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Development of novel hybridized 
models for urban flood 
susceptibility mapping
Omid Rahmati1,2*, Hamid Darabi3, Mahdi Panahi4,5, Zahra Kalantari6, Seyed Amir Naghibi7, 
Carla Sofia Santos Ferreira8, Aiding Kornejady9, Zahra Karimidastenaei3, 
Farnoush Mohammadi10, Stefanos Stefanidis11, Dieu Tien Bui12,13* & Ali Torabi Haghighi3

Floods in urban environments often result in loss of life and destruction of property, with many 
negative socio-economic effects. However, the application of most flood prediction models still 
remains challenging due to data scarcity. This creates a need to develop novel hybridized models 
based on historical urban flood events, using, e.g., metaheuristic optimization algorithms and wavelet 
analysis. The hybridized models examined in this study (Wavelet-SVR-Bat and Wavelet-SVR-GWO), 
designed as intelligent systems, consist of a support vector regression (SVR), integrated with a 
combination of wavelet transform and metaheuristic optimization algorithms, including the grey wolf 
optimizer (GWO), and the bat optimizer (Bat). The efficiency of the novel hybridized and standalone 
SVR models for spatial modeling of urban flood inundation was evaluated using different cutoff-
dependent and cutoff-independent evaluation criteria, including area under the receiver operating 
characteristic curve (AUC), Accuracy (A), Matthews Correlation Coefficient (MCC), Misclassification 
Rate (MR), and F-score. The results demonstrated that both hybridized models had very high 
performance (Wavelet-SVR-GWO: AUC = 0.981, A = 0.92, MCC = 0.86, MR = 0.07; Wavelet-SVR-Bat: 
AUC = 0.972, A = 0.88, MCC = 0.76, MR = 0.11) compared with the standalone SVR (AUC = 0.917, 
A = 0.85, MCC = 0.7, MR = 0.15). Therefore, these hybridized models are a promising, cost-effective 
method for spatial modeling of urban flood susceptibility and for providing in-depth insights to guide 
flood preparedness and emergency response services.

Floods are the most widespread and damaging natural disaster, imposing a range of adverse effects across coun-
tries and regions all over the world1. These include fatalities, displacement of people, damage to infrastructure, 
and environmental damage, thus affecting economic activities and development2,3. In 2006–2015, floods were 
the leading cause of disaster deaths in African regions, in Central and South America and in Central, South4, 
and West Asia5. In 2016, worldwide floods affected ~ 78 million people and caused 4,731 fatalities and damage 
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costing 60 billion USD5. Asia is the most vulnerable continent6, with floods being responsible for ~ 90% of all 
human losses due to natural hazards on that continent7,8.

Urban floods often cause loss of life and other health impacts such as damaging the living environment, pollu-
tion of drinking water, and outbreaks of diseases such as hepatitis E, gastrointestinal disease, and leptospirosis9,10. 
Floods in urban areas can be triggered by intensive rainfall, rapid snowmelt, and rises in water level (e.g., sea, 
river, lake, and groundwater)11,12. Also, physical location, rapid urban expansion, and land-use change have a 
significant effect on flood occurrences4. Although the extensive implementation of flood control measures, such 
as widespread grey infrastructures (e.g., dams and channelization) and nature-based solutions (e.g., wetlands and 
bioswales), most cities around the world remain vulnerable to flood hazards13. Low capacity of urban drainage 
systems can increase the inundation area and decrease the efficiency of infrastructures, and consequently, exac-
erbate the risk of urban floods3. Climate change and urbanization may increase the frequency and magnitude 
of urban flood events.

The frequency of flood-related disasters is projected to increase in the future due to the growing global 
population, particularly in developing countries, increased soil sealing as a result of urbanization, and climate 
change14,15. In Europe, for example, floods due to climate change are expected to affect three-fold more people 
in 2050 than in the current climate and to cause damage costing €20–40 billion16. Lack of financial resources, 
particularly in developing countries, may represent an additional challenge in flood prevention and preparation 
for floods17.

Since floods are a natural phenomenon that cannot be prevented (2007/60/EC), implementation of flood 
management strategies is necessary. Flood reduction, one of the key societal challenges of this century15, relies on 
prior flood risk assessment, which includes flood hazard maps showing potentially affected areas under different 
flood scenarios (i.e., frequency and magnitude). Several methodologies based on numerical models (statistical 
relationships between hydrological input and output) and physically-based models (relationships between rainfall 
and runoff) and techniques (e.g., remote sensing and geographic information system, GIS) have been used to 
generate flood hazard maps in urban areas8,18. However, the accuracy of these maps is affected by (i) nonlinear 
dynamic characteristics of floods, as a result of distinct factors such as precipitation and human activities19; (ii) 
limitations in data availability, including detailed hydrological and hydraulic data, particularly in developing 
countries, despite advances provided by new remote sensing techniques, such as satellites, multisensory systems, 
and/or radar11; and (iii) limited applicability of methods at different scales20. These drawbacks have encouraged 
the use of advanced data-driven models, e.g., machine learning (ML), a field of artificial intelligence that uses 
computer algorithms to analyze and predict information through learning from training data21.

In recent years, ML has been used by hydrologists for flood susceptibility mapping11, e.g., based on novel 
algorithms to improve river discharge estimation22, or new models built upon past flood inventory maps and 
including a number of flood conditioning factors19. Flood inundation is significantly influenced by a wide range of 
factors such as slope23, land use10, distance from river3, drainage-system capacity11, distance to channel11, and land 
subsidence6,24; therefore, ML models should be able to identify relationships between flood inundation events and 
these factors. Some of the most popular methods for flood susceptibility mapping are Decision Trees25, Artificial 
Neural Networks10, and Support Vector Machines (SVM)19. Among these methods, SVM is becoming increas-
ingly well-known19. It is a class of support vector, a search algorithm using statistical learning theory, which is 
used to minimize over-fitting and reduce the expected error of learning machines26. It has also been extended 
as a regression tool, called Support Vector Regression (SVR)27. SVMs are suitable for both linear and nonlinear 
classification and are efficient and reliable tools for producing flood susceptibility maps in a GIS environment19.

