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Abstract: Hollow Co3O4 nanoboxes constructed by numerous nanoparticles were prepared by using a
facile method consisting of precipitation, solvothermal and annealing reactions. The desirable hollow
structure as well as a highly porous morphology led to synergistically determined and enhanced
supercapacitor performances. In particular, the hollow Co3O4 nanoboxes were comprehensively
investigated to achieve further optimization by tuning the sizes of the nanoboxes, which were well
controlled by initial precipitation reaction. The systematical electrochemical measurements show
that the optimized Co3O4 electrode delivers large specific capacitances of 1832.7 and 1324.5 F/g at
current densities of 1 and 20 A/g, and only 14.1% capacitance decay after 5000 cycles. The tunable
synthesis paves a new pathway to get the utmost out of Co3O4 with a hollow architecture for
supercapacitors application.
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1. Introduction

Nowadays, the growing energy crisis has enormously accelerated the demand for efficient, safe
and cost-effective energy storage devices [1,2]. Because of unparalleled advantages such as superior
power density, strong temperature adaptation, a fast charge/discharge rate and an ultralong service
life, supercapacitors have significantly covered the shortage of conventional physical capacitors and
batteries, and sparked considerable interest in the last decade [3–5]. Supercapacitors are generally
classified into electric double layer capacitors storing energy depending on reversible ions absorption
at the interface [6–9] and pseudocapacitors through reversible faradaic redox reactions [10–13]. The
different energy storage mechanisms directly determine whether electric double layer capacitors utilize
carbonaceous materials as electrode materials [6,7,14], while pseudocapacitors employ transition metal
oxides/hydroxides [10,11,15]. Drawing a benefit from faradaic redox reactions, pseudocapacitors
usually generate several times higher specific capacitance than that of electric double layer capacitors,
and have attracted major attention in recent years [15,16].

Among various transition compounds, Co3O4 is extensively recognized as one of the most
representative pseudocapacitive materials owing to its abundant resources, environmental friendliness,
low cost, strong redox activity and more importantly its superior theoretical specific capacitance
(3560 F/g) [17–20]. The series of excellent features have triggered tremendous efforts on Co3O4 research
for high performance supercapacitors application. To date, various solid or hollow structures of Co3O4

have been achieved. The previous progress illustrated the hollow architecture that a highly porous
morphology could provide for a large electroactive surface area with extra active sites and facile
ions transportation, consequently enhancing the electrochemical properties dramatically [21,22]. For
instance, Zhou et al. reported hollow Co3O4 cages and presented the specific capacitance of 948.9 F/g at
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1 A/g (536.8 F/g at 40 A/g) [23]. The hollow Co3O4 nanotubes prepared by Yao et al. demonstrated the
specific capacitance of 1006 F/g at 1 A/g (512 F/g at 10 A/g) [24]. Zhu et al. synthesized hollow Co3O4

spheres and hollow Co3O4 microflowers. The spheres deliver the specific capacitance of 342.1 F/g at
0.5 A/g (235 F/g at 10 A/g), while the microflowers show the specific capacitance of 210 F/g at 0.5 A/g
(180 F/g at 10 A/g) [25]. However, the obtained specific capacitances up to now are far lower than
their maximum theoretical value. Moreover, the Co3O4 also suffers from a poor rate performance.
Obviously, both low specific capacitance and poor rate performance severely hinder the practical
application of Co3O4. Therefore, even though major contributions are achieved, there is still much
room to deeply investigate the ability of the hollow Co3O4 to reach a large specific capacitance closer
to its maximum theoretical value, as well as an excellent rate capability. Recently, metal-organic
frameworks (MOFs), in which zeolitic imidazolate framework (ZIF) is most representative, have
received much attention for constructing a hollow nanostructure for supercapacitor applications.
By using the ZIF as a self-sacrificial template, a well-defined hollow structure as well as a highly
electrolyte ions accessible surface area can be achieved [26–28]. Unfortunately, it is difficult to control
the sizes of nanoarchitectures via a facile approach at present, which fails to further enhance the
electrochemical performance.

