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Preface

This thesis is submitted to the University of South-Eastern Norway (USN) in par-
tial fulfilment of the requirements of the degree of Philosophiae Doctor (PhD) in the
Process, Energy and Automation Engineering program. The work has been conduc-
ted as part of the Self-Monitoring, Analysis and Reporting Technologies (SMART)
research group at USN. The PhD project work has been conducted under the su-
pervision of Professor Nils-Olav Skeie, with co-supervision by Professor Carlos F.
Pfeiffer and Associate Professor Roshan Sharma.

The thesis consists of five scientific papers, four journal papers and one conference
paper. The thesis is divided in two main parts. The first part presents the back-
ground and research objectives, an extensive literature review and some additional
notes on the experimental setup. Further, a summary of relevant methods and a
summary of the five scientific papers is given. Finally, the main results from all five
papers are summarised and viewed together before the work is concluded with some
observations of what has been achieved towards the research objectives and what
could be further achieved in continuation of the presented thesis.

Porsgrunn, September 13, 2020

Ole Magnus Hamre Brastein
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Summary

Reduction of anthropogenic CO2 emissions is one of the most important scientific
endeavours of our time. Space heating of buildings is responsible for a considerable
portion of the worlds total energy consumption. The Energy Performance of Build-
ings Directive, issued by the European Union, estimates that approximately 20%
of the energy consumption within the EU is the result of heating, ventilation and
air conditioning in buildings. Consequently, the reduction of energy consumption
in buildings has received significant scientific attention. Towards this goal, methods
for creating models of building thermal behaviour is an important subtask.

The first of two main goals within building thermal behaviour modelling research is
to create models that can accurately predict future thermal behaviour of buildings.
The second, but equally important, goal is construction of models that can be used
as classification tools to evaluate the thermal performance based on data collected
from a specific building. The former of these goals aims to reduce energy con-
sumption by improved control of temperature thus reducing the amount of energy
required to maintain comfortable living conditions. The latter approach is useful
towards understanding energy demands of individual buildings, such that the build-
ing occupants and owners can make qualified decisions on what energy conserving
measures to implement, and also for the authorities to compose taxation schemes
based on energy efficiency.

Modelling building thermal behaviour is challenging due to the complex nature of
buildings, i.e., use of a wide variety of materials and different building geometries.
Further, the physical buildings often does not match the building specifications and
blueprints, due to workmanship issues or continued modification and renovation of
existing buildings. Additionally, weather conditions and occupant demands makes
experimental design difficult. Because of these inherent uncertainties involved in
building thermal modelling it is useful to formulate such models as stochastic dif-
ferential equations. This type of models, often called grey-box models, allows the
combination of prior expert knowledge with parameters that are calibrated to fit
a specific building. This approach produces models that tends to provide good
prediction accuracy for future behaviour while also being interpretable by humans.
The stochastic modelling framework has a strong mathematical foundation which
provides a framework that can be used to estimate parameters, analyse estimation
uncertainty, and to perform model selection and validation. The grey-box modelling
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framework also fits naturally with the Bayesian statistics framework and the Markov
Chain Monte Carlo methods, which has gained popularity over the recent years.

Grey-box models of building thermal behaviour are typically simplified description
of the physics involved. Since the models are constructed using prior system specific
knowledge, the parameters are often cognitively connected to the thermal proper-
ties of the physical buildings, i.e., the model parameters are used as soft-sensors.
However, interpreting model parameters as representative of the physical properties
of the building requires a careful analysis of the parameter identifiability to ensure
that the calibrated parameters are unambiguous, and to estimate the uncertainty of
the obtained parameters.

In this thesis, the stochastic modelling framework is combined with Kalman filter
implementations that does not require differentiable models. This allows estimation
of parameters for externally simulated models which facilitates experimentation with
model structures. Further, the grey-box parameter estimation uncertainty is ana-
lysed using several different methods, including the Profile Likelihood framework,
and the extended Profile Posterior method. Both profiling methods are extended
to create 2D profiles which allows more detailed identifiability analysis of the para-
meter space. The Profile Posterior method is compared to the results obtained
using Markov Chain Monte Carlo methods. The combination of model formula-
tion as stochastic differential equations with Markov Chain Monte Carlo methods
offers a particularly powerful and efficient model calibration framework, which can
be utilised also for calibration of external software simulations.

The use of stochastic model formulations is applicable to a wide range of modelling
challenges. Given that almost every conceivable model is in some way an approxim-
ation of the real system, the stochastic differential equation parameter estimation
framework has been argued as a natural framework for modelling dynamic system
models in general. The benefits of performing model calibration utilising a frame-
work with a solid statistical foundation that provides tools for model validation
and parameter identifiability analysis well out-ways the complexities of the methods
involved.
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Nomenclature

Symbol Explanation
ADMM Alternating direction of methods of multipliers
ANN Artificial Neural Network
ARMAX Autoregressive moving average with exogenous input
ARX Autoregressive with exogenous input
BEMS Building Energy Management System
CI confidence interval
CP cumulative periodogram
CTSM Continuous Time Stochastic Modelling
DAQ data acquisition
EKF Extended Kalman Filter
EnKF Ensemble Kalman Filter
EPBD Energy Performance of Buildings Directive
EU European Union
GA Genetic algorithm
HLC Heat-loss coefficient
HVAC Heating, ventilation and air conditioning
KF Kalman Filter
KS Kolmogorov-Smirnov
LLM Local linear model
LoLiMoT Local linear model tree
MC Monte Carlo
ML Machine Learning
MPC Model Predictive Control
N2SID Nuclear Norm Subspace Identification
NARX Non-linear ARX
NSGA-II Non-dominated sorting genetic algorithm
PDE partial differential equation
PL Profile Likelihood
PP Profile Posterior
RMSE Root mean square error
SDE Stochastic Differential Equation
SSE Sum of square error
SSID Subspace Identification
TN Thermal Network
TS Takagi-Sugeno fuzzy model
UKF Unscented Kalman Filter
ZC zero crossing
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Introduction

. Background

Reduction of anthropogenic CO2 emissions is perhaps the most important scientific
endeavour of our time. According to the Energy Performance of Buildings Directive
(EPBD) [1] the energy consumed by buildings accounts for 40% of the total energy
consumption within the European Union (EU). Heating, ventilation and air condi-
tioning (HVAC) account for 50% of the total energy consumption in buildings [2, 3].
Hence, reducing energy consumption in buildings has received significant scientific
attention. While modern construction techniques can produce energy efficient new
buildings [1, 4], renewal rates of buildings are low; around 0.4% to 1.2% according
to EPBD [1]. Hence, it is of interest to study methods for energy reduction that
can be applied to existing buildings. A promising solution is the use of models that
can predict the future thermal behaviour of a building, including the heating and
cooling times under some expected weather and occupancy conditions. By applica-
tion of Model Predictive Control (MPC), as part of a Building Energy Management
System (BEMS), energy consumption can be minimised based on predicted weather
conditions and building usage patterns [5]. The first use-case for models of building
thermal behaviour of interest in this work is therefore the prediction use-case of
forecasting future temperatures in buildings.

Another important tool in the fight against climate change is the use of classific-
ation schemes, typically used to determine the level of taxation based on the idea
that excessive consumption of energy and/or generation of pollution, with respect to
some predefined norm, should be penalised by a higher cost. For buildings, energy
classification schemes are typically based on building specifications, i.e., technical
documentation of buildings including dimensions of the building, material choices
and the use of HVAC systems [4]. However, physical buildings can differ signific-
antly from their documented specifications, due both to workmanship issues and the
typically continuous process of building modifications [6]. The possibility of using
calibrated models to estimate the actual thermal properties of buildings based on
in situ measurements is therefore a second use-case for building thermal behaviour
models [6–9]. A model that is used to estimate a property of a physical system is
often denominated as a soft-sensor.

5



1 Introduction

QheatRenvelope

Cbuilding

Tout

Tin

Figure 1.1: The figure shows an example of the simple 1R1C model, in which the entire building
envelope is modelled by a single parameter Renvelope. The thermal capacitance is sim-
ilarly described by the single parameter Cbuilding. The model inputs are the outdoor
temperature Tout and the supplied heat energy Q̇heat. The model predicts the indoor
temperature Tin.

Models can be created based on two distinctly different methodologies. One possibil-
ity is the creation of white-box models based on human expert knowledge of building
physics typically obtained from detailed building specifications. This approach offers
the advantages of utilising prior knowledge of the building in the model, and also
producing models with parameters that have a prescribed physical definition, e.g.
thermal properties of building materials. However, the creation of detailed white-box
models are time-consuming and require considerable human effort. An alternative
type of models, often denominated black-box models, are created based on some
general mathematical structure with a number of coefficients or parameters that are
calibrated. Black-box model parameters are optimised such that the model is fitted
to a set of measured input/output responses recorded from the physical building.
The black-box approach has the advantage of being calibrated to a specific building,
without use of possibly erroneous buildings specifications, which typically results in
improved prediction accuracy. However, since a generalised mathematical structure
is used, it is typically difficult to analyse the parameters of a black-box model to
gain any insight into the thermal properties of the physical building.

A third, intermediate approach is the use of a simplified thermal network (TN)
model, an example of which is shown in Fig. 1.1. TN models are constructed by
interconnecting temperature point nodes, distributed throughout the building, by
lumped thermal resistances and capacitances [10]. Heat-energy supplied by active

6



1.1 Background

Physical informationFull None

Calibration FullNone

White-box Grey-box Black-box

Figure 1.2: The figure illustrates the relationship between white-, grey- and black-box models. A
pure white-box model depends only on physical information, while a pure black-box
requires no physical information thus requiring full parameter calibration. Grey-box
models are combinations of these extremes, utilising both prior physical information
and parameter calibration.

heating systems is models as a current or energy flow source, while temperatures
that are considered unaffected by the building, e.g. the outdoor temperature, is
modelled as a voltage potential source. The TN structure is typically based on
a cognitive description of the thermodynamics of the building [11]. The lumped
thermal resistance and capacitance parameters, denominated as the vector θ , are
calibrated from in situ measurements. Typically, these networks are expressed as
an electric resistance/capacitance circuit analogue. The TN models offer a way to
combine some a priori physical insight into the thermal behaviour of the building
with calibrated parameters. For the prediction use-case, a wide-spread application of
MPC technology in BEMS also for residential buildings requires a modelling meth-
odology that does not depend on expensive human expertise. For the soft-sensor
use-case, a general classification scheme requires comparison of models for differ-
ent buildings, something which is arguably easier to accomplish with the simplistic
TN model structures than with complex detailed white-box models. Hence, given
the need for both facilitating energy reduction for HVAC and improved classifica-
tion schemes based on in situ measurements, TN models have received significant
scientific interest [6–9, 12–15].

TN models belong to a class of models denominated as grey-box, since they are
derived by a combination of white- and black-box techniques, as illustrated in Fig.
1.2. As is the case for TN models, grey-box models are typically based on a simpli-
fied description of the system, hence they contain significant epistemic uncertainty.
Parameter estimation for grey-box models is therefore a challenging task, since both
the epistemic uncertainty in the model and the aleatoric uncertainty induced by
measurement noise in the recorded calibration data should be accounted for. A
convenient framework for formulation and parameter estimation in grey-box models
is given in [16]. Based on expressing the model as a stochastic differential equation

7



1 Introduction

(SDE) and an algebraic measurement equation, which facilitates the expression of
both sources of uncertainty, [16] presents a statistically well founded framework for
estimating the grey-box parameters. It is interesting to note that most white-box
models contain some approximations to the real system and are therefore in some
sense grey. This observation has lead to an argument for the grey-box approach as
a general framework for the modelling of dynamic systems [17].

The TN grey-box model approach has shown promising results for both the predic-
tion and the soft-sensor use-cases. By learning the building thermal behaviour from
in situ measurements, appropriately designed TN models tends to generalise well
and therefore provide realistic predictions of future behaviour [6, 12, 14, 15]. There
are also several examples in the literature that utilise TN models to estimate thermal
properties of buildings [6, 7, 9]. However, the structure of a TN grey-box model is
greatly simplified which challenges the interpretation of the lumped parameters as
representative estimates of the thermal properties of the physical building. Further,
TN models are developed cognitively [11], often over many iterations that gradually
increase in model complexity [13]. This process leads to developed models that can
become over-parametrised resulting in ambiguous parameter estimates [18]. Finally,
calibration of building thermal behaviour models is typically performed using ob-
servational data of the weather, and measurements of building temperatures with
constrained variability due to occupant requirements. Given only limited experi-
mental control, the acquired data may not be sufficiently informative on the build-
ing thermal dynamics. Because of these challenges the interpretation of lumped TN
parameters as physical properties of the building benefits from an in-depth analysis
of the estimated parameters [6]. Manual calculation of the lumped TN parameters
is usually infeasible, hence validating the physical interpretation of a calibrated TN
model should be based on statistical testing of the estimated parameters. Arguably,
a necessary requirement for interpretation of estimated parameters in the soft-sensor
use-case is that the optimal estimate is both unambiguous and reasonably consistent
across different data-sets.

. Objectives and scope

The current scientific literature on TN models provides a solid framework for cal-
ibration of model parameters and comparison of different model structures [19, 20].
However, much of the existing literature assumes the TN model parameters to be
physically determined constants [6]. The previously discussed challenges of epi-
stemic uncertainty induced by strong simplifications, possible over-parametrisation,
and lack of dynamic information content in observational data, can result in para-
meters for which the assumption of physical interpretation may not hold. This topic
has, with a few recent exceptions, received limited attention for TN models [6]. The
main research objective of this work is therefore analysing the use of TN models

8



1.2 Objectives and scope

A
B
C
D
E

Simplifying
model structure
experimentation

Identifiability
and uncertainty 
of θ

Consistency of
θ for different
data 

Resolving 
ambiguity 
of θ  

Prediction 
uncertainty for 
new data

1 2a 2b 3 4
Scope

Papers

Figure 1.3: An overview of the papers shows how the papers (A-E) are distributed over the
numbered points (1-4) in the defined scope. Colours are used to separate the different
elements of the defined scope.

as soft-sensors for building thermal properties by studying ambiguity of estimated
parameters, and also potential remedies to resolve parameter ambiguity. Methods
to test for structural and practical identifiability [21] of estimated parameters is of
particular interest [6]. Additionally, methods for validating the consistency of the
estimated parameters across different calibration data is studied to further verify
the soft-sensor use-case.

A second research objective of this work is to find methods that can simplify TN
model evaluation during parameter calibration. Deriving differential equations from
a TN model is somewhat labour intensive [18], and the iterative model development
process typically results in several model structures that must be calibrated [13].
Therefore, methods that can simulate TN models without the need to develop the
differential equations may facilitate model building, and could potentially allow
automated model construction.

The scope of the work is divided on four areas as illustrated in Fig. 1.3, where points
1 and 2 are the most important.

1. Develop a method for simulating a TN model with a given set of parameters,
without manually obtaining the differential equations, that is usable in para-
meter estimation. Given that TN models can be expressed as electric circuit
analogues, it is interesting to consider how simulation of circuits is performed
in the electronics field.

2. Validate if estimated parameters of a TN model can be assumed representative
constants of the buildings thermal properties. This topic is divided into two
separate areas:

9



1 Introduction

a) Analysing the uncertainty and ambiguity of the estimated parameters,
and in particular diagnosing structural and practical identifiability.

b) Testing the consistency of the estimated TN parameters for different data
acquired from the same physical building.

3. Investigate what remedies may be applied if the parameters for a specific TN
model is found not to fulfil the criteria required for interpretation as physical
properties.

4. TN model parameters are estimated under significant uncertainty. It is there-
fore interesting to study how parameter uncertainty is propagated to the model
predictions for new independent data.

. Contributions

The contributions of this work are distributed over five scientific papers, labelled A
to E. The papers cover the objectives and scope as defined in Fig. 1.3 and outlined
in Section 1.2 as follows:

1. In Paper B [22], the grey-box parameter estimation framework used in [16] is
adapted to using an external simulation software tool to simulate TN models
described as a list of interconnected resistances and capacitances.

2. Parameter uncertainty, ambiguity and consistency is covered in all papers as
follows:

a) The ambiguity of the estimated parameters is studied by use of ran-
domisation in Paper A [23] and by application of the Profile Likelihood
(PL) method to analyse parameter identifiability [21, 24, 25] in papers
B to E [22, 26–28]. In particular, the PL method is extended to create
two-dimensional profiles (PL2D) which can be used to analyse parameter
inter-dependence [22]. The PL2D method is further refined for improved
computational efficiency in Paper C [26]. In Paper E [28] this method is
compared with the Markov Chain Monte Carlo (MCMC) method.

b) The consistency of estimated parameters is studied in Paper A [23] by
comparing results from different independent data-sets. In Paper C [26],
data recorded simultaneously from two different sensors is analysed to
show the effect of sensor placement on TN model calibration. The use of
non-parametric block-based bootstrapping [29–31] methods is investigated
in Paper D [27], where also the consistency of dynamic information over
time is analysed by application of the PL method to a sliding window.

10



1.4 Outline of thesis

3. Resolving ambiguous parameter estimates typically requires adding new in-
formation to the estimation problem. In Paper A [23], ambiguity is resolved
by fixing one of the parameters to a value precomputed from building spe-
cifications. An alternative solution is presented in Paper E [28] where the
application of a prior distribution determined from the building specifications
is used to resolve the ambiguity.

4. Paper E [28] discusses the MCMC method and the Bayesian interpretation
of parameter estimation. The representation of parameter uncertainty ob-
tained by MCMC is used to compute a stochastic forecast that estimates the
uncertainty of building temperature predictions.

. Outline of thesis

This thesis consist of two main parts. The first part consists of seven chapters,
where the Chapter 1 presents the background for the project, the research object-
ives and the scope of the work. Chapter 2 provides an extensive literature review of
the relevant fields. Chapter 3 presents additional information on the experimental
setup used to acquire data for calibrating grey-box models. Chapter 4 is a summary
of selected methods relevant to the defined scope and used in the papers, with some
overviewing remarks as to how the methods can be applied together. Chapter 5
presents short summaries of each of the five scientific papers, while Chapter 6 dis-
cusses the main results from the papers. Finally, the thesis is concluded in Chapter
7.

11
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Literature Review

Given the ongoing effort to reduce energy consumption in buildings, a large body
of literature exists that applies many different methods towards the creation and
calibration of building thermal behaviour models. Particular focus has been given
to the prediction use-case, towards application of MPC [5], but there are also a
significant body of literature which takes interest in the estimated parameter values
for the soft-sensor use-case. The following review of building thermal behaviour
models provides an overview of relevant methods, and how the scientific papers and
contributions of this work is connected to existing literature. While the primary
focus is grey-box models, an overview of selected applications of white- and black-box
modelling is also given. It is particularly interesting to observe that the demarcation
between white- and grey-box models is not always obvious. The term grey-box can
be applied in the specific sense of an SDE model, as defined in [16], but also the
wider sense of any model constructed from a description of the system physics but
with calibrated parameters. For further literature reviews on modelling of building
thermal behavior see e.g. [19, 32, 33].

. White-box models

A white-box model is developed as a detailed mathematical description of the physics
of a particular system, usually developed by starting from first principles such as
energy and mass balances. A recent example of this approach applied to building
thermal behaviour is found in [34], where a multi-floor building model is developed in
both Modelica, by use of the graphical interface Dymola and based on the Modelica
Buildings Library developed by Lawrence Berkeley Library, and by implementation
of state-space differential equations in MATLAB. The equations where inherited
from a previous paper by the authors [35], where a multi-zone building model is
developed based on mass- and energy-balances. Particular attention is given to
potential heat transfer by convection, due to the flow of air both between zones and
floors of the building and between building and environment from ventilation [34].
Another interesting feature of these papers, developed in yet another previous paper
by the same authors [36], is the use of spherical analogue simplified model for the
furniture described by a partial differential equation (PDE) in spherical coordinates
that is developed to have equivalent average thermal diffusivity with the furniture

13



2 Literature Review

in the building. The combined work in these and other papers by the same authors
presents a detailed framework for the construction and implementation of white-
box models of multi-zone multi-floor buildings. The developed models tends to be
complex, with a large number of states and parameters that must be identified from
specifications of the buildings, as is typical of the white-box modelling paradigm.
In order to obtain acceptable model fit certain parameters require tuning, which is
typically achieved by manual adjustment of parameters during repeated simulations
[34].

It is interesting to note that both the use of an equivalent spherical model approx-
imation for the furniture, and the tuning of certain model parameters to obtain ac-
ceptable model fit, arguably shifts the model classification towards that of grey-box
models. Indeed, parameter calibration of white-box models may in general benefit
from the application of grey-box parameter estimation, as pointed out by [17]. Some
of the models in [34–36] are implemented in simulation tools without use of explicit
equations, which is typically for white-box building models [37, 38]. In such cases, a
grey-box model treatment for parameter estimation of external software, as outlined
in point 1 of the scope defined in Section 1.2 and similar to that presented in Paper
B [22], may be beneficial.

. Black-box models

Black-box modelling is a popular approach to modelling of dynamic systems, as
evident by the large body of literature, where models are developed by calibrating
the parameters of a general mathematical structure. Many different model struc-
tures, often with specialised algorithms for calibration, exist in the literature. Nat-
urally, black-box modelling is mostly applicable to the prediction use-case. Some
classical approaches [39, 40] include the use of autoregressive moving average with
exogenous input (ARMAX) models and subspace identification (SSID). An example
of SSID, i.e., the use of “orthogonal and oblique projections to obtain the Kalman
state sequence” [41, 42], of building thermal behaviour is found in [41]. The model
structure is typically the standard stochastic linear time invariant (LTI) system
description used in the Kalman filter literature [43]. The typical subspace identi-
fication approach stacks measurements into Hankel matrices [40], for both system
inputs and outputs separately and combines the matrices of the LTI model into a
Toeplitz matrix [40]. The resulting system of equations can then be solved as a least
squares problem to obtain the LTI system matrices [41]. The approach typically
uses an estimate of the Kalman gain K in order to obtain the residuals of both the
state transition and the measurement equation [40, 44]. In [41] the Autocovariance
Least-Squares (ALS) method [45] to estimate the process and measurement noise
covariance matrices, W and V , which is subsequently used to compute K [41, 42].
Estimating noise covariance matrices W and V is generally a difficult problem. An
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alternative adaptive method of estimation is presented in [46]. A further altern-
ative is the use of numerical optimisation of some appropriately defined objective
function, such as the approach used in Papers C to E [26–28] and also in [20]. A
similar, more recent, application of SSID for building thermal behaviour is found
in [47], in which the LTI system model is identified by use of the Nuclear Norm
Subspace Identification (N2SID) method [48]. The N2SID method seeks to utilise
two structural properties of typical SSID methods; the low rank obtained by mul-
tiplying the extended observability matrix with the state sequence matrix, and the
block structure of the Toeplitz matrices [48]. This is achieved by utilising the nuclear
norm ‖·‖∗ as a heuristic approximation of the rank(·) operator [49], to minimise the
system order, while also optimising the model fit ‖ŷ− y‖2

2 , as a combined objective
function. A weighting parameter λ is tuned to obtain a reasonable balance between
model complexity and model fit [48, 50]. The optimisation problem is solved in [47]
by application of alternating direction methods of multipliers (ADMM) algorithm
[50].

In recent years, the black-box modelling field of machine learning (ML) has re-
ceived enormous scientific and popular interest, in particular the use of artificial
neural networks (ANN) and decision trees (DT) [51–54], due in part to the applica-
tion of ML methods to complex problems such as playing games [55] and driving a
car [56]. Both SSID and ARMAX models are linear model structures which limits
their usefulness for complex non-linear systems. ML methods has found application
in modelling of building thermal behaviour as well. An example of the use of a DT
method is found in [57], in which a local linear model tree (LoLiMoT), consisting
of several local linear models (LLM) identified for separate partitions of the sample
space, is used to model building thermal behaviour. The resulting model is equi-
valent to a Takagi-Sugeno (TS) fuzzy model, in which local ARX models are used
to describe non-linear system behaviour by local linear approximation [57]. The
presented model structure is identified by the specialised LiLoMoT algorithm to
minimise the SSE between simulation and measurement over a calibration data-set
from a step test [57]. The model is validated by predicting an independent data-set
recorded during normal building occupancy [57]. The approach shows RMSE well
within acceptable performance for the predictive control use-case [57]. The resulting
model is also fast in forward execution and is therefore considered a good choice for
use in MPC [5].

Another ML based approach towards non-linear modelling of building thermal be-
haviour is given in [58], where an ANN based on radial base functions is used to
model the predicted mean vote (PMV) index. The PMV index is used to predict
the average vote of a large group of people on a thermal sensation scale [58, 59].
One such scale is prosed by the American Society of Heating Refrigerating and Air
Conditioning engineers (ASHRAE) taking the values [−3, 3] to represents human
qualitative thermal sensation from cold to hot [58, 60]. Since the computation of
the PMV index is time consuming, hence difficult to utilise in MPC under strict
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time response demands for the control loop, [58] proposes to train an ANN as a
surrogate model to estimate the PMV index. The developed MPC algorithm is used
to control the HVAC system by a discrete set of control actions to obtain the target
PMV index using a branch and bound [61] search for optimisation [58].

. Grey-box models

Buildings are constructed using a large number of materials with different thermal
properties, typically combined in complex geometries to form individual segments
such as walls, roofs and floors. This makes detailed physical white-box modelling of
individual parts challenging, as illustrated in the review in Section 2.1. Additionally,
the available specifications of the physical building structures are often inaccurate or
insufficient for detailed white-box model construction. Hence, the use of calibrated
models has received significant scientific attention in the field of building thermal
behaviour modelling. Given that there is often some physical information available,
at least the overall layout of walls, doors and windows, the use of grey-box models
in the form of thermal networks (TN) has been an especially popular modelling
approach [10].

. . TN models expressed as stochastic differential equations

Since grey-box models are in general strong approximations of the real system, it is
convenient to formulate them as stochastic differential equations (SDE). A seminal
work on the formulation of TN models as SDEs, with a statistically solid framework
for parameter estimation, is found in [12]. By introducing the diffusion term in
the state transition model and maximising the likelihood function to obtain calib-
rated parameters, a statistically solid framework for model calibration and selection
is obtained [12, 16]. The diffusion term is used to model a combination of errors
caused by model approximations, unmodelled and unrecognised disturbances and
noise on the input measurements u[N] [12, 16]. It is interesting to note that the
framework and software used in [12] was an earlier linear version of the Continuous
Time Stochastic Modelling (CTSM) framework later presented in [16, 62, 63]. In
CTSM, a Kalman Filter (KF) [64–66] is used to estimate one-step-ahead predic-
tions and compute εk|k−1 = yk −E

[
yk|y[k−1],M ,θ

]
, i.e., the residual between model

prediction and observation [67]. The computed residuals εk|k−1 are used to evaluate
the likelihood function L

(
θ ; y[N]

)
, under an assumption of normality which is later

verified by statistical testing [67, 68]. Papers B through E in this work [22, 26–28]
uses a specialised implementation of this methodology, adopted from the CTSM
framework.

16



2.3 Grey-box models

Note that in the KF and system identification literature [16, 40, 43, 67] εk|k−1 is
denominated as the innovations process, i.e., the part of the observed signal that
cannot be estimated. Some authors e.g. [46] refer to the error between measurement
and aposteriori estimate εk|k = yk −E

[
yk|y[k],M ,θ

]
as the residual, a quantity not

typically computed in the KF since it is not needed to compute the Kalman gain
K, to distinguish from the innovation εk|k−1. In this work and in the papers B to
E [22, 26–28] the term residual is used to describe εk|k−1. The exact notation and
mathematical definition of the involved terms should prevent any confusion as to
what is being computed.