Machine learning methods show better performance and provide more cost-effective flood susceptibility 
assessments than numerical and physical methods22,26. However, their performance may differ from one region 
to another, due to different geo-environmental factors8, the complex algorithms they contain, which sometimes 
make interpretation difficult26, and/or their structural limitations, such as the requirement for a large number of 
parameters, which can impair wider applications and compromise model performance3. Therefore, a major trend 
in advancing flood susceptibility predictions based on the determination of flood-prone regions is hybridiza-
tion, i.e., integration of two or more ML methods, such as Adaptive Neuro-Fuzzy Interface Systems (ANFIS)8, 
integration between ML and more conventional methods, and/or soft computing techniques26. Novel hybrid 
methods involving SVR, such as ANFIS-SVR20, Recurrent Neural Network (RNN)-SVR28, Hydrologic Engineer-
ing Center-Hydrologic Modeling System (HEC-HMS)-SVR29, and SVR-Discrete Wavelet Transform (DWT)-
Empirical Mode Decomposition (EMD)30, have achieved notable progress in terms of accuracy, generalization, 
uncertainty, performance, and robustness.

Some ML models have been applied in different watersheds (i.e., natural areas) around the world3,8,11, but 
urban flood susceptibility modeling still remains challenging. The aim of this study was to develop new hybrid-
ized models for urban flood susceptibility mapping by integrating SVR with two metaheuristic optimization 
algorithms: (i) Bat and Grey Wolf Optimizer (GWO) and (ii) the wavelet transform concept. As a study case, the 
novel hybridized models (Wavelet-SVR-Bat and Wavelet-SVR-GWO) and standalone SVR model were applied 
to Amol city, in northern Iran, and their results were compared using different cutoff-dependent and cutoff-
independent evaluation criteria. Production of accurate flood susceptibility maps is essential to support decision-
making on developing resilience planning, emergency responses, and flood mitigation.

Description of the study area.  The city of Amol (36°26′–36°29.5′N, 52°19.6′–52°24′E) is located on the 
southern coast of the Caspian Sea, in the west of Mazandaran Province, northern Iran (Fig. 1). The city lies near 
the outlet of the Haraz River watershed (about 1,100 km2 in area), with the Haraz river passing through the heart 
of Amol city and then reaching the Caspian Sea31. Amol is a rapidly growing and heavily industrialized city, cur-
rently occupying an area of 27.1 km2 and hosting a population of approximately 300,000. Residential areas in the 
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city are mainly surrounded by alluvial plains (agricultural land, orchards) to the north and high mountains (the 
Alborz range) covered by forest to the south32. The region has a humid climate, with a moderate temperature 
(17.4 °C mean annual temperature) and mean annual precipitation of 650 mm (2001–2019), recorded at Amol 
weather station of the Iranian Meteorological Organization (IRIMO). Amol city was selected for the present 
study due to the many catastrophic floods that have occurred annually in recent years, damaging thousands of 
homes and infrastructure, disrupting traffic, trade, and public services, and taking lives. Figure 2 shows some 
consequences of previous floods in Amol city.

Results
Multicollinearity analysis.  After implementing the variance inflation factors (VIF) and tolerance (TOL) 
indices, it was found that there is no critical multicollinearity between the factors, since the values were all placed 
within the acceptable range (Table 1).

Goodness‑of‑fit and predictive performance of the models.  Cutoff‑independent criteria (AUC 
method).  The results of goodness-of-fit (i.e., accuracy in the training step) and predictive performance (i.e., 
accuracy in the validation step) of the three models in terms of the AUC metric are displayed in Fig. 3. Based 
on the AUC, Wavelet-SVR-Bat had the highest accuracy in training (AUC = 0.986), followed by Wavelet-SVR-
GWO (AUC = 0.984) and the standalone SVR (AUC = 0.949). The goodness-of-fit of each model was measured 
based on the data used to calibrate the model, and it shows how well the model fits the training dataset. The 
predictive power of the model cannot be judged using the goodness-of-fit of the model, so a separate analysis of 
predictive performance was conducted. In terms of predictive performance, Wavelet-SVR-GWO had the highest 
accuracy (AUC = 0.981), slightly better than Wavelet-SVR-Bat (AUC = 0.972). The AUC value of the standalone 
SVR model in this step was 0.917. Therefore, in order of performance, the ranking was: Wavelet-SVR-GWO, 
Wavelet-SVR-Bat, and SVR, although with minor differences.

Figure 1.   Location of Amol city, Mazandaran province, Iran, and sites affected by past floods. The map was 
generated using ArcGIS Desktop 10.7.1, https​://deskt​op.arcgi​s.com/en.

https://desktop.arcgis.com/en
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Cutoff‑dependent criteria.  The results of accuracy assessment using the cutoff-dependent criteria TPR, FPR, 
Accuracy, MCC, F-score, and MR, are summarized in Table 2. These evaluation metrics provided better insights 
regarding the accuracy of the three models.

