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Abstract: This paper explores how port efficiency affects the time that ships spend 

in port and therefore their emissions to air whilst berthed. While the literature on 

port productivity and efficiency measurement largely ignores this aspect, we 

explore the productivity measurement biases that arise when resources spent on 

providing swift cargo-handling are ignored. A distinction is made between ports’ 

technical and scale efficiencies. Their impacts on environmental productivity (i.e., 

units of cargo handled per unit of ship emissions) are examined using Data 

Envelopment Analysis on a unique dataset containing information about the 

duration of cargo-handling operations in the 25 largest ports in Norway. The results 

show that adopting best practices can significantly improve environmental 

productivities: If all ports under consideration become technical productive, the 

environmental productivity of the entire sample would be 80 percent higher. 

Technical efficiency alone would increase average environmental port productivity 

by 30 percent. Enhancing traditional port productivity can also substantially 

improve environmental productivity. 

Keywords: Port productivity; Ship working rate; Most productive scale size; 

Data envelopment analysis; Air pollution 
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Introduction 

Policy makers in Norway and Europe view maritime freight transport as a means to 

achieve a more sustainable transport system and to relieve road congestion. The 

Norwegian Transport Plan (Meld St. 33, 2016-2017) targets a 30 percent shift from 

road to rail or sea for all freight transports exceeding 300 kilometers, in line with 

the European Union’s objectives put forth in the white paper Roadmap to a Single 

European Transport Area – Towards a competitive and resource efficient transport 

system (European Commission, 2011).  

Ports are vital components of the maritime transport chain. Their cargo-

handling productivity consequently plays an important role in determining the 

competitiveness of maritime transport, vis à vis other transport modes. The time 

ships spend in port influences carriers’ operating costs (Cullinane and Khanna  

2000; Jansson and Schneerson 1987). Moreover, streamlining cargo-handling 

services can generate benefits throughout supply chains, measured in hours and 

days saved. Econometric estimates by Hummels and Schaur (2013) suggest that 

each day goods are in transit is worth 0.6 – 2.1 % of the value of the good.  

There is abundant literature which, through econometric or programming 

techniques,1 addresses the potential for ports to improve their performance by 

eliminating technical inefficiencies and exploiting scale economies. Most of these 

studies pay no attention to the speed of cargo-handling operations, and therefore to 

                                                 

1 See Rødseth, K.L. and P. B. Wangsness. 2015a. Application of production analysis in port 
economics: A critical review of modeling strategies and data management, TØI-rapport 1390/2015. 
Transportøkonomisk institutt, Oslo. for a recent review. 
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the time ships spend at berth. The Tongzon (2001) paper stands out by considering 

both the quantity of cargo handled and the quality of port services. The latter is 

operationalized by the ship working rate, i.e., the number of containers (or tons of 

cargo) moved per working hour per ship. Notteboom et al. (2000), on the other 

hand, consider the speed of cargo-handling to be a potentially inappropriate 

indicator of efficient resource use, as resources may be left idle for long between 

ship arrivals. Wang et al. (2005) argue that high-quality ports attract more clients, 

thus showing a strong correlation between cargo throughput and service quality. 

Correspondingly, these authors propose to include only the throughput variable in 

port performance assessments. Most of the published papers on port performance 

measurement follow this approach. Perhaps the reason for this is found in De Koster 

et al. (2009), who argue that while outputs should comprise both cargo throughput 

and quality of customer services, much of the relevant data is strictly confidential. 

A recent paper by Suárez–Alemán et al. (2014) provides an empirical illustration 

showing that efficiency scores are significantly altered when one defines output as 

“throughput per hour” instead of “throughput” (i.e., without reference to the time 

dimension).  

While the ship working rate can be improved by better management of 

cargo-handling operations, reducing the time spent at berth will ultimately be 

resource demanding for ports (e.g., requiring new investments in cargo-handling 

equipment). Consequently, studies that only emphasize throughput are likely to 

provide biased estimates of technical and scale efficiencies. In other words, if a port 

spends resources on improving its service quality, but valued service quality is not 
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measured, as is the case in most studies on port performance, the port’s productivity 

would be understated.   

The ship working rate is also a key determinant of the environmental 

efficiency of maritime transport. Air pollution from seagoing ships consists of 

emissions i) in international waters, ii) in national waters and while maneuvering, 

and iii) while at berth (Hulskotte and Denier van der Gon 2010). Tzannatos (2010) 

argues that while in-port, emissions make up a small percentage of overall 

emissions; ports are sources of concentrated exhaust emissions. Cofala et al. (2007) 

find ship emissions to be the dominant source of urban air pollution in several port 

cities. Hence, reducing the time that ships spend at berth contributes to reducing 

harmful air pollution in densely populated areas, for a given cargo volume.  

Rødseth et al. (2018) investigate the relationship between returns to density 

in container handling operations and emissions from ships at berth. Our paper 

extends their contribution by developing and using frontier methods, examining 

how the duration of cargo-handling is influenced when ports adopt best practices, 

i.e., technical and scale efficiencies. Data Envelopment Analysis (DEA) is applied 

to a unique dataset containing information on the duration of cargo-handling 

operations in the 25 largest ports in Norway between 2010 and 2014.  

