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ABSTRACT
This article addresses the spatial analysis of landslide susceptibility
in the Ardabil province of Iran. To this end, two well-known opti-
mization algorithms, namely genetic algorithm (GA) and particle
swarm optimization (PSO) are synthesized with an adaptive
neuro-fuzzy inference system (ANFIS) to create the ensembles of
GA-ANFIS and PSO-ANFIS. Besides, the statistical index (SI) model
is also performed to be compared with the mentioned intelligent
techniques. Fourteen landslide conditioning factors including ele-
vation, slope aspect, land use, plan curvature, profile curvature,
soil type, distance to river, distance to road, distance to fault, rain-
fall, slope degree, stream power index (SPI), topographic wetness
index (TWI), and lithology were considered within the geographic
information system (GIS). Out of 253 identified landslides, 177
points (70% of them) were randomly selected and used for the
training phase, and the remaining 76 points (30% of them) were
used to evaluate the accuracy of the SI, GA-ANFIS, and PSO-ANFIS
models. Referring to the calculated area under the receiver oper-
ating characteristic curve (AUROC) index, the GA-ANFIS (AUROC ¼
0.914) and SI (AUROC ¼ 0.821) showed the best performance,
respectively in the training and testing phases. Notably, ANFIS-
PSO emerged as the faster prediction method compared to the
GA-ANFIS. Also, from spatial analysis, it was revealed that around
95%, 87%, and 97% of the training landslides, and 96%, 84%, and
76% of the testing landslides are located in hazardous areas.
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1. Introduction

As a ubiquitous disaster, slope failures cause plenty of financial and psychological
damages all over the world every year. According to Varnes and Radbruch-Hall
(1976), the landslide is defined as all kinds of gravity-caused downward mass move-
ments on slopes. Artificial deposits, soil, and natural cliffs are examples of these
masses than landslide can occur over them. According to global reports, more than
90% of the occurred landslides have been located in developing countries. Besides,
landslides cause and at least 17% of the reported fatalities worldwide (Pourghasemi,
Mohammady, et al. 2012). Iran is considered as a landslide-prone country due to
many landslides occurred in recent years. It also has witnessed the most massive deb-
ris flow in the World (Seimareh landslide) (Shoaei and Ghayoumian 1998).
Furthermore, according to the Iranian Landslide Working Party, landslides are
responsible for about 187 losses of lives in Iran (Pourghasemi, Pradhan, et al. 2012).