Another paper using the CTSM framework presents three increasingly complex mod-
els of building integrated photovoltaic modules, derived from the system physics but
with lumped parameters that are calibrated from data [69]. Two of the presented
models are non-linear, by inclusion of wind and long wave radiation effects on the
system [69]. In order to handle non-linear models, the current version of CTSM
[16, 62] utilises the Extended Kalman Filter (EKF) [70, 71]. The standard KF
applies well known matrix equations to propagate the covariances of the state es-
timates that are only applicable to linear models [43, 72]. The working principle of
the EKF, also part of the well established KF literature, is the use of linearisation by
computing the Jacobian to approximate the first moments of the multi-dimensional
Fokker-Planck equation by a Taylor series expansion truncated after the first term
[43, 72–74]. Hence, the linear equations for propagation of covariance can be ap-
plied also in the EKF [43]. Two more recent adaptions of the KF to non-linear
system is the Unscented Kalman Filter (UKF) [75, 76] and the Ensemble Kalman
Filter (EnKF) [74]. Both of these adaptations are based on the idea that it may
be more beneficial to approximate the state distribution, rather than the non-linear
transformation constituted by the state transition equation for a non-linear model
[74, 76]. In addition to improved performance for highly non-linear systems, both
the UKF and EnKF offer the practical advantage of handling non-differentiable
models, i.e., models for which obtaining the linearised system matrices is infeasible.
When estimating parameters for an externally simulated grey-box model, with no
explicitly described model equations for the state propagation, the ability to handle
non-differentiable models in the KF implementation is of crucial importance. This
possibility is especially interesting for point 1 of the scope in this work, and was
explored in Paper B [22] where both the UKF and the EnKF are used to estimate
the residuals of an externally simulated TN model.

Another example of the CTSM framework applied to buildings is found in [13],
where fifteen different models, constituting variations of a complex TN structure,
are calibrated and compared using the likelihood ratio test [77]. Starting from the
simplest model, the complexity is iteratively increased until no further significant
improvement in log likelihood is obtained, thus identifying the minimum complexity
model with optimal performance [13]. Another example using CTSM is [15] where
a set of 5 TN models of different levels of complexity is calibrated against data
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obtained by simulation of a white-box model, using the IDEAS library from KU
Leuven together with some observational data on solar irradiation. One point of
interest in the paper is the discussion of noise influence on the parameters, which
can be studied due to use of virtual measurements on the simulated white-box
model [15]. The paper concludes that the addition of unbiased measurement noise
does not significantly affect the optimal parameter estimate, but it does increase
the uncertainty of the parameter estimate [15]. This conclusion is similar to that
of Paper E [28], where the estimated parameters from a data-set recorded from a
physical building is compared with the estimated parameters from the same data-set
with added zero-mean Gaussian noise. Further, according to [15], bias introduced
by inaccurate sensor placement will affect the estimated parameter values, since the
sensor location in the physical or virtual building directly determines the physical
interpretation of the temperature nodes of the TN model [15]. This is again similar
to the conclusion in Paper C [26], which explored the same challenge but with
observed data recorded simultaneously from two sensors in a physical building. One
more, recent, paper utilising the CTSM framework, and also comparing the results
to the MATLAB System Identification toolbox, is found in [78] which focus on the
control use-case with a first order model developed for a super-insulated residential
house.

. . Other grey-box approaches

In addition to the SDE formulation reviewed in Section 2.3.1, there are also other
parameter estimation methods that have been applied towards building thermal
behaviour models that are classified by the authors as grey-box. Many of these
approaches use the deterministically computed simulation error from a ballistic
simulation compared with the measurements, i.e., the output error method (OEM)
[40, 67]. However, model implementation, the choice of optimisation method and the
formulation of the objective function typically differs. One approach, used in Paper
A [23], is the straight forward numerical minimisation of the mean square error
(MSE) between the simulated and measured building temperatures. An example
of the use of numerical optimisation is [14], where the Interior Point optimisation
method [79, 80] is used to calibrate four different TN models. The objective function
is defined as the product of the MSE for heating power and indoor temperature [14].
Models are validated by forecasting on independent data [14]. An interesting point in
the paper is the Sobol sensitivity analysis [81] which is used to diagnose parameters
that does not sufficiently influence the objective functions when perturbed [14].
Another example of grey-box modelling, where the parameters of an otherwise white-
box model developed from application of mass- and energy-balances to the main
components of an HVAC system is given in [37]. The paper presents detailed state-
space thermal models, which are implemented in Simulink in MATLAB using the
Control and Estimation Tools Manager, and combined into a complete model for
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the HVAC system. As typical for the white-box paradigm, the resulting models is
complex with a large number of parameters. Although the model structures are
developed as typical white-box models based on balance laws, the parameters are
estimated from measured data by use of non-linear least squares optimisation of the
simulation error, which results in the models being classified as grey-box according
to the authors definition [37]. The use of the term grey-box is further supported
by the addition of a constant error term to account for unmodelled effects in most
of the presented state transition models [37]. The authors report without further
discussion that different initial conditions for the optimisation problem resulted in
different locally optimal solutions [37], a phenomenon which is often observed when
the parameters are ambiguous due to identifiability issues, as discussed in Paper A
[23] and D [27].

An early review of different approaches to modelling building thermal behaviour,
written over 30 years ago, is provided in [18], which compares the use of ARMAX
and TN models. The paper includes an interesting discussion of TN models, which
points out the difficulties in choosing between the typically large number of possible
TN structures for any given building. A solution for this model selection challenge
has since been proposed by [13, 17, 69], using the likelihood ratio test based on
Wilks theorem [77]. Further, the author of [18] points out that TN structures can
easily become over-parameterised which leads to ambiguous parameter estimates,
a difficulty which was observed for the R3C2 model used in all five papers of this
thesis as well [22, 23, 26–28]. Potential remedies for parameter non-identifiability
due to over-parameterisation are discussed in Papers A, C, D and E [23, 26–28],
as it relates to point 3 of the scope defined in Section 1.2. Finally, [18] points out
that the process of developing the differential equations from TN circuit models is
somewhat labour intensive. This challenge motivated the definition of point 1 in the
scope of this work, and the use of an external circuit simulator presented in Paper
B [22].

It is interesting to note that the TN model equations in [18] are given without a
diffusion term, i.e., as an ordinary differential equation (ODE) and not the SDE
formulation discussed in Section 2.3.1. Further, the author argues in favour of using
the ballistic simulation error [18]. This explains the lack of an error term in the state
transition, since the ballistic simulation error formulation is deterministic. Paper
D [27] and E [28] discuss the conditions under which the deterministic simulation
error and the grey-box SDE formulation is the same, specifically that the process
noise W ≡ 0. The choice of error formulation is also a topic in many other papers
and books on grey-box models and on parameter estimation in general, see e.g.
[67, 82]. Another paper, which also discusses both ARMAX models and TN models
, concludes with preference on the prediction error, due to its favourable availability
of diagnostic and validation tools [83]. In this work, the simulation error was used
in Paper A [23], while the SDE formulation was used in the remaining papers [22,
26–28].
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One further commonality between [18] and [83] is the application of ARMAX mod-
els to building thermal behaviour. In [83] the MATLAB IDENT toolbox is used to
obtain the ARMAX model parameters. The paper further discusses how the res-
ulting ARMAX model parameters can be used to obtain parameters of a grey-box
TN model that allows physical interpretation of the model parameters [83]. The
interpretation of ARMAX model parameters in relation to the physical properties
of the building is also a central topic in [18]. A final point of interest covered by both
[18] and [83] is the choice of dependent variable, i.e., the model output to be fitted
to data [18, 83]. Specifically, if the indoor temperature is controlled and therefore
close to constant, it may be beneficial to fit the model to the heating energy demand
Q, rather than the indoor temperature of the building Tb, since the former will have
more dynamic variations and therefore produce better estimates of the buildings
physical properties [18, 83].

Another approach to parameter estimation, commonly applied in the field of cy-
bernetics, is the use of dual estimation in an Extended Kalman Filter (EKF), i.e.,
the estimation of both state and parameters [43]. By augmenting the state vector
with the unknown parameters, the resulting model usually becomes non-linear and
therefore requires a non-linear KF implementation [43]. An example of this ap-
proach applied to building thermal models is given in [84], where the simple 1R1C
model is used in a parameter augmented model together with an EKF to simul-
taneously estimate both the temperature state and the parameters [84]. Further,
the heat gain disturbance introduced by the building occupants is estimated by the
EKF [84]. Intuitively, one would expect humans to release body heat, and therefore
contribute to the heating of a building. However, the authors observe that the estim-
ated heat gain from occupants is in fact negative, which they argue is explainable
by assuming the dominating contribution of the occupants is through the loss of
heat by convection through opening windows and doors [84]. The paper also applies
calibration of model parameters by using the Nelder-Mead simplex algorithm [85] on
the MSE simulation error for four TN structures. In conclusion, the paper reports
that through the online estimation of both parameters and heat gain disturbance
by occupants satisfactory performance w.r.t. prediction accuracy and computation
time is achieved, with the outlook of utilising the approach for MPC [84].

The recent increase in popularity of machine learning (ML) methods has led to wide-
spread application in a number of fields, including modelling of building thermal be-
haviour. While ML methods typically are considered black-box, some hybrid models
combining ML methods and physical information is classified as grey-box models in
the wider sense. One example is the application of the genetic algorithms (GA), a
type of optimisation or search method inspired by the natural evolution of genomes
[86, 87], applied to parameter estimation. In [38], a Building Energy Simulation
(BES) model derived from physical specifications of the test building, implemented
in a specialised simulation tool called EnergyPlus [88] is calibrated by with a GA. A
sensitivity analysis [89] is performed to determine the most important parameters
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of the BES model. The parameters are subsequently discretised prior to application
of GA and fitted to measurement data [38] using the non-dominated sorting genetic
algorithm (NSGA-II) algorithm [90]. Even after excluding non-sensitive parameters,
the authors report the resulting discretised parameter space requires an infeasible
2.08×1011 simulations for an exhaustive search [38]. Hence, the use of GA optim-
isation is attractive given the large search space [38]. Another application of GA
optimisation of parameters is found in [91], where the parameters of simplified TN
models for different building segments is obtained. Rather than fitting the temper-
ature directly to observations, the objective function is defined from the frequency
and phase response of the TN model, with respect to theoretically computed values
obtained from building specifications [91]. However, the paper also uses a simplified
TN model for the internal thermal mass which is fitted to measured cooling load
[91].

The use of an ANN to predict a variable relevant for building thermal behaviour, the
input solar gains, is found in [92]. A non-linear ARX (NARX) model is constructed
by utilizing an ANN to regressively predict future solar irradiation. The proposed
model uses a set of physics based white-box models to compute predictions of solar
gains, which is subsequently used as inputs for the NARX-ANN. The result is a
model that uses both physical information about the nature of solar irradiation and
established models, while also allowing some case specific learning to be applied
by calibration in the ANN [92]. The approach can therefore be considered another
example of the grey-box methodology.

. . Parameter identifiability for grey-box models

White- and grey-box models are based on prior information of the physical sys-
tem S . Hence, the parameters tends to represent some real physical quantities
of S , e.g., the thermal resistance of walls, doors or windows. It is often assumed
that these parameters have some unambiguous, constant, but unknown true value
θ ∗, such that M (θ ∗) =S . However, when calibrating the model M (θ), the estim-
ate θ̂ may be ambiguous, even if, intuitively, the parameters of the physical system
is well defined constants. The objective function g(θ) calculates the model fit based
on errors between model predictions and measured data. Hence, if perturbations
of some sub-set θs ∈ θ is not reflected by the objective function, the resulting es-
timate θ̂ will be ambiguous. If the cause of the ambiguous parameter estimates
is the model structure, i.e., the model output is not affected by some subset of
parameters θs, those parameters are denominated structurally non-identifiable [93].
Subsequently, the parameters in θs does not affect g(θ) which results in an equipo-
tential manifold on the objective functions hyper-surface in the parameter space Θ.
Similarly, parameters can be inter-dependent, such that the effect of perturbations in
one parameter on g(θ) can be cancelled by corresponding perturbations of another
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parameters, which also results in similar equipotential manifolds. Another poten-
tial cause of non-identifiable parameters is insufficient dynamic information content
in the calibration data. Since g(θ) compares model predictions to data, a lack of
variation in the data may also cause perturbations of certain parameters to produce
only statistically insignificant changes in g(θ). Such parameters are denominated
practically non-identifiable [21].

The use of grey-box models is motivated by the possibility of the interpretation
of the estimated parameters as derived from the physical properties of the system.
However, as pointed out by [6], although the majority of papers in the field treat
parameters as representative of the thermal properties of the building, a careful ana-
lysis of the parameter identifiability is usually not performed. The limited number
of publications in this field which treats of parameter identifiability was also pointed
out in the thorough review of inverse methods presented in [19]. A notable exception
is [6], where both practical and structural identifiability of the parameters for a TN
model is analysed using the Profile Likelihood (PL) method [21, 24, 25]. When using
likelihood maximisation to estimate parameters the PL method is a natural choice
of identifiability analysis method, as was noted by the authors behind the CTSM
framework [94]. Given the limited number of papers that discuss identifiability of
TN models [6], the application of the PL method is one of the central topics of this
work, as illustrated by point 2a in the scope definition of Section 1.2. In addition to
the application of the 1D PL method to TN models, the extension to creating 2D
projected profiles, which allows the analysis of parameter interactions in addition to
testing parameter identifiability, is discussed in Papers B to E [22, 26–28]. It should
be noted that a similar extension was concurrently developed in [19].

The challenge of estimated parameter ambiguity is mostly relevant to parameters
for which the assumption of a true physical value is reasonable. In the black-box
modelling paradigm there is usually no assumption of an unambiguously optimal
parameter vector that has some specific physical interpretation [40, 68]. Despite
having multiple solutions, and being subject to local minima in the calibration,
black-box models are well suited for predicting system behaviour [40, 95]. Similarly,
the ability of a TN model to accurately predict system behaviour despite having
non-identifiable parameters was shown in Paper E [28]. Hence, the challenge of
parameter identifiability is arguably restricted to the soft-sensor use-case where the
parameter values themselves are of interest.

. . Bayesian parameter estimation for building models

There are—unbeknown to most non-statisticians—two fundamentally different ways
of looking at statistical estimation of parameters, namely frequentist and Bayesian,
which has led to a 250-year long argument about which perspective is better [96].
Although Bayesian statistics is older than the frequentist [96], the latter has been,
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and arguably still is, predominant within engineering disciplines. However, Bayesian
statistics has gained significantly in popularity over the last, say, 20 to 30 years, to
some extent driven by the improvement in computing power and the development
of the Markov Chain Monte Carlo (MCMC) algorithms [97, 98]. There are many,
both explicit and subtle, differences between frequentists and Bayesians, a detailed
review of which is well beyond the scope of this work. However, one interesting
and relevant distinction is in the way probabilistic statements of accuracy can be
applied to estimated parameters. Papers A to D [22, 23, 26, 27] are all based on a
frequentist interpretation of parameter estimation, while Paper E [28] discusses and
compares both approaches.

As discussed in Section 2.3.3, parameters are often estimated under the assump-
tion that there exist some true parameter θ ∗ → M (θ ∗) = S . The uncertainty of
the resulting estimate θ̂ is described by a confidence interval (CI), with prescribed
confidence α , that relates to the true parameter θ ∗. This approach is typical of fre-
quentist statistics, which based on the definition of likelihood L

(
θ ; y[N]

)
= p

(
y[N]|θ

)
treats the data as a random variable and the parameter is assumed to be a fixed
but unknown constant. Interestingly, the membership of θ ∗ in a specific CI is not a
question of probability as clearly stated in [99], despite common claims to the con-
trary. Since the parameters are considered to be unknown constants, and the limits
of a particular CI is clearly known constants as well, the only probabilistic values
that can be assigned to the question of membership in a CI is the trivial values 0
and 1 [99]. The confidence level α is rather defined as the a priori expected probab-
ility of capturing θ ∗ in a CI, i.e., the expectation E

[
p
(
θ ≤ θ ∗ ≤ θ

)]
= α [100]. The

average probability of capturing θ ≤ θ ∗ ≤ θ is α in the sense that the frequency of
correct CI’s approaches α in the limit of infinite trials [100]. It is interesting to note
that the bootstrapping concept of using randomisation to create a large number of
pseudo data-set [29, 31], with subsequent parameter estimation, is closely related to
the fundamental idea of repeated experiments on which CIs are based. This topic
was discussed in Paper D [27] as it relates to the point 2b in the scope defined in
Section 1.2.

The Bayesian framework, however, considers the posterior distribution p
(
θ |y[N]

)
∝

p
(
y[N]|θ

)
p(θ), which unlike the likelihood function p

(
y[N]|θ

)
is a probability distri-

bution on the parameter θ that takes its values over the parameter space [24, 101].
Since the parameter is now considered a random variable, it is justified to give
probabilistic statements about the estimate θ̂ , including use of a prior probability
distribution p(θ) to describe any a priori physical knowledge or subjective belief that
may inform the estimation of θ in addition to the likelihood function. Obtaining the
posterior distribution analytically is in many cases intractable, but requires the use
of estimation algorithms such as MCMC methods [101, 102], e.g. the Metropolis-
Hastings algorithm [97, 98]. It is also interesting to note that there is a close relation-
ship between the resulting marginal distributions from MCMC, and the projected
posterior distributions obtained by the Posterior Profile (PP) method [24] which is
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discussed in Paper E [28]. For further discussion on the relationship and difference
between frequentist and Bayesian statistics see e.g. [96, 103].

Given the inherent uncertainties in grey-box models and their parameters, the
Bayesian framework for parameter estimation is of particular interest. By infer-
ring parameter posterior distributions it is possible to gain better insight into the
model behaviour, by better accounting for the uncertainty in the parameter es-
timates in simulations, as discussed in Paper E [28]. The usefulness of Bayesian
parameter estimation for grey-box models of building thermal behaviour is further
evident by the recent increase in publications on this topic. In [104] three different
MCMC methods are compared for the purpose of calibrating parameters of a white-
box model implemented in EnergyPlus [88]. After an initial sensitivity analysis, the
posterior distribution of a sub-set of parameters is inferred, together with the para-
meters of three Gaussian Processes (GP) used to describe the model uncertainty and
measurement noise [104], following the approach in [105]. It is interesting to note
that the calibration of models implemented as software code given in [105] shares
some similarities with point 1 in the scope of this work, as discussed in Section 1.2.
Specifically, calibrating parameters for a model that only exists as a black-box piece
of code or software, is the central topic of [105]. In Paper B [22], the same challenge
of calibrating software is solved by adopting the methodology of CTSM [16, 62, 63],
but using an UKF to estimate the residuals εk|k−1.

An example of using Bayesian parameter calibration for TN models is given in [20],
where three different model structures where calibrated for seven different data-sets,
using both the stochastic estimation framework [20] as reviewed in Section 2.3.1 and
the deterministic simulation error. The results show that by MCMC calibration of
the parameters of a TN model formulated as an SDE, the resulting posterior samples
θ[K] can be used to reliably compute overall heat loss coefficient and capacitance for
the building, including a reasonable uncertainty estimate for the computed thermal
properties [20]. The estimated overall heat loss coefficient (HLC) and total thermal
capacitance are compared over seven different data-sets. Further, the SDE based
stochastic model calibration is compared to the ballistic simulation error approach,
which shows that the consistency of the results between the seven data-sets is sig-
nificantly more reasonable using the SDE approach. This approach is similar to
Paper E [28], which also focuses on the consistency of estimated parameters across
different data and noise levels, as outlined in scope element 2b. While both [20] and
Paper E [28] focuses on the use of different data-sets, and alternative approach to
testing consistency based on non-parametric block-based bootstrapping is given in
Paper D [27]. One further similarity between [20] and Paper E [28] is the use of
stochastic forecasting to estimate the effect of uncertain parameters on the model
predictions, a topic which is central to scope element 4 in Section 1.2.

Another similar example of Bayesian inference with MCMC on TN models is found in
[7], which studies the thermal properties of two different wall constructions, rather
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than the complete building envelope. The parameter posterior distributions are
reported as corner plots, a typical combination of 1D and 2D marginal posterior
distributions, rather than as point-wise MAP estimates with credibility intervals
given in [20]. The method of [7] was developed in previous papers, see e.g. [8] and [9]
where the proposed framework is explained in detail. Of particular interest is the use
of the odds ratio test to perform Bayesian model selection [8, 106]. The methodology
of [7–9] is similar to [20] and to that used in Paper E [28]. However, Paper E [28]
includes the novelty of of comparing the MCMC results with the typically frequentist
profiling methods PL and PP. Another topic of Paper E [28] that is not covered by
[7–9, 20] is the study of uncertainty in the estimated measurement and process noise
covariance parameters
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Experimental setup

. Building and sensors

All data used in the papers A to E [22, 23, 26–28] are collected from an experimental
building located on the Porsgrunn campus the University of South-Eastern Norway
(USN). The building was constructed in 2014 and has been the subject of several pre-
vious scientific studies [107–109]. The building is a small single zone structure with
a total volume of approximately 9.4m3. Further, the building is situated on concrete
support structures such that the floor is not in contact with the ground [107–109].
The walls are constructed using different types of insulation materials such as wood,
cement chipboard, particle board, cardboard, cladding, glass wool insulation, and
polyethylene vapour barriers [108], in three sections indicated as Solid, Standard and
Sustainable, in Fig. 3.1. The roof is covered by asphalt sheets with an inner con-
struction of wood. Given the diverse use of materials and construction techniques,
the heat transfer characteristics vary significantly between different sections of the
building [108]. The building is sealed and does not have any type of ventilation
[107–109]. The building has three small windows, each of size 60 × 90cm2 located
on the south, east and west wall, and a door of size 90 × 200cm2. The building is
situated between several large office buildings. Given the significant shading, the
small window size and the typical limited solar irradiance on site during Norwegian
winters, the solar contribution to heating has typically been ignored in the previous
studies of this building [108, 109], as it is in the papers A to E [22, 23, 26–28]. Sim-
ilarly, the cooling effect of wind is also assumed to be negligible for this particular
structure and location. The building has a simple active heating system consist-
ing of an electric resistive heating element with rated power of 370W, regulated by
a bi-metal thermostat. An additional ∼ 100W of thermal energy is continuously
supplied from the DAQ system and a connected logging computer.

The building is outfitted with a large amount of sensors connected to two Data
Acquisition (DAQ) module (NI USB-6218) that are continuously logged by a con-
nected PC to provide detailed thermal measurements throughout the building struc-
ture [108, 109]. The sensors include TMP36 semi-conductor temperature sensors,
PT1000 resistive thermic elements, Light Dependant Resistors (LDR) and Honey-
well 4000 humidity sensors, located on the interior surfaces of the building, under
the outside wooden cladding exposed to outdoor temperature and inside the build-
ing envelope, e.g., in the insulation layers [108, 109]. The supplied electric power to
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3 Experimental setup

Figure 3.1: Experimental building and floor plan.

Table 3.1: Overview of data-sets
Data-set Sensor systems in use Used for papers

Nov1 - 2015 NI-DAQ sensors + Weather station A
Nov2 - 2015 NI-DAQ sensors + Weather station A, B
Dec1 - 2015 NI-DAQ sensors + Weather station A
Dec2 - 2015 NI-DAQ sensors + Weather station A
Feb1 - 2018 NI-DAQ sensors C, E
Feb2 - 2018 NI-DAQ sensors D, E
Feb3 - 2018 NI-DAQ sensors E

the building is measured by a Honeywell CSLA1CD Hall effect sensor. Additionally,
a commercially available domestic use weather station, which measures both in-
door and outdoor temperature, rainfall and wind-speed, is installed [108, 109]. The
weather station has a logging frequency of 30min while the DAQ system operates
on a 5min interval for thermal, humidity and light measurements and a 10s interval
for power measurements [108, 109]. The two systems are not synchronised, such
that some data pre-processing is required for temporal alignment of data [22, 23].
And overview of the collected data-sets, and the papers they are used for, is given
in Table 3.1.

Given that the primary focus of this work is the soft-sensor use-case of parameter
estimation, the simplicity of the structure, the large amount of sensor data available,
and the possibility to conduct experiments without regards for occupant needs,
makes the building an ideal experimental platform for conducting benchmark tests
on parameter estimation and analysis methods. Since the building is exposed to on
site weather conditions, the quality of the collected data are realistic w.r.t. what one
may obtain from in situ measurements on a residential building in Norway. Note that
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3.2 Grey-box thermal network model

Figure 3.2: Simplified thermal network model with three resistors and two capacitors.

for most of the data-sets, the indoor temperature is driven by a step in the supplied
heat energy. Such step responses are not compatible with human occupancy, but
are usefull for acquisition of sufficiently rich dynamic information content in the
recorded data. It is a reasonable assumption that similar step-response tests can be
conducted while a residential home is unoccupied.

. Grey-box thermal network model

The focus of all five papers A to E [22, 23, 26–28] are the calibration of parameters
of thermal network (TN) models. A possible choice of TN model of the experimental
building, partially based on the R4C2 model presented in [14], is shown in Fig. 3.2.
The simplified TN model, illustrated as an Resistor-Capacitor circuit, consists of
five components: the thermal resistance between room air and wall Rb, the building
envelope Rw, and the thermal resistance of windows and doors Rg. The two capa-
citances Cb and Cw represent the thermal capacitance of the building interior and
envelope, respectively. The model has two outputs: the room temperature Tb and
the wall surface temperature Tw, and two inputs: the supplied electric power Q̇ and
the outside temperature T∞. A variation of this R3C2 model, is the R2C2 model
used in papers [26–28] where the thermal resistance Rg is removed, equivalent to
setting Rg ≡ ∞ in the R3C2 model.

An important note on the use of simplified TN models is that the choice of sensor
location in the physical building directly determines the physical interpretation of
the lumped parameters. Given that the experimental building is constructed with
three different sets of material choice, the thermal characteristics of each segment
differs. Hence, although the same model structure is used in all papers, the physical
interpretation of the individual parameters may be slightly different. This point is
in particular highlighted in Paper C [26].
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Methods

. Estimating parameters of externally simulated models

(Scope )

Most dynamic system models contains some form of uncertainty w.r.t. the real
physical system and can therefore with advantage be formulated using a stochastic
differential equations (SDE) grey-box framework [16, 17]. The following formulation,
adopted from [16], is used as the starting point for parameter estimation in papers
B to E [22, 26–28]:

dxt = f (xt ,ut , t,θ)dt +σ (ut , t,θ)dωt (4.1)
yk =h(xk,uk, tk,θ)+ vk (4.2)

The state transition model in Eq. (4.1) consist of the drift term f , which describes
the deterministically known apriori physical knowledge of the system [17], para-
metrised by θ , and the diffusion term which describes the uncertainty of the state
transition as a stochastic process [16, 17, 72]. The measurement Eq. (4.2) consist
of the function h, which describes a deterministically known mapping on the model
states and inputs parametrised by θ , and the measurement noise vk ∼ N (0,V ). In
the context of thermal network (TN) models of buildings, the deterministic drift
term is a set of ODE’s derived from the RC circuit analogue, typically by use of
Kirchoff’s node balance laws [110]. As pointed out in [18], the development of equa-
tions is somewhat labour intensive, in particular for complex RC circuit models.
Hence, point 1 of the scope presented in Section 1.2 is to obtain a method that al-
lows estimation of the parameters of a TN model without deriving the equations.

A possible solution is to replace the deterministic drift term of Eq. (4.1) and the
measurement equation in Eq. (4.2) with an external simulator that can propagate
the model state without deriving equations. The simulator can be implemented as
a memory less system that takes as input the previous state estimate x̂k−1|k−1 and
system input uk and estimates the next state x̂k|k−1 and output ŷk|k−1. Specifically:

x̂k|k−1 = fsim
(
x̂k−1|k−1,uk, tk,θ

)
(4.3)

ŷk|k−1 = hsim
(
x̂k|k−1,uk, tk,θ

)
Further, by including the diffusion term to absorb model errors, as discussed in
Section 2.3.1, the parameters of the external simulator can be estimated in a grey-
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box framework adopted from CTSM. While the method is only considered for TN
models, the estimation of parameters for more general simulated models [105], e.g.
using EnergyPlus [88], discussed in Section 2.3, suggests that the developed approach
may be of more general interest.

