
 

Unreined Students or Not: Modes of Freedom in a Project-Based 
Software Engineering Course 

 
Øystein Nytrø1, Anh Nguyen-Duc2, Hallvard Trætteberg1, Madeleine Lorås1 & 

Babak Amin Farschian1 
1Institutt for datateknologi og informatikk - Norges teknisk-naturvitenskapelige universitet 

2Institutt for økonomi og IT - Universitetet i Sørøst-Norge 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Accepted version of article in:  
2020 IEEE 32nd Conference on Software Engineering Education and Training (CSEE&T) 

 

Publisher’s version:  
Ø, N., Nguyen-Duc, A., Trætteberg, H., Lorås, M. & Farschian, B. A. (2020, 9-12 Nov. 

2020). Unreined Students or Not: Modes of Freedom in a Project-Based Software 
Engineering Course. In 2020 IEEE 32nd Conference on Software Engineering 

Education and Training (CSEE&T). 
https://doi.org/10.1109/CSEET49119.2020.9206193  

 
© 2020 IEEE.  Personal use of this material is permitted.  Permission from IEEE must 

be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

 
 
 
 
 
 
 

https://doi.org/10.1109/CSEET49119.2020.9206193


XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Unreined Students or Not:  
Modes of Freedom in a Project-Based Software 

Engineering Course  
 

 

Øystein Nytrø 
Norwegian University of Science and 

Technology 
Trondheim, Norway 

0000-0002-8163-2362 
 

Anh Nguyen-Duc 
University of South-Eastern Norway 

Bø, Norway 
0000-0002-7063-9200 

Hallvard Trætteberg 
Norwegian University of Science and 

Technology 
Trondheim, Norway 

 

Madeleine Lorås 
Norwegian University of Science and 

Technology 
Trondheim, Norway 

Babak Amin Farschian 
Norwegian University of Science and 

Technology 
Trondheim, Norway 

 

 
Abstract— Software engineering courses include practical and 

theoretical elements that give many options for pedagogical 
combinations among them. In this paper, we report on two 
different pedagogical approaches for an undergraduate, 
introductory project-based software engineering course with more 
than 500 students working in collaborative scrum teams. We call 
one approach ‘Every Student is an Innovator’, and the other ‘No 
Student Left Behind’. This SE course has been long-running, with 
stable learning objectives and content. However, from one year to 
another, we radically changed the pedagogical approach of the 
course along several dimensions, among them the technical 
framework, software tools, project topic, mentor roles, assessment 
form and frequency, feedback and degree of student 
innovativeness. We report on the perceived challenges, detailed 
changes, the anticipated effects on the course learning outcomes. 
The results showed that innovativeness and fun need freedom and 
flexibility with processes and technology. However, strict design 
requirements and systematic guidance ensure fulfillment of 
learning objectives. Analyzing student and staff feedback, we find 
that both approaches lead to students using more time than 
intended and worrying about unknown assessment criteria. 

Keywords— Software Engineering Education; Project-based 
Software Engineering; Software Innovation; Continuous 
Integration; Continuous Assessment; Technology Support 

I. INTRODUCTION 
Educating software engineering (SE) students is a challenge of 
ensuring practical competence while still providing future-
proof research-based knowledge [1, 4, 7]. Balancing the 
theoretical foundation with abilities in current practice and 
technology is an acknowledged problem [2]. On one hand, 
students need knowledge and awareness of SE principles, not 
only proper coding but also software architecture, requirement 
and testing. They should also be able to understand and use 
various types of development tools. On the other hand, an 

academic program in SE should enable future professionals to 
reason about and even develop new methods, competencies and 
tools as needed [3]. As educators, we should give the students 
insight into recent trends in the software industry, such as 
continuous deployment, DevOps, lean startup, digital 
transformation, and we should continually update various 
aspects of the curriculums. Large, lab-based courses in SE put 
a high demand on infrastructure and organizational resources. 
Course qualities like assessment consistency, precise 
schedules, explicit expectations and 24/7 infrastructure with 
technical support are expected. Teaching assistants must be 
trained, theory and practice must form a coherent unit, and 
technical and scientific staff must be agile and swift. Lecturers 
often struggle to ensure both lucid research-based lectures and 
a smooth large-scale lab operation.  SE courses risk ending up 
with outdated practices and technology no longer in use [5], so 
detailed training in tools and methods may age quickly and 
become a career obstacle rather than an asset.  
The backbone of our SE-course is a project-based lab-course 
where students work in agile teams, interspersed with this, we 
lectures on theory, tools and technology  [8, 9, 10, 21]. We have 
seen that a simulation of a real-world project with failures, 
iterations, and successes motivates students to collaborate, 
explore and take responsibility [6]. Our task as educators is to 
feed this peer-driven educational experience with the right 
constraints, theory, tools, and infrastructure. However, we 
struggled with finding the best framing, and we experienced a 
wide range of group behaviours and results: With too much 
freedom, the students’ learning processes degenerated when 
encountering decisions and choices beyond their competence. 
However, too strict process constraints (if requested or found 