In this paper, hollow Co3O4 nanoboxes were successfully prepared from ZIF-67 precursors.
The hollow nanostructure and highly porous morphology of the Co3O4 synergistically enhance the
electrochemical performances. Meanwhile, in this design, the sizes of the nanostructures were well
controlled by the precipitation reaction. There are scarce reports about systematically tunable sizes of
architectures in hollow Co3O4 preparation for high performance supercapacitors. What is more, this
distinctive advantage makes the hollow Co3O4 nanoboxes comprehensively utilized. In this work, the
optimized Co3O4 electrode exhibits an unprecedented specific capacitance (1832.7 F/g at 1 A/g), while
the specific capacitance is still as high as 1324.5 F/g at 20 A/g. In addition, the capacitance only decays
14.1% after 5000 cycles. The pseudocapacitive performances mark the obtained Co3O4 as a promising
electrode material candidate for supercapacitors.

2. Materials and Methods

2.1. Synthesis of Dodecahedral Diamond ZIF-67

Dodecahedral diamond ZIF-67 with different diameters were prepared by a precipitation method.
To achieve this, 0.273, 0.102 or 0.068 M of 2-methylimidazole methanol solution was added to 0.04 M of
cobalt nitrate methanol solution. The mixed solution was stirred for 30 min. Then the cloudy solution
was kept static for 24 h at room temperature. The purple precipitates (denoted as ZIF-67-1, ZIF-67-2
and ZIF-67-3) were obtained and washed with methanol via centrifugation.

2.2. Conversion to Hollow Co-LDH (Co-Layered Double Hydroxide)

The hollow structures were transformed from ZIF-67 (-1, -2, -3) by using a solvothermal reaction.
Afterwards, 0.05 g of ZIF-67 (-1, -2, -3) was dispersed in 0.01 M cobalt nitrate methanol solution and
stirred for 10 min. After that, the pink slurry was transferred to a Teflon-lined stainless-steel autoclave
and kept at 120 ◦C for 1 h. The brown precipitates (named as Co-LDH-1, Co-LDH-2 and Co-LDH-3)
were obtained and washed with methanol via centrifugation.

2.3. Preparation of Hollow Co3O4 Nanoboxes

The Co-LDH (-1, -2, -3) were dried in an oven at 60 ◦C overnight and calcinated at 500 ◦C for 2 h.
The final products were called Co3O4-1, Co3O4-2 and Co3O4-3.

2.4. Material Characterizations

The morphological and structural features of as-prepared samples were examined by scanning
electron microscope (SEM, Hitachi SU8230) at 10 kV. The crystallinity and crystal phase were investigated
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through X-ray powder diffraction (XRD, EQUINOX 1000) with Cu-Kα1 radiation (λ = 1.5406 Å) at a
scanning speed of 6◦/min.

2.5. Electrode Fabrication

Nickel foam (NF, 1.0 cm × 1.0 cm) was selected as the current collector. The as-prepared Co3O4

(80 wt%), acetylene black (15 wt%) and Polyvinylidene fluoride (PVDF, 5 wt%) were added to
N-Methyl-2-pyrrolidone (NMP) and grinded in a mortar thoroughly. The resulting mixture was
pressed on NF and dried in an oven at 100 ◦C overnight. The loading mass was approximately 1 mg.

2.6. Electrochemical Measurements

Cyclic voltammetry (CV) at typical scan rates (5, 10, 20, 50 and 100 mV/s), galvanostatic
charge/discharge (GCD) at representative current densities (1, 2, 5, 10 and 20 A/g) and electrochemical
impedance spectroscopy (EIS) in wide frequency range (100 mHz–100 kHz) were conducted on an
electrochemical workstation (Zahner IM6). The configuration, potential window, electrolyte, counter
electrode and reference electrode were set as three-electrode system, 0–0.65 V, 2 M KOH, Pt net and
Ag/AgCl (3.5 M KCl), respectively.