In terms of goodness-of-fit, Wavelet-SVR-GWO was the best model. It had a higher Accuracy (0.951), MCC 
(0.903), and F-score (0.951), and also a lower MR (0.048) and FPR (0.037) than other models (Table 1). How-
ever, in terms of the TPR metric, Wavelet-SVR-Bat (0.973) was slightly better than Wavelet-SVR-GWO (0.94). 
Importantly, the standalone SVR had the lowest accuracy based on all cutoff-dependent evaluation metrics. As 
indicated above, goodness-of-fit only provides insights regarding the degree of fit of data to the model. Therefore, 
the prediction capability of the models was investigated in a validation step. The results of the validation analysis 
clearly indicated the superior performance of Wavelet-SVR-GWO based on the TPR (1.00), Accuracy (0.926), 
MCC (0.861), F-score (0.918), and MR (0.073). It was followed by Wavelet-SVR-Bat, which performed very well 
in terms of TPR (0.857), Accuracy (0.882), MCC (0.766), F-score (0.882), and MR (0.117). The standalone SVR 
had the lowest accuracy in terms of predictive performance, with TPR of 0.848, FPR of 0.145, Accuracy of 0.852, 
MCC of 0.705, F-score of 0.848, and MR of 0.147. In order of performance, the ranking was again: Wavelet-SVR-
GWO, Wavelet-SVR-Bat, and SVR.

RMSE metric.  Figure 4 shows the target and outputs of the SVR model for the (a) training and (b) validation 
datasets, and (c, e) the mean squared error (MSE) and root mean square error (RMSE) values for these datasets. 
As can be seen, MSE and RMSE values of 0.087 and 0.295 were obtained for SVR in predicting the training set, 

Figure 2.   Field photographs of flooded sites in Amol city, taken on March 17, 2019 (photographs by Hamid 
Darabi).

Table 1.   Variance inflation factor (VIF) and tolerance (TOL) values representing the multicollinearity 
between selected flood-controlling factors.

Flood-controlling factor

Collinearity 
Statistics

Std. errorTOL VIF

Elevation 0.624 1.603 0

Curve number 0.987 1.013 0.002

Distance from river 0.337 2.969 0

Distance from channel 0.445 2.245 0

Precipitation 0.673 1.486 0

Slope percentage 0.919 1.089 0
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while MSE and RMSE values of 0.091 and 0.302 were obtained in predicting the validation set. Mean frequency 
of errors for the training and validation datasets was 0.006 and 0.032, respectively (Fig. 4d,f).

Figure 5 shows the accuracy of the Wavelet-SVR-BAT model based on the MSE and RMSE metrics. As can 
be seen from Fig. 5c, MSE and RMSE values of 0.066 and 0.258 were obtained for Wavelet-SVR-BAT in predict-
ing the training set, while it had MSE and RMSE values of 0.068 and 0.251 in the validation step (Fig. 5e). Mean 
frequency of errors for the training and validation datasets was 0.030 and 0.026, respectively (Fig. 5d,f).

Figure 6 indicates the goodness-of-fit and predictive performance of the Wavelet-SVR-GWO model based 
on the MSE and RMSE metrics. As shown in Fig. 6c,e, Wavelet-SVR-GWO had MSE and RMSE values of 0.057 
and 0.240 in the training step, and MSE and RMSE values of 0.055 and 0.236 in predicting the validation set. 
Mean frequency of errors for the training and validation datasets was 0.040, and 0.040, respectively (Fig. 6d,f).

According to the results, Wavelet-SVR-GWO and Wavelet-SVR-BAT had lower MSE and RMSE values than 
the standalone SVR model. Therefore, Wavelet-SVR-GWO can be regarded as the best model (of the three) for 
spatially modeling flood susceptibility in urban areas.

Figure 3.   Goodness-of-fit and predictive performance of models based on the AUC metric: (a) SVR in training, 
(b) SVR in validation, (c) Wavelet-SVR-Bat in training, (d) Wavelet-SVR-Bat in validation, (e) Wavelet-SVR-
GWO in training, and (f) Wavelet-SVR-GWO in validation.

Table 2.   Goodness-of-fit and predictive performance of models based on cutoff-dependent criteria. TPR true 
positive rate, FPR false positive rate, MCC Matthews correlation coefficient, MR misclassification rate.

Evaluation criteria

Goodness-of-fit (training step) Predictive performance (validation step)

SVR Wavelet-SVR-Bat Wavelet-SVR-GWO SVR Wavelet-SVR-Bat Wavelet-SVR-GWO

TPR (sensitivity) 0.864 0.973 0.940 0.848 0.857 1.000

FPR (1 − specificity) 0.142 0.109 0.037 0.145 0.090 0.125

Accuracy (A) 0.860 0.927 0.951 0.852 0.882 0.926

MCC 0.721 0.858 0.903 0.705 0.766 0.861

F-score 0.858 0.923 0.951 0.848 0.882 0.918

MR 0.139 0.072 0.048 0.147 0.117 0.073
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Urban flood susceptibility maps.  Figure  7 shows the urban flood susceptibility maps for Amol city 
obtained using the SVR, Wavelet-SVR-Bat, and Wavelet-SVR-GWO models. In this example, urban flood sus-
ceptibility is used as a reference to estimate the risk of an area being inundated in any one year in the future. 
Areas depicted in blue have higher inundation susceptibility, whereas areas in green have lower, with higher 
susceptibility indicating a higher spatial potential for inundation. The maps of the study area generated by the 
hybridized models (Fig. 7b,c) showed a similar overall spatial pattern, with high flood probability in the northern 
part of the study area. However, there were apparent differences between the results of hybridized models and 
the standalone SVR, which showed higher flood susceptibility affecting larger areas, including those surround-
ing the river and the channels dispersed within the city. According to the SVR model, 11.7% of the city falls in the 
very high flood inundation susceptibility class, whereas with Wavelet-SVR-Bat and Wavelet-SVR-GWO models 
this class covers only 3.4% and 2.4%, respectively, of Amol (Table 3). However, all the models showed high flood 
susceptibility for the majority of the study area (affected area ranged from 40.7 to 62.3% with different models). 

Figure 8 shows flood inundation zone maps for the city of Amol, created using the SVR, Wavelet-SVR-Bat, 
and Wavelet-SVR-GWO models. In the SVR model, 44.8% of the area belongs to the high flood inundation zone, 
29.5% medium, 11.7% very high, 11.3% low, and 2.7% very low zones. The results of the Wavelet-SVR-Bat model 

Figure 4.   (a) Target and output SVR value of training data samples, (b) target and output SVR value of testing 
data samples, (c) mean squared error (MSE) and RMSE value of training data samples, (d) frequency of errors 
for training data samples, (e) MSE and RMSE value of testing data samples, and (f) frequency of errors for 
testing data samples.

