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Summary

This work attempts to address the research question of how secure the cur-
rent solutions in lightweight cryptography are, and specifically, if Salsa20 is a
sufficiently secure algorithm for its intended purposes.

We perform a state of the art survey on the current landscape of lightweight
cryptography and a survey of the cryptanalysis most relevant to these kinds
of crypto systems. We take a closer look at the ARX-based stream cipher
Salsa20, analyse its security and give recommendation based on the results.

We implement two analyses against both Salsa20 and one of its code com-
ponents, the quarter-round function. While breaking the quarter-round may
not be useful for breaking Salsa20, it gives us an idea of the viability of the
analysis. The two analysis methods are:

1. Differential analysis using the Hamming distance.
We found that the quarter-round, when treated like an encryption algo-
rithm, had an insufficient avalanche effect and is easily distinguishable
from random noise for chosen plaintexts. We could not find any indica-
tion the full Salsa20 algorithm suffer from these effects.

2. Deep learning-based analysis using a context aggregation network.
This analysis used images (some generated from random noise, some
actual images), encrypted them, and tested if the context aggregation
network (CAN) was able to learn and reconstruct parts of the original
images or plaintexts. The results indicated this method is not viable
against either Salsa20 nor its quarter-round function.

We therefore conclude that these forms of analysis does not seem effective
against Salsa20.
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Abbr Phrase Short description

ARX
Modular Addition,
Rotation and XOR

A type of cipher structure.

CAN
Context,
Aggregation and
Network

A machine learning/deep learning technique,
which is used to generate or modify images,
based on learned behaviour.

ECC
Elliptic Curve
Cyptography

A category of asymmetric cryptographic al-
gorithms.

GE Gate Equivalent
Estimate on how many logical gates on a pro-
cessing unit an algorithm implementation re-
quires.

HD Hamming Distance
Amount of bit-by-bit differences between two
binary numbers.

HW Hamming Weight Amount of non-zero bits in a binary number.

HW Hardware
Physical implementation or systems. (As op-
posed to virtual software systems.)

IS Internal State
The internal temporary values in a crypto-
graphic systems.

IV Initialization Vector
A set of initial starting values of a crypto-
graphic system. These are generally static
values.

PRG
Pseudo Random
number Generator

A function or system which generates pseudo-
random values, based on some seed value(s).

PRP
Psudo Random
Permutation

Similar to a PRG, but makes a pseudoran-
dom one-to-one mapping.

PT/CT
Plaintext /
Claintext

The input text, message, file or general data
of an encryption algorithm (PT), and its en-
crypted version (CT).

QR
Quarter-Round
function

The core function of the Salsa family encryp-
tion algorithms.

SPN
Substitution-
Permutation
Network

A type of cipher structure.

SW Software
Virtual implementations or systems. (As op-
posed to physical hardware systems.)

XOR Exclusive or
A function which does a bit-by-bit compari-
son between two binary numbers.

Table 1: List of abbreviations, with short descriptions.

8



Chapter 1

Introduction

As microprocessors become cheaper, the Internet of Things (IoT) become more
prevalent. Because to this, we see this kind of technology take a bigger and
bigger part of our lives. However, this brings up questions of computer security
and privacy. We expect our data to be protected from unwanted listeners
and hackers who want to steal it, modify it or destroy it. We also expect
the newest technology available at low cost. As the technology for IoT is
strongly connected to networks and the internet, its capability to affect our
lives in negative ways grows. It is therefore important to protect our data
and our devices from unwanted attackers. Cryptography is the field on how
to obscure the data, so that attackers are unable to access it. This is part
of what keeps the attackers out of your data, and makes sure your modern
car’s breaking systems hopefully cannot be disabled remotely. There exists
many standardized algorithms and crypto systems today, which mostly does
a seemingly good job. Crypto systems like AES and RSA are widely used and
has yet to be broken. However, many of these traditional cryptography systems
require a lot of computing power, energy consumption or memory. While these
cryptography systems are suitable for home computers and servers, they may
not be as suitable for all smaller devices. Devices like kitchen appliances,
pacemakers and RFID-cards. After all, the latter devices will often have a
very limited computing power, memory or energy supply. On some weaker
systems, the algorithms may run slower than wanted. On others, it will not
run at all. In addition to this, a lot of smaller, cheaper and weaker systems
are more physically accessible to potential attackers. This can allow attackers
a greater set of attack methods.
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Outline of the article

In this work, we give an overview of the lightweight cryptography landscape.
We focus especially on IoT looking at symmetric ciphers and hashing algo-
rithms. We look at specific details of the algorithms, like key sizes and imple-
mentation efforts. We list the merits and demerits for various algorithms, of
how suitable they are for IoT.

Of many algorithms considered for analysis, we take a deeper look at
Salsa20 [1], due to its recent success as a candidate for wider use. We focus on
analysing the ease of attacks to supplement the existing studies analysing the
attack possibilities. In this regard, we present an overview of attacks/crypt-
analysis approaches. We formulate the main research question as follows:

• Does Salsa20 seem to be secure against existing attacks?

• Can we break a weakened version of Salsa20?

To answer these questions, we look at the state of the art of Salsa20 crypt-
analysis in Section 2.6. We discuss some attack methods, and how some of
these can be protected against. We also analyse the Salsa20 algorithm and
one of its core components, the quarter-round (QR) function. We attempt
two forms of analysis, each of them against both the full Salsa20 algorithm,
and the Salsa20 quarter-round function.

The first of these methods, described in Section 3.3.3, is a differential
analysis using the Hamming distance (HD) for measuring distance between
values. Here, we measure how the difference in multiple input values affect
the difference in their output values. We do this both between an input and
its output, and between two outputs with similar inputs.

The second method, described in Section 3.3.4, uses a deep learning tool
called a context aggregation network, or CAN. It can be used to construct
or modify images, based on data sets of input and output images. For more
about CAN, see Section 2.7. Here, we encrypt plaintexts and image files. We
generate images before and after the encryption, and train the network on
them.

In the rest of this thesis, Chapter 2 presents the related background works,
overview of the lightweight cryptography landscape relating to symmetric ci-
phers and hashing algorithms, overview of attack and cryptanalysis methods,
how robust Salsa20 is against some of these methods and how some of the
weaknesses can be reduced and protected against. In Chapter 3, we present
a more detailed look into the structure of Salsa20, how its upgraded ver-
sion ChaCha differs from it, and how we intend to analyse Salsa20 and its
quarter-round. In Chapter 4 we discuss the results found when analysing the
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algorithm. And finally, in Chapter 5 we draw conclusions from our results,
and we discuss further work.
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Chapter 2

Background

2.1 IoT and mesh network security

Due to the reduction of costs to produce microprocessors over time, their
prevalence has risen drastically over the years (see [2]). Now, everything from
cars to vacuum cleaners and coffee makers can be connected to the internet.
While some purposes may not require high levels of security and performance,
this still remains important for other systems [3]. There has also been a
higher focus on mesh networks in later years, both in your home and outside.
Traditional networks has had a main access point, like the router in our homes,
which connects to all the devices in your home. This is what we refer to as
a star topology, and is illustrated in Figure 2.1. This topology has a few
advantages over mesh networks. For example:

• Only one main/hub device is needed, and

• it makes the networking structurally and topologically simple.

Since you need only a single device, it makes sense to put more effort and
money into making it. Therefore, you can often make it with more processing
power, more memory, etc. allowing for stronger crypto algorithms with higher
requirements.

On the other hand, a router’s reach is limited, and connecting multiple
routers together to extend the signal, is often not a practical solution. In
addition, if this one device fails, your network is down. This is where mesh
networks become useful. Instead of having a single hub all other devices con-
nect to, like routers or cell towers, you can have multiple nodes, with multiple
devices connecting to each other. In Figure 2.2, we can see an illustration of
how a mesh network can look like. Mesh networks can give the network a
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Figure 2.1: Structure of a traditional star-formed network.

robustness that star topology networks will not be able to deliver. This topol-
ogy can be used for everything from small 5G cell towers around the city, to
IoT devices in your home. If one node or access point fails, the network can
attempt to repair itself by re-adjusting and using other nodes [4] and connec-
tions. Mesh networks can thus be less likely to fail, as often multiple nodes
has to break at once. The fact that nodes can carry the signal via each other
means that the network range can be extended drastically, without requiring
costly long-range routers. Mesh networks can even be useful in disaster areas,
where the existing infrastructure has broken down, as discussed in [4] and [5].

Figure 2.2: Example of structure of a mesh network.

There are some important considerations here as well:

• The nodes are often more physically accessible than a single access point
would be.

• The nodes are often afforded less security-related processing power than

13



a single main node would.

Basically, you have to trust the nodes in the network, which makes security
potentially a more relevant issue than it already is. While a large cell tower
on a hill may be inaccessible to most, a small 5G node on a lamp post by your
local street are easily more accessible.

Thus, to make IoT and mesh networks secure, they need to be protected
against not only traditional attacks, but also physical side-channel attacks (see
[6]). These are attacks not aimed only at the algorithm itself, but also the
implementation of it. Using this kind of analysis, one can get access to more
information about the encryption and decryption process, which can often be
used to break otherwise strong algorithms. A deeper look into side-channel
attack can be found in Table 2.11.

These technological advances make life more practical for millions of peo-
ple, but it also has its downsides. A lack of proper cyber security can have
negative and even fatal consequences. And yet many IoT products have a lax
approach to security.