The specific capacitance of the active material is calculated based on a GCD test according to
Equation (1) [29]:

C =
I∆t

m∆V
, (1)

where: C (F/g) is the specific capacitance; I (A) is the discharge current; ∆t (s) is the discharge time; ∆V
(V) is the voltage window; and m (g) is the mass of active material.

3. Results

Figure 1 presents the XRD patterns of the calcination products. The identified diffraction peaks of
all samples can be assigned to the face centered Co3O4 (JCPDS No. 42-1467, space group: Fd3m (227)),
suggesting a high purity of the samples [30]. According to the Scherrer equation [31], the crystallite
sizes of Co3O4-1, Co3O4-2 and Co3O4-3 are around 23.6, 20.0 and 24.3 nm, respectively.
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Figure 1. X-ray powder diffraction (XRD) patterns of Co3O4-1, Co3O4-2 and Co3O4-3.

Typical SEM images of ZIF-67 are shown in Figure 2a–c. The ZIF-67 present monodispersity
and the average sizes of ZIF-67-1, ZIF-67-2 and ZIF-67-3 are 0.39 ± 0.05, 1.98 ± 0.18 and 3.28 ±
0.37 µm, respectively. Namely, the average sizes increase with the decrease of 2-methylimidazole
concentration. This phenomenon is attributed to the stepwise formation of ZIF-67. The process can
be briefly divided into a nucleation phase and growth stage. In the initial nucleation phase, the
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increased concentration of 2-methylimidazole enhanced the nucleation rate, determining a small size
of each unit cell. Subsequently, diffusive particles slowly grew around the cell to form ZIF-67 [32,33].
After the conversion, the ZIF-67 transferred to hollow Co-LDH with a significant morphology change.
Figure 2d–f shows that there were nanosheets vertically growing on the surface of as-formed ZIF-67
and the average sizes shrunk a little bit. Meanwhile, with the continuous dissolution of the inner cobalt,
the hollow Co-LDH nanoboxes with different sizes were formed. Hollow Co3O4 were obtained through
calcination, as displayed in Figure 2g–i. Beyond expectations, the overall size and hollow feature were
well maintained even after heat treatment, except for Co3O4-1 due to the very thin configuration of the
shell. It could be dimly seen that the shell of hollow Co3O4 consisted of small nanoparticles.
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Figure 2. Scanning electron microscope (SEM) images of dodecahedral diamond zeolitic imidazolate
framework-67 (ZIF-67): (a) ZIF-67-1, (b) ZIF-67-2, (c) ZIF-67-3; hollow Co-layered double hydroxide
(Co-LDH): (d) Co-LDH-1, (e) Co-LDH-2, (f) Co-LDH-3; hollow Co3O4: (g) Co3O4-1, (h) Co3O4-2, (i)
Co3O4-3.

The CV measurements in a potential range of 0–0.65 V (vs. Ag/AgCl) were first characterized
to reveal the supercapacitors behavior of the Co3O4 electrodes. Figure 3a presents CV curves of the
Co3O4 with different sizes at a scan rate of 5 mV/s. As expected, all samples deliver a distinct pair
of peaks induced by a faradaic redox reaction, which clearly reveals the typical pseudocapacitive
characteristics [23,24]. In particular, the integrated area under CV curve of Co3O4-2 electrode is the
largest among three Co3O4 electrodes, demonstrating that the Co3O4-2 possesses the largest specific
capacitance [34]. The CV curves of the Co3O4-2 electrode measured at typical scan rates from 5 to 100
mV/s are displayed in Figure 3b. The following classical and desirable pseudocapacitive phenomena
were observed: (1) the CV curves are highly symmetrical; (2) the peak currents remarkably increase
along with the increase of scan rates; (3) the peak position also changes accompanied by the increase
of scan rates. The peaks generated in the anodic sweep shifted to a higher potential value, while
the peaks which originated from the cathodic sweep moved towards a lower potential value; (4) no
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significant distortion existed in a comparison of CV curves obtained at 5 and 100 mV/s. Notably,
the obvious increase of peak currents and excellent symmetries in CV curves as well as negligible
distortion indicate the rapid and well reversible redox process [30], further possibly resulting in an
outstanding rate capability.
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Figure 3. (a) Cyclic voltammetry (CV) curves of Co3O4-1, Co3O4-2 and Co3O4-3 electrodes at scan rate
of 5 mV/s; (b) CV curves of Co3O4-2 electrode at typical scan rates ranging from 5 to 100 mV/s.

