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Abstract: The prediction aptitude of an artificial neural network (ANN) is improved by incorporating
two novel metaheuristic techniques, namely, the shuffled frog leaping algorithm (SFLA) and
wind-driven optimization (WDO), for the purpose of soil shear strength (simply called shear
strength) simulation. Soil information of the Trung Luong national expressway project (Vietnam)
including depth of the sample (m), percentage of sand, percentage of silt, percentage of clay, percentage
of moisture content, wet density (kg/m3), liquid limit (%), plastic limit (%), plastic index (%), liquidity
index, and the shear strength (kPa) was collocated through a field survey. After constructing the hybrid
ensembles of SFLA–ANN and WDO–ANN, both models were optimized in terms of complexity
using a population-based trial-and error-scheme. The learning quality of the ANN was compared
with both improved versions to examine the effect of the used metaheuristic techniques. In this phase,
the training error dropped by 14.25% and 28.25% by applying the SFLA and WDO, respectively.
This reflects a significant improvement in pattern recognition ability of the ANN. The results of the
testing data revealed 25.57% and 39.25% decreases in generalization (i.e., testing) error. Moreover, the
correlation between the measured and predicted shear strengths (i.e., the coefficient of determination)
rose from 0.82 to 0.89 and 0.92, which indicates the efficiency of both SFLA and WDO metaheuristic
techniques in optimizing the ANN.

Keywords: SFLA–multilayer perceptron (MLP); WDO–MLP; soil shear strength; soft computing;
metaheuristic science

1. Introduction

Soil shear strength is defined as the resistance of soil against shear stresses [1,2], which cause
deformations or displacements in the soil mass [3]. Therefore, it is considered as one of the most crucial
designing properties in geotechnical engineering. In the building sector, for example, having a reliable
approximation of the shear strength helps foundation engineers to choose the type of foundation, as
well as the necessity of subsoil improvement. It is also a very determinant factor for exploring soil
problems like slope stability [4,5] and bearing capacity [6,7] in different conditions. Figure 1 illustrates
an example of shear failures for strip footing subsoil and rainfall-induced landslide.
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Figure 1. Failure mechanism of (a) Bearing capacity failure, and (b) Slope failure example. 

Like many other engineering problems, before the advent of soft computing approaches, the 

shear strength was investigated and predicted using statistical [8] and numerical methods [9–12]. 

Müller et al. [13] investigated uncertainty reduction in examining the undrained shear strength in 

clays using multivariate approaches. Garven and Vanapalli [14] provided a summary of 19 shear 

strength evaluative procedures consisting of six based on soil–water retention curve (SWRC), and 13 

based on mathematical relationships. They also stated that the studied literature review highlighted 

the suitability of SWRC-based procedures for successful simulation of the shear strength. The shear 

strength can be affected by various soil factors like moisture content, plastic index, clay content, etc. 

[1]. Thus, implementing direct evaluative methods for exploring the relationship between the shear 

strength and its related parameters is relatively costly and complicated [15,16], and also there might 

lead to different results because of different stress states, stress histories, degrees of sampling 

disturbance, and strain rates [17]. Due to these difficulties, indirect methods are very popular in the 

field of geotechnical parameter evaluation [18–20]. 

In recent years, soft computing techniques gained increasing attention for simulating various 

geotechnical phenomena like slope stability [21–24]. As for the shear strength, many scholars showed 

the applicability of intelligent models. Chou et al. [25] showed the efficiency (correlation coefficient 

(R) = 0.89 and mean absolute percentage error (MAPE) = 3.27%) of machine learning for computing 

peak shear strength of discrete fiber-reinforced soils. Havaee et al. [26] used a multiple linear 

regression (MLR) model to predict the shear strength in the central part of Iran. Lee et al. [27] 

successfully employed an artificial neural network (ANN) for forecasting the unsaturated shear 

strength. Likewise, Wrzesiński et al. [28] used this tool for investigating the changes in undrained 

shear strength with respect to principal stress rotation. Besalatpour et al. [29] explored the prediction 

capability of an optimized support vector machine (SVM) for predicting the shear strength in Bazoft 

watershed, central Iran. The results were also compared with the multilayer perceptron (MLP) model. 