For the purpose of decreasing these damages, evaluation of the landslide suscepti-
bility of an area can be effective (Hong et al. 2019). Landslide susceptibility may be
introduced as the spatial possibility of the landslide events based on a collection of
geological and environmental situations. In this regard, various techniques in the field
of landslide susceptibility mapping can be used for different landslide-prone areas
worldwide (Chen et al. 2018; Kornejady and Pourghasemi 2019). Therefore, many
researchers concerned the development of landslide susceptibility maps along with
extracting relations for predicting the landslide susceptibility index in order to explore
the landslide occurrence likelihood (Vakhshoori and Zare 2016; Kaur et al. 2019).
They commonly perform the required approximation by the assist of a spatial dataset
including different landslide conditioning parameters such as type of soil, slope, alti-
tude, aspect, rainfall, lithology, climate, distance for linear phenomena (e.g. roads and
drainage lines), stream power index (SPI), faults, etc. In addition, other researchers
considerably addressed landslide risk evaluation by selecting simple predictive
approaches such as the index of entropy (IOE), frequency ratio (FR), statistical index
(SI), regression-based methods, and certainty factor (CF) (Demir et al. 2015; Youssef
et al. 2015; Gao, Wang, et al. 2018; Gao, Wu, et al. 2018; Gao et al. 2019). The per-
formance of a spatial logistic regression (SLR) approach in the case of landslide sus-
ceptibility modeling in a specific case study (Duwen Highway Basin at Sichuan
Province located in China) was investigated by Yang et al. (2019). In addition, in
order to the proper selection of the landslide-related parameters, they developed a
GeoDetector-based method. The estimation precision of their suggested model was
about 11.9% improved in comparison to the ordinary logistic regression (LR) model.
Wang et al. (2015) utilized IOE together with certainty factor (CF) approaches to
evaluate the landslide occurrence risk of Qianyang County located in China using fif-
teen landslide conditioning parameters of the geomorphology, topographic wetness
index (TWI), slope aspect, slope angle, general curvature, rainfall, lithology , plan
curvature, profile curvature, distance to faults, distance to rivers, distance to roads,
altitude, sediment transport index, and SPI. Finally, CF yielded the landslide suscepti-
bility map with higher reliability compared to IOE, according to the respective preci-
sions of 82.32% and 80.88%.
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Recently, soft computing (SC) methods (Zhoug et al., 2020, Weibiao, 2019) are
widely used for establishing a fast, efficient, and inexpensive estimation of engineering
parameters (Polykretis et al. 2017; Gao, Dimitrov, et al. 2018; Gao, Guirao, et al.
2018;Chen, Yan, et al. 2019) as well as other landslide susceptibility (Azad et al. 2019;
Malik et al. 2019; Qiao and Yang 2019b; Qiao, Yang, et al. 2020; Qiao and Yang
2020). In this way, Oh and Pradhan (2011) selected an adaptive neuro-fuzzy inference
system (ANFIS) designed with four membership functions (MF), namely trapezoidal,
triangular, polynomial, and generalized bell. They concluded that ANFIS might oper-
ate as a promising approach in the territorial estimation of landslide susceptibility
mapping. Lee et al. (2017) conducted a support vector machine (SVM) in the case of
evaluation of landslide susceptibility for Pyeong Chang and Inje areas located in
Korea and determined that the suggested SVM is a reliable tool for the mentioned
purpose regarding the obtained precisions of 81.36% and 77.49%, respectively for the
PyeongChang and Inje zones. In addition, many scholars have conducted a compari-
son among various landslide evaluative approaches. He et al. (2019) have compared
the performance of radial basis function (RBF), Naïve Bayes (NB), Classifier, and
RBF neural for estimating the landslide susceptibility zonation in Longhai zone
located in China. It is noteworthy that they employed FR and SVM for calculating
the effectiveness of each landslide conditioning parameter and found that the RBF
classifier has higher accuracy by 88.1% better than NB and RBF Network with
respective accuracies of 87.2% and 0.85.4%. Moreover, Chen, Pourghasemi, et al.
(2017) evaluated the performance of three novel predictive models, including ANFIS-
FR (ANFIS synthesized with FR), SVM, and generalized additive model (GAM) in
landslide probability assessment at Hanyuan County located in China. This work
showed the superiority of the SVM compared to ANFIS-FR and GAM, with obtained
accuracies of 87.5%, 85.1%, and 84.6%, respectively. Also, Bagheri et al. (2018)
mapped the seismic rockfall of the Firooz Abad-Kojour earthquake (occurred in
2004) by using LR and ANFIS predictive tools. Referring to the obtained results,
ANFIS outperformed LR.

Numerous hybrid algorithms are introduced to have a more reliable prediction for
most engineering complex problems (Fan et al. 2019; Liu et al. 2020; Qiao, Huang,
et al. 2019; Zhang et al. 2019; Qiao and Yang 2019a; Chen et al. 2020; Qiao, Lu, et al.
2020). Furthermore, in order to enhance the performance of usual approaches such
as ANN and ANFIS in diverse fields (e.g. landslide susceptibility mapping (Nguyen,
Mehrabi, et al. 2019; Pham, Prakash, et al. 2019; Xi et al. 2019 ), groundwater quality
modeling (Kisi et al. 2017), and also flood susceptibility mapping (Ahmadlou et al.
2018; Hong et al. 2018), different hybrid evolutionary methods have been widely
designed and utilized by scholars. In this regards, Pham, Prakash, et al. (2019) used
hybrid technique of Reduced Error Pruning Trees (REPT) to develop the ensembles
of MultiBoost based Reduced Error Pruning Trees (MBREPT), Bagging based
Reduced Error Pruning Trees (BREPT), Random Subspace-based Reduced Error
Pruning Trees (RSREPT), and Rotation Forest-based Reduced Error Pruning Trees
(RFREPT) for landslide susceptibility assessment. The findings of this research
revealed the superiority of the BREPT method. Also, Moayedi et al. (2018) coupled
an MLP neural network with particle swarm optimization (PSO) in the case of spatial
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landslide susceptibility modeling at Kermanshah province, western Iran. They con-
cluded that using PSO can facilitate obtaining more precise outputs. Nguyen et al.
(2019c) conducted a case study for the combination of ANFIS and PSO (PS,O-
ANFIS), Best First Decision Trees based Rotation Forest (RFBFDT), and the combin-
ation of ANN with PSO (PSO-ANN) for spatial landslide risk estimation in Vietnam.
The computed Mean Square Error (MSE), Root Mean Square Error (RMSE) and the
area under the curve (AUC) indicated the more robustness of the RFBFDT algorithm.
Chen, Panahi, et al. (2017) also studied the robustness of PSO differential evolution
(DE) and genetic algorithm (GA) techniques to enhance the ANFIS efficiency. Their
results showed that the ANFIS-DE method outperformed ANFIS-GA, and ANFIS-
PSO with respect to the calculated AUCs of 0.844, 0.821, and 0.780, respectively.
Similarly, Tien Bui et al. (2016) optimized the least-squares support vector machines
(LSSVM) model by utilizing the differential evolution (DE) technique in the case of
rainfall-triggered landslide risk evaluation. They found that the suggested LSSVM
model showed an accuracy of 82% accomplished more efficiently compared to other
predictive methods (MLP, J48, and SVM algorithms). The computational deficiencies
(e.g. local minima (Akkurt et al. 2003; Qiao, Tian, et al. 2019; Qiao and Yang 2019c)
and dimension dangers (Chen, Panahi, et al. 2017)) associated with conventional
intelligent models have driven the engineers to employ metaheuristic algorithms to
remedy them. Two well-tried notions of these techniques are GA and PSO, which
have shown high efficiency in earlier researches for optimizing predictor models. In
this study, they are coupled with ANFIS for spatial estimation of landslide susceptibil-
ity at Ardabil province, Iran. Meanwhile, the main reason for selecting this area lies
in the lack of attention despite the high occurred landslides over it. So, to fulfill this
purpose, PSO-ANFIS, and GA-ANFIS, as well as a well-known statistical method
(SI), are employed for proper mapping of landslide susceptibility in Ardabil province.