This paper unfolds as follows. The next section establishes the theoretical 

underpinnings of port performance analysis when the cargo-handling time aspect is 

considered. The following sections offer an overview of the Norwegian port sector, 

the construction of the dataset, and the empirical results. The final section 

concludes.    
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Theoretical underpinnings 

We model cargo-handling as a production process in which a Decision Making Unit 

(DMU) – in our case, a port – utilizes the input vector Nx   to handle the 

throughput of cargo My   within a given timespan (e.g., a year). Let b   

denote the sum of the durations of cargo-handling operations for all ships that call 

at the port within the timespan under consideration.2 The port’s technical 

production possibilities for the period under consideration are summarized by its 

technology set:  

 

    , , : ,  can produce T x b y x b y  (1) 

 

Following standard convention, we make several assumptions about the 

port’s production possibilities, specified in the form of axioms. We assume that the 

technology of the port is non-empty; closed; its output sets are bounded; it satisfies 

the inactivity and no free lunch axioms; and exhibits convexity and free 

disposability of inputs and outputs. These axioms are standard, and we do not 

further elaborate on them (see Färe and Primont (1995) for details). The service 

quality variable (i.e., the cargo-handling duration) is less common in production 

analysis, and its properties deserve special treatment.  

                                                 

2 The total duration of cargo-handling operations does not in general coincide with the timespan 
under consideration. For example, when there are simultaneous cargo-handling operations taking 
place at multiple quays in a given year, the aggregate duration of cargo-handling operations can exceed 
the number of hours in that year.  
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Two axioms are introduced with reference to this variable. First, time is 

considered an essential input to processing throughput volume: 

 

i.e., if  , ,  and 0,  then 0x b y T b y     

 

That is, handling cargo is time consuming. By the essentiality axiom, carriers’ time 

costs and ships’ air pollution emissions at berth are required to be positive.  

Second, time is considered a freely disposable input:  

 

i.e., if  , ,x b y T  and b b  , then  , ,x b y T   

 

By evoking the free disposability axiom, we make three assumptions about the role 

of time in cargo-handling operations. First, free disposability allows managerial 

inefficiency in cargo-handling operations, i.e., excessive time usage in the handling 

of throughput. Second, when inputs are kept constant, the cargo-handling duration 

is assumed to be non-decreasing (i.e., either constant or increasing) when the cargo 

throughput is increased. For example, if a ship is loaded/unloaded by one quay 

crane on a two-minute cycle, an additional container will add two more minutes of 

container handling. Hence, there exists a lower level of time required to load/unload 

a given amount of cargo for a given input vector. Third, given the volume of 

throughput, inputs and cargo-handling duration may be substitutes. For example, if 

the port operates close to capacity, handling cargo may be very time consuming 
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(e.g., containers must frequently be restacked because of lack of storage space). 

Hence, adding capacity (e.g., port area) may allow a faster handling of the current 

cargo throughput. The substitutability assumption is paramount as it implies that 

reducing the time to load/unload cargo can be costly for ports (i.e., after exhausting 

measures to improve port efficiency3), requiring the consumption of additional 

inputs for handling a given amount of cargo.   

Our modeling of the cargo-handling duration differs from the comparable 

approaches of Tongzon (2001) and Suárez–Alemán et al. (2014). Tongzon models 

cargo throughput and ship working rate as freely disposable outputs. This axiom 

allows a positive throughput when the ship working rate is zero (and vice versa), 

which is counterintuitive, since Tongzon operationalizes the ship working rate as 

the number of containers moved per working hour. Suárez–Alemán et al. (2014 p. 

404) argue that “time cannot be considered as an input which is totally exogenous 

to the production function, as it usually depends on how the other factors are 

combined. In the case of infrastructure, a larger or smaller capacity determines the 

presence or lack of congestion and, therefore, additional delays in the estimated 

movement time”. As explained above, the production model in Eq. 1 is ideal for 

modeling this case, allowing the cargo-handling duration and inputs to be 

substitutes. Suárez–Alemán et al. propose a theoretical production model in which 

the inputs (or, stated differently, their marginal productivities) are functions of the 

                                                 

3 The discussions about the technical trade-offs between the duration of cargo-handling operations 
and inputs refer to trade-offs at the boundary of the technology set. For a port located in the interior 
of the set (i.e., an inefficient unit) it may be possible to improve the ship working rate without 
changing its current input stock.  
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cargo-handling duration. While their framework allows substitutability among the 

cargo-handling duration and inputs, there is one major difference between it and the 

framework proposed in this paper: Our framework allows reducing cargo-handling 

duration by increasing one input only, keeping other inputs fixed, while Suárez–

Alemán et al.’s model (potentially) requires all inputs to change in proportion to 

the change in cargo-handling duration.4 Using the example of port congestion, their 

model may predict that it may not be sufficient to increase the port area to reduce 

congestion, but that it may also be necessary to cut staff or cargo-handling 

equipment. Such a rigid model structure makes their model less tractable and less 

useful for applied research5.  

Note that our model does not rule out that inputs are complements in cargo-

handling. We consider this an empirical question rather than imposing a fixed 

coefficient production structure a priori. Using a production model comparable to 

Eq. 1 for container handling, Rødseth et al. (2018) find that terminal capacity (i.e., 

area) is more instrumental in saving ships’ time at berth than transport and stacking 

equipment. However, the substitutability among these inputs is found to be limited. 

Rødseth et al. (2018) consequently conclude that stand-alone investments in an 

input may be insufficient to improve a port’s ship working rate.    