. . Component list representation of TN models

The proposed solution for TN models, presented in Paper B [22], is inspired by the
tools available for circuit analysis in the electronics field, e.g. SPICE [111], and
based on describing the TN models as a list of interconnected components. The
R3C2 model shown in Fig. 3.2 can be described as:

Table 4.1: Component list description of the R3C2 model.
Component Type Input Output

Q̇1 Power Source 0 1
T∞ Temperature Potential Source 0 3
Cb Capacitance 1 0
Cw Capacitance 2 0
Rb Resistance 1 2
Rw Resistance 2 3
Rg Resistance 1 3
Tb Output Potential 0 1
Tw Output Potential 0 2

Each component in the R3C2 model shown in Table 4.1 is described by a compon-
ent name, identifying the parameter to be estimated or the measured signal to be
associated with a model input or output. The last two components in Table 4.1
are used to instruct the simulator which of the nodes should be reported back to
the estimation algorithm as estimated measurements. Each component has two ter-
minals, Input and Output, which are connected to a numbered node, as shown by
the circle inscribed node numbers of Fig. 3.2. By describing a TN model on the
form of Table 4.1 experimentation with model structure can be performed simply
by adding or removing lines from the table, thus eliminating the need for rewrit-
ing model equations. Although beyond the scope of the present work, the suggested
method may potentially be used to automatically construct the TN model structures
by e.g. combinatoric search methods [112] that can manipulate the component list
with subsequent parameter estimation, model comparison and validation.

Paper B [22] presents a simple simulator capable of propagating the state of a model
on this form, by summing the energy flows into and out of each node [110]. The
capacitors, which are the only dynamic elements and represents the model states,
are discretised using a backward Euler scheme

(dx
dt

)
tk
≈ xk−xk−1

∆t . Voltage sources are
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4.2 Analysing parameter uncertainty and identifiability (Scope 2a)

implemented as constraints on the difference between the states of the two connected
nodes. The system of discrete time node equations for the state xk can be written
on the form:

Axk +Amxk−1 +Buk = 0 (4.4)
The contributions from all components are summed, such that the balance equation
for node i constitutes row i in A,Am and B . The state of the TN model can then
be propagated by solving Eq. (4.4) at each time-step. The simulator is validated in
Paper B [22] by comparing the resulting state trajectories and estimation residuals
with the linear ODE’s of the R3C2 model.

Given the general task of estimating parameters for a model that exists only in
computer code [105], the suggested approach could be of more general use than
for TN models. The RC electric circuit analogue models could be extended with
an inductor element L, thus allowing representation of general linear model by use
of an appropriately designed RLC circuit analogue. Combining the potential of
creating the RLC circuit analogue model structure automatically with the grey-box
parameter estimation scheme may be a promising machine learning approach for the
creation of grey-box dynamic system models.

. . Evaluating likelihood of parameters for external simulations as

SDE’s

Although the simulator model in Eq. (4.4) is linear, it exists in an external software
which the parameter estimation algorithm can only access by supplying the current
state and input, and retrieving the state and output at next time-step. The para-
meter estimation algorithm does not make any assumptions of linearity, or indeed
assumption of any kind as to how the simulator propagates the state. Since the state
transition is computed by simulation without any explicit equations the use of lin-
earisation to obtain standard linear form models used in the KF and the EKF is not
feasible. Hence the use of a KF implementation that can utilize non-differentiable
models is required. In Paper B [22], both the UKF and the EnKF is reviewed for
the purpose of computing one-step ahead prediction residuals εk|k−1 of an externally
simulated TN model.

. Analysing parameter uncertainty and identifiability

(Scope a)

Estimated grey-box model parameters are influenced by both aleatoric uncertainty,
such as measurement noise, discretisation and sampling in the data acquisition
(DAQ) system [113], and the epistemic uncertainty introduced by simplifications
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and unmodelled effects in the physical system. These uncertainties are propagated
to the parameter estimates. Hence, an important part of any statistically solid para-
meter estimation framework is to provide some measure of the uncertainty of the
estimated parameters.

. . Confidence intervals and regions from the Hessian

Arguably, the most prolific description of estimation uncertainty in the literature is
the use of confidence intervals (CI) [99]. The typical CI for a scalar point estimate
is expressed as

θ̂i ±
√

∆αΣi,i → θ̂i ± zσi (4.5)
where σi is the standard deviation, with variance Σi,i = σ2

i , of the i-th parameter
estimate θ̂i, and z =

√
∆α is determined by the desired confidence level α . The

interval in Eq. (4.5) is known as an asymptotic CI, which is computed under the
assumption of a symmetric parameter distribution [21]. Extending to the multivari-
ate case, ellipsoid confidence regions for multiple parameters can be described as a
subset of the parameter space Θ for which the following holds:{

θ :
(
θ − θ̂

)T
Σ
−1
θ

(
θ − θ̂

)
< ∆α

}
⊆ Θ (4.6)

As in the scalar case, the asymptotic confidence region in Eq. (4.6) is based on a
quadratic assumption, which in the multivariate case results in an ellipsoid confid-
ence region centred on a presumed optimal estimate θ̂ . The weighting matrix Σθ is
the covariance of the estimated parameters, and can be obtained by estimating the
Hessian of the log likelihood Σ

−1
θ

= HL = ∇T ∇ ln p
(
y[N]|θ

)∣∣
θ=θ̂

[16, 21].

Rather than relying on the quadratic assumption, a more general expression of a
confidence region, or interval in the scalar single parameter case, can be obtained
by placing a threshold on the log likelihood function `L (θ) = ln p

(
y[N]|θ

)
:

{
θ : `L (θ)− `L

(
θ̂
)
< ∆α

}
⊆ Θ (4.7)

The result is denominated as a likelihood based confidence region [21, 25]. The
threshold ∆α can be drawn from the χ2

α,ndf
distribution by Wilks’ Theorem [21, 77].

Note that likelihood based CI’s on the form of Eq. (4.7) can still be computed for
individual parameters, similarly to asymptotic CI’s, even if the parameter space is
multidimensional, as discussed in Section 4.2.2. The advantage of Eq.(4.7) is that
the resulting region or interval can be asymmetric and therefore unbounded in some
direction. This asymmetry allows diagnosis of structural and practical parameter
identifiability, according to the definitions of [21], by analysing the bounds of the
likelihood based CI and checking for the presence of a well defined optimum des-
pite obtaining an unbounded CI. However, obtaining the members of such a set is
computationally demanding, requiring the evaluation of `L (θ) for a large number of
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parameters θ . Hence, confidence regions on the form of Eq. (4.6) are useful as an
estimate of uncertainty when identifiability of parameters and the assumption of a
symmetric distribution is reasonable. The analysis and representation of uncertainty
is discussed in further detail in Paper D [27].

. . Profile likelihood

Based on the definition of a likelihood based CI, the PL method computes profiles
of the log likelihood by projecting the high dimensional hyper-surface in parameter
space onto single parameters [21]. The projected likelihood profile `PL (θi) is obtained
by a two-step optimisation procedure, where one parameter θi is held at a fixed value
while optimising the remaining parameters θ j 6=i [21]. The process is repeated for
multiple values of θi. Let

`PL (θi) = min
θ j 6=i

`
(
θ j 6=i;M ,K ,θi

)
(4.8)

The resulting `PL (θi) can be plotted as a function of θi by varying parameter θi in
some way, prior to optimising the remaining θ j 6=i, and subsequently analysed accord-
ing to the definitions of structural and practical identifiability [21]. A straightforward
solution, if the log likelihood `L (θ) is well behaved within the constraints of Θ, is to
use a brute force approach with an even sampling of θi. Alternatively, a two-sided
gradient decent algorithm, using a freely optimized parameter vector as a starting
point, can be applied [21, 114]. This method is used in papers B to E [22, 26–28].

. . . D Profile Likelihood

The PL method is a powerful tool for analysing both identifiability and estimat-
ing the uncertainty of parameters [6, 21]. However, one potential drawback of the
method is the projection of a high dimension hyper-surface onto single parameters
[21]. If there are parameter interactions, e.g. inter-dependency, this information
is lost in the projections. Hence, an improvement on the PL method is to project
the hyper-surface onto a plane Θi, j of two parameters. These 2D projections can
be plotted as topological heat-maps that highlight parameter interactions as well
as identifiability and estimation accuracy. The projection `PL2D

(
θi,θ j

)
is obtained

by

`PL2D
(
θi,θ j

)
= min

θk 6=i, j
`
(
θk 6=i, j;M ,K ,θi,θ j

)
(4.9)

The method is explained in detail in Paper B [22] with a similar idea contemporar-
ily suggested in [19]. Projecting to a parameter plane Θi, j is, in theory, a straight
forward extension to the established profile likelihood method. However, due to the
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increase in computational complexity, the implementation of this method is challen-
ging. Further, when using a brute force approach, a high resolution discretisation
of the plane Θi, j is needed to capture the most significant regions; the equipotential
manifolds. The projections of the equipotential manifolds can in some cases, e.g.,
if some parameters are interdependent, present as narrow valleys in Θ that can be
difficult to obtain if the brute force grid resolution of Θi, j is to coarse. Efficient
implementation of the method is therefore crucial for its applicability. Towards that
goal, a further refinement of the proposed method is presented in Paper C [26],
which uses previously obtained projections from the discrete points in Θi, j as initial
conditions for estimating the remaining parameter θk 6=i, j. The idea is based on the
assumption that the optimal values of θk 6=i, j for a point

(
θi,θ j

)
in Θi, j is a reasonable

initial guess for other points in the neighbourhood, e.g.
(
θi +∆i,θ j +∆ j

)
when ∆i,∆ j

are small. The new version of the algorithm was in [26] shown to reduce computa-
tion time by 4-10 times. The drawback of the modification is that the optimisation
of parameters θk 6=i, j depend on the estimation of a neighbouring point. This de-
pendence between neighbouring solutions requires a more careful implementation to
ensure efficient parallelisation of the method on multiple CPU cores. The suggested
algorithm in Paper C [26] solves this by using deterministic chains that explores Θi, j
in an ordered scheme that allows efficient parallelisation.

. . Posterior Projections and MCMC

As discussed in Section 2.3.4, the Bayesian framework, focused on analysing the
posterior distribution, is an alternative to analysing the likelihood, i.e. the typical
frequentist approach. The posterior distribution p

(
θ |y[N]

)
is obtained by Bayes

Theorem [16] as

p
(
θ |y[N]

)
=

p
(
y[N]|θ

)
p(θ)

p
(
y[N]

) (4.10)

which combines the likelihood with a priori information of the parameters through
the prior distribution p(θ). Since the evidence scaling constant p

(
y[N]

)
is in-

dependent of θ , the posterior is proportional to the numerator of Eq. (4.10),
i.e., p

(
θ |y[N]

)
∝ p

(
y[N]|θ

)
p(θ). Often priors are chosen uniform unbounded, i.e.

p(θ) = 1 for θ ∈ Rnθ , or as a uniform bounded window where p(θ) = 1 for θ ∈ Θ

and p(θ) = 0 for θ /∈ Θ. In both cases, the posterior is also proportional to the like-
lihood, i.e., p

(
θ |y[N]]

)
∝ p

(
y[N]|θ

)
, over the support of the prior where p(θ) 6= 0 . In

the frequentist framework, as a consequence of their omission, the uniform unboun-
ded prior can be considered a default choice. This proportionality between posterior
and likelihood allows some interchangeable use of methods and illustrates the simil-
arities between the two perspectives on parameter estimation, as discussed in Section
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4.2 Analysing parameter uncertainty and identifiability (Scope 2a)

2.3.4 and in Paper E [28]. There are also other fundamental differences between fre-
quentist and Bayesian statistics, e.g. treatment of parameters as unknown constants
or random variables, and the use of subjective priors [96, 102, 103, 115], a thorough
discussion of which is beyond the scope of this text.

Since the posterior is a hyper-surface in high dimensional parameter space Θ, visu-
alisation requires some form of processing into a 2D or 3D representation that can
be plotted. One possibility is the use of projection, in the same way that the PL
method projects the likelihood onto individual parameter axis. This approach was
presented in [24]. The 1D projection of the posterior is obtained as

`PP (θi) = min
θ j 6=i

`P
(
θ j 6=i;y[N], θi

)
(4.11)

This is equivalent to Eq. (4.8), except that the projection is performed on the log
posterior `P (θ) = −2ln p

(
θ |y[N]

)
. The Posterior Projection (PP) method can also

be extended to project 2D topologies onto a plane Θi, j, as discussed in detail in
Paper E [28].

An alternative approach is the use of a class of methods named Markov Chain Monte
Carlo (MCMC) [97, 98, 115, 116] that approximate the posterior by random sampling
of the parameter space Θ. The MCMC algorithms are based on a chain of successive
samples, where each new sample is drawn proportionally to the posterior p

(
θ |y[N]

)
such that the posterior distribution and its parameters can be approximated from
the empirical distribution of the drawn samples [97, 98, 115, 116]. This sampling
is realized by drawing candidates θ c

k for the next sample in the chain according
to a proposal distribution θ c

k ∼ q(θk|θk−1), combined with a statistical test that
either accepts or rejects the new candidate sample θ c

k , based on a specific statistical
criterion. In the Metropolis-Hastings algorithm the acceptance test is defined by a
uniform probability pa ∼U (0,1) < min(1,α), where α is the ratio of the posterior
probability of the candidate sample w.r.t. the current sample [97, 98]. The MCMC
class of methods and the Metropolis-Hastings variation is the central topic of Paper
E [28].

It is interesting to note that both the PP and the MCMC method seek to obtain
estimates of the posterior distribution hyper-surface, as discussed in Paper E [28]
which presents a comparison of these two methods. The most obvious difference is in
the way the two methods explore the parameter space Θ. The MCMC uses stochastic
exploration, focused on the regions of the highest posterior density assuming proper
chain mixing and convergence. This approach provides computational efficiency
at the expense of a somewhat noisy approximation of the posterior hyper-surface,
particularly in the lower density regions. In contrast, the projection based PP
method explores Θ deterministically and exhaustively within the resolution of the
brute force discretisation. Hence, the projected profiles tends to be smooth and
captures the global optima within the bounds of Θ, at the cost of a significantly
increased computational load. The 1D PP method is reasonably fast to compute,
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Figure 4.1: The Dromedarius and the Camel: illustration of the difference between marginalisation
and projection of the optimum.

and requires only projections onto each parameter, i.e. nθ projections. However,
the 2D PP method is computationally demanding to the point of being impractical
if the number of parameters is large. However, as discussed in Paper E [28], the
combination of both MCMC and the projection methods can provide a more detailed
analysis of the posterior hyper-surface, or indeed the likelihood hyper surface when
uniform priors are used.

It should be noted that, due to the popularity of MCMC, many variations exist, e.g.
Gibbs Sampling, Hamiltonian Monte Carlo , etc. [115, 116], beyond the Metropolis-
Hastings which was used in Paper E [28]. The Metropolis-Hastings is however easy
to implement, which makes it a convenient choice for the comparison with other
methods, as is the goal of Paper E [28].

. . . Projections vs marginalisation

Another, arguably more subtle, difference between the MCMC and the projection
methods is the way in which the results are visualised. Given that the posterior
hyper-surface is typically multi-dimensional, the results obtained by both methods
must be processed in some way for visualisation in 2D or 3D. The PP method projects
the surface onto a single parameter axis, or a plane of two parameters in the PP2D
case. This projection is achieved by numerically computing the optimum along
some direction in Θ, e.g., a line normal to the parameter axis θi that intersects
the axis in a specific point (θi) or a normal to the plane Θi, j that intersects the
plane in a specific point

(
θi,θ j

)
, as described by Eq. (4.9) and Eq. (4.8). In

contrast, the MCMC method represents the posterior by its marginal distributions,
i.e., the distribution over a sub-set of the parameters with the remaining parameters
integrated out [115, 116]. This process of integration over the remaining parameters
θk 6=i, j can be seen as computing the volume along the same normal for each point
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(θi) on the axis of parameter θi or point
(
θi,θ j

)
in the plane Θi, j. The similarity

and difference between these two approaches is illustrated in Fig. 4.1. The left
panel shows an entirely artificial 2D distribution over parameters X and Y , aptly
named “The Dromedarius and the Camel”, with three modes, i.e., peaks, of different
heights. The right panel of Fig. 4.1 shows the projection onto the Y parameter (red)
and the marginal distribution over Y (blue). Observe that the projections, which
takes the optimum for each value of Y with X as a free parameter, always returns
the highest value, while the marginal distribution accumulates the volume over X
for each value of Y . Hence, the optimal point estimate of Y is different for the two
methods. The maximum volume over X is found for the two lower peaks, while
the maximum height of Y is found for the single peak. It is also worth noting that
a point estimate θ̂MAP, typically used in a frequentist setting, would by numerical
optimisation return the highest peak. The practice of computing point estimates is
not typically used in the Bayesian paradigm, which tends to utilise the full marginal
posterior instead. If one where to compute the optimum of the marginal posterior
it would in some cases be different than than the MAP estimate.

It is also interesting to note from inspecting the projection and marginalisation of
only the highest peak, that both of the 1D representations of the 2D distribution
are in fact proportional [24]. Hence, the MCMC and the PP method respectively
returns marginal distributions and projections that are in general two different rep-
resentations of the posterior hype-surface, but for some specific shapes of parameter
distributions, e.g., the Normal distribution, they are of identical shape but shifted
in log space [24, 28].

. Parameter consistency (Scope b)

The consistency of the estimated parameters across different calibration data can
also be considered a form of uncertainty measurement. As discussed in Section 2.3.4,
the foundation of the frequentist confidence interval (CI) [99] is the repetition of ex-
periments. By collecting a large number of experimental data-sets and estimating
parameters from each set, one could in principle measure the accuracy of the result-
ing estimated parameters [100]. In practice, it is rarely the case that one has access
to data from a large number of repeated experiments, hence the CI methodology is
useful in order to estimate the uncertainty bounds from a single experiment. How-
ever, it is always useful to compare results from at least several different data-sets,
a practice which is common also in the literature on TN models of building thermal
behaviour [20, 23, 26–28].
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. . Bootstrapping for time-series data

Repeating building thermal behavior experiments a large number of times is in most
cases infeasible, due to the cost and time required for performing experiments. It is
therefore of interest to consider alternative methods to test consistency of estimated
parameters w.r.t. changes in the calibration data. One popular approach is the
use of bootstrapping techniques. Originally suggested in [31], bootstrapping creates
multiple pseudo data-sets by simulating repeated experimentation using random se-
lection with replacement. By randomly drawing a new set of samples from a single
original data-set, one can create a data-set that has somewhat different information
content compared with the original. The process can be repeated to create a large
number of such pseudo data-sets. These data-sets are naturally not independent,
since they are all derived from the same original, but for appropriate choices of boot-
strap method and hyper-parameters they may exhibit enough variation to provide
a reasonable estimate of the parameter consistency. This process closely fits the
intuition of the CI, i.e., estimating parameters from different data-sets to compute
the variation of the resulting parameter estimates [99, 100]. Bootstrapping is a pop-
ular method, and has formed the basis for many statistical and machine learning
methods, such as Random Forrest [53] and XGBoost [54].

However, drawing samples randomly with replacement, as outlined in [31], presumes
that the samples are independently and identically distributed (i.i.d), which is clearly
not the case for time-series data. Hence, using the bootstrapping framework on
time-series data requires some adaptions of the method. These revised bootstrap-
ping methods are typically divided in two classes: parametric and non-parametric
bootstrapping [29]. The parametric bootstrapping method seeks to create i.i.d. data
by de-trending through calibrating a model, e.g., an ARMAX structure, that cap-
tures the behaviour of the underlying system in the data, leaving only residuals
that are presumed i.i.d. for a sufficient model [29]. New data-sets can then be cre-
ated by bootstrapping on the residuals and adding them to the trend derived from
simulating the calibrated model [29].

In contrast, the non-parametric class of bootstrapping methods for time-series data
does not rely on de-trending by model calibration, but instead applies bootstrapping
directly on the time-series data by various forms of segmentation [29]. By randomly
drawing blocks of data, rather than individual samples, the time-series dependency
information is maintained while still allowing the creation of pseudo data-sets that
randomly contain different parts of the information content of the original data
[29]. The demarcation of the non-parametric bootstrapping methods is in how the
segmentation of one original data-set into randomly selected blocks is performed.
Both methods are compared and discussed in further detail in Paper D [27] with
a short overview given in the sequel. Paper D [27] also discusses how parameter
estimation can be performed on a set of small data-blocks, similarly to the use of
multiple data-sets used in the CTSM framework [16].
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Figure 4.2: An example of simple block bootstrapping with 5 blocks, creating 2 pseudo data-sets.
(Figure from Paper D [27])

. . . Simple block-based bootstrapping

The non-overlapping block method, arguably the simplest form of non-parametric
bootstrapping, divides the data-set into blocks of fixed length, where each block
is constructed by taking a consecutive sequence of samples from the original data
[117, 118]. A pseudo data-set is then created by drawing K blocks randomly with
replacement, as illustrated in Fig. 4.2. The random selection with replacement used
in bootstrapping gives that some blocks may be chosen multiple times in a specific
pseudo data-set, while others are not chosen at all. This is shown in Fig. 4.2 where,
e.g., block 1 appears twice in the first pseudo data-set, as the 1st and 3rd block, while
block 4 is not included.

. . . Stationary bootstrapping

The stationary bootstrapping method, presented in [30], is a somewhat more soph-
isticated block-based bootstrapping method, which creates bootstrapped data-sets
that are themselves stationary series [29, 30]. This is achieved by constructing blocks
of random length that follows a geometric distribution [29]. The stationary boot-
strap method is realised by use of a probability test, and consists of two steps. The
starting point of each block is drawn uniformly across all N original samples. Next,
with probability 1− p, the consecutive sample from the original series is added to
the current block. Alternatively, with probability p, a new block is started by again
uniformly drawing a new starting point. This test on p is repeated until the com-
bined length of all blocks is approximately N. An illustration of this algorithm is
given in the left panel of Fig. 4.3 The resulting blocks length will follow a geomet-
ric distribution such that the expected length of each block is 1

p and the expected
total number of blocks is N

p . An illustrative example of two iterations of stationary
bootstrapping is shown in the right panel of Fig. 4.3.
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Figure 4.3: Left: Simplified block diagram of Stationary Bootstrapping.
Right: Illustrative example of two iterations of stationary bootstrapping, resulting in
five blocks of data, possibly overlapping, with uniformly drawn starting point and
geometric length distribution. (Figure from Paper D [27])

. . D Profile Likelihood for a moving window

As discussed in Sections 2.3.3 and 4.2, there are situations where parameters cannot
be unambiguously identified due to a lack of dynamic information content in the
data. When block-based bootstrapping methods are used, this concern is exacer-
bated by the fact that information content can vary across a data-set, i.e., there
can be segments of a data-set that has significantly less dynamic information con-
tent than the rest of the data-set. If, by random change, a bootstrapped pseudo
data-set predominantly contains repeated segments from non-informative sections
of the original data-set, the resulting pseudo data-set may be non-informative as
a whole, hence resulting in non-identifiable parameters. Estimating parameters for
a non-informative pseudo data-set produces ambiguous results that can present as
outliers in the resulting set of bootstrapped parameter estimates. These outliers
will significantly affect the estimated consistency for the parameters. Hence, it is
interesting to diagnose variation of dynamic information content prior to application
of bootstrapping methods.

One possible approach is the novel method presented in Paper D [27], which utilised
the PL method computed for a moving window over the original data. This method
tests the consistency of both the optimal parameter estimate and the parameter
identifiability over time. If the optimal estimate varies significantly, this indicates
inconsistent dynamic information in the data. More importantly, the method will
highlight segments of data that are non-informative for parameter estimation spe-
cifically for the model structure of interest. Rather than testing dynamic information
content based on statistical information theory, the method uses the model structure

42



4.4 Resolving ambiguous parameter estimates (Scope 3)

and the parameters θ directly with the PL method to test information content in
data by diagnosing identifiability.

. . Random initial conditions

Another potential source of inconsistency of point estimates for parameters, which
is not related to the data itself, is the initial guess θ0 used as a starting point for
numerical optimisation. If there are flat manifolds in the likelihood / posterior hyper-
surface the initial guess θ0 can influence the obtained optimal estimate significantly,
due to ambiguity of the optimal parameter estimate. A simple yet intuitive and
effective method to test for such inconsistencies was presented in Paper A [23] and
further discussed in Paper D [27]. By numerically optimising a point estimate for
the parameters θ̂ with the initial guess drawn uniformly at random θ0 ∼ U (Θ),
and subsequently repeating this procedure a reasonably large number of times, say,
50 to 100, it is possible to cognitively evaluate the degree of influence from the
initial guess to the presumed optimal estimate. If such an influence is found, it
may indicate parameter non-identifiability. At present, Paper A [23] has received 18
citations, many of which has taken an interest in the fact that the optimal estimate
obtained by numerical optimisation can in some cases be influenced by the initial
guess.

. Resolving ambiguous parameter estimates (Scope )

Ambiguity of estimated parameter occurs due to insufficient information in the cal-
ibration data w.r.t. the model structure, e.g., insufficient measurands recorded from
the system resulting in parameters that does not affect model output estimates, or
inadequate experimental design resulting in insufficient dynamic information con-
tent in the data. Hence, resolving ambiguous parameter estimates requires the
addition of new information, either measurements taken from other properties of
the system with corresponding changes to the model equations, or experimental
re-design for improved system excitation. Alternatively, if the source of ambiguity
or non-identifiability is structural the model structure can be revised to better fit
the available measurements. A fourth possibility is to introduce a priori informa-
tion about the parameters derived from the specifications of the physical system, by
introducing non-flat priors p(θ) .

. . Application of priors

Applications of physical information to determine priors is typically associated with
the Bayesian framework for parameter estimation. However, priors are used also
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in a frequentist framework, e.g., to utilise previous estimation results [16]. What
separates the Bayesian paradigm from the frequentist in this regard is the inter-
pretation of priors as a subjective degree of belief about the distributed probability
of the parameters. Further, as discussed in in Section 4.2.3, the use of bounds on
the parameters, which is typical of a frequentist numerical optimisation approach,
is equivalent to the addition of a bounded uniform prior.

As discussed in Paper E [28], the interpretation of bounds on estimated parameters
can be seen from the Bayesian perspective as reshaping the likelihood hyper-surface.
This perspective is particularly interesting when parameters are inter-dependent,
such that active bounds on one parameter can limit the likelihood profile of other
parameters, as also discussed in Paper E [28]. The log posterior `P

(
θ ;y[N]

)
can be

written
`P
(
θ ;y[N]

)
= `L

(
θ ;y[N]

)
−2ln p(θ) (4.12)

By taking the Hessian of Eq. (4.12):

HP = HL − 2ln p(θ)|
θ=θ̂

(4.13)
Where HL = ∇T ∇`L

(
θ ;y[N]

)∣∣
θ=θ̂

and HP = ∇T ∇`P
(
θ ;y[N]

)∣∣
θ=θ̂

. Hence, the effect of
introducing a non-flat prior, say a Normal distribution around some nominal value
θ 0, is to reshape the curvature of the log posterior hyper-surface, by introducing
another source of sensitivity to perturbations of θ . It is interesting to note that
the use of priors on the parameters can be considered as a form of regularisation to
improve the generalisation of a calibrated model [19, 40].

Ambiguity of estimated parameters, which is caused by perturbations of θ resulting
in no, or only statistically insignificant, changes in the posterior p

(
θ |y[N]

)
, can be

reduced by application of a non-flat prior. How to determine these priors depends
on both available information of the physical system and to some degree on the
type of parameter estimation paradigm used, i.e. frequentist or Bayesian. However,
a detailed discussion of the differences between subjective and objective priors is
beyond the scope of the present text [24, 96].