GCD tests between potential window of 0–0.65 V (vs. Ag/AgCl) were conducted to further
investigate the capacitive properties. The discharge curves of Co3O4-1, Co3O4-2 and Co3O4-3
electrodes at representative current densities of 1, 2, 5, 10 and 20 A/g are presented in Figure 4a–c,
respectively. It is intuitive that all discharge curves deliver evident plateaus coinciding with the redox
reaction, which also confirms the pseudocapacitive behavior of each Co3O4 [25,30]. In addition, the
GCD performances comparison at current densities of 1 A/g shown in Figure 4d also confirms the
Co3O4-2 sample offers the largest specific capacitance [29], which is consistent with the aforementioned
CV result (Figure 3a).

Appl. Sci. 2020, 10, 1208 5 of 12 

 

distortion indicate the rapid and well reversible redox process [30], further possibly resulting in an 
outstanding rate capability. 

 
Figure 3. (a) Cyclic voltammetry (CV) curves of Co3O4-1, Co3O4-2 and Co3O4-3 electrodes at scan rate 
of 5 mV/s; (b) CV curves of Co3O4-2 electrode at typical scan rates ranging from 5 to 100 mV/s. 

GCD tests between potential window of 0–0.65 V (vs. Ag/AgCl) were conducted to further 
investigate the capacitive properties. The discharge curves of Co3O4-1, Co3O4-2 and Co3O4-3 
electrodes at representative current densities of 1, 2, 5, 10 and 20 A/g are presented in Figure 4a–c, 
respectively. It is intuitive that all discharge curves deliver evident plateaus coinciding with the redox 
reaction, which also confirms the pseudocapacitive behavior of each Co3O4 [25,30]. In addition, the 
GCD performances comparison at current densities of 1 A/g shown in Figure 4d also confirms the 
Co3O4-2 sample offers the largest specific capacitance [29], which is consistent with the 
aforementioned CV result (Figure 3a). 

 

Figure 4. Discharge curves at representative current densities ranging from 1 to 20 A/g: (a) Co3O4-1, 
(b) Co3O4-2, (c) Co3O4-3; (d) discharge curves of Co3O4-1, Co3O4-2 and Co3O4-3 electrodes at current 
density of 1 A/g. 

The specific capacitances based on GCD measurements are calculated according to Equation (1) 
for all Co3O4 electrodes, and the results are plotted in Figure 5. The Co3O4-2 electrode exhibits the 
specific capacitances of 1832.7, 1760.9, 1640.4, 1526.6 and 1324.5 F/g at 1, 2, 5, 10 and 20 A/g, 