                                                 

4 Suárez–Alemán et al. assume a single-output production process, and model the technology by the 

production function       sup : ,f x b y x b y T  . Assuming differentiability, we derive the following 

condition for changes in the cargo-handling duration that is consistent with a constant output: 

1
0
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x

b












. Hence, inputs must change proportionally to ensure that the numerator equals zero if 

outputs are to be kept constant.   
5 Simple parametric functional forms are assumed for the input functions (i.e., inputs as functions of 
time) and constant returns to scale is imposed globally to obtain the model used for estimation.  
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So far, we have established the theoretical framework. To apply it to 

empirical analysis, we turn to function representations of the technology that can 

be estimated from data. Because we are interested in measuring the productivity of 

the port6 under consideration and to examine productivity-biases resulting when 

resources spent on improving the ship working rate fail to be acknowledged, we 

prefer the Førsund and Hjalmarsson (1979) technical productivity measure.7 This 

measure is normally presented in the one-input one-output case. We define its 

generalization to multiple inputs and outputs as follows: 

 

 
,

, , inf : , ,
x b y

TP x b y T
 



   

  
   

  
 (2) 

 

TP seeks to scale inputs, cargo-handling durations, and outputs to maximize the 

productivity of the port (or data point), with consideration to its current input-output 

mix. It equals 1 if the DMU under consideration is technically productive, and it 

takes a value less than 1 if the DMU is inefficient (i.e., technically unproductive). 

                                                 

6 One referee pointed out that the term “port productivity” encompasses characteristics that go 
beyond the ship working rate, including ship idle time and time spent on hinterland transports. We 
acknowledge that such aspects are relevant, but data limitations prevent us from taking them into 
account. We stress that previous studies (e.g., Johnson and Styhre, 2015) have shown that the cargo-
handling time is frequently the dominating component of ships’ time in port. It is also contingent on 
the port’s ship working efficiency, ship type, and type of cargo being handled (Stopford, 2009), while 
aspects such as the time for hinterland transport may depend on factors which are not under the 
jurisdiction of the port (e.g., road congestion).  
  
7 In the initial publication, Førsund and Hjalmarsson dubbed the measure “gross scale efficiency”, but 
later adopted the term “technical productivity”.  
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Note that TP is the reciprocal of Banker’s (1984) model for the assessment of the 

most productive scale size.  

Eq. 2 is linked to Shephard’s well-known (1970) output distance function 

(or equivalently, Farrell’s (1957) output-oriented technical efficiency measure) that 

expands outputs proportionally to the production frontier for given inputs: 

 

 , , inf : , ,O

y
D x b y x b T






  
   

  
 (3) 

 

in the sense that Eq. 2 can be solved in two steps, first with respect to y and then 

with respect to  ,x b : 

 

 

inf : , ,

, , inf

, ,

inf
O

x b y
T

TP x b y

x b
D y








  



 



   
   

     
 
 
 

  
      

 
  

 (4) 

 

where 
0 , ,

x b
D y

 

 
 
 

 is the output distance function defined by Eq. 3.  
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The technical productivity measure projects any point in the technology to 

a point on its frontier consistent with constant returns to scale (CRS). This can easily 

be illustrated by assuming differentiability of the output distance function, as the 

first order condition of Eq. 4 then reads: 

 

0 0

0

1

2

0 0

1

0

, , , ,

, ,

0

, , , ,

1

, ,

N
n

n n

N
n

n n

x b x b
D y D y

x b x b
D y

x b

x b x b
D y D y

x b

x b

x b
D y

   

   



   

 

 





    
              

    
  



   
    

   
 

  
 
 
 





 (5) 

 

The latter expression states that the elasticity of scale, measured in terms of the 

output distance function (see Färe and Primont, 1995;  p. 39), equals unity in 

optimum – which implies CRS.   

We now focus on decomposing the technical productivity measure, as it can broadly 

be perceived as comprising both technical and scale efficiency. We do this by 

choosing exogenous weights for inputs for the TP-measure. Consider 

 

   , , inf : , , , ,
1 1 1

O

x b y
TE x b y T D x b y







  
    

  
 (6) 
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i.e., the output distance function (see Eq. 3) is our measure of technical efficiency 

(TE). It quantifies the potential to increase the cargo volume given the resources 

already employed to handle cargo. Intuitively, because Eq. 6 is a restricted version 

of Eq. 2,  , ,TP x b y  is by definition smaller or equal to  , ,TE x b y .8 The ratio of 

the technical productivity and efficiency measures is then our indicator of scale 

efficiency, i.e.,    , , / , ,TP x b y TE x b y , i.e., losses in productivity due to failure to 

adopt the most productive scale size.  

Figure 1 presents the piecewise linear technology in the one-input one-

output case and illustrates its function representations and technical and scale 

efficiencies. The frontier of the (variable returns to scale) piecewise linear 

technology is spanned by the two DMUs A and C, while DMU B operates in the 

interior of the technology set; hence, it is inefficient. The technical inefficiency of 

DMU B is indicated by the solid arrow from point B to the section of the frontier 

defined by convex combinations of DMUs A’s and C’s input-output mixes. TE 

measures how much more throughput DMU B would be capable of handling given 

its input endowment, had it adopted best practices. The TP-measure, on the other 

hand, aims to maximize the unit’s productivity (i.e., the ratio of y to x). For the case 

at hand, the maximal productivity is indicated by the dotted line, and is only 

exhibited by DMU A. Hence, TP reduces both DMU B’s input and output to 

maximize productivity (i.e., to equate DMU B with DMU A, which is technical 

                                                 

8 A formal proof can be found in Banker, R.D. and R.M. Thral, 1992. Estimation of returns to scale 
using data envelopment analysis. European Journal of Operational Research 62(1), 74-84. Note that other 
exogenous weights for inputs or outputs will also lead to lower or equal productivity when compared 
to TP.  
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productive). This means that DMUs B and C are “too large”, in the sense that they 

operate under decreasing returns to scale (although DMU C is technically efficient). 