2. Study area

The study area is Ardabil Province, which is one of the northernmost regions of Iran.
The exact location of Ardabil is shown in Figure 1. The city is roughly 17800 km2 and
lies within the longitude 47�200 to 48�600 E and latitude 37�10’ to 39�400 N, west of the
Caspian Sea. The altitude varies from 4 to 4785, and the majority of the area has a height
between 2000 and 3000 meters above the sea level. Ardabil is known as one of the cold-
est regions of Iran with bitter winters and desirable weather during the summer. With
an average annual rainfall of 316 millimeters and an average yearly temperature of
10.9 �C, the presence of Sabalan mountains plays a significant role in air moderation of
this region. The slope ranges between 0� and 63�, where the steep slopes (i.e. slope more
than 45�) are rarely observed. According to the lithology map, Ardabil lies on diverse
types of rocks (i.e. 25 lithology units), mainly two groups with the names “Andesitic
volcanic” and “low-level piedment fan and valley terrace deposits.”

Figure 1 illustrates the location of the identified landslides and the considered
non-landslide points. According to this map, the main concentration of the marked
landslides is in the southern part of the Ardabil along with territorial roads
and faults.
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3. Data preparation and spatial interaction between the landslide and
conditioning parameters

Needless to say, providing a reliable spatial database is a crucial step in landslide sus-
ceptibility assessment. In this sense, the landslide inventory map, which plays the role
of the response variable in intelligent models and interactive factors in statistical
methods, is a significant parameter (Ercanoglu and Gokceoglu 2004). In this study,

Figure 1. Location of the study area and spatial distribution of the landslides. Source: Author
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utilizing the previous recorded, interpreting the aerial photos, and field monitoring
(i.e. using GPS in 1:25000 scale), a total of 253 landslide points were identified within
the Ardabil province. Out of those, 177 events (70% of the marked landslide points)
were randomly selected and specified to train the proposed models, and the remain-
ing 76 events (30% of the marked landslide points) were put aside for validating their
performance. Then, 253 non-landslide points were also randomly produced within
the places without any observed landslides. The same proportion was considered to
divide the non-landslide points into the training and testing data (see Figure 1).

Fourteen of geological and hydrological landslide conditioning factors namely, ele-
vation, slope aspect, land use, plan curvature, profile curvature, soil type, distance to
river, distance to road, distance to fault, rainfall, slope degree, stream power index,
topographic wetness index, and lithology were considered within the geographic
information system (GIS). Note that all of the mentioned landslide-related factors
were converted to raster format from their basic forms such as polygons, contours,
polylines, etc. Figure 2 denotes the area occupied by each sub-class in each landslide
conditioning map, along with the calculated value of frequency ration (FR).
Assuming Pls and Pdomain as the percentage of the landslides located in the proposed
sub-class and the percentage of the domain covered by it, respectively, then Eqaution
(1) expresses the FR:

FR ¼ Pls
Pdomain

(1)

Remarkably, the correlation between the landslide and the proposed sub-class is dir-
ectly proportional to the FR value (Oh et al. 2011).