Regarding the R values of 0.98 and 0.52, along with mean absolute error (MAE) values of 0.17 and 

0.81, the superiority of the SVM was derived. Moreover, the superiority of the ANN (to statistical 

models) was shown by Goktepe et al. [30] in analyzing the relationship between shear strength 

parameters and index properties of normally consolidated plastic clay. 

The recent advances in metaheuristic science led to the proper optimization of different 

engineering parameters. Moreover, it was proven that synthesizing these algorithms with typical 

predictive models led to raising their accuracy through prevailing computational weaknesses [31–

33]. In the field of shear strength analysis, well-known optimization algorithms such as the cuckoo 

search optimization (CSO), particle swarm optimization (PSO), and genetic algorithm (GA) were 

applied for the performance improvement of intelligent approaches of least-squares SVM, support 

vector regression (SVR), and adaptive neuro-fuzzy inference system (ANFIS) [6,34,35]. The findings 

of these studies demonstrated the better functioning of the metaheuristically reinforced models 

compared to regular versions. Despite the wide application of metaheuristic science in dealing with 

geotechnical problems, an appreciable gap of knowledge involves neural computing optimization for 
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Figure 1. Failure mechanism of (a) Bearing capacity failure, and (b) Slope failure example.

Like many other engineering problems, before the advent of soft computing approaches, the
shear strength was investigated and predicted using statistical [8] and numerical methods [9–12].
Müller et al. [13] investigated uncertainty reduction in examining the undrained shear strength in
clays using multivariate approaches. Garven and Vanapalli [14] provided a summary of 19 shear
strength evaluative procedures consisting of six based on soil–water retention curve (SWRC), and 13
based on mathematical relationships. They also stated that the studied literature review highlighted
the suitability of SWRC-based procedures for successful simulation of the shear strength. The shear
strength can be affected by various soil factors like moisture content, plastic index, clay content,
etc. [1]. Thus, implementing direct evaluative methods for exploring the relationship between the
shear strength and its related parameters is relatively costly and complicated [15,16], and also there
might lead to different results because of different stress states, stress histories, degrees of sampling
disturbance, and strain rates [17]. Due to these difficulties, indirect methods are very popular in the
field of geotechnical parameter evaluation [18–20].

In recent years, soft computing techniques gained increasing attention for simulating various
geotechnical phenomena like slope stability [21–24]. As for the shear strength, many scholars showed
the applicability of intelligent models. Chou et al. [25] showed the efficiency (correlation coefficient
(R) = 0.89 and mean absolute percentage error (MAPE) = 3.27%) of machine learning for computing
peak shear strength of discrete fiber-reinforced soils. Havaee et al. [26] used a multiple linear regression
(MLR) model to predict the shear strength in the central part of Iran. Lee et al. [27] successfully
employed an artificial neural network (ANN) for forecasting the unsaturated shear strength. Likewise,
Wrzesiński et al. [28] used this tool for investigating the changes in undrained shear strength with
respect to principal stress rotation. Besalatpour et al. [29] explored the prediction capability of an
optimized support vector machine (SVM) for predicting the shear strength in Bazoft watershed, central
Iran. The results were also compared with the multilayer perceptron (MLP) model. Regarding the R
values of 0.98 and 0.52, along with mean absolute error (MAE) values of 0.17 and 0.81, the superiority
of the SVM was derived. Moreover, the superiority of the ANN (to statistical models) was shown
by Goktepe et al. [30] in analyzing the relationship between shear strength parameters and index
properties of normally consolidated plastic clay.