The ratio of the technical productivity measure to the technical efficiency measure 

is our scale efficiency measure. Mathematically, the scale efficiency measure can 

equally be represented by the (vertical) distance from the technology to the dotted 

ray through point A, as indicated by the dotted arrow of Figure 1. This will be 

further discussed in the Data Envelopment Analysis section.  

 

Figure 1: The technology and its function representations 

 

Environmental productivity 

Because our modeling comprises the time required to load/unload cargo, it enables 

us to analyze air pollution emissions due to ships at berth in the scenarios that ports 

become technical and scale efficient. We adopt the approach of the EPA (2009) to 

estimate emissions from ships at berth, for each call, as the product of i) the ship’s 

y 

x 

C 

A 

B 
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maximum continuous rating auxiliary power; ii) its auxiliary engine load factor; iii) 

the ship-specific emission factor; and iv) the number of hours spent at berth. Since 

the three former factors are ship-specific, we can define a vector Kz   of ship 

characteristics. A general expression for the emission of a given air pollutant e   

is thus  e g z b , where  g z   is the product of factors i)-iii), resulting in 

emissions per hour of berthing. 

Let Mr   be a vector of output weights that convert cargoes into a 

common metric, e.g. tons. The port’s current environmental productivity can then 

be defined:  

 

 
0

ry ry
EP

e g z b
   (7) 

 

e.g., tons of cargo handled per ton of air pollution from ships during berthing. In 

general, this measure depends on the cargo mix and ship types that call at the port. 

Under technical efficiency, the environmental productivity is:  

 

   
0

1

, ,
TE

y
r

EP EP
g z b TE x b y


   

(8) 

 

Correspondingly, under technical productivity:  
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   
0

1

, ,
TP

y
r

EP EP
b TP x b y

g z





   (9) 

 

Data envelopment analysis 

We now turn to the empirical estimation of the technical productivity and efficiency 

measures outlined above. The port economics literature normally considers DEA 

or Stochastic Frontier Analysis (SFA) approaches for this purpose, and DEA 

appears to have become relatively more popular in recent years (Schøyen and 

Odeck 2013). Based on this finding, along with the fact that DEA – unlike SFA – 

is a nonparametric technique that does not require the selection of functional form, 

we prefer the DEA approach.  

In recent years, a statistical approach to DEA has been introduced, based on 

the idea that the technology is estimated from a subset of the true but unknown 

technology, thereby implying that the estimated efficiency scores are downward 

biased in small samples. Bias correction using bootstrapping is generally seen as a 

remedy for this problem (Simar and Wilson 2008). However, with a (very) small 

sample, the same observations will frequently repeat in bootstrap samples and even 

the bootstrap samples themselves can repeat. Chernick (2008) therefore proposes a 

minimum required sample size of at least 50 observations to estimate the variability 

of the population data in nonparametric problems. Our dataset contains annual data 

for 25 ports, and we therefore refrain from using bootstrapped DEA. Instead, we 
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apply “traditional” DEA, which is in line with most of the existing studies on port 

performance (Barros et al. 2010). 

Assume there are l=(1,..,L) ports in the dataset. Each port uses inputs 

 1 ,..,l l l N

Nx x x    to handle the throughput of cargo  1 ,..,l l l M

My y y   . The 

duration of cargo-handling operations is denoted lb  . Let
l , l=(1,..,L), define 

the intensity variables. The variable returns to scale (VRS) estimator of the 

technical productivity measure for DMU l’ is then defined: 

 

 



´

, ,

1

´

1

´

1

1

, , min :
,   1,..,

,      n 1,..,

1,  0

l l l lL
l l m

m

l

lL
l l

l

lL
l l n

n

l

L
l

l

TP x b y y
y m M

b
b

x
x N

  



 








 

  










 

 



 

 









 (10) 

 

Eq. 10 constitutes a programming problem with a nonlinear objective function. In 

the appendix, we show that the inverse of Eq. 10 can be obtained by the following 

simple linear programming problem: 
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 




´

,
1

´

1

´

1

1
max : ,   1,..,

, ,

,      n 1,..,

0

L
l l l

m ml l l
l

L
l l l

l

L
l l l

n n

l

y y m M
TP x b y

b b

x x N

 
  







  





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

 









 (11) 

  

where  /    and   / 1/   .  

Next, we calculate the technical productivity measure when the duration of cargo-

handling operations is endogenously determined to maximize productivity:  

 

 



´

, , ,

1

1

´

1

1

, , min :
,   1,..,

,    n 1,..,

1,  0

l l lL
l l mb

m

l

L
l l

l

lL
l l n

n

l

L
l

l

TP x b y y
y m M

b
b

x
x N
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

 








 

 










 

 



 

 









 (12) 

 

Since b  is endogenous, it does not restrict the productivity optimization. Thus, the 

corresponding constraint for the duration of cargo-handling operations can safely 

be omitted without influencing the solution to Eq. 12. Applying the transformations 

of variables in the Appendix, the inverse of Eq. 12 can then be estimated:  
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The model in Eq. 13 coincides with the standard approach in the port efficiency 

literature, where the cargo-handling duration is omitted (Suárez-Alemán et al. 

2014).  Eqs. 12-13 demonstrate that the standard approach (implicitly) assumes that 

the ship working time is allocated to maximize traditional productivity. 

Consequently, service and environmental qualities are neither acknowledged nor 

rewarded in the efficiency analysis, as the shadow price on the cargo-handling 

variable is zero.   

Finally, we calculate the (inverse of the) technical efficiency score with the time 

variable included: 
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where  1/  .  