. Stochastic predictions (Scope )

Given that parameters of TN grey-box models are estimated with uncertainty, the
Bayesian framework is particularly interesting. By obtaining the full posterior dis-
tribution of the parameters, described by a set of samples θ[K] drawn in proportion
to p

(
θ |y[N]

)
, it is possible to carry this uncertainty into the model predictions. It

is well know that for a linear system uncertainty of the estimated state can be car-
ried by propagating the covariance matrices, as is done in the Kalman filter [43].
When computing forecasts, i.e., simulating future behaviour of a system, a similar
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propagation of uncertainty can be used to estimate the prediction uncertainty for the
forecast, given the measurement and process noise covariance matrices. However, for
non-linear models, or models for which obtaining the standard linear model matrices
is intractable, e.g., an external simulator as described in Section 4.1, a Monte Carlo
(MC) simulation is typically used. Rather than propagating the uncertainties us-
ing measurement and process noise covariance matrices in the linear equations, the
measurement and process errors wk and vk are drawn by using a random number
generator (RNG). The model is simulated a large number of times to obtain a set
of different state trajectories that can be used to estimate the mean and covariance
of the forecast at each future time-step. Given that the MCMC method produces
a set of samples θ[K] with a distribution proportional to the posterior p

(
θ |y[N]

)
, a

possible extension of the MC simulation is to generate separate trajectories for all,
or a sub-set of, the parameters in θ[K], where the errors wk and vk are draw by an
RNG as before. The resulting set of trajectories can then be used to compute fore-
cast uncertainty which also includes the parameter uncertainty propagated to the
model output. This approach was used in Paper E [28], and also in other works on
stochastic parameter estimation and forecasting, e.g, [20].
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. Paper A - Parameter estimation for grey-box models of

building thermal behaviour

Paper A analyses the ambiguity of the estimated parameters for a typical thermal
network model [14]. The parameters are obtained by minimising the root mean
square error (RMSE) between the temperature trajectory from a deterministic sim-
ulation and the measured temperatures of the experimental building. Hence, the
paper treats the R3C2 model as a grey-box model in the somewhat wider sense, i.e.,
a simplified physical model with calibrated parameters, and not in the stochastic
differential equation (SDE) sense discussed in Section 2.3.1.

The main contribution of this paper is using two methods to visually obtain the
shape of the objective function. The first method, similar to the stochastic method
Uninformed Random Picking (URP) [112], draws uniform random values for the
parameters and plots the resulting parameters and RMSE as scatter plots. While
simple, the method identifies whether or not the objective function is flat around the
minimum, and therefore will result in ambiguous parameter estimates. The second
method is also a simple visualisation scheme that uses direct numerical optimisa-
tion to minimise RMSE combined with a uniformly random initial starting guess
θ0 ∼ U (θmin, θmax). The final estimate θ̂ is for some model structures and data-
sets dependent on the random initial guess and therefore ambiguous. This method
repeats the optimisation multiple times with different initial guess θ0. By plotting
the initial guess and the final estimate together, the ambiguity of the estimated
parameters can be visualised. Further, the paper shows how the ambiguity can be
resolved for the R3C2 model, reducing the degrees of freedom (d.o.f.) by assigning
a constant value, pre-computed from physical specification of the building, to one
of the parameters. Both methods are used to illustrate how the reduction in d.o.f.
obtains an objective function that is convex with a well defined minima.

Paper A utilises a validation scheme for the optimised parameters based on cross-
validation over four separate data-sets. Each data-set is used in turn to calibrate
parameters, while the remaining three data-sets are used as independent validation
data. With four data-sets, a total of sixteen experiments are performed, which
together shows that the simple R3C2 TN model is capable of generalisation and
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therefore predict independent data with reasonable accuracy. The latter is important
mainly for the prediction use-case, but can also be used as a validation of the
estimated parameters in the soft-sensor use-case. The results show that even though
there is significant uncertainty on the estimated parameters, the model is still able to
predict the system behaviour. However, due to the use of deterministic RMSE as an
objective function, it is difficult to quantify the influence of parameter uncertainty
on predictions, a topic which was discussed further in Paper E [28].

. Paper B - Parameter estimation for externally

simulated thermal network models

The focus of Paper B is to facilitate experimentation and identification of appropri-
ate model structures for TN models by utilising an external simulator, as discussed
in Section 4.1. Paper B uses the same model as in Paper A, but treats it as a
stochastic differential equation (SDE), and subsequently applies a method for eval-
uating the likelihood function L

(
θ ;y[N]

)
based on the Continuous Time Stochastic

Modelling (CTSM) framework [16]. The first contribution of this paper is the use
and comparison of the Unscented Kalman Filter (UKF) and the Ensemble Kalman
Filter (EnKF) as potential substitutes for the Extended Kalman Filter (EKF) used
in the original CTSM framework. The UKF and EnKF have some advantages for
non-linear models, but their main feature of interest in this context is their ability
to handle non-differentiable models. Hence, the use of UKF and EnKF to estimate
one-step ahead prediction residuals facilities the use of an external circuit simulator
to simulate the thermal network RC model. The use of a circuit simulator to com-
pute state transitions of the TN allows the model to be described simply as a list
of interconnected resistors and capacitors, similar to a circuit node-list, which sig-
nificantly simplifies experimentation with different model structures. The simulator
is discussed in Section 4.1. The accuracy of the simulator is compared with the de-
veloped model equations in a linear KF, which shows only negligible approximation
errors incurred when the external software simulator is used. Further, the results
show that the UKF w.r.t. the EnKF is both faster and provides estimates that are
closer to what is obtained using the linear KF.

The second contribution of this paper is an extension of the Profile Likelihood (PL)
method [21], from the typical use in one parameter dimension, to instead project
the likelihood function into a plane of two parameters Θi, j. While considerably more
computationally demanding, the 2D likelihood profiles provide a more detailed view
of the likelihood function and can be used to diagnose parameter interactions. The
method is explained in Section 4.2.2.1. The results of applying the proposed PL2D
method to the R3C2 structure shows that there are inter-dependant parameters
in the model, which explains the ambiguity of the parameters noted in Paper A
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and why the issue was resolved by reducing the d.o.f. Hence, the PL2D method is
shown to provide diagnostic information on both parameter inter-dependency and
identifiability which can be used to refine the structure of a TN model.

. Paper C - Sensor placement and parameter

identifiability in grey-box models of building thermal

behaviour

Paper C uses the PL2D method presented in Paper B to analyse the likelihood
hyper-surface in parameter space using calibration data from two different sensor
locations for the temperature Tw in the R3C2 model. The data from both sensors are
collected simultaneously over a period of 10 days, together with other system inputs
and the reference measurement for the state Tb. The main contribution of the paper
is using the PL2D method to show how the different heat transfer characteristics
of two of the distinct insulation sections of the experimental building, discussed in
Chapter 3, affects the parameter identification. The resulting 2D profiles shows how
the increased dynamic information content obtained from a sensor mounted on a
low grade insulated wall produces less uncertainty in the estimated parameters.

The paper further discusses how the parameter inter-dependency produces func-
tional relations between the parameter such that the model dynamics is the same
irrespective of the parameters within a certain range. By simplifying the TN model
structure the resulting ambiguity of the parameter are resolved, hence the R2C2
model is found to have identifiable parameters.

The second contribution of this paper is a modification of the computation scheme
used in the PL2D method, in which the estimation of free parameters for each point
in the prescribed grid in the plane Θi, j uses the estimate from a neighbouring point
as a warm start, thus reducing computation time by a factor of 4 to 10, depending
on model complexity. Finally, the paper shows that if the likelihood hyper-surface is
close to a Gaussian distribution the confidence region obtained by interpolating iso-
lines on the PL2D profile is similar to the ellipsoid bound obtained from the inverse
Hessian Σθ = H (θ)−1

∣∣∣
θ̂
, thus further substantiating the PL2D method results.

. Paper D - Estimating uncertainty of model parameters

obtained using numerical optimisation

Paper D is written as a tutorial and a comparison of several different methods used
in the previous papers, including the randomisation based methods of Paper A, and
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the one and two-dimensional PL methods. The paper compares these methods on
both a simple first order model, using simulated data with varying forms of input
excitation, and on the R2C2 model using data from the experimental building. The
comparison also discusses practical aspects of the methods, such as computation
time, scalability to higher dimensional parameter space and ease of implementation.
Additionally, the paper discusses different ways of representing uncertainty, e.g., as
asymptotic or likelihood based confidence intervals and regions.

The paper further discusses the parameter estimation scheme used in CTSM and
in papers B to E [22, 26–28], and compares it with the ballistic simulation error
approach used in Paper A [23]. The latter is shown mathematically to be a special
case of the former on the condition that the model is identical to the data generating
system such that the state transition uncertainty has covariance W ≡ 0.

Next, the paper discusses the use of block-based non-parametric bootstrapping in the
context of SDE formulated TN models. These methods are discussed in Section
4.3.1. The use of bootstrapping is shown to occasionally produce outlier parameter
estimates for some data-sets and model structures. If there are segments in the
original data that contain little dynamic information, some of the randomly gener-
ated data-sets will by chance contain samples only from the non-informative parts
of the original data. Hence, some of the generated pseudo data-sets will be non-
informative w.r.t. parameter estimation. The main novel contribution of this paper
is the application of the PL method to a sliding window. This method tests the
dynamic information content by evaluating the practical identifiability of the para-
meters for a specific model. This approach can be used to verify the consistency
over the data-set of the dynamic information content, i.e., parameter identifiability,
uncertainty and the optimal parameter estimate.

. Paper E - Analysing uncertainty in parameter

estimation and prediction for grey-box building

thermal behaviour models

Paper E follows the work of [24] which extends the PL method by instead pro-
jecting the posterior distribution p

(
θ |y[N]

)
∝ p

(
y[N]|θ

)
p(θ) to obtain the Posterior

Profile (PP) method. Further, the paper discusses how the PP method can also
be extended to create 2D profiles, similarly to the PL2D method. The resulting
projections of the posterior hyper-surface are similar to the marginal distributions
obtained by the Markov Chain Monte Carlo (MCMC) method. Hence, the focus of
the Paper E is comparing the PP 1D and 2D methods with the MCMC method.
Both methods approximate the posterior hyper-surface by drawing samples, either
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deterministically by a discretised grid or stochastically by the sample and accept/re-
ject scheme of MCMC. The difference between the deterministic grid based sampling
in the projection methods and the stochastic guided random walk sampling of the
MCMC method is mostly visible in the resulting plots for the low posterior density
regions. Additionally, the two method differ in how the nθ dimensional posterior
hyper-surface is represented, by either projections or marginal distributions, dis-
cussed in Section 4.2.3.1. As Paper E explains, both methods obtain essentially the
same information, but the MCMC method are significantly faster, typically by an
order of magnitude or more. However, there are in some cases advantages to the
deterministic sampling, since it does not depend on convergence towards the high
posterior density region but rather obtains the maximum posterior globally in Θ,
within the accuracy allowed by the discretisation grid. The main contribution of
Paper E is showing the similarities and differences between these methods, and how
these methods can be used together to produce a thorough analysis of the estimated
parameter.

Further, Paper E discusses some of the differences between the frequentist statistics
view of parameter estimation which is used in the previous four papers, and the
Bayesian statistics framework that is the foundation of the MCMC method, and
how these differences pertain to the PL, PP and MCMC methods. By treating
the parameters as random variables, the empirical distribution over the samples
obtained by MCMC can be used to produce a stochastic forecast of the building
temperatures that includes realistic uncertainty estimates for future temperature
predictions.

Finally, the paper includes a discussion on how, in a Bayesian framework, the use
of a prior distribution p(θ) obtained from building specifications can be used to
resolve parameter ambiguity in an otherwise non-identifiable model structure by
introducing more information into the estimation problem.
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. External simulators for dynamic models

Most published works on the use of thermal networks to model buildings investigate
several different model structures in order to determine the minimum model com-
plexity that adequately captures the behaviour of the physical building [13–15, 20].
While designing different TN model structures as RC circuits cognitively based on
the heat transfer characteristics of a particular building is relatively straight forward,
as pointed out by [18], the process of developing equations from the TN models is
somewhat labour intensive and error prone. To facilitate experimentation with a
higher number of different TN model structures it is useful to simplify the simula-
tion and parameter estimation of these models. Hence, one of the main research
objectives of this thesis was to investigate methods for calibrating the parameters of
Resistor-Capacitor (RC) circuit analogue models without deriving the equations.

The suggested approach, as discussed in Section 4.1, simulates TN models described
as a simple list of interconnected components. This is similar to how circuit sim-
ulators, e.g. SPICE [111], are used in the electronics field. By utilising a model
description such as the one shown in Table 4.1 experimenting with different TN
model structures is as simple as combinatorially adding or removing lines to a table.
The suggested approach may be useful for applications other than building thermal
behaviour modelling, to the extent that RC circuit equivalent models are used in
other fields, e.g., to describe mechanical resonator systems such as piezoelectric
elements [119].

Since the use of electric circuit analogue models is almost always a simplification of
the physical system, it is natural to treat these models in a stochastic differential
equations (SDE) grey-box framework [16]. By modifying the parameter estima-
tion method used in the Continuous Time Stochastic Modelling (CTSM) framework
[16], specifically by replacing the Extended Kalman Filter (EKF) with either the
Unscented Kalman Filter (UKF) [75] or the Ensemble Kalman filter (EnKF) [74],
the likelihood function L

(
θ ;y[N]

)
can be evaluated also for non-differentiable models

such as an external RC circuit simulator. If a Bayesian interpretation of the para-
meter estimation problem is used, e.g., combining the work presented in Paper B
[22] and Paper E [28], the suggested approach follows similar work on calibrating
computer software [105].
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The comparison between the UKF and the EnKF presented in Paper B [22] strongly
favours the UKF. Given that the EnKF was mainly developed for systems with a
large number of states [74], e.g., meteorological models, it is not surprising that UKF
has better performance on the comparatively simple TN models. It could also be
noted that the EKF, although excluded from the comparison in Paper B [22] due to
its inherent dependence on a linearised model representation for covariance propaga-
tion, could potentially be used also for externally simulated models in combination
with some form of numerical linearisation scheme [120].

. Parameter identifiability

Using either the likelihood function p
(
y[N]|θ

)
, or by inclusion of a prior, the pos-

terior distribution p
(
θ |y[N]

)
∝ p

(
y[N]|θ

)
p(θ), as an objective function to evaluate

model fit of a parameter estimate θ̂ can be viewed as defining a hyper-surface g(θ)
in the parameter space Θ ∈ Rnθ . Given a particular model structure M , the model
fit of any proposed parameter g

(
θ̂
)

is evaluated on this hyper surface. Hence, the
shape of the hyper-surface determines how different values of θ compares w.r.t. their
ability to explain the observed behaviour of the physical system. Since the likeli-
hood/posterior hyper-surface exists in nθ -dimensional space, analysis of its shape
typically require some form of computational approximation or visualisation into
1D or 2D representations for plotting. In the literature on TN models for build-
ings, uncertainty is typically estimated from a local sensitivity analysis, often based
on asymptotic confidence intervals derived from the covariance Σθ = V(θ)|

θ=θ̂MLE
.

The inverse covariance can be approximated by the Hessian of the log likelihood
(Σθ )

−1 = ∇T ∇ ln p
(
y[N]|θ

)∣∣
θ=θ̂MLE

[16, 21], i.e., the curvature of the likelihood hyper-
surface around the maximum likelihood estimate θ̂MLE. Alternatively, sensitivity can
be obtained from using some other form of heuristic perturbation scheme around
the θ̂MLE [121].

In the five papers presented in Part II of this thesis the parameter identifiability
is analysed by inspecting the shape of the hyper-surface g(θ). As illustrated by
the comparison of the simple Uninformed Random Picking (URP) method and the
Profile Likelihood (PL) method in Paper D [27], the PL2D and the Hessian based
confidence ellipsoid in Paper C [26], and the 2D Posterior Profile (PP2D) and Markov
Chain Monte Carlo (MCMC) in Paper E [28], all these methods are essentially differ-
ent ways to obtain and visualise the same likelihood/posterior hyper-surface g(θ).
These papers joins a recent trend in the field, as illustrated by the reviews in Section
2.3.3. The advantage of these methods over the Hessian based asymptotic confidence
interval is their ability to represent asymmetric likelihood functions, which in turn
can be used to obtain likelihood based confidence intervals [21, 25]. These likelihood
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based CI’s are used to diagnose both practical and structural parameter identifiab-
ility, based on the definition presented in [21]. With the extension to 2D profiling,
as presented in Paper B [22], these tools permit a detailed analysis of the parameter
space which can be used to revise both model structures and experimental design
for data collection. Note that the construction of likelihood based CI’s are derived
from Wilks theorem [77] and the likelihood ratio (LR) [21]. Hence, if the posterior
hyper-surface is analysed for a non-uniform prior, a different framework should be
used to create credibility regions [9, 106].

The concept of parameter identifiability in the PL framework is defined from the
existence of, possibly asymmetric, confidence limits around the optimal point es-
timate θ̂MLE, i.e., whether the data is sufficient to determine a bounded CI for a
given model structure M . Structural non-identifiability is detected by the presence
of equipotential manifolds in Θ. In an unbounded parameter space Θ = Rnθ the
resulting CI will be unbounded in both directions. The introduction of a bounded
parameter space Θ ⊂ Rnθ , equivalent to introducing a uniform window prior p(θ)
as discussed in Section 4.2.3, may however reshape the hyper-surface g(θ) such
that the functional relation of the structurally non-identifiable parameters produce
bounded, but abnormally wide, likelihood based CI’s. This effect is observed for the
R3C2 model. One of the benefits of the PL2D scheme is the ability to detect these
artefacts more clearly than what is possible in the 1D implementation.

In contrast to structural non-identifiability, practically non-identifiable parameters
have a well defined optimum, but due to insufficient dynamic information content in
the calibration data it is not possible to distinguish different parameters along some
direction in Θ, thus producing a CI that is unbounded in at least one direction. It is
interesting to note that although the definitions of parameter non-identifiability is
based on the CI definition [25, 99], which is a typical frequentist concept that treats
parameters as unknown constants and data as the random variable, the definition
of practical identifiability also requires to inspect the likelihood profile itself for the
presence of a well defined optimum. Arguably, studying the projected log likelihood
in this way conceptually approaches the Bayesian mindset of treating probability as
a degree of belief, i.e., asking the question; given the data, what can be inferred or
learned about the unknown parameters. The possibility to extend the PL method
to project the posterior distribution instead, as discussed in Paper E [28] and [24],
further strengthens the sense that these methods, at least in some practical sense,
utilises a Bayesian interpretation of the parameter estimation problem.

. . Resolving ambiguous parameter estimates

Ambiguity of the estimated parameters may be resolved by introducing more in-
formation into the estimation problem. In the case of practical non-identifiability,
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experimental redesign may be applied to obtain more informative data. For struc-
turally non-identifiable parameters one possibility, as pointed out by [21] is the
introduction of qualitatively new measurements, e.g., measuring more properties of
the building. Another possibility, as discussed in Paper E [28], is the introduction
of subjective priors p(θ) derived from the physical specifications of the building.
In the Bayesian setting, priors can be used to introduce a priori information with
some specified uncertainty. In contrast to the approach of Paper E [28], the more
traditional numerical optimisation approach in Paper A [23] resolved the ambiguity
due to parameter inter-dependence by assigning a pre-computed constant value to
the parameter Rg. Adopting the view that the application of a non-uniform prior
distribution effectually reshapes the likelihood hyper-surface by “bending” it, the
application of a constant can be considered as taking a nθ −1 dimensional slice of
Θ, which is equivalent to assigning a prior p

(
Rg = c

)
= 1 and p

(
Rg 6= c

)
= 0 or a

normal distribution with zero standard deviation p
(
Rg

)
= N (c, 0). As such, the

approach in Paper A [23] can be seen as a special case of the use of priors in Paper
E [28].

As shown in Paper E, the presence of non-identifiable parameters may not be prob-
lematic if one is interested in only derived parameters, e.g., total thermal resistance
or eigenvalues of the system, since these can be identifiable, even though individual
RC parameters are not. Hence, the discussion on identifiability related to the soft-
sensor use-case may be confined to the parameters of interest. If only the total
thermal resistance Rtot is needed, it is the identifiability of Rtot that must be veri-
fied.

. . Prediction with non-identifiable parameters

If the ambiguity of the estimated parameters is caused by structural non-identifiability,
i.e., the parameter optimisation problem has many equally good solutions due to
the model structure having redundant parametrisation, the ambiguous parameter
estimates may also be equally applicable for prediction on independent data. In-
tuitively, a model with structurally non-identifiable parameters may still be able to
learn the system behaviour through calibration and therefore successfully predict
future system behaviour. If, however, the ambiguity is caused by a lack of dynamic
information in the calibration data, resulting in practically non-identifiable paramet-
ers, prediction performance is likely to be adversely affected. Estimated parameters
calibrated on non-informative data, i.e., data which does not contain sufficient in-
formation of the dynamic behaviour of the system, cannot be reasonably expected
to perform adequately in a prediction setting.

In Paper A [23] the results for both the R3C2 and R2C2 model presented in Table 5,
respectively in columns RMSE5 and RMSE4, show that assigning a constant value
to one parameter, thereby reducing the dimension of the parameter space, does not
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6.2 Parameter identifiability

affect the models ability to fit the calibration data. This is reasonable, since the
ambiguity in the R3C2 model is caused by parameter inter-dependency which is a
structural problem. Paper A [23] did not investigate the prediction power of the
models any further. This topic was therefore revisited in Paper E, where stochastic
forecasting was used with parameters from both the full model, with or without
a prior, and the reduced model. The results in Paper E [28] showed that all the
analysed experimental cases obtained similar prediction accuracy for an independent
test set.

The fact that a grey-box model with structurally non-identifiable, hence ambigu-
ous, parameters can still provide good predictions of system behaviour on inde-
pendent data is arguably not surprising. Indeed, in the black-box paradigm, am-
biguous optimal parameter estimates is the norm rather than a special case. For
example, in system identification (SID), a change of basis for the state-space res-
ults in different state transition, input and measurement matrices [40]. Another
example of ambiguous parameters is the training weights in an artificial neural net-
work (ANN). The number of training weights is often very high, on the order of
thousands to millions, especially for a multilayer deep learning network. Hence, a
trained, i.e., parameter optimised, network is never a unique solution, but rather
a local minima that shows satisfactory prediction performance [51]. The paramet-
ers of both the SID and ANN models are inherently ambiguous due to structural
redundancy. Hence, interpretation of the parameters is usually infeasible, perhaps
with the exception of certain derived parameters like the eigenvalues of the state
transition matrix which are invariant under change of basis/rotation. Let by eigen-
decomposition A=M−1ΛM and Ã= T−1AT = M̃−1Λ̃M̃, where T is a rotation matrix,
M is the eigenvectors as columns and Λ is a diagonal matrix of eigenvalues. Then
Ã = T−1M−1ΛMT → M̃ = MT and Λ̃ = Λ. However, these models are still perfectly
suitable for the prediction use-case [40].

. . Information consistency for block-based bootstrapping

One of the novel adaptions of the Profile Likelihood (PL) method presented in
this thesis is the use of 1D PL, together with a sliding window, for the purpose
of evaluating the consistency of dynamic information content a the data-set. The
method is particularly useful in combination with block-based bootstrapping, since
the presence of non-informative segments of data can produce pseudo data-sets that
result in practically non-identifiable parameters that present as outliers in the set
of bootstrapped parameter estimates. The use of PL 1D for a sliding window to
test information consistency may be considered a generally applicable method, and
not restricted to building thermal behaviour. It can be seen as a diagnostic tool
to analyse why the application of bootstrapping has resulted in some unexpected
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6 Discussion of results

Table 6.1: Selected parameter estimates from multiple papers.
# Model Rb

[ K
W

]
Rw

[ K
W

]
Cb

[ J
K

]
Cw

[ J
K

]
Rtot

[ K
W

]
Paper A Nov1 R3C2 4DOF 0.057 0.066 1.271×106 1.673×106 0.081
Paper A Nov2 - 0.041 0.079 1.107×106 1.321×106 0.080
Paper A Dec1 - 0.033 0.072 1.033×106 1.519×106 0.073
Paper A Dec2 - 0.029 0.087 0.852×106 1.241×106 0.078
Paper C S1 R2C2 0.040 0.048 1.267×106 0.419×106 0.088
Paper C N3 - 0.035 0.051 1.137×106 2.735×106 0.086

Paper E Case 2 R3C2 w/prior 0.072 0.084 1.444×106 0.293×106 0.093
Paper E Case 3 R2C2 0.043 0.051 1.446×106 0.481×106 0.094

dispersion in estimated parameters, or as a precursory test to verify that block-based
bootstrapping methods can be applied with a reasonable expectation of success.

. Interpretation of parameters

TN models reduce the somewhat complex heat transfer characteristics of a building
to a simplified flow of thermal energy between a few point nodes. When calibrating
the parameters of such a model, the choice of reference signal for the temperature
at each of these nodes will determine the physical interpretation of the estimated
parameters. Although the components of a model, e.g., the thermal resistance Rw
in the R2C2 and R3C2 models, are intended to represent a specific property of the
building, the thermal resistance of the envelope in the case of Rw, the estimated
values will be adapted to the measured thermal variation at the actual sensor lo-
cation. Hence, the placement of sensors significantly influences the interpretation
of the estimated parameters as representative of the heat transfer characteristics of
the building.

Table 6.1 compares selected parameter estimates from different cases in Papers A,
C and E [23, 26, 28]. The results for Paper A and Paper E Case 2 are obtained by
calibrating the R3C2 model with Rg = N

(
0.24,σ2

g
)

where σg = 0 in Paper A. It is
interesting to note that despite the data being collected from the same experimental
building, admittedly using partially different data acquisition systems, the variation
for some of the parameters is significant. In particular, the values of Cw are heav-
ily dependent on the choice of sensor location, as discussed in Paper C [26]. This
could also explain the deviations in the Cw estimates from Paper A [23] given that
a different sensor setup was used. Further, the estimates in Paper A were obtained
using the ballistic simulation approach and may therefore be affected by the estim-
ation procedure as well as the sensor location. However, the parameters are in most
cases relatively consistent for each set of calibration data / paper, in particular for
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6.4 Grey-box SDE modelling as a general framework

the overall thermal resistance Rtot, even though different model configurations where
used. Hence, it is reasonable to assume that the main contribution to the variations
between the different data-sets are driven by unmodelled disturbances. However,
the overall thermal resistance Rtot, which is probably the estimated parameter that
would be of most significance in terms of energy efficiency classification, is relatively
consistent across the papers.

. Grey-box SDE modelling as a general framework

Arguably, the most common approach to model fitting is the use of direct numerical
optimisation of parameters in a ballistic simulation with measured inputs. Although
models are almost always an approximation of the real system, hence subject to
epistemic and aleatoric uncertainty, the use of the SDE formulation is apparently less
common. In that respect, it is interesting to observe that the parameter estimation
scheme adopted from CTSM can be reduced to the ballistic simulation approach,
as discussed in Papers D [27] and E [28], by setting the process noise covariance
W ≡ 0, and also assuming perfect initial information of the state such that X0 ≡
0. Both of these assumptions is inherent in the ballistic simulation approach. In
this limit case, the Kalman gain Kk = 0 thus ignoring measurements and the state
trajectory is computed only from model predictions as a ballistic simulation. The
interpretation of a model with zero process noise covariance is a fully deterministic
model that perfectly predicts the state transitions in the data generating system, and
therefore is only subject to aleatoric measurement uncertainty. While this may be
a reasonable approximation in some cases, particularly for simulated data, it seems
reasonable that the use of the full SDE formulation, with subsequent application of
the parameter estimation scheme, may be beneficial for most real systems [16, 17].