The recent advances in metaheuristic science led to the proper optimization of different engineering
parameters. Moreover, it was proven that synthesizing these algorithms with typical predictive models
led to raising their accuracy through prevailing computational weaknesses [31–33]. In the field of shear
strength analysis, well-known optimization algorithms such as the cuckoo search optimization (CSO),
particle swarm optimization (PSO), and genetic algorithm (GA) were applied for the performance
improvement of intelligent approaches of least-squares SVM, support vector regression (SVR), and
adaptive neuro-fuzzy inference system (ANFIS) [6,34,35]. The findings of these studies demonstrated
the better functioning of the metaheuristically reinforced models compared to regular versions. Despite
the wide application of metaheuristic science in dealing with geotechnical problems, an appreciable
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gap of knowledge involves neural computing optimization for shear strength analysis, which was the
motivation of the present research. Furthermore, regarding the necessity of seeking more efficient and
state-of-the-art methods for the stated purpose, the second novelty of this paper involved employing
hybrid evolutionary algorithms of the shuffled frog leaping algorithm (SFLA) and wind-driven
optimization (WDO), which, according to the literature review, were not sufficiently used for this
aim. These techniques contributed to the problem of shear strength modeling through fine-tuning
the ANN computational parameters for analyzing the relationship between the shear strength and
related factors.

2. Background of the Used Hybrid Science

2.1. Shuffled Frog Leaping Algorithm

Proposed by Eusuff and Lansey [36], the SFLA is a well-known optimization technique based
on metaheuristic rules. An important reason for its popularity is combining the memetic algorithm
and the PSO [37]. In addition, high convergence speed, as well as its simplicity, makes the SFLA an
efficient global optimizer [38].

The population of this algorithm is composed of a set of frogs where each one indicates a possible
solution to the defined problem. Mathematically, assuming p as the number of randomly produced
individuals and D as the problem dimensions, the location of the i-th frog is defined as follows:

Xi = (xi1, xi2, . . . , xiD). (1)

The p is firstly divided into k memeplexes (the memeplexes contain a number of frogs with an
identical structure). However, their adaptability is different. Based on the fitness of the frogs, they are
lined in descending order. Then, the first frog of the first list contributes to the first memeplex, the
second frog contributes to the next memeplex, and this process is kept until there are no more frogs
to be assigned. Note that the first memeplex receives the k + 1-th frog at the end, and this process
continues until all frogs contribute [39]. The explained procedure is depicted in Figure 2.
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Next, the following equations are used to optimize the position of the bad frog (Xnew):

S = rand() × (Xb − Xw), (2)

Xnew = Xw + S, Smax ≥ S ≥ −Smax, (3)

where Xw and Xb denote the worst and best positions of the frog in each memeplex, respectively. Also,
rand () is a random value in the range [0, 1], and Smax represents the frog’s maximum leap. In this sense,
once the position of the bad frog is improved, Xnew replaces Xw; otherwise, Xb gets replaced with the
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position of the elite frog (Xg). Then, Xnew is calculated. If the mentioned position is improved after
that, Xnew replaces Xw; otherwise, a random value is assigned to Xw. This process continues until the
defined number of updates is met. Finally, all individuals in all memeplexes are mixed and reordered
in V memeplexes.

2.2. Wind-Driven Optimization

The name WDO represents a state-of-the-art metaheuristic technique suggested by Bayraktar et al. [40].
The initial idea was created for electromagnetic usage. The algorithm is inspired by air parcel movements
in a multidimensional space. The four forces involved in this task are gravitational force (FG), pressure
gradient force (FPG), Coriolis force (FC), and frictional force (FF). Mathematically, it is supposed that
the air parcels are dimensionless and weightless to reduce the complexity of computation. Let ∇P and
δV be the pressure gradient and finite volume of the air; then, Equation (4) expresses the force due
to the pressure gradient. FF (Equation (5)) aims to oppose the air movement triggered by FPG. FG
(Equation (6)) pulls the parcels to the earth’s center from every dimension. Also, FC (Equation (7))
attributes to the deflection in air parcel motions.

−−−→
FPG = −∇P . δV, (4)

−→
FF = −ρ α

→
u , (5)

−→
FG = ρ . δV.

→
g , (6)

−→
FC = −2 θ ×

→
u , (7)

where g denotes the gravitational constant, ρ represents the density of a short air parcel,
→
u is the

velocity vector of wind, α is a frictional coefficient, and θ symbolizes the earth’s rotation.
By considering the mentioned forces with the ideal gas equation, we obtain the following [41]:

−→
∇u = g +

(
−∇P.