First, the digital elevation model (DEM) of the Ardabil was provided through land-
slide 8 imagery. Due to the proximity to the Caspian Sea, the lowest altitude of this
area is close to the sea level (approximately 4 meters in the northern Ardabil), and it
reaches more than 4700 meters in some districts. More than 30% of the area has an
altitude in the range of [1056–1535] meters (Figure 2(a)). The obtained FRs of 2.34
and 1.26, respectively, for the altitude ranges of [1535–2003] and [2003–2664] show
the high importance of these areas. The slope aspect map was derived from DEM
layer and classified as: North (0–22.5�), North-East (22.5–67.5�), East (67.5–112.5�),
South-East (112.5–157.5�), South (157.5–202.5�), South-West (202.5–247.5�), West
(247.5–292.5�), North-West (292.5–337.5�) and North (337.5–360�). As Figure 2 – (d)
denotes, the calculated FRs for the West, South-West, South, South-East, and East are
above 1. Around three-fourth of the area is equally (i.e. 25%) classified as pasture,
dry farming agriculture, and mountainous pastures. Analysis of the FR between the
landslides and different utilization of lands demonstrate 2.51 and 1.37 values for the
pasture and Oak forests, respectively. The influential factors of plan curvature and
profile curvature are also derived from the DEM. 51% and 42% of the study area is
labeled as convex (FR ¼ 1.02) and concave (FR ¼ 1.01) lands. As for profile curva-
ture, the produced map is classified in three groups of (�2.76 to �0.001), (�0.001 to
þ0.001), and (0.001–5.17), with respective FRs of 0.97, 0.00, and 1.03. About the
soil map, although, more than 40% of the area is covered by “Inceptisols” soil, the
highest FR is obtained for “Mollisols” category (i.e. FR ¼ 4.26 and percentage of the

GEOMATICS, NATURAL HAZARDS AND RISK 235



area ¼ 2%) which shows the high landslide susceptibility of this group. Besides, three
soil groups with the names “Aridisols,” “Rock Outcrops/Entisols,” and “Rock
Outcrops/Inceptisols” gained considerable FRs.

Moreover, to explore the effect of linear phenomena (i.e. the rivers, roads, and
faults), three landslide independent factors of distance to rivers, and distance to roads,
and distance to faults are considered. According to Figures 2 – (m), (o), and (q),
these distances are classified into five sub-classes. For distance to the river, except the
places farther than 700 meters, the other four groups gained the FR more than 1.10.

(a) (b)

(c) (d)

(e) (f)

Figure 2. The percentage of the area for the sub-classes and the calculated FR for: (a and b) eleva-
tion, (c and d) slope aspect, (e and f) land use, (g and h) plan curvature, (i and j) profile curvature,
(k and l) soil type, (m and n) distance to river, (o and p) distance from road, (q and r) distance
from fault, (s and t) rainfall, (u and v) slope degree, (w and x) SPI, and (y and z) TWI landslide
independent factors.
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As for distance to road, the highest FR obtained for the distances between (0–100)
meters (FR ¼ 2.05), (100–300) meters (FR ¼ 2.03), and (300–600) meters (FR ¼
1.95). Surprisingly about the distance to fault, the last distance group indicating the
places further than 1200, gained the highest FR (i.e. 1.03). This is a while, and it is
expected that the less distance to faults, the higher the impact on the occurrence of
the landslide. The rainfall map was classified into five sub-classes. As expected, a
higher FR has resulted as the value of the rainfall increases. Accordingly, the largest
FR is 2.45 is observed for the rainfall sub-class of (519–815) millimeters. The slope
layer was deduced from the DEM of Ardabil, and according to this map, half of the
area contains slight slopes (lower than 5�). Notably, the steep slopes (i.e. more than
35�) are seldom observed. The largest FR values are 1.81 and 1.59, which are obtained
for slope groups of (10–20)� and (20–35)�, respectively. Besides, to consider the
impact of the geo-morphometric conditions, two well-known secondary factors of

(g) (h)

(i) (j)

(k) (l)

Figure 2. (Continued)
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stream power index and topographic wetness index were developed, indicating the
erosion power of streams and the amount of accumulated water in a place, respect-
ively. Let a and b be the specific catchment and gradient, respectively, then Equations
(2) and (3) denote the formulation of the SPI and TWI (Moore et al. 1991):

(m) (n)

(o) (p)

(q) (r)

(s) (t)

Figure 2. (Continued)
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SPI ¼ a� tan b (2)

TWI ¼ lnða= tan bÞ (3)

The highest calculated FRs were 2.86 and 1.14, which emerged for the largest and
lowest extents of the SPI and TWI landslide causative factors, respectively. As
explained before, the geology map of the study area is composed of 52 different lith-
ology units, which are described in Table 1. According to this table, the most consid-
erable FRs are obtained for the lithology categorizes of “Dark grey shale and
sandstone (SHEMSHAK FM)” (FR ¼ 7.50) and “Fluvial conglomerate, Piedmont con-
glomerate, and sandstone” (FR ¼ 5.82).