2.2 Basics of cryptography

In this Section, we talk about what cryptography is, what kinds of cryptogra-
phy algorithms are used today, and they are used for. We talk about the two
main categories of encryption algorithms; asymmetric (also known as public
key) crypto and symmetric crypto, but we mainly focus on the symmetric side.
We also look at hashing functions, and what they are used for.

When discussing ciphers and their strengths, words like confusion and
diffusion is used a lot. It can therefore be good to understand the terms.
Basically:

• Confusion obscures the relationship between the ciphertext and the
key. Each ciphertext bit should depend on multiple parts of the key.

• Diffusion obscures the relationship between the ciphertext and the
plaintext. If we change a bit of the plaintext, we should expect about
half of the ciphertext bits to change, statistically speaking.

2.2.1 Encryption algorithms

Modern encryption can be split into symmetric and asymmetric algorithms.
Symmetric algorithms uses the same key k for encryption and decryption.
Asymmetric, on the other hand, uses a pair of related keys (k1, k2). One for
encryption, the other for decryption.
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Symmetric cryptography

Symmetric algorithms use the same key for encryption and decryption. This
means that, when using symmetric key cryptography in communication, the
key has to be known by both parties.

Symmetric ciphers can be defined by the functions (E,D), where:

• E is the encryption algorithm.

• D is the decryption algorithm.

over the sets (K,M,C), where:

• K is the set of possible keys k.

• M is the set of possible plaintext messages m.

• C is the set of possible ciphertexts c.

The encryption and decryption algorithms are defined as follows:

E:K ×M → C

D:K × C →M

where the × symbol means the function E maps K and M to C (for the first
line).

The defining element in symmetric algorithms, compared to asymmetric
ones, is that encryption and its respective decryption uses the same key k,
such that:

E(k,m) = c

D(k, c) = m

And the following should therefore be true of symmetric encryption:

D(k,E(k,m)) = m

Modern symmetric ciphers are generally split into two categories: Stream
ciphers and block ciphers. The difference between these can be somewhat
blurry, but generally, block ciphers encrypt the data in larger blocks, while
stream ciphers encrypts 1 byte or bit at a time, usually by XORing them with
the generated keystream. These are again built on different structures, as can
be seen in Table 2.1. Stream ciphers often output ciphertext part by part, as
the data is encrypted. They contain a hidden state which changes during the
encryption, that are used for the generating the keystream (see [7]). Block
ciphers requires larger chunks of the data to be encrypted before outputting
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any of it. One of the good things about stream ciphers is that they can output
data as soon as it is encrypted. When one byte or bit is encrypted, it can be
sent on to the next process. Block ciphers has to wait for the entire block
to be encrypted. This means they have to, at the very least, store an entire
block in memory. For this reason, block ciphers often require more memory.
Stream ciphers often use simpler cipher structures and require less hardware
complexity (see [8]), thus making them more suited for cheap devices with low
computing power and little memory. While stream ciphers has some upsides,
they also often have a lot less, if any, diffusion. Remember from earlier that
the diffusion of an algorithm is how well it obfuscates the relationship between
the plaintext and ciphertext. Changing a single bit in the plaintext would also
change a single bit in the ciphertext, assuming the keystream is not affected
by the plaintext. Thus a lack of diffusion and a bad avalanche effect for the
plaintext. While this does not mean block ciphers are more secure than stream
ciphers, it does mean block ciphers can have an advantage here.
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Structure Description

Iterated
block
ciphers

The idea of iterated block ciphers are to start with a block
of plaintext of a certain size, and encrypt into a block of
ciphertext of the exact same size. This is done by iterating
the block through a number of rounds of encryption. These
can generally be made secure by simply using a sufficient
amount of rounds.

SPN A Substitution-Permutation Network is an encryption scheme
which first substitutes a specific amount of bits with another
set of bits using S-boxes (look-up tables), then permutes, or
shuffles, the values. This is usually done multiple times. The
size of the S-boxes, the complexity of the permutation stage,
the amount of rounds and the size of the full key are important
factors to how secure such a structure is. For example, AES
uses 8 bit S-boxes, shifts rows and columns, 10-16 rounds and
128-256 bit keys, while PRESENT, which is similar to AES,
has 4 bit S-boxes, similar permutation, 31 rounds and 80-128
bit keys. The larger amount of rounds attempts to make up
for the smaller S-box [2]. More about this in Table 2.4 and
2.7. On the other hand, large S-boxes can quickly become an
issue when attempting to construct small implementations
[9].

ARX Modular addition, rotation and XOR. This type of structure
changes the internal state first by modular addition between
parts of the state. Next stage is rotation, usually through
shifting bits a set amount of times. Finally, XOR between
parts of the internal state. These hardware and software re-
quired for operations are relatively cheap and fast, which is
part of what makes them popular (see [10] and [10]).

Feistel Here, the plaintext is split into two halves of the same size.
One of the halves are run through a round function and is
XORed with the other half. This output is then stored on
the other half. The two halves are then swapped, and this is
repeated multiple times.

LFSR Linear feedback shift register is a structure where the output
of the next bit is affected by the previous bit. One of the good
things about LFSRs are that they can be relatively small
and simple. One of the big downsides of LFSRs are their
linear nature, which makes them easy to attack. They should
therefore be combined with non-linear elements to reduce this
vulnerability.

Table 2.1: Types of cipher structures.
17



Asymmetric cryptography

The basic concept of asymmetric, or public key crypto, is that different, but
related keys are used to encrypt and decrypt data. Using similar definitions
to the symmetric encryption definition, where E is an encryption algorithm,
D is its decryption algorithm, m is the message, and k0 and k1 are the keys,
we get the following.

E(k0,m) = c

D(k1, c) = m

Put them together, and this should be true for asymmetric encryption.

D(k1, E(k0,m)) = m

In this case, k0 would be the public key and k1 would be the private key.
Methods like Diffie-Hellman and RSA are based on the integer factoring prob-
lem. The factoring problem, relating to integer factorization, is the question
of whether integer factorization can be solved in polynomial time on a classical
(non-quantum) computer. This problem is considered to be hard complexity-
wise. Basically, this means that it takes a lot of effort to factorize a number
into its primes. Say a number a, is made by multiplying two prime numbers
p and q. Finding a is easy when you know p and q:

p · q = a

Similarly, finding one of the primes, when we know a and the other prime, is
easy using division. For example, knowing p and a, we can find q as follows:

a

p
= q

On the other hand, when only a is known, finding the primes is very time
consuming. Many types of asymmetric cryptography systems are based on
this, or other hard problems.

Another type of asymmetric algorithm is the elliptic curve cryptography
algorithms (ECC). (Not to be confused with error-correcting code.) ECC relies
on the fact that it can be very difficult to create inverse functions of certain
iterated mathematical functions, over elliptic curves. They can often use short
key lengths compared to other forms of asymmetric cryptography.

Many of the asymmetric algorithms are much slower or require much more
computation or memory, than symmetric algorithms. For this reason, they
are often just used for key exchange. Due to this, asymmetric algorithms are
generally used to encrypt keys for the symmetric cryptography, which can

18



then do the heavy lifting, so to speak. This is important for which kinds
of algorithms are the most relevant for which part of networks. Especially
when it comes to low-power and weak systems, which require more lightweight
cryptographic algorithms.

Asymmetric algorithms may see a large shift in the future, as many of
them are vulnerable to strong quantum computers (see [11] and [12]). Most
asymmetric algorithms, unlike most symmetric algorithms, rely on the hard
mathematical problems of integer factorization, discrete logarithm problem or
elliptic-curve discrete logarithm problem. These are hard problems on classic
computers, but much less so on quantum computers. While certainly interest-
ing, post-quantum cryptography is not within the scope of this article.

Relevance to the thesis

In this study, we mainly look at symmetric key cryptography, and not asym-
metric (public-key) cryptography. Part of the reason for this is that to achieve
sufficient security with many popular public-key crypto, like RSA, much larger
keys are required (see [13] and [14]). We considered symmetric cryptography
would be the field we could contribute knowledge to the most, largely due to
the author’s previous knowledge of symmetric cryptography, from university
and online courses.

2.2.2 Hashing algorithms

In addition to looking at lightweight block and stream ciphers, we also looked
at hashing algorithms. Hashing algorithms are useful in many situations. They
can be used to authenticate messages by sending along a hash of the message,
showing the message has not been changed. This is similar to how MAC/MIC
(Message Authentication/Integrity Code) functions work. Indeed, some MACs
are built on hash functions. They can also be used as components of encryption
algorithms, like Salsa20, which uses a hash function for generating its sub-keys.
Hashing can be used to “store” passwords in password databases. In some
ways, especially relating to passwords, hashing algorithms can be viewed as
a deterministic one-way encryption. When a server checks your password, it
has not actually stored your password for comparing. Not in plaintext, nor as
an encrypted password. It only stores the hash of your password. That is, the
output of the hashing algorithm, when your password is the input. When you
log in next time, your password is hashed again, and the server can compare
the hashes. Since they are deterministic, the hash will always be the same.

pwa = pwb =⇒ hash(pwa) = hash(pwb)
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This way, servers can, in a sense, store your password without worrying as
much about leaking or disclosing the passwords. Note that this is a bit of a
simplification, as they should also use a salt when hashing, and maybe hash
the password multiple times. Salting is done by adding another, preferably
random, element into the hashing algorithms. That way, if two people have
the same password (which is a very common occurrence), their hashes will be
different, because their salts were different.