necessary by TA’s) would hinder innovativeness, stifle the 
competitive spirit among the groups and inadvertently change 
behavior from controlled learning by doing, and failing, to 
rule-following. 
This paper presents two different attempts to handle the multi-
dimensional choices of course design:  tools and methods, 
lectures, curriculum, supervision, and assessment. The SE 
research group responsible for SE courses, regularly changes 
lecturers, methods, tools and theory, while learning objectives 
remain unchanged. Our motivation for regular updates comes 
from a perceived gap between competence required in the 
national software industry and what can be found in traditional, 
text-book-based SE course curriculum. In two consecutive 
years, the SE course was taught with two different approaches 
by two different teaching teams. The underlying learning 
objectives were unchanged: Students should learn industry-
relevant, modern, yet fundamental principles of software 
development and project practice. The course has several note-
worthy attributes:  
• Large class size: The course has more than 500 students 

annually, and students have widely varying experience 
with practical development tools. With limited resources 
for teaching and supervision, it is essential to find a cost-
effective approach that realizes the course objectives and 
employs peer-learning, collaboration, student-based 
assessment and supervision in a realistic project setting. 

• Progressive enhancement of curriculum: The curriculum 
must be research-based, according to Department Research 
Priorities. Yet, fundamental SE topics must be covered in 
detail. Besides, the course should give a sampler of further 
SE research topics and courses in programming 
environments, languages, domain modeling, architecture, 
Requirements engineering, DevOps, CSCW, etc. 

• Project-based course: The students will develop a working 
product as a project team that is continuously being 
challenged to use methods and tools new to them.  The 
course must offer both aid to the development process as 
well as systematic assessment and feedback regarding the 
learning objectives.  

• Trained, but lower-grade TA staff: TA’s are carefully 
selected and trained, each working 8-12 hours per week in 
addition to normal academic progression.  

 
This study reports the findings from comparing two teaching 
approaches with regard to the effects on both teaching and 
learning. The Research Questions were:   
RQ1. What dimensions of students’ choices are possible to 

accommodate in a large, project-based SE course?  
RQ2. What are the strengths/weaknesses associated with 

such freedom?  
 

The remainder of this paper is organized as follows: Section II 
presents related work. Section III outlines our research 
methodology. Section IV presents the two different approaches, 
which we call ‘Every Student is an Innovator’ (ESIAI) and ‘No 
Student Left Behind’ (NSLB) respectively. Section V describes 
results, while Section VI discusses findings, validity and future 
work. Section VII concludes the paper.  

II. RELATED WORK 
Software engineering (SE) is defined as “the application of a 
systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software; that is, 
the application of engineering to software” [11]. Several 
challenges of teaching SE has been explored in various 
contexts, such as (1) to identify and transfer the key knowledge 
to the students, and also (2) to encourage students to develop 
the skills required to apply such knowledge in real-world work 
scenarios [15,16]. Although challenges apply to traditional 
teaching methods [15,16], some challenges are best met with 
hands-on experience [14]. 
Project-based teaching of software engineering is not new [2, 5, 
10,13]. Recently, SE courses with more control over processes 
and practices, and less control over programming and tools 
have been reported: For example, Mahnic et al. described the 
experience of giving a strict guideline for teaching Scrum in a 
Slovenian capstone project [10]. Students learned and was 
graded by how well they carried out Sprints, controlled product 
quality, and produced documentation. The study does not 
mention how students were trained with regard to programming 
and tools. Some other courses use tools as the key 
infrastructures for teaching and assessing students, hence 
having more control over this dimension. Bruegge described 
the experience of teaching a large Software Engineering class 
(size of 300 students) with real industrial clients [2]. The author 
used a collaborative management environment that automates 
recurring assessment tasks. Feliciano et al. reported the benefit 
of using GitHub and open workflow to support collaboration 
among students [6]. However, that study does not answer how 
such course infrastructure support teachers in managing and 
assessing student's work. Other reports on innovative teaching 
approaches are eg. Broman et al. who described a company 
approach to teaching software engineering project courses. 
Students were organized into simulated companies and 
assessed according to process and product features [13]. These 
studies, however, did not systematically compare alternative 
approaches to student freedom of choice. They also did not 
compare the teaching outcome after introducing changes. 

III. RESEARCH METHODLOGY 

Our study analyzed both qualitative and quantitative data from 
multiple viewpoints [19]. Towards the common goal of 



improving Software Engineering courses, we have designed 
and conducted similar data collection processes every year with 
different course instances. The overview of our research 
methodology is shown in Figure 1. Every year, we collected 
pre- and mid/end-course feedback from students by having 
them filling in surveys. These surveys provided us the students’ 
background and experience with programming, project work 
and their motivations. The surveys also include their evaluation 
of our courses, for instance, their opinion about teaching 
materials, lectures, exercises, lecturers and project settings. The 
surveys also asked for perceived strengths and weaknesses 
experienced in the course. At the end of the courses, we asked 
students to provide feedback about learning outcome. Students’ 
and TA opinions were also gathered by representative groups, 
informal interviews and smaller surveys.  
We performed a retrospective comparative analysis that 
uncovers history and experience. The unit of analysis is the 
course itself, so we had two instances, one in 2017 (ESIAI) and 
another in 2018 (NSLB). The two teaching teams and teaching 
philosophies were different between these years. The analysis 
includes: 
• Lecturers’ focus group: including four lecturers of the two 

instances of the course, discussion of own experience with 
the course, feedbacks from TA teams, and comments from 
other lecturers in the department and external guest 
lecturers. This background provided the perceived 
strengths and weaknesses of each approach, together with 
their dimensions of teaching freedom. 