Figure 5.   (a) Target and output Wavelet-SVR-BAT value of training data samples, (b) target and output 
Wavelet-SVR-BAT value of testing data samples, (c) mean squared error (MSE) and root mean square error 
(RMSE) of training data samples, (d) frequency of errors for training data samples, (e) MSE and RMSE value of 
testing data samples, and (f) frequency of errors for testing data samples.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12937  | https://doi.org/10.1038/s41598-020-69703-7

www.nature.com/scientificreports/

indicated that the majority of the area (62.3%) belongs to the high flood inundation zone, followed by medium 
(31.9%), very high (3.4%), low (2.2%), and very low (0.2). The results of the Wavelet-SVR-GWO model showed 
that approximately 2.4%, 40.7%, 45.7%, 10.9%, and 0.3% of the study area belongs to very high, high, medium, 
low and very low flood inundation zones, respectively (Fig. 8c).

When the flood susceptibility maps prepared with Wavelet-SVR-GWO and Wavelet-SVR-Bat were compared 
with flood inundation locations in the past, it was found that there was excellent agreement between them. Two 
schools in Amol are located within zones with a high and very high risk of flood inundation (in the northern part 
of the study area), which results in children being exposed to urban flood inundation. As discussed by Alderman 
et al.9, child health in flooded areas must be better reflected in flood mitigation and preparedness programs.

Comparison of model predictions.  In order to assess spatial agreement between the models, a pairwise 
agreement plot (PAP) was used. A self-explanatory graphical presentation of the results for the three models is 
provided in Fig. 9. Unlike a number of quantitative indices that are merely based on metaheuristic classifications 
and have been repeatedly used for assessing spatial agreement (e.g., kappa), PAP provides more information 
about the overall agreement and about the data distribution associated with such agreement or disagreement. 
The dataset includes all the susceptibility values derived from each spatial model, featured as points and ranging 
from 0 to 1. The diagonal reference line (i.e., 1:1 line) represents the degree to which the models show agreement, 
meaning that the closer the points get to the 1:1 line, the stronger their spatial agreement. A diagonal distribution 
of points close to the reference line is ideal, as it represents two perfectly identical susceptibility maps. However, 
it is normally not achieved since different mathematics produces different susceptibility patterns.

Since the same core mathematical architecture (i.e., SVR) was used in the three models investigated in this 
study, a certain degree of agreement was achieved, as expected. Figure 9a, comparing the predictions from SVR 
and Wave-SVR-BAT models, reveals a relatively high dispersion level between selected points. Figure 9b, com-
paring the SVR and Wave-SVER-GWO models, shows the highest dispersion among the models. Intuitively, 
these plots make some inferences regarding the divergence of hybridized algorithms from their core architecture 
(SVR), based on which divergence appears to be higher for the Wavelet-SVR-GWO hybrid, while Wavelet-SVR-
Bat has slightly better agreement with its core. In contrast, in Fig. 9c, focusing on the susceptibility maps of the 
Wavelet-SVR-Bat and Wavelet-SVR-GWO models, the point cloud seems to be intensely distributed around the 
reference line and mainly corresponds to values ranging from 0.6 to 0.8 (less dispersed values spreading above 
0.5), indicating that these two hybridized models have a stronger spatial agreement. Note that these plots do not 
have connotations of validity and that the inferences refer only to the spatial agreement level. The values above 
and below the reference line do not signify any superiority, as they may have been overestimated by one model 
or underestimated by the other.

Importance of flood conditioning factors.  The relative importance of flood conditioning factors based 
on the SVR, Wavelet-SVR-Bat, and Wavelet-SVR-GWO models is summarized in Table 4. According to all three 
models, distance from the channel, distance from river, and curve number are the most important flood condi-
tioning factors in the study area. It is reasonable because most floods in the area occur near channels and rivers, 
where the curve number is considerable (CN > 70). Slope and elevation factors made a moderate contribution to 
the modeling process, based on all three models. Precipitation showed the lowest importance among all factors. 
This is probably due to the small spatial variation in the precipitation layer in Amol city. It is in agreement with 
spatial analysis of flooding events (i.e., observations) in the study area, as demonstrated in Fig. 2, which shows 

Figure 6.   (a) Target and output Wavelet-SVR-GWO value of training data samples, (b) target and output 
Wavelet-SVR-GWO value of testing data samples, (c) mean squared error (MSE) and root mean square error 
(RMSE) value of training data samples, (d) frequency of errors for training data samples, (e) MSE and RMSE 
value of testing data samples, and (f) frequency of errors for testing data samples.
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Figure 7.   Flood inundation susceptibility maps for the city of Amol according to: (a) the SVR model, (b) the 
Wavelet-SVR-Bat model, and (c) the Wavelet-SVR-GWO model. These maps were generated using ArcGIS 
Desktop 10.7.1, https​://deskt​op.arcgi​s.com/en/.

Table 3.   Relative distribution of flood inundation classes from different models.

Model type Model name

Flood inundation classes

Very low Low Medium High Very high

Standalone SVR 2.7 11.3 29.5 44.8 11.7

Hybridized models
Wavelet-SVR-Bat 0.2 2.2 31.9 62.3 3.4

Wavelet-SVR-GWO 0.3 10.9 45.7 40.7 2.4

https://desktop.arcgis.com/en/
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Figure 8.   Flood inundation zone maps for the city of Amol produced by: (a) the SVR model, (b) the Wavelet-
SVR-Bat model, and (c) the Wavelet-SVR-GWO model. These maps were generated using ArcGIS Desktop 
10.7.1, https​://deskt​op.arcgi​s.com/en/.

https://desktop.arcgis.com/en/
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some examples where several factors have led to flooding. However, there were significant differences in the 
contribution of flood conditioning factors to the modeling process (Table 4).

