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The potential reduction in energy consumption for space heating in buildings realised by the use of pre-
dictive control systems directly depends on the prediction accuracy of the building thermal behaviour
model. Hence, model calibration methods that allow improved prediction accuracy for specific buildings
have received significant scientific interest. An extension of this work is the potential use of calibrated
models to estimate the thermal properties of an existing building, using measurements collected from
the actual building, rather than relying on building specifications.

Simplified thermal network models, often expressed as grey-box Resistor-Capacitor circuit analogue
models, have been successfully applied in the prediction setting. However, the use of such models as soft
sensors for the thermal properties of a building requires an assumption of physical interpretation of the
estimated parameters. The parameters of these models are estimated under the effects of both epistemic
and aleatoric uncertainty, in the model structure and the calibration data. This uncertainty is propagated
to the estimated parameters. Depending on the model structure and the dynamic information content in
the data, the parameters may not be identifiable, thus resulting in ambiguous point estimates.

In this paper, the Profile Likelihood method, typical of a frequentist interpretation of parameter estima-
tion, is used to diagnose parameter identifiability by projecting the likelihood function onto each param-
eter. If a Bayesian framework is used, treating the parameters as random variables with a probability
distribution in the parameter space, projections of the posterior distribution can be studied by using
the Profile Posterior method. The latter results in projections that are similar to the marginal distributions
obtained by the popular Markov Chain Monte Carlo method. The different approaches are applied and
compared for five experimental cases based on observed data. Ambiguity of the estimated parameters
is resolved by the application of a prior distribution derived from a priori knowledge, or by appropriate
modification of the model structure. The posterior predictive distribution of the model output predictions
is shown to be mostly unaffected by the parameter non-identifiability.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Background

development of model predictive control strategies that can effec-
tuate energy reductions by improved thermal control has received
significant scientific interest [3,4]. For control systems, develop-
ment of accurate prediction models is essential.

The reduction of anthropogenic CO, emissions is perhaps the
most important task in modern science. The energy consumed by
space heating in buildings is considerable [1]. According to the
Energy Performance of Buildings Directive (EPBD) [2], the energy
consumed by buildings accounts for 40% of the total energy
consumption within the European Union (EU). Hence, the
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Another application of interest for building thermal modelling
is the classification of building properties related to space heating,
for improved evaluation of the energy performance of existing
buildings [5]. By classifying actual energy performance, develop-
ment of taxation schemes could be utilised to motivate invest-
ments in energy reduction technology. Given that there is often
discrepancies between physical buildings and their blueprints, typ-
ically due to continuous modifications or workmanship issues,
energy classification schemes could with benefit be based on
energy and temperature data recorded from the building to be
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classified. A popular method for modelling building thermal beha-
viour is the use of simplified thermal network models expressed as
a Resistor-Capacitor analogue [6,7,4,3,8,9]. Regardless of their pro-
ven efficiency in the prediction setting, the parameters of a thermal
network model may not be suitable as soft sensors for monitoring
building properties, since this assumes a physical interpretation
of the parameters as constants of the physical building [5,10]. For
such an assumption to be justified, the verification of parameter
identifiability is essential, in order to ensure unambiguous parame-
ter estimation.

1.2. Previous work

1.2.1. Thermal behaviour models of buildings

For widespread use of model predictive control and/or classifi-
cation systems in buildings, a simple modelling method that can
both produce physically interpretable parameters and make accu-
rate predictions of future thermal behaviour is needed. Models of
building thermal behaviour based on exact physical specifications
of a building often become intractable due to the complexity of
building structures, and may require specialised software to simu-
late [1]. Additionally, existing buildings may deviate from blue-
prints and specifications of the building, which further
exacerbates the challenge of developing a physics-based white-
box model [5]. In contrast, data-driven models typically use simple
model structures, with parameters that are calibrated from data
acquired from existing buildings. Such data-driven black-box mod-
els, e.g., from system identification methods, typically have
improved prediction performance due to being calibrated for
specific buildings, but in general lack physical interpretability
[11-15].

A reasonable compromise between the physics-based white-
box and the data-driven black-box models is the use of grey-box
thermal network models [3,4,7,9,5]. Thermal network (TN) models,
typically expressed as Resistor-Capacitor (RC) electric analogue
models, are based on a naive physical, cognitive understanding of
the building thermodynamics, with relatively few lumped parame-
ters that are calibrated from observational data. These models con-
tain significant epistemic uncertainty in their formulation, resulting
from model approximations and unmodelled or unrecognised dis-
turbances [8], in addition to the aleatoric uncertainty introduced by
random measurement noise. Hence, they can with advantage be
formulated using stochastic differential equations (SDE)
[16,17,8,18,19]. Since the structure of a grey-box TN model is
developed based on a physical description of the building, the
parameters are often assumed to have a physical interpretation.
However, due to the inherent uncertainties involved in the formu-
lation of such models, a through analysis of parameter identifiabil-
ity, which may lead to ambiguous parameter estimates, is needed
prior to such interpretation.

Another point of interest regarding interpretation of TN models
is the model states. The temperature state nodes in the RC circuit
are typically chosen to representation a specific part of the build-
ing, e.g., the room interior or the building envelope internal sur-
face, hence a physical interpretation of the states are assumed
from the model structure. However, since the parameters that
determine the relationship between these nodes are calibrated
from measured data, the model is trained to predict the tempera-
ture at the specific sensor locations [20]. If the states are directly
measurable, each state corresponds to a specific sensor location.
Hence, the physical interpretation of TN model states is deter-
mined by both the model structure and the sensor location. Com-
pared to the black-box system identification (SSID) paradigm,
where the model structure to be calibrated is some general state
mapping, the grey-box TN structure constrains the state represen-
tation. in comparison for an SSID model, which also effectually

learns to predict the system response at the sensor locations, a
change of basis for the state space will result in equivalent descrip-
tions of the system, with the same outputs given the same mea-
sured data, but with different state representations.

1.2.2. Parameter estimation

Estimation of parameters requires a well-defined objective
function. Using a statistically founded objective function, such as
the likelihood function or the posterior distribution, computed from
Bayes’ theorem by the inclusion of a prior distribution, of the
parameters, allows the use of statistical tools for model validation
and analysis [16,10,21]. The evaluation of the likelihood function
and/or the posterior parameter distribution for SDE models has
previously been presented in detail in the Continuous Time
Stochastic Modelling (CTSM) framework [16,22]. By utilising a Kal-
man Filter (KF) to compute the one-step ahead prediction residuals,
which are subsequently assumed normally distributed, the likeli-
hood can be efficiently evaluated for an SDE model [16]. The
grey-box SDE approach has been claimed as a natural framework
for modelling dynamic systems in general [23].

1.2.3. Parameter identifiability analysis and prediction accuracy

A common assumption for parametrised model structures is
that there exist an unambiguous set of parameters, which is opti-
mal in the sense that it produces the best model fit in some speci-
fied statistical sense. However, there are cases for which the
objective function used for the estimation of parameters is in some
way non-informative for a subset of the parameters, thus resulting
in ambiguous solutions. This subset of parameters is denominated
as non-identifiable. If the non-identifiable parameters are perturbed
in some way, the objective function is either unchanged, or the
change is insufficient to determine the bounds of the estimated
parameter with a desired prescribed level of confidence [10]. A
good diagnostic tool is found in the framework of the Profile Likeli-
hood (PL) method [10,21,24,5].

Since the objective function compares model predictions with
measured data, non-identifiability may be caused by either the
model structure or by a lack of dynamic information in the data.
The former is the cause of structural non-identifiability, which pre-
sents as a flat equipotential manifold, bounded or unbounded
depending on the model structure, in the parameter space [10].
Structural identifiability is well covered in the literature, and there
exist several diagnostic methods based on a multitude of theoret-
ical foundations [25,26,10,21,13].

If non-identifiability results from a lack of dynamic information
in the calibration data, the affected parameters are diagnosed as
practically non-identifiable. For a parameter to be identifiable
according to the PL method [10], the likelihood-based confidence
interval (Cl), and subsequently also the likelihood profile, must be
bounded in both directions. Hence a practically non-identifiable
parameter may be diagnosed by inspecting the likelihood profile
for the presence of a well-defined optimum that is insufficiently
pronounced to produce a bounded CI [10].

The PL method, based on the likelihood function and computa-
tion of Cls, has a distinctly frequentist approach to parameter esti-
mation. If a Bayesian framework is used, where parameters are
treated as random variables that have a distribution in parameter
space, the Markov Chain Monte Carlo (MCMC) method [21,27-31]
can be used to infer the posterior distributions from the measure-
ment data, typically visualised by obtaining marginal posterior dis-
tributions for single parameters or pairs of parameters [30,31,27].
The Bayesian framework combines the likelihood function with a
prior by use of Bayes’ theorem, thus computing the posterior distri-
bution of the parameters [27]. The use of the Bayesian framework
and MCMC for calibration of TN models was also reported in [32].
Alternatively, a variation of the PL method, called the Profile
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Posterior (PP) method [21], may be used to visualise the posterior
distribution by obtaining projections, rather than marginal distri-
butions. Similar arguments w.r.t. the identifiability of parameters
drawn from the PL method can be applied to the posterior distribu-
tion [21].

There are also several other methods that can be used to inves-
tigate parameter identifiability, some of which are reviewed in
[33]. Some possibilities are the use of the Hessian matrix evaluated
at the optimal estimate to compute confidence bounds, and the
testing for convergence problems in the optimisation algorithm
by repeated optimisations with randomized initial guess [34]. For
simple linear models, structural identifiability can sometimes be
evaluated analytically [35]. Another possibility is the use of graph-
ing tools to analyse the interactions between parameters and
model output [36].