The other limit case occurs when measurement noise covariance is zero V ≡ 0.
As discussed in Paper E [28], in the linear case, this results in the parameter being
fitted to predict ŷk = f (yk−1,uk,θ) and therefore ignoring any previous measurements
y[k−2]. The Kalman gain Kk = C̃−1 and therefore the a posteriori state update x̂k|k =

C̃−1yk ignores the apriori state estimate completely. In the more typical cases where
both process and measurement noise are non-zero, the Kalman gain balances the
influence of both error sources. The parameters are fitted such that the estimated
state trajectory best explains the data with minimal squared error. Hence, the
parameter scheme used in CTSM, and adopted in Papers B to E [22, 26–28], can be
seen as a general approach that balances the error terms. Returning to the discussion
on prediction error versus ballistic simulations in [18], the KF based approach can
be seen as an intermediate solution.
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Conclusions and future work

The main research objective of this thesis is the study of ambiguity in estimated para-
meters for thermal network (TN) models. This topic is discussed in all five papers,
with particular focus on the Profile Likelihood (PL) method [21, 25, 122], its Profile
Posterior (PP) variation [24], and the suggested 2D variations of these methods.
Combining these projection based methods with the popular Markov Chain Monte
Carlo (MCMC) method and the randomisation based methods presented in Paper A
[23] permits a detailed analysis of the identifiability of the TN model parameters, as
well as flexibility in choice of analysis methods. Applying the PL method to a sliding
window provides a diagnostic method for verification of the consistency of dynamic
information over time. This is particularly useful when block-based bootstrapping
methods are used to test consistency of the estimated parameters against variations
in the calibration data. Together, these methods form a diagnostic framework that
can be used to determine if parameters of a model can be uniquely identified, detect
structural and practical non-identifiability, and to suggest appropriate action in the
cases where identifiability is not observed.

The second research objective is to develop a framework that simplifies experiment-
ation with TN model structures. This is achieved by utilising an external simulator
that describes a TN model as a table of interconnected components. Given that TN
models are in general strong simplifications of the physical building, with signific-
ant epistemic and aleatoric uncertainty in their formulation, the use of stochastic
differential equations (SDE) provides a beneficial framework for parameter estim-
ation. Consequently, the parameter estimation scheme based on the popular Con-
tinuous Time Stochastic Modelling (CTSM) framework was adapted to handle non-
differentiable models such that it can be utilised for parameter calibration of the
external simulator. By evaluating the likelihood function, or the posterior distribu-
tion by inclusion of a prior distribution, the resulting parameter estimation method
provides a statistical foundation for parameter estimation and analysis.

. Future work

Electric circuit analogue models is also used in other engineering fields, besides
thermal modelling, e.g., to describe mechanical resonator systems such as piezo-
electric elements [113, 119]. As is the case with TN models, the choice of circuit
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7 Conclusions and future work

representation is often somewhat flexible, and the parameters of the circuit ana-
logue model requires calibration [119]. Hence, the combination of a grey-box SDE
parameter estimation scheme and a circuit analogue simulator may be of use in
applications other then building thermal modelling.

The simulator developed in Paper B is limited to resistor and capacitor elements,
since these are the building blocks needed for thermal modelling. A further extension
could be to include inductive elements L, such that the resulting RLC circuits could
be used to model any linear system as an equivalent electric circuit. Since the UKF
and the EnKF also handles non-linear state transitions, the external simulator could
be extended to include non-linear components as well, which may or may not have
an actual electric equivalent implementation. Two examples could be a resistive
elements which creates a drop in potential proportional to the square of the flow,
i.e., p=R ·q2, similar to a friction term in fluid mechanics [123], or a variable resistor
R = f (u) which could be used to model the variable heat convection due to wind or
ventilation [14].

Another interesting possibility is the automation of model structure identification.
When a TN model is described on the form of Table 4.1, the experimental identifica-
tion process of the TN structure is simply a question of combinatorial changes to the
table. This process could possibly be automated, by repeated modifications to the
model structure followed by parameter optimisation, model validation and possibly
an identifiability analysis to detect redundancy. One requirement for automatic ma-
nipulation of model structures is a well defined validation scheme that can compare
and rank different model structures with parameters that may be non-identifiable,
including a way to penalise excessively complex model structure that are likely to
over-fit calibration data.
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a b s t r a c t 

Good models for building thermal behaviour are an important part of developing building energy man- 

agement systems that are capable of reducing energy consumption for space heating through model pre- 

dictive control. A popular approach to modelling the temperature variations of buildings is grey-box mod- 

els based on lumped parameter thermal networks. By creating simplified models and calibrating their 

parameters from measurement data, the resulting model is both accurate and shows good generalisation 

capabilities. Often, parameters of such models are assumed to be a combination of different physical at- 

tributes of the building, hence they have some physical interpretation. In this paper, we investigate the 

dispersion of parameter estimates by use of randomisation. We show that there is significant dispersion 

in the parameter estimates when using randomised initial conditions for a numerical optimisation algo- 

rithm. Further, we claim that in order to assign a physical interpretation to grey-box model parameters, 

we require the estimated parameters to converge independently of the initial conditions and different 

datasets. Despite the dispersion of estimated parameters, the prediction capability of calibrated grey-box 

models is demonstrated by validating the models on independent data. This shows that the models are 

usable in a model predictive control system. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

A large part of the world’s energy production is used for heat- 

ing and cooling buildings. The fraction of total energy production 

consumed for utilities in commercial and residential buildings has 

been estimated at 32% by the International Energy Agency (IEA), 

according to [1] . Even though modern building techniques are able 

to reduce the energy used for heating, the renewal rate of build- 

ings is low. Berthou et al. [2] reports renewal rates of 1% per year 

in France. This illustrates the need for good building energy man- 

agement systems (BEMS) in existing buildings as well. 

A model predictive control (MPC) system is an attractive solu- 

tion for use in a BEMS. Models of building thermal behaviour can 

be used to predict the heating and cooling time of a building. In 

a MPC system, a model is used to simulate the system ahead in 

time in order to find a sequence of inputs that controls the system 

to the desired state. In a BEMS, the use of MPC will allow for im- 

proved tracking of the temperature setpoint as well as minimiza- 

tion the energy consumption [2,3] . Predictions of future system in- 

� This research did not receive any specific grant from funding agencies in the 

public, commercial, or not-for-profit sectors. 
∗ Corresponding author. 

E-mail address: ole.m.brastein@usn.no (O.M. Brastein). 

puts are readily available from weather forecasts, which helps to 

facilitate the use of MPC. 

There have been several publications studying the use of MPC 

for building thermal control. In [4] the authors use both active 

heating and passive solar blinds to control indoor air temperature. 

The paper also gives a thorough introduction to the various MPC 

control methods, such as deterministic and stochastic MPC. In [5] a 

complete building model is developed as a set of layered models 

and used in an MPC. The authors report an energy saving of 63% in 

thermal energy and 29% in HVAC electric energy, for a four-month 

test period. These examples show the potential benefits of using 

MPC for building thermal control. They also show the importance 

of a good prediction model for MPC to be feasible. 

There are a number of different modelling approaches that can 

be used to model the thermal behaviour of a building in an MPC 

system [6] . In Perera et al. [1] , a white-box model based on mass 

and energy balance is derived and calibrated for specific buildings. 

This type of model gives a set of ordinary and/or partial differential 

equations (ODE/PDE) that must be discretised and solved. For com- 

plex models, a large number of parameters are required that can 

be difficult to identify. Another approach to modelling is the use of 

black-box models, which relies solely on measurement data with- 

out any prior knowledge of the building, e.g. ARMAX [7,8] or PLS-R 

[9,10] models. These types of models show high prediction accu- 

https://doi.org/10.1016/j.enbuild.2018.03.057 

0378-7788/© 2018 Elsevier B.V. All rights reserved. 
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racy, but do not usually allow the application of physical knowl- 

edge to define the model. This approach also produces models 

with low generalisation between different buildings, which makes 

building-to-building comparisons of models difficult [11] . Compar- 

ing the thermal behaviour of buildings can be of interest for the 

purposes of energy consumption classification. 

Another approach to modelling thermal behaviour of build- 

ings is the use of grey-box models [2,3,12,13] . A grey-box model 

is based on a simplified structure derived from a cognitive un- 

derstanding of the physics involved. For the heating of build- 

ings, the model structures may consist of thermal networks [14] , 

i.e. resistor–capacitor circuit equivalent lumped parameter models. 

Rather than deriving the full model as in [1] , the simplified model 

structure is developed from an understanding of the heat trans- 

fers involved in a building, which provides directly a reduced or- 

der model. This process can be referred to as ‘cognitive’ model de- 

velopment [14] . The parameters of such models are lumped pa- 

rameters, i.e. each parameter represents a combination of multi- 

ple physical quantities. Such parameters must be identified from 

measurement data, since they are generally difficult to compute 

based on technical building specifications. A grey-box model there- 

fore uses a combination of the white- and black-box approaches 

[15] . 

It is often assumed that the parameters of such models can 

be assigned physical meaning. The identified parameters are com- 

pared to the physical properties of the building [16,17] . For inter- 

pretation of model parameters to be justified, we suggest that the 

results of the parameter estimation process must show a low de- 

gree of dispersion, e.g. be independent of the initial guess param- 

eter vector for the estimation algorithms. Estimation of parame- 

ters is required to give similar results when using different datasets 

from the same building. 

The estimation of parameters requires the measurement data 

to contain enough dynamic information about the system to accu- 

rately calibrate the model [16,18–20] . Since the subject of this work 

is physical buildings, the experimental design is challenging. The 

outdoor weather conditions acts as a model input, particularly the 

outdoor temperature. Further, it is of interest to estimate the pa- 

rameters under realistic conditions for an occupied building. Hence 

the choice of excitation of the system is limited. Lack of dynamic 

information in the data is known to give problems with practical 

identifiably [19] . 

Since all the parameters of a grey-box model must be esti- 

mated, an additional challenge with calibrating grey-box model 

parameters is over-parameterisation [16] . This is known to give 

non-convergent parameter estimates, since an over-parameterised 

model has undetermined optimal parameters, i.e. infinitely many 

solutions exist. 

While challenges caused by practical identifiably and/or over- 

parameterisation may give reason to question the physical inter- 

pretation of the estimated parameters the models may still be us- 

able in an MPC. In this work, the dispersion of parameter estimates 

under different experimental conditions is investigated using mul- 

tiple sets of experimental data from a real building. Further, cali- 

brated models are validated on independent data to show that they 

are capable of predicating the thermal behaviour of the test build- 

ing, hence rendering them usable in an MPC system. 

2. Model, methods and measurements 

A common approach to parameter estimation is the use of nu- 

merical optimisation [19] , either directly [2] or in the form of a 

maximum likelihood (ML) method [17,21] . When using numerical 

optimisation, it is of interest to investigate the dispersion in the 

estimated optimal parameters under different experimental condi- 

Fig. 1. The R3C2 thermal network model. 

tions. In particular, it is interesting to study if the initial guess for 

the optimisation affects the estimated parameters. 

2.1. Model and parameters 

The model used in this paper is a thermal network model of 

a building [3,14,16,17,20,22] , presented using an electrical circuit 

equivalent model. Thermal resistance is modelled as resistors and 

thermal capacitance as capacitors. The resulting model is a circuit 

where the temperature is used as the driving potential, and the 

flow through the circuit is the heat flow. This approach has been 

used in a number of published papers on modelling building ther- 

mal behaviour, e.g. [3,13] . 

The focus of this paper is estimation of the model parameters. 

For simplicity, only one model is investigated, and the model struc- 

ture is chosen as a minimalistic representation of the experimental 

building from which the calibration data is collected. The model is 

shown in Fig. 1 . This model is similar to the R3C2 model used in 

[2] , but the resistance for ventilation is removed since there is no 

ventilation system installed in the test building. 

The model consists of two states T b and T w 

, which correspond 

to the interior temperature of the building and the wall tempera- 

ture respectively. Wall temperature is measured on the inner sur- 

face of the wall. For each state there is an associated capacitance, 

C b and C w 

. These capacitances represent the building’s ability to 

store thermal energy in the interior and the building envelope, e.g. 

walls, floor and ceiling. The remaining three model components 

are resistances. R b represents the thermal resistance between the 

building interior and the wall. R w 

is the resistance to heat flow 

through the wall, i.e. between the state T w 

and the outside tem- 

perature. The third resistance R g represents the resistance to heat 

flow through the parts of the building envelope that are not in- 

cluded in the state T w 

, such as windows and the door. The driving 

forces of the system are ˙ Q and T ∞ 

, where ˙ Q is a heat flow source, 

e.g. an electric heater. The outside temperature is modelled as a 

potential source T ∞ . 

Deriving equations from a thermal network model can be done 
with, for example, Kirchhoff’s node potential law [23,24] . Each 

state in the circuit, T b and T w 

, is assigned to a circuit node and 

the flow into and out of each node is balanced. The model can be 
written in state-space form as a set of ordinary differential equa- 
tions (ODEs) [18] : 

d T b 
dt 

= −
(

1 

C b R b 
+ 

1 

C b R g 

)
T b + 

(
1 

C b R b 

)
T w + 

(
1 

C b 

)
˙ Q 1 + 

(
1 

C b R g 

)
T ∞ 

(1) 



60 O.M. Brastein et al. / Energy & Buildings 169 (2018) 58–68 

d T w 

dt 
= 

(
1 

C w 

R b 

)
T b −

(
1 

C w 

R w 

)
T w 

+ 

(
1 

C w 

R w 

)
T ∞ 

(2) 

The parameter vector is then defined as: 

θ = 

[
R g R b R w 

C b C w 

]T 
(3) 

The output from the model is the states themselves, and both 

states are directly measurable. The measurement equations are 

therefore found by including the measurement noise terms v b and 

v w 

with the system states: 

y T b = T b + v b 
y T w = T w 

+ v w 

(4) 

The measurement noise v b and v w 

is assumed zero mean Gaus- 

sian with standard deviation r b and r w 

: 

v b ∼ N ( 0 , r b ) , v w 

∼ N ( 0 , r w 

) (5) 

Both measurements are temperatures from the same Data Ac- 

quisition (DAQ) system, hence it is reasonable to expect that they 

have similar noise characteristics. This is verified by computing the 

standard deviation for both measurements over a range of mea- 

surements where the temperatures are approximately constant. 

2.2. Deterministic approach to parameter estimation 

The state transition equations in the model are an approxima- 

tion of the real system. Hence, there will be some unknown in- 

fluence from modelling errors in the simulations. The state tran- 

sition equations in Eqs. (1 ) and ( 2 ) are written as ODE’s. These 

could be extended to a set of stochastic differential equations (SDE) 

by the addition of a process noise term w [20] . The probability 

density function (pdf) of the process noise term w is not easily 

obtained, however it is often assumed Gaussian. This assumption 

can be checked during model validation [20,21] by use of e.g. au- 

tocorrelation to verify that the residuals are indeed white noise 

This method can confirm the assumption of Gaussian process noise 

[20] . While the use of SDE’s is a more statistically solid approach 

[16,17,20,21] , it is also possible to treat the estimation problem as 

deterministic without the process noise term w [6,25] . The model 

is then a set of deterministic ODE’s. This reduces the estimation of 

model parameters to a least squares curve fitting problem which 

can be solved directly by numerical optimization [2] . In this work, 

the deterministic curve fitting approach is used. 

2.3. Parameter ranges and nominal values 

A nominal parameter vector is used as a starting point for the 

estimation methods. These parameter values are based on trial and 

error experiments, together with prior knowledge of the approxi- 

mate range where reasonable values may be obtained. The physical 

insight required as a starting point for these trial and error experi- 

ments is limited to the approximate order of magnitude of the pa- 

rameters. It is assumed that this can be obtained for most practi- 

cal buildings. It is not required that the nominal values themselves 

give a good prediction model for the building, only that they are 

approximately in the correct range. They are mainly used as nor- 

malisation constants, such that parameter estimation can be per- 

formed in unit scale, and to restrict the search space to a region of 

interest where reasonable parameter values may be obtained. 

Table 1 gives a summary of the nominal parameter values 

with min./max. ranges used for the R3C2 model. The nominal val- 

ues are chosen such that any region of interest in the parameter 

space is contained within + / −70% of each nominal value. Hence 

θmin = 0.3 × θ0 and θmax = 1.7 × θ0 . In the following, discussions on 

the estimation of parameters and the shape of the objective func- 

tion in parameter space are valid only within the ranges specified 

in Table 1 . 

Table 1 

Nominal parameter values and min./max. range. 

R g [K/W] R b [K/W] R w [K/W] C b [J/K] C w [J/K] 

Nom. value ( θ0 ) 0.160 0.060 0.100 1200 k 1200 k 

Min. ( θmin ) 0.048 0.018 0.03 360 k 360 k 

Max. ( θmax ) 0.272 0.102 0.170 2040 k 2040 k 

2.4. Numerical optimisation 

The subject of numerical optimisation used for parameter iden- 

tification is covered in literature, e.g. [2,19,26] . Optimisation algo- 

rithms are used to find a minimum point of an objective func- 

tion. In parameter estimation, this objective function is typically 

the model fit, i.e. the square error over a set of reference data 

compared to model simulations. In this work, the simulation error 

is computed over the whole calibration period, rather than using 

the one-step ahead prediction errors traditionally used in statistics 

[8,20] . This results in a least squares curve fitting approach to pa- 

rameter estimation, as discussed in Section 2.2 . This gives the ob- 

jective function as the mean square error (MSE) between simulated 

and measured temperatures computed over the whole dataset. A 

standard quadratic norm [18] is chosen as the error function, i.e.: 

J = 

N ∑ 

i =1 

nx ∑ 

k =1 

e 2 k = 

N ∑ 

i =1 

nx ∑ 

k =1 

(
T i k − T i,re f 

k 

)2 
(6) 

RMSE = 

√ 

J 

nx · N 

(7) 

Here, nx is the number of states (temperatures) and N is the 

number of samples in the dataset. The sum of squared error of 

each of the two temperature states is added together and the er- 

rors of all states are weighted equally. An alternative approach is 

to weight the errors by their uncertainty, e.g. the covariance of the 

measurements, as is typically done in the statistical approach to 

parameter estimation [20] . Since the temperatures are measured 

by the same DAQ system it is reasonable to assume similar uncer- 

tainty in both measurements and hence use equal weights on the 

error for both states. All samples in the calibration data Z N are as- 

sumed to have equal uncertainty, such that the weighting of the 

errors is also uniform in time. 

To simplify the evaluation of results, the objective score J is di- 

vided by the number of samples and the square root taken, thus 

giving the root mean square error (RMSE). This quantity has the 

same unit ( °C) as the states. The optimisation algorithm works di- 

rectly on the sum of square error objective J . 

The optimisation algorithm of choice in this paper is the Con- 

strained Optimization BY Linear Approximation (COBYLA), which 

was developed by M.J.D. Powell [26] . The implementation is taken 

from the Accord.Net project [27] . There are two important settings 

of the algorithm, RhoEnd and MaxIttr. The first controls the accu- 

racy of the optimised variables, while the second is a loop break 

to ensure the algorithm completes even if no optimal solution is 

found. In this project, RhoEnd is set to 1e-4 and MaxIttr is 1e4. 

This allows COBYLA to find the solution with sufficient accuracy. 

In all following cases, the algorithm completes without reaching 

the maximum number of iterations. 

2.5. Experimental setup and data 

The building of interest in this paper is an experimental setup 

built in 2014 at the campus of University College of Southeast Nor- 

way, in Porsgrunn [28] . 

Fig. 2 shows a view of the test building from the outside, to- 

gether with the floor plan. This building has support structures 
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Fig. 2. A view of the experimental building with floorplan. 

made out of concrete so it is not in contact with the ground. The 

inner volume is approximately 9.4 m 

3 and sealed such that nei- 

ther natural ventilation nor mechanical ventilation is provided. The 

building has three small windows of each 60 × 90 cm 

2 , one in each 

of the south, east and west directions, and a door of 90 × 120 cm 

2 

in the north direction. Three buildings surrounding the experimen- 

tal building limit the solar irradiation through the windows. 

The building envelope is constructed using layers of diverse ma- 

terials, including wooden cladding, glass wool, air fill, polyethy- 

lene vapour barriers, wood, cement chipboard, particleboard and 

cardboard. There are three different types of walls each having 

unique construction by compounding different materials stated 

above. Roof and floor of the building also have different compo- 

sition in each. 

The experimental building has an electrical heater of 375 W 

consisting of a thermostat controller, a measurement system, and 

a logging computer that uses approximately 100 W. The measure- 

ment system consists of sensors for measuring the inside and out- 

side temperatures and humidity, air pressures, rainfall, and wind 

speed and wind direction, and total power usage. The power usage 

is logged every 10 s, the temperatures and humidity are logged 

every 10 min, and the weather data is logged every 30 min. All 

data is stored in CSV (Comma Separated Values) files. The tem- 

perature sensors are mostly of the silicon type (TMP 36) with an 

accuracy of + / −1 °C. Data was collected using multiple data from 

these CSV files, and pre-processed. During the pre-processing steps 

the data was filtered, combined and re-sampled by linear interpo- 

lation. This gives a combined dataset where all the variables of Z N 

are known at the same time instants t i , regardless of the initial 

sampling times for the different CSV files. In the final dataset, a 

sampling time of d t = 10 min is used. 

Measurement data was collected from the building during 

November and December 2015. Since buildings are exposed to 

weather, experimental design options are limited. This poses a 

challenge in ensuring that the calibration data contains sufficient 

dynamic information for parameter estimation. If buildings are oc- 

cupied, this poses further restrictions on the experimental design. 

The data used here is derived from an empty building, but under 

realistic experimental conditions, i.e. exposed to weather and other 

unmeasured disturbances. 

Since the window area exposed to solar irradiation is limited 

and the data was collected during the winter in Norway, heat gain 

from solar irradiation is assumed negligible. Hence, in order to 

limit the model complexity, the solar irradiation is not included 

in the dataset or the model. 

A list of four datasets, including identifying names, is given in 

Table 2 . Estimation of parameters, i.e. fitting a model structure to a 

particular physical system, requires information about that system 

in the form of a set of measurements Z N [18] . This set contains 

both reference data in the form of system outputs y and informa- 

tion about the excitations for the system in the form of system 

inputs u , i.e.: 

Z N = { y 1 , u 1 , y 2 , u 2 , ..., y N , u N } (8) 

If the states are directly measurable, as is the case with build- 

ing temperatures, the outputs are simply equal to the states with 

the addition of measurement noise. The measured states y i in Z N 

are temperatures T b and T w 

. The inputs u i consist of the outside 

temperature T ∞ 

and power consumption 

˙ Q of the building. 

The contents of each of the four datasets are plotted in Fig. 3 . 

These datasets were generated by introducing arbitrarily chosen 

steps in the thermostat setting of the electric heater in order to 

simulate realistic variations in setpoint for a building in use. While 

this approach may be inferior to, for instance, a pseudo random 

binary sequence (PRBS) [22] , it is more realistic since it mimics 

temperature changes of a building in use. Changing temperature 

setpoints from a low to a high setting (approximate step sizes of 

10 °C–20 °C are used here) takes a significant time, typically around 

12 −48 hours. This is reflected in the slow response to the step in 

supplied power, shown in the plots of data. 

A constant minimum power consumption of about 100 W is ob- 

served in Fig. 3 . This power is consumed by computer equipment 

used for data logging in the test facility. When the on/off thermo- 

stat control turns the heater on, an additional 350 W of power is 

drawn by the heater. 

When the heater is regulating the temperature at a setpoint re- 

quiring less than full capacity ( < 100% on-time), there are spikes in 

the power consumption data caused by the thermostat switching 

the heater on and off. These spikes are present in the November 

data, but not in the December data. In November, the heater was 

set at a maintainable temperature setting of approximately 25 °C, 

i.e. the system is under on/off control. In December, the heater 

setpoint was turned to maximum, which is higher than the achiev- 

able temperature at full power under the given experimental con- 

ditions. Hence, the heater was constantly on for long periods of 

time. 

For the parameter estimation, all the supplied power is in- 

cluded in 

˙ Q . Hence the input to the model is taken directly from 

the data as shown here. This is a simplification, since some power 

is consumed by other equipment in the building. However, it is as- 

sumed that all the supplied energy is converted to heat, either by 
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Table 2 

List of datasets. 

Dataset name Start time End time Length [h] N 

Nov1 02.11.2015 17.18.00 10.11.2015 0 0.08.0 0 175 1050 

Nov2 10.11.2015 0 0.18.0 0 17.11.2015 07.08.00 175 1050 

Dec1 04.12.2015 18.0 0.0 0 11.12.2015 08.50.00 159 954 

Dec2 11.12.2015 19.40.00 17.12.2015 0 0.0 0.0 0 124.5 747 

Fig. 3. Plots of all datasets. On the left side, temperatures for building interior T b (black), building wall T w (grey) and outdoor temperature T ∞ (light grey) are shown. On 

the right side, the power consumed in the building is plotted (black). The datasets Nov1, Nov2, Dec1 and Dec2 are plotted from top to bottom respectively. 

the electric heater or the other equipment. For simplicity, the total 

heat generation from all appliances is denoted as a single heater. 

3. Results 

The R3C2 model is based on the physical structure of a building 

and the parameters are estimated using measurement data. The 

thermal parameters of buildings are assumed to be time invariant. 

Hence, it is expected that there exists a single, true, parameter vec- 

tor for the grey-box model determined by the physical properties 

of the building. Convergence of parameter estimates towards such 

a parameter vector can be considered a requirement for physical 

interpretation of the final model. The results presented here are 

computed mainly from the Nov1 dataset. 

The denomination degrees of freedom (DOF) is used to describe 

the number of free parameters in the estimation problem. The 

R3C2 model has five parameters, constituting five DOF. 

3.1. Maximum degrees of freedom, five estimated parameters 

The first method used to investigate the parameter space of 

the model is a simple Monte Carlo approach. In the following re- 

sults, M = 50,0 0 0 simulations of the model are executed. Model pa- 

rameters are randomly and independently drawn from the range 

θmin ≤ θ ≤ θmax , given in Table 1 . This is similar to a simple random 

search, except that we are interested in the collection of all results, 

not just the one with the lowest RMSE. The resulting plots consist 

of points, one for each simulation, which gives a view of the shape 

of the objective function J in parameter space. The abscissa of the 

plots represents parameter values and the ordinate axis represents 

the resulting root mean square error (RMSE) for each simulation. 

In this section, all five parameters of the R3C2 model are free, 

i.e. they are estimated as opposed to kept constant. 

As shown in Fig. 4 , most of the randomly drawn parameter 

vectors are not optimal since the RMSE is higher than the mini- 

mum. However, some solutions fall close to the minimum RMSE of 
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Fig. 4. Monte Carlo simulations with 5 degrees of freedom. This figure shows the resulting scatter plots for the parameters. 

0.591 °C for the R3C2 model and Nov1 dataset. When all five pa- 

rameters are estimated, the objective function is flat in the mini- 

mum RMSE region. Since there is no clear minimum, the estimated 

parameter from an optimisation algorithm will not converge to a 

single parameter vector but rather produce vectors in an optimal 

range, all with the same minimum RMSE. 

The next method is also based on Monte Carlo (MC) simula- 

tions. Randomly drawn parameters are used as the initial guess of 

a numerical optimisation algorithm (COBYLA). The initial guess and 

the subsequent parameter estimate are plotted for all iterations of 

the optimisation algorithm. The points are interconnected by a line 

in order to identify which particular initial guess corresponds to 

each solution. Each plot consists of 50 iterations, i.e. repeated ran- 

domised initial guesses followed by execution of the optimisation 

algorithm. 

As shown in Fig. 5 , the optimisation algorithm finds optimal so- 

lutions, i.e. RMSE ∼ 0.6 °C, from all 50 starting points, but the re- 

sulting optimal solution varies significantly with the initial guess. 

The parameter estimates do not converge. Based on the plots in 

Fig. 4 , this is expected. Fig. 5 further shows that the RMSE objec- 

tive function is flat around the minima, since many equally good 

solutions exist for a large range of parameter values. 

3.2. Reduced degrees of freedom, 4 free parameter 

As discussed, we expect the estimated parameters to converge 

towards a true, physically determined, parameter vector. Since the 

results so far indicate that this is not the case, an explanation for 

the dispersion in parameter estimates is needed. 