• Comparison of students’ feedback between the two course 
instances: We compared the summary of students’ rating 
from both course instances. 

 

 
Figure 1: Research methodology 

IV. THE TWO TEACHING APPROACHES 

A. Common settings for the courses 
The course is given to second-year computer science students, 
primarily admitted to a full 5-year master program. The course 
nominally requires students to work 12 hours per week for 13 
weeks. The students are predominantly very high achievers, 
with top grades from secondary schools, but not necessarily 
technology savvy. Before taking the course, students must have 
completed courses in OO programming, algorithms, lab- and 
project courses, mathematics, statistics, and cross-faculty 
courses. The learning objectives of the SE course encompass 
theory and practice of development processes, agile methods, 
project management and –planning, modeling, UML, 
architecture, testing, evolution, CM, reuse, safety, security, 
quality and process improvement. Assessment is done mainly 
on group effort, without a final individual exam. We employed 
teams of nine to eleven TAs, with a total effort ranging from 
2200 hours with additional graduate student support (ESIAI), 
to 2500 hours (NSLB). Both instances provided approximately 
20 minutes/student/week, or more than 2 hours per group per 
week. TA effort is divided between giving aid and doing 
product/deliverable assessment. Lecture halls for plenary 
sessions with all students are available 6 hours per week, and 
course-assigned smaller lab and seminar rooms for 
presentations, group work and TA-aid are available 24/7. TA’s 
are recruited among higher-year students, with grades in the 
same course among the 20% best. TA’s receive pedagogical 
training and are instructed to be good mentors. Different TA 
functions (in particular assessment) are circulated, but direct 
group aid and feedback are often given by the same 1-2 persons 
throughout the course. The schedules of the courses are 
described in Table 1. Lectures, sprints, deliverables and 
assessment weighting are shown.  
 

B. Approach ‘Every Student Is An Innovator’ (ESIAI) 
 
ESIAI: Motivation for the Approach 
Besides teaching fundamental Software Engineering concepts 
and phenomena in a hands-on and understandable way, the 
Spring 2017 instance of the course emphasized students' 
innovative capacities. Inspired by a large number of successful 
startups founded by university students, we would like to 
encourage the self-learning process that is driven by joy, 
curiosity, and discovery. We aimed at not only teaching 
students about fundamental software development activities but 
also attempting to introduce novel software development 
approaches, i.e. Lean Startup, Mobile D, and SEMAT 

Identify
improvement

Redesign course

Study design

Comparative
analysis

Every Student Is An 
Innovator Course No Student Left

Behind Course

Pre-course
data 

collection

Post-course
data 

collection

Old Project-Based SE 
Course

Pre-course
data 

collection

Post-course
data 

collection

Ite
ra
te



ESSENCE. Students also participated in various innovative SE 
activities, such as interviewing professional developers, 
making presentation slides, posters and videos. The dimensions 
of ESIAI are summarized in Table 2. 

Table 2: Dimensions of Teaching ESIAI 

 

 
ESIAI: The project and process  
 Due to a large number of student teams (around 110 teams), 
we did not assign specific projects to students. Rather than that, 
a general theme was introduced at the beginning of the course. 
In Spring 2017, the theme was “Revolutionizing the learning-
experience in university education with roBOT technology”. 
Students gathered requirements about problems of university 
education solvable by a software system, conceptualized and 
presented a solution. After that, they were guided through a 
systematic workflow to implement demonstrable solutions. In 
other words, students had considerable freedom in the journey 
of revolutionizing educational work while learning SE. The 
project did not involve real customers. A team of supervisors 
was employed to assist students in refining their requirements 
and implementing the solutions. Students were required to 
formulate user stories, product backlogs, non-functional 
requirements, to reason and document their architectural 
decisions via architectural diagrams. 
Regarding methodologies, students were required to follow 
Mobile-D approach [17]. The method is based on Extreme 
Programming (XP), Crystal methodologies, and Rational 
Unified Process, optimizing for developing mobile, lightweight 
software products. The project consists of five iterations, 
namely set-up, core, core 2, stabilize, and wrap-up. Each project 
phase consists of three different types of development days: 
Planning Day, Working Day, and Release Day. As the course 
instructors, we set up checkpoints at the end of each iteration, 
where students reported their progress. During each iteration, 
the students had large freedom in deciding their team, roles, and 
working style in the projects. The students were introduced to 
SEMAT ESSENCE language [18] to build their work 

 Dimensions Fixed Flexible 
Project 
setting  

Project theme 
Report template 
Overall 
architecture 

Project idea 
Product backlogs 
Detailed 
architecture 

Process  Number of Sprints 
Duration of Sprints 
Delivery of each 
Sprint 
Weekly 
supervision 
meeting 

Process metrics 
Adopted 
practices 
Team 
communication 
and meeting 
Quality 
assurance 

Technology  Version Control 
System  

Programming 
language 
(frontend, 
backend) 
Servers, 
Database 

Supervision  Weekly meeting 
Delivery 

N/A 

Assessment Video-presentation 
and report eval. at 
end of course 

N/A 

Table 1: Course schedules for approaches ESIAI and NSLB 



processes. Students needed to identify language elements, such 
as Opportunity, Stakeholders, Requirements, Software System, 
Work, Team and Way of Working and monitor the evolution of 
the elements’ states. 
 