Since the parameter non-identifiability results from the objec-
tive function being non-informative for a sub-set of the parameters,
addingmore information to the estimation problem is a reasonable
strategy towards resolving the non-identifiability. Experimental
redesign may be used in order to collect more informative data,
either by improved dynamic information content in existing mea-
surements or by adding new measurements from the system S
[21,10]. The literature on system identification covers a range of
experimental design considerations, including optimal experimen-
tal design for certain types of systems, see e.g. [11,37]. A popular
approach is the use of a Pseudo Random Binary Sequence (PRBS)
applied to the actuator which may result in improved system exci-
tation, thus improving practical identifiability of model parameters
[6]. However, for occupied buildings, the choice of excitation for
the active heating system may be limited due to occupant
demands. If obtaining more data is not possible, redesigning the
model structure M, such that the model better represents the
actual experimental data collected, may also resolve the non-
identifiability [21,10].

Finally, an important observation is that model structures with
non-identifiable parameters can also provide reasonable predic-
tions of the system outputs, but the non-identifiable parameters
are arguably without a physical interpretation and can be consid-
ered nuisance parameters [5]. Indeed, ambiguous parameters with-
out physical interpretation is the norm in traditional black-box
calibration methods, such as system identification (SID)
[14,15,11-13].

1.3. Overview of paper

In this work, the two projection-based methods, PL and PP, are
compared to the MCMC method, on the basis of five experimental
cases with differences in model structure, use of priors, identifia-
bility of parameters and choice of training data. The theoretical
foundation for the methods is presented in Section 2. The model,
data and experimental setup of each case is presented in Section 3.
The results are presented and discussed in Section 4, and the work
concluded in Section 5.

2. Methods
2.1. Overview

In the sequel, the Profile Likelihood (PL) and the Profile Posterior
(PP) methods [10,21] are discussed and compared with the Markov
Chain Monte Carlo (MCMC) method [27,30,31]. These methods are
ideal for the study of parameter identifiability and allows detection
of ambiguous parameter estimates. Despite fundamental differ-
ences in theoretical basis, i.e., the PL/PP methods are based on a fre-
quentist interpretation of parameter estimation while the MCMC is

typical of the Bayesian statistics framework, the methods share cer-
tain similarities. As shown in Fig. 1, all these methods seek to

obtain estimates of the likelihood function L(Q;yw]>, or by inclu-

sion of a prior p(0), the posterior distribution p(0|y[N]). Each

method explores the parameter space by taking samples 60, and
evaluating them on the samelikelihood/posterior hyper-surface.
However, there are some important differences; the use of deter-
ministic vs. stochastic exploration of the parameter space, and the
use of projection in the PL/PP methods vs. marginalisation in MCMC
to obtain partial projections/distributions of selected parameters.
An overview of relevant variations of the methods is given in
Table 1, together with a short-hand name for each method for
future reference. The PL1D/PL2D and PP1D/PP2D are collectively
referred to as the PL and PP methods, respectively.

2.2. Parameter estimation and analysis

For simplified models, e.g., thermal network models, the uncer-
tainty in the state transition can be large. Hence, it is convenient to
express such models as a grey-box model using a continuous time
stochastic differential equation (SDE) for the state transitionEq. (1);
adopting the notation of [16]:

dx; = f (X, ug, t, 0)dt + o (ug, t, 0)dow; M
Vi = h(xp, ug, ty, 0) + vy (2)

where t € R is the time variable and x; € R] is the continuous time
state vector. The first and second terms in Eq. (1) are commonly
referred to as the drift and diffusion term, respectively [16,38]. The
drift term expresses the deterministic transition of the conditional
mean state, while the diffusion term expresses the increments of
the uncertainty linked to the conditional state covariance. The dif-
fusion term, i.e. the process noise, is expressed as the function o
multiplied with the differential of a standard Wiener process w;
[16,38]. The measurement equation, given in Eq. (2) is formulated
in discrete time where v, ~ A(0, V) is the measurement noise.
The continuous time input u, € R; and output y, € R} have the cor-
responding ordered sequences of discrete time measurements uy
and y, taken from the system S:

Yy = Wos Y15 -5 I 3)
Uy = [Uo, Ug, - - -, Up]
p(e) — Sample 6

= PL/PP or MCMC .

= &

é Compute likelihood @

é KF -> ek|k-1, Ek|k-1

-

Fig. 1. Both the PL/PP and the MCMC methods explore parameter space on the
same likelihood/posterior hyper-surface.

Table 1

Method overview.
Name Description
PL1D L(6;y[N]) projected to parameter 6;
PL2D L(0;y[N]) projected to plane ©;;
PP1D p(0ly[N]) projected to parameter 0;
PP2D p(0ly[N]) projected to plane ©;;
MCMC p(0y[N]) marginalised to 0; or ©;;
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Here, the integer subscripts k =0, 1, ..., N denote the discrete
time sampling instants, and the subscript enclosed in [-] is used
to indicate an ordered sequence. The estimation of as an optimisa-
tion problem, defining the objective function g(0):

0 = argopt g(0; M, K, A) 4)
0
st.0cO

Here, M is a predetermined model structure parametrised by
0 € ©, where ®@ CR™ is a set of feasible values for the model
parameters that form inequality constraints for the optimisation
problem. Parameters in 0 are sampled from the parameter space
® by an algorithm A. The experimental conditions K include the
input and output measurements uy; and yy, as defined in Eq. (3).
In the sequel, the dependency on M, K and A is omitted for sim-
plicity of notation.

A statistically well-founded choice of objective g(6) is the likeli-
hood function

L<9;J’[N]) :P(J’[N] ‘ 9) (5)

which describes the joint probability of observing the measurement
sequence yy given M(0). An elegant method for evaluating the

likelihood function L(f); y[N]) for grey-box SDE models on the form

of Egs. (1) and (2) is presented in the framework named Continuous
Time Stochastic Modelling (CTSM) [16]. The CTSM approach is sum-
marised in Section 2.3. An alternative choice for g(0) is the posterior

distribution of the parameters p(f)\yw]), which combines the likeli-
hood, by Bayes’ theorem, with a prior distribution p(0) on the
parameters, and with the evidence p(y[N]), a scaling factor that is
independent of 6;

P(y[N]IH)P(H)

(6)
p (y [N])

Both the likelihood L(6;y[N]) and the posterior p(6|y[N]) are sta-
tistical quantities that relates different values of 0 with the data yy,
hence representing density functions[39]over the parameter space
©. Observe that, unlike the posterior distribution, the likelihood
is not a probability distribution over the parameters but takes its
random variable as the measurements yy, in the sample space, given
a known parameter 6.

It is interesting to note that the maximisation of the likelihood
function is typically associated with a frequentist statistics frame-
work, whereas the use of a posterior distribution is typical of a
Bayesian approach. In the frequentist framework, as for the likeli-
hood function, the model parameters are considered constants,
while the data is the random variable. Hence, the frequentist goal
is to estimate some statistic of the true parameter 6%, such as a con-
fidence interval (CI) [40,41]. Observe that the confidence level of a
CI is not a probability statement, as unequivocally stated in [40],
since neither the CI nor the true parameter 0 are considered to
be random variables.

In contrast, the Bayesian approach to statistics treats the param-
eters as random variables that are subject to probabilistic treat-
ment, i.e., described by a probability distribution rather than as
constants. Typically, the posterior distribution cannot be obtained
analytically, and some variation of the Markov Chain Monte Carlo
(MCMC)method is used instead to estimate the posterior distribu-
tion of the parameters given the data.

Both the likelihood function and the posterior distribution can
be directly optimised to obtain a parameter point estimate, respec-

tively denominated theMaximum Likelihood Estimate (MLE) Oue

p(HLV[N]) =

and the Maximum Aposteriori Estimate (MAP) Ouap. However, for
the purpose of analysing the results of the parameter estimation,
it is useful to visualise the objective function over the feasible
region ®; either the whole of ® or some sub-region of particular
interest. Since © is typically high dimensional, it is necessary to
create plots for single parameters, or combinations of two param-
eters. Since the posterior p(0|y[N]) is a probability density function
(p.d.f.), the posterior for individual parameters or combinations of
two parameters can be found by marginalisation, i.e., integrating
out the remaining parameters. The likelihood function L(6;y[N]),
however, is not a p.d.f,, and results for individual parameters are
therefore obtained by projections onto individual parameters or
planes of two parameters. These projections can be computed
and analysed in the framework of the Profile Likelihood (PL)
method, typically considered part of the frequentist statistics frame-
work [21], in order to diagnose parameter identifiability
[10,21,42,5].

If the prior p(0) is chosen as flat, i.e., a diffuse prior is used,
p(0) =c for 0 € ® and p(0) =0 for 0 ¢ ® where typically c =1,

the posterior is proportional to the likelihood p<9|y[NH> o p(y[N]W)
over the support of the prior, i.e., where p(0) # 0, since the evidence
scaling constant p(y[N]) is independent of 0. If the prior is flat and
unbounded, i.e., p(0)=c for 0eR™, the
P(UD’[N]]) x p(y[N]|0> holds for all 6. Hence, methods that operate

proportionality

on a target distribution m(0) o<p<0\y[,\,]>, such as MCMC, can also

be used with the likelihood p(y[N]|()> by assuming p(0) =1 for

0c 0.

Observe that the use of a feasible region 0 € © is equivalent to
selecting a uniform bounded prior with a constant value ¢ =1 in
the defined space ® and zero otherwise in R™. However, the intro-
duction of such a feasible region does not exclude the use of prior
distribution p(0), since one may well choose ® = R™. If a non-
uniform prior is used in addition to a feasible region @, this is equiv-
alent to multiplying the non-uniform prior with a uniform
bounded prior p(0 € ®) = 1.

Arguably, by effect of their omission in methods operating on
the likelihood directly, the use of flat unbounded priors is the de-
fault in the frequentist framework, but it is non-typical in Bayesian
statistics [42,43]. In practice, particularly in engineering, there is
often some prior information that could be made use of in the esti-
mation in the form of a prior distribution derived from physical
system specifications.