A hashing algorithm maps an input of arbitrary length n to an output of
fixed length m:

Fn
2 −→ Fm

2 (2.1)

The digest size of the hashing algorithms is then m. So whether we hash a
single letter, or a massive video file, the output will always be of size m. One
of the natural consequences of the change in the size from n to m is that when
n > m, we get collisions, due to the pigeonhole principle. This principle states
that when mapping n elements into m containers, where n > m, there will be
at least one container containing multiple elements. This can of course also
happen if n ≤ m, but it is certain when this is not the case. A collision is
when both a and b results in the same hash output.

hash(a) = hash(b) = c

In this case, a and b causes a collision. In the case of passwords, a login server
may consider them equal. For example, if the passwords “a strong password”
and “abcd” both result in the hash “ac6a7b8”

hash(a strong password) = hash(abcd) = ac6a7b8,

the server would accept either as the correct password. Frequent collisions
would thus drastically weaken passwords checking and other uses of hash func-
tions. Guessing passwords or keys can be hard, but if there are millions of
different passwords, all of which are accepted, the change of guessing one of
them is drastically better. How strong a hashing algorithm is against collisions
depends on how large the digest is, and how well distributed the mapping is.
The digest size is the output size of the hash function, as shown in Equation
2.1. With a small digest, collisions are more likely to find. If the digest size
is 2 bits, then any hash will land in one of 4 hash values, and a brute force
attack should be simple. With a digest size of 1024 bits, there are 21024 values
to land in, and, assuming a well distributed mapping, a brute force attack
would impractical. Not all hashing algorithm are as good at mapping evenly
distributed hashes though. If a hypothetical algorithm only maps to half of
the output values, this practically halves the digest space, and makes collisions
twice as likely.
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2.3 Lightweight cryptography

As processing becomes more ubiquitous, and everything is being connected to
networks, the need for security increases. The rise of smaller and often weak
microprocessors, is problematic when most of the cryptographic algorithms of
today are focused on servers, home computers and smart phones (see [15]).
Some IoT systems are too weak to run existing public-key systems like RSA,
or existing symmetric cryptography standards like AES (Advances Encryption
Standards). Some may be able to run them, but not at sufficient speed.
This separation between traditional algorithms and lightweight algorithms has
grown [3]. The attempt to find solutions that are much smaller, simpler and
lighter, while being as secure, or at least sufficiently secure for their purpose, is
now more important than ever. Both NIST and ISO are working on guidelines
and standards on lightweight cryptography (see [15] and [16]). Some also
consider the lightweight field to be too big, and propose it should be split into
two sub-fields (see [2], [13] and [17]):

• Ultra-lightweight crypto

• IoT-crypto

Under this categorisation, ultra-lightweight cryptography focus on things like
crypto solutions in RFID cards, pacemakers and similarly very weak systems.
These would usually be hardware implementations. IoT-crypto would focus
more on implementations on strong microprocessors, where there is sufficient
resources to have software abstractions and memory usage. By resources, we
mean the amount of computational power, memory, energy, and such. Thus
the cryptography field could be split into roughly three fields, based on and
sorted by levels of resources available:

• Traditional cryptography

• IoT cryptography

• Ultra-lightweight cryptography

When designing or analysing a cryptography system, one can use three
general factors (see [2], [16] and [17]), and how they affect each other:

• Security

• Cost

• Performance (speed)
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As illustrated in Figure 2.3, each of these factors tend to affect the others.
More security, for example by having more rounds or larger key lengths, means
that performance and/or cost are often negatively affected. A well-parallelized
crypto system may have better performance over a serialized one, but it will
also require more space and/or stronger processors. The cost factor is also
strongly related to the level of lightweight of the system. If an algorithm
requires a powerful and expensive processor, some companies may cheap out.
Expensive systems will also not be very useful for RFID tags or extremely
cheap IoT equipment. There are of course many more factors one can list,
such as power and power consumption (see [2] and [13]), but this triad works
as a good model.

Figure 2.3: Design trade-offs in lightweight cryptography.

2.4 State of the art - Lightweight cryptography

This work is mainly based on the works of Poschmann [2], Biryukov and Perrin
[3], Eisenbarth, [18] the EU ECRYPT’s eSTREAM [19] and the University of
Luxembourg’s CryptoLUX Wiki [20]. Other references are cited in the tables.

The eSTREAM portfolio is a set of 7 ciphers, chosen in the eSTREAM
project from 2004 to 2008 [19]. The algorithms, as seen in Table 2.2, are split
into software and hardware algorithms.

An introductory explanation of a lot of the terms used in the tables can be
found in Table 2.3. In Table 2.4, 2.5 and 2.6, we show technical information
about the block ciphers, stream ciphers and hashing algorithms respectively.
In Table 2.7, 2.8 and 2.9, we list up their general pros and cons, as well as
known attacks (in the same order as with the technical information). Note that
more known attacks does not necessarily imply weaker algorithms, or that they
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Profile 1 (SW) Profile 2 (HW)

HC-128 Grain v1
Rabbit MICKEY 2.0

Salsa20/12 Trivium
SOSEMANUK

Table 2.2: eSTREAM portfolio.

are considered insecure. Known possible attacks are not necessarily practical
attacks. In the example of AES-256, a related-key attack using a chosen-
key distinguisher by Biryukov, et al., achieves a total complexity of 2131 time
and 265 memory (see [21]). For a description on what a related-key attack
is, see Table 2.10. This, while being much more effective than a brute-force
attack, is still very much impractical, and AES is thus still considered secure.
AES is also more popular, so there has been more research into potential
attack methods than other algorithms. Similarly, a lack of pros/cons does not
imply the algorithm is perfect, but rather that there are no clear, outstanding
positive/negative sides with the algorithm.
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Term Explanation

SW and HW SW and HW is short for software and hardware. This section
is simply to tell whether the algorithm was made mainly for im-
plementations in software, hardware or either. Of course, any
algorithm can be made in both software and hardware, but some
are more specialized for one or the other.

Key length All symmetric ciphers use a cryptographic pseudorandom key.
This is, put simply, a password used to encrypt and decrypt. How
secure a key is depends on its level of entropy. Roughly speaking,
how random it is and how long it is. As long as the keys are suffi-
ciently random, the most important security characteristic of the
key is its length. The longer the key, the bigger numerical space
you will have to go through to guess the right one. On the other
hand, longer keys means more storage required, and often more
processing needed. Thus, longer keys are stronger but can also be
less lightweight.

Block size Block ciphers encrypt the data in blocks. Having large blocks may
also be positive from a security standpoint. Having larger blocks
also means more data will have to be stored, which is negative
from a lightweight perspective.

Rounds Most ciphers iterates a certain process multiple times. Some of
the ciphers’ rounds are stronger than others, but generally: More
rounds means more secure, but also takes longer time.

Area (GE) The GE, or gate equivalent, of an implemented algorithm says
something about how large the algorithm has to be. Some are
much smaller than others, which is of course positive for its
lightweightness. Some have ranges, as it depends on how you im-
plement your algorithm. For example, AES can be implemented
without storing most of the S-boxes, and just generating them
on the fly. This means a lot less storage, and thus a lot less GE
and lower hardware requirements. On the other hand, having to
generate the relevant parts of the S-box every time is slower.

Structure As discussed earlier, ciphers can be based around different kinds
of structures, with their own benefits and drawbacks. See Table
2.1 for more about this.

IV IVs, or initialization vectors, are vectors use to initialize a state
in a cipher. Some ciphers depend heavily on their internal state,
and the IVs are there to ensure a proper initial state. The smaller
the IV, the less memory required. On the other hand, where IVs
are important, reducing their size or complexity may weaken the
algorithm.

IS The internal state is the temporary data in the algorithm, as it is
processing data or keys. This has a certain size, and this size is
important for the lightweightness of the algorithm. If it requires a
large internal state, it will require more area, code size or memory.
On the other hand, if the internal state is too small, the security
of the algorithm may be compromised. For example, with a suffi-
ciently small IS space, one may be able to guess the entire internal
state. Therefore, most ciphers have an IS bigger or equal to their
key size.

Digest size A hashing function maps a variable amount of bits into a fixed
size. This fixed size is the algorithm’s digest.

Rate The rate of a hashing algorithm is the size of the block being
created each iteration.

Table 2.3: Explanation of terms used in the state of the art analysis.
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# Algorithm HW/SW Key length Block size Rounds Area (GE) Structure

1 AES Both 128/192/256 128 10/12/14 3100 SPN
2 PRESENT Both/HW 80/128 64 31 1075-1884 SPN
3 RC5 - 0-2040 32/64/128 12 - ARX
4 Chaskey SW 128 128 8/12/16 - ARX
5 TWINE Both 128 64 36 1800/2285 GFN
6 SPARX - 128, 128/256 64, 128 24, 32/40 - SPN (ARX)
7 SPECK SW 32-128 64-256 22-34 884-1396 ARX
8 SIMON HW 32-128 64-/256 22-34 763-1317 Feistel
9 PRINCE - 128 64 12 3286/3491 SPN

Table 2.4: Technical information of block ciphers.

# Algorithm HW/SW Key length IV IS Area (GE)

1 A5/1 - 64 0 64 -
2 ChaCha20 SW 128/256 64 512 -
3 E0 - 128 0 128 -
4 F-FCSR-16/-H v3 - 128/80 128/80 256/160 -
5 Grain HW 80/127 64 36 1294-4617
6 Mickey v2 HW 128 0-128 200/320 -
7 Salsa20 SW 256 64 256 -
8 SNOW 3G - 128 128 576 -
9 Trivium HW 80 80 288 -

Table 2.5: Technical information of stream ciphers.

