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A B S T R A C T

Enhanced biological phosphorus removal (EBPR) from municipal wastewater has been achieved in a multistage
Moving Bed Biofilm Reactor (MBBR) configuration. The process operations can be further optimized by real-time
monitoring of water quality parameters in the individual chambers of the EBPR-MBBR process. This work
presents a hybrid, soft-sensor as a cost-effective monitoring option for real-time estimation of phosphates
(PO4

3−-P) and soluble COD (sCOD) concentrations in the anaerobic chambers of a multistage EBPR-MBBR pilot
plant. The soft-sensor is developed by implementing an Extended Kalman filter on a reduced-order nutrient
removal model. The hybrid model is constructed by combining mechanistic elements of phosphorus release
kinetics in anaerobic conditions, and a statistical model correlating PO4

3−-P and sCOD concentration with
conductivity measurements. A systematic method for developing, calibrating a reduced-order model and tuning
of the Kalman filter parameters have been discussed in this work. The drift in soft-sensor performance was
studied and practical solutions were suggested for re-calibrating the model utilizing data from periodic lab
measurements. The estimation results are successfully validated against standardized lab measurements to de-
monstrate the accuracy of the soft-sensing algorithm.

1. Introduction

Enhanced biological phosphorus removal (EBPR) process is a
treatment configuration designed for phosphorus removal from waste-
water. The EBPR process consists of an anaerobic stage before the
aeration stage, where a specific species of biomass called polypho-
sphate-accumulating organisms (PAO) is enriched [1]. A novel config-
uration was reported by [13] for achieving EBPR in a continuous
moving bed biofilm reactor (MBBR) process. The reactor performance is
currently monitored using off-line laboratory analysis of PO4

3−-P, so-
luble Chemical Oxygen Demand (sCOD) volatile fatty acids (VFA) am-
monium (NH4

+-N), nitrites (NO2
--N) and nitrates (NO3

--N). However,
off-line monitoring implies a low sampling frequency, leading to po-
tential non-optimal conditions between the sampling instances, and a
subsequent delay between sampling time, hampering adjusting of the
process conditions, and data availability. Manual sample collection,
sample preparation, and lab analysis involve additional man-hours and
costs associated with chemicals and kits required for lab analysis.

Real-time measurement of nutrient concentration can result in
faster detection of process abnormalities. Online monitoring of nu-
trients in the plant can also enable the possibility of implementing
various control strategies to ensure stable and optimal performance of
the treatment process [2]. However, the unavailability of sensor probes
and the high price of online nutrient analyzers often discourage their
use in treatment plants [3]. Soft-sensors are a viable alternative for
expensive composition analyzers or unreliable sensor probes [4]. A
review on the use of data-driven soft-sensors for enhancing online
monitoring in wastewater treatment operations is presented in [5].
Several case-studies on simulator-based evaluation as well as full-scale
implementation of soft-sensors in wastewater treatment processes are
reported in literature [6,7].

Parameters such as pH, oxidation-reduction-potential (ORP), dis-
solved oxygen (DO), and electrical conductivity (EC) can be measured
using inexpensive and low-maintenance sensors. Conductivity mea-
surements, which directly correlate to the ionic strength of the solution,
can be used to predict the nutrient concentrations in biological
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wastewater treatment processes [8]. Both mechanistic [9,10], as well as
data-driven models [11], have been used to demonstrate a positive
correlation between conductivity measurements and the concentration
of PO4

3−-P as well as acetates (which can be one of the components of
sCOD) concentrations in biological nutrient removal process. However,
most work has been done either in a lab-scale using synthetic waste-
water or in a sequential batch reactor [12]. We have not yet found
reports of its implementation in a continuous treatment process with
unmeasured variations in the influent wastewater quality.