For non-flat priors, many estimation methods based on the like-
lihood function can be modified to instead optimise on the poste-
rior by including the prior through Bayes’ theorem in Eq. (6). An
example of this is the modification of the PL into the PP method
presented in [21]. If numerical optimisation is used on the poste-
rior distribution directly, i.e., a prior is included with the likelihood
function to form an objective function, the resulting parameter
estimate is a MAP point estimate. Indeed, this is supported in the
CTSM framework as well [16,22,18].

2.3. Computing the likelihood and the posterior distribution for
parameters of grey-box models

Both the MCMC and the PL/PP methods require evaluation of
the likelihood function L(O;y[N]), either used directly in PL, or for

the evaluation of the posterior distribution p(()\y[N]> in PP and
MCMC. The CTSM framework [16,8,17,23] presents a statistically
well founded method for computing L((); y[N]) for grey-box models
on the SDE form of Eq. 1.
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The likelihood function is defined in Eq. (5). By application of
the product rule P(AnB)=P(A|B)P(B)[38], Eq. (5) can be
expanded such that [16]:

L(0syp) = (f{p(yk |y[ku,6)>p(yo 0) (7)
=1

In general, evaluating Eq. (7) requires knowing the initial prob-
ability density function and successively solving theKolmogorov
forward equation [16,38]. However, by assuming a normal distribu-
tion for the one-step ahead prediction residuals, a simpler alterna-
tive, the multivariate Gaussian distribution, can be used [16]:

1,7 o1
N exp (* 7 €1 Eik-1 6k\’<—1)

g det (1) (v2m)”

L(H;y[N]) = P | 0) (8)

By conditioning on knowing theinitial distribution p(y,|6), this
expression can be iteratively evaluated in a Kalman Filter that esti-
mates the quantities [16,38]:

V-1 = [E[J’k U/[kq]ﬁ] 9)
Ekk-1 = Yk —JA/k\kq (10)
Ek-1 = E[€xer] (11)

where yy_1 is thepredicted output at time k given the measure-
ments up to and including time k — 1, i.e., the one-step-ahead pre-
diction. The choice of KF implementation depends on the type of
state transition model; linear or non-linear, and in the latter case,
on the model being differentiable such that the model can be lin-
earised for propagation of the covariance [44].

The assumption of normally distributed residuals can be veri-
fied by statistical testing [16,22,17,13]. One possible method is
the use of a cumulated periodogram (CP), which by use of plotting
indicates if the resulting residuals are reasonably approximated
by a normal distribution [16,22,17]. Another, numerical, alternative
is the use of the Kolmogorov-Smirnov (KS)test criterion [13]. The KS
criterion can also be used in combination with the CP diagram to
compute confidence bounds for the normality assumption on the
CP diagram [17]. Other alternatives for normality testing include
counting zero-crossings, the auto-correlation function (ACF) [13],
the inverse ACF or the partial ACF [17].

By taking the negative logarithm, and eliminating the factor 1,

the result 4,(0) = —21n L(H;y[N]), where dependency on y, is omit-
ted in the sequel for notation simplicity, is obtained as

N
0.00) => € 1€k 1 ki1 + In (det (Exir)) (12)
k=1

If instead the posterior distribution p(()\y[N]> x L(();y[N]>p(()) is

chosen, after eliminating the scaling by evidence p (y[NJ> and apply-
ing the same transformation as above, ¢p(6) is obtained as:

£(0) = 4,(0) — 2Inp(0) (13)

Hence, in log space, the application of a prior p(0) is imple-
mented by simply subtracting a value from ¢, (0) that depends only
on the parameter 0. It is interesting to observe that the use of inde-

pendent normal prior distributions N(Gp_i, o’ﬁ_i> for each parameter
in ¢,(0) is similar to [*-norm Tikhonov regularisation [45,46],

which indicates that application of non-flat priors can be useful
for improving the generalisation capability of a calibrated model.

2.4. The stochastic discrete time linear model

For a linear time invariant (LTI) model, which is the form typi-
cally used for thermal network models, Egs. (1) and (2) can be writ-
ten on discrete time form as [38]:

Xe = AXi1 + Buy +wy (14)
Vi =Cxp + v

where w, ~AN(0,V) is the process noise (model error),
v, ~ N(0,V) is the measurement noise and the discrete time model

matrices A = exp (At -A) and B=A"" (A —I)B are computed from
the standard linear continuous time model matrices A and B

[47,45]. Observe that the three model matrices A, B and C, and also
the noise covariances W and V are typically functions of 6. For the
noise covariances W and V, the square root of the diagonal terms
are included in 0, while the off-diagonal terms are assumed zero.
This assumption is clearly reasonable for the measurement noise,
but also commonly used for the process noise covariance [32]. A
further extension on the presented work could be to include the
off-diagonal terms of W in 0 as well.

By using the SDE framework outlined in Section 2.3, the noise

parameters in ¥ and V influence L(();y[m) through the computed
Kalman gain. In the limit case of zero measurement noise V = 0,

the innovation covariance in the KF 1 = EXM,HET and the stan-
dard equations for the linear Kalman Filter [48] give the Kalman
gain

Ky =Xku<716T (Exku&lET)il ~ (! (15)
The aposteriori updated state is

Xk = X1 + ! <)’k - Ef‘kum) = E7]J/k (16)

and the one-step ahead predicted output is

Vi1 = C </N\ 6713/1#1 + Ewc) + k-1 (17)

Hence, the model in the KF istreated as a first order autoregres-
sive model in this limit case. However, the model structure and
parametrisation are still the same grey-box TN structure and not
the general black-box structure used in typical Auto Regressive
model  with  Exogenous input (ARX) models. Since

Xk = (1, E*l E>Xku<4 =0, the state estimate covariance

Xik-1 =W and Eq. (8) with &1 = CWCT gives the weighted least
squares prediction error parameter estimate.
In the limit case of W = 0, indicating a deterministic model with

no diffusion term, it can be shown that the aposteriori state covari-
k

ance Xy < ;\"Xo (/N\T) [49,38] which will approach zero for a well-

behaved stable system. If the initial state is also deterministic,
Xo = 0, the state trajectory in the KF is independent of the measure-
ments y,, since Xy = 0 — Xyx_1 = 0 and therefore

Ky = XkuHCT&Z‘Ll =0 — Xy = X1 (18)

Hence, Eq. (8) with &1 =V gives the weighted least squares
estimate for a shooting/ballistic, i.e., deterministic, state trajectory
[38].

Both these limit cases are intuitively satisfactory and consistent
with the common sense intuition of the KF. Given perfect measure-
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ments with V = 0, it is natural to rely exclusively on the measure-
ment at the previous time-step at the expense of the previous esti-
mates. In the case of W =0, the perfect model predictions are
trusted and the data ignored in the state propagation, with data
only used to compute the error.

Since the SDE grey-box framework includes both of these limit-
ing cases, it may arguably be considered a general framework, i.e.,
an intermediate between the purely autoregressive one-step-ahead
prediction error and the deterministic output error, depending on
the noise parameters. If both noise covariances W and V are non-
zero, and correctly estimated or known apriori, the Kalman Filter
gives the optimal estimate of the state.

Arguably, the limit case of V = 0 results in an LS parameter esti-
mation that is similar to typical black-box methodology, while the
limit case W = 0 simulation error is more typical of a white-box
modelling approach. Hence, the balance between these two limit
cases through the Kalman gain can arguably be considered a math-
ematical expression for the intermediacy of grey-box models,
between the white- and black-box approaches.

2.5. Identifiability of parameters

Since the model structure M is designed to be a representation
of a system G, it is often assumed that S € M(®) and that conse-
quently there exists a true parameter vector 0 such that
M(0") = S. However, this is rarely the case outside of simulation
experiments, since the model structure M is only an approximation
of S. In the case of thermal network models based on a naive phys-
ical approximation of S, the similarity of M to S is especially ques-

tionable. The estimate 0 depends on several factors, such as the
amount of dynamic information in K, the choice of objective func-
tion g(0), and to some extent on the algorithm A. Hence, the sub-
ject of parameter identifiability is of particular importance for
simplified grey-box models, if the estimated parameters 0 are
themselves of interest.

A model structure M may be over-parameterised such that a
subset 65 of the parameters has no effect on the model predictions
y, either because the model in Egs. (1) and (2), and therefore also
g(0), is free of certain parameters, or the combined effect of several
parameters cancels out. The parameters 65, denominated as struc-
turally non-identifiable, result in unbounded confidence intervals
(CI) [10]. Similarly, over-parametrisation may lead to the parame-
ters in 0 being inter-dependant, such that only some functional
combination of the parameters are identifiable, resulting in
equipotential, possibly bounded, manifolds in the parameter space.
Additionally, if the dynamic information content in the data is in-
sufficient for estimation of certain parameters, these parameters
arepractically non-identifiable [10]. Based on the definition given
in [10,21], parameters are practically non-identifiable when the
likelihood is only somewhat affected by perturbations of the prac-
tically non-identifiable parameters, such that a well-defined opti-
mum exists, but the likelihood is not sufficiently sensitive to
produce a boundedCl at the desired level of confidence.

The use of ClIs as diagnostic criteria for identifiability is a dis-
tinctly frequentist statistics approach [40]. A formal definition of
non-identifiability, based on the Bayesian framework of computing
probability distributions of parameters, is given in [25,42]. The
subset of identifiable parameters is defined such that 0 = (0;, 0;).
Parameters 0; are non-identifiable if [25]:

P(0:105, v ) = P(6I0) = 0 1Ly 0 (19)

That is, no additional information is obtained about 0 from the
data y;y, once the identifiable parameters ¢; are known [25]. Hence,
the non-identifiable parameters are conditionally independent of

the data, given the identifiable parameters [25]. Since
p(0510:,yp0) o L(01, 053y )P(010)P(6)), Eq. (19) implies that the
likelihood L(H,-, Hs;y[N]) is free, i.e., unaffected, by 0, [25,42], which

is similar to the description of structural identifiability given in
[10,21].