Based on our estimates, we calculate scale efficiencies i) without the 

consideration of service quality     , / , ,l l l l lTP x y TE x b y
    

 and ii) when the 

service quality output is recognized     , , / , ,l l l l l lTP x b y TE x b y
     

. By 

definition,  , yl lTP x
     , , , ,l l l l l lTP x b y TE x b y

     
  , and thus 

    , / , ,l l l l lTP x y TE x b y
         , , / , ,l l l l l lTP x b y TE x b y

     
 . Comparing the 

two scale efficiency scores allows us to evaluate the degree to which ignoring 

service and environmental qualities leads to overstatement of a port’s potential to 

improve its productivity.  

The solutions to Eqs. 11 and 13, i.e.  
** /   , do not readily allow 

identifying the cargo-handling time consistent with CRS. This can be identified by 

solving two additional programs: 
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for Eq. 11, and  
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for Eq. 13.   

 

If there are multiple solutions, the programs in Eqs. 15 and 16 will select the 

minimal cargo-handling durations from the VRS-technology consistent with CRS. 

Banker et al. (1996) note that multiple optima are unlikely in empirical analysis as 

their prerequisite is linearly dependent efficient observations.   

 

Data on the Norwegian port sector 

Norwegian ports handle more than 200 million tons of cargo annually, servicing 

both domestic and international traffic. In 2014 there were 125 publicly owned ports 

on the Norwegian mainland and 2 on the island Svalbard (Statistics Norway, 

2015).9  Most of these ports are small in terms of their cargo and passenger 

throughputs, and only 25 of them handled more than 1,000,000 tons of cargo and/or 

200,000 passengers annually over the entire period for which we have data. Since 

these 25 ports are likely to play a lead role in the transfer of cargo from road to 

                                                 

9 In addition, there are over 600 publicly owned ports related to the fishing industry (The Norwegian 
Coastal Administration, 2015), as well as private ports. They are not considered in this paper. Note, 
however, that some private terminals are included in the 25 ports under consideration in this study. 
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maritime transport – and because high-quality data are available for these ports only 

– we focus on them in the subsequent analysis. Their combined throughput 

amounted to 75 percent of total Norwegian port throughput, including that of 

private ports (Statistics Norway 2015). Moreover, our selection criterion ensures 

that the ports included in the production analysis are comparable in terms of their 

throughput. Note that our analysis focuses solely on the cargo-handling of cargo; 

passenger throughput is not considered. 

 

 

Figure 2: Cargo shares and total annual throughput volumes in tons (Average for 

2010-2014) 

 

Figure 2 presents the 25 ports’ average cargo shares in terms of throughput volumes 

(bar charts) and total tons of cargo handled (dots) for the years 2010 to 2014. 14 of 

the ports handled less than 3 million tons, 6 of the ports handled between 3 and 7 

million tons, 3 ports handled between 9 and 11 million tons, while 2 ports handled 

more than 19 million tons of cargo. Moreover, the ports range from highly 

specialized (e.g., Moss (containers); Brønnøy, Bremanger, Rana, and Narvik (dry 
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bulk); Hammerfest, Tønsberg, and Bergen (wet bulk)) to multi-purpose ports (e.g., 

Måløy and Ålesund). The ports may thus differ substantially in terms of their 

exploitation of scale and scope economies.  

Dry and wet bulks constitute 36 and 53 percent, respectively, of the 

(average) total tons of cargo handled by the 25 ports. The corresponding shares for 

containers and general cargo are 4 and 6 percent of the total throughput. Norway is 

an oil-exporting country, which explains why wet bulk is dominating the country’s 

port throughput. Its container ports are scattered and relatively small. The vessels 

that call at them are consequently small and of the feeder type (Schøyen and Odeck, 

2017).  

A production process normally involves both inputs that are fixed and 

variable in the short-run. In cargo-handling, port infrastructure (e.g., area, quays) is 

an example of the former, while labor, energy, and cargo-handling equipment and 

its operation are examples of the latter. A major challenge in applied port production 

analyses is that high-quality data on variable inputs is lacking (Rødseth and 

Wangsness 2015b). For our application on Norwegian ports, we consider the 

technology to comprise two inputs (port area10 and total quay length), the duration 

of cargo-handling operations, and four outputs (i.e., the cargo types dry bulk, wet 

bulk, containers, and general cargo). In general, the number of variables included 

in our proposed model specification (7) is high compared to the number of annual 

                                                 

10 Thereby, we mean the total area comprised by the port, also including structures. We have asked the 
25 ports under consideration in this study to report the overall port area in a way that is consistent 
with the cargo throughput reported by Statistics Norway’s port statistics.   
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observations (25), as the DEA loses power to discriminate among efficient and 

inefficient ports when the dimensionality of the technology increases. Nevertheless, 

based on a discussion with the management of the port of Oslo, we conclude that 

area and quay lengths must be considered essential to ship and cargo-handling, for 

all types of cargo. As area and quay length are not highly correlated, omission of 

one of them is not justified. Jara-Diaz et al. (2006) emphasize the necessity of 

accounting for the diversity of cargo throughput to avoid biased estimates of 

marginal costs and the exploitation of economies of scale.  