# Algorithm HW/SW Digest size Rate IS Area (GE)

1 Armadillo - 80/127/160/192/256 48/64/80/96/128 256/384/480/576/768 2923-11915
2 DM-PRESENT - 64 80/128 64 1075-1884
3 GLUON SW 128/160/224 8/16/32 136/176/256 -
4 Lesamnta-LW SW 256 128 256 -
5 PHOTON - 80/128/160/224/256 16/32/36 100/144/196/256/288 1800/2285
6 QUARK HW 136/176/256 8/16/32 136/176/256 -
7 SipHash-2-4 - 64 64 256 884-1396
8 SPN-Hash - 128/256 256/512 128/256 763-1317
9 Spongent - 80/128/160/224/256 8/16 88/136/176/240/272 3286/349

Table 2.6: Technical information of hash functions.
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# Pros Cons Attacks

1
.

A
E

S AES is the most common and stan-
dardized symmetric cryptography al-
gorithm, and has been for a while.
Its prevalence means it has been well
tested and should be relatively strong.

AES is difficult to make lightweight,
and especially ultra-lightweight [22].
Among other reasons, because its large
8-bit s-box (substitution box), needing
a lot of memory. It was not designed
for (ultra)lightweight tasks.

• Impossible differential

• Related-key boomerang

• Biclique

• Chosen-key distin-
guisher [21]

2
.

P
R

E
S

E
N

T PRESENT is very similar to AES. It
has a smaller s-box than AES (4-bit vs
8-bit). It is very compact, at about 2.5
times smaller than AES (see [2]). This
is a big advantage for its lightweight-
ness.

-
• Statistical saturation

• Multidimensional linear

• Truncated differential

3.
R

C
5 RC5 is a simple algorithm, and has a

variable block size, key size and rounds.
That way it is more compatible with
smaller implementations, which may
need less security and less space.

When using fewer rounds (12, 64-bit
blocks), it is susceptible to differen-
tial attacks using 244 specific plaintexts
(see [23]). It is therefore recommended
to use 18-20+ rounds. This does of
course somewhat limit the advantage
of simplicity.

• Differential attack

• Linear attack

4.
C

h
as

k
ey

Chaskey is fast, secure and has a small
code size [24].

It is made mainly for SW (micropro-
cessors). Thus it is less relevant for
hardware implementations. It is also
a MAC, which means it’s only part of
a crypto system.

• Differential-linear

5.
T

W
IN

E Small and efficient, both in software
and hardware [25].

-
• Biclique (full cipher)

• Zero-correlation

6
.

S
P

A
R

X - -
• Integral

7.
S

P
E

C
K Related to Simon. Optimized for soft-

ware implementations [26].
Developed by the NSA. Does not have
good resistance against known-key at-
tacks, as this was not thought of as that
important for IoT crypto.

• Differential

• Rectangle

8.
S

IM
O

N Related to Speck. Optimized for hard-
ware implementations [26].

Developed by the NSA. Does not have
good resistance against known-key at-
tacks, as this was not thought of as that
important for IoT crypto.

• Differential

• Linear

• Impossible differential

• Multidimensional linear

9.
P

R
IN

C
E Has a low latency compared to many

other algorithms.
-

• Reflection attack

• Sieve-in-the-middle

• Multiple differentials

Table 2.7: Pros and cons of block ciphers.
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# Pros Cons Attacks

1
.

A
5
/1

Used in GSM. Wide usage often,
though not always, implies good secu-
rity, as they have generally been tested
(and attempted broken) more.

Small key size, allows for practical at-
tacks. A5/1 is broken. • TMD trade-off

2.
C

h
aC

h
a
20

Variant of Salsa20, which is part of
the eSTREAM winners. Has a modi-
fied round function, which is supposed
to raise the diffusion, without affecting
performance.

-
• Differential attack

3.
E

0 Widely used as it is used in Bluetooth. Multiple known attacks which are more
efficient than brute-force, though they
are seemingly not sufficiently more ef-
ficient to be practical.

• Conditional correlation

4.
F

-F
C

S
R

-1
6
/-

H
v
3 Non-linearly updated FSRs. Provably

safe after a certain amount of itera-
tions.

Allows for a significant amount of col-
lisions during the first clockings, before
the main cycle is reached.

-

5.
G

ra
in Part of the eSTREAM winners. Based

on two different FSRs, where their
clocking affects each other to achieve
non-linearity.

-
• Linear approximations

• Dynamic cube testers

6.
M

ic
ke

y
v
2 Part of the eSTREAM winners. -

• Entropy loss

• Weak keys

7.
S

a
ls

a2
0 Part of the eSTREAM winners [19]. No

published attacks as of 2015. Secure
against timing side-channel attacks.

Weak against some types of side-
channel attacks (see [27] and [28]).
Lacks research into its security (see
[29]).

-

8
.

S
N

O
W

3G

Chosen by the 3GPP consortium. [30] Uses the (large) AES S-box.
• Multiset distinguisher

9.
T

ri
v
iu

m About: Block-stream-cipher. XORs
with bits from an external source to
reduce the need for a large S-box.
Uses 3 internal LFSRs. There is also
“Bivium”, which uses only 2.

Trivium saves space due to the
lack of a large S-box.

The external bits could be biased, and
thus weaken the security of the algo-
rithm.

• Algebraic (Bivium)

• Conditional differential

Table 2.8: Pros and cons of stream ciphers.
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# Pros Cons Attacks

1.
A

rm
ad

il
lo - It is large and it has been broken.

• Local-linearization
(practical)

2
.

D
M

-P
R

E
S

E
N

T Based on PRESENT, which is
lightweight and fairly secure.

The small digest size makes it less col-
lision resistant. • Multi-differential (colli-

sions: 12 rounds, distin-
guisher: 18 rounds)

3.
G

L
U

O
N Based on FSCRs, which can be both

good and bad.
-

• Iterated preimage attack

4.
L

es
am

n
ta

-L
W

Reuses AES-elements, making it more
secure.

Reuses AES-elements, making it larger
and less lightweight. • Integral

5.
P

H
O

T
O

N Inspired and based on PRESENT and
AES, which seems like a pretty LW and
secure algorithm. Reuses from AES or
PRESENT based on need.

- -

6
.

Q
U

A
R

K

Hardware oriented and fast. - -

7
.

S
ip

H
a
sh

-2
-4

- Not collision resistant (due to small di-
gest size). Large.

-

8.
S

P
N

-H
as

h Probable security against differential
collision attacks. Based on an AES-like
SPN.

Similar issues as other AES-based sys-
tems. Large.

-

9
.

S
p

on
ge

n
t Based on a modified version of

PRESENT. No known successful at-
tacks on Spongent.

-
• Linear distinguishers

Table 2.9: Pros and cons of hashing algorithms.
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2.5 Cryptanalysis

Through the years, many types of attacks has been used and proposed against
different kinds of cryptographic algorithms. This section will go through some
of these, with the main focus being on symmetric ciphers.

Firstly, what kind of attack can be used depends on how much information
the attacker has access to. For a list of types, see Table 2.10.

Knowledge Description

Cipher-text only Here, the attacker only has access to
the cipher-text. The attacker knows
nothing about the key, the plain-
text/data, etc.

Chosen plain-text or
cipher-text

In this case, the attacker can chose
the plain-text or cipher-text. This
may allow them to change it to as-
certain more information about, for
example, the key.

Known plain-text In this case, the attacker knows the
plain-text, but has not, and can not,
choose the plain-text themselves.

Adaptive chosen
plain-texts

Here, the attacker decides the plain-
text and can change it as they will.
The attacker can for example look
for differences in cipher-text based
on differences in plain-text.

Related-key attack Sometimes keys are related, and
here, the attacker can know the re-
lation, without necessarily knowing
the keys.

Table 2.10: Amount of knowledge the attacker has access to.

Usually, the attacker wants to find the key or the plaintext. Of course,
finding one can often make finding the other rather simple. In the cryp-
tography community, it is well accepted that one should always expect the
attacker to know everything about the algorithm. Hiding the algorithm, while
maybe making it somewhat more difficult to crack, is usually not a sufficient
defense against attacks. Many older algorithms, made as in-house crypto so-
lutions, have later been analysed, leaked or disclosed, decompiled, etc, and
subsequently cracked (see [3]). This is related to whether algorithms and their
cryptanalysis should be public and open-source. When algorithms are closed-
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source, it may be better hidden from attackers, and thus harder for attackers
to analyse. On the other hand, they are therefore often analysed less by secu-
rity experts, and it is less likely that potential security holes are found. This
is why open-source crypto algorithms are the expected norm these days.

To break algorithms, you often need a large amount of one or more of the
following:

• Time

• Data

• Memory

In a simple brute-force attack, where all key combinations are checked, you
will need a lot of time. This is usually on “the age of the universe” time scales,
as the key search space is vast. On the other hand, if some form of adaptive
chosen plain-text attack is attempted, a huge amount of data may be needed.
Similarly, sometimes it is needed to store large amounts of data.

Sometimes, one can achieve only a partial attack, or an attack where some
knowledge is found, but not all. As an example, modern algorithms attempt to
make the ciphertext indiscernible from random noise. If one can implement an
attack or analysis which is able to distinguish between random noise and the
ciphertext from an algorithm, one may be able to use that in a more complete
break. This is known as a distinguishing attack. In other cases, one may be
able to retrieve information about a hidden closed-source algorithm, and use
it to rebuild a functionally equivalent algorithm.