Over-parameterization [16] , i.e. too many degrees of freedom 

(DOF) in the estimation problem, is one plausible explanation for 

the observed flatness of the objective function. The DOF is reduced 

Table 3 

Building specification according to manufacturer of windows and 

door. 

U [W/m 

2 K] A [m 

2 ] UA [W/K] R [K/W] 

Door 1.2 1.76 2.1 0.48 

Windows 1.3 1.57 2.0 0.50 

Total – – 4.1 0.24 

by fixing one parameter at a constant value, thus reducing the 

number of free parameters to estimate. Reduction in freedom is 

only applied to the estimation problem, by the reduction of free 

variables, and does not affect the model structure. All five parame- 

ters are used in the simulations and the model remains the same. 

The parameter chosen to be kept as constant is R g . This param- 

eter represents the thermal resistance of windows and doors, i.e. 

the part of the building envelope directly exposed to both inte- 

rior and exterior temperatures. Because R g represents doors and 

windows, which usually have known ‘UA’ values [1] , it is assumed 

that R g would be the easiest to compute based on building techni- 

cal specifications. UA values are computed as the product of U and 

A, where U is the reciprocal of thermal resistance per area and A 

is the area. Hence, knowing R or U for all windows and doors, as 

well as their area A allows for computation of R g = 1/(U g A g ). 

As shown in Table 3 , the specifications give a theoretical R g 
of 0.24. However, this includes only one door and three windows. 

Comparing the R3C2 model to the building, R g is also expected to 

include any other element of the building that gives a direct in- 

fluence between outside temperature and indoor air temperature 

without affecting the wall temperature. Hence, the theoretical R g 
can be considered an upper bound of the true R g, as any contribu- 

tion by remaining building elements can only lower R g . Note there- 
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Fig. 5. Randomised initial guess and estimated solution is plotted together. This figure shows the results of applying the bespoke method to the R3C2 model simulated in 

the Nov1 dataset. 

Fig. 6. Scatter plots of MC simulation in parameter space. This figure shows the results of applying MC simulation of the parameter space to the R3C2 model simulated on 

the Nov1 dataset, with a fixed parameter R g = 0.24 [K/W]. 

fore that it is considered acceptable that the theoretical R g is in the 

upper region of the nominal range defined in Table 1 . 

First, the parameter space for the reduced DOF case is observed 

by using MC simulation of parameter space. 

As shown in Fig. 6 , the MC simulations of the parameter space 

now show a significantly different shape of the objective function, 

which now has a well defined minimum. Subsequently, optimisa- 

tion is now expected to converge towards a single parameter vec- 

tor. 

Comparing Fig. 7 with Fig. 5 , it is evident that the dispersion in 

estimated parameters is significantly decreased. Based on the MC 

simulations of parameter space shown in Fig. 6 , it is reasonable to 

conclude that the objective function has more pronounced minima 

when one DOF is eliminated from the estimation problem. With a 
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Fig. 7. Randomised initial guess and optimal solution is plotted together. This figure shows the results of applying the bespoke method to the R3C2 model simulated on 

the Nov1 dataset. With reduced freedom in the estimation problem, the trajectories of the optimisation now show a distinct convergent pattern, independent of the initial 

random guess. 

Table 4 

Sample standard deviation of parameter estimates, as a per- 

centage of nominal value. 

R g [%] R b [%] R w [%] C b [%] C w [%] 

5 DOF 19.23 14.43 10.05 5.093 12.18 

4 DOF – 0.066 0.079 1.230 2.208 

distinctly convex objective function, the optimiser is able to find 

the same optimal solution independent of initial guess. 

Multimodal objective functions are a typical challenge of nu- 

merical optimisation. This has not been discussed here, since the 

plots from the MC method are used to show that the objective 

function is either flat or unimodal in the region of interest. 

3.3. Quantitative comparison of results from DOF reduction 

In order to quantitatively compare the cases presented in 

Sections 3.1 and 3.2 , the standard deviation (SD) of estimated pa- 

rameter values is computed. 

Table 4 lists the SD as a percentage of the nominal value, as a 

measure of the dispersion of estimated parameters from both the 

cases with five and four DOF. By reducing the number of free pa- 

rameters, the dispersion of the parameter estimates is significantly 

reduced, in particular for the resistance parameters. Slightly more 

variation is observed in the two capacitance parameters. 

3.4. Comparing results from multiple datasets 

Until now, all results are taken from a single dataset, Nov1. As 

demonstrated, too many DOF will lead to a flat objective function, 

which in turn gives a large dispersion in estimated parameters. 

Next, it is of interest to introduce more data to the parameter esti- 

mation, namely the datasets Nov2, Dec1 and Dec2. Thermal build- 

ing behaviour parameters are assumed to change slowly with time, 

unless modifications to the building structure are introduced. For 

the datasets presented in Section 2.5 , no such modifications oc- 

curred. Hence, it is reasonable to assume that the parameter esti- 

mation methods will give similar results for the four datasets. 

Fig. 8 shows the plots from randomised initial guess to es- 

timated parameter for the parameter R b estimated on all four 

datasets using the four DOF model. As previously demonstrated for 

dataset Nov1, the parameter estimates converge independently of 

the initial guess per iteration of the method. This also holds for 

the other three datasets. However, the parameter value that gives 

minimum RMSE is different for each dataset, i.e. the solution for 

each dataset is not the same parameter vector. 

Fig. 9 shows the results for the parameter C b . The plots show 

that the estimated parameter values for C b also vary between the 

four datasets, same as for R b , although this variation is smaller for 

C b than R b . Similar results are obtained for the other two param- 

eters. Next, it is useful to quantitatively compare the estimated 

parameter values and their corresponding variance, for all four 

datasets. 

Estimated values for each parameter for all datasets are given in 

Table 5 and plotted in Fig. 10 . Columns RMSE4 and RMSE5 give the 

root mean square error (RMSE) of the simulations using estimated 

parameter vectors, from four and five DOF cases respectively. There 

are significant variations in the estimated parameters when com- 

paring multiple datasets, e.g. R b for Nov1 is twice as large as for 

Dec1 and Dec2. It is unlikely that the thermal resistance between 

room interior temperature and wall temperature is halved in just 

four weeks. As such, these variations are probably not caused by 

physical effects. A plausible explanation is insufficient dynamic in- 

formation content in the data. As discussed, this can lead to prob- 

lems with practical identifiably [19] . 

An important observation from Table 5 is the similarity be- 

tween RMSE values for the five and four DOF cases, as shown in 

the two last columns. While fixing R g to a constant value – thereby 

removing it from the parameter estimation problem – decreases 

the dispersion of estimated parameters, this does not affect the fi- 

nal RMSE of the model with estimated parameters. 

The standard deviation of parameter estimates, as a percentage 

of nominal values, is given in Table 6 . As shown, the dispersion 

of parameter estimates is similar for all four datasets, even though 

the estimated parameter values are different. These results could 

indicate that the spread of the parameter estimates is problem spe- 

cific, independent of the datasets, while the actual value of each 

parameter depends on the calibration data. 
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Fig. 8. Comparing optimisation results and convergence for R b over four datasets. The top left plot is for Nov1, top right for Nov 2, lower left for Dec1 and lower right for 

Dec2. 

Fig. 9. Comparing optimisation results and convergence for C b over all four parameter sets. The top left plot is for Nov1, top right for Nov 2, lower left for Dec1 and lower 

right for Dec2. 

Table 5 

Summary of average parameter estimates for all four datasets. 

Dataset R b [K/W] R w [K/W] C b [J/K] C w [J/K] RMSE4 [K] RMSE5 [K] 

Nov1 0.057 0.066 1271 k 1673 k 0.592 0.591 

Nov2 0.041 0.079 1107 k 1321 k 0.842 0.835 

Dec1 0.033 0.072 1033 k 1529 k 1.008 1.010 

Dec2 0.029 0.087 852 k 1241 k 0.959 0.963 

3.5. Model validation 

In order to show that the identified model parameters could 

be used for predicting the thermal behaviour of the building, it is 

required to validate the model using new data, independent of the 

data used for parameter estimation. So far, the results are based on 

model fit, i.e. how well the model is able to fit a particular set of 

data. A superior measure of model accuracy is the models ability to 

predict the thermal behaviour using a new dataset. This validates 

the model performance in similar conditions as those of a Model 

Predictive Control (MPC) system. Hence it gives a good indication 

of the models performance used for the purpose of controlling the 

building temperature. The results in this section are based on the 

four DOF model. 

The results for T b from validating the model are shown in 

Fig. 11 . The columns represent the dataset used for validation 

while the rows show the dataset used for parameter estimation. 

This gives that the diagonal plots are model fit result, while the 
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Fig. 10. Estimated parameters for each dataset. 

Table 6 

Summary of parameter estimates’ sample standard deviation for all four datasets. 

Dataset R b [%] R w [%] C b [%] C w [%] 

Nov1 0.065 0.079 1.230 2.208 

Nov2 0.079 0.027 1.252 1.995 

Dec1 0.066 0.070 0.854 1.250 

Dec2 0.105 0.027 1.078 2.144 

off-diagonal elements are model validation results. The model fit 

results on the diagonal are plotted on grey background to separate 

them from the validation results, and are included in the figure 

for comparison with validation results. The measured temperatures 

are plotted in black, and the simulated in grey. 

The RMSE results for all 16 combinations of dataset and pa- 

rameter sets are given in Tables 7 and 8 . These results, together 

with the plots in Fig. 11 , show that the model is capable of giv- 

Table 7 

Simulation errors (RMSE) in T b for all four datasets and parameter sets. 

Identification dataset Input and reference dataset 

Nov1 Nov2 Dec1 Dec2 

Nov1 0.330 0.596 1.899 1.174 

Nov2 0.562 0.513 1.692 0.861 

Dec1 1.247 1.463 0.588 1.803 

Dec2 0.936 0.857 1.586 0.807 

Table 8 

Simulation errors (RMSE) in T w for all four datasets and parameter sets. 

Identification dataset Input and reference dataset 

Nov1 Nov2 Dec1 Dec2 

Nov1 0.492 2.095 2.494 5.605 

Nov2 1.326 0.668 1.119 2.528 

Dec1 1.068 0.833 0.822 2.958 

Dec2 2.155 1.471 2.460 0.526 

ing good prediction accuracy also for unknown data, although the 

RMSE varies for different combinations. As for Fig. 11 , the diago- 

nal elements on grey background are the model fit results, while 

off-diagonal elements in both tables are results from validating the 

model on independent data. The prediction error for T b is around 

0.5 °C–1.5 °C for most cases, with some combinations approaching 

2 °C. Considering that MPC uses feedback, model prediction errors 

around 1C is likely adequate for the intended purpose. As evident 

from Table 8 the errors are significantly larger for T w 

. However, 

in a building energy management system, it would be the interior 

temperature T b that is of importance for the controller. 

Fig. 11. Results from model simulation are plotted for all four datasets using the four parameter sets shown in Table 5 . The results on the diagonal of this figure are model 

fit results, while the off-diagonal elements are validation results. For the validation plots the parameters are estimated using a dataset that is independent from the one 

used for inputs and measurement references. The model fit results are plotted on grey background to separate them from the validation results. The simulation results are 

plotted in grey while the reference data are plotted in black. 
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4. Discussion 

It could be argued that physical interpretation of grey-box pa- 

rameters for a building model requires that the parameter esti- 

mates converge towards a single point in parameter space. If the 

parameter estimates show a large dispersion in their description 

of a predominantly time-invariant physical system, they cannot be 

directly correlated to the specific physical properties of the build- 

ing. 

However, the model as a whole may still be able to accu- 

rately predict the behaviour of the system, even if the parameters 

cannot be assigned a physical interpretation. This is illustrated in 

the model validation in Section 3.5 . The calibrated models where 

shown to give mean square errors of prediction of around 0.5 °C–

1.5 °C for a ∼7 day test period for the internal building tempera- 

ture T b . Models with prediction errors of this magnitude may be 

considered usable in MPC systems. 

Despite acceptable model validation results, it is of interest to 

study the reasons for the observed dispersion of estimated param- 

eters, since this gives reason to question the physical interpretabil- 

ity of the estimated parameters. The use of Monte Carlo (MC) sam- 

pling of parameter space together with scatter plots of the result- 

ing root mean square error (RMSE) from simulations compared to 

measurement data was shown to provide a view of the objective 

function in parameter space. This allows visualisation of the con- 

vexity of the objective function, which in turn facilitates cognitive 

evaluation of the expected optimisation algorithm behaviour. 

A randomised initial starting point and repeated execution of 

optimisation algorithms were used to show that the optimal so- 

lution can depend on the starting point. Further, this dispersion 

in estimated parameters was shown to depend to some extent on 

the degrees of freedom (DOF) in the estimation problem, since re- 

ducing the DOF in the estimation decreases the dispersion of esti- 

mated parameters. 

Despite reducing the number of estimated parameters, the re- 

sults still do not converge to a single parameter vector when mul- 

tiple calibration datasets are used. It is plausible that the datasets 

used in this work do not contain sufficient dynamic information to 

identify the model parameters. It is well known that lack of dy- 

namic information in calibration data, caused by insufficient exci- 

tation of the physical system during data acquisition, may give rise 

to problems of practical identifiably [16,18,19] . Due to the exper- 

imental conditions encountered when collecting data on building 

thermal behaviour, ensuring that data contain sufficient dynamic 

information can be challenging. 

Another possible explanation for the observed behaviour of the 

parameters is that the simplicity of the model allows the estima- 

tion procedure to use model parameters to account for unmodelled 

effects in the physical system. Unknown disturbances, such as vari- 

ations in humidity or wind, may not be similar between the four 

investigated datasets. 

5. Conclusion 

The use of multiple datasets for parameter estimation, as well 

as the use of MC methods, was shown to give insight into the dis- 

persion of estimated parameters. The model with identified param- 

eters was further shown to give good predictions of building ther- 

mal behaviour, and as such would be suitable for model predictive 

control. However, if physical interpretation of individual parame- 

ters is of interest, the dispersion in the parameter estimates needs 

to be eliminated. This can be done by addressing the challenges of 

practical identifiably through improved excitation of the physical 

system. Further, the over-parameterisation of the grey-box model 

can be reduced by limiting the number of free parameters in the 

estimation problem. 
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a b s t r a c t 

Obtaining accurate dynamic models of building thermal behaviour requires a statistically solid foundation 

for estimating unknown parameters. This is especially important for thermal network grey-box models, 

since all their parameters normally need to be estimated from data. One attractive solution is to max- 

imise the likelihood function, under the assumption of Gaussian distributed residuals. This technique was 

developed previously and implemented in the Continuous Time Stochastic Modelling framework, where 

an Extended Kalman Filter is used to compute residuals and their covariances. The main result of this 

paper is a similar method applied to a thermal network grey-box model of a building, simulated as an 

electric circuit in an external tool . The model is described as a list of interconnected components without 

deriving explicit equations. Since this model implementation is not differentiable, an alternative Kalman 

filter formulation is needed. The Unscented and Ensemble Kalman Filters are designed to handle non-linear 

models without using Jacobians, and can therefore also be used with models in a non-differentiable form. 

Both Kalman filter implementations are tested and compared with respect to estimation accuracy and 

computation time. The Profile Likelihood method is used to analyse structural and practical parameter 

identifiability. This method is extended to compute two-dimensional profiles, which can also be used to 

analyse parameter interdependence by providing insight into the parameter space topology. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Background 

The heating and cooling of buildings consumes a significant 

part of the world’s total energy production. While new building 

materials and techniques may reduce the energy consumption of 

buildings, the renewal rate of buildings is low [1] . Hence, it is im- 

portant to study methods that can also reduce energy consumption 

in existing buildings. 

Building Energy Management Systems (BEMS) utilising ad- 

vanced model-based control methods [2] to forecast the temper- 

ature variations of a building in order to predict an optimal se- 

quence of control inputs is a promising method for the reduction 

of energy consumption. Since the model’s prediction accuracy di- 

rectly influences the efficiency of such methods, it is important to 

develop accurate models of building thermal behaviour. In addi- 

tion to describing the time evolution of the system states and out- 

� This research did not receive any specific grant from funding agencies in the 

public, commercial or not-for-profit sectors. 
∗ Corresponding author. 

E-mail address: ole.m.brastein@usn.no (O.M. Brastein). 

puts, a good model must accommodate descriptions of both mea- 

surement noise and process noise [3,4] . This requires a statistically 

solid framework for estimating unknown parameters [5] . 

Thermal network models are often used to model the thermal 

behaviour of buildings [1,6–8] . Implemented as Resistor–Capacitor 

equivalent circuits, these models offer an intuitive model design 

based on a cognitive understanding of the thermal physics in- 

volved. Since, typically, all parameters of such models must be 

identified from data, it is important to investigate parameter iden- 

tifiability prior to assuming physical interpretation of the esti- 

mated parameter values [8] . 

1.2. Previous work 

1.2.1. Modelling of dynamic systems 

Models are sometimes classified based on the level of physical 

insight used in their derivation. If the model is mechanistic, i.e., 

based purely on physical equations, it is classified as white-box . 

Such models excel at describing non-linear state transitions and 

measurements. They also tend to generalise well between similar 

systems [5,9] . An alternative approach is the use of system identi- 

fication (SID) methods [3,4,10–12] , where a predetermined model 

structure with unknown coefficients is calibrated using measure- 

https://doi.org/10.1016/j.enbuild.2019.03.018 

0378-7788/© 2019 Elsevier B.V. All rights reserved. 
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ments of the system inputs and outputs. This results in a black- 

box model in which no prior physical insight is used, except in the 

choice of input and output measurements, sample time, and the 

approximate model complexity. These models tend to have bet- 

ter prediction accuracy, but less capability to generalise [5,9] . SID 

methods tend to provide better statistics on the model uncertainty, 

which are typically computed during the calibration process [3–5] . 

A third, intermediate, possibility is the grey-box model, which 

is based on a simplified model structure constructed using naive 

physical knowledge of the system. Model parameters are calibrated 

from measurements of the system, similarly to black-box models. 

Grey-box models are often treated in a stochastic framework [5] . 

It could be argued that most white-box models include some ap- 

proximations and/or need calibration of certain parameters. Hence, 

they can benefit from the application of stochastic grey-box cali- 

bration methods. This approach has indeed been claimed as a nat- 

ural framework for modelling dynamic systems in general [13] . 

1.2.2. The CTSM framework 

Estimation of parameters is essentially an optimisation prob- 

lem, which requires a well-defined objective function. Several al- 

ternatives are used in the literature, such as the deterministic 

simulation error approach [1] . A statistically solid alternative for 

stochastic grey-box models is found in [5,14] , which is based on 

maximising the likelihood function evaluated by computing resid- 

uals in a Kalman Filter. This method has been previously devel- 

oped in a number of publications [5,14–16] and implemented in 

the Continuous Time Stochastic Modelling (CTSM) framework [15] . 

In CTSM, the residuals needed to evaluate the likelihood func- 

tion are computed using an Extended Kalman Filter (EKF) with sub- 

sampling of the state transition equations to improve response to 

non-linear models [5,15] . The EKF is based on linearising the state 

transitions and/or measurement equations, which requires that the 

model equations are differentiable [17–19] . 

1.2.3. Identifiability 

Since thermal network building models are partially based on 

physical knowledge, it is often suggested that the parameters 

can be assigned a physical interpretation [1,5,6] . This assumption 

should, however, be verified in the context of parameter identifia- 

bility [3,20] . It is well known that models can contain parameters 

that are structurally non-identifiable [3,20] . Further, lack of proper 

excitation of the system during data acquisition may lead to practi- 

cal non-identifiability [3,8,20–22] . While the model structure may 

be designed such that the parameters are intended to have a spe- 

cific physical meaning, it is not certain that the estimated parame- 

ters support this assumption. A good tool for identifiability analysis 

is the profile likelihood method [8,21,22] . 

1.3. Overview of paper 

In this paper, a resistor-capacitor equivalent thermal network 

model of a building is expressed as a list of interconnected electri- 

cal components. The model is simulated in an external tool with- 

out deriving explicit model equations, hence the model cannot be 

differentiated. This is motivated by the need to simplify experi- 

mentation with different model structures in a way that could po- 

tentially be automated. The parameter estimation method from the 

CTSM framework is adapted to non-differentiable models, which 

requires an alternative to the EKF for computing residuals. Both 

the Unscented Kalman Filter (UKF) [18] and Ensemble Kalman Fil- 

ter (EnKF) [23] are compared and considered for the estimation of 

residuals. The explicit model equations are also derived on stan- 

dard linear form, and used with a standard Kalman Filter as a base- 

line for comparison. Observe that while the model used here is 

linear, the method is not restricted to linear models; the externally 

simulated state transitions could well be non-linear. 

A profile likelihood approach is used [22] to analyse parameter 

identifiability. The method is extended to create two-dimensional 

profiles in the form of topological heat maps . These 2D plots are 

computed for all combinations of parameters. In addition to diag- 

nosing the identifiability of the parameters, these plots allow de- 

tection of parameter interdependence. 

The paper is organised as follows. The theoretical basis is dis- 

cussed in Section 2 . The model, external simulator and experimen- 

tal set-up is presented in Section 3 , and the results are presented 

and discussed in Section 4 . 

2. Theoretical basis 

2.1. Stochastic model parameter estimation 

Estimation of parameters for a known model structure [17] can 

be defined as solving the optimisation problem: 

ˆ θ = arg min 

θ
g ( θ ;M ,K,A ) (1) 

s.t. θ ∈ �

Here, M is a predetermined model structure, which is 

parametrised by θ ∈ �, where � ⊆ R 

n θ is a set of feasible values 

for the model parameters that form inequality constraints for the 

optimisation problem in Eq. (1) . K represents the experimental 

conditions, including a set of measurements of system inputs and 

outputs. These measurements are used to evaluate the objective 

function g when θ is varied over the feasible set � by a numerical 

optimisation algorithm A . In the sequel, the algorithm Constrained 

Optimisation By Linear Approximation (COBYLA) [24] is used. This 

algorithm is gradient free, hence ideal for solving Eq. (1) . COBYLA 

also supports inequality constraints which can be used to impose 

the limits of the feasible region � on the parameter estimates. 

Since the model structure M is a representation of a system S, 

it is often assumed that S ∈ M ( �) and that consequently there 

exists a true parameter vector θ ∗ such that M ( θ ∗) = S. However, 

this is rarely the case, especially for simplified grey-box models 

based on a naive physical understanding of the system S . Typi- 

cally, the estimate ˆ θ depends on the amount of dynamic informa- 

tion in K, the choice of objective function g , and to some extent 

on the optimisation algorithm A . Hence, it is necessary to analyse 

the identifiability of the estimated parameters. This topic is further 

discussed in Section 2.4 . 

Next, define the continuous time input u t ∈ R 

n u and output 

y t ∈ R 

n y , and the corresponding ordered sequences of discrete time 

measurements u k and y k taken from the system S: 

y [ N ] = [ y 0 , y 1 , . . . , y N ] (2) 

u [ N ] = [ u 0 , u 1 , . . . , u N ] (3) 

Here, the integer subscripts k = 0 , 1 , . . . , N denote the discrete 

time sampling instants, and the subscript enclosed in [ · ] is used 

to indicate an ordered sequence. 

A grey-box model can be expressed as a continuous time 

stochastic differential equation (SDE) with a discrete time mea- 

surement equation; adopting the notation of [5] : 

dx t = f ( x t , u t , t, θ ) d t + σ ( u t , t, θ ) d ω t (4) 

y k = h ( x k , u k , t k , θ ) + e k (5) 

where t ∈ R is the time variable and x t ∈ R 

n x is the continuous 

time state vector. The first and second terms in the s tate transi- 

tion equation, given in Eq. (4) , are commonly called the drift and 

diffusion term, respectively [5,25] . The diffusion term expresses the 
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process noise as the function σ multiplied with the differential of a 

standard Wiener process ω t . The discrete time measurement equa- 

tion is given in Eq. (5) . 

2.2. Maximum likelihood 

This section gives a summary of the theoretical basis adopted 

from the CTSM framework [5,14,15] . The objective function g in 

Eq. (1) can be derived from the likelihood function, which is de- 

fined as the probability of observing the measurement sequence 

y [ N ] when θ and M are known, i.e.: 

L 
(
θ ; y [ N ] , M 

)
= p 

(
y [ N ] | θ, M 

)
(6) 

In the sequel, the model structure M is implicitly assumed 

known and omitted from the condition. By application of the rule 

P ( A ∩ B ) = P ( A | B ) P ( B ) [25] , Eq. (6) can be expanded such that: 

L 
(
θ ; y [ N ] 

)
= 

( 

N ∏ 

k =1 

p 
(
y k | y [ k −1 ] , θ

)) 

p ( y 0 | θ ) (7) 

The diffusion term in Eq. (4) , which is assumed to be addi- 

tive and independent of the state x , is driven by a Wiener pro- 

cess whose differential is Gaussian distributed [5] . Hence, it is rea- 

sonable to assume that the conditional probabilities in Eq. (7) can 

be approximated by Gaussian distributions [5,15] . This assumption 

can be checked during model validation by testing the residuals for 

normality [3,5] . The likelihood can then be expressed as a multi- 

variate Gaussian distribution [5] , 

L 
(
θ ; y [ N ] 

)
= 

⎛ 

⎝ 

N ∏ 

k =1 

exp 

(
− 1 

2 
εT 

k 
E −1 

k | k −1 
εk 

)
√ 

det 
(
E k | k −1 

)(√ 

2 π
)n y 

⎞ 

⎠ p ( y 0 | θ ) (8) 

A Kalman Filter may be used to estimate the quantities 

ˆ y k | k −1 = E 

[
y k | y [ k −1 ] , θ

]
(9) 

εk = y k − ˆ y k | k −1 (10) 

E k | k −1 = E 

[
εk ε

T 
k 

]
(11) 

In the CTSM framework, an EKF is used. In Section 2.3 the alterna- 

tive use of UKF and EnKF is discussed. 

Eq. (8) can further be simplified by taking the negative of the 

logarithm; defining the log likelihood function � ( θ ; y [ N ] ): 

� 
(
θ ; y [ N ] 

)
= − ln 

(
L 
(
θ ; y [ N ] 

))
(12) 

The solution to the optimisation problem is not affected since 

arg max 
θ∈ �

L 
(
θ ; y [ N ] 

)
= arg min 

θ∈ �
� 
(
θ ; y ( N ) 

)
(13) 

Table 1 

Comparing equations for UKF (left) and EnKF (right). 