As discussed in Section 2.4, the measurement and noise covari-
ance matrices ¥V and V are here considered functions of 6. Specif-
ically, the noise covariance matrices are assumed diagonal, with
the square root of the non-zero terms included in 6. Identifiability
of these parameters is treated in the same way as for the thermal
model parameters. For a more thorough analysis of noise model
parameter identifiability, see e.g. [35].

2.5.1. Resolving non-identifiability by application of a prior

If both the likelihood and the priors are non-informative for a
sub-set of the parameters, there is clearly a problem with the
application of any parameter estimation method, since there is
no information from which to estimate the non-identifiable param-
eters. The solution is to introduce more information into the param-
eter estimation problem, by either redesigning the experiment to
obtain more informative data and/or new measurements, or by re-
vising the model structure to better fit the available data. A third
possibility is the addition of a non-flat prior distribution, based
on prior physical information of the system. Experimental design
is particularly challenging for the study of building thermal beha-
viour since buildings are subject to weather conditions and occu-
pancy demands that are usually beyond experimental control [4].
Hence, the use of priors to resolve non-identifiability is particularly
interesting for building thermal modelling.

The local sensitivity of the log posterior distribution in Eq. (13)
to perturbations of 6 can be estimated by the Hessian:

Ho = V'V (05y)| = Hi = V'V2Inp(0) (20)

0=0

where H, = V'V, (e;y[M> ‘M is the Hessian of the likelihood func-

tion[10,16,50]. Hence, if the likelihood is insufficiently affected by
perturbations of 6 in certain directions, as indicated by Hy, the addi-
tion of a prior can be seen to introduce another source of sensitivity
to perturbations of 0 and therefore resolve the non-identifiability.
Note that while a prior may resolve non-identifiability and there-
fore result in unambiguous parameter estimates, it does not neces-
sarily guarantee a physical interpretability of the estimated
parameters. Note also that the obtained Hp describes the sensitivity

of /p (O;y[N]) which is data dependent [10,16,50].

2.6. Profile likelihood and profile posterior

The PL method [10,5] can be used to estimate uncertainty and
diagnose identifiability of the parameters by projecting the likeli-

hood function L( 0;y,, ) onto each parameter 0;. Thelikelihood pro-
IN]

file tp11p(6;) is defined as the minimum negative log likelihood ¢,(6),
computed for values of a single parameter 0;, when the remaining
parameters 6;.; are freely optimised [10,51]:

& (0;) = r};]li,n& ((")j#i:,y[N]v 9:‘) (21)

Values of 6; are chosen, either by a brute force discretisation of
0; or using a gradient decent method, prior to optimising the
remaining 0;.; [ 10]. A likelihood-based CI can be obtained by apply-
ing a threshold to the likelihood function [10,51]. Let

{0 L 0(0) — zL@) < Aa}, Ay = 72 (ot, ngr) (22)
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where 0 is a freely estimated, presumed optimal parameter vector,
and the threshold A, is the o percentile of the y2?-distribution with
nge degrees of freedom [52]. By using Eq. (22) to set a threshold on
the likelihood profile ¢p (0;) of each parameter, it is possible to diag-
nose parameter identifiability. As discussed in Section 2.5, struc-
turally non-identifiable parameters produce unbounded Cls, or
equivalently, flat likelihood profiles [10]. A likelihood-based CI,
unlike the Hessian based asymptotic CI, is not necessarily symmet-
ric, and can therefore be unbounded in one direction. Hence, a prac-
tically non-identifiable parameter can be diagnosed if the at least
half unbounded likelihood profile has a well-defined minimum
[10]. Only parameters that produce bounded Cls, and consequently
have sufficiently convex likelihood profiles, are identifiable by opti-
misation of ¢,(0).

The PL method can be extended to project the posterior distri-
bution, rather than the likelihood function, by inclusion of a prior
p(0) by Bayes’ theorem [21]. The PP method is defined, similarly
to Eq. (21), by obtaining the posterior profile ¢ppip(6;) as the mini-
mum negative log posterior, given inEq. (13), for a prescribed value
of 0; when the remaining parameters are freely estimated, i.e.:

Lpp1p(0;) = ﬂlgilﬂﬁp (01'#1';}’[1\1]7 0i> (23)

As for the PL method, the posterior profile is obtained for some
selected values of 6;, and subsequently plotting ¢ppip(6;). Observe
that by replacing the log likelihood ¢, by the log posterior ¢p, the
obtained profile is offset by the log of the prior, —2 Inp(6;). Finally,
observe that the PL method can be considered as a special case of
the PP method, with the prior p(0) =1 — —2Inp(0) =0 for all
0 e R,

2.6.1. Profiling in two parameter dimensions

The typical implementation of the PL/PP method [10,21,5] pro-
jects the likelihood/posterior of the n, dimensional space ® onto
the single parameter 0;. These projections are known to overesti-
mate the width of the obtained profiles if there are inter-
dependent parameters. Hence it is of interest to project the likeli-
hood/posterior in a way that visualises potential parameter inter-
actions. A possible modification of the PL method is then to hold
out two parameters rather than one, hence the PL2D method
obtains [44,45];

&pap (05, 05) = f()niﬂfL (9k#ij§y[N]7 0;, 91) (24)
ki

PL2D projects the log likelihood onto the plane ®;; = (6;,0;) s.t.
0;,0; € ©. The resulting two-dimensional profiles can be analysed
similarly to the one-dimensional profiles [10], using the definition
in Eq. (22). The profiles are computed for all combinations of
parameters, i.e., by projecting the objective function to all possible
planes ©;;. Since ¢,(0) is typically similar for neighbouring 0, previ-
ous PL2D estimates can be used as a warm-start for new points in
®;; to improve computational efficiency [20]. Aconfidence region in
the ©;; plane is obtained by applying the A, threshold from
Eq. (22). Observe that since the optimal estimate # has n, free
parameters while the PL2D estimate has n, — 2, this gives ngs = 2
for the computation of A, from the y?-distribution in Eq. (22).
Based on these two-dimensional profiles, and the computed confi-
dence regions, parameters are considered identifiable if their cor-
responding confidence regions are bounded in all directions. If
the region contains an unbounded equipotential valley in the log
likelihood space, the parameter is considered structurally non-
identifiable. If the profile has a well-defined minima, but is
unbounded in one direction, i.e., the log likelihood is below the

A, threshold, this indicates a practically non-identifiable parame-
ter [10]. Subsequently, the size and shape of a bounded region esti-
mates the accuracy with which the parameters can be estimated.

The free estimate 0 may with advantage be chosen as the min-
imum fp2p (61-, ej) obtained from all profiles, since such a search ap-
proximates, subject to the limitations imposed by discretisation in
the brute force exploration, a free optimisation of all parameters,
using the already computed /pop results. Since the PL2D profiles
cover the entire parameter space O, this procedure is less affected
by local minima than a direct numerical optimisation.

The PL2D method may also be modified to project the posterior
rather than the likelihood, thus the PP2D method projects:

Cppap (03, 6;) = I{Piﬂfp <9k#ij§Y[N]7 o;, 91) (25)
ki j

This modification is analogous to the extension of the PL1D
method into the PP1D method.

2.7. MCMC

The projection methods PL1D/PL2D, based on the interpretation
of Cls, are typically considered part of a frequentist approach to
parameter estimation [21]. In the Bayesian framework, the goal is
to infer a probability distribution for the parameter 0, now consid-
ered a random variable. Given that the posterior distribution is
often not analytically obtainable, theMarkov Chain Monte Carlo
(MCMC) method is instead used to compute an estimate of the pos-
terior. Unlike regular Monte Carlo (MC) methods, MCMC draws
samples of 0, such that each sample depends on the previous sam-
ple, by defining a transition probability p(0x|0x_1). If the transition
probability is chosen to fulfil the detailed balance equation

T(Ok—1)P(Ok|Ok-1) = T(Ok)P(Ok-110k) (26)
the generated samples will be drawn proportional to the target dis-

tribution 1(0) o p(@\yw]). Hence, the posterior and its parameters,

e.g., mean and covariance, can be approximated by computing the
empirical distribution as a histogram over the sequence of samples
0. In this work, the MCMC method of choice is the basic Metropolis
algorithm [30,31] using a normal isotropic proposal distribution
0 ~ q(Ok|Ok_1) = N (0k-1,%4) where 6} is a candidate for the next
step 0, in the Markov Chain, and Z is the covariance of the proposal
distribution, centred on the current step 6, [28,27,29]. The work
of Hastings [31,53,28], a generalisation of the work of Metropolis
[30,28], shows that if the proposal distribution q(0,|0_1) is chosen
such that it ensures every possible value of 0 will eventually be vis-
ited, and this is combined with an acceptance probability test of the
generated proposal, the resulting transition probability p(0k|0k_1),
constituted of the combined proposal-acceptance scheme, fulfils
the requirement of Eq. (26). The acceptance criterion using a normal
proposal distribution is defined from the probability ratio:

m(0)

()

= exp (0.5(¢p(0k1) — £p(0))) 27)

The next step in the Markov Chain is then chosen as 6} with
probability p, = min (1, ). Observe that o is greater than 1 if the
proposal constitutes an improvement, in which case the proposal
will be accepted with probability 1 [27,28].

2.7.1. Posterior predictive distribution

An advantage of the Bayesian parameter estimation framework,
and of the MCMC method, is that the representation of parameter
uncertainty, expressed in MCMC as the empirical distribution of
the samples 0}, enables better estimation of the model’s prediction
uncertainty. Theposterior predictive distribution can be inferred
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from a set of simulated state/output trajectories obtained by
Monte Carlo (MC) simulation of the model in Eq. (14).