(u) (v)

(w) (x)

(y) (z)

Figure 2. (Continued)
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4. Methodology

Figure 3 illustrates the overall process was carried out to produce the landslide sus-
ceptibility map of the study area. After providing the require GIS layers, all were con-
verted to raster with 10� 10 cell size. First, the existing landside points were
randomly divided into the training and testing sets. Then, the required dataset for
developing the intelligent models were extracted through converting to ASCII format.
In the following, by classifying the landslide independent factors, the spatial inter-
action between them and the training landslides were analyzed to perform the SI
model. As for the ANFIS ensembles, the GA and PSO optimization algorithms were
coupled with it, and after determining the optimal structures of them, the landslide
susceptibility values were produced, and the maps were generated in the GIS environ-
ment. Finally, the accuracy of the produced landslide susceptibility maps was eval-
uated by the area under the receiver operating characteristic curve (AUROC) index.

The description of the used models is presented here:

4.1. Statistical index (SI) method

As a bivariate-based statistical method, the analytical index (SI) was first suggested by
van Westen (van Westen 1997b) for a simple analysis of landslide susceptibility. The
easiness of implementation can be mentioned as a merit of this model (Yesilnacar
2005). Different GIS options (e.g. data-driven analytical ability) can appropriately
handle the SI method (Pourghasemi et al. 2013). The basis of this model is calculating
a specific weight for each categorical unit of a landslide conditioning factor. It reveals
the spatial interaction between the landslide points with the proposed independent
factor. More clearly, the SI considers the frequency of the landslides for each sub-
class of an independent factor and uses Eq. 4 to calculate the weight of the proposed
sub-class (Cevik and Topal 2003):

Figure 3. Graphical methodology of applied procedure for landslide susceptibility zonation.
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WSC ¼ ln
Dclass

Dmap

� �
¼ ln

NpixðDiÞ
NpixðEiÞP
NpixðDiÞP
NpixðEiÞ

0
B@

1
CA (4)

in which Dclass and Dmap denote the landslide density for the proposed sub-class and
the studied area, respectively. The terms NpixðDiÞ and NpixðEiÞ stand for the number
of prone cells and all cells, respectively.

This is noteworthy that although the outcome map of this model can be depicted
with any extent of landslide susceptibility values, the main reason for employing nat-
ural logarithm lies in producing the positive and negative weights for comparing with
the common situation (Van Westen 1997a).

4.2. An adaptive neuro-fuzzy inference system

Up to now, various artificial intelligence techniques have been developed for classifying
and predicting many engineering problems through extracting the complicated mathem-
atical relationship between the independent and response variables. support vector
machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), and artificial neural
networks (ANN) are well-known predictive methods. The name ANFIS implies a com-
bination of fuzzy and neural learning theories. This model was first presented by Jang
(Jang 1993) in 1993. In fact, ANFIS employs an ANN to optimize the fuzzy logic used in
this model (Dehnavi et al. 2015). As a result, it has been shown that ANFIS performs bet-
ter than the typical fuzzy inference system. As Figure 4 explains, let Qji be the response
of the jth layer, the performance of the ANFIS can be expressed in five steps (Jang 1993):

The first layer has square nodes. Assuming x and y as the input variables, the
nodes perform like Equations (5) and (6):

Q1, i ¼ lFiðxÞ (5)

Q1, i ¼ lGiðyÞ (6)

in which F and G define the linguistic variables and lFiðxÞ and lGiðyÞ are the MFs
of the corresponding node.

Figure 4. Typical ANFIS structure.
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In the second layer, the nodes respond to all input signals as follows:

Q2, i ¼ Wi ¼ lFiðxÞlGiðyÞ, i ¼ 1, 2 (7)

The nodes in Layer 3 aim to normalize the previous outputs and present them as the
new ones.

Q3, i ¼ wl ¼ wi

w1 þ w2
, i ¼ 1, 2 (8)

In the fourth layer, the nodes with the result parameters of ji, ki, and li calculate the
output as follows:

Q4, i ¼ wlfi ¼ wl jix þ kiy þ lið Þ (9)

Finally, the overall output of the ANFIS is calculated in the fifth layer:

Q5;i ¼
X

wlfi ¼
P

wifiP
wi

, i ¼ 1, 2 (10)