By excluding variable inputs, our modeling approach is unable to identify 

whether differences in the performance of ports relate to differences in their 

employment of variable (non-observable) inputs, or to managerial inefficiency (i.e., 

“wasting” of observable and non-observable inputs).11 However, following the 

reasoning of Eqs. 12-13, this approach (implicitly) assumes that the employment of 

variable inputs is endogenously determined to maximize the productivity of the 

(observable) inputs included in the model. Färe et al. (1989) used a similar approach 

to measure capacity utilization, drawing on Leif Johansen’s definition of capacity 

as the maximum amount that can be produced with given assets when variable 

inputs are freely accessible. Consequently, our measure of technical efficiency (i.e., 

Eq. 14) should be interpreted as deviation from maximal capacity utilization, as 

opposed to managerial efficiency. This is, in our opinion, not a drawback, as 

knowledge about the optimal exploitation of the current Norwegian port 

                                                 

11 See Rødseth, K.L and P.B. Wangsness. 2015b. Data availability for traditional and environmental 
productivity and efficiency analyses of Norwegian ports, TØI report 1461/2015. Transportøkonomisk 
instutitt, Oslo. for a formal treatment on this issue.  
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infrastructure is paramount when planning a large-scale shift from road to maritime 

transport. Moreover, adding input variables to the model would severely reduce the 

ability of DEA to discriminate between Norwegian ports’ capacity utilizations. 

Our dataset is constructed based on Statistics Norway’s quarterly port 

statistics, which as previously noted is limited to ports that handle more than 

1,000,000 tons of cargo and/or 200,000 passengers annually. We have been granted 

access to the (sensitive) raw data underlying the publicly available port statistics for 

the five years between 2010 and 2014. This has given us data on each call that 

involves handling of cargo in the 25 selected ports (comprising about 50 000 calls 

per year) for all five years. We thus have had detailed information about the 

throughput of different cargo types, the duration of cargo-handling operations, and 

ship characteristics (e.g. ship classification and gross tonnage). These data are 

essential to the production modeling and for estimating emissions to air from ships 

at berth. 

The construction of the dataset can be summarized as the process of linking 

together separate datasets on cargo-handling with data sets on time spent in port, 

data cleansing, and imputing missing values for time observations for 

approximately 20 % of the ports of call. The process is described in detail in 

Rødseth and Wangsness (2015b).  

Port infrastructure data was collected from publicly available sources (e.g., 

port websites), and was later reviewed by the ports under consideration.12 De Koster 

                                                 

12 Two of the 25 ports did not respond to our request to review the data. However, seeing that these 
ports do not influence our results by playing important roles in the construction of the reference 
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et al. (2009) and Schøyen and Odeck (2013) consider cross-checking the data with 

the port management to be good practice, as they often find public data to be 

unreliable. 

We have estimated emissions to air, associated with operating the ship’s 

auxiliary engines while cargo is loaded and/or unloaded for each call. We build 

these estimates from data on ships’ engine power, obtained from (sensitive) ship 

register data provided by The Norwegian Coastal Administration. As ship register 

data do not cover all ships for which we have port of call data, engine power had to 

be imputed in some cases. We then applied parameter values for auxiliary power to 

propulsion power ratio, auxiliary engine load factors, and emission factors from 

EPA (2009) to estimate emissions to air (see the appendix in Rødseth et al. (2018) 

and section 6.2 in Rødseth and Wangsness (2015b) for further details).  

Table 1 summarizes these estimates, aggregated to the port level, as well as the 

other variables included in our dataset.  

 

Table 1: Summary statistics, port level 

  
Outputs Inputs Bad outputs 

  
Wet bulk 

(tons) 

Dry bulk 

(tons) 

Container 

(TEUs) 

General 

cargo 

(tons) 

Time use 

(hrs) 

Area 

(Sq.m) 

Berth 

length(m) 

CO2 

(tons) 

NOX 

(tons) 

PM10 

(tons) 

2010 Mean 3 296 314 2 110 701 32 244 393 399 32 719 503 697 2 927 4 887 98 1.3 
 

Std 

Dev 

8 999 063 3 525 097 43 372 472 944 29 514 556 041 2 309 6 099 123 1.6 

 
Median 445 412 978 345 15 754 233 932 23 582 325 000 2 185 3 442 69 0.9 

 
Min 0 38 923 0 3 404 1 568 3 200 140 209 4 0.1 

 
Max 44 862 866 17 544 312 201 893 1 898 947 136 805 2 000 000 9 922 29 582 595 7.7 

2011 Mean 3 363 214 2 151 358 27 026 388 727 32 360 503 697 2 927 4 743 95 1.2 

                                                 

technology, and by considering the drawbacks of reducing the sample size, we decided to keep the 
two ports in the sample.  
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Std 

Dev 

9 516 770 3 533 968 43 370 481 294 27 557 556 041 2 309 5 697 115 1.5 

 
Median 348 903 1 171 149 13 467 250 376 24 067 325 000 2 185 3 569 72 0.9 

 
Min 0 44 474 0 2 240 2 398 3 200 140 223 4 0.1 

 
Max 47 466 320 17 644 114 208 799 1 984 892 135 595 2 000 000 9 922 29 235 588 7.6 

2012 Mean 3 416 147 2 265 190 27 714 408 461 31 675 504 107 2 951 4 873 98 1.3 
 

Std 
Dev 

9 720 445 3 867 757 41 720 572 320 29 271 555 823 2 323 6 721 135 1.8 

 
Median 403 377 1 129 341 15 886 246 120 25 227 325 000 2 185 3 081 62 0.8 

 
Min 0 56 102 0 2 724 1 439 3 200 140 217 4 0.1 

 
Max 48 702 632 19 363 487 202 816 2 512 938 144 175 2 000 000 9 922 34 558 695 9.0 

2013 Mean 3 452 103 2 263 852 33 752 391 111 33 014 516 795 3 014 5 024 101 1.3 
 

Std 
Dev 

10 082 574 3 950 470 45 520 445 647 30 214 564 489 2 403 6 904 139 1.8 

 
Median 360 541 1 128 836 16 383 247 953 27 140 325 000 2 185 3 356 68 0.9 

 
Min 0 57 270 0 3 531 1 514 6 700 305 208 4 0.1 

 
Max 50 526 132 19 782 351 202 469 1 625 447 148 073 2 000 000 9 922 35 301 710 9.2 