Note that by using the covariance propagation equations of an
LTI system [48], it is possible to compute the uncertainty of the
predicted state and output trajectory for a single parameter esti-
mate. However, the use of the MCMC sampled set 6, allows
accounting for uncertainty in the parameters. Additionally, the
MC simulation method is not restricted to linear or time invariant
systems. For a test dataset of length N, assume X, is known with

covariance X! and let Xojo ~ N (X0, Xo). Then, for each time
k € [1, N] compute
US| B
X0 =AX  +Bu,+w
kP 5 k-1/0 (28)
JA’;f‘)o = CXyo + vk

where X, and yj, are the estimated future state and output at time

k, given only measurement information at time 0, computed using
the i-th accepted parameter proposal in 0. The process noise
wy ~ N(0, W) and the measurement noise v, ~ N(0, V) are drawn
independently at each time-step, for each i-th trajectory, using a

random number generator (RNG). The model matrices A,B and C,
and the covariance matrices Xo,V and V, are all potentially func-
tions of the i-th sample in 6, hence potentially different for each
trajectory. Over these K trajectories, the distribution of the predicted
output for the test set is computed, for each time-step k, as a his-

togram over the set of estimated outputs j/,(j), ie1,2,...,K. A simi-
lar approach is used in [32].

2.8. Comparing MCMC and profiling methods

2.8.1. Exploration by drawing samples

The projection based PL/PP methods explore ® by selecting
samples of 0 deterministically. If a brute force method is used,
where the parameter 6; or the plane ©;; is discretised with a pre-
scribed resolution, the sampled values for each computed profile
are completely determined apriori. If a hill-climbing method is
used, the next sample is also determined deterministically by eval-
uating the gradient of the current sample. In contrast, the MCMC
method explores the parameter space ® stochasticity, using ran-
domisation to select the next sample, such that each new sample
is drawn proportionally to the target distribution 7(0) [29,27,28].
Hence, assuming proper mixing of the chains, the majority of the
samples will be drawn from the regions of high posterior density.
These are, naturally, the regions of most interest for inference
about the parameters [29,27,28]. Subsequently, again assuming
proper mixing of the chains, the majority of the computation time
will be spent analysing the most interesting regions in ©.

In contrast, the deterministic brute force sampling of the PL/PP
methods explore the parameter space ® exhaustively within the
prescribed discretisation, which is significantly more time-
consuming. The advantage of such exhaustive searches is that they
are guaranteed to obtain the global optimum, within the precision
allowed by the discretisation of ®. Additionally, deterministic
exploration is unaffected by the flat manifolds caused by non-
identifiable parameters, whereas the stochastic exploration of
MCMC in such conditions can result in convergence failure for
chains of finite length [21]. Observe that the MCMC methods with
appropriately selected proposal distributions are also theoretically
guaranteed to obtain the global optima for infinite chain lengths
[29,27,28]. In practice however, MCMC samples © sufficiently for
parameter inference even with reasonably short chain lengths.

Since the profiling methods explore the posterior by projections
onto individual parameters, or planes of two parameters, the
method must be executed repeatedly for each parameter or combi-

nation of parameters of interest. This further exacerbates the com-
putational burden. For the one-dimensional projection methods
PL1D and PP1D, computation time is linear in the number of
parameters n, and usually comparable to MCMC. For the PL2D/
PP2D methods, however, the computation time is exponential in
ny, thus, even moderately large numbers of parameters may lead
to infeasible computation times.

2.8.2. Projection and marginalisation
Since the MCMC method draws samples in proportion to the

target distribution n(e)ap(f)\y[m), the posterior distribution

p(9|y[N]), or its hyper-parameters, can be estimated directly on

the set of samples 0, e.g., by computing a histogram [28,27,29].
In order to plot the results, the posterior is often presented as mar-
ginalised distributions over one or two parameters. It is common
practice to present marginal distributions for all possible combina-
tions of parameters and present the results as corner plots [27].

In contrast, the PL/PP methods obtain the estimated profiles by
projecting the likelihood/posterior onto individual parameters or
planes of two parameters. The resulting profiles are similar to the
marginalised histograms obtained by MCMC, but with one impor-
tant difference. The projections are computed using optimisation
over the remaining parameters, as illustrated in Eq. (23). This pro-
cedure returns the optimal density for the given 0;, or given (0;, ;)
pair for PL2D/PP2D. In contrast, the marginalisation used in MCMC
computes the integral over the remaining parameters. For some
distributions, such as the normal distribution, these two quantities
are proportional. Hence, if the scale of the resulting profiles/distri-
butions is ignored, these methods will, for some cases,result in sim-
ilar profiles/distributions, particularly for the high posterior
density regions where the stochastic exploration of MCMC gives
the most accurate results.

3. Experimental setup
3.1. Model

Fig. 2 shows a thermal network model structure, which was
developed to approximate the thermal behaviour of an experimen-
tal building, located at Campus Porsgrunn of the University of
South-Eastern Norway (USN). The model is partially based on the
R4C2 model presented in [7]. The RC circuit consists of five compo-
nents: the thermal resistance between room air and wall Ry, the
building envelope R,,, and the thermal resistance of windows and
doors Rg, and the two capacitances C, and C,, representing the
thermal capacitance of the building interior and envelope, respec-
tively. The model has two outputs: the room temperature T, and
the wall surface temperature T,,, and two inputs: the consumed

Interior Q’R' Wall Outside
— L }—
. Rg
Or, Ok,
Heater Ty [ —= I, ==
I I
. R,

0 L

OR WO
.-

Fig. 2. RC circuit model of the building.




O.M. Brastein et al./Energy & Buildings 224 (2020) 110236 9

power by an electric heating element Q and the outside tempera-
ture T... The model can be expressed on the form of Egs. (14) with
state transition matrix A, input matrix B, state vector x and input
vector u given as:

N S 1
A [ CoRy  CoRe 1chb }

1
CuRy T CwRy  CwRw

1 1
B= [Cb CbRg] (29)

0 1

CwRw

Ty )

XI<:|:T:| auk—|:Q:|
W lt=ty Toc t=t,

Since all states are observable, the measurement matrix

C =1 — y, = X¢. The model is LTI, hence a standard KF can be used.
The noise covariance matrices W =diag(w2, w2) and
V = diag(vZ, v2) are also estimated from data, and are assumed
diagonal. The parameter vector is then
0= [Rg Ry Ry Co Cw wp, Wy 1 Uw].

A variation of this R3C2 model, is the R2C2 model where the
thermal resistance R is removed, equivalent to setting Ry = oo in
the R3C2 model.

3.2. Training and test datasets

Fig. 3 shows three independent sets of data, collected from the
experimental building in February 2018, which consist of three
temperature measurements, T, Ty, and T, and one measurement

of input electrical power, Q , supplied to an electric heater. The
data has been downsampled to a sampling interval of 30 min. This
sample interval was determined experimentally by repeatedly
increasing the downsampling ratio and using the PL1 method to
test that the downsampled data produced similar results as the
higher sample rate original data-set. Note that a sample time of
30 min is arguably reasonable for the main thermal behaviour of
a building, but may be excessively long for the heater dynamics
and solar gains. However, for this particular data-set, a sample rate
of 30 min was found acceptable. The temperatures T, and T,, are
used as reference data for the model outputs, while T, and Q are
the model inputs. The two training datasets are used for parameter
estimation and analysis, while the testset is used only for evalua-
tion of the posterior predictive distribution, i.e., to evaluate how well
the calibrated model predicts future system behaviour.

3.3. Experiment cases and setup

In the sequel, five different experiment configurations, as listed
in Table 2, are analysed and compared.

Case 1 uses the full R3C2 model from Fig. 2 with the priors for
all parameters p(0) = 1 for 0 € R™. As the results in Section 4 show,
Case 1 results in non-identifiable parameters. As discussed in Sec-
tion 2.5.1, there are several ways to resolve parameter non-
identifiability.

Case 2 uses the same model structure, but with the addition of a
prior on the parameter R;. The parameter R, represents the thermal
resistance of windows and the door, and can hence be computed
by hand. The door in the building has a U-value of 1.2[-%] and
an area of 1.76[m?], while the two windows have U-values
1.3[;%] and a total area of 1.57[m?|. The resulting total UA value

m2K.

is then 4.1[%¥], which gives an estimated thermal resistance
Ry = 0.24 [34]. The covariance of the prior, i.e., the uncertainty of

the estimated mean value 0.24 is chosen as 0.01. With application
of a prior distribution based on physical information of the build-
ing, the parameters are shown to be identifiable.

Case 3 instead resolves the non-identifiability by modifying the
model structure into the R2C2 model, by removing the parameter
R, from the model and effectively lumping the thermal resistance
of windows and the door together with the remaining R, and R,.
All four parameters of the R2C2 model structure are identifiable,
despite using uniform priors. Additionally, Case 3 starts the MCMC
chains from the MAP estimate yap, rather than drawing the initial
sample uniformly from the feasible region ® as is done in Cases 1
and 2, thus negating the need for a burn-in phase in MCMC.

Case 4 uses the same setup as Case 3, except that a random

noise component v ~ N(O, 0.12) is added to the data for T, and

T,, prior to analysing the estimated parameters. As the results will
show, comparing Cases 3 and 4 reveal some interesting insight into
the estimation of noise covariance parameters for this model. Case 5
also uses the same setup as Case 3, but now a different dataset,
Training 2, is used. The other four cases all use Training 1 for esti-
mation and analysis. For Case 5, however, the Training 2 dataset
has slightly more dynamic information content, which, as the
results will show, is reflected in the parameter analysis.

For each case, the posterior distribution of the parameters

p(é)\ym> is estimated using the MCMC method. The results are pre-

sented as marginal distributions, both as one dimensional (1D) for
each parameter, and as two dimensional (2D) distributions over
two parameters. Additionally, each case is analysed using the pro-
filing methods of Section 2.6 in one and two dimensions in order to
obtain projected profiles of the log posterior ¢p(0). Note that the
experimental cases use different feasible regions ©, as evident

32 Training 1 32 Training 2 32 Test
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Fig. 3. Training and test datasets, consists of three temperature measurements, T}, (green), T,, (blue) and T.. (red), and one measurement of input electrical power, Q.



10

Table 2
Configuration for each experiment case.

# Model Description

1 R3C2 uniform priors p(0) = 1

2 R3C2 P(Rg) = N(0424, 0‘012)

3 R2C2 Ry removed, p(0) = 1,0 = Ouap

4 R2C2 Same as 3 + added noise ¢ = 0.1

5 R2C2 Same as 3, but using Training 2 dataset

from the result plots in Section 4. Hence, the results for different
cases must be compared by taking into account the differences in
parameter limits. Note that, for simplicity, the projection method
is refereed to in the sequel as PP, since the PL variation can be con-
sidered a special case of PP with uniform priors.

3.3.1. Post-processing of results

The marginal posterior distributions from MCMC are log-
transformed, in the form of Eq. (13), to facilitate comparison with
the PP1D/PP2D methods. Additionally, the results are shifted in
log space such that the minimum of each profile/log distribution
is zero, as discussed in Section2.8. Since the goal is to analyse the
parameter estimation problem, it is the shape in log space and dis-
tribution over the parameters that are of interest, not the scale or
the minimum log posterior value.

The PP1D/PP2D methods, being based in numerical optimisa-
tion, naturally respect the bound of the feasible region. In the Baye-
sian framework, the constraint 0 € ® is equivalent to a prior
distribution p(6 € ®) =1 and p(6 ¢ ©®) =0, hence in the MCMC
implementation any proposed 0 ¢ © is automatically rejected.

The results from MCMC and PP2D are presented as corner plots,
with 2D profiles/marginal posterior distributions for each possible
combination of parameters. Additionally, the marginal posterior
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for each parameter is plotted together with the PP1D profile, for
comparison of results.

3.3.2. Tuning

The PP2D method is executed with an experimentally obtained
discretisation resolution of 200 x 200 grid, and a resolution of 400
for PP1D. The MCMC method is applied with 12 chains of length
10°, except for in the non-identifiable Case 1 which uses chain
length 2 x 10° and a thinning factor of 20. For Cases 1 and 2, a fixed
burn-in of 10000 samples is used. Cases 3, 4 and 5 initialise the
chains at fyap, hence, no burn-in phase is needed. The proposal dis-

tribution is chosen as normal isotropic: q(0k|0k_1) ~ N(B,H, 65)
where o, = I - diag(¢0°) and ¢° is some nominal parameter vector

close to the MAP estimate Oyap. The step length | = 0.01 has been
selected for all cases, such that for Cases 2 to 5 the proposal accep-
tance rate is around 50%. For Case 1, the acceptance rate is found to
be around 25, due to the thin elongated valley in the posterior
hyper-surface for the non-identifiable case resulting in an increase
in rejected proposals.

4. Results and analysis
4.1. Marginal and projected posteriors

Fig. 4 presents the marginal posterior plots from MCMC
together with the PP1D and the PP2D projections. Observe that
the resulting projections/profiles are similar for most parameters.
Since the plots are shifted in log space, this similarity indicates pro-
portionality in non-log space.

The presence of flat, equipotential regions in the posterior
hyper-surface indicates that parameters R, and R, are non-
identifiable. The corresponding PP2D profile in Fig, 4 shows a linear
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does not properly converge for Case 1.

inter-dependence between the parameters R, and Ry, which is
indicative of a structural problem with the R3C2 model, resulting
in non-identifiable parameters because of over-parameterisation.

Next, observe that the marginal posteriors for parameters R,
and R,, show considerable random fluctuation in regions that the
PP1D and PP2D methods identify as flat. Since MCMC is based on
a stochastic exploration of the parameter space it is not surprising
that the similarity of the results is only approximate. The MCMC
method draws samples in proportion to their posterior density,
focusing exploration of ® on areas of high posterior density, hence
the similarity of the results is stronger in these regions.

The differences between projected and marginal posteriors are
most pronounced for the parameters R, and C,,. The marginal pos-
teriors are not proportional to the projected posteriors for R; and
Cw, since for these parameters, the optimum obtained by projec-
tions is not proportional to the integral over remaining parameters.
In contrast, the marginal and projected posterior of the parameter
Cp, are nearly identical in shape.

Since the parameters are subject to the constraint 0 € ©, the
inter-dependence between R, and R,, introduces artefacts in the
profiles, such as the sharp bend that occurs in the profile for R, at
~ 0.9. This phenomenon is caused by the dependant parameter
Ry, being actively constrained < 1.0, hence producing sub-optimal
posterior projections for higher values of R,. The same effect is
observed on the MCMC marginal posterior plots, since the bends
are caused by the bounds on the parameters and not the analysis
method. However, in the Bayesian framework, the constraint
0 € © can be interpreted as a prior on the parameters which re-
shapes the likelihood hyper-surface, consequently resulting in the
observed bends in the marginal posteriors of R, and Cy, as dis-
cussed in Section 2.2. The Bayesian interpretation of this phe-
nomenon is arguably more satisfactory than that of artefacts
induced by active constraints in optimisation.

Because of inter-dependant, and therefore non-identifiable,
parameters, the shape and extensiveness of the posterior
hyper-surface become difficult to traverse using the stochastic
predict-accept/reject scheme of the Metropolis algorithm. These
difficulties are evident by the diagnostic plots given in Fig. 5. For
Case 1, the elongated, narrow and flat structure of the posterior

hyper-surface for parameters R, and R,, causes the Metropolis
algorithm to sample the posterior somewhat ineffectively, result-
ing in an average proposal acceptance rate of ~ 25% for the defined
proposal distribution q(6x|6x_1), subsequently with high autocorre-
lation over the chains. Hence, significantly longer chain lengths

were required for Case 1, where K = 2 x 10° for all 12 chains, than
for the other four cases.

Although the 2D trace plots in Fig. 5 show that all chains quickly
reach the high posterior density region for all parameters, from
their uniformly drawn starting points 6o ~ U (Opmin, Omax), the 1D
trace plots show that the chains are not reaching equilibrium,
except for in the parameter C,. Since the chains do not converge,
the resulting parameter samples 0, are not properly representing
the posterior distribution, hence producing less accurate estimates

of p(()|y[N]>. The autocorrelation function (ACF) plots show signifi-

cant correlation even at high lag values for all parameters except Cy,.
This is indicative of MCMC chains that are “clumpy” [27,29], as a
consequence of failure to converge. Despite the convergence fail-
ure, comparison with PP1D and PP2D projected posteriors suggests
that the MCMC results are representative of the posterior, although
with reduced accuracy.

The resulting marginal distributions and projections of the pos-
terior hyper-surface of Case 2, reshaped by the addition of the prior

of R, i.e., p(Rg) = N(0.24, 0.012), are presented in Fig. 6. All five

parameters are now indicated as identifiable by bounded marginal
and projected posterior distributions. Despite the different theoret-
ical foundation of the methods discussed in Section 2.6, the mar-
ginal and projected posteriors are nearly identical once shifted in
log space. The similarity is much stronger than for Case 1, since
the challenging equipotential regions in the posterior hyper-
surface have been eliminated. As evident from the marginal and
projected 2D posterior of parameters R, and Ry, there is still a
strong correlation between them, but there is now a well-defined
optimum.

The differences between the use of a stochastic rather than
deterministic exploration of the parameter space is most
pronounced in the low posterior density regions. Since the
high-density regions are the primary area of interest for these
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Fig. 6. Marginal and projected posterior for Case 2, with left and right panels showing the MCMC and PP2D results, respectively. A comparison between the 1D marginal

distributions (blue) and the PP1D projections (red) is shown in the top panel.

analyses, the somewhat random exploration of the low posterior
density regions of MCMC is of no practical consequence. Hence,
both methods arguably provide the same insights of the param-
eter space of Case 2. Since the parameters now have well-
defined optima, convergence of the MCMC chains occurs well

within the predetermined burn-in phase, hence shorter chain
lengths where required for Case 2.

The results for Case 3 are presented in Fig. 7. As shown by the
marginal and projected posteriors, the posterior hyper-surface
has been further reshaped by the removal of R,. As for Case 2, all
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Fig. 7. Marginal and projected posterior for Case 3, with left and right panels showing the MCMC and PP2D results, respectively. A comparison between the 1D marginal
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0.035 Rp 0.055'0.040 Ry, 0.065'1.00M Gp, 2.00M'



O.M. Brastein et al./Energy & Buildings 224 (2020) 110236 13

 WVAVAIVAIV
A U V=

0.035_ 0.055'0.040_ 0.065!1.0M 2.0M10.25M_ 0.75MI
Rb Rw Cb Cw

Fig. 8. 1D marginal distributions (blue) and the PP1D projections (red) for Cases 4
(top) and 5 (bottom).

parameters have bounded profiles and are therefore identifiable.
However, the uncertainty, i.e., the span of the log posterior projec-
tions and marginal distributions, is greatly reduced for Case 3.
Hence a reduction in the region of interest ® is required, compared
to Case 2, as shown in the ranges of the plots in Fig. 7.

Next, observe that the similarity between the marginal and pro-
jected posteriors is stronger for Case 3 compared with Case 2,
although there are still some minor differences in the low posterior
density regions due to the stochastic exploration of MCMC. These
results further confirm that the two methods produce results that
are proportional for the reshaped hyper-surface of Case 3. Hence,
both methods provide the same insight into the parameter estima-
tion problem.

The 1D marginal and projected posterior results for Cases 4 and
5 are shown in Fig. 8. Since the model structure and prior configu-
ration are the same as for Case 3, the structural identifiability and
parameter inter-dependency are also the same. The results for Case
4 are nearly identical to Case 3, but Case 5 obtains slightly different
MAP estimates and uncertainties, since a different dataset is used
for the parameter estimation.

4.1.1. Noise parameters

When calibrating grey-box thermal network models for the
purpose of using the estimated parameters to classify building
thermal behaviour, naturally, the thermal resistance and capaci-
tance parameters are of primary interest. However, in this paper,
the parameters of the noise covariance matrices ¥V and V are also
estimated from the data. Hence, it is interesting to study the iden-
tifiability of the noise parameters; the square root of the diagonal
elements of each noise covariance matrix.

The PP1D projected profile and the MCMC marginal 1D poste-
rior for noise parameters wy, wy,, 7, and v, for all five cases are
presented in Fig. 9. First, observe that the noise parameters for
Cases 1, 2 and 3 are nearly identical, despite some of the thermal
parameters of Case 1 being non-identifiable. Observe also that
the projections/marginal distributions are quite similar, indicating
that similar information is obtained by both PL/PP and MCMC
methods also for the noise parameters.
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Fig. 9. 1D marginal distributions (blue) and the PP1D projections (red) for the noise
parameters wy,, Wy, v, and vy, for all five cases, presented in increasing order.

Next, observe that the profiles for the measurement noise
parameters in V are unbounded towards the minimum of ®. As dis-
cussed in Section 2.4, the noise parameters influence the likelihood
through the computed Kalman gain. Since the Kalman filter esti-
mated state trajectory is optimal when both W and V are correctly
estimated [48], the values of all four noise parameters are struc-
turally identifiable. However, if the optimal estimate of the mea-
surement noise V is much smaller than the process noise W, the
Kalman gain approaches the inverse of the measurement matrix,

ie. K —C. Hence, the updated state depends almost exclusively

on the measurement, such that X ~ C-'y,. If the model uncer-
tainty is indeed much larger than the measurement uncertainty,
relying exclusively on measurements to update the state trajectory
is arguably reasonable. However, this results in practically non-
identifiable measurement noise parameters, since estimating
lower values for the elements of V only drives K slightly closer to

C-1, and therefore only produces an upper bound on v, and v,,.
This effect can be observed in Fig. 9 for both measurements in
Cases 1, 2 and 3, and for measurement T}, in Case 5. For Case 4, with
the addition of artificial noise, the measurement noise parameters
are both structurally and practically identifiable with well-defined
minima and bounded CIs.

4.2. MAP point estimates with uncertainty

Since the posterior hyper-surface for most parameters and
experimental cases is known to be asymptotically Gaussian [17],
the uncertainty of the MAP estimate for identifiable parameters
can be estimated by the Hessian from Eq. (20), i.e., the covariance

of the MAP estimate is %,,,, = 2H;'. The Oyap estimate and esti-
mated standard deviation o; = /%;; are shown, together with nor-

mality test results of the Omap estimate, in Table 3. The parameter
values enclosed in (-) are ambiguous, previously diagnosed as
non-identifiable, and used only to test the residuals for normality.
The corresponding uncertainty estimates are noted as x. The ele-
ments denoted as n/a are not relevant due to use of the R2C2

model. The standard deviation ¢ is normalised over the Oyap esti-
mate to facilitate comparison of different parameters. The residual

for the Oyap estimate for all five cases passes both the Zero-
Crossing (ZC) test with acceptance range (219, 262)and the
Kolmogorov-Smirnov (KS) test with threshold (< 0.062),both at
confidence o = 95%. The three resistance parameters are given in
unit [K/W], the two capacitances in unit 10°[J/K] and the four noise
parameters in unit [K].

There are several interesting observations to be made from
Table 3. First, comparing Case 2 and 3, lumping R, into the remain-
ing resistance parameters R, and Ry, results in correspondingly de-
creased estimates of thermal resistance. Next, observe that the MAP
estimate of C,, and the corresponding uncertainty, is approxi-
mately the same for all five cases, although slightly lower for Case
5. Note also that the model prediction uncertainty parameters w;
and w,, are nearly identical for the first three cases. These observa-
tions indicate at least some correlation of the estimated parame-
ters to the physical properties of the building, which is further
discussed in Section 4.4.

Further, observe that although the inclusion of a prior on Rg in
Case 2 produced unambiguous MAP estimates, the uncertainty of
the remaining estimated parameters is significantly lower in Case
3, where Ry = .

Comparing Cases 3 and 4, the uncertainty in the four thermal
parameters is not significantly affected by the addition of artificial
measurement noise in Case 4. This comparison indicates that a
slight increase in measurement noise does not adversely affect
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Table 3

MAP parameters with normalised standard deviations computed with the Hessian method, together with normality test results from using Zero-Crossing (ZC) and Kolmogorov-

Smirnov (KS) on residuals using the Oyap estimate.

# Rg Ry Rw Cp Cw wy, Wy Uy Vw Output Ty Tw

1 Oniap (0.101) (0.515) (0.607) 1.449 (0.041) 0.148 0.137 (0.000) (0.004) zc 247 253
T x x x 4.6% x 3.2% 3.6% x x KS 0.035 0.049

2 Onap 0.236 0.072 0.084 1.444 0.293 0.149 0.137 (0.003) (0.002) zc 243 253
T 6.0% 5.7% 5.7% 4.7% 8.8% 3.2% 3.7% x x KS 0.039 0.050

3 Onap nfa 0.043 0.051 1.446 0.481 0.151 0.136 (0.010) (0.010) zc 243 253
= n/a 2.6% 2.7% 4.9% 71% 3.2% 4.9% x x KS 0.038 0.050

4 Oniap n/a 0.043 0.051 1.369 0.486 0.169 0.158 0.088 0.088 zc 246 259
o nfa 2.7% 2.8% 5.3% 8.0% 5.7% 5.5% 11.5% 10.7% KS 0.030 0.027

5 Oniap nfa 0.040 0.048 1.270 0.419 0.128 0.103 (0.002) 0.041 zc 247 259
T nfa 1.4% 1.5% 6.3% 4.5% 3.2% 5.2% x 18.0% KS 0.052 0.041

the parameter estimation uncertainty. However, the use of a differ- 35| 35|

ent dataset in Case 5 significantly reduces the uncertainty of the
thermal parameters. The important factor determining the uncer-
tainty of the estimated parameters is the dynamic information con-
tent related to the system behaviour contained in the data,
assuming a reasonable signal to noise ratio. Finally, observe that
the MAP estimates of the four thermal parameters are in reason-
able agreement for Cases 3, 4 and 5, which indicates that the esti-
mated parameters are consistent irrespective of the data-set used
for calibration, at least to some degree considering the datasets
where recorded consecutively.

4.3. Posterior predictive distribution for the Test dataset

Fig. 10 shows the posterior predictive distributions discussed in
Section 2.7.1, for each experimental case, computed by Monte Carlo
(MC) simulation of the model in Eq. (14) for a thinned subset of the
parameter samples in 0. To reduce computation time, a thinning
factor of 100 is used for this computation. The plots are created by
repeatedly simulating the test-set ballistically, with randomly gen-
erated measurement and process noise v, and wy, thus creating
one simulated trajectory for each 0 € 0y;. The lower right plot
shows the standard deviation o, of at each time step over the set
of K ballistic simulations such that

. 1 &K/ o N2
O'ﬁ = \/D’km} = HZ(Y% *}’k\o)
i1

where Yyo = E(Jio) :%Zf(zlj/gl)o. Note that the test-set measure-

ments of future system inputs u, are usedto compute the posterior
predictive distributions in order to separate the uncertainties of the
model predictions with those introduced by using more realistic
predicted system inputs.

First, observe from Fig. 10 that Cases 1, 2 and 3 produce similar
prediction results, despite the differences in model structure and
parameter posterior distributions, and from the lower right panel
showing the standard deviation (SD) that the empirical SD is nearly
identical for the first three cases. Comparing cases 4 and 5 to Case 3
shows that the SD of the predictions is increased for Case 4 but de-
creased for Case 5. Since Case 4 has artificially added measurement
noise, it is expected that the output predictions will have increased
uncertainty, due to larger values of the generated measurement
noise parameters vz, and v,,. For Case 5, the variance of the output
trajectories is reduced, since the estimated parameters in 6 have
less variation due to improved dynamic information in the Train-
ing2 dataset. The similarity of the model predictions for each case
is further demonstrated by the root mean square error (RMSE) of
the MAP predictions shown in Fig. 10. The observed differences
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Fig. 10. Prediction posterior from repeated ballistic simulations over 0, of the Test
dataset for all five cases. For each case, the temperatures T, and T, are plotted as
upper/lower temperature, respectively. The plots show the MAP estimate (blue),
credibility bands of 50%,95% and 99% (light to dark) and the reference measure-
ments (red). The lower right plot shows the standard deviation of the outputs,
computed over all K trajectories, at each time step.

in predictions over the four-day horizon are likely to be of no prac-
tical significance for use in a predictive controller.

The similarity of the posterior predictive distributions of Cases
1, 2 and 3 shows that all three variations of the model are in fact
able to learn the information in the training set necessary to predict
the test set. The fact that Case 1 has some non-identifiable param-
eters with a significant equipotential region in their posterior dis-
tributions does not prevent the model from successfully predicting
the output. Comparing Cases 4 and 5 to Case 3 further indicates
that it is the dynamic information contentin the training data that
most significantly affects the posterior predictive distributions, as
long as the model structure is sufficiently complex to learn the
appropriate system behaviour.
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These results show that the presented grey-box model may ad-
equately predict the system behaviour, even if the parameters are
not unambiguously identifiable, and that the prediction accuracy
largely depends on the information content in the training data.
For black-box models, there is usually no assumption of physical
interpretability of the model coefficients, hence unambiguous opti-
mal parameter estimates are of no consequence. Methods such as
system identification [11] and Artificial Neural Networks (ANN)
[54,55] typically produce non-unique system description models
whose ability to predict future data, assuming adequate model
complexity, depends mostly on the information content in the
training data.

By including the stochastic process and measurement noise
terms in the model and learning their parameters from data, the
model predictions can also reflect these important uncertainties.
The computation of a posterior predictive distribution, rather than
a single MAP or MLE trajectory, could facilitate use of stochastic
MPC methods [56]. Calculating the simulation RMSE to a worst case
error of 1.5K, computed over a reasonably long prediction horizon
of four days is likely sufficient for the purposes of model based con-
trol [3].

4.4. Physical interpretation of estimated parameters

Given that all five cases show similar predictive capabilities,
despite Case 1 having some non-identifiable parameters and
Table 3 showing large variation in the model parameters, it is
interesting to consider if there are any similarities between the
cases that are not expressed in the model parameters. Three prop-
erties of interest are the eigenvalues 4; and A, of A, or rather their
negative inverse, i.e., time-constants T; = —4;' and T, = —4,', and
the total resistance to heat-loss Rror = Rg||(Rp + Rw) between the
indoor temperature T, and the outdoor temperature T, where ||
indicates a parallel connection of resistors, i.e.,, a harmonic sum.
Note that for Cases 3, 4 and 5, R; = 00 — Rror = Ry, + Ruw.

Since the posterior distribution generated by MCMC is repre-
sented by a set of samples 0, the quantities Ty, T, and Rror can
be computed for each sample in 0 and the marginal posterior dis-
tribution for each quantity computed by histogram. The marginal

log posterior ¢p(0) = —2 lnp(()|y[N]> for each quantity is given for

all five cases in Fig. 11, together with the MAP estimate and
2.5/97.5 credibility percentiles, computed from interpolation on
the cumulative empirical distribution.

First, observe that these quantities have bounded profiles with a
well-defined optima, also for Case 1. Even though the MCMC meth-
od’s trace plots in Fig. 5 show a large variation in the model param-
eters, the time-constants and total resistance are well-defined.
When MCMC proposes a new sample 0;, if that sample gives
time-constants T; and T, or a total thermal resistance Ryor that dif-
fers substantially from the MAP estimates shown in Fig. 11, the
resulting log posterior ¢p(0) would produce a very low acceptance
probability o.

Next, observe that all three quantities are in reasonable agree-
ment for the first four cases, with the MAP estimate for each case
falling within the credibility limits for all the other cases, except
the MAP of T, for Case 1 falling just below the 2.5% credibility limit
of Case 3. The similarity, despite using different model structures,
priors and noise on training data, indicates that the time-constants
and total resistance are somewhat invariant to the experimental
setup. The consistency of Rror ~ 0.094 for Cases 1 to 4 explains
why there is a strong correlation between R, and R,, as illustrated
in Section 4.1. Given that R, is determined by the prior, omitted, or
has a well-defined optimum, the values of R, and R,, must fulfil
Rror ~ 0.094. However, it is difficult to see any physical reason for
this correlation.The interpretation of the individual R, and Ry,
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Fig. 11. Log posterior marginal distributions with credibility 2.5 and 97.5
percentiles (red) MAP estimates (black) of the two time-constants, T; and T, and
the total heat-loss resistance Rror of the building.

parameters as physical properties of the building is therefore
questionable.

Finally, note from the marginal posterior distributions in Fig. 11
that the differences between Case 5 and Cases 1 through 4 are sig-
nificant, e.g. a value of Rror = 0.094 would give a very low posterior
probability based on the distribution of Case 5. The Case 5 MAP
estimate for each quantity is outside the 2.5/97.5 percentiles for
Cases 1 to 4. While the results of Case 5 cognitively appear similar
to Cases 1 to 4, the presented results are not similar enough to con-
clude with sufficient statistical credibility that the parameters are
consistent also when different calibration data is used.

4.5. Comparing MCMC and PP methods

As the results from the five experimental cases have shown, the
MCMC and PL/PP methods indeed provide similar results. Even
though the theoretical foundation of the methods differ signifi-
cantly, in particular in the stochastic vs. deterministic exploration
of ® and the use of projection vs. marginalisation to present
results, both methods produce estimates of the same posterior
parameter distribution. Note, however, the projected and margin-
alised posterior is not always proportional as shown in Case 1.
The advantage of the projection-based methods is mainly that they
are not affected by flat regions in the likelihood function or poste-
rior distribution. Additionally, the deterministic projections of each
prescribed point in ®;; allow an exhaustive exploration of the fea-
sible region ®.The method will therefore obtain both global and
local minima, including any equipotential manifolds. The main
advantages of MCMC are computational speed and the way that
the target distribution is represented as a set of samples 0 that
can be used for further analysis, such as computing derived param-
eters, e.g. time constants or total thermal resistance.

4.5.1. Computation time

Deterministic brute force exploration is, naturally, quite time-
consuming. The accuracy at which a global optimum can be found
depends on the resolution of the parameter discretisation used in
the brute force grid exploration. Hence, the key to successful use
of the PL2D/PP2D methods is a reasonable compromise between
computation time and resolution. The computational burden is fur-
ther exacerbated by the need to project the log likelihood or log
posterior to all parameter combinations ®;; of interest. In contrast,
the MCMC method is specifically designed to explore the most
interesting areas, i.e., the areas of ® with the highest posterior den-
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sity. Additionally, since the resulting 2D distributions are com-
puted from histograms by marginalising out the other parameters,
there is no need to run the method multiple times. All computation
times discussed here are given for the method configurations sta-
ted in Section 3.3. All the methods discussed in this paper can
easily be parallelised, and can thus take advantage of modern
multi-core CPU architectures.

The MCMC method computes in around ~ 12min for Cases 2
through 5.Due to non-identifiable parameters, Case 1 required
around 20 times long chains to produce a reasonable approxima-
tion of the posterior, thus taking a computation time of ~ 4.5h.
In contrast, the PP2D method takes around ~ 6.5h to compute all
ten projections for Cases 1 and 2. The PP2D method is not affected
by the shape of the posterior surface. Case 1 and 2 therefore takes
approximately the same time to compute. The six projections in
Cases 3, 4 and 5 are computed in around ~ 2.5h. The reduction
in computation time is due to a lower number of parameters in
the last three cases, resulting in fewer projection planes ®;; and
also fewer free parameters to optimise for each projected point.
The PL1D/PP1D methods, requiring discretisation only of single
parameters and only one projection per parameter, are signifi-
cantly faster at around ~ 3min. Note that if only 1D posterior dis-
tributions were of interest, the MCMC method could likely have
been configured with significantly shorter chains.

4.5.2. Predictive posterior and combined parameter distributions

A distinct advantage of MCMC is the ability to compute poste-
rior predictive distributions for the model output. By using MC
simulations over the set 0, a set of K independent state and out-
put trajectories can be computed. The uncertainty of the predic-
tions, given both model uncertainty w;, ~ A(0, W), measurement
uncertainty »x ~A(0,V) and the uncertainty in the parameter
estimates as expressed in 0;, can be estimated for each time-
step over the K trajectories, as discussed in Section 2.7.1.

Another use of the sampled set 0 is the possibility to compute
combined parameters, such as the eigenvalues of A or the total
resistance to heat-loss Ryor discussed in Section 4.4. Marginal dis-
tributions for these combined parameters can then be computed
and analysed to provide a more flexible analysis and deeper insight
into the model’s behaviour.

5. Conclusion

In this paper, both frequentist and Bayesian frameworks for
parameter estimation were used to obtain a detailed analysis of
the parameter space of a grey-box thermal network model for a
building [43,21]. The Profile Likelihood (PL), the Profile Posterior
(PP) and the Markov Chain Monte Carlo (MCMC) methods were
used to estimate the shape of the posterior distribution for the
parameters of a thermal network grey-box model expressed as a
stochastic differential equation (SDE) [16].

Five experimental cases were investigated, one of which has non-
identifiable parameters. This non-identifiability was shown to be
resolved by application of either a prior distribution for the parame-
ter Ry, or by the removal of R; from the model, in Case 2 and 3, respec-
tively. Cases 4 and 5 showed how, and under what conditions, the
covariance of the process uncertainty wy, and the measurement
uncertainty v, can be estimated from data for the given model. By
using the sampled set 0, from MCMC, the eigenvalues, and subse-
quently the time-constants, of the state transition model A, and also
the total thermal resistance Rror, were shown to have well-defined
bounded distributions even for the non-identifiable Case 1. The esti-
mates of the time-constants and total thermal resistance were found
to be similar for the first four cases, but with significant differences
in Case 5, which used a different training dataset.

A distinct advantage of the MCMC method is the ability to use
the sampled set of parameters 0, to propagate the uncertainty
of the parameter estimates into the model output predictions, by
computing the posterior predictive distribution. The resulting distri-
butions for all five cases were found to be in reasonable agreement.
Hence, all the models are found able to learn the necessary knowl-
edge about the physical building from the training data necessary
to predict the independent test set. This result indicates that while
parameter identifiability is important for justifying a physical
interpretation of the model parameters [5], the presented model’s
ability to predict system behaviour is not significantly affected by
non-identifiable parameters. This result is well-know from the
black-box modelling paradigm [11]. Since grey-box models explic-
itly applies prior physical knowledge of the system to create a
model structure, the interpretation of parameters as physical con-
stants of the system is often assumed [5]. The results presented
here show that, even if the model correctly predicts the system
behaviour, assumptions of physical interpretation of parameters
should be supported by an identifiability analysis.

Finally, the use of both PP and MCMC methods to explore the
posterior distribution shows that the shapes of the respectively
resulting projected and marginal distributions are near identical
in log space, i.e., proportional, and therefore convey the same diag-
nostic information about the parameter space for most of the pre-
sented cases [21]. The main advantage of the projection methods,
due to the deterministic exploration of the parameter space, is that
the equipotential manifolds in the log posterior space caused by
non-identifiable parameters do not affect the method’s ability to
obtain projections of the posterior [21]. The MCMC method’s main
advantages are computational efficiency, achieved by focusing
exploration of the parameter space on regions of high posterior
density, and also the possibility of utilising the sampled set of
parameters Oy, to compute the posterior predictive distribution
and marginal distributions for other parameters derived from the
sampled 0 [27,29]. Producing a stochastic forecast for the temper-
atures in the building could facilitate use of stochastic Model Pre-
dictive Control (MPC) [56,57], which also accounts for uncertainty
in the calibrated model parameters.
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