4.3. Metaheuristic techniques

4.3.1. Genetic algorithm
Due to the drawbacks of the typical intelligent models (e.g. the ANFIS and ANN),
various natural-inspired metaheuristic algorithms are invented to remedy these short-
comings. The genetic algorithm (GA) is one of these techniques first suggested by
Holland (Holland 1975). This algorithm has been widely used for various optimiza-
tion aims (Jaafari et al. 2019). Figure 5 denotes the flowchart of the GA. Five opera-
tors, including the random number generator, fitness evaluation unit, a genetic
operator (i.e. for reproduction), crossover operation, and mutation operation, con-
struct the structure of this algorithm. Like other evolutionary algorithms, the GA gest
started with creating an initial population (i.e. random strings generated by the ran-
dom generator). Frequently, binary strings are used in this step which each one of
them addresses a possible solution for the defined problem. Next, the evaluation unit
evaluates the quality of them by means of a fitness function. The basis of the genetic
operators is to transfer the strings into the more fitted sets (i.e. with higher fitness
value). The higher the fitness of the strings, the higher the chance for being selected
for the next generation. This selection is carried out by the reproduction operator
with respect to the “seeded selection” function. The primary duty of the crossover
operator is to select the pairs of strings for producing new ones. In this step, a cross-
over rate is defined to determine the number of the crossover operations that want to
cut the original parent strings and change their tails. Also, the mutation operators
exist for randomly mutation or reversion of the bits in the strings. All in all, execut-
ing the mentioned procedures leads to developing a new generation of solutions
(Pham and Karaboga 1991).
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4.3.2. Particle swarm optimization
PSO is another powerful search method. Mimicking the foraging behavior of the
herds, the idea of the PSO metaheuristic technique was first presented by Kennedy
and Eberhart (Kennedy and Eberhart 1995). This technique has been effectively used
for optimizing the ANFIS and ANN networks (Nguyen, Moayedi, et al. 2019). Like
the GA, some initial relations (called swarm) are randomly produced at the beginning
of the PSO. Each possible solution of this algorithm emerges as so-called individuals
“particle,” which a random position and velocity are assigned to each one of them.
After evaluating the potential of each particle (i.e. through calculating a fitness value),
the best solution (i.e. the highest-fitted one) is saved in hyperspace, and the obtained
fitness is memorized.

According to the PSO, the defined objective function (i.e. which needs to be mini-
mized for a promising solution) is consecutively measured at the current locations of
the particles in the search space. Generally, the particles tend to approach the loca-
tions which yield the lowest objective function. The procedure can be summarized as
follows (Poli et al. 2007):

1. Generating the initial swarm randomly.
2. loop.
3. Evaluating the goodness of the response of each particle.
4. Regulating the particle’s fitness.

Figure 5. The main flowchart of the genetic algorithm.
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5. Memorizing the elite particle in the vicinity.
6. Computing and updating the velocity and positions of the particle as follows:

~xðt þ 1Þ ¼~xðtÞ þ~vðt þ 1Þ (11)

~vðt þ 1Þ ¼ x~vðtÞ þ /1rand ð0, 1
�
~pðtÞ�~xðtÞ� �þ /2rand ð0, 1

�
~gðtÞ�~xðtÞ� �

(12)

in which /1and/2symbolize the significance of ~pðtÞ and ~gðtÞ, respectively. Also,
the term xis the inertia weight.

7. Exiting the loop if one of the stopping criteria is met (e.g. the desired fitness or
the maximum number of the repetitions).

8. end loop

5. Results and discussion

As stated previously, the main effort of this research is to generate the landslide sus-
ceptibility map of the Ardabil province of Iran. To achieve this, two well-known
metaheuristic algorithms were coupled with ANFIS to develop the GA-ANFIS and
PSO-ANFIS ensembles. In addition, the SI model was also implemented to analyses
the risk of landslide occurrence in the proposed area. In this way, the programming
software of MATLAB version 14.0 and ArcGIS version 10.2 are used.

5.1. Hybridizing ANFIS using GA and PSO

Specifically speaking, the optimizers are contributed to the problem through fine-
tuning the ANFIS MF (Gaussian in this work) parameters assigned to landslide
related factors. The adjusted parameters are then used to reconstruct the network.
The process is illustrated in Figure 6.

When it comes to artificial intelligence techniques, finding the optimal structure of
the used models is overly highlighted. In this study, the complexity of the GA-ANFIS
and PSO-ANFIS ensembles are optimized by establishing a trial and error process. In
this sense, the mean square error (MSE) index was defined as the cost function of the
mentioned networks:

MSE ¼ 1
N

XN

i¼1
ðYiobserved � YipredictedÞ2 (13)

where N is the number of instances, and Yi observed, and Yi predicted denote the target
data and predicted values of landslide susceptibility index, respectively.