In Table 2.11 we can see a list of many types of attacks. Some more
general than others. This is not a comprehensive list, but gives an insight to
the cryptanalysis landscape for symmetric ciphers.
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Attack type Description

Brute-force attack This is the simplest type of attack. Essentially try all of the combinations. This is
generally the worst case scenario in a break. This is what you do with a bike lock
you have forgotten the key/password for. Works great for bike locks, phone locks
(without hardware-blocking for too many attempts) and bad (short) passwords.
When using 128 bit keys, on the other hand, it takes too long to be practical.

Differential analysis This kind of attack analyses how changes in the input affects the output. What
happens with the output of the algorithm when a single bit is changed in the
key? If one can find patterns in the differences here, one may be able to recover
the original key, for example by using hill climbing algorithms.

Distinguishing at-
tack

This kind of attack or analysis attempts to find separate the ciphertext from
random noise, and uses that to attack the algorithm.

Boomerang attack The boomerang attack is a type of differential attack primarily used for breaking
block ciphers. This enables us to attack specific parts of the block cipher.

Linear cryptanalysis Mostly used for block ciphers. This method attempts to build linear equations
relating key to plain-text and cipher-text and find biases.

Integral cryptanaly-
sis

This is mostly relevant against SPN networks. Using multiple sets of pairs of
related chosen plain-texts, where only parts of the plain-texts are differing from
each other, while most of the bits remains the same. This is also knows as the
square attack, and is similar to the saturation attack.

Meet-in-the-middle
attack

This method works when multiple operations in the encryption scheme is per-
formed in sequence, and “meeting in the middle” of the set of operations. This
makes it such that it will take more storage, but less time to break the algorithm.

Related-key attack This is, as touched on previously, a kind of attack where the attacker can use
known relations between multiple keys to gain more information. A simple ex-
ample of this could be that the first n bits of the keys are always the same or if
someone uses keys which simply counts up 0, 1, 2, 3, etc.

Side-channel attacks A side-channel attack is a type of attack where one does not attack the algorithms
logic, but attacks the implementation. This kind of attack has been more rele-
vant lately, especially relating to the rise of IoT and SaaS. More direct and fast
communication with servers can enable attacks to gain more information about
timings and such, and IoT devices are often more easily available to potential
attackers. Even highly regarded algorithms can be vulnerable to many of these
attacks, as they have not had the same focus for as long.

Timing analysis This kind of side-channel attacks assume the server, memory, microprocessor,
etc takes different amounts of time based on what it is doing, which enables
attackers to gain important information. For a simple example: If I claim that
9257× 1248 = 11586166, you may have to use a calculator to check it, and it will
thus take time. If I claim it is equal to 6, you can reply immediately. If a server
does this, it can tell me if your guess is close or far off.

Power analysis If the attacker has access to the power supply or to measuring devices which can
electromagnetic radiation in the microprocessor, they may be able to read out
what the algorithm is doing. If, say, the attacker knows AES is being used, and
sees 16 spikes in the power usage, there is a good chance AES with 16 rounds is
being used. If this is not masked for, the power analysis is accurate enough and
the attacker has a thorough understanding of the algorithm, they may be able to
read key-bits out from the power graph.

Table 2.11: Cryptanalysis techniques and attacks for symmetric ciphers.
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2.6 Cryptanalysis of Salsa20

We looked deeper into the security of Salsa20, and how much research there is
on attack methods. This work focuses on the Salsa family, partly because Salsa
algorithms has been adopted in multiple important standards and software
solutions, and partly because some studies indicate a lack of security research
(see [31]). The discussed analysis and attack methods can be found in Table
2.12. We found that the most realistic attacks seems to be the ones where
we assume knowledge from side-channel analysis, to perform cryptanalysis on
Salsa20.

We also looked a bit at a few relevant methods to protect against side-
channel attacks, which can be seen in Table 2.13.

2.7 Context aggregation networks

We used a context aggregation network, or CAN, for parts of our research.
This section talks a bit about what that is.

Deep learning is a form of machine learning based on artificial neural net-
works (ANN), using multiple layers for extracting features from raw input
data. These types of networks are used in fields like social networks, computer
vision, natural language processing, speech recognition, biometrics, transla-
tion, and even winning quizes, like when IBM’s Watson won the American
quiz show Jeopardy (see [34]).

A context aggregation network is a form of deep learning network, built
and based upon convolutional neural networks (CNNs). It was created in 2019
by W. Cheng. et al. for semantic labeling in aerial images (see [35] and [36]),
and was applied in various other applications. We were unable to find any
previous research into these networks being used for cryptanalysis.
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Attack
type

Attack type description Salsa20 vulnerability

Non-side-
channel
attacks

Create a function, or set of
functions, which always, often
or sometimes give you knowl-
edge about the key, regardless
of implementation method.

Salsa20 seems to be relatively
strong against these kinds of
attacks, though there is a lack
of research here. ChaCha
seems even stronger, due to
higher diffusion in its round-
function.

Timing at-
tacks

Measure how long the cache,
server, device etc. uses to re-
ply. If the algorithm takes dif-
ferent amounts of time based
on the key (like size of the key,
bits of the key, errors in the
key, etc.), you can learn some-
thing about the key, and thus
be able to reduce the search
space.

Not affected. Salsa20 is
constant-time independent of
input, and thus gives the at-
tacker no information.

Power
attacks

Measure the power usage, or
the EM radiation, of the cir-
cuit. By knowing the setup
of the algorithm, you can find
out where, for example, bits
are added together, multiplied
etc. Worst case scenario is
that you can read out the
key bits almost directly, by
measuring when it performs a
multiplication carry or not.

Salsa20 is relatively weak
against these kinds of attacks,
due to the kinds of operations
it uses. (Word-addition, etc).

Bricklayer
attack

Optimized attack based on
a divide-and-conquer strategy
(see [28]).

One of the attacks we looked
at. This attack seems promis-
ing against weakened versions
of Salsa20, like Salsa20/8.

Table 2.12: Potential attacks against Salsa20.
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Method Description Effective
against

Pros and cons

Masking Obscure internal
variables by split-
ting sensitive temp
variables into a
set amount (mask-
ing order + 1) of
parts. This requires
generating pseudo-
random numbers.

Most kinds of at-
tacks [32].

+ Secure against
most attacks [33].
− Often very
expensive, and
thus not an op-
timal solution
for lightweight
systems [33].

Code
poly-
mor-
phism

Hide code function-
ality from being
read, by constantly
changing the code
[32]. Generat-
ing code variants
statically (multi-
versioning) or at
runtime (gener-
ates different code
efficiently and pe-
riodically). Uses a
bunch of different
configurations to
change the code
here and there,
making too many
possibilities to brute
force. Tools like Odo
can be used in this
regard [32].

Runtime (most
attacks, speci-
fied):

• Register
shuffling

• Instruction
shuffling

• Semantic
variants

• Insertion
of noise
instructions

Statically:
Limited by the
final size of the
program, as
generating more
variants induces
an increase of
code size.
Runtime: Run-
time code gener-
ation is usually
avoided in embed-
ded systems due
to the potential
vulnerability of
accessing memory
with both write
and execution
permissions.

Table 2.13: Some existing protection methods against cryptographic attacks.
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Chapter 3

Methodology

The Salsa family consists of a set of stream ciphers. They were created by
Daniel J. Bernstein, and they are widely used. They can be found in the
eSTREAM portfolio [19] and in the TLS cipher suites [37].

In this section, we look at the construction of Salsa20 and how its updated
version ChaCha differs from the original. Salsa20 is built on an ARX struc-
ture, and so first, we discuss what that is. We then run through a detailed
description of how Salsa20 is constructed, and of how ChaChas design differs.
Finally, we look at our methods of analysis.

3.1 Detailed description of Salsa20

3.1.1 ARX

Salsa20 is built using an ARX structure in its core. ARX is an abbreviation
for modular Addition, Rotation, XOR (exclusive or). This section explains
what each of these elements does.

Modular addition

Modular addition addition is performed by adding two numbers together, and
then reducing the result with a given (fixed) modulus. We denote modular
addition with the symbol �. In the case of Salsa20, two 32 bit numbers are
added into a third number. If this number requires more than 32 bits, we
simply cut off the leading bits, and make it into a 32 bit number. In Equation
3.1, we can see an example of normal addition and modular addition:

1001 + 1001 = 10010

1001� 1001 = 0010
(3.1)
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In line 1, we add two 4 bit numbers, resulting in a 5 bit number. In line 2, we
add the same two 4 bit numbers, but reduce the result with modulus 4. This
results in a 4 bit number.