Figure 4. Discharge curves at representative current densities ranging from 1 to 20 A/g: (a) Co3O4-1,
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The specific capacitances based on GCD measurements are calculated according to Equation
(1) for all Co3O4 electrodes, and the results are plotted in Figure 5. The Co3O4-2 electrode exhibits
the specific capacitances of 1832.7, 1760.9, 1640.4, 1526.6 and 1324.5 F/g at 1, 2, 5, 10 and 20 A/g,
respectively. Moreover, Figure 5 demonstrates that the boost in current densities leads to a decrease in
specific capacitances. Unfortunately, the similar fading tendencies of Co3O4-1, Co3O4-2 and Co3O4-3
are inevitable owing to the correlation between current density and electrolytic ions diffusion (OH–
in this study) in electrode material (Co3O4 in this study). Namely, compared with the diffusion at
high current density, the OH– ions have relatively sufficient time to transfer at a low current density.
The phenomenon gives rise to inner active sites failing to be comprehensively devoted to the redox
reaction at high current density. In contrast, both the inner and outer surface can be involved at low
current density, thoroughly making a redox reaction proceed and thus contributing to a large specific
capacitance [35]. Nevertheless, the Co3O4-2 electrode can maintain capacitance of 72.3% from 1 to 20
A/g (43.5% of Co3O4-1, 62.6% of Co3O4-3). The slight decay provides the Co3O4-2 bright application
with the high power required for energy storage devices. The relieved fading in specific capacitances
can be explained by the unique morphology of synthesized Co3O4. During the redox process, the
hollow structure can serve as an “OH– ions buffer reservoir” [35] to effectively minimize the influence
of limited ions diffusion at a high current density on rate performance. In short, the impressive
performances in specific capacitance and rate capability make the as-synthesized Co3O4-2 a promising
electrode material in supercapacitors application.
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Figure 5. Specific capacitances of Co3O4-1, Co3O4-2 and Co3O4-3 electrodes as a function of
current densities.

Figure 6a illustrates the Nyquist plots of different Co3O4 electrodes from frequency range of
100 mHz to 100 kHz. The plots of Co3O4-1, Co3O4-2 and Co3O4-3 are similar, which consists of a
semicircle and a straight line. The intersection value of plot and real axis reflects the intrinsic resistance
and interface resistance of electrolyte and active material (denoted as Rs) [35]. The Rs of Co3O4-1,
Co3O4-2 and Co3O4-3 are 0.55, 0.52 and 0.53 Ω, respectively (tiny difference). The semicircle acquired
in high frequency range represents the double-layer capacitance (Cdl) and the charge-transfer resistance
(Rct, corresponds to the semicircle diameter). The semicircle also expresses that the Cdl and Rct are
connected in parallel [36]. Apparently, the Rct value of Co3O4-2 is much smaller than Co3O4-1 and
Co3O4-3 (Figure 6b). In low frequency region, the approximate line in Nyquist plot is related to the
interfacial diffusive process and determined by pseudocapacitance (Cps) and Warburg element (W).
The equivalent circuit is shown in Figure 6c. Benefited from the hollow structure constructed by
numerous nanoparticles, the slops for all electrodes are larger than 45◦, which presents an efficient
electrolyte diffusion. Furthermore, a quasi-vertical line displayed by the plot of Co3O4-2 electrode
implies a scarcely limited ions diffusion and the behavior tends to an ideal capacitor [23,36]. The
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merits of Co3O4-2 electrode proposed in EIS results well coincide with the superior electrochemical
performance of Co3O4-2 electrode in CV and GCD assessments.Appl. Sci. 2020, 10, 1208 7 of 12 
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The Co3O4-2 was employed as the optimized electrode through CV, GCD and EIS results for long
term cycling investigation, as recorded in Figure 7. The evaluation was carried out by using a repetitive
GCD process at 20 A/g. The Co3O4-2 electrode retains 85.9% of its initial specific capacitance even after
undergoing 5000 cycles. The insets display the GCD curves of the Co3O4-2 electrode at first and last
for 10 cycles. The coulombic efficiency (η) is also an important criterion for evaluating the durability
and can be calculated based on Equation (2) [37]:

η =
td

tc
, (2)

where td (s) is the discharge time and tc (s) is the charge time. All deduced coulombic efficiency values
reach over 95%. The excellent electrochemical stability of Co3O4-2 electrode is significant for possible
commercial application.
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4. Discussion