Next, ten different structures of both GA-ANFIS and PSO-ANFIS models (i.e. with
the population sizes of 50, 100, 150, … , 500) were tested. The results are presented
in Figures 7 – (a) and (b), respectively, for the GA-ANFIS and PSO-ANFIS
ensembles. As is seen, the lowest MSE after the 1000 iterations is obtained for the
GA-ANFIS (MSE ¼ 0.1162) and PSO-ANFIS (MSE ¼ 0.1200) networks with the
population sizes of 250 and 150, respectively. About the optimization speed of these

246 H. MOAYEDI ET AL.



methods, it is obvious that the GA-based fuzzy system has continued decreasing the
RMSE until the last try, while the other model has reached the lowest MSE before the
200th repetition.

5.2. Generating the susceptibility maps

In the following, each one of the SI, GA-ANFIS, and PSO-ANFIS was used to esti-
mate the landslide susceptibility values. The resulted values were depicted in the GIS
environment to produce the landslide susceptibility maps. Next, each map was classi-
fied into five hazard categories of “Very low,” “Low,” “Moderate,” “High,” and “Very
high,” with respect to the natural break classification method, which is highly-used in
previous studies (Akgun et al. 2012; Jaafari et al. 2014). The resulted landslide suscep-
tibility maps of the Ardabil produced by SI, GA-ANFIS, and PSO-ANFIS evaluative
models are shown in Figures 8 – (a–c), respectively. Moreover, the percentage of each
susceptibility class was derived for the SI, GA-ANFIS, and PSO-ANFIS models. The
results are shown in the form of a bar chart presented in Figures 8 – (d). As the chart
illustrates, the most significant distinction between the values refers to the percentage
of the areas categorized as safe (i.e. shallow susceptibility) and perilous (i.e. very high
susceptibility). More than one-fourth (i.e. 26.93%) of the Ardabil province is detected
as hazardous area according to the SI prediction. This is while, the GA-ANFIS and
PSO-ANFIS have predicted this value as 8.37% and 12.26%, respectively. In vice
versa, the SI has classified only 15% of the area as the relatively safe. These values

Figure 6. The ANFIS optimization process.
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obtained as 28.78% and 36.21%, respectively for the GA-ANFIS and PSO-ANFIS pre-
dictive tools.

5.3. Accuracy assessment

As mentioned, to evaluate the accuracy of the outputs of the used models, the
AUROC index was calculated. To this end, the ROC curve of both training and test-
ing samples were plotted. Figures 9 – (a) and (b) illustrate the generated ROC curves
of the training and testing landslides, respectively. According to these diagrams, GA-
ANFIS (AUROC ¼ 0.914) achieved the highest AUROC in the training phase, fol-
lowed by POS-ANFIS (AUROC ¼ 0.910), and SI (AUROC ¼ 0.873) models. This is

Figure 7. A population-based sensitivity analysis for the GA-ANFIS and PSO-ANFIS models002E.
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while the SI (AUROC ¼ 0.821) emerged as the most accurate model in the testing
phase. After that, the PSO-ANFIS (AUROC ¼ 0.815) showed a more generalization
capability compared to the GA-ANFIS (AUROC ¼ 0.773) model.

Figure 8: Landslide susceptibility map developed by (a) SI, (b) GA-ANFIS, and (c) PSO-ANFIS mod-
els, and (d) column chart showing the percentage of landslide susceptibility classes over the study
area. Source: Author
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In the following, the response of the GA-ANFIS and PSO-ANFIS ensembles is
compared with the landslide target values (i.e. 0 and 1) in more detail. To do so, the
MSE and mean absolute error (MAE) of the training results were computed. Besides,
a graphical comparison between the output and target variables, coupled with the
histogram of the calculated errors, are plotted. These charts are shown in Figure 10.
Referring to these figures, the calculated MAE and MSE indices support the results
obtained from the ROC curves. Accordingly, the training MAE (0.24654 for the GA-
ANFIS vs. 0.25654 for the PSO-ANFIS) and MSE (0.11627 vs. 0.12001) denote a
higher learning quality of the first ensemble. As for the testing samples, the obtained
MAE (0.35335 vs. 0.32032) and MSE (0.21563 vs. 0.17854) show more consistency for
the PSO-ANFIS test results.

Lastly, it was aimed to evaluate the accuracy of the results by calculating the per-
centage of the landslides locate in each susceptibility class. In this manner, the larger
the percentage of the located landslides in the perilous areas, the higher the accuracy
of the model. The results are depicted in the form of 3D bar charts for both training
and testing landslides in Figures 11 – (a) and (b), respectively. As these charts report,
the percentage of the landslides is directly proportional to the risk level. In detail,
95.18%, 86.80%, and 97.38% of the training landslides, and 96.42%, 83.89%, and
75.78% of the testing landslides are recognized to be in the hazardous (i.e. high and
very high susceptibility classes) regions. It should be noted that the perilous areas of
the SI map have contained the highest percentage of both training and testing land-
slides, and the “very high” susceptibility class of the GA-ANFIS has contained only
around 9% of the training slope failures.