Definitions and initialisation 

ζ (0) 
m = 

λ
λ+ n x 

ζ (0) 
c = 

λ
λ+ n x + 

(
1 − α2 + β

)
ζ (i ) 

m = ζ (i ) 
c = 

1 
2 ( λ+ n x ) , i ∈ { 1 , . . . , 2 n x } 

λ = α2 ( n x + κ) − n x 

w 

(i ) 
k 

∼ N ( ̄w k , W k ) , i ∈ { 1 , . . . , n p } 
v (i ) 

k 
∼ N ( ̄v k , V k ) , i ∈ { 1 , . . . , n p } 

x (i ) 
0 | 0 ∼ N ( ̄x 0 , X 0 ) , i ∈ { 1 , . . . , n p } 

ˆ x 0 | 0 = E [ x 0 ] = x̄ 0 

X 0 | 0 = V 

[
x 0 − ˆ x 0 | 0 

]
= X 0 

ˆ x 0 | 0 = 

1 
n p 

∑ n p 
i =1 

x (i ) 
0 | 0 

X 0 | 0 = 

1 
n p −1 

∑ n p 
i =1 

(
x (i ) 

0 | 0 − ˆ x 0 | 0 
)
( . . . ) 

T 

State propagation 

x 
{ 2 n x +1 } 
k −1 | k −1 

= ς 
(

ˆ x k −1 | k −1 , X k −1 | k −1 

)
x (i ) 

k | k −1 
= f 

(
x (i ) 

k −1 | k −1 
, u k −1 , w̄ k 

)
i ∈ { 0 , . . . , 2 n x } 

ˆ x k | k −1 = 

∑ 2 n x 
i =0 

ζ (i ) 
m x (i ) 

k | k −1 

a ) X k | k −1 = 

∑ 2 n x 
i =0 

ζ (i ) 
c 

(
x (i ) 

k | k −1 
− ˆ x k | k −1 

)
( . . . ) 

T + W k 

x i 
k | k −1 

= f 

(
x (i ) 

k −1 | k −1 
, u k −1 , w 

(i ) 
k −1 

)
i ∈ { 1 , . . . , n p } 

ˆ x k | k −1 = 

1 
n p 

∑ n p 
i =1 

x (i ) 
k | k −1 

b) X k | k −1 = 

1 
n p −1 

∑ n p 
i =1 

(
x (i ) 

k | k −1 
− ˆ x k | k −1 

)
( . . . ) 

T 

Measurement estimate 

x 
{ 2 n x +1 } 
k | k −1 

= ς 
(

ˆ x k | k −1 , X k | k −1 

)
y (i ) 

k | k −1 
= h 

(
x (i ) 

k | k −1 
, u k −1 , ̄v k 

)
i ∈ { 0 , . . . , 2 n x } 

ˆ y k | k −1 = 

∑ 2 n x 
i =0 

ζ (i ) 
m y (i ) 

k | k −1 

y (i ) 
k | k −1 

= h 

(
x (i ) 

k | k −1 
, u k −1 , v 

(i ) 
k −1 

)
i ∈ { 1 , . . . , n p } 

ˆ y k | k −1 = 

1 
n p 

∑ n p 
i =1 ̂

 y (i ) 
k | k −1 

Innovation and cross covariance 

Z k | k −1 = 

∑ 2 n x 
i =0 

ζ (i ) 
c 

(
x (i ) 

k | k −1 
− ˆ x k | k −1 

)(
y (i ) 

k | k −1 
− ˆ y k | k −1 

)T 

a ) E k | k −1 = 

∑ 2 n x 
i =0 

ζ (i ) 
c 

(
y (i ) 

k | k −1 
− ˆ y k | k −1 

)
( . . . ) 

T + V k 

Z k | k −1 = 

1 
n p −1 

∑ n p 
i =1 

(
x (i ) 

k | k −1 
− ˆ x k | k −1 

)(
y (i ) 

k | k −1 
− ˆ y k | k −1 

)T 

E k | k −1 = 

1 
n p −1 

∑ n p 
i =1 

(
y (i ) 

k | k −1 
− ˆ y k | k −1 

)
( . . . ) 

T 

K k = Z k | k −1 E −1 
k | k −1 

K k = Z k | k −1 E −1 
k | k −1 

Aposteriori update c ) 

εk | k −1 = y k − ˆ y k | k −1 

ˆ x k | k = ˆ x k | k −1 + K k εk | k −1 

X k | k = X k | k −1 − K k E k | k −1 K 
T 
k 

x (i ) 
k | k = x (i ) 

k | k −1 
+ K k (y k − y (i ) 

k | k −1 
) i ∈ { 1 , . . . , n p } 

b) ˆ x k | k = 

1 
n p 

∑ n p 
i = n p x 

(i ) 
k | k 

b) X k | k = 

1 
n p −1 

∑ n p 
i =1 

(x (i ) 
k | k − ˆ x k | k )( . . . ) T 

a ) Assuming affine noise. (See Remark 3). 
b ) Can be omitted (See Remark 5). 
c ) Mathematically equivalent but not interchangable (See Remark 6). 
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Finally, by conditioning on knowing y 0 , and eliminating the scaling 

constants 1 
2 from � ( θ ; θ ; y [ N ] ), the objective function from Eq. (1) is 

given as: 

g ( θ ;M , K ) = 

N ∑ 

k =1 

εT 
k E 

−1 
k | k −1 

εk + ln 

(
det 

(
E k | k −1 

))
(14) 

where the constant term c = N · n y · ln ( 2 π) is dropped. 

2.3. Alternative KF formulations 

The popularity of the Kalman Filter has led to a number of 

adaptions. The Extended Kalman Filter (EKF) is perhaps the most 

common such adaption and is used in [5] . In the sequel, two other 

well known KF variations are outlined; the Unscented Kalman Filter 

(UKF) [18] and the Ensemble Kalman Filter (EnKF) [23] . In addition 

to better approximations for non-linear models, UKF and EnKF dis- 

pense with the computation of Jacobians and therefore do not re- 

quire the model to be differentiable [18] . Both filters are listed and 

compared in Table 1 . 

Given the SDE for the state transition as in Eq. (4) , the time 

evolution of the probability density function (pdf) of the state, p ( x, 

t ), is described by the Fokker–Planck equation [23] , also known 

as the Kolmogorov forward equation [5] . The multi-dimensional 

Fokker–Planck equation [25] can be expressed as 

∂ p ( x, t ) 

∂t 
+ 

∑ 

i 

∂ 

∂x i 
( f i ( x t , u t , t, θ ) p ( x, t ) ) 

= 

1 

2 

∑ 

i, j 

∂ 2 

∂ x i ∂ x j 
p ( x, t ) 

(
σW σ T 

)
i j 

(15) 

where f i is the i th component of the state transition model. 

In the EKF, the linearised model is used to approximate the 

first moments of this pdf [23] by a Taylor series expansion trun- 

cated after the first term [17,19] . In both UKF and EnKF, the Fokker–

Planck equation is instead solved by approximating the solution to 

Eq. (15) using a set of state realisations. The key difference be- 

tween the UKF and EnKF is in how that set is constructed. The 

UKF draws its state realisation set, called sigma points , using the 

unscented transform (UT). The UT of an expected state x̄ with co- 

variance X deterministically computes a set of sigma points x { N } = {
x ( i ) : i = 0 , 1 , . . . , N 

}
, where the shorthand { · } superscript in- 

dicates a set and a superscript ( · ) denotes a member. For con- 

venience of notation, a UT operator ς ( ̄x , X ) that returns a set of 

N = 2 n x + 1 sigma points is defined as 

x ( 0 ) = 

ˆ x (16) 

x ( i ) = 

ˆ x + 

(√ 

( n x + λ) X 

)
i 
, i ∈ { 1 , . . . , n x } (17) 

x ( n x + i ) = 

ˆ x −
(√ 

( n x + λ) X 

)
i 
, i ∈ { 1 , . . . , n x } (18) 

The square root is often implemented using a Cholesky decompo- 

sition, and the subscript i denotes the i -th column [17,18] . Note 

that there are different versions of the UT [3,19] , where the one 

presented in Eqs. (16) –(18) is used in the sequel. For a Gaus- 

sian random variable (GRV), the UT is known to approximate 

the pdf p ( x, t ) to third order accuracy, and to the second or- 

der for non-Gaussian random variables [17] . The introduction of 

λ = α2 ( n x + κ) − n x in Eqs. (16) –(18) gives a set of tuning param- 

eters that can improve approximations of higher order moments 

[17–19] . 

In contrast to the deterministic UT, the EnKF represents the 

state pdf using a Monte Carlo (MC) sampling method [17,18,23] . 

The pdf is approximated as p ( x, t ) = 

dN 
n p 

, where dN is the number 

of state realisations in some small unit volume and n p is the total 

number of realisations [23] . The set of realisations, i.e., the ensem- 

ble, is initially drawn at random using the mean and covariance 

of the initial state. Subsequently, each realisation is propagated as 

a distinct trajectory, thus making the EnKF equivalent to using a 

Markov Chain Monte Carlo (MCMC) method to solve the Fokker–

Planck equation [23] . 

2.3.1. Remarks to Table 1 

Remark 1. Initialisation for both filters is equivalent if n p is 

“large”, since the computed ensemble values based on MC sam- 

pling converge to the expectation values x̄ 0 and X 0 . 

Remark 2. In the UKF, the sigma transform is applied twice to 

compute the sigma points for both apriori and aposteriori state and 

covariance estimates. In the EnKF, the realisations are drawn only 

in the initialisation, and subsequently propagated independently. 

Remark 3. The process noise w k ∼ N ( ̄w k , W k ) and measurement 

noise v k ∼ N ( ̄v k , V k ) enter the UKF and EnKF in different ways. The 

model in Eqs. (4) and (5) assumes affine noise, hence the noise 

covariances are added to the respective propagation equations in 

the UKF. For non-affine noise, there are other adaptions of the UKF, 

e.g., estimating noise by augmenting the state vector, that can be 

used [18] . In the EnKF, a random number generator (RNG) is used 

to draw instances of the noise which is subsequently used in the 

state transition and measurement equations for propagation of the 

ensemble. 

Remark 4. If ζ ( i ) 
m 

= 

1 
n p 

and ζ ( i ) 
c = 

1 
n p −1 in the UKF formulation, the 

corresponding equations for estimating mean and covariance from 

the realisation set would be identical to EnKF (except for the iter- 

ation index) when n p is large and λ = 0 ↔ α = 1 , κ = 0 . 

Remark 5. In order to show the similarity of UKF and EnKF, both 

filters are formulated with expressions for computing apriori and 

aposteriori covariance for the state estimate. Observe that for the 

UKF these are needed in order to compute new sets of sigma 

points, while in the EnKF this computation can be omitted. Indeed, 

a fundamental advantage of the EnKF is that it does not require ex- 

plicit computation of the apriori and aposteriori state estimate co- 

variance matrices, but rather propagates them as approximations 

in the ensemble. This is an advantage of the EnKF for models with 

a high number of states. 

Remark 6. The EnKF aposteriori update of state realisations and 

covariance can be shown to be equivalent to the corresponding 

aposteriori update in the UKF. However, since EnKF treats the set 

of realisation as independent state trajectories, the ensemble must 

be updated from apriori to aposteriori state estimates. Hence, the 

two formulations are not interchangeable, despite being mathe- 

matically equivalent. 

Remark 7. UKF has three hyper parameters, α, κ and β; default 

tunings are suggested for standard noise models in the UKF lit- 

erature. The EnKF has only one hyper parameter: the number of 

realisations n p . 

2.4. Profile likelihood 

Parameter estimates are often reported as a point in the param- 

eter space �, or as a confidence interval [26] with some stated con- 

fidence α. An alternative solution is to present the distribution of 

the parameters over the feasible range �. Since the estimation of 

parameters is based on the likelihood function in Eq. (6) , one attrac- 

tive choice for creating parameter distributions is the profile likeli- 

hood (PL) method presented in [8,21,22] . This approach was also 

suggested by the authors of CTSM [27,28] . The PL method explores 

the parameter space by optimising the parameters in two steps, 
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rather than simultaneously as in Eq. (1) . For simplicity of notation, 

the dependence on y [ N ] is omitted from the log likelihood func- 

tion � ( θ ; y [ N ] ) in the sequel. The profile likelihood � PL ( θ i ) is defined 

as the minimum log likelihood for θ i when the remaining param- 

eters are freely optimised [22,29] : 

� PL ( θi ) = min 

θ j 	 = i 
g 
(
θ j 	 = i ;M , K, θi 

)
(19) 

Values of θ i must be chosen prior to optimising the remain- 

ing θ j 	 = i [22] . A straightforward solution, if the objective function 

g is well behaved within the constraints of �, is to use a brute 

force approach with an even sampling of θ i . Alternatively, a two- 

sided gradient decent algorithm, using a freely optimised parame- 

ter vector as a starting point, can be applied [22,30] . The resulting 

likelihood distribution can be plotted as a function of θ i and sub- 

sequently analysed according to the definitions of structural and 

practical identifiability for likelihood-based confidence intervals [8] . 

Unlike the asymptotic confidence interval, which is based on the 

curvature of the likelihood function by computation of the Hessian 

[8,22] , the likelihood-based confidence interval is computed by ap- 

plying a threshold to the likelihood function to compute a confi- 

dence region [22,29] . Let { 

θ : � ( θ ) − � 

(
ˆ θ
)

< �α

} 

, �α = χ2 ( α, n df ) (20) 

where ˆ θ is a freely estimated, presumed optimal, parameter vector, 

and the threshold �α is the α percentile of the χ2 -distribution 

with n df degrees of freedom. It follows from Wilks’ theorem 

[31] that the logarithm of the likelihood ratio � test statistic 

2 ln ( �) = 2 ln 

⎛ 

⎝ 

L ( θ ) 

L 

(
ˆ θ
)
⎞ 

⎠ = � ( θ ) − � ( ̂  θ ) (21) 

can be used to compare two models. The difference in log like- 

lihood � ( θ ) − � 

(
ˆ θ
)

is asymptotically χ2 -distributed [22,32] , with 

n df equal to the difference in the number of free parameters be- 

tween θ and 

ˆ θ . Hence, the PL method uses a χ2 threshold with 

n df = 1 . This form of confidence interval allows interpretation of 

structural and practical identifiability by inspection of the upper 

and lower confidence boundaries [22] . If � ( θ ) is lower than the 

threshold in both directions, i.e., the interval at the stated con- 

fidence level is unbounded ( ±∞ ), the parameter is classified as 

structurally non-identifiable [22] . If � ( θ ) is bounded in one direc- 

tion, this indicates practical non-identifiability [22,29] . Profile like- 

lihood plots are interpreted similarly. If the plot is lower than the 

confidence threshold in both directions or only one, this indicates 

structural or practical non-identifiability, respectively. 

2.4.1. Two-dimensional profile likelihood 

The PL method essentially projects the n θ dimensional space 

� onto the single parameter θ i , by freely estimating the remain- 

ing parameters. Hence, if parameters are not independent, the PL 

method tends to overestimate the width of the likelihood-based 

confidence interval. A step towards remedying this issue is to mod- 

ify the PL method to hold out two parameters rather than one, i.e., 

� PL2 

(
θi , θ j 

)
= min 

θk 	 = i, j 

g 
(
θk 	 = i, j ;M , K, θi , θ j 

)
(22) 

This results in a two-dimensional distribution which can be anal- 

ysed in a similar way to the one-dimensional PL [22] , using the 

definition in Eq. (20) . The PL2 results are plotted as topological 

surfaces [22] . This projects the parameter space � onto the plane 

of θ i and θ j . In addition to diagnosing identifiability issues, these 

plots can be used to diagnose parameter interdependence. Observe 

that since ˆ θ has n θ free parameters while the PL2 estimate has 

n θ − 2 , this gives n df = 2 for the computation of �α from the χ2 - 

distribution in Eq. (20) . 

Applying a confidence threshold to the PL2 method produces 

confidence regions in the ( θ i , θ j ) plane, rather than intervals in 

a single parameter. Based on confidence thresholds computed 

from the χ2 distribution, a similar interpretation of these two- 

dimensional topologies can be applied to diagnose identifiability 

by requiring that the region is bounded in all directions. If there 

is an unbounded equipotential valley with a log likelihood below 

the �α threshold, the parameter is structurally non-identifiable. If 

the interval or region is unbounded only in one direction, this in- 

dicates a practically non-identifiable parameter. Examples of two- 

dimensional PL plots are given in Section 4 . If parameter interde- 

pendence is observed, re-parametrisation of the model such that 

the interdependency is resolved, may be advisable in order to ob- 

tain a model with tighter confidence bounds on the estimated pa- 

rameters. 

2.4.2. Interpretation of wide confidence regions 

It can be argued that a wide confidence region is indicative of 

an identifiability issue even if the region is bounded. If the range of 

acceptable parameter values is large, the interpretation of the esti- 

mated parameters as being determined by the physical properties 

of the system, i.e., S ∈ M ( �) → M 

(
ˆ θ
)

� S, is questionable. 

One possible cause of wide confidence bounds on the estimated 

parameters is the presence of nuisance parameters, i.e., parameters 

whose value is insignificant for the model estimates. 

2.4.3. Effect of constrained parameters 

Observe that solving the two-step optimisation problem in 

Eq. (19) subjected to the constraint θ ∈ � imposes a restriction on 

the identified profile � PL ( θ i ). This constraint may skew the results, 

since the remaining parameters θ i 	 = j are only considered within 

the region �. If parameters are not independent, the profile of one 

parameter may be influenced by the constraints of another. In the 

PL2 method, the effect of constrained optimisation of parameters 

is easier to diagnose, since dependent parameters can be identi- 

fied from the topology plots. 

2.5. Model validation 

The CTSM method requires evaluation of the residuals to ver- 

ify that the assumption of Gaussian distributed residuals is jus- 

tified [5,15] . In the CTSM literature, the autocorrelation function 

(ACF) is used to test for normality of residuals in the time-domain, 

while a cumulative periodogram (CP) is used in the frequency do- 

main [5,8,15] . There are also a number of alternative tests for nor- 

mality that can be applied, such as the zero-crossings test or the 

Kolmogorov–Smirnov test [3] . 

3. Case study model and simulation 

3.1. Model 

A thermal network model of a building can be expressed as a 

resistor-capacitor (RC) circuit. These models are based on a naive 

physical understanding of temperature variations in the building 

structure, which entails simplifications that necessarily introduce 

modelling errors. The result is a simplified, lumped parameter 

model, which should be treated in the framework of grey-box 

modelling, and hence formulated as stochastic differential equa- 

tions (SDE) as in Eq. (4) [5] . 

Fig. 1 shows an example of a candidate RC model which was 

developed to approximate the thermal behaviour of the experi- 

mental building discussed in Section 3.2 , partially based on the 
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Fig. 1. The R3C2 thermal network model of an experimental building can be ex- 

pressed as a resistor–capacitor equivalent circuit containing three resistors and two 

capacitors. 

Fig. 2. Calibration data for the R3C2 model. The model outputs T b (red) and 

T w (blue) are plotted together with the outdoor temperature input T ∞ (green). The 

input power ˙ Q is plotted separately. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Nominal parameter values and min/max limits for resis- 

tances [K/W] and capacitances [J/K]. 

R b R w R g C b C w 

θ0 0.100 0.100 0.250 1200 k 1200 k 

θmin 0.030 0.030 0.075 360 k 360 k 

θmax 0.170 0.170 0.425 2040 k 2040 k 

R4C2 model presented in [1] . The model has two outputs: the 

room temperature T b and the wall surface temperature T w 

, and 

two inputs: the consumed power by an electric heating element ˙ Q 

and the outside temperature T ∞ 

. Five components form the model 

structure: the thermal resistance between room air and wall R b , 

the building envelope R w 

, and the thermal resistance of windows 

and doors R g . The two capacitances C b and C w 

represent the ther- 

mal capacitance of the building interior and envelope, respectively. 

A nominal parameter vector θ0 , listed in Table 2 , is used as the ini- 

tial value for parameter estimation. Additionally, the feasible values 

region � is limited by θmin and θmax , which are chosen as 0.3 × θ0 

and 1.7 × θ0 , respectively. 

3.2. Calibration data 

The calibration data used for parameter estimation was ob- 

tained from an experimental building located at Campus Porsgrunn 

of the University of South–Eastern Norway (USN). The data was 

collected by multiple data acquisition systems, each producing a 

separate data subset, and combined into a consistent dataset in the 

preprocessing step. The data was first filtered to remove noise and 

Fig. 3. Illustration of Kalman Filter (KF) with externally simulated (SIM) state prop- 

agation. 

subsequently resampled into a uniform temporal scale. In order to 

maintain measurement uncertainty after preprocessing, a random 

noise component of covariance 0.1 was added to the temperature 

measurements. The resulting data is presented in Fig. 2 . 

3.3. RCSimulator 

The choice of model structure for a thermal network model, i.e., 

the RC circuit, usually involves significant experimentation [1,7,16] . 

To simplify, and possibly automate, the process of finding appropri- 

ate model structures, it is useful to simulate such models without 

requiring explicit model equations. Since the thermal networks are 

modelled as RC circuits, it is natural to look to the electronics field 

where circuits are often simulated using tools such as SPICE [33] . A 

circuit simulator can be used to propagate the state, hence replac- 

ing the drift term of Eq. (4) , as illustrated in Fig. 3 . Using this set- 

up with the parameter estimation method in Section 2.2 requires 

a KF implementation that can handle non-differentiable models, 

such as UKF and EnKF. 

A simple circuit simulator is constructed, named RCSimulator 

for reference in the sequel. Circuit simulators typically define the 

circuit model as a list of interconnected components, which can 

be taken directly from the schematic in Fig. 1 . By convention, all 

components have two terminals named in and out . Each node is 

assigned an integer index which is used to configure the connec- 

tions of the components as a circuit. For example, letting node T b 
have index 1 and T w 

index 2, the component R b would have in- 

put/output assignment (1,2). For each node in the circuit, Kirchoff’s 

node current law is used to balance the flow in and out of the node 

[34] . The system of node equations can be written in difference 

form: 

Ax k + A m 

x k −1 + Bu k = 0 (23) 

The contributions from all components are summed together, such 

that rows i in A , A m 

, and B constitute the balance equation 

for node i . Eq. (23) is solved for x k at each time-step in or- 

der to propagate the state. The only dynamic element is the ca- 

pacitor, which is implemented using an implicit Euler discretisa- 

tion, 
(

dx 
dt 

)
t k 

≈ x k −x k −1 
�t 

, by contributing to both the A and A m 

ma- 

trices. Voltage sources are implemented as constraints on the dif- 

ference between the states of the two connected nodes. The mea- 

surement Eq. (5) can be implemented as measuring the potential 

between selected nodes in the RC circuit. 

The simulation scheme, and in particular the discretisation of 

the capacitive elements, could be extended with more accurate 

approximations such as the Runge–Kutta 4th order (RK4) scheme 

[35] . It is also possible to introduce non-linear components, such 

as variable resistors. Observe that while the test case model used 

here is linear, the method of estimating residuals with UKF or EnKF 

for externally simulated models has no such restriction. 

3.4. Discrete time linear model 

For comparison, the model is also expressed in a standard linear 

state space form 

dx 

dt 
= Ax t + Bu t + Gw t (24) 
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where 

x t = 

[
T b 
T w 

]
, u t = 

[
˙ Q 1 

T ∞ 

]
, B = 

[
1 
C b 

1 
C b R g 

0 

1 
C w R w 

]

A = 

[− 1 
C b R b 

− 1 
C b R g 

1 
C b R b 

1 
C w R b 

− 1 
C w R b 

− 1 
C w R w 

]

and w t ∼ N (0, W ) is the process noise (model error), W is the spec- 

tral density of w t and G is a noise distribution matrix which is 

assumed constant. Hence Gw t dt is equivalent to the stochastic dif- 

fusion term σ ( u t , t, θ ) d ω in Eq. (4) such that GW G 

T = σσ T [5] . 

The model in Eq. (24) is written in continuous time and must 

be discretised for use in a computer KF implementation. Assuming 

zero order hold (ZOH) on the inputs [36] gives 

d 

dt 

[
x 
u 

]
t 

= 

[
A B 

0 0 

][
x 
u 

]
t 

+ 

[
G 

0 

]
w t (25) 

The discrete time equivalent system, again assuming ZOH on in- 

puts, gives the difference equation [
x 
u 

]
k 

= 

[
˜ A 

˜ B 

0 1 

][
x 
u 

]
k −1 

+ 

[
˜ G 

0 

]
w k (26) 

where w k ∼ N ( 0 , W ) and W is the process noise covariance. On the 

interval [ t k −1 , t k [ → �t = t k − t k −1 , Eq. (25) has the known solution [
x 
u 

]
t k 

= exp 

(
�t 

[
A B 

0 0 

])[
x 
u 

]
t k −1 

+ 

[
�x w 

0 

]
(27) 

which by direct comparison with Eq. (26) gives the discrete model 

matrices ˜ A = e A �T as the upper left sub-matrix and 

˜ B as the corre- 

sponding upper right sub-matrix. The diffusion of the states driven 

by the process noise w t is here expressed by the term �x w 

which 

is yet undetermined. ˜ G is obtained from the expectation 

E 
(
x k | k −1 x 

T 
k | k −1 

)
= X k | k −1 

= 

˜ A X k −1 | k −1 ̃
 A 

T + 

∫ t k 

t k −1 

e Aτ Q c e 
A T τ dτ (28) 

where Q c = GW G 

T . This integral can be solved using the Van Loan 

method in [37] . Let 

D = exp 

(
�t 

[
−A Q c 

0 A 

T 

])
= 

[
D 11 D 12 

0 D 22 

]
(29) 

Then 

Q ( �t ) = 

∫ t k 

t k −1 

e Aτ Q c e 
A T τ dτ = 

˜ G W ̃

 G 

T = D 

T 
22 D 12 (30) 

From Eq. (30) it is possible to compute either the process noise 

covariance W or the discrete time distribution matrix for the pro- 

cess noise ˜ G when the other is known or assumed. Setting ˜ G = I

gives W = Q ( �t ) = D 

T 
22 

D 12 which is equivalent to the result in [5] . 

This is also the form typically used in derivation of Kalman Filters 

[18,19] , as shown in Table 1 . 

While the primary focus of this paper is on the externally sim- 

ulated model, the model in Eq. (26) is used as a baseline for com- 

parison with other combinations of Kalman Filter implementations 

and model discretisation methods. Other approximations for the 

discrete time model can be found using, e.g., explicit Euler or the 

RK4 scheme [35] . 

4. Results and discussion 

4.1. Test cases 

Multiple combinations of KF implementations and model state 

propagation methods are tested and compared. The various cases, 

listed in Table 3 , are compared with a baseline (BL) consisting of 

the linear explicit model from Section 3.4 and a standard KF. 

Table 3 

Model representation as list of interconnected com- 

ponents. 

# Kalman Filter Model 

BL KF Eq. (26) (exact) 

1 KF Eq. (24) (exp. Euler) 

2 UKF RCSimulator 

3 UKF Eq. (24) (RK4) 

4 EnKF ( n p = 50 ) RCSimulator, 

5 EnKF ( n p = 500 ) RCSimulator 

6 EnKF ( n p = 20 0 0 ) RCSimulator 

7 EnKF ( n p = 50 0 0 ) RCSimulator 

Table 4 

Freely estimated parameters for each case. 

# R b R w R g C b C w �� 

BL 0.097 0.114 0.136 1642 k 1272 k - 

1 0.100 0.118 0.134 1653 k 1238 k 0.22 

2 0.101 0.119 0.133 1643 k 1220 k −0 . 44 

3 0.100 0.118 0.134 1651 k 1228 k −0 . 11 

4 0.075 0.103 0.133 1969 k 1493 k 121 

5 0.093 0.122 0.201 1633 k 1571 k 32.5 

6 0.080 0.100 0.217 1779 k 1277 k 12.5 

7 0.076 0.091 0.190 1961 k 1663 k 4.51 

4.2. Tuning 

The covariance matrix for the measurement noise V = 

diag ( 0 . 1 , 0 . 1 ) is obtained from the calibration data in K. The pro- 

cess noise covariance W is often difficult to estimate, hence it is 

typically treated as a tuning parameter. By using the model valida- 

tion results, i.e., testing the normality of the residuals as discussed 

in Section 4.4 , W = diag ( 0 . 0 04 , 0 . 0 02 ) is found by trial and error. 

An alternative solution is to include the elements of W in θ and let 

the optimisation algorithm A determine them [5] , in accordance 

with Eq. (14) . 

The UKF and EnKF have some additional tuning parameters. 

The default UKF settings α = 10 −3 , κ = 0 , β = 2 as suggested in 

[17] are used. For the EnKF, the only tuning parameter is the num- 

ber of realisations n p for which four different values are used, de- 

pending on the test cases given in Table 3 . 

4.3. Estimated parameters 

The parameters are estimated for each test case by minimising 

Eq. (14) using the residuals and their covariance as obtained from 

the KF in each case. The results are shown in Table 4 . The right- 

most column lists the difference in log likelihood, �� , between 

each case and the BL. 

The estimated parameters ˆ θ and corresponding relative log like- 

lihood, �� , for Cases 1–3 closely match the results computed 

for the baseline, which indicate that the UKF, combined with ei- 

ther RK4 discretisation or the RCSimulator, correctly estimates the 

residuals for evaluation of the likelihood function in Eq. (8) . 