The multistage MBBR is a novel process, designed for EBPR from
municipal wastewater [13]. Several lab-scale studies have established a

correlation between the anaerobic phase-length and the overall PO4
3−-

P removal during EBPR process. Control strategies aimed at manip-
ulating the anaerobic phase-length in pilot plant or the dosage of ex-
ternal carbon source requires real-time monitoring of water quality
parameters in the multistage MBBR process. The unfeasibility of in-
stalling nutrient sensors in each chamber establishes the importance of
a cost-effective online monitoring system in the pilot plant. This work
attempts to enhance the online monitoring system in a multistage
EBPR-MBBR process [13] by implementing a conductivity based soft-
sensor for real-time estimation of water quality parameters such as
PO4

3−-P and sCOD in their anaerobic stages.

Nomenclature

Variables

xk State variable at discrete time instance k
Ts Time step h( )
zk Measurement vector

Residence time in each chamber h( )
Xs,in Particulate biodegradable in influent g COD m( . )3

Xs,i Particulate biodegradable in chamber i g COD m( . )3

Ss,in Soluble biodegradable in influent g COD m( . )3

Ss,i Soluble biodegradable in chamber i g COD m( . )3

Spo,in Soluble ortho-phosphates in influent g COD m( . )3

Spo,i Soluble ortho-phosphates in chamber i g P m( . )3

Cin Conductivity measurements in the influent µS cm( / )
Ci Conductivity measurements in the chamber i µS cm( / )
f Nonlinear state transition function
h Nonlinear measurement function
KH Saturation coefficient of fermentation g COD m( . )3

KS Saturation coefficient of PHA storage g COD m( . )3

r1 Rate constant for hydrolysis g P m h( . )3 1

r2 Rate constant for PHA storage g COD m h( . )3 1

1 Temperature coefficient for r1
2 Temperature coefficient for r2

YPO Yield coefficient for PO release g P g COD( / )
i Regression parameters

fOBJ Objective Function
N Number of datapoints

exp Experimental Data
model Model Predicted Values

N Number of points in the dataset
F Linearized state transition matrix
H Linearized measurement vector

+P0 Initial estimate of Autocovariance matrix
+x0 Initial estimate of EKF

R Covariance matrix of measurement noise
Q Covariance matrix of process noise

Fig. 1. Process flow diagram (top view) and the sensor network installed in the pilot plant. (Figure modified from [13]).
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2. Materials and methods

2.1. Pilot plant setup and operational data

The pilot plant located in the wastewater lab at the Norwegian
University of Science and Technology (NTNU) was used to test and
validate the phosphate soft-sensor [13]. The reactor has a total working
volume of 1 m3, divided into 10 chambers of equal volume, operating
with a hydraulic retention time (HRT) of 6.5 h (Fig. 1). The pilot plant
contains the standard biofilm carriers (Kaldnes K1) with 60 % filling in
each of the chambers. The opening in the separation walls of the
chamber allows the flow of wastewater and carriers between different
zones. Mechanical agitators ensure sufficient mixing of the carriers in
the anaerobic zones. The first three chambers of the pilot plant operate
as anaerobic reactors, and the subsequent chambers are aerated. The
carriers from the last aerobic zone (Chamber 10) are transported to the
first anaerobic zone (Chamber 1) by a conveyor belt. The pilot plant
layout, online monitoring, and the data acquisition system are pre-
sented in Fig. 1. The pilot plant is fed continuously with wastewater
(3.6 m3/day) from a storage tank which receives fresh wastewater from
a nearby sewer once every hour. The raw wastewater undergoes pri-
mary treatment, where it is passed through a fine sieve to remove larger
particles, before sending it to the biological stage (MBBR).

The pilot plant is equipped with a state-of-the-art online monitoring
system with remote data access capabilities. It has a conductivity sensor
in chamber 1, chamber 3, and the influent (Fig. 1). All the online
sensors are connected to a Supervisory Control And Data Acquisition
System (SCADA) provided by DOSCON AS.

The mean values of sCOD and PO4
3−-P in the influent and effluent

streams and the average removal (%) in the pilot plant are presented in
Table 1. The multistage MBBR can operate with a flexible anaerobic/
aerobic phase length by controlling the aeration in Chamber 2 and 3 of
the pilot plant. Monitoring PO4

3−-P concentrations in chamber 1–3
provides real-time information on the phosphorus released in the
anaerobic phase. Real-time control of anaerobic phase length based on
feedback from the PO4

3−-P soft-sensors can provide an indirect way of
controlling the percentage of PO4

3−-P removed by the pilot plant.

2.2. Mathematical model

Various models explaining biological nutrient removal exist in the
literature [14]. These models vary from comprehensive mechanistic
models such as ASM 2d [15] to data-driven statistical models [16].
Literature also mentions the use of a reduced-order version of the
comprehensive ASM models for state estimation [17,18]. Mathematical
models combining the mechanistic understanding of the nutrient re-
moval process with a statistical correlation between nutrient composi-
tion and physical parameters such as pH, DO, or conductivity can also
be used to develop soft-sensors for biological nutrient removal pro-
cesses [19].

2.2.1. Reduced-order PO4
3−-P release model

In this work, a simplified version of the phosphorus release model
was implemented. The kinetic equations explaining PO4

3−-P release
during the anaerobic phase of the EBPR can be found in literature [15].
These equations were used as a basis to develop the mathematical
model for the anaerobic chamber of the multistage MBBR pilot plant.
The sub-model includes the following three processes occurring in
parallel.

a) Hydrolysis of particulate biodegradable COD X( )s to soluble biode-
gradable COD S( )s .

b) Uptake of soluble biodegradable COD S( )s to store poly-hydroxy-
alkanoates (PHA) in the biomass.

c) Consumption of stored polyphosphates (PP) in the biomass and si-
multaneous release of soluble ortho-phosphates S( )PO .

The original ASM2d model with 19 states and 21 processes poses a
significant challenge in their utility as a model for soft-sensing. The
usual strategy is to reduce the number of states in the original AMS2d
model by either assuming the states with relatively slower dynamics as
constants or by eliminating processes with a relatively insignificant
effect on rate-kinetics. Several examples regarding the use of reduced-
order sub-models for soft-sensing are reported in literature [20,21]. The
model reduction strategies discussed in [22–24] were used to make the
following assumptions.

a) The growth and decay kinetics of biomass are ignored. Hence, the
model only considers the kinetics of substrate degradation pro-
cesses.

b) The release of ammonium S( )NH due to ammonification is con-
sidered insignificant in the anaerobic chambers, and hence it is ig-
nored.

c) The release of soluble ortho-phosphates S( )PO during hydrolysis of
particulate biodegradable COD X( )s is ignored since it is negligible
compared to S( )PO released due to the consumption of stored poly-
phosphates (PP).

d) The rate of storage of PHA would not be affected by PHA con-
centration in the biomass.

e) The temperature dependency of the rate constant for hydrolysis r( )1
and rate constant for PHA storage r( )2 follow the exponential term
with coefficients ( )1 and ( )2 .

The schematics of the process equations and the rate-kinetics oc-
curring during the anaerobic stages of the biological phosphorus re-
moval, and the bench-scale setup used to study the reaction kinetics are
presented in Fig. 2.

2.2.2. State-space equations
Every chamber in the multistage MBBR system is modelled as a

continuous-stirred tank reactor (CSTR). The mass balances and rate
kinetics are adapted for all three anaerobic chambers of the CSTR. The
influent concentrations of particulate COD (Xs,in), soluble COD (S )s,in ,
and phosphates (Spo,in) are modelled as ‘random-walk’ and included in
the state-vector [29]. The augmented state variables, to be estimated by
the soft-sensor, is presented in Eq. 1. The Monod’s rate-kinetics in the
continuous state-space form is presented in Eq. 2. The discrete state-
space form of the model (Eq. 5) is obtained by discretizing the con-
tinuous-time model using an explicit Euler forward method with time-
step TS.
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Table 1
Influent and effluent wastewater quality to the pilot plant and average removal
percentages.

Parameter Influent Effluent Average Removal (%)

mean min max mean min max

sCOD 155.4 32 357.1 30.9 17.1 62 80.1
PO4

3−-P 4.3 0.5 7.6 1.01 0.096 2.41 76.1
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= =y h x i x i i( (3 1), (3 )) 1, 3, 5k (3)

=z C C C[ ]k in 1 3 (4)

= +x x T f x( )Sk k 1 k 1 (5)

In Eqs. (1)–(5), k is the discrete-time index and τ is the residence

time in each chamber. xk is the state-vector at time instance k. The
variables Xs,j, Ss,j, and Spo,j correspond to the particulate biodegradable,
soluble biodegradable and soluble ortho-phosphates in chamber j (j =
1, 2, 3). f and h are the nonlinear state transition and measurement
function respectively. zk is the measurement vector, and yk is the model
predicted value of the conductivity measurement at time instance k.
The kinetic parameters KH , KS, r1, r2, 1, 2, and the stoichiometric
parameters YPO (explained in Table 2) are determined by fitting the
model to the data obtained from performing kinetic tests in a batch
scale reactor.

2.2.3. Measurement equation
The data from the batch kinetic experiments, as well as results

presented in literature [9,10], indicate a clear relationship between
electrical conductivity and various nutrient compositions present in
wastewater. The mathematical equations to quantitatively express
conductivity as a function of ionic species in the wastewater had been
previously reported [8,25]. However, the simplified model used in this
work has just two species, represented as state variables Ss and Spo in-
fluencing the changes in electrical conductivity. Therefore, we use a

Fig. 2. Setup for batch kinetic experiment and associated mechanism for phosphorus release during the anaerobic phase.

Table 2
Stoichiometric and Kinetic parameters for the reduced order model.

Parameter Description Value Min Max Units

KH Saturation coefficient of
hydrolysis

0.10 0.01 6 g COD m−3

KS Saturation coefficient of PHA
storage

5.548 0.1 50 g COD m−3

r1 Rate constant for hydrolysis 205 1 2000 g P m−3 h-1

r2 Rate constant for PHA storage 421 1 2000 g COD m−3

h-1

1 Temperature coefficient for r1 1.093 1 5
2 Temperature coefficient for r2 1.047 1 5

YPO Yield coefficient for PO4
3−-P 0.064 0 1 g P/ g COD

Fig. 3. Variations in (a) PO4
3−-P and sCOD (b) Conductivity during the batch tests.
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statistical method to regress the data obtained from the kinetic tests to a
generic equation form which includes higher powers and binary inter-
action terms of the predictors (Ss and S )po . The use of similar model
forms to correlate water quality parameters have been previously

reported in literature [33].

= = + + + + +h S S C S S S S S S( , )s po 0 1 s 2 po 3 s
2

4 po
2

5 s po (6)

The Regression Learner Toolbox in MATLAB was used to identify a

Fig. 4. Regression plot experimental results versus model predicted values (a) soluble COD, (b) soluble PO4
3−P, (c) Conductivity, and (d) Residual plots.
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correlation between the species Spo, Ss and the data received from the
conductivity sensor installed in the experimental unit used for the ki-
netic study. The final model form (Eq. 6) was derived by assessing the
significance of each regression coefficients using t-statistic and selecting
the parameters that significant at 5% significance level.

2.3. Batch experiments and model calibration

To evaluate the biomass kinetics and to estimate the kinetic and
stoichiometric coefficients of the reduced-order model, a series of batch
experiments were conducted. To perform the experiment, the carriers
colonized with PAOs were taken from the MBBR pilot and filled in a 1 L
beaker at 60 % filling degree and raw wastewater. Nitrogen gas was
initially bubbled through the reactor to remove the oxygen from the
wastewater and ensure perfect anaerobic conditions. The beaker was
continuously mixed using a mechanical stirrer. The batch reactor was
equipped with an online conductivity sensor for continuous monitoring
of electrical conductivity during the cycle. A data logger was connected
to the conductivity sensor and was configured to log the conductivity
measurement every 1 min during the entire duration of the batch test.
The breaker was sealed to maintain anaerobic conditions during the
test. The schematic of the test beaker is presented in Fig. 2. Samples for
analysis of sCOD and PO4

3−-P were taken every 15 min for an entire
test period of 2 h. The water quality parameters were measured using
Dr. Lange cuvettes (LCK 350 and LCK 348 for PO4

3−-P and LCI400 and
LCK 314 for COD) and HACH LANGE GmbH (DR 1900, China) spec-
trophotometer.

The data obtained from the batch experiment was fit to the math-
ematical model explained in Eq. (1) to Eq. (6). The optimization pro-
cedure, using the minimization of quadratic-error function [26], was
used to fit the model and obtain the kinetic parameters. The optimi-
zation problem is expressed in Eqs. 7 and 8.

N

=
pmin [ ( )]

p i 1
exp model

2

(7)

lb p ub (8)

‘p’ is a vector consisting of the model parameters that are to be
estimated. The terms ub and lb are the upper and lower bounds of the
parameter vector. N is the number of datapoints obtained from the
kinetic experiment. The objective function is defined as the least-square
error between the experimental values = s PO[ COD P]exp 4

3 , and their
corresponding model predicted values =p S S( ) [ ]model s po . The lb and ub
of the parameter vector p, along with the results of the optimization
problem are presented in Table 2. Due to the lack of an appropriate
initial guess for the parameters, a high range was provided to lb and ub
to ensure a wider search area for the optimization algorithm. The op-
timization problem was solved with MATLAB. The fmincon function
using the interior-point algorithm was combined with the grid search
method to solve the optimization problem and obtain the model para-
meters.

2.4. Soft-sensor algorithms

The Kalman Filter is a commonly used algorithm for estimating the
state variables in linear systems. Several versions of the original Kalman
Filter algorithm can be used to estimate the states of a nonlinear system.

The Extended Kalman Filter (EKF) computes the Kalman gain by using a
linearized version of the nonlinear functions describing the state-space
as well as measurement equations. Eqs. (9) – (15) describe the EKF
algorithm used for estimating the states of the MBBR system. The
equations are written in the order they have been programmed in
Python.

= +
+

F I T f
x x u

k 1 s
,k 1 k (9)

= ++ +x x T f x u( , )k k 1 s k 1 k 1 (10)

= ++P F P F QT
kk k 1 k 1 k 1 1 (11)

=H h
x x u

k
,k k (12)

= +K P H H P H R( )T T
kk k k k k k 1

1 (13)

= ++x x K z h x( ( ))k k k k (14)

=+P I K H P( )k k k k (15)

In the equations above, xk is the state variable at time instance k, zk
is the measurement vector, Q and R are the covariance matrices of the
process and measurement noise, respectively. f and h are the nonlinear
state space and measurement functions. F is the linearized state tran-
sition matrix, and H is the linearized measurement matrix. I is the
identity matrix, xk is the a priori estimate of the state, +xk the a posteriori
estimate of the state, Kk the Kalman gain, Pk the covariance of a priori
estimation error, and +Pk the covariance matrix of the a posteriori esti-
mation error.

2.5. Implementation in pilot plant

The pilot plant SCADA system provides access to real-time data from
the online sensors through a remote SQL server. The mathematical
model (Eqs. (1)–(6)) and the EKF algorithm (Eqs. (9)–(15)) are written
as a Python script and can be executed on a single board computer
(Raspberry Pi 3B+). This open-source, non-intrusive, remote deploy-
ment strategy [27] is used to implement the soft-sensor algorithm in the
pilot plant. The Python script was used for simulator-based testing,
tuning of the EKF parameter, and the real-time deployment of the soft-
sensing algorithm.

3. Results and discussion

3.1. Model calibration results

The results obtained from the batch experiments are presented in
Fig. 3. The plots indicate an increase in conductivity measurements
when the PO4

3−-P ions are released and sCOD is consumed under
anaerobic conditions, These observations are consistent with the results
obtained from similar experiments [12,25,8].

The results from the parameter estimation exercise, showing a
comparison between model-predicted and experimental values fol-
lowed by their residual plots are presented in Fig. 4. The R2 values of
0.96 and 0.97 indicate a good correlation between the experimental
data and the model. The stoichiometric and kinetic parameters ob-
tained by implementing the parameter estimation algorithm (Eqs.

Table 3
Regression parameters for the measurement model.

Parameter 0 1 2 3 4 5

Values 539 −0.0031 1.91 0.000610 0.00141 −0.0220
Confidence Interval ± 14.8 ± 0.0005 ± 0.12 ± 0.00007 ± 0.0008 ± 0.0014
p-Value 1.28e-11 3.63e-4 8.43e-8 4.31e-5 2.17e-16 1.81e-7

A.M. Nair, et al. Journal of Water Process Engineering 37 (2020) 101494
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(7)–(8)) on the data obtained from the batch experiments are presented
in Table 2. A good match between experimental versus model predicted
values and the corresponding R values close to 1 and a random

distribution of the errors along the zero-error line (presented in the
residual plot) validates the accuracy of the model.

The coefficients of the measurement model (Eq. 6) obtained by

Fig. 5. Soft-sensor validation for phosphates (a) Chamber 1 (b) Chamber 2 (c) Chamber 3 (d) Influent (e) Measured versus estimated values (f) Residual plots.
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correlating the ionic concentration to the conductivity measurement,
using the Regression Learner toolbox is presented in Table 3. Table 3.
also presents the results of significance tests for all the estimated
parameters obtained by conducting the t-statistics on the model. The p-
value for the t-statistic of the hypothesis test indicates that all the
parameters are significant within the 5% significance interval.

3.2. Tuning the EKF parameters

The tuning parameters of Kalman filter +x0 , +P0 , Q, and R described in
Eq. (9) to Eq. (15) have to be obtained before using it to estimate the
concentration of phosphates (PO4

3−-P) and sCOD in the pilot plant.
Some guidelines for tuning EKF parameters have been suggested in
literature [28]. However, in practical applications, a little trial-and-
error combined with some operational knowledge of the process would
be used to tune these parameters. The guidelines mentioned in [29]
have been used as a base for the simulator-based testing of the EKF and
to obtain the tuning parameters.

Tuning of +x0 : A reasonable initial guess of +x0 is its steady-state
values. In our case, this value of +x0 is set equal to the designed steady-
state values of the state variables in each chamber.

=+x [230 150 4.4 169 54.9 14.0 109 9.1 20.6 48.9 3.4 30.1]0

(16)

Tuning of +P0 : The initial guess for the apriori estimation error is an
n x n diagonal matrix. The values are decided based on the confidence
levels in the initial estimation of state variables.

=+P k xdiag [ ]i i0 (17)

By trial and error, it was found that the following values provide a
good estimation, where the estimated states approach the simulated
state within a reasonable short time-span (30 min in our case).

=k [15 5.1 6 2 1 0.5 3 2 1.1 2 1 0.5] * 10i
3 (18)

Tuning of R: A gaussian noise with a standard deviation of 0.01 was
observed in the measurements provided by conductivity sensors.
Therefore, the measurement noise covariance matrix R was calculated
as the square of the standard deviation of the noise observed in con-
ductivity sensors installed in chamber 1, 3, and the influent.

= =R [0.01 0.01 0.01 ] [1 1 1] * 102 2 2 4 (19)

Tuning of Q: The process noise covariance matrix, Q, is assumed to
be a diagonal matrix, with diagonal elements related to the initial guess
of the pertinent state variable scaled through the factors li:

= +Q l xdiag([ ] )i o i,
2 (20)

In the simulator-based testing, values of li are adjusted so that the
estimated values converge faster (within 30 min) to the assumed true
value and at the same time do not exhibit too much noise in the esti-
mated values. By trial and error, the values were found to be as follows.

=l{ } [1.2 0.21 1.4 2 1 3.7 1 1 1.6 2 2.1 3.3] * 10i
3 (21)

3.3. Validation in pilot plant

The soft sensor was implemented in the pilot plant, and the esti-
mation results for phosphate concentration in the anaerobic chamber
and the influent are observed for a period of two weeks. During the
evaluation period, one grab sample was collected every day and ana-
lyzed for PO4

3−-P concentration. Fig. 5 presents a comparison between
the phosphate concentration estimated by the soft-sensor and the values
measured using standardized lab tests. The comparisons are provided
for the influent and all three anaerobic chambers. The normalized root-
mean-square error (NRSME) and R2 values are also presented in Fig. 5.
The R2 value above 0.8 even with a limited data series demonstrates the
EKF’s potential to estimate the phosphate concentration in the pilot
plant.

The soft-sensor can also potentially estimate the sCOD in the system.
The estimation results for sCOD in each chamber are presented in Fig. 6.
Although no rigorous validation tests (similar to the PO4

3−-P mea-
surement) were conducted to assess the accuracy of sCOD estimations
in each anaerobic chamber, a comparison between the influent sCOD
estimation and the corresponding sCOD lab measurements presented in
Fig. 7b demonstrates their potential in estimating influent sCOD con-
centrations. However, more rigorous validations have to be conducted
to confirm their ability to estimate sCOD concentrations in all the
anaerobic chambers.

Fig. 6. Soft sensing results for sCOD concentration in the anaerobic chambers.
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Fig. 7. Long-term evaluation of soft-sensor performance and influence of recalibration strategy on (a) influent PO4
3−-P (b) influent sCOD. Measured vs estimated

values (c) PO4
3−-P (d) sCOD. Residual Plots (e) PO4

3−-P (f) sCOD.
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3.4. Influence of recalibration strategy

To assess the robustness of the conductivity based soft-sensor and to
study their long-term performance, the estimated values Ss,in and Spo,in
were monitored for an additional period of 3 months (14th October
2019 to 06th February 2020). The assessment was performed by com-
paring the lab results from the biweekly measurements of sCOD and
PO4

3−-P concentrations in raw wastewater to the corresponding values
of Ss,in and Spo,in, respectively, estimated by the soft-sensor. Preliminary
assessment of soft-sensor showed that, although the estimation results
were very close to the lab measurements for the first 3 weeks, from the
beginning of week 4 (on 5th November 2019), the first sign of drift from
the lab measurements started to appear.

The accuracy of the mathematical model is a vital element in the
performance of the soft sensor. A possible reason could be attributed to
the drift in the measurement model adopted in this work. It should be
noted that the parameters ( i) mentioned in Eq. (6) is obtained by
correlating the conductivity measurements to the concentration of
sCOD and PO4

3−-P obtained from the kinetic tests on a batch scale.
However, in reality, the wastewater used in the batch tests contains
many other ionic species affecting the conductivity measurements [8].
A few prior works, such as [30], report a stable correlation between
electrical conductivity and PO4

3−-P release during anaerobic condi-
tions of an EBPR process. However, a substantial change in the ratio
between various ionic species of the influent wastewater over an ex-
tended period may affect the accuracy of the initial measurement model
obtained from the batch experiments. Including the additional ionic
species as extra state variables in the model could offer a possible so-
lution, but it would affect the observability of the model and undermine
the idea of using a simple reduced-order model, for estimating the states
using an EKF.

An alternative solution for this problem would be to frequently
calibrate the measurement model and update the model parameters
presented in Table 3. The significance of regular calibration of mathe-
matical models has been emphasized in [31]. The measurement model
was updated using the recent values of sCOD, PO4

3−-P, and the cor-
responding conductivity measurements. The calibration algorithm used
for obtaining initial regression parameters was used to obtain the new
set. The model calibration followed by the update of model parameters
was carried out once every month or whenever the percentage error
between the estimated value and the lab measurement was more than
50 %. For the purpose of comparison, the soft-sensor using the initial
measurement model (presented in Table 3) was also executed in par-
allel with the model that was regularly calibrated. Both these data were
logged in the remote SQL server.

The soft sensor was calibrated at three different instances, as in-
dicated in Fig. 7a and b. A comparison between the estimated values of
sCOD and PO4

3−-P along with the experimental data for chamber 1, 2
and 3 are provided in Fig. 7c and d. The updated parameters of the
measurement model obtained from each calibration instance along with
their 95 % confidence intervals are mentioned in Table 4. The first
calibration of the soft-sensor was carried out on 8th November 2019
followed by another two on 05th December 2019, and 07th January
2020 subsequently. The first update of the measurement model (Set 1)
demonstrated a minor difference between the calibrated and un-
calibrated estimation. However, the difference increased significantly
over time, especially after the second (Set 2) and third (Set 3)

calibration instances. The confidence interval presented in Table 4 in-
dicates that the parameters (αi where i = 1, 2,..5) estimated during all
three calibration instances are well within the 95 % significance in-
tervals.

A comparison plot, along with the corresponding R2 values, is pre-
sented in Fig. 7. The plots presented in Fig. 7a and b demonstrate that
the estimations of sCOD and PO4

3−-P with a regularly calibrated model
was closer to the actual values (obtained from standardized lab mea-
surements) when compared to the uncalibrated model. This could infer
that periodic calibration of the soft-sensor model by updating the
measurement function would solve the estimation error caused by the
drift in the measurement model. Additional plots regarding the esti-
mated PO4

3−-P and sCOD in chamber 1, 2, and 3 are provided in Ap-
pendix as Fig. A1 and Fig. A2.

4. Conclusions

A reduced-order model explaining the dynamics of phosphorus re-
lease during the anaerobic stage of biological wastewater treatment
process was developed. The hybrid model combining statistical
methods with the mechanistic elements of biological nutrient removal
process, adequately explains the reactions while still retaining its ability
to be used in conjunction with EKF for estimating the states of the
model. The simulator-based testing of the mathematical model provides
theoretical validations for the ability of the soft-sensor to provide reli-
able estimations of states in the anaerobic stages of the EBPR-MBBR
pilot plant. The implementation of the EKF based soft sensor in the pilot
plant and the corresponding validation studies demonstrate the ability
of the soft-sensor to provide reliable estimations of PO4

3−-P and sCOD
concentration in the anaerobic chamber of a multistage EBPR-MBBR
pilot plant. The work also emphasizes the importance of regular model
calibration. A systematic calibration strategy, discussed in this work,
addresses the issue of drift in soft-sensor caused by the measurement
model mismatch. The approach involving the regular model calibration
provides a practical solution to the drift caused by model error. A
comparison of the soft-sensor performance using the uncalibrated
model and the frequently calibrated model with the lab measurements
demonstrates the importance of calibration in enhancing the perfor-
mance of the soft-sensor. The cost-effective method for estimation of
influent PO4

3−-P and sCOD concentration as well as the PO4
3−-P

concentrations in the anaerobic chambers of a continuous multistage
MBBR pilot plant may be beneficial in the implementation of advanced
control strategies for optimal operation of wastewater treatment plants
designed for enhanced biological phosphorus removal.
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Table 4
Regression parameters of the measurement model obtained during recalibration.

Parameter Calibration Date R2
0 1 2 3 4 5

Set 1 08−11-2019 0.93 527 ( ± 14.8) −0.0036 ( ± 0.00050) 2.21 ( ± 0.12) 0.000600 ( ± 0.00007) 0.00321 ( ± 0.0008) −0.0220 ( ± 0.0035)
Set 2 05−12-2019 0.96 519 ( ± 11.8) −0.0016 ( ± 0.00015) 2.91 ( ± 0.16) 0.000510 ( ± 0.00006) 0.00241 ( ± 0.0004) −0.0202 ( ± 0.0077)
Set 3 07−01-2020 0.87 511 ( ± 13.8) −0.0036 ( ± 0.00025) 2.01 ( ± 0.11) 0.000110 ( ± 0.00002) 0.00671 ( ± 0.0001) −0.0402 ( ± 0.0060)
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Appendix A

Fig. A1. Long-term measured versus estimated plots for PO4
3−P in (a) Chamber 1, (b) Chamber 2, (c) Chamber 3. (d) Measured versus estimated (e) Residual Plots.
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Fig. A2. Long-term measured versus estimated plots for sCOD in (a) Chamber 1, (b) Chamber 2, (c) Chamber 3. (d) Measured versus estimated (e) Residual Plots.
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