2014 Mean 2 956 602 2 334 602 35 961 364 047 31 589 517 035 3 014 5 639 113 1.5 
 

Std 

Dev 

7 672 327 4 191 461 47 532 405 479 29 786 564 448 2 403 7 166 144 1.9 

 
Median 356 378 1 275 795 20 569 257 891 19 806 325 000 2 185 3 675 74 1.0 

 
Min 0 38 340 0 0 1 733 6 700 305 196 4 0.1 

 
Max 37 987 641 21 007 961 212 724 1 603 178 137 846 2 000 000 9 922 34 547 695 9.0 

 

We consider our dataset to give very good coverage for analyzing the productivity 

of the Norwegian port sector, as it comprises the most important ports – with every 

registered call involving cargo-handling in these ports – and most of the cargo 

handled by the sector. Our data and the following analysis are consistent in the use 

of the port as the DMU. In general, we respond to the criticism in De Koster et al. 

(2009) on current port productivity analysis by i) avoiding inconsistent use of 

terminals and ports as decision making units, ii) by avoiding uncritical use of public 

data that might be of questionable quality, and iii) by taking the quality of customer 

service into account through the inclusion of cargo-handling durations.   
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Results 

We estimate the DEA models using annual data, as described in earlier sections. As 

a first step, we undertake two tests to identify outliers. First, we estimate super-

efficiency scores (Andersen and Petersen, 1993). Several of the units in the sample 

receive super-efficiency scores above one, implying that they are important for 

constructing the reference technology. This finding is not surprising given the ratio 

of the number of variables to the number of observations, along with the sector’s 

diversified cargo types, as presented in Figure 2. Moreover, the scores change over 

time, and units that are super-efficient in one year may be inefficient in another.  

However, two ports – Bergen and Florø – stand out as particularly super-efficient 

for the entire period between 2010 and 2014. Further examination revealed that 

these ports had under-reported areas and quay-lengths, and their capacity data was 

consequently updated prior to estimation.13 Second, we estimate the metric of 

Torgersen et al. (1996) to rank efficient units by their importance as benchmarks 

for inefficient ones. This test shows that some ports (in particular the multi-purpose 

ports Kristiansund and Drammen) are important benchmarks in some years, but not 

for the entire period under consideration. This intertemporal variation indicates that 

extreme units are the product of the small sample size and the curse of 

dimensionality in DEA, rather than errors in measuring inputs and outputs. 

Dropping DMUs from the sample, based on the outlier tests, will further amplify 

                                                 

13 This update had only a minor impact on the empirical results.   
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the problem, leaving the DEA approach incapable of differentiating among ports. 

Hence, we refrain from dropping units from the sample.       

 

 

 

 

Figure 3: Technical and scale efficiencies ranked according to port capacity 

(Average, Min, and Max for 2010-2014) 
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Figure 3 reports technical and scale efficiencies, estimated for each port, for each 

year between 2010 to 2014. The ports are listed according to their capacities 

(approximated by port area). The bars indicate average port (in)efficiency over the 

5-year period, while the line plots indicate the continuum between the ports’ highest 

and lowest (annual) efficiency scores. 

Figure 3 shows that technical and scale efficiencies are positively correlated, 

i.e., ports that currently display excess capacity have generally not adopted the most 

productive size. Moreover, we find that spatially constrained ports more often 

operate under maximal capacity utilization compared to spatially large ports. For 

example, Bremanger and Narvik are both found to be technical and scale efficient 

for the entire period under consideration. Spatially large ports such as Trondheim 

and Stavanger, on the other hand, display the opposite results, which could be an 

indication of overcapacity in the Norwegian port sector. This pattern is, however, 

not consistent over time, which probably reflects the volatility in the demand for 

freight transport. Note for example that Trondheim’s and Florø’s technical 

efficiency scores range from about 0.9 (almost technical efficient) to 0.25 (strongly 

inefficient). Our results further indicate that highly specialized ports (described 

above) generally operate under maximal capacity utilization. This result must be 

evaluated keeping in mind that efficiency scores are estimated based on a very small 

sample, made up of ports that are heterogeneous in terms of their cargo mix. Hence, 

specialized ports have few peers.   

Next, we turn to the implications of accounting for cargo-handling durations 

in port productivity measurement. The lower panel of Figure 3 presents scale 
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efficiencies when the duration of cargo-handling operations is (yellow bars) and is 

not (grey bars) included in the model. Overall, the empirical results suggest that 

deviations from the most productive size can be severely overstated when service 

quality is ignored. This is in particular the case for Brønnøy, which is scale efficient 

when the cargo-handling duration is controlled for, but becomes strongly scale 

inefficient when it is not. Note that the potential to improve productivity is 

overstated for ports in several of the largest cities in Norway (i.e., Oslo, Trondheim, 

Stavanger, and Kristiansand), which suggests that rapid cargo-handling is critical 

here. 

We now return to the second core issue of this paper, namely the impact of 

port performance on environmental productivity. In line with Rødseth et al. (2018), 

we single out the local air pollutant nitrogen oxides (NOx) due to its potent damage 

potential in port cities.  