This study revealed the competency of metaheuristic-based learning for spatial
assessment of landslide, which is a frequent devastating environmental hazard. The
ANFIS is a leading notion of machine learning techniques that have been successfully
applied to various issues, including groundwater modeling (Chen, Panahi, et al. 2019;
Kisi et al. 2019), treatments of natural gas storage (Liu et al. 2020), and forest fire
hazard assessment (Jaafari et al. 2019). But there are some drawbacks of this tool for
high dimensional problems which (according to the findings of earlier studies)
require the assist of metaheuristic techniques for overcoming them. A significant

Figure 9. The ROC diagrams plotted for the (a) training and (b) testing data.
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outcome of the study is the adaptability of this tool with hybrid metaheuristic algo-
rithms of GA and PSO, like Ref. Azad et al. (2018), in which, the authors enhanced
the accuracy of ANFIS using GA, ant colony optimization for continuous domains
and differential evolution for estimating water quality parameters. In such schemes,
the computational parameters of the ANFIS MFs are supposed to be adjusted using
stochastic search methods. Considering the number of iterations and the tested com-
plexities (i.e. the population sizes), the optimal solution was automatically derived
from (10� 1000 ¼) 10000 possible responses. It reflects an advantage of the opti-
mization techniques that enabled engineers to achieve the most suitable network
without implementing time-consuming trial and error processes (Nhu et al. 2019).

Figure 10. The results obtained for (a and b) GA-ANFIS and (c and d) PSO-ANFIS predictions,
respectively, for the training and testing samples.
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It was also shown that the PSO performs more accurately than GA in predicting
the landside susceptibility for unseen environmental conditions. It indicates the
constant optimization method of the PSO (that maintains the suitable solutions of
all particles) was more efficient than the discrete method of the GA in which the
prior knowledge is replaced with new the information of new generation (Termeh
et al. 2018). Regarding higher than 90% and 80% accuracies for inferring and
generalizing the landslide patterns, the PSO-ANFIS intelligent model can be a
promising option for susceptibility analysis of landslide. Lastly, we believe the
generated maps are reliable guides for future planning and decision making over
the studied area.

Figure 10. (Continued).
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6. Conclusions and remarks

Due to the high significance of landslide susceptibility assessment for alleviating the
damages caused by this natural hazard, this study proposes the landslide susceptibility

Figure 11. The percentage of the (a) training and (b) testing landslides located in each susceptibil-
ity classes.
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maps of the Ardabil province of Iran, produced by the SI, GA-ANFIS, and PSO-
ANFIS predictive models. The proposed ensembles were designed, and a trial and
error process was carried out to achieve the most appropriate complexity of them. It
was revealed that the GA-ANFIS with the population sizes ¼ 250 and PSO-ANFIS
with the population sizes ¼ 150 yields the lowest values of the objective function.
The SI method was executed, and the landslide susceptibility maps were developed in
the GIS environment. The AUROC index was used to evaluate the accuracy of the
results. The outcomes of this research are summarized as follows:

� Based on the obtained AUROCs in training (0.873, 0.914, and 0.910, respectively
for the SI, GA-ANFIS, and PSO-ANFIS) and testing (0.821, 0.773, and 0.815)
phases, all three predictive models showed a gratifying analysis of the landslide
occurrence risk.

� The GA-ANFIS and SI present the best performance in the training and testing
phases, respectively. While the lowest training and testing accuracy of the predic-
tion is obtained respectively for the SI and GA-ANFIS models. At the same time,
the PSO-ANFIS remained the second accurate model in both phases.

� Comparing the efficacy of the intelligent models, the calculated training MAE
(0.24654 for the GA-ANFIS vs. 0.25654 for the PSO-ANFIS) and training MSE
(0.11627 vs. 0.12001) as well as the testing MAE (0.35335 vs. 0.32032) and testing
MSE (0.21563 vs. 0.17854) show that the GA-ANFIS ha a better approximation in
the training phase.

� Approximately 48%, 25%, and 27% of the Ardabil province are stratified as the
landslide-prone regions, respectively, by the SI, GA-ANFIS, and PSO-
ANFIS models.

� Also, around 95%, 87%, and 97% of the training landslides, and 96%, 84%, and
76% of the testing landslides are located in the landslide perilous areas.
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