RT
Pcur

)
+ (−α

→
u) +

−2 θ ×
→
uRT

Pcur

, (8)

Here, as the pressure increases, the velocity is adjusted because the air velocity depends on the
pressure value. Consequently, with respect to the pressure rank, Equation (8) is modified. More clearly,
based on the pressure, the parcels are ranked in descending order. In this sense, the velocity and
position are updated using the following equations where i denotes the rank:

−−−→
Unew = (1− α)

→

Ucur − gxcur +
(∣∣∣∣∣1− 1

i

∣∣∣∣∣ .
(
xopt − xcur

)
RT

)
+

C .
→

Uotherdirection
i

, (9)

−−−−→
Xnew =

−−−−→
Xold +

−−−−→
Unew , (10)

where
→

Ucur and
−−−−→
Unew represent the velocity of the current and coming iterations, x is the air parcel

position, and xopt and xcur are the optimal and current positions. Meanwhile,
→

Uotherdirection is equal to
−→
FC and C = −2 RT.

The explained updating process continues until one stopping criterion is met, like the set objective
function (OF), or the number of repetitions. In the last step, the air parcel which has the lowest OF
is found, and its corresponding parameters are used. More information can be found in previous
studies [40,42,43].
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3. Study Area and Data Collocation

The location of the study area is illustrated in Figure 3. It was the Trung Luong National
Expressway section (with an overall length of nearly 140 km), a part of the Ho Chi Minh–Can Tho
Expressway, Vietnam. The coordinates of the start and finish points of the proposed track are 10◦25′

north (N) and 106◦18′ east (E), and 10◦41′ N and 106◦34′ E, respectively. The project is anticipated to
be completed at the end of 2019. With a designed speed of 120 km/h, the width of this road varies from
25.5 m (four-lane traffic in the first stage) to 33.0 m (six-lane traffic in the final stage) [34].Appl. Sci. 2020, 12, x; 5 of 16 
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Figure 3. Location of the studied track.

Extensive geotechnical field testing was carried out to obtain the soil information by sampling
and implementing soil tests including the standard penetration test [44], vane shear test [45], and cone
penetration test [46]. The data were collocated from 73 boreholes where their depths varied from 12.5
to 70.5 m.

For a total of 315 soil specimens, the information of 10 key factors, namely, depth of sample (DOP),
percentage of sand, percentage of silt, percentage of clay, percentage of moisture content (MC), wet
density (WD), liquid limit (LL), plastic limit (PL), plastic index (PI), and liquidity index (LI), was used
to construct the input dataset, and the shear strength was considered to be the dependent variable.
Figure 4 depicts the shear strength versus the independent factors. Also, the descriptive statistics of
the used dataset are presented in Table 1.

Table 1. Descriptive statistics of the used dataset.

Features
Descriptive Index

Mean SE * Median SD ** SV *** Skewness Minimum Maximum

Depth of sample (m) 16.21 0.71 13.00 12.57 157.94 1.02 1.00 52.00
Sand (%) 8.40 0.73 2.40 13.04 169.92 1.85 0.00 57.30
Silt (%) 54.01 0.70 56.10 12.46 155.30 −0.30 20.00 83.70

Clay (%) 37.28 0.66 37.60 11.68 136.35 0.01 10.40 63.90
Moisture content (%) 48.47 1.35 49.90 23.90 571.41 0.12 17.10 90.30
Wet density (kg/m3) 1767.68 12.09 1690.00 214.60 46,054.17 0.09 1470.00 2150.00

Liquid limit (%) 54.47 0.84 54.90 14.89 221.65 −0.23 21.40 79.90
Plastic limit (%) 24.72 0.30 24.40 5.39 29.05 0.02 12.90 35.90
Plastic Index (%) 29.75 0.56 30.40 10.00 99.92 −0.27 6.60 49.70
Liquidity index 0.70 0.03 0.79 0.46 0.22 0.04 0.01 1.73

Shear strength (kPa) 42.12 1.76 20.81 31.31 980.23 0.55 8.27 130.00

* Standard error; ** standard deviation; *** sample variance.
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(b): percentage of sand, (c): percentage of silt, (d): percentage of clay, (e): percentage of moisture
content, (f): wet density, (g): liquid limit, (h): plastic limit, (i): plastic index, and (j): liquidity index.