Rotation/shift

The rotation, or shift, simply shifts the bits a set amount. In the case of the
Salsa family, the shift is to the left. A shift of n bits is denoted as ≪ n. For
example:

• abcdefg ≪ 3 = defgabc

• 00000001 ≪ 7 = 10000000

XOR

Finally, XOR, or exclusive or, is a Boolean operation, working as a bit-by-bit
difference comparison. We use the symbol “⊕” to denote an XOR operation.
If the two compared bits are different, the resulting bit is a 1. Otherwise, it is
a 0. As an example:

00110001

⊕ 10001100

= 10111101

3.1.2 Overview of Salsa20

Salsa20, like many other stream ciphers, is XORing the plain-text data with a
sub-key keystream. This means the size of the keystream has to be the same
as the size of the data or data block. This is much the same concept as a
one-time pad (OTP). While OTPs are unbreakable, they are rarely used, as
key exchange would be impractical (see [38]). Therefore, to keep the key at
a reasonable size, Salsa20 has a pseudorandom generator (PRG), which uses
an expansion function and hash function, to generate the keystream. This is
illustrated in Figure 3.1. The task of this function is to have the key as well
as the nonce, block number and IV, as input. It then expands the key to
many, large sub-keys. Specifically, expand a 16 or 32 byte key into as many 64
byte sub-keys as needed to encrypt the data. This way, you will not have to
send gigabytes worth of keys to be able to send large files. You will only have
to send a small key, and Salsa20’s expansion function will expand it. Since
this function is expanding a seed into a set of pseudorandom numbers, it is
essentially a pseudorandom generator (or PRG).
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Figure 3.1: Overview of the structure of Salsa20.

Once a sub-key is created, it can be XORed bit-by-bit with 64 bytes of
the unencrypted plain-text data. In the case of decryption, the cipher-text is
XORed and you get back the plain-text. This can also be seen in Figure 3.1.

The PRGs 64 byte (512 bit) input consists of the following:

1. Key (32 bytes).

2. IVs (16 bytes).

3. Cryptographic nonce (8 bytes).

4. Block/counter number (8 bytes).
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The key, nonce (which we will define soon), block number and the internal
initialization vectors (IV) are combined to make the internal state (IS). Salsa20
has two set of IVs; one for each key-size mode. These IV sets are defined as
shown in Table 3.1 (see [1]).

A B

0. (101, 120, 112, 97)

1. (110, 100, 32,51)

2. (50, 45, 98, 121)

3. (116, 101, 32, 107)

0. (101, 120, 112, 97)

1. (110, 100, 32,49)

2. (54, 45, 98, 121)

3. (116, 101, 32, 107)

Table 3.1: Salsa20’s initialization vectors (IVs).

The differences between A and B are highlighted with bold text. Running
these numbers through an ASCII conversion table, we get the IVs as “expand
32-byte k” for IV A (32 byte key) and “expand 16-byte k” (16 byte key) for IV
B. The initial state (IS) of Salsa20 can be arranged as a 4× 4 matrix. Table
3.2 shows the matrix for a 32 byte key (IV A), where the key cells contains 4
bytes of the key, the nonce cells contains 4 bytes of the cryptographic nonce,
and the block cells contains 4 bytes of the block number.

“expa” key key key

key “nd 3” nonce nonce

block block “2-by” key

key key key “te k”

Table 3.2: Salsa20’s initial state (IS) for 32 byte keys.

Salsa20 supports both 32 byte keys and 16 byte keys. These are managed
as follows:

• When using a 32 byte key → Split the key k into two sub-keys k0 and
k1. Use IV A.

• When using a 16 byte key → Apply the key k twice. Use IV B.

We can see how these different parameters are given to the hash function, in
Equation 3.2. In this case, k (line 2) is a 16 byte key, while k0 and k1 (line
1) are the two parts/sub-keys of a 32 byte key. Thus, the expansion function
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receives the key or key bits, as well as the nonce. It calls the hash function with
the split keys (k0 and k1) or duplicated keys (k), the nonce (n) and the IVs
as input parameters, totalling 64 bytes. The hash function returns 64 bytes
of pseudorandom data. This data is then XORed with the initial input, and
becomes the first sub-key. For more sub-keys, which are required when the
data is bigger than 64 bytes, repeat the same process, but after incrementing
the block number.

Exp32(k1, k2, n) = Hash(a0, k0, a1, n, a2, k1, a3)

Exp16(k, n) = Hash(b0, k, b1, n, b2, k, b3)
(3.2)

Here, Exp refers to the expansion function, Hash refers to the hash function,
and 32 and 16 refers to the size of the key in bytes.

A cryptographic nonce is usually a random number, which is used for a
single encryption/decryption pair. This is to add even more randomness to the
algorithm. It can also be based on hardware states, as is done in the stream
cipher Trivium [39]. Ensuring the nonce is not reused is hard in lightweight
crypto, as it either has to use non-volatile flash memory or base it on the
hardware [40]. The block number is a binary number counting up for every
block of data being processed in an encryption or decryption. So the first block
of data will have block number 00 . . . 00, the second will have block number
00 . . . 01, etc. This ensures the initial state per block, is never the same, as
long as the nonce is changed at least every 264 blocks. Otherwise, the block
number will overflow and return to 00 . . . 00, and this initial state will be used
twice. Using the same hash input twice may allow an adversary to attack the
algorithm.

The PRG, seen in Figure 3.1, consists of an expansion function, which
then uses a hash function, which again uses the double-round function. The
double-round function consists of 1 full round of the row-round function, and
one round of the column-round function. Each of these functions again consists
of 4 rounds of the quarter-round function, applied differently to the different
parts of the IS. The quarter-round function (QR for short) is performed a
total of 80 times in Salsa20, and a reduced amount in Salsa20/12, Salsa20/8,
etc. The /8 means a reduced form of Salsa20, with only 8 full rounds, rather
than 20.

The hash function receives a 64 byte input (b0, b1, . . . , b63). It uses these
to construct 16 words (w0, w1, . . . , w15), each of 4 bytes. These are created
using the Littleendian (Lit) function, which will be defined soon, as described
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in Equation 3.3.

w0 = Lit(b0, b1, b2, b3)

w1 = Lit(b4, b5, b6, b7)

. . .

w15 = Lit(b60, b61, b62, b63)

(3.3)

It then runs these words through the double-round (referred to as Dr) function
10 times:

(z0, z1, . . . , z15) = Dr10(w0, w1, . . . , w15)

Finally, the hash function combines all these by concatenating a series of Lit
functions, as shown in Figure 3.4.

Lit(z0 + w0)

Lit(z1 + w1)

. . .

Lit(z15 + w15)

(3.4)

The Lit function received 4 bytes, and changes their order. It does so as
shown below:

Lit(b) = b0 + 28b1 + 216b2 + 224b3

Note that the + symbols in this case implies concatenation, not addition or
modular addition.

The double-round function consists of a row-round function and a column-
round function, both of which are applied once during a double-round, as
shown below:

Dr(x) = Rr(Cr(x))

In this equation, Dr refers to the double-round function, Rr refers to the row-
round function, Cr refers to the column-round function and x is a 16 word
input. The row-round and column-round both consist of 4 quarter-rounds.
When placing the 16 words into a 4 × 4 matrix, as shown in Table 3.3, the
row-round function takes row by row, while the column-round function takes
column by column.

In the illustration in Figure 3.2 we can see the ARX structure elements in
the quarter-round. It consists of a set of modular additions, bit-shift rotation
and XOR functions. The quarter-round function is invertible, as all of its
operations are invertible. The Salsa20 QR function takes a 16 byte/128 bit
X as an input and outputs a 16 byte/128 bit Y . A full round performs 4
quarter-rounds, making sure all parts of the internal state is run through the
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x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

Table 3.3: The 16 binary words being used in the double-round function.

Figure 3.2: Flowchart of the Salsa20 quarter-round function.

QR function every round. The X and Y are split up in 4 pieces, each 4
bytes/32 bits, as shown in Equation 3.5.
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X = [x0, x1, x2, x3]

Y = [y0, y1, y2, y3]

xi, yi ∈ F32
2

(3.5)

The QR function can be written out as shown in Equation 3.6.

y1 = x1 ⊕ ((x0 + x3)≪ 7)

y2 = x2 ⊕ ((y1 + x0)≪ 9)

y3 = x3 ⊕ ((y2 + y1)≪ 13)

y0 = x0 ⊕ ((y3 + y2)≪ 18)

(3.6)

3.2 How ChaCha differs from Salsa20

ChaCha offers a solution to one of the potential issues in Salsa20’s quarter-
round function. In the Salsa20 QR, y1 is affected by x0, x1 and x3, but not
x2. On the other hand, y0, y2 and y3 is affected by all of X. This means y1
has less diffusion, and is thus weaker against potential attacks. ChaCha has
updated this by using a modified QR function. It should diffuse more, as all
output words are affected by all input words (see [41] and [42]). This is done
without making it slower. In fact, in some cases it can improve speed and use
less temporary memory (see [41]).

When describing the ChaCha quarter-round, we use slightly different nota-
tion than with Salsa20. Rather than (x0, x1, x2, x3) as inputs and (y0, y1, y2, y3)
as outputs, we use (a, b, c, d) for inputs, and we update them directly. This
means implementations of ChaCha can save some memory, where Salsa20
would require storing temporary variables.

The ChaCha quarter-round is described in Equation 3.7. The operations
are performed left to right and top to bottom, similar to how it would be
programmed in C. An illustration of the ChaCha quarter-round function is
shown in Figure 3.3.

a += d, d ⊕= a, d≪ 16

c += b, b ⊕= c, b≪ 12

a += d, d ⊕= a, d≪ 8

c += b, b ⊕= c, b≪ 7

(3.7)
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Figure 3.3: Flowchart of the ChaCha quarter-round function.

3.3 Analysis on Salsa20

In this section, we describe our how we analyzed Salsa20 and its quarter-round
function. We perform all analyses on both a full Salsa20 encryption and the
quarter-round function. While breaking the quarter-round function is not very
useful in and of it self, it is interesting to compare it with Salsa20. Our analyses
should presumably perform better against the quarter-round function, than
against Salsa20. We analyse 3 methods in this section:

• Brute-force attacks

• Hamming distance-based analysis

• CAN-based analysis
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3.3.1 Test setup

First, we look at the brute-force attack. While a brute-force attack is guaran-
teed to be successful, it is also very ineffective and slow. We therefore estimate
our implementation against a brute-force attack.

We implemented a test setup of Salsa20, which we used in this analysis
(see [43]). It is built in Python 3.7, and was run on an Intel i7-4790k processor
running Windows 10 (x64).

The CAN-based analyses were implemented in Matlab 2020b, based on a
modified image processing tool from MathWorks. The same test setup from
earlier, trained the models on a NVIDIA GTX 980 Ti. The rest was imple-
mented in Python 3.7.

3.3.2 Brute-force estimation

About brute-force attacks

The basics of a brute-force attack is to guess all of the possible values, until
one works. Say the deterministic function f takes input A and returns and
output B. We write this as f(A) = B. We guess or count new A′ for all
possible As, where f(A′) = B′. Whenever the guessed and real output are the
same, we can conclude either the inputs are the same, or that we have found
a collision.

B = B′ =⇒ f(A) = f(A′) =⇒ A = A′

Estimating how long a brute-force attack would take on our setup

We run tests on the Salsa20 QR function and the ChaCha QR function. We
also run tests on the Salsa20 full encryption and decryption, using 32 byte
(256 bit) keys. All of these tests were performed with random values. The
results can be found in Table 3.4, where rate = runs

time .

Function Runs Time (s) Rate (1/s)

Salsa20 QR 100000 10.472. . . 9548.432. . .
ChaCha QR 100000 9.784. . . 10219.841. . .
Salsa20 encrypt 100 7.261. . . 13.771. . .
Salsa20 decrypt 100 7.155. . . 13.974. . .

Table 3.4: Results from the speed performance test.

We can see how the Salsa20’s and ChaCha’s QR function run at roughly
the same rate (10000 per second). Salsa20 encryption and decryption also run
at roughly the same rate (14 per second).
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Since the QR function takes a 128 bit binary number, the total possible
combinations of inputs are 2128. A complete search would thus take about:

2128 QR

10000 QR
s

= 3.4 · 1034 s,

or about 1027 years. Assuming we can know the cryptographic nonce used, a
complete search of the 256 bit key space would take roughly:

2256 runs

14 runs
s

= 2.4 · 1076 s,

or about 1068 years. While one could expect to find the correct Salsa20 key or
QR input in about half of the time for a complete search, either are still very
much impractical. We can thus conclude that a brute force attack on either the
key or the QR input on either our Salsa20 or our ChaCha implementations
is infeasible. While there are much faster and effective implementations of
the Salsa algorithms, 128 bit keys and 256 bit keys are generally considered
practically secure.

3.3.3 Hamming distance differential analysis

In this section, we look at a Hamming distance-based form of differential
cryptanalysis.

Hamming weight and Hamming distance

The Hamming weight (HW ) of a binary number is the amount of non-zero
bits. So HW (00100100) = 2, as the number has two 1’s. The Hamming
distance is the amount of bit-by-bit difference between two binary numbers.
So HD(1000, 0000) = 1, as the first bit is different between the two numbers.
This can be formulated into the following pseudocode, where Q and P are the
two numbers, and bit q and bit p are the bits currently being compared.

HD = 0
f o r b i t q , b i t p in Q, P:

i f b i t q =/= b i t p :
increment HD

Since XOR also does a bit-by-bit difference check, we can alternatively
write the HD function as:

HD(1000, 0100) = HW (1000⊕ 0100) = HW (1100) = 2.
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Differential analysis

We take a random input X and output Y , such that f(X) → Y , where f is
the encryption function we attempt to analyse. We then modify X into X ′,
by flipping n bits. Run it through the encryption function f : f(X ′) → Y ′.
The question now is, after n flipped bits between X and X ′, how many bits
are flipped between Y and Y ′? Or more specifically, if

HD(X,X ′) = n→ HD(Y, Y ′) = m,

what is m? Does a static n mean m is also static? If not, what is its average
value for different values of n? See Figure 3.4 for an overview of the analysis
method. If we can use this to decide whether or not a random X ′ is close to

Figure 3.4: Algorithm for the differential HD analysis on X-Y pairs.

X, by looking at the Y ′ and Y , we may be able to use this in an attack against
the algorithm. We perform this analysis on both the Salsa20 quarter-round
function, and on Salsa20’s PRG.

If the algorithm has a good avalanche effect, you would expect the HD to
be about the same as the HD between two random values: About half the
bits. More formalised, if Q and P are two random binary numbers of length
n, we would expect:

HD(Q,P ) ≈ n

2
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This is our null hypothesis. If, however, what we see differs from this expected
value, it illustrates a lack of proper avalanche effect of the function.

3.3.4 CAN analysis

In this section, we describe how we perform a known-ciphertext analysis using
a context aggregation network, or CAN. Since these networks are made for
creating or modifying images, we need to make the inputs and outputs into
images. We attempted to make a CAN learn how to construct plaintexts from
ciphertexts. We tried 2 different methods for doing this:

1. Using randomly generated plaintexts, through both Salsa20 and the
quarter-round function.

2. Using existing images, through only Salsa20.

Once we had encrypted and unencrypted images, we can train the network
on them, and measure how well it learns. We varied multiple settings for the
training to see how it affected the learning process:

• Patch size: From 16× 16, 32× 32. 64× 64 and 256× 256.

• Initial learning rate: From 0.000001 to 0.1.

• RGB weights: 1 to 3 for all RGB values, 1 to 32 for filters.

• Leaky ReLU (Rectified Linear Unit) Layers: 0.1 to 0.6.

Random plaintext-ciphertext pairs

This analysis method uses sets of plaintext (PT) ciphertext (CT) pairs, con-
verts them into images and trains the CAN on them. See Figure 3.5 for an
illustration.

Figure 3.5: Algorithm for CAN analysis on PT-CT pairs.

In this approach, we generated 5 sets of binary pairs, each containing a
million pairs. These are shown in Table 3.5.

When these sets of pairs were generated, they were converted graphical
images. One set of images for the plaintexts and one set for the ciphertexts. To
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Encryption
algorithm

Size
(bits)

Generation method

Salsa20 1024 Converted incrementally larger numbers
(0, 1, . . . , 1000000) to binary. Padded to fit
size requirement, and encrypted. See Figure
3.6 for a pair from this set.

Salsa20 1024 Generated random binary numbers of size
1024, and encrypted them. See Figure 3.7
for a pair from this set.

QR function 128 Generated random binary numbers of size
256, and encrypted them.

None 1024 Generated two random binary numbers of
size 1024. No encryption. These are used
for comparison to the encrypted pairs.

None 128 Generated two random binary numbers of
size 256. No encryption. These are used for
comparison to the encrypted pairs.

Table 3.5: Plaintext-ciphertext pairs generated for CAN analysis.

work well with the existing CAN setup, the images were made to be 256×256
pixel RGB images. This gave us 65536 pixel, each with 3 colors (red, green
and blue), giving us a total of 256 × 256 × 3 = 196608 values per image. We
tried two methods of conversion:

• One bit per pixel. This gave us 65536 bits of plaintext/ciphertext per
image, making it black and white. See Figure 3.8 for an example of one
of these images.

• One bit per color per pixel. I.e. 3 bits per pixel. This gave us 196608 bits
of plaintext/ciphertext per image file, making it a color image (RGB).
See Figure 3.9 for an example of one of these images.

This gave us multiple plaintexts or ciphertexts per image, and the sets of
images are therefore smaller than the sets of plaintexts and ciphertexts. Figure
3.10 shows how the system was set up, and Figure 3.5 shows an overview of
the process.

Once we had a set of plaintext and ciphertext images, we could train the
network on them.

As the Salsa20 algorithm consists of 80 quarter-rounds, we can expect the
full algorithm to be more resistant to such analyses than a single quarter-
round function. And since the random pairs are not related, we use these as
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Figure 3.6: Example of an incremented PT-CT pair.

Figure 3.7: Example of a random PT-CT pair.

a null hypothesis and a base result for our tests. If the CAN learns no better
on Salsa20 pairs or quarter-round pairs than random pairs, we can conclude
that this method does not seem viable. If, however, there is a difference, we
can conclude that these functions are at least somewhat weak against a CAN-
based analysis. If, for some reason, the random sets have a significantly better
learning rate than the other two sets, it may indicate that the PRF we use for
generating the random pairs are weak against such analyses.

Figure 3.8: Example of a randomly generated PT-CT pair converted into RGB
images.
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Figure 3.9: Example of a randomly generated plaintext converted into an black
and white image.

Figure 3.10: Illustration of our plaintext-based CAN analysis method.
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Encrypted images

In addition to creating pairs of texts, we took existing images, reshaped them
in Matlab into the required sizes for our CAN. We also encrypted them using
the Python Salsa20 implementation. See Figure 3.11 for an overview of this
method.

Figure 3.11: Algorithm for CAN analysis on PT-CT pairs.

That way, we use the original images as PT and the encrypted ones as
CT. For an example of a image generate from the CT, see Figure 3.12 The

Figure 3.12: Image version of the CT from an encrypted image of a face.

analysis is otherwise the same as last section: Train the network on the CTs,
so it will hopefully be able to construct their respective PTs. This method is
illustrated in Figure 3.13.
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Figure 3.13: Illustration of our image-based CAN analysis.
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Chapter 4

Results and discussion

4.1 Hamming distance

This section discusses the results from our differential analyses using the Ham-
ming distance. First, we look at the results from Salsa20’s quarter-round
function, then we look at Salsa20’s PRG function.

4.1.1 Quarter-round function

Salsa20 consists of 80 runs of the quarter-round function (QR), each of which
progressively obfuscates the key more. If we define the QR function as:

QR(X)→ Y

then our analysis as modifying X into X ′ by changing some bits, and then
measuring how the Y reacts. If QR(X ′) → Y ′, and the HD(X,X ′) = n,
what is HD(Y, Y ′) = m? As we progressively incremented n, we saw m tend
towards the expected equilibrium of half the length of Y . This analysis can
be simplified to measuring:

HD
(
QR(X ′), Y

)
In Figure 4.1, the used values of X are 1024 bits. This is done to show the

trends more clearly. While the QR function is made for 128 bits, it can also
be applied to other amounts of bits. The x axis is in this case the amount of
times the original X has flipped a bit, i.e., n. The y axis is the HD between
the two values being measured, i.e., m. The lines in the legend are as follows:

0. HD(X,Y )

1. Convergence point of the Hamming distance between two random values.
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Figure 4.1: Effects of flipping random bits in X.

2. HD(Y, Y ′)

3. HD(X,X ′)

Line 0 and 1 show that the HD between an X and its corresponding Y is
indistinguishable from the HD between two random values. In other words,
the Hamming distance is not showing any correlation between inputs and out-
puts of the QR function. Line 3 shows, unsurprisingly, that the Hamming
distance between two words increase at about 1 bit per random bit flipped.
Line 2 shows that the Hamming distance between two Y values, where their
corresponding X values are n bits distant from each other, drift towards the
random/main sequence, or the expected value. It is however clearly distin-
guishable from random values, as long as X and X ′ are relatively close. In
other words, as the HD(X,X ′) is sufficiently small, the HD(Y, Y ′) is smaller
than what one can expect from random. This indicates a lack of sufficient
avalanche effect in the quarter-round function. Assuming

HD(X,X ′) <
key size

8
,

HD(X,X ′) should be easily distinguishable.
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Figure 4.2: Averaging of effects on Y when bits are flipped in X.

In Figure 4.2, we see 5 non-vertical lines. The vertical line is where the bits
flipped needed for the Hamming distance to be within the range of expected
random distances. In this case, about 11 bits. In the figure, the lines represent
the following:

0. HD(X ′, Y ′) as n bits in X ′ are flipped.

1. HD(X,Y ) of random Xs.

2. Minimum expected difference between two random Xs.

3. Maximum expected difference between two random Xs.

4. Expected average difference between two random Xs.

4.1.2 Salsa20’s PRG

We tried a similar analysis on Salsa20’s PRG. In this case, we flipped random
bits in the key, and saw how the output of the PRG reacted on the input.
We can see the results in Figure 4.3. Line 1 shows how, unsurprisingly, how
HD(inoriginal, innext) is roughly equal to 1 per flipped bits. Line 2 is the ex-
pected value for random inputs and outputs. This is also the expected value
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Figure 4.3: Averaging of effects on the PRG output when bits are flipped in
key.

for an encryption algorithm with sufficient confusion. This is where we would
expect the HD between random values to land. This is also where we would
expect the HD between a good encryption algorithm’s input and output to
land. And when we look at line 0, this is indeed what we see. There seems to
be no correlation or pattern between the amounts of bits flipped in the input
(n) and the HD between the two values.

4.2 Context aggregation network

We made the CAN train on the 4 plaintext-ciphertext pairs, as well as the
sets of graphical images. In Figure 4.4 we can see how the network trains on
normal images, trending to 0 after a relatively short time.

For the random plaintext-ciphertext pairs, the network quickly stabilised
the RSME and loss. However, it did not get close to 0, and remained on a
much to high error rate. We can see this in Figure 4.5 for the images encrypted
by the quarter-round function, and in Figure 4.6 for encryption by Salsa20.

The results for the image based analysis gave show as that, while the
images gave us different results, the network was not able to train towards a
sufficiently low value for use in cryptanalysis and attacks. In Figure 4.7, we
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Figure 4.4: Training trend for regular images.

Figure 4.5: Training trend for the QR text pairs.
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Figure 4.6: Training trend for the Salsa20 text pairs.

can see that the network also plateaued far from 0, when using regular patch
sizes of 256 × 256. When using smaller patch sizes, we saw it still plateaued,
but in a much more stable way. In Figure 4.8, we can see how the network
trained on a 32×32 patch size. The result was similar when training overnight,
about 300 epochs, 300000 iterations.
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Figure 4.7: Training trend for the Salsa20 image pairs, with patch size of
256× 256.

Figure 4.8: Training trend for the Salsa20 image pairs, with patch size of
32× 32.
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Chapter 5

Conclusion

This work attempted to answer the questions:

• Does Salsa20 seem to be secure against existing attacks?

• Can we break a weakened version of Salsa20?

Based on the found cryptanalysis research on Salsa20, there is little reason
to think it is not sufficiently secure for normal use. There exists attacks
more effective than brute-force, including side-channel attacks. Even so, these
attacks are not practical, and so we conclude that Salsa20’s security still holds
up.

The analysis using the Hamming distance seem to show the quarter-round
function does not have a sufficient avalanche effect to be an encryption al-
gorithm by itself, but we also see that Salsa20 does not seem to suffer from
the same effects. We therefore conclude that an attack based on this form of
analysis, is not viable.

The analysis using the context aggregation networks shows little sign of
effect. We therefore conclude that an attack using the CAN analysis we used,
does not seem to have any feasibility.

5.1 Further work

While our context aggregation network did not show any signs of learning from
the used data, it is possible that a modified loss function could work better.
For example a loss function based on the Hamming distance.

As ChaCha and its quarter-round function is only slightly different, similar
tests could be run at them to see if there is a significant difference.
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[3] Alex Biryukov and Léo Perrin. State of the art in lightweight symmetric
cryptography. University of Luxembourg/ePrint, 2017.

[4] Muhammad Shoaib Siddiqui, Syed Obaid Amin, Jin Ho Kim, and
Choong Seon Hong. A survey of wireless mesh networking security tech-
nology and threats. IEEE Xplore, 2007.

[5] Paul Gardner-Stephen, Romana Challans, Jeremy Lakeman, Andrew Bet-
tison, Dione Gardner-Stephen, and Matthew Lloyd. The serval mesh: A
platform for resilient communications in disaster crisis. IEEE Xplore,
2013.

[6] Anthony Gerkis. A survey of wireless mesh networking security technol-
ogy and threats. SANS, 2006.

[7] Alex Biryukov. Block Ciphers and Stream Ciphers: The State of the Art.
The International Association of Cryptologic Research (IACR), page 22,
2004.

[8] Suhaila Omer Sharif and S.P. Mansoor. Performance analysis of stream
and block cipher algorithms. IEEE Xplore, 2010.

[9] Yongqiang Li and Mingsheng Wang. Constructing s-boxes for lightweight
cryptography with feistel structure. Springer, 2014.

[10] Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and Bart
Preneel. Toolkit for the Differential Cryptanalysis of ARX-based Cryp-
tographic Constructions. In François-Xavier Standaert, editor, Work-
shop on Tools for Cryptanalysis 2010, pages 125–126, Egham,UK, 2010.
ECRYPT II.

61



[11] Vasileios Mavroeidis, Kamer Vishi, Mateusz D., and Audun Jøsang. The
impact of quantum computing on present cryptography. International
Journal of Advanced Computer Science and Applications, 9(3), 2018.

[12] Ray A. Perlner and David A. Cooper. Quantum resistant public key
cryptography: A survey. In Proceedings of the 8th Symposium on Identity
and Trust on the Internet, IDtrust ’09, page 85–93, New York, NY, USA,
2009. Association for Computing Machinery.

[13] Saurabh Singh, Pradip Kumra Sharma, Seo Yeon Moon, and Jong Hyuk
Park. Advanced lightweight encryption algorithms for IoT devices: sur-
vey, challenges and solutions. Springer, 2017.

[14] Tapalina Bhattasali. Licrypt: Lightweight cryptography technique for
securing smart objects in internet of things environment. University of
Calcutta, 2013.

[15] William J. Buchanan, Shancang Li, and Ramees Asif. Lightweight cryp-
tography methods. Journal of Cyber Security Technologies, 2017.

[16] Sufyan Salim Mahmood AlDabbagh and Imad Al Shaikhli. Lightweight
block ciphers: a comparative study. NIST - National Institute of Stan-
dards and Technology, 2015.

[17] Sergey Panasenko and Sergey Smagin. Lightweight cryptography: Un-
derlying principles and approaches. International Journal of Computer
Theory and Engineering, 2011.

[18] Thomas Eisenbarth, Christof Paar, Axel Poschmann, Sandeep Kumar,
and Lefi Uhsadel. A survey of lightweight cryptography implementations.
IEEE Deisgn Test of Computers, 2007.

[19] ECRYPT. eSTREAM: the ECRYPT stream cipher project. Accessed:
2020.05.26. URL: https://www.ecrypt.eu.org/stream/.

[20] CryptoLUX. Lightweight cryptography. Accessed: 2020.03.09.
URL: https://www.cryptolux.org/index.php/Lightweight Cryptography.

[21] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher
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Attachments

1. Implementation of Salsa and ChaCha, with analysis tools.
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