the state of
the normal mode is a Gaussian, displaced squeezed state.
This leads to large fluctuations in the antisqueezed phase
quadrature which decay at a rate κ−(1 − |B|). For sufficiently
large probe powers, the mechanical amplitude |B| will get
close enough to 1 such that this decay rate is comparable to
the effective coupling rate g̃−. At this point, the approximation
b1 → −iβ breaks down and mechanical fluctuations must be
taken into account. One then enters a regime of fully nonlinear
dynamics and non-Gaussian steady states.

The full nonlinear dynamics is not straightforward to de-
scribe analytically. There are some known analytical results
for quasiprobability distributions in the limit of a quickly
decaying harmonic mode [55], but we consider the opposite
limit here. Other approaches rely on perturbative expansions
around the semiclassical solution in Sec. VII C using nonequi-
librium Green’s function techniques [58,59].

We have solved the quantum master equation numerically
using the software QUTIP [78,79] in order to find the steady
state in the presence of the probe drive. This involved truncat-
ing Hilbert space to a finite number of Fock states, after having
displaced both modes by a suitable complex amplitude. We
define Wc(α−) as the Wigner quasiprobability distribution
[54,55] of the reduced density matrix of the normal mode c−
and Wm(β ) as the Wigner distribution of the reduced density
matrix of the mechanical mode b1.

In Fig. 8, we present the Wigner distributions for different
values of the probe drive strength, assuming a critical ampli-
tude βcrit = 4 and an effective cooperativity C− = 15.6. Ide-
ally, we would like to study the regime of βcrit = κ−/(4g̃−) �
1, but this requires more computational resources than we
have applied. We have set the thermal occupation numbers
to nth,− = 0.01 and nth,1 = 1. The latter choice is again due to
the necessary Hilbert space truncation.

Figure 8 shows that for small drive strengths, the mechan-
ical state is a displaced thermal state and the normal mode

FIG. 8. Numerical results for the Wigner quasiprobability distri-
butions Wc(α−) and Wm(β ) of the normal mode c− and mechanical
mode b1, respectively, for different values of the probe drive strength
parametrized by α

(0)
− . Parameters are chosen such that βcrit = 4,

C− = 15.6, nth,− = 0.01, and nth,1 = 1.

state is an amplitude-squeezed state. This is as expected from
the semiclassical analysis. For larger drive strengths, when
the average mechanical amplitude gets close to βcrit = 4, we
see that the mechanical phase fluctuations grows. The reason
is that the coherent force on the mechanical oscillator from
the normal mode has large phase fluctuations, and that these
phase fluctuations decay at a small enough rate such that
they are not simply averaged out from the viewpoint of the
mechanical mode. For the largest drive strength, α

(0)
− = 3.6,

the mechanical Wigner distribution Wm(β ) starts to show signs
of bimodality with peaks for a nonzero phase relative to the
imaginary axis. The normal mode Wigner distribution Wc(α−)
also starts to look non-Gaussian. However, we attribute the
faint ring-shaped structures to finite-size effects due to the
Hilbert space truncation.

The Wigner functions shown in Fig. 8 are all everywhere
positive, which means that they can strictly speaking be
interpreted as classical probability distributions. However, it is
worth emphasizing that the non-Gaussian fluctuations visible
for large probe drives originate from the quantum vacuum
noise of the electromagnetic field. These non-Gaussian states
could perhaps be useful, e.g., for sensing purposes or as a
starting point for generating more interesting states through
projective measurements.
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While it would be interesting to explore the full nonlinear
regime in more detail, a complete analysis is left for future
work. We also note that the off-resonant radiation pressure
terms in Eq. (31) may become relevant as the average phonon
number increases beyond |βcrit|2.

VIII. IMPLEMENTATION WITH DISPERSIVE
OPTOMECHANICS

The discussion has so far been limited to systems of the
type shown in Figs. 1 and 4, featuring both coherent scattering
from a levitated object and standard dispersive optomechan-
ics. A natural question is whether the effective model we
have studied can be realized with large cooperativity C− �
1 also for purely dispersive optomechanical systems. This
would make it relevant to a large variety of experimental
platforms, some of which have already reached the regime
C0 > 1 [35,41–45]. In this section, we will present a multi-
mode model which shows that it is indeed possible to realize
this. However, we do not claim to have found the simplest
possible model, such that there may be room for improvement.