4. Shear Strength Prediction Using Neural Hybrids of SFLA–ANN and WDO–ANN

4.1. Data Division and Preprocessing

Like other simulation methods, the development of intelligent models requires two sets of data,
namely, training and testing samples [47]. The majority of data are specified to pattern analysis and
training the models. The efficiency of the learning process is then evaluated by applying the network
on unknown data (i.e., the testing samples). In other words, in this phase, the network predicts the
shear strength for unseen soil conditions. The quality of testing results indicates the generalization
capability of the model [48–50].

As mentioned, the dataset consisted of the information of 315 soil specimens. Out of those,
252 samples (i.e., 80% of the data) were selected for training the ANN, SFLA–ANN, and WDO–ANN
models. Accordingly, the remaining 63 samples (i.e., 20% of the data) were devoted to the testing
process. It is worth noting that the division of data was done based on a random selection process.
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4.2. Initializing the MLP for Representing the ANN

Having a feed-forward hierarchical architecture, the multilayer perceptron (MLP) is the most
commonly held notion of the ANNs [51,52]. In this study, an MLP neural network was used as the basic
predictive model. It performed the prediction task by applying some weights and biases to the input
variables within three or more layers. This work was carried out in the computational neurons within
each layer. Although the number of neurons in the input and output layers was equal to the number of
variables, this could be varied for the middle-layer neurons (also called “hidden neurons”). It is also
one of the most influential factors in the performance of the MLP. Based on a trial-and-error process,
different numbers of hidden neurons were tested, and the results showed that five of them constructed
the best-fitted network. Moreover, the same process was used to determine the best values of other
ANN parameters including learning rate, momentum factor, and learning cycles. These parameters
were set to 1.0, 0.5, and 1000, respectively. Note that, their activation function was “tangent-sigmoid”
(i.e., Tansig). This function is expressed as follows:

Tansig (x) =
2

1 + e−2x − 1. (11)

4.3. Defining Modeling Parameters

As explained, the SFLA and WDO algorithms function as optimization techniques that aim to find
the best solution for a given problem. When these algorithms are synthesized with ANN, the problem
is appropriately finding the best values of the weights (W) and biases (b) of each neuron through
minimizing the difference between the actual and predicted shear strength. An objective function (OF)
is defined here to measure the error of performance. The optimization process is implemented by a
vast number of iterations. In general, the OF is expected to follow a downward trend during these
iterations, which indicates an increase in accuracy. Notably, the OF in this study was considered to be
the root-mean-square error (RMSE) which is defined in Section 4.5. Considering X as the input of the
output neuron, the following mathematical relationships exist:

OF = RMSE (Output, Target), (12)

Output = Tansig
(∑

WX + b
)
. (13)

4.4. Hybridizing the ANN Using the SFLA and WDO

When it comes to metaheuristic algorithms, finding the best population size (PS) (i.e., the
complexity) is an important task prior to running the main model. It is usually determined by a
sensitivity analysis process. In this work, different values of PS were tested, including 10, 25, 50, 75,
100, 200, 300, 400, and 500. The best complexity was determined by evaluating the obtained OFs in
the last iterations. The results are presented in Figure 5a. As can be seen, the lowest RMSE of the
SFLA–ANN (10.4136) and WDO–ANN (9.3412) ensembles was obtained for the PSs of 10 and 300,
respectively. The convergence curves of these networks are presented in Figure 5b,c.
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4.5. Accuracy Assessment Criteria

Apart from the RMSE, MAE was also used to measure the error performance. Moreover, the
coefficient of determination (R2) was used to measure the correlation between the observed and
estimated shear strengths. Let Zi predicted and Zi observed be the estimated and observed shear strengths,
and let Zobserved be the average of Zi observed values; then, Equations (14)–(16) express the formulations of
the RMSE, MAE, and R2, respectively.