In this study, the different electrochemical performances of Co3O4-1, Co3O4-2 and Co3O4-3 are
determined by their own structural features. For Co3O4-1, mass collapsed structures accompanied the
loss of opening pores, which were caused by ultrathin shells, while severely reducing the available
surface area, as observed from a SEM image (Figure 2g). In contrast, during the fabricated process
of Co3O4-2 and Co3O4-3, morphologies were well inherited not only in synthesis of Co-LDH from a
ZIF-67 precursor but also in conversion of Co-LDH to Co3O4 (negligible aggregation). The hollow
nature as well as the highly porous architecture (the shell is assembled by numerous nanoparticles)
provide a large electrochemical active area with increased active sites for redox reactions. In addition,
the unique morphology also significantly facilitates electron transportation and ion diffusion and
permeation in electroactive material. The relatively lower electrochemical performance of Co3O4-3
electrode is possibly due to the decreased accessibility of electrolyte ions into material produced by
the large size and thick shell [38–40]. Table 1 compares this work with other Co3O4 based electrodes
reported in previous literature. It clearly demonstrates that the specific capacitance of hollow Co3O4

nanoboxes electrode in this research is competitive, and even higher than some Co3O4 hybrid materials.
More importantly, the Co3O4 electrode reaches a specific capacitance of 1324.5 F/g at a high current
density of 20 A/g. The value at 20 A/g is superior to some Co3O4 electrodes at 1 A/g. Except for the
two criterions, a slight capacitance decay of 14.1% after 5000 cycles is also worth noting.

Table 1. Specific capacitances at low current density and high current density (rate performance) of
Co3O4 based electrode materials.

Material Specific Capacitance (F/g)/
Low Current Density (A/g)

Specific Capacitance (F/g)/
High Current Density (A/g) Ref.

hollow Co3O4 3D-nanonet 739/1 533/15 [35]
hollow Co3O4 spheres 474.8/1 377.4/10 [37]
hollow Co3O4 spheres 460/4 401/20 [41]
hollow Co3O4 corals 527/1 412/10 [42]

hollow Co3O4 dodecahedron 1100/1.25 437/12.5 [43]
hollow Co3O4 nanowires 599/2 439 /40 [44]

Co3O4 nanowires 977/2 484/10 [45]
Co3O4 nanosheets 1121/1 873/25 [46]
Co3O4 nanoflakes 448/0.5 421/10 [47]
Co3O4 nanobooks 590/0.5 421/8 [48]
Co3O4 nanoplates 355.6/0.4 230/4 [49]
Co3O4 nanofibers 340/1 296/10 [50]

carbon incorporated Co3O4 978.9/0.5 303.3/15 [51]
Mn doped Co3O4 773/1 485/16 [52]
Co3O4/CoMoO4 1902 /1 1200/10 [53]

Co3O4/NiO 1236.7/1 836.7/20 [54]
Co3O4/Ni(OH)2 1306.3/1.2 600 /12.1 [55]
graphene/Co3O4 1765 /1 1266 /20 [56]

rGO/Co3O4 546/0.5 496/5 [57]
NiO/Co3O4/MnO2 1055.3/0.2 727.4/4 [58]

hollow Co3O4 nanoboxes 1832.7/1 1324.5/20 Ours

5. Conclusions

In summary, hollow Co3O4 nanoboxes were synthesized successfully by using a facile method,
in which the overall sizes of the Co3O4 were effectively controlled and as a consequence resulted in
different supercapacitor performances. An overwhelming specific capacitance of 1832.7 F/g at 1 A/g
and a comparable cycling stability of 85.9% after 5000 cycles are achieved in optimal Co3O4 electrode.
In particular, the Co3O4 electrode still retains 72.3% of the specific capacitance, even at 20 A/g. The
outstanding performances qualify the hollow Co3O4 nanoboxes an attractive electrode material in
research field and commercial application of supercapacitors. Furthermore, the morphologic features
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and tunable sizes make the applications of as-prepared Co3O4 promisingly extend to other aspects,
especially in highly accessible surface area required fields, such as catalysts and gas sensors.
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