ESIAI: The development platform and technology stack  
In general, there were no fixed requirements for technology and 
programming language in the course. The students would 
propose a technology stack. They were recommended to use 
GitHub as the version control system. Almost every team were 
guided to use Trello for project management. Some teams chose 
alternative tools, such as taiga.io. Students had experience from 
other courses, and would use HTML, CSS, and Javascript in the 
front-end, Python, and Java in the backend. Most of the teams 
used external libraries or frameworks, such as jQuery, Jasmine, 
NodeJS, Django, JavaFX, api.ai, etc. The extent of using 
databases varied among students, from traditional SQL 
databases to No-SQL databases.  
  
ESIAI: Supervision and assessment 
The teaching team included lecturers who delivered lectures, 
prepared assignments, did administrative work and managed 
the TA team. The TA team consisted of seven people (Ph.D 
students, researchers and master students), who closely 
interacted with student teams, gave feedback to their 
assignments, supported them with the methods (i.e., SEMAT, 
Mobile D), and technical infrastructure (Git, Trello, etc.). 
During the process observation, a team would meet their 
supervisor every 1-2 weeks for process and technology 
assistance. Each TA supervised 15 groups, spending an average 
20-30 minutes for each group weekly. TAs used Google sheets 
to note the progress of their teams. The intermediate deliveries 
from students during the projects were co-assessed by course 
responsible and TA’s. 
The final assessment of the performance of students were based 
on the demonstrated quality and implementation of their 
products, deployment packages and final reports. The course 
instructors went through all deliverables from students, took 
into account the notes and pre-assessment from TAs to 
determine the final grade. There was no written exam in this 
course instance. Student received no grading or formal 
feedback during the course. 
 

C. Approach ‘No Student Left Behind’ (NSLB) 
 
NSLB: Motivation for the Approach 
The main goal of the Spring 2018 instance of the course was to 
ensure that a majority of students reached the learning 
objectives, and to prevent that entire groups or individuals in a 
group would fail to reach basic SE learning objectives because 
of unfortunate decisions, group dynamics, unvetted 

requirements or plain bad luck. Secondary to the idea of not 
leaving any student unwillingly behind was an ambition to 
ensure a higher average student competence and experience in 
software engineering.  The dimensions of NSLB are 
summarized in  Table 3. 

Table 3: Dimensions of teaching NSLB 

NSLB: The project and process 
To reach these goals, the staff developed a semi-realistic, agile 
project, with common objectives/requirements and deliverables 
for all student groups. This, in turn, enabled TA’s to give 
comprehensive and competent assistance within one problem 
domain, and the staff to make predictable/fair criteria for 
student-based assessment.  
The student project groups were randomly composed with a 
team size of 6 to 8 members. To make the project challenging, 
the student groups needed freedom in forming their products 
and deciding on their functionalities. In order not to overstretch 
TA competence, we specified the general architecture and 
technology stack in some detail. Hence, elements of realism, 
like having a specific product owner or selecting technology, 
were sacrificed.  
 

Dimensions  Fixed  Flexible  
Project 
setting  

Overall architecture 
and server 
functionality  

Domain, 
application, user 
functions  

Process  Scrum with sprints  Roles, 
organization  

Technology  GitLab support, 
setup and working 
code templates, 
example service 
stack setup. 

Students could 
decide on prog. 
language, version 
control, service 
stack etc. Most 
would follow 
provided examples 
and templates.   

Supervision  Given according to 
defined 
deliverables, 
process and content 
requirement. TA’s 
trained in templates 
and examples.    

Ample resources 
and agile and 
eager staff. Full 
flexibility in use of 
staff with time, 
location and 
medium.  

Assessment  Continuous, 
structured, 
assessment of 
various types of 
deliverables. 
Individual multiple 
choice tests. 

Senior staff would 
receive complaints 
about unfair 
deliverable 
evaluation, and 
could intervene if 
valid complaint. 



A typical group project would be about data collection, storage 
and data analysis. Data from some kinds of activities performed 
by ‘data providers’, eg. patients or athletes would be gathered 
by wearable sensors, communicated and stored on a server. A 
‘service provider’ or data analyst, eg. a health monitoring 
service or coach, would give value back to the data provider by 
analyzing the data and visualizing the result. The mentioned 
scenarios were suggested and supported with guest lectures, eg 
a cardiologist lecturing about the importance of remote 
monitoring of patients at risk for sudden cardiac death. Based 
on student choices, and ideas, the groups were required to 
conceive a system consisting of a server, user interface and data 
collection interface. The requirements were detailed as user 
stories, and three sprints were scheduled for the development 
process.  
An agile software development process is close to a full-time 
effort. The division of labor, roles, and progress relies on high 
turn-around, agility and frequent exposure to a problem owner 
and other driving factors. For each sprint, user stories with high 
priorities were turned into development tasks and combined 
with management tasks (like set up, configuration and later 
refactoring) into a backlog for the sprint. 
We required the student groups to use our in-house GitLab 
instance for process support, both because it’s a realistic and 
relevant tool and, as such, a part of the course’s learning goal, 
and to ensure we could follow and assess the process without 
assessment-specific deliverables. All team tasks were 
(supposed to be) recorded as GitLab issues and related to sprints 
through milestones. Issue boards were used to manage the 
overall process, while details of each issue, e.g., team member 
assignments, discussions and decisions, were part of the issue. 
GitLab supports relating code commits to issues, so ideally, the 
issue page should capture every relevant aspect of development 
work, making the process completely transparent to team 
members, TA’s and senior staff. This proved to be very useful 
and relevant for (student group) team members, it also allowed 
assessing the process without requiring the students to produce 
documentation not part of the development process.  
 
NSLB: The development platform and technology stack  
As a part of making the project realistic, we wanted to ensure 
the products had a certain architectural complexity and were 
suitable for practicing both testing and continuous integration, 
both of which are important in agile projects. We also needed 
to build on the expected student competency from previous 
courses, which included procedural programming with Python, 
object-oriented programming with Java, simple desktop 
application architecture, but not writing own tests or using build 
tools. Most students were taking UX and DB courses in parallel 
with the SE course. 

We decided on using the Java platform, with a JavaFX-based 
desktop client, a SQL-based database, and a servlet-based 
server as requirements for the product. We did not require any 
specific Servlet-framework but lectured and provided examples 
of both HttpServlet and JAX-RS (with Jersey) programming. 
We used Maven as a build tool and provided complete but 
minimal project code stubs to get teams started. In addition, the 
course staff developed a ‘product’ with the same architecture, 
complexity, and size as what we expected from them, using the 
same tools, including GitLab with proper issue tracking, that 
they could use as learning material. This included tests for 
domain classes, database and Servlet code, with proper maven 
configuration (pom) files.  
 
NSLB: Supervision and assessment 
The team consisted of two responsible lecturers who planned, 
prepared, set up GitLab and templates and gave lectures on 
general SE topics. Guest lectures covered Scrum approach, 
security, architecture, UI, safety, mobile monitoring, health 
monitoring. Our TA’s were lower-grade students. More 
competent supervisors (graduate or higher-grade students of 
SE) were not available on short notice. An engineer maintained 
the local GitLab installation. A group of three leading TA’s 
managed and collected assessment instructions and templates, 
and configured the learning software. A student reference group 
provided continuous input on student progress, general 
problems, and areas needing improvement. Each group had two 
specific TA’s allocated throughout the course, both taking roles 
as mentors and assessors. The supervision was continuous and 
organized as meetings, message interchanges, or GitLab-based 
communication. TA’s and lecturers continuously monitored 
progress and products. Students and TA’s were free to organize 
meetings and evaluation sessions (except demos which required 
suitable rooms). 
Piazza was used as a common Q&A channel and logged 380 
posts, 1906 contributions, 464 instructor responses, and 124 
student responses. Piazza usage was very useful, and almost all 
questions were of general interest and not answered by TA’s. 
Correspondingly, the two responsible lecturers provided 22% 
and 12% respectively of the total contributions, with TA’s very 
much less. At times, this was challenging, requiring a 
responsive and hands-on approach. Lecture topics were 
partially decided from Piazza discussions. 
Students' grades were mainly based on group deliverables and 
two individual multiple-choice tests. The other deliverables 
were three sprints, two demos, and two technical products. Each 
deliverable accounted for 10% of final grades towards the total 
individual score, except for the last demo, which accounted for 
20% of the final grades. The distinction between individual 
students was in other words only based on individual multiple-
choice tests making up 20% of the total evaluation. 



Demos required all group members to be prepared and present, 
and the assessors would draw random presenters and 
demonstrators among the group. Demos were taped for record 
and control and held publicly. In practice, the availability of 
suitable seminar rooms limited attendance, and the other groups 
were often preoccupied with their own demos. Multiple-choice 
exams were introduced to ensure and test individual theoretical 
knowledge, tools competence, and process awareness.  
The responsible lecturers made final individual grading based 
on the accumulated individual point scores, TA reports, control 
of deliverables, detailed inspections and in some cases, 
investigation into perceived inconsistencies and possible unfair 
practice. 

V. RESULTS 
This section presents the results of the evaluation of two 
teaching approaches. 

A. Approach ‘Every Student Is An Innovator’ 

Students provided both qualitative and quantitative feedback on 
how they perceived the course. Overall, students felt the course 
to be interesting and inspiring, close to a professional working 
environment (in so far as they would know what that would be 
like). The freedom given to students in the problem space had 
motivated them to acquire competence to implement their 
projects:  

The assignment given to us has been open and inspiring, 
motivating us to learn new things on our own and make 
ourselves able to complete the goals we had set at the 
start of the project.” 
 

However, the flexible options for methodological practices 
make many teams confused about what they should use for their 
projects. The amount of freedom in both problem and solution 
domains had burdened the TA’s, making it difficult to assist 
each team (with their own problems and own approach). 
Specific choices of programming language and database 
solution were recommended, in order to be able to provide 
students with technical support: 

We realize that having available and competent student 
assistants is a challenge, especially considering the 
degree of freedom every student team has in deciding how 
to develop their software. TA’s would often be of little 
help wrt. technical problems. 
 

The course assessment motivated students to focus on 
conducting a proper team-based process and product. It was 
reported from students that they would not prefer a final written 
exam, given the amount of efforts they have put in the project. 
A retrospective meeting and focus groups among teachers also 
provided learned lessons for future course design. Firstly, with 

the current project setup, we could reduce the amount of focus 
on development methodologies and spend more time on 
technology stack and infrastructure. 
 

Table 4: Analysis of Teaching ESIAI 
 

   Strength   Weakness   
Project 
setting   

Fun and 
motivating for 
students   

Ambitious   
Change-prone   

Process   Learning all 
elements of 
software 
development   

Lack of 
guidance.   
Overwhelming 
Not involving all 
team members 

Technology   Practical and 
flexible   

Time 
consuming   
Lack of prior 
knowledge   

Supervision   Quick overview 
of student teams 
via a team of 
seven 
supervisors   

Little time and 
focus for each 
student team   

Assessment Manageable 
workload 

Not repeatable 
and TA-specific 

 
It seemed a good idea to require, or recommend the same 
technology for all teams, so they could get sufficient technical 
support when needed. Secondly, the students should be taught 
a key set of practices and how to adopt them in a real case, 
before selecting among approaches without required 
experience. The structured support and guidance to the 
practices would complement the given workflow. The 
summary of the strengths and weaknesses of the approach is 
shown in Table 4. 

B. Approach ‘No Student Left Behind’ 

The defined project process and provided templates gave 
students a well-defined workflow with a set of team 
assignments. The problem space was fixed and the solution 
space was guided. The process was not realistic but afforded 
TA’s and teachers good control and competent and timely 
feedback. The most successful part of the course was a 
fulfillment that no one was left behind. Tests showed 
consistently high average score on all SE topics. Teams were 
monitored for excluded or parasitic team members, but this was 
hardly a problem (2 cases had to be resolved because of 
conflicting student schedules). Randomly composed teams 
worked seemingly very well wrt. shared workload. 



 
Some students wanted to use a different technology stack, e.g., 
write a web-client in JavaScript and server using node.js or 
Python, based on what they were comfortable with and what 
they wanted to learn. That was allowed, at the risk of getting 
less TA support. Some felt the expected product complexity 
was too high, particularly the hierarchical maven project 
configuration. The argument for making templates and 
comprehensive code examples was to ensure all learning goals 
could be met and assessed. The supervision and assessment 
proved to be robust, repeatable, but required hands-on 
competence and training among staff.  Some statements from 
the TA’s are quite interesting:  

…Technology and tool focus quenched innovativeness … 
but increased control of progress and effort. 
 
…Very difficult to separate between groups, all 
performed at a very high level and got high scores. 
 

Anonymous student responses from a reference group, surveys 
and discussion fora are also illustrative about the strengths and 
weaknesses. Some important observations from students are: 
• Agile methods require fast feedback from the simulated 

problem owner! 
• A question from one student group would lead to public 

broadcast of clarification. Spiraling effect of added detail 
and irrelevant information were seen in stressful periods. 

• Assessment and mentoring (feedback) role of TA not clear 
enough. Roles should be clearly separated. 

• Agile course produced too much information. Public 
channels lead to uncertainty and disturbances. 

• Lots of work! Good experience! Different kind of course! 
• Very transparent and detailed scoring of deliverables 

made even small variation among TA practice a source of 
discontent. Group competition was not intended or 
wanted.  

 
Two individual multiple-choice tests (each with 20 questions 
drawn from separate pools of approximately 60 questions) were 
designed to test theoretical knowledge as well as process- and 
technology awareness. The tests were reasonably difficult, with 
the mean score at 80% and 72% respectively. The test had very 
high participation, low deviation and very few (less than 1%) 
below a critically low competence level (40%). We tried 
informally to measure stress and insecurity by reading and 
searching for relevant keywords in student comments in 
discussion fora. Some findings: 
• Assessment discontent quickly fell after the first two 

deliverables, the students got to understand the process and 
we instructed TA to clarify the distinction between 
feedback (mentoring) and requirement/assessment.  

• After a while, project- and team-specific problems were 
not published, unless relevant and posted by TA or 
lecturers. Initial overload of technicalities scared the less 
savvy students. Reduction of information reduced student 
insecurity. 

• Multiple-choice tests were not familiar to many students. 
Before, during (!) and after these, complaints about the 
relevance of theory to the project surfaced. However, this 
was intended. The second test was thus perceived as much 
less stressful. 

• The significant majority of students performed very well. 
Some islands of discontent about other teams getting too 
good scoring on products persisted for a while, but this was 
handled and explained using student representatives. 
Hopefully as a learning experience for all involved. 

 
Strengths and weaknesses of the approach are summarized in 
Table 5. 

Table 5: Analysis of teaching NSLB 

 
 
 
 

  Strength  Weakness  
Project 
setting  

Bootstrapping 
course, readymade 
examples, very direct 
and early start, no 
time wasted on 
fictive users.  

Lack of realistic 
stakeholders, user 
stories. No RE 
exposure. Not so 
fun. Not a soft 
start. 

Process  Realistic. 
Controllable. 
Transparent. 
Competent TA’s.  

Scrum not suited 
for part-time 
simulation. Prone 
to escalate 
resource usage. 

Technology  Solid, relevant, 
robust and useful  

Less fear and 
exploration. New 
to TA’s! 

Supervision  Available, agile, 
personal, continuous, 
and at times worn 
thin.  

Less improvising, 
grit and 
innovativeness.  
High demand on 
staff resources.  

Assessment  Fair, repeatable and 
predictable. Each 
deliverable had 
detailed criteria. 

High score 
attainable. Intra- 
and extra-team 
peer pressure and 
competition.  



VI. DISCUSSIONS  

To answers both RQ’s, we performed a comparative analysis of 
the two teaching approaches. The discussions on both RQ’s are 
given below. 

A. Answering RQ1 - What dimensions of students’ 
choices are possible to accommodate in a large, 
project-based SE course? 

To answer RQ1, we find the common flexible elements across 
dimensions between the two approaches that are positively 
perceived by both lecturers and students. The result is that all 
of the dimensions (1) project setting, (2) process, (3) 
technology, (4) supervision, and (5) assessment allow and need 
a certain level of flexibility to cope with the variety of projects, 
students’ experience and TA’s experience. We clearly 
experienced that freedom of choice is both inspiring and 
challenging but must be balanced with precise control in order 
to reach learning objectives and maintain fairness. From the 
findings, we suggest several dimensions of choices that might 
impact the course settings: 
• Freedom of technology and method choices reduce the 

value and validity of TA aid and assessment. 
• Freedom of problem selection increases involvement, and 

time spent. 
• Freedom of team arrangement increases team 

competitiveness and potential student lockout or team 
failure. 

• Freedom (lack) of precise deliverable content and form 
makes assessment non-transparent and subjective. 

 

B. Answering RQ2 - What are the strengths/ weaknesses 
associated with such freedom?  

For answering RQ2, Table 6 summarizes the strengths and 
weaknesses of the two approaches. Increased freedom of 
choices would probably increase the fun and creativity among 
some students, however it increases the risks in teaching and 
managing the course as well. Also, it comes at a cost of 
decreasing freedom and learning for some individuals and 
groups. Increased freedom would probably also increase the 
learning effect and efficiency. For some. Few, not the majority. 
Having the freedom to make active decisions with regards to 
the problem domain, process, technology and deliverable 
content is valuable. The question remains when, and if, the 
students are competent enough to thrive and learn from this 
freedom. Furthermore, at what stage are the student mature 
enough to accept that failure is an important part of innovation? 
We do not yet know if an early failure, or success, as a software 
engineer in an introductory course, will weed out the 
conscientious data analysts, and leave us with the ever-

innovative and sanguine entrepreneur. The industry needs both, 
and both need a proper software engineering background. 
 

 

Table 6: Comparing NSLB and ESIAI 

 
   Strength   Weakness   
No Student 
Left 
Behind   

Thorough and 
predictable coverage. 
High, average level 
of competence.  
Effective TA 
involvement.   

Too many details 
that may be 
relevant to 
everybody. 
Hard work and 
less fun, negative 
appreciation of 
innovation. 

Every 
Student Is 
An 
Innovator   

Fun and motivating. 
Lifelike and realistic 
learning.  Exposure 
to innovative 
thinking in teams.  

Uncertain 
individual 
learning 
outcomes. 
Hard to control 
resource use. 
Little cross-team 
communication. 
Ineffective TA’s. 
Overwhelming.   

 

VII. CONCLUSION 
This study compares two teaching approaches, one focusing on 
systematic guidance and education, and another focusing on 
innovativeness and inspiration. Feedback from students and 
relevant lecturers were collected to evaluate each of the 
approaches. The comparison between the two approaches 
provides direct implications for teaching the course in the future 
and also for similar project-based SE courses.  
 
Both of the teaching approaches have conflicting strengths and 
weaknesses that must be balanced according to objectives, 
available resources and student background. Innovativeness 
and fun need freedom. Predictable outcomes and attainment of 
basic learning objectives require control. Mixing these is 
possible, but put a high demand on a responsive, resourceful 
and competent teaching staff. A possible combination of these 
dimensions would probably be a “innovative problem – guided 
solution” approach, where students are inspired and motivated 
to define their projects, with requirements and product 
backlogs. The requirements and early design phases can be 
validated by staff to ensure feasible technical solutions for 
them. In the solution space, students should be systematically 
guided with technological infrastructure and necessary 



programming competence. They need to carry out the solution 
by themselves, according to a set of given processes and 
practices. Future work in this area would include a more 
thorough quantitative and qualitative analysis of individual 
student experience and outcome. This would open up for 
precise adjustment of freedom along the dimension that we 
have outlined, according to available resources and our 
ambitions to teach future innovative and competent software 
engineers.  

VIII.  ACKNOWLEDGMENTS 
We are grateful to all the students, technical staff, student 
representatives, reference groups and TA’s who challenged, 
asked, helped and answered us. Thank you! 
 

REFERENCES 
 

[1] T. B. Hilburn, and W. S. Humphrey, W.S.The Impending Changes in 
Software Education. IEEE Softw. 19, 5 pp. 22–24, 2002 

[2] B. Bruegge, S. Krusche, and L. Alperowitz. Software Engineering Project 
Courses with Industrial Clients. Trans. Comput. Educ. 15, 4 pp. 1–31, 
2015 

[3] H. Jaakkola, J. Henno, I.J. Rudas, IT Curriculum as a complex emerging 
process, in: IEEE International Conference on 2006 ICCC Computational 
Cybernetics, IEEE, IEEE Society, pp. 1–5, 2006 

[4] J. Chen, H. Lu, L. An, Y. Zhou, Exploring teaching methods in software 
engineering education, Computer Science & Education 2009. ICCSE'09. 
4th International Conference on, pp. 1733-1738, 2009. 

[5] M. Luukkainen, A. Vihavainen and T. Vikberg. Three Years of Design-
based Research to Reform a Software Engineering Curriculum. 
Proceedings of the 13th Annual Conference on Information Technology 
Education, New York, USA, pp. 209–214, 2012 

[6] J. Feliciano, M. Storey, and A. Zagalsky. Student Experiences Using 
GitHub in Software Engineering Courses: A Case Study. 2016 
IEEE/ACM 38th International Conference on Software Engineering 
Companion (ICSE-C), pp. 422–431, 2016 

[7] R. Lingard and S. Barkataki, “Teaching teamwork in engineering and 
computer science,” in 2011 Frontiers in Education Conference (FIE), 
2011, pp. F1C-1-F1C-5, doi: 10.1109/FIE.2011.6143000. 

[8] J. Vanhanen, T. O. A. Lehtinen, and C. Lassenius, “Software engineering 
problems and their relationship to perceived learning and customer 
satisfaction on a software capstone project,” Journal of Systems and 
Software, vol. 137, pp. 50–66, Mar. 2018, doi: 10.1016/j.jss.2017.11.021. 

[9] J. Campbell, S. Kurkovsky, C. W. Liew, and A. Tafliovich, “Scrum and 
Agile Methods in Software Engineering Courses,” in Proceedings of the 
47th ACM Technical Symposium on Computing Science Education, 
Memphis, Tennessee, USA, 2016, pp. 319–320, doi: 
10.1145/2839509.2844664. 

[10] V. Mahnic, “A Capstone Course on Agile Software Development Using 
Scrum,” IEEE Transactions on Education, vol. 55, no. 1, pp. 99–106, Feb. 
2012, doi: 10.1109/TE.2011.2142311. 

[11] I. ISO, Systems and software engineering – vocabulary, ISO/IEC/IEEE 
24765:2010(E), 2010, pp. 1–418, doi:10.1109/IEEESTD.2010.5733835 

[12] L. Brodie, H. Zhou, and A. Gibbons, “Steps in developing an advanced 
software engineering course using problem based learning,” Engineering 
Education, vol. 3, no. 1, pp. 2–12, Jun. 2008, doi: 
10.11120/ened.2008.03010002. 

[13] D. Broman, K. Sandahl, and M. Abu Baker, “The Company Approach to 
Software Engineering Project Courses,” IEEE Transactions on 
Education, vol. 55, no. 4, pp. 445–452, Nov. 2012, doi: 
10.1109/TE.2012.2187208. 

[14] E.O. Navarro, A. Baker, and A. van der Hoek. “Teaching Software 
Engineering Using Simulation Games”. Proceedings of the International 
Conference on Simulation in Education. IEEE Press, 2004. 

[15] R. B. Vaughn and J. Carver, “Position Paper: The Importance of 
Experience with Industry in Software Engineering Education,” in 19th 
Conference on Software Engineering Education and Training Workshops 
(CSEETW’06), 2006, pp. 19–19, doi: 10.1109/CSEETW.2006.14. 

[16] D. L. Parnas, “Software engineering programs are not computer science 
programs,” IEEE Software, vol. 16, no. 6, pp. 19–30, Nov. 1999, doi: 
10.1109/52.805469. 

[17] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jäälinoja, M. 
Korkala, J. Koskela, P. Kyllönen, and O. Salo. Mobile-D: An Agile 
Approach for Mobile Application Development. Companion to the 19th 
Annual ACM SIGPLAN Conference on Object-oriented Programming 
Systems, Languages, and Applications (New York, NY, USA, 2004), pp. 
174–175. 

[18] http://www.semat.org 
[19] P. Runeson and M. Höst, “Guidelines for conducting and reporting case 

study research in software engineering,” Empir Software Eng, vol. 14, no. 
2, p. 131, Dec. 2008, doi: 10.1007/s10664-008-9102-8. 

[20] K.-K. Kemell, A. Nguyen-Duc, X. Wang, J. Risku, and P. Abrahamsson, 
“The Essence Theory of Software Engineering – Large-Scale Classroom 
Experiences from 450+ Software Engineering BSc Students,” in Product-
Focused Software Process Improvement, Cham, 2018, pp. 123–138, doi: 
10.1007/978-3-030-03673-7_9. 

[21] A. Nguyen-Duc, S. Khodambashi, J. A. Gulla, J. Krogstie, and P. 
Abrahamsson, “Female Leadership in Software Projects—A Preliminary 
Result on Leadership Style and Project Context Factors,” in Towards a 
Synergistic Combination of Research and Practice in Software 
Engineering, P. Kosiuczenko and L. Madeyski, Eds. Cham: Springer 
International Publishing, 2018, pp. 149–163. 

  

 
 


	2020Nguyen-DucUnreined
	2020Nguyen-DucUnreined_1