Discussion
Based on the different statistical evaluation metrics employed in this study, both hybrid models tested (Wavelet-
SVR-GWO and Wavelet-SVR-Bat) showed superior performance to the standalone SVR model. The results also 
demonstrated that Wavelet-SVR-GWO produced more trustworthy flood susceptibility maps than the other 

Figure 9.   Pairwise agreement plots (PAP) showing results of pair-wise comparisons between: (a) SVR and 
Wavelet-SVR-Bat, (b) SVR and Wavelet-SVR-GWO, and (c) Wavelet-SVR-Bat and Wavelet-SVR-GWO.

Table 4.   Overall importance of predictors in the three models used.

Excluded factor

Relative decrease in AUC (%)

SVR Wavelet-SVR-Bat Wavelet-SVR-GWO

Distance from channel 38.4 ± 3.6 39.5 ± 4.2 39.1 ± 3.9

Distance from river 31 ± 2.5 32.3 ± 3.1 33.1 ± 3.2

Curve number 26.2 ± 3.4 25.9 ± 2.8 25.7 ± 2.4

Slope 8.7 ± 3.5 8.2 ± 2.6 8.4 ± 2.8

Elevation 4.1 ± 1.9 4.6 ± 2.3 4.7 ± 2.9

Precipitation 3.6 ± 0.5 3.5 ± 0.4 3.2 ± 0.6
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models. The GWO algorithm is flexible, robust, easy to enforce, and improves the performance of the model. 
Mirjalili et al.33 investigated the optimization performance of GWO and found that it has considerable capacity 
for optimizing models. Saxena and Shekhawat34 confirmed the satisfactory efficiency of GWO in optimizing 
SVM for an air quality classification issue. Yang35 describes the characteristics of the Bat algorithm that lead 
to its optimizing and improving model performance. Bat is a robust algorithm inspired by the echolocation 
behavior of bats. Yang29 showed that it is able to outperform other metaheuristic algorithms, such as PSO and 
genetic algorithm (GA), in terms of both convergence speed and improved local optima avoidance. In addition, 
wavelet transformers are known to be strong decomposition tools that enable prediction models to access more 
information at different dissected scales and dimensions of data domain36. Standalone models may not cope 
with the non-stationary properties of data, either spatially or temporally, especially when dealing with highly 
complicated spatial interrelationships and the problem of data scarcity (such as urban environments). Regard-
ing the benefits of Bat and GWO algorithms and wavelet transformers, the results of this study are in agreement 
with previous findings34,37.

Information on the relative importance of flood conditioning factors (i.e., predictor variables) is of practical 
relevance to natural disaster managers dealing with allocating and planning limited resources for flood hazard 
management8. Kalantari et al.2 indicated that analysis of the relationship between flood events and geoenviron-
mental variables allows managers to focus on the influences of human activities. Although expert opinion-based 
methods (e.g., analytical hierarchy process (AHP)) have been applied to analyze the relative importance of 
geoenvironmental factors and determine their relationships with urban flood events, they are prone to subjective 
judgments. In fact, expert opinion-based methods determine the weight of factors based on the pairwise compari-
son, which can be considered a drawback. Fernández and Lutz38 used the AHP method for urban flood hazard 
zoning in Tucumán Province, Argentina, and concluded that, as flood-prone areas can be identified based on 
expert opinions, this method can be a useful tool if flood event data and maps are not available. Machine learning 
models use real flood occurrences to analyze the role of flood conditioning factors in modeling and determine 
the contribution of variables39. This approach helps in reducing bias and subjectivity in decision-making11. 
Importantly, as discussed by Khosravi et al.27, the relative importance of predictor variables to a model is probably 
affected by the modeling strategy (i.e., model structure, etc.). Therefore, the relative importance of factors should 
be investigated using at least two models. In our study, the relative importance of flood conditioning factors was 
analyzed based on all three models (standalone SVR, Wavelet-SVR-Bat, and Wavelet-SVR-GWO), which showed 
excellent performance. All models demonstrated that distance from channel made the highest contribution to 
urban flood modeling, followed by distance from river, and curve number. This confirms results reported by 
Darabi et al.4 and Falah et al.23, who investigated the importance of flood conditioning factors in urban areas. 
The urban channel network generally has low conveyance capacity, resulting in flooding and inundation events 
in urban areas. Rivers in the study area also have low conveyance capacity, and floods often exceed the flow 
capacity, so inundation occurs frequently. However, there are limitations to increasing the capacity of existing 
drainage channels, because of land availability in urban areas and urbanization23. In other words, urbanization 
in river/channel zones is the main cause of reduced drainage capacity, changes in hydrological and hydraulic 
processes, and flooding in urban areas10. In addition, curve number, one of the main flood conditioning factors 
in this study, is influenced by human activities (e.g., land-use change in urban areas or in upstream watersheds) 
carried out to meet various needs such as residential, agricultural, industrial, mining, and other infrastructural 
facilities. These pose major challenges to the sustainable growth of an area.