The results for the EnKF Cases 4 to 7 differ significantly more 

from the BL case, as shown in Table 4 . The parameters are differ- 

ent from the BL and also the log likelihood values are significantly 

higher than for the BL case. They tend towards the BL case as n p is 

increased, but at n p = 50 0 0 in Case 7, there is still a significant 

difference. The EnKF is based on a Monte Carlo approximation of 

the state distribution p ( x, t ). Hence, the computed residuals and 

covariance are also an approximation. This leads to a significant 

deviation from the BL results. The UKF is known to be exact for 

linear systems [18] , hence no such deviation from the BL is ob- 

served for Cases 2 and 3, beyond some small deviations resulting 

from differences in state propagation approximations. 
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Fig. 4. Cumulative periodogram with 95% confidence bands for the residuals of the 

outputs T b (red) and T w (blue). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Deterministic simulation. Measured values (grey) with T b (red) and 

T w (blue). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Table 5 

Testing distribution of residuals for normal- 

ity. 

Output T b T w 

Zero crossing 530 526 

Kolmogorov–Smirnov 0.0232 0.0126 

4.4. Model validation and normality tests 

The use of the likelihood function for parameter estimation is 

based on the assumption of Gaussian distributed residuals, hence 

the residuals should be tested for normality in order to verify that 

assumption [5] . In the sequel, residuals from Case 2 are used, but 

near identical results are obtained for Cases 1, 3 and BL. Cases 4 

to 7 are not considered further in this section. There are several 

tests that can be used to validate the normality assumption, such 

as the cumulative periodogram (CP) presented in Fig. 4 . Other nor- 

mality tests are the zero-crossing count (ZC) and the Kolmogorov–

Smirnov (KS) test [3] as listed in Table 5 . The zero-crossing test for 

N = 1050 samples gives a 95% confidence interval [3] of (493, 556) 

which covers the test results for both outputs. Similarly, the KS 

test gives a critical value of 0.0417, which is higher than the 

score for both outputs. Finally, the CP in Fig. 4 indicates that 

the residuals are evenly distributed in the frequency domain, 

hence giving an approximately linear CP within the 95% confidence 

band [8,14,16,38] . After having tuned the process noise covariance 

matrix W by trial and error, these tests indicate that the residuals 

are well approximated by a Gaussian distribution. 

Another method for validation of a model with estimated pa- 

rameters is to perform a deterministic simulation using measured 

system inputs [3] . If the parameters are reasonable, the model 

predictions should approximately agree with the observed output 

measurements. The results of such a simulation are presented in 

Fig. 5 . As shown, the simulation reproduces the system behaviour 

from the calibration data reasonably well, which further validates 

the model and the estimated parameter values. 

Fig. 6. Results from Case 2, using the UKF with RCSimulator. Observed measure- 

ments are plotted in grey, and estimated outputs with two sd error bands in blue: 

T b (top) and T w (bottom). (For interpretation of the references to colour in this fig- 

ure legend, the reader is referred to the web version of this article.) 

Fig. 7. Difference in output T b between Case 1 (red) and Case 2 (blue) and the 

baseline linear KF with exact model discretisation. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Table 6 

Comparing difference with baseline for each case. 

# RMSE ( �ε) RMSE ( �E ) Runtime 

BL – – 1 . 4 ms 

1 7 . 91 × 10 −4 9 . 49 × 10 −6 1 . 7 ms 

2 7 . 79 × 10 −4 9 . 35 × 10 −6 10 . 4 ms 

3 5 . 5 × 10 −9 5 . 77 × 10 −13 9 . 9 ms 

4 1 . 39 × 10 −1 4 . 88 × 10 −2 0 . 092 s (0 . 078 s ) 

5 4 . 13 × 10 −2 1 . 56 × 10 −2 0 . 88 s (0 . 75 s ) 

6 2 . 14 × 10 −2 7 . 76 × 10 −3 3 . 5 s (3 . 1 s ) 

7 1 . 40 × 10 −2 4 . 70 × 10 −3 9 . 2 s (7 . 9 s ) 

4.5. Comparing Kalman filters 

In this section, the results for all cases in Table 3 are compared 

in detail. First, Fig. 6 shows the estimated output for Case 2 plotted 

with an error band of two standard deviations together with the 

measured output. A visual inspection of Fig. 6 shows that the es- 

timated output ± 2 standard deviations (sd) captures most of the 

variation in the measurements, indicating that the UKF correctly 

estimates the covariance of the estimated output. 

Next, the root mean square error (RMSE) is used to compare 

the difference between each case and the BL, for both the resid- 

uals, �ε, and their covariance, �E . The results are presented in 

Table 6 , together with the runtime of each case. For the EnKF, the 

computation time was measured both with and without (in brack- 

ets) computation of apriori and aposteriori covariance. 

Several interesting observations can be made from Table 6 . First, 

the quantified RMSE results show that Cases 1 to 3 give simi- 

lar results to the BL case. In particular, Case 3 is near identical 

to the BL, with an RMSE around 10 −9 . This result shows that the 

UKF gives near optimal estimates, with the deviations mostly ex- 

plained by approximations introduced by the model discretisation 

method. Further, the results from EnKF differ significantly, even 



208 O.M. Brastein, B. Lie and R. Sharma et al. / Energy & Buildings 191 (2019) 200–210 

Fig. 8. PL1 method for diagnosing parameter identifiability. 

Fig. 9. PL1 method with extended feasible region �. 

Fig. 10. Heat map with isolines at confidence levels 90%, 95% and 99%, from the 

PL2 method. The freely optimised solution ˆ θ is marked by a black dot in all plots. 

All plots cover the entire sub-region of � for their respective parameters. For re- 

duced clutter, the axis labels are only included on the left-most/lower-most plots. 

The figure legend shows that the colour red indicates a relative likelihood close to 

0, while purple indicates a relative log likelihood of 20. Values above 20 are not 

plotted, thus highlighting the most interesting region in the parameter space �. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

with n p = 50 0 0 , from those obtained by KF and UKF, especially for 

low n p . 

To verify the implementation of the RCSimulator, Cases 1 and 

2 are compared in Fig. 7 . The error, compared to BL, in residuals 

of output T b is similar for Cases 1 and 2, but interestingly with 

the opposite sign. This is reasonable since Case 1 uses explicit Eu- 

ler discretisation of the continuous time model, while the RCSim- 

ulator, discussed in Section 3.3 , uses implicit Euler approximation 

for the capacitance elements. The output T w 

shows the same be- 

haviour. 

4.5.1. Computation time 

Based on experience with the test case, the objective function 

is known to be well behaved in �, hence, a simple brute force 

algorithm is used to draw θ i , and θ j . With a resolution of 100 

steps per parameter, the PL2 method requires 10,0 0 0 repeated ex- 

ecutions of the parameter estimation algorithm per combination of 

parameters. With five parameters, there are ten different combina- 

tions of parameters which gives a total of 10 0,0 0 0 required execu- 

tions. Hence, computational time for this method is significant. The 

evaluation of Eq. (22) can be efficiently parallelised, which reduces 

computation time. For the test case used in this paper the compu- 

tation time per PL2 plot is around 30–60 minutes when the UKF 

is used with the RCSimulator on a six-core CPU. For large number 

of parameters, the overall computational load may be unpractical. 

However, if the objective function is smooth in �, a lower reso- 

lution plot may be sufficient to diagnose parameter identifiability 

and interdependence issues, or at least identify which parameter 

combinations may warrant further study with higher resolution. 

Further improvements in computation time may be achieved by 

applying faster maximum likelihood estimation algorithms [39] . 

The runtime of the EnKF, as shown in Table 6 , are orders of 

magnitude slower than the UKF cases, while the UKF cases are only 

about six times slower than the standard KF cases. Observe also 

that the overhead of using the external simulator is only around 

1 ms . Since the EnKF uses a MC sampling of the state distribution 

p ( x, t ) in order to solve the Fokker–Planck Eq. (15) , a larger num- 

ber of realisations is required compared with the UKF [23] . The un- 

scented transform used in UKF requires 2 n x + 1 state realisations. 

Observe that the computational times in Table 6 are approximately 

linear in the number of realisations used for both EnKF and UKF. 

This is expected due to the relative similarities of the two KF im- 

plementations as indicated in Table 1 . For a simple model such 

as the thermal network used here, with n x = 2 , it is not surpris- 

ing that UKF far outperforms EnKF in terms of computational effi- 

ciency. EnKF was after all designed for large scale systems where 

n x is very high. 

In the sequel, only the UKF will be considered for further study. 

As discussed, the PL method requires a large number of repeated 

parameter optimisations, which in turn require an even larger 
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Fig. 11. PL2 topology of R b vs R w with extended feasible region �. 

number of KF executions. Hence, runtime is of critical importance, 

which excludes the use of EnKF in this case. 

4.6. Profile likelihood for Case 2 

The theoretical foundation for the profile likelihood (PL) method 

[8,22] is discussed, and extended to simultaneously analysing two 

parameters in Section 2.4 . In the sequel, both PL methods are ap- 

plied to the R3C2 model from Section 3 . Results are obtained using 

the configuration in Case 2 from Table 3 . The log likelihood ob- 

tained by freely estimating all parameters is used as a reference, 

i.e., the plots present � PL ( θi ) − � 

(
ˆ θ
)

. 

Fig. 8 shows the parameter profiles from the PL1 method in 

Eq. (19) , with confidence thresholds at stated confidence levels 

from the χ2 distribution with n df = 1 . The topological surfaces 

from the PL2 method in Eq. (22) are plotted as heat maps, with 

isolines at specified confidence levels from the χ2 distribution 

with n df = 2 , in Fig. 10 . 

As discussed in Section 2.4 , the definition of identifiability used 

in [22] requires the likelihood-based confidence interval/region to be 

bounded for a prescribed confidence level. Observe from Fig. 8 that 

four of the parameters have bounded profiles within the feasible 

region �. However, parameter R w 

is indicated as practically non- 

identifiable, since the profile is below the prescribed thresholds 

in the positive direction. However, the PL analysis is computed 

subject to the constraint θ ∈ �. It is not clear from the results if 

extending the feasible values for R w 

would result in a bounded 

PL also for this parameter. Hence, further examination of R w 

by 

widening the feasible region � is required. 

The results from PL2 in Fig. 10 show the same pattern of iden- 

tifiability as for the one-dimensional PL plots. At first glance, the 

PL2 method confirms that parameter R w 

is classified as practically 

non-identifiable, while R b has a wide but bounded profile. How- 

ever, the PL2 method provides additional insight into the parame- 

ter domain �. Observe from the plot for R b vs R w 

that the shape of 

the log likelihood function of parameter space � ( �) projected onto 

the ( R b , R w 

) plane indicates that there is interdependence between 

these two parameters. By comparing the PL1 plot for R b to the PL2 

plot for R b vs R w 

and projecting the PL2 results onto the R b axis, 

it can be observed that the sharp bend in the PL1 Fig. 8 plot is ac- 

tually a consequence of the constraint on R w 

. A similar constraint 

artefact, a sharp bend near the lower end of the feasible range, 

can be seen in the PL1 plot for C w 

. It is likely that the observed 

topology from Fig. 10 would be extended if the parameter domain 

� was wider, hence allowing optimal values for R b to be obtained 

above the constrained profile observed in Fig. 8 . 

Further, the topology obtained from PL2 shows that the width 

of the profile from PL1 is significantly overestimated due to the 

parameter interdependence. Once either R b or R w 

is obtained, the 

profile of the other parameter is much narrower than what the PL1 

method suggests. 

4.6.1. Extending the parameter space 

Next, the parameter space � is widened by letting the param- 

eters extend to six times the nominal value, e.g., θmax = 6 · θ0 . The 

PL1 results in Fig. 9 now show that all five parameters are iden- 

tifiable, i.e. the likelihood profiles cross the confidence threshold 

in both directions. Further, the PL2 result for the parameter com- 

bination ( R b , R w 

) in Fig. 11 shows that the topology observed in 

Fig. 10 indeed extends beyond the initial limited parameter space 

�. 

5. Conclusion 

In this paper, the Unscented Kalman Filter (UKF) and the Ensem- 

ble Kalman Filter (EnKF) have been compared for the purpose of es- 

timating residuals and covariance for evaluation of the likelihood 

function. The state transition model was implemented in a non- 

differentiable external simulation tool, hence requiring a Kalman 

filter implementation other than the Extended Kalman Filter (EKF). 

The results from applying both filters to the parameter estimation 

problem show that the UKF outperforms the EnKF in both accuracy 

and computational time for this particular model. Since the UKF 

requires fewer realisations for few states, this result is expected. 

The EnKF was developed to handle large scale dynamic systems 

with a high number of model states and relatively few measure- 

ments. Since the underlying case study model is linear, the UKF is 

optimal, limited only by approximations to the state propagation 

method in the external simulation tool. For models with a larger 

number of states the EnKF may well be a better choice. 

The use of a UKF allowed the likelihood function to be eval- 

uated even though the thermal network building model was im- 

plemented as a non-differentiable external simulator. Comparing 

the results of the externally simulated component list model with 

simulations using the explicitly expressed linear equations showed 

that the results are near identical. While the use of the simulator 

and a UKF is about six times slower in computational time com- 

pared to the explicit model and a standard KF, the external model 

allows for simple manipulation of the component list model struc- 

ture. This could potentially be used to automate the construction 

of thermal network model structures for the thermal behaviour of 

a specific building prior to parameter estimation. 

The profile likelihood (PL) method was applied to the thermal 

network model to create one- and two-dimensional parameter pro- 

file plots. The PL2 plots were used to show that R b and R w 

are in- 

terdependent, which caused the PL1 method to overestimate the 

width of their respective profiles. Further, the interdependence of 

the parameters also skewed the results of the PL1 method due to 

the constraints of the feasible parameter region. Based on the PL2 

plots, the parameter region was extended, which resulted in im- 

proved likelihood profiles also from the PL1 method. The combi- 

nation of one- and two-dimensional likelihood profiles was shown 

to provide valuable insight into the parameter domain. These plots 

show that all of the parameters are identifiable, but with large con- 

fidence regions. This indicates lack of dynamic system excitation 

in the calibration data, which could be remedied by improved ex- 

perimental design, e.g., use of Pseudo Random Binary Sequence as 

actuation. 
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Abstract
Building Energy Management systems can reduce energy
consumption for space heating in existing buildings, by
utilising Model Predictive Control. In such applications,
good models of building thermal behaviour is important.
A popular method for creating such models is creating
Thermal networks, based cognitively on naive physical
information about the building thermal behaviour. Such
models have lumped parameters which must be calibrated
from measured temperatures and weather conditions.
Since the parameters are calibrated, it is important
to study the identifiability of the parameters, prior to
analysing them as physical constants derived from the
building structure. By utilising a statistically founded
parameter estimation method based on maximising
the likelihood function, identifiability analysis can be
performed using the Profile Likelihood method. In
this paper, the effect of different sensor locations with
respect to the buildings physical properties is studied by
utilising likelihood profiles for identifiability analysis.
The extended 2D profile likelihood method is used to
compute two-dimensional profiles which allows diagnos-
ing parameter inter-dependence, in addition to analysing
the identifiability. The 2D profiles are compared with
confidence regions computed based on the Hessian.

Keywords: building energy management systems, ther-
mal behavior, parameter estimation, parameter iden-
tifiability, Profile Likelihood

1 Introductions
1.1 Background
A significant portion of the worlds total energy produc-
tion is consumed by heating and cooling of buildings
(Perera et al., 2014). Building Energy Management Sys-
tems (BEMS) is therefore an important part of the ongo-
ing effort to reduce anthropogenic CO2 emissions. In par-
ticular, Model Predictive Control (MPC) has been shown
to reduce energy consumption in buildings by utilizing
models to predict the thermal behaviour of a building
(Fux et al., 2014; Killian and Kozek, 2016). Hence, the
development of models of building thermal behaviour
has received considerable interest by the scientific com-
munity in recent years.

1.2 Previous work
A common approach to the modelling of building thermal
behaviour is the use of thermal network models (Berthou
et al., 2014; Reynders et al., 2014). These models are of-
ten described using electric analogues Resistor-Capacitor
(RC) circuits. Based on a naive understanding of the ther-
modynamics involved, these RC circuits constitute sim-
plified lumped parameter models. Parameters are estim-
ated from measurements of temperature inside the build-
ing, weather conditions and input power consumed for
space heating. As simplified models based on both phys-
ical insight and measurement data, thermal network mod-
els constitute a compromise between fully physics based
white-box and purely data-driven black-box models. This
type of model, often called grey-box models, allows use
of prior knowledge of the system while also allowing cal-
ibration of parameters to adapt the model to a particular
building. This approach offers improved prediction accur-
acy while also allowing use of prior physical information
to be injected into the model (Madsen and Holst, 1995;
Bacher and Madsen, 2011; Kristensen et al., 2004).

Since the model structure is designed based on know-
ledge of a particular building, it is often assumed that the
parameters are determined by the physical properties of
that building. However, since the parameters are iden-
tified from data, this assumption needs to be verified in
the context of parameter identifiability (Reynders et al.,
2014; Deconinck and Roels, 2017; Ferrero et al., 2006).
In particular, testing of practical identifiability (Raue et al.,
2009), i.e., if sufficient dynamic information about the un-
derlying system is contained in the calibration data
(Ferrero et al., 2006), is of importance.

1.3 Overview of paper
Since weather is part of the experimental conditions, and,
typically, the acceptable range of indoor temperatures, as
well as input heater power, is limited, model calibration
must usually be performed on sub-optimal data. One ele-
ment which, to some degree, is open to experimentation is
the location of the sensors. As simplified models, thermal
networks reduce large indoor spaces and objects, such as
the building envelope, to point nodes in the RC circuit.
How these nodes correspond to the physical building is
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determined by the sensor location. In this work, we study
different sensor placements in an experimental building
to show how sensor location, with respect to the physical
properties of the building, affects the dynamic information
contained in the data and hence the practical identifiability
of model parameters. Parameter identifiability is analysed
using the Profile Likelihood method, both in the single
parameter dimension and in two parameter dimensions by
projecting the profile onto a plane in parameter space. The
latter method allows improved insight into the parameter
domain, including analysing parameter inter-dependence
and the effects of a constrained parameter space.

2 Theoretical basis
The framework presented in (Kristensen et al., 2004),
named Continuous Time Stochastic Modelling (CTSM),
is a statistically well founded approach to parameter es-
timation. The theoretical basis is briefly summarised be-
low. For a more detailed discussion see (Kristensen et al.,
2004). Consider the estimation problem:

θ̂ = argmin
θ

g(θ ;M ,K ,A ) (1)

s.t. θ ∈Θ

Here, M is a predetermined model structure paramet-
rised by θ ∈ Θ, where Θ ⊆ Rnθ is a set of feasible val-
ues for the model parameters that form inequality con-
straints for the optimisation problem in Eq. (1). Para-
meters in θ are varied over the feasible set Θ by a numer-
ical optimisation algorithm A . The experimental condi-
tions K include measurements for the continuous time
input ut ∈ Rnu and output yt ∈ Rny . The corresponding
ordered sequences of discrete time measurements uk and
yk taken from the system S are y[N] = [y0, y1, . . . , yN ]
and u[N] = [u0, u1, . . . , uN ], where the integer subscripts
k = 0, 1, . . . ,N denote the discrete time sampling instants,
and the subscript enclosed in [·] is used to indicate an
ordered sequence.

The likelihood function, i.e., the probability of ob-
serving the measurement sequence y[N] when θ and M are
given, is defined:

L
(
θ ;y[N],M

)
= p

(
y[N]|θ ,M

)
(2)

By assuming that the residuals are Normal distributed, and
applying the product rule to expand the probability in Eq.
(2), we obtain (Kristensen et al., 2004):

L
(
θ ;y[N]

)
=

 N

∏
k=1

exp
(
− 1

2 εT
k E −1

k|k−1εk

)
√

det
(
Ek|k−1

)(√
2π
)ny

 p(y0|θ)

(3)
The quantities ŷk|k−1, εk and Ek|k−1, which can be obtained
using a Kalman Filter (KF) (Kristensen et al., 2004), is
needed for evaluation of the multivariate Gaussian in Eq.
(3). By taking the negative logarithm, and eliminating the
factor 1

2 , the result `(θ) = −lnL(θ), where dependency
on y[N] and M is omitted for simplicity, can be used as the
objective g in Eq. (1).

2.1 Profile likelihood
Since the model structure M is a representation of a sys-
tem S , it is often assumed that S ∈M (Θ) and that
consequently there exists a true parameter vector θ ∗ such
that M (θ ∗) = S . However, this is rarely the case, es-
pecially for simplified grey-box models based on a naive
physical understanding of the system S . Typically, the es-
timate θ̂ depends on several factors, such as the amount of
dynamic information in K , the choice of objective func-
tion g, and to some extent on the optimisation algorithm
A . Hence, prior to interpretation of parameters as phys-
ical constants of S , it is necessary to perform an identi-
fiability analysis. Since the parameters are estimated us-
ing the Likelihood function, the Profile Likelihood (PL)
method (Raue et al., 2009; Deconinck and Roels, 2017) is
a natural choice. The likelihood profile `PL (θi) is defined
as the minimum log likelihood for θi when the remaining
parameters are freely optimised (Raue et al., 2009; Venzon
and Moolgavkar, 1988):

`PL (θi) = min
θ j 6=i

g
(
θ j 6=i;M ,K ,θi

)
(4)

Values of θi must be chosen prior to optimising the re-
maining θ j 6=i (Raue et al., 2009). The resulting likelihood
profile can be plotted as a function of θi and subsequently
analysed according to the definitions of structural and
practical identifiability for likelihood-based confidence in-
tervals (Deconinck and Roels, 2017). The likelihood-
based confidence interval obtains a confidence region by
applying a threshold to the likelihood function (Raue
et al., 2009; Venzon and Moolgavkar, 1988). Let{

θ : `(θ)− `
(
θ̂
)
< ∆α

}
, ∆α = χ

2 (α,ndf) (5)

where θ̂ is a freely estimated, presumed optimal, para-
meter vector, and the threshold ∆α is the α percentile of
the χ2-distribution with ndf degrees of freedom.

Profile likelihood in two parameter dimensions

By freely estimating all but one parameter, the PL method
essentially projects the nθ dimensional space Θ onto the
single parameter θi. This projection is known to overes-
timate the width of the likelihood-based confidence inter-
val if there are inter-dependent parameters. A step towards
remedying this issue is to modify the PL method to hold
out two parameters (PL2) rather than one, i.e.;

`PL2 (θi,θ j) = min
θk 6=i, j

g
(
θk 6=i, j;M ,K ,θi,θ j

)
(6)

This projects the parameter space Θ onto the plane Θi, j =
(θi,θ j) s.t. θi,θ j ∈ Θ. In addition identifiability is-
sues, these profiles can also diagnose parameter inter-
dependence by inspecting the shape of the confidence
regions. The resulting two-dimensional profiles can be
analysed similarly to the one-dimensional profiles (Raue
et al., 2009), using the definition in Eq. (5). These profiles
are computed for all possible combinations of parameters.
A confidence region in the Θi, j plane is obtained by ap-
plying the ∆α threshold. Observe that since θ̂ has nθ free
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Figure 1. PL2 improved warm start algorithm

parameters while the PL2 estimate has nθ − 2, this gives
ndf = 2 for the computation of ∆α from the χ2-distribution
in Eq. (5). The free estimate θ̂ may with advantage be
chosen as the minimum `PL2 (θi,θ j) obtained from all pro-
files. This search procedure approximates, since it is sub-
ject to the brute force discretisation performed in PL2, a
free optimisation of all parameters using the already com-
puted `PL2 results. Since the PL2 profiles covers the entire
parameter space Θ, this procedure is less affected by local
minima than a direct numerical optimisation. Parameter
identifiability is obtained if the region is bounded in all
directions and the size and shape of this region determ-
ines the accuracy of the parameter estimates. If the region
contains an unbounded equipotential valley in the log like-
lihood space, the parameter is considered structurally non-
identifiable. If the profile has a well defined minima, but
is unbounded in one direction, i.e., the log likelihood is
below the ∆α threshold, this indicates a practically non-
identifiable parameter (Raue et al., 2009).

Implementation and computation time

In (Brastein et al., 2019), a brute force method was used,
running individual optimisations for each predetermined
combination of θi,θ j, each iteration starting from the
nominal parameter vector θ0. Here, the profiles are con-
structed by a set of chained optimisations where each new
point uses a previously optimised θ̂ k 6=i, j from a near-by
point in Θi, j as a warm start, working from the centre of
the plane Θi, j towards the edges. This process is illustrated
in Fig. 1. This modification reduced the computation time
by approximately 4-10 times, since for each computation
of `PL2 (θi,θ j), the initial guess for the free parameters are
taken from a near-by, previously optimised, solution and
hence are already close to optimal.

2.2 Parameter estimation uncertainty
An estimate of the uncertainty of the estimated parameters
can be obtained by computing the covariance of the esti-
mated parameters Σ = 2H−1 where H = ∇T ∇`(θ)

∣∣
θ=θ̂

is
the Hessian of `(θ), whose elements are approximated as
(Kristensen et al., 2004; Raue et al., 2009):

hi, j ≈
(

∂ 2

∂θi∂θ j
`(θ)

)∣∣∣∣
θ=θ̂

(7)

The partial derivatives of `(θ) can be numerically ob-
tained using the central difference approximation. From
the covariance matrix, asymptotic point-wise confidence
limits on the estimated parameters can be computed (Raue
et al., 2009)

θ̂i±
√

χ2 (α,ndf)Σi,i (8)

where for point-wise intervals ndf = 1. Alternatively, con-
fidence ellipsoids of dimension nθ as a set of θ can be
defined from the inequality:{

θ :
(
θ − θ̂

)T
Σ
−1 (

θ − θ̂
)
0 ∆α

}
, ∆α = χ

2 (α,ndf)

(9)
where the scale of the ellipsoid is determined by the factor
∆α computed as in Section 2.1 (Johnson and Wichern,
2007). Given that the covariance matrix is symmetric and
positive definite, the boundary of an ellipsoid can be ob-
tained by the Cholesky decomposition Σ = LLT , hence
(Press et al., 1992):(

θ − θ̂
)T

Σ
−1 (

θ − θ̂
)
= ∆⇒

∣∣L−1 (
θ − θ̂

)∣∣2 = ∆α (10)

Next, suppose x is a point on a unit hypersphere, then the
ellipsoid boundary is obtained by the affine transformation

θ = θ̂ +
√

∆Lx (11)

Elliptic regions in the plane Θi, j can be computed by pro-
jecting the nθ dimensional ellipsoid onto Θi, j. With the
χ2 confidence bound given with ndf = 2, assuming all un-
certainty on the parameters in the plane Θi, j, these elliptic
confidence regions are comparable to the PL2 method
presented in Section 2.1. Observe that the confidence re-
gion based on applying a threshold on the likelihood func-
tion as in Eqs. (4) and (6) are often considered superior to
the Hessian method, since the Hessian assumes symmetric
distributions and therefore cannot be used to identify prac-
tical identifiability (Raue et al., 2009). However, the Hes-
sian approach is much faster to compute and gives a reas-
onable estimate of the estimated parameter uncertainty if
the parameters are approximately Normal distributed.

3 Experimental setup

3.1 Experimental building

The experimental building, which is located at Campus
Porsgrunn of the University of South-Eastern Norway
(USN), is shown in Fig. 2. The building is constructed
with three different types of walls. As shown in Fig. 2, the
North wall is constructed using materials with high insula-
tion quality, which is typically used in modern sustainable
buildings. The South wall is constructed using traditional
building materials, with lower thermal insulation capabil-
ities.
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Figure 2. The experimental building has walls constructed using different techniques for insulation. Sensors are located on all
walls at different height above floor, and in different insulation layers. The sensors used in this project, N3 and S1, are measuring
the wall temperature inside the building on the north and south wall, respectively.

Figure 3. RC circuit model of the building.

3.2 Model

Figure 3 shows a possible model structure, which was de-
veloped to approximate the thermal behaviour of the ex-
perimental building, partially based on the R4C2 model
presented in (Berthou et al., 2014). The RC circuit con-
sists of five components: the thermal resistance between
room air and wall