RMSE =

√√√√
1
N

N∑
i=1

[(Zi observed −Zi predicted)]

2

, (14)

MAE =
1
N

N∑
I=1

∣∣∣Zi observed −Zi predicted
∣∣∣, (15)

R2 = 1−

N∑
i=1

(Zi predicted −Zi observed)
2

N∑
i=1

(Zi observed −Zobserved)
2

, (16)

where N is the number of data.
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5. Results and Discussion

The prediction results in both training and testing phases are presented in this section. To this end,
the products of the used models were compared with target values by using the mentioned accuracy
criteria. As explained, the quality of the training results indicates the learning capability of the model.
Figure 6 shows the results of this phase, in terms of the regular error (measured shear strength −
predicted shear strength). As can be seen, the results of both reinforced ANNs were more accurate than
the formal version. In detail, the RMSE experienced 11.33% (from 11.74 to 10.41) and 20.44% (from
11.74 to 9.34) reductions as the result of synthesizing the ANN with SFLA and WDO, respectively. The
calculated MAEs confirmed these observations, as it was reduced by 14.25% (from 8.14 to 6.98) and
28.25% (from 8.14 to 5.84). In addition, referring to the obtained values of R2 (0.85, 0.88, and 0.90),
the superiority of the ensemble models was deduced. Therefore, both SFLA and WDO performed
efficiently in enhancing the learning capability of the ANN.Appl. Sci. 2020, 12, x; 10 of 16 
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The same criteria were applied to the outputs of the testing phase. In this phase, the RMSE of the
ANN dropped from 15.11 to 12.20 (19.25%) and, more considerably, 11.13 (26.34%), by incorporation
with the SFLA and WDO. As for the MAE, the decrease of this criterion from 11.26 to 8.38 (25.57%) and
6.84 (39.25%) indicated that the generalization accuracy of the ANN was increased. The comparison
between the actual and predicted shear strengths is also shown in Figure 7. According to this figure,
the hybrid models grasped a more reliable approximation of shear strength in comparison with ANN,
especially for minimum and maximum values. These results are broadly discussed below.
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The correlation of the testing results is depicted in Figure 8. Based on these figures, the products of
the ANNs trained by the SFLA and WDO were better correlated with target shear strengths, compared



Appl. Sci. 2020, 10, 689 11 of 15

to the ANN trained by the back-propagation learning method. This claim can be supported by the
obtained values of R2 of 0.8286, 0.8998, and 0.9258 (for all data), and 0.8732, 0.9187, and 0.9547 (for data
inside 95% confidence limit boundaries), respectively, for the ANN, SFLA–ANN, and WDO–ANN.
Notably, the observed shear strength ranged from 10.92 to 114.25, while the predicted values were in
the ranges [3.40, 78.73], [7.09, 81.25], and [11.43, 86.41].Appl. Sci. 2020, 12, x; 12 of 16 
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Figure 8. The correlation between the measured and predicted shear strengths in the testing phases;
(a) R2 = 0.8286, (b) R2 = 0.8998, (c) R2 = 0.9258.

Due to the better performance (i.e., the higher accuracy) of the hybrid models, it was demonstrated
that applying both SFLA and WDO is an effective way to increase the reliability of the ANN. From the
comparison point of view, the results of the WDO algorithm were more promising than the SFLA. For
more detail, Table 2 denotes the relative error (Equation (17)) calculated for five maximum and five
minimum values of the shear strength dataset. In terms of minimum values, except for the lowest
one (8.27), the relative errors of the WDO–ANN were lower than those of the SFLA–ANN. The most
appreciable difference was related to the shear strength of 10.27. This value was predicted as 11.51
(around 12% error) by the WDO–ANN, while the SFLA–ANN had around 50% error in this sense.
Evaluating the maximum shear strengths showed that all values were underestimated by both methods.
Also, it was deduced that the relative errors of the WDO-based ensemble were lower than those of the
SFLA-based ensemble. This points to the higher efficiency of the WDO for estimating the peak values
of shear strength.

Relative error = (
Zi predicted −Zi observed

Zi observed
) × 100. (17)



Appl. Sci. 2020, 10, 689 12 of 15

Table 2. Comparison between the SFLA—shuffled frog leaping algorithm and WDO—wind-driven
optimization prediction for the maximum and minimum shear strengths values.