Figure 4 depicts aspects of Norwegian ports’ environmental productivities in an 

overlapped bar chart, using efficiency scores for 2014. Current environmental 

productivities for NOx (EP0 - the grey bars) are displayed in the front. Behind the 

grey bars we show environmental productivities under technical efficiency with 

orange bars (EPTE), which are taller than the grey bars when the ports are technical 

inefficient. Furthest in the back we show environmental productivities under 

technical productivity with light blue bars (EPTP), which are taller than the grey and 

orange bars when the ports are scale inefficient. Hence, in the case where a port is 

technical productive, EPTP is identical to EP0 and only the grey bar is visible. If the 

port is technical efficient but scale inefficient, EPTE is identical to EP0, and the grey 
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bar will be just as tall as the orange bar, but the light blue bar will be taller than the 

grey bar. If the port is neither technical nor scale efficient, then both the orange and 

the light blue bars are visible.  

Figure 4 also shows the ports’ environmental efficiencies obtained from 

Eqs. 13 and 16 (represented by dark blue bars), when the cargo-handling time 

variable is endogenously determined to maximize the ports’ traditional 

productivities (EPtrad). For the visual presentation in Figure 4, the ports are sorted 

in ascending order according to their bulk shares, i.e., the combined tonnage of dry 

and wet bulk cargoes, relative to the overall tonnage handled by the port. The reason 

is that the speed of cargo-handling operations varies across cargo-handling methods 

for different types of cargo (Ghoos et al., 2004).      

 

 

Figure 4: Environmental productivities for 2014, sorted according to the shares of 

bulk cargoes  

 

The mix of cargoes and ship types appear to be of great importance for the proposed 

measure of environmental productivity, namely tons of cargo per emission unit. We 
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find that the dry bulk intensive ports of Narvik, Bremanger, and Brønnøy exhibit 

the highest environmental productivities in the sample. These ports move large 

amounts of cargo with relatively low emissions because of low time usage, but also 

because of relatively low emissions per hour from the auxiliary engines of the 

observed dry bulk carriers. These ports are also found to be technical productive.  

Adopting best practices can significantly improve environmental 

productivities. Seven of the 25 ports in the sample – Måløy, Stavanger, Tromsø, 

Kristiansand, Oslo, Bodø, and Florø – could have more than doubled their 

environmental productivities by moving to the frontier. Half of them could have 

doubled environmental productivity just by eliminating technical inefficiencies. If 

all ports became technical productive, the environmental productivity of the entire 

sample would become 1.8 times higher. If all ports that are technical inefficient 

became technical efficient, average environmental productivities would be 1.3 

times higher than current environmental productivities.  

Finally, we compare the environmental productivities under technical 

efficiency and productivity (where time is already implicitly assumed to be 

allocated efficiently) to the environmental productivities obtained from Eq. 16, 

when the time variable is allocated to maximize traditional productivity. The 

environmental productivities are on average 1.7 times higher than current 

productivities in this case, which illustrates that merely improving traditional 

productivity will benefit the environment. In the case of Larvik, Florø, Borg and 

Grenland, the environmental productivities are in fact higher when traditional 

productivity is maximized using Eq. 13, compared to when the time variable is 
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included in the efficiency measurement. However, when looking at the entire 

sample, the environmental productivity is on average 23 percent higher when the 

time variable is included in the analysis compared to the case where it is ignored. 

This finding underlines the importance of including the swiftness cargo-handling 

as a variable in port productivity analysis, as it also has major implications for 

environmental productivities and efficiencies.  

 

Conclusions 

Does port efficiency matter for the environmental impacts of maritime transport? 

Our empirical results do indeed support this claim. Even efficiency improvements 

that do not target the port’s ship working rate are found to be beneficial for the 

environment. Improvements in environmental productivity could come from both 

technical and scale efficiency adoption, but the Norwegian ports’ greatest potential 

lies in technical efficiency improvement. This result can partly be explained by 

previous findings, reporting overcapacity in the Norwegian port sector (Rødseth 

and Killi 2014), which contributes to low capacity utilization. With the prospects 

for growth in maritime transport, this could be turned around in the near future.  

This paper has focused on emission reductions by means of reducing the time ships 

spend on cargo-handling cargo. Such improvements can also benefit carriers, and 

thus increase Norwegian ports’ attractiveness to shippers and carriers. This is a 

prerequisite for achieving the policy objective of shifting freight transport from road 

to sea. However, improving cargo-handling productivity alone may not suffice, and 

steps must be taken to ensure that the time benefits ships reap from swifter cargo-
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handling are converted into productive time rather than idle time in port. From the 

point of view of the environment, ancillary benefits will occur if carriers invest time 

benefits reaped into slow steaming between ports; see e.g., Cariou (2011). 

The applicability of our approach is not limited to efficiency analysis. Future 

research should explore the shape of the efficient point set of the technology 

proposed in this paper, to identify marginal time requirements for cargo-handling 

of various types of cargo (i.e., the change in cargo-handling time by an infinitesimal 

increase in an output). First, the marginal time requirements may be useful from a 

port pricing perspective, facilitating differentiation of port fees according to the 

quantity and quality of port services provided. Second, the marginal time 

requirements can be combined with a monetized damage function to form estimates 

of marginal external air pollution costs due to ports’ cargo-handling. Moreover, the 

concept of shadow pricing14 allows estimating the value of time. To our knowledge, 

estimates of value of time from the perspective of the port – unlike from the 

perspective of carriers – are rare. If ports’ ‘value of time’ are found to differ from 

carriers’ value of time, this might suggest that port fees subject to quality premiums 

could be welfare enhancing.    
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Its inverse is: 
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Which may be rewritten as: 
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Consider the summing-up condition for the modified intensity variable, i.e., 
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constructing the frontier by selecting a point, or convex combination of data points, 

while the scalar 
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 allows contracting or expanding the selected data point(s). 
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Consequently, since 
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 is unbounded, the summing up condition for the 

modified intensity variables can safely be omitted from Eq. (iii) without influencing 

the result of the optimization.  
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into Eq. 11:  
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