Concluding remarks
Flooding poses great threats to communities and property, especially in densely-populated urban environments, 
where intensifying urbanization leads to severe floods by increasing the area of impermeable surfaces. Since 
hydrometric stations are not available in urban areas, data scarcity is the main problem in spatial modeling of 
flood susceptibility. This study presents two new hybridized models, wavelet-SVR-GWO and wavelet-SVR-Bat, 
based on historical urban flood inundation events and using metaheuristic algorithms and wavelet transforma-
tion analysis. In a case study, Wavelet-SVR-GWO showed better predictive performance (AUC = 0.981, A = 0.926, 
RMSE = 0.236) in flood susceptibility mapping for Amol city, Iran, than Wavelet-SVR-Bat (AUC = 0.972, 
A = 0.882, RMSE = 0.261). Both hybridized models showed better performance than a standalone SVR. Thus 
metaheuristic optimization algorithms (i.e., Bat and GWO) and wavelet transform analysis can considerably 
enhance the learning and predictive performance of the standalone SVR model. The coupled wavelet-optimi-
zation algorithms could be a perfect fit for data mining models to find the best solution in a high-dimensional 
complex problem space. In Amol city, high and very high flood susceptibility classes covered about 43% of 
the study area and two schools fell into these areas. Using the robust flood susceptibility maps provided by the 
hybridized models could improve the capability of urban systems in high and very high susceptibility classes to 
evacuate floodwaters and reduce negative consequences for the inhabitants, both in terms of threat to human 
health and damage to property. However, the hybridized models should be further tested in other urban areas to 
validate their performance. Additional optimization algorithms, such as GA and PSO, should also be compared 
with those used in the present study.

Methodology
The methodological workflow developed in this study comprised the following steps (Fig. 10): preparation of 
dependent and independent variables, running the standalone SVR model, development of the two hybridized 
models (Wavelet-SVR-BAT and Wavelet-SVR-GWO), model validation, and comparison of model performance.
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Urban flood inventory.  Historical flood inundation events in urban environments provide vital informa-
tion for modeling. In this study, a total of 118 flood inundation locations were recorded by field investigations 
and available reports in the Amol Municipality (see Fig. 1). A ratio of 70:30 was used to randomly split the flood 
inventory dataset into two groups, for training (n = 83) and validation (n = 35) of the models.

Factors influencing urban flood inundation.  There are no universal guidelines for selecting factors 
that affect urban flood susceptibility, and previous researchers have considered different factors, depending on 
the model used and data availability. In this study, the selection of the flood conditioning factors was based on 
previous work by Darabi et al.11 and Falah et al.23 and data availability in the study region. The factors selected 
to map urban flood susceptibility in this study were elevation, slope percent, distance from river, distance from 
channel, curve number (CN), and precipitation (Fig. 11). River network was derived from an elevation layer 
map with 5-m spatial resolution provided by the Amol city authority. The elevation of Amol city ranges between 
59 and 137 m (Fig. 11a). Slope as a topographical factor influences water flow characteristics such as velocity 
and discharge. It also impacts erosion and sedimentation processes. Lower slopes are generally seen in lowland 
areas of a watershed, which makes these susceptible to flooding40. Hence, slope could be an important factor in 
flood susceptibility investigations. Slope percent in Amol city varies from 0 to 25 (Fig. 11b). Rivers and channels 
are main paths of water flow in cities, where rivers are a natural feature, and channels are human-made. Major 
floods usually occur from rivers, but the inappropriate design of channels network can cause considerable flood-
ing. Therefore, this study considered distance from rivers and channels and calculated these layers by Euclidean 
distance function. Distance from river in the Amol city ranges between 0 and 2,322 m (Fig. 11c), and distance 
from channel varies between 0 and 1,499 m (Fig. 11d). Curve number is an important variable that influences 
the permeability of soil or ground surface. This factor represents the impact of land use and soil permeability 
features. To create the CN layer, an ArcCN-runoff function was implemented. There is a wide range of CN 
in Amol city (40–100), which is high and shows a significant variation (Fig.  11e). Precipitation is the main 
source of water flow, especially for flooding. To take its impact into account, we acquired the precipitation map 
from the Mazandaran’s Forest, Range, and Watershed Management Organization. According to their report, 20 
rain gauging stations were used for generating the precipitation map, based on the Kriging method due mainly 
to lower RMSE value compared with other interpolation methods such as inverse distance weighting (IDW). 
However, precipitation in the study area does not change dramatically, with a small spatial variation (672 to 
684 mm year−1) in the study area (Fig. 11f). Further, the variance inflation factor (VIF) was calculated to investi-
gate the multicollinearity between the factors and avoid bias in the results. A VIF value higher than 5 indicates a 
strong correlation between the factors and, accordingly, critical multicollinearity. Tolerance index, the reciprocal 
of VIF, was also used, with values lower than 0.2, indicating critical multicollinearity.

Application of models.  Support Vector Regression Algorithm.  To solve regression issues and perform 
short-term forecasting, the support vector regression (SVR) algorithm, which is a supervised learning tech-

Figure 10.   Flowchart of the methodology used in this study.
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nique, can be applied41. The SVR algorithm, which is based on statistical learning theory, was first proposed by 
Vapnik42. This method can be employed to look for relationships between input and output data, based on struc-
tural risk minimization. In contrast, Neural Network Algorithms (NNA) and conventional statistical methods 

Figure 11.   (a–f) Factors used to map flood conditioning in Amol city, and location of sites affected by previous 
floods and used for both training and validation of the models. These maps were generated using ArcGIS 
Desktop 10.7.1, https​://deskt​op.arcgi​s.com/en/.

https://desktop.arcgis.com/en/
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are based on empirical risk minimization. Thus the SVR method has superiority in reducing the generalization 
error as opposed to the learning error43. The purpose of SVR is to produce a function which explains the rela-
tionship between input and output data:

where x ∈ Rn denotes input data vector, w ∈ Rn represents weight vector, b ∈ R is a deviation, and ψ(x) is a non-
linear mapping function that transforms input data into high-dimensional feature space. Parameters w and b are 
based on the principle of structural risk minimization and are calculated as:

where yi ∈ Rn shows target data vector, C ≻ 0 is a penalty factor determining the tradeoff between training 
error and model complexity, ξi , ξ∗i  represents slack variables which adjust the upper and lower constraints on 
the function f (x) , and ε denotes the insensitive loss function, which represents the quality of approximation43. 
Equation 2 can be solved utilizing Lagrangian formulation and its final solution:

where αi ,α∗
i  are Lagrangian multipliers and k(xi , xj) = �ψ(xi), ψ(xj)� is the kernel function. Many different 

types of kernel function can be included (e.g., polynomial, Gaussian radial basis, exponential radial basis).
It should be noted that the SVR technique is highly dependent on model and forecast error to define its 

parameters, including penalty coefficient (C), permitted error range (ɛ), and kernel function parameters. For 
instance, the training error will be quite high if C is at a very low level. On the contrary, if the penalty coefficient 
is very high, the learning accuracy will improve, but the general adoptions of forecasting models will be low 
in comparison with reality. When the number of supervised vectors is reduced on condition that ε is high, the 
forecasting model is proportionately simple, but the accuracy will decline. On the other hand, if ε is rather low, 
the complexity of the forecasting model increases, adoption decreases, and the accuracy of regression will be 
enhanced. To find the optimized value of these parameters, in this study, the Bat and Grey Wolf evolutionary 
optimization algorithms were applied44. A detailed description of the SVR algorithm can be found in Smola and 
Schölkopf45.

Translation invariant wavelet kernel.  Kernel functions have been used in many different pattern analysis and 
ML techniques. These functions assist the SVR method in processing high-dimensional and infinite data, allow-
ing linear separability by mapping input space data to higher dimensions. In addition, kernel functions keep the 
computational complexity of SVR reasonable in feature space46. Thus the number of support vectors and their 
weights, but also the type of kernel functions, are important and affect the results47,48. A wavelet function can be 
employed as the kernel function49. Generally, a wavelet function is defined as:

where a and b represent dilation (scaling) and translation (shift) parameters, respectively, ψ(x) is the wavelet 
base or mother wavelet, and indexed families of wavelets are obtained by changing a and b39,46. If a and b are 
chosen on the basis of a power of 2 (a = 2j and b = k × 2j), the discrete wavelet transform (DWT) is as follows50:

where k is a translation parameter and j is an integer representing the resolution level, i.e., the dilation parameter. 
Based on the above, kernel function can be computed by inner products of wavelet function as:

where X,X ′ ∈ RN are N-dimensional vectors and the translation-invariant wavelet kernel can be expressed as51:

It should be pointed out that there are various wavelet functions, such as Haar, Splines, Daubechies, Marr, and 
Morlet. Gaussian function (Eq. 8) was used in this study due to its excellent reputation in terms of performance 
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and possessing many useful features, as well as its strong learning capability52–54. Thus Eq. (7) was re-formulated 
as:

Finally, the general form of the wavelet SVR (WSVR) regression function can be written as:

It should be noted that since WSVR has multidimensional analysis properties and high flexibility, and is a 
generalization of the SVR algorithm, it can be employed to solve non-linear problems and approximation and 
classification issues46. Studies have shown that the approximation effect of the wavelet kernel is far better than 
that of the Gaussian kernel52. Additionally, due to the redundancy and correlative features of the Gaussian kernel, 
the training speed of the wavelet kernel SVM is rather fast in comparison with that of the Gaussian kernel SVM49. 
More detailed explanations of wavelet SVR can be found in Zhang and Han49, and Su et al.55.

Bat Algorithm (BA).  In 2010, Xing-She Yang established the Bat metaheuristic algorithm, which derives from 
the echolocation characteristic of bats35. At night, bats can pinpoint their path and produce detailed images of 
their prey by comparing the emitting pulse with its echoes. In the Bat algorithm, the position of each bat indi-
cates the potential solution and the quality of the solution is determined according to the best position of a bat 
to its prey. The approach was developed based on the following three rules56:

1.	 All bats apply echo sounds to recognize the distance and distinguish the dissimilarity between food/ prey 
and obstacles.

2.	 During the hunting period, bats fly unsystematically with certain velocity, at position Xi with fixed frequency, 
fmin , and varying wavelength, � , and loudness, A . Bats can also automatically adjust wavelength and rate of 
pulse emission, r ∈ [0, 1] , with regard to their distance to target.

3.	 Since loudness can vary in different directions, it can be assumed that the loudness changes from a maximum 
(positive) to a minimum constant value.

Like other metaheuristic algorithms, there is a well-suited tradeoff between the two main features, intensi-
fication (exploitation) and diversification (exploration), which guarantee that the Bat algorithm (BA) can assist 
in finding overall solutions57. According to the BA-SVR method, bats move within the parameter space and try 
to detect some optimized parameters. In other words, defining the optimal value for the SVR parameters is the 
main objective of implementing this approach37. For information, see Ali58, Sambariya et al.59, Yang35, and Yang 
and Gandomi60.

Grey wolf optimization (GWO) algorithm.  The Grey Wolf Optimization (GWO) algorithm can be employed 
as another method to set optimum values of SVR parameters. The GWO algorithm was introduced by Mirjalili 
et al.33 as a new metaheuristic method. This technique is a bio-inspired global optimization algorithm and, like 
other metaheuristic methods, belongs to swarm intelligence approaches. The GWO algorithm is based on the 
leadership hierarchy and the social behavior of grey wolves at the time of hunting. Wolves are social animals 
that live in packs, and they have a hierarchy in their group. The leader of each pack, the alpha wolf ( α ), dictates 
decisions about hunting, sleeping, and walking time, and all the other group members must follow its orders. 
However, despite the dominant manner of alpha wolves, democratic behavior can also be seen in the group. 
In terms of hierarchy, the other wolves fall into three levels, called beta ( β ), delta ( δ ), and omega ( ω ). The beta 
wolves at the second level assist the alpha in making decision. They are the best candidates for alpha replacement 
in due course. The delta wolves are in charge of defending the boundaries, warning the pack about any danger or 
threats to its territory, and ensuring the safety of the group. At the time of hunting or sourcing food, deltas help 
alpha and betas. The omega wolves have the lowest rank and rights in the group. They are not allowed to eat until 
all other wolves have finished eating, do not play any role in decision making, and in fact have a victim role33. 
However, in reality, theses wolves are a crucial part of the group, and their elimination can lead to fighting and 
serious social problems for the overall group61.

In addition to the social hierarchy of grey wolves, another remarkable characteristic is their group hunting, 
which can be summarized in three phases: (i) Tracking, chasing, and approaching prey, (ii) running after prey, 
surrounding, and harassing the prey up to the moment it stops running, and (iii) attacking and killing62,63.

In the GWO algorithm, mathematical modeling of wolves’ dominant social hierarchy behavior is performed 
by generating a random set of solutions, of which the solution with the best fit is considered the alpha ( α ). The 
next best solutions are called beta ( β ) and delta ( δ ), respectively, and remaining candidate solutions are called 
omega. The hunting process (optimization) is led by α , β , and δ wolves, and ω wolves have to comply with these 
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three groups. The following four stages are performed: encircling, trapping and surrounding the prey, detecting 
prey location, attacking prey, and killing the prey (exploitation)5.

It is worth mentioning that GWO, as an optimization algorithm, has better search ability and higher accuracy 
than Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)33. The GWO algorithm can be employed 
to find solutions to non-convex optimization problems. Its main advantages are its simplicity, ability to solve 
real-world optimization problems, and fewer control parameters13. Supplementary information can be found in 
Sulaiman et al.64, Niu et al.65, Jayakumar et al.66, Saxena et al.34, and Luo51.

Accuracy assessment.  In the present study, the prediction performance of the models was assessed by 
analyzing the agreement between observed data (flood inventory) and model results in terms of both presences 
(i.e., flooded locations) and absence (i.e., non-flooded locations)11. Three different evaluation approaches were 
used for assessing the accuracy of models in both the training (goodness-of-fit) and the validation (predictive 
performance) steps. These were cutoff-independent metrics (Sensitivity, Specificity, Accuracy, Matthews Corre-
lation Coefficient, F-score, Misclassification Rate), cutoff-independent metrics (receiver operating characteristic 
(ROC) curve), and root mean square error (RMSE).

Cutoff‑dependent metrics.  All cutoff-dependent metrics were calculated based on a confusion matrix (also 
known as the contingency table). The components of the contingency table are true negative (TN), true positive 
(TP), false negative (FN), and false positive (FP) (Table 5), where FP and FN are the numbers of pixels errone-
ously classified (also known as error types I and II) and TN and TP are the numbers of pixels correctly classified. 
Note that a probability holdout value of 0.5 was chosen since the presence and absence locations were equally 
balanced, which is in accordance with Frattini et al.67 and Camilo et al.68.

True positive rate.  True positive rate (TPR) (also termed sensitivity) is one of the most common evaluation 
metrics and can be calculated as:

False positive rate.  False positive rate (FPR) (also known as 1 − specificity) can be calculated as:

However, it should be noted that TPR and FPR are insufficient performance metrics, because they ignore false 
positives (here the number of pixels erroneously identified as flooded) and false negatives (here the number of 
pixels erroneously identified as non-flooded). In fact, they are useful only when used together.

Accuracy.  Accuracy (A, also known as efficiency) is another common metric for evaluating model accuracy. 
Accuracy determines the percentage of actual flooded points that are correctly classified by the model as:

Matthews correlation coefficient.  The Matthews Correlation Coefficient (MCC) metric assesses the perfor-
mance of models based on the correlation rate between observed and predicted data69. MCC ranges from − 1 to 
1, where − 1 indicates considerable disagreement between observed and predicted data and 1 indicates perfect 
agreement. MCC is calculated as:

F‑score.  The F-score (also called the F1 score or F measure) is calculated as:

(11)TPR =
TP

TP + FN

(12)FPR =
FP

FP + TN

(13)A =
TP + TN

TP + TN + FP + FN

(14)MCC =
TP × TN − FP × FN

[(TP + FP)× (FN + TN)× (FP + TN)× (TP + FN)](1/2)

(15)F-score =
2TP

2TP + FP + FN

Table 5.   Contingency table used for evaluating models.

Observed

Predicted

Non-flooded (absence) Flooded (presence)

Non-flooded (absence) True negative (TN) False positive (FP), Error type I

Flooded (presence) False negative (FN), Error type II True positive (TP)
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It can also be obtained based on the TPR and another evaluation metric, Positive Predictive Value (PPV), as:

where PPV is TP/(TP + FP).

Misclassification rate, MR.  Misclassification rate considers both the false positive and false negative compo-
nents and therefore reflects an overall error rate. MR can be computed as:

Cutoff‑independent metric.  The area under the ROC curve (AUC) is the most important evaluation metric in 
natural hazard assessment40. The ROC curve simply plots the TPR (i.e., sensitivity) on the Y-axis against the FPR 
(i.e., 1 − specificity) on the X-axis. It is considered the real measure of model evaluation because it simultaneously 
includes all components of the confusion matrix and equitably estimates the overall quality of a model67. AUC 
is bounded by [0, 1]: the larger the AUC value, the better the performance of the model over the whole range 
of possible cutoffs. Based on the analytical expression for the ROC curve, denoted f, AUC can be calculated as:

Root mean square error.  Root Mean Square Error (RMSE) is a frequently used measure of the agreement 
between observed and predicted values. In the present study, the RMSE was used to evaluate all models. It can 
be calculated as:

where Si and Oi are observed and predicted values, respectively.

Contribution of conditioning factors.  The contribution of the flood conditioning factors (i.e., predic-
tor variables) to the modeling process (relative importance) was investigated using a map-removal sensitivity 
analysis. The relative decrease (RD) in AUC values, which reflects the dependency of the model output on the 
conditioning factors, was calculated. RD can be calculated using the following equation:

where AUC​all and AUC​i are the AUC values obtained from the flood susceptibility prediction using all condition-
ing factors and the prediction when the ith conditioning factor was excluded, respectively.
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