Type of Data Observed Value (kPa)
Model Results Relative Error (%)

SFLA–ANN WDO–ANN SFLA–ANN WDO–ANN

Minimum

8.27 12.55 13.01 51.79 57.33
9.34 16.69 14.13 78.76 51.33
9.34 15.92 14.88 70.40 59.26

10.27 12.53 12.34 22.12 20.19
10.27 15.29 11.51 48.96 12.15

Maximum

110.63 78.63 86.41 −28.93 −21.89
111.55 72.08 72.78 −35.39 −34.76
113.76 79.04 86.82 −30.51 −23.68
114.25 77.97 79.65 −31.76 −30.28
130.01 78.88 82.44 −39.32 −36.59

In comparison with previous studies, the hybrid models of the present research outperformed
the integration of least squares support vector machine (LSSVM) and the cuckoo search optimization
(CSO), LSSVM–CSO, used by Bui et al. [34] for the same aim. More clearly, according to the obtained
values of R2, the prediction accuracy of both SFLA–ANN (0.89) and WDO–ANN (0.92) was higher
than 0.885 in their study. However, the LSSVM was more successful in understanding the relationship
between the shear strength and input factors (R2 = 0.922 > 0.90). Similarly, the PSO–SVM used by
Nhu et al. [6] predicted the shear strength less accurately (R2 = 0.888) than both hybrid models of our
study. More than 90% generalization accuracy of the WDO–ANN shows that it is a capable model to
analyze and predict the shear strength for unseen soil conditions. In other words, it can be introduced
as a promising alternative to laboratory and traditional shear strength evaluative methods. Hence,
the ruling formulation of this model was extracted, and it is presented in Equation (18) for use as an
efficient neural–mathematical solution to the problem of shear strength modeling. This formula, as
well as Equation (19), was derived using the weights and biases of the MLP which were optimized by
the WDO algorithms. More specifically, Equation (18) was extracted from the output neuron of the
MLP network, which was fed by A, B, . . . , E. These middle parameters represent the outputs of the
hidden neurons. As can be seen, the activation function of Tansig was applied to these outputs.

Shear strengthWDO-ANN = −0.7757 × A + 0.4752 × B − 0.7565 × C − 0.5395 × D + 0.2687× E − 0.4902. (18)


A
B
C
D
E


= Tansig






0.4182 0.7457 −0.0538 0.2524 1.0098 −0.4615 0.0951 0.2266 −0.7045 0.3425
0.8331 −0.2381 −0.2327 −0.3187 −0.6103 0.2087 −0.1710 0.7667 0.2941 0.8237
0.5166 0.2242 −0.8520 −0.7931 0.0367 0.7373 0.3965 −0.0099 −0.0890 0.5675
−0.7339 0.8113 −0.6531 0.1438 −0.0184 −0.5871 0.3188 −0.2853 −0.0649 0.7266
0.7275 0.5602 −0.1922 0.4500 0.7937 0.1034 0.4448 −0.5363 0.6534 0.2622





DOS
Sand
Silt

Clay
MC
WD
LL
PL
PI
LI





+


−1.6445
−0.8222
0.0000
−0.8222
1.6445





. (19)

6. Concluding Remarks

The robustness of the shuffled frog leaping algorithm and wind-driven optimization techniques
for optimizing the performance of a neural network was evaluated in this paper. The models were
applied to an important engineering problem, namely, soil shear strength prediction, for a real-world
construction project. Although the ANN showed good accuracy in predicting the shear strength, it
was shown that the computational drawbacks of this model can be addressed by synthesizing it with
both the SFLA and the WDO algorithms. Due to the existing difficulties of traditional shear strength
evaluative methods (e.g., laboratory tests and analytical approaches), as well as the high competency
of the studied tools, both ensemble models of this paper can be used as inexpensive yet accurate
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alternatives for simulating the shear strength. In this regard, the neural–metaheuristic formula of the
most successful model (i.e., the WDO) was extracted and presented.
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