A. Two cavity modes

We have already discussed in Sec. VI B how simply having
two mechanical oscillators interact with a driven single-cavity
mode does not work, due to additional mechanical dissipation
from off-resonant linear optomechanical interactions. The
next natural step is to consider a system with two cavity modes
and two mechanical oscillators. It is well known that such
double-cavity systems can realize intermode optomechanical
coupling of the form

Hint,2 = h̄g0;2x2(a†
s aa + a†

s aa), (71)

where photons scatter from one effective mode of the double-
cavity system to another when they interact with the mechan-
ical oscillator b2 [23,24,80–83]. Ideally, if the other oscillator
b1 only interacts with one of the cavity supermodes, say as,

Hint,1s = h̄g0;1x1a†
s as, (72)

our original interaction Hamiltonians (4) and (5) are repro-
duced by strongly driving the mode aa, such that aa → αa and
G = g0;2αa. However, this would require some very particular
system in order to avoid any coupling between modes b1 and
aa. While it may be possible, we do not have a particular
proposal for how to achieve this.

If there is indeed optomechanical coupling between modes
b1 and aa, i.e., an additional term Hint,1a = h̄g0;1x1a†

aaa, it is
in fact still possible to realize our effective model with coop-
erativity C− � 1 by swapping the roles of b1 and b2, driving
both cavity modes, and adjusting the difference between the
cavity mode resonance frequencies to match ωm,1. However,
for weak coupling g0;2 � κ , this would require an extremely
large sideband parameter ωm,2/κ . Rather than go into detail
on this idea, we now proceed to a system with three cavity
modes, where this requirement on the sideband parameter can
be avoided.

a1

a3a2

b1

J J

JΩ2 Ω3

b2

FIG. 9. Schematic of an optomechanical system with three cavity
modes a1, a2, a3 and two mechanical modes b1, b2. The rates J, J ′

are photon tunneling rates due to direct, bilinear coupling between
the cavity modes. The red arrows indicate driving of cavity modes a2

and a3. This system can realize the effective model we have studied
if we assume a symmetric setup as described in the text.

B. Three cavity modes

We now consider the setup shown schematically in Fig. 9.
We let the three cavity modes a1, a2, a3 couple to the mechan-
ical modes b1, b2 according to the interaction Hamiltonian

Hint = h̄g0;1x1a†
1a1 + h̄g0;2x2(a†

2a2 − a†
3a3). (73)

Note that modes a2 and a3 couple to the same mechanical
mode b2, but with opposite signs, a scenario that has been
realized both in microwave systems [5] and in the membrane-
in-the-middle setup [84]. Let us also assume that modes a2

and a3 are degenerate, and that they couple bilinearly via
photon tunneling at a rate J ′ larger than the cavity linewidth.
This leads to hybridized cavity supermodes [23,24,80,82]
as/a = (a2 ± a3)/

√
2, such that the interaction Hamiltonian

becomes

Hint = h̄g0;1x1a†
1a1 + h̄g0;2x2(a†

s aa + a†
aas), (74)

when written in terms of as and aa.
We assume that cavity mode a1 also couples bilinearly to

both modes a2 and a3 in a symmetric setup with equal cou-
pling rates J . For J > κ , cavity mode a1 will then hybridize
with the symmetric supermode as. For simplicity, let us also
assume that modes a1 and as are degenerate, although this is
not actually necessary. This gives a new pair of supermodes
au/l = (a1 ± as)/

√
2, such that the interaction Hamiltonian

can be expressed as

Hint = h̄
g0;1

2
x1(au + al )

†(au + al )

+ h̄
g0;2√

2
x2[(au − al )

†aa + a†
a(au − al )]. (75)

We now see that when driving the cavity mode aa to a large
coherent amplitude, which in practice means driving the phys-
ical cavities a2 and a3 with opposite phases, we get bilinear
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FIG. 10. The system in Fig. 9 is best described in terms of three
cavity supermodes au, al , aa when the photon tunneling rates J, J ′ far
exceed the cavity decay rates κ . (a) Driving mode aa at a frequency
red-detuned ωm,2 + δ from the resonance frequency ωu recreates our
original Hamiltonian from Sec. II. (b) In this case, it is possible
to avoid the requirement (3) between the two mechanical oscillator
frequencies by using two drive tones.

optomechanical coupling between mechanical oscillator b2

and modes au and al . However, mode b1 does not couple
to mode aa and thereby does not experience any bilinear
interaction.

We now imagine driving mode aa at a frequency ωm,2 + δ

below the resonance frequency ωu of mode au, as shown in
Fig. 10(a). By approximating aa by its coherent amplitude,
we then arrive at exactly the Hamiltonian we started with in
Sec. II when ignoring mode al and renaming au → a.

In this triple-cavity setup, it is also possible to relax the
requirement (3) on the relation between the mechanical fre-
quencies. This requires an additional drive tone in mode aa at a
frequency approximately ωm,1 − (2ωm,2 + δ) below the other
drive frequency. Such a configuration is shown in Fig. 10(b).
Finally, we note that if one can control the photon tunneling
rates J, J ′, one can reduce the power needed for the drive tones
by adjusting the difference between the cavity resonance fre-
quencies such that ωu − ωl ≈ ωm,1 and ωu − ωa ≈ ωm,2. This
allows taking advantage of near-resonant virtual processes
involving mode al .

IX. CONCLUSION AND FUTURE DIRECTIONS

In this article, we have theoretically studied multimode
optomechanical systems and found that, in some cases, the
single-photon cooperativity C0 can be a genuine figure of
merit for observing effects due to intrinsically nonlinear inter-
actions. To our knowledge, this is one of the first studies where
this turns out to be the case when simultaneously assuming

weak coupling g0 � κ . The systems we have considered are
admittedly very complicated and not immediately accessible
in the laboratory. Nevertheless, we hope that our results can
inspire new ideas which can help bring cavity optomechanics
into the nonlinear regime.

A straightforward extension of our study would be to
consider the nondegenerate parametric oscillator Hamiltonian
(39) in the case where both normal modes c+ and c− are
probed with separate drive tones. One would then find a sup-
pression of normal mode coherences similar to what we found
in the degenerate case, due to destructive interference. In some
sense, the two probe drives would repel each other. In the
regime of large effective cooperativity C+− = 4g̃2

+−/[(κ+ +
κ−)γ1] � 1, one would again expect photon antibunching in
transmission, in the sense that photons would tend to come
out at either frequency ω+ or ω−, but to a lesser extent at both
frequencies simultaneously.

One may also consider coherently driving the system
mechanically instead of optically. This leads to a squeezed
near-vacuum state in the normal mode in the degenerate case,
and a two-mode squeezed state in the nondegenerate case. In
the classical theory, a critical point (the squeezing threshold)
is again reached for a certain drive strength [57]. Above
the critical drive strength, the mechanical amplitude stays
constant despite increasing the drive and pairs of incoherent
photons are emitted from the normal mode(s), reminiscent of
the dynamical Casimir effect. For large effective cooperativ-
ities, quantum fluctuations will smear out the critical point
[58,60,85,86]. For the degenerate case (38), the squeezed state
will gradually pinch into a bimodal distribution, which is
interpreted classically as bistability [46,57,87,88].

Other interesting directions could be to investigate the tran-
sient behavior of these models, or to study the full nonlinear
regime in more detail.

We have seen that the normal modes will always have
some nonzero thermal occupation due to the quantum heating
effect, even in the absence of thermal phonons. This places a
limit on the quantum features one can observe, as discussed
in Sec. VII D on antibunching. Ideally, we would like to have
nth,− vanish while still maintaining a sizable cooperativity C−,
but this is not possible according to (70). However, if one
were able to engineer the photonic bath in such a way that
the density of states vanishes at negative energies −ω±, one
could suppress dissipative pair-creation processes and thus
the thermal occupation of the normal modes. The removal of
processes such as the one shown in Fig. 2 could also facilitate
emission of energy-time entangled photon pairs heralded by
single-phonon creation processes if C− > nth,1. Needless to
say, this type of bath engineering is not easy to achieve. An
alternative would be to detect all photons both at positive
and negative frequencies and postselect on events where there
are no photons at negative frequencies. Of course, this would
require very large detection efficiencies and the ability to
detect negative and positive frequencies separately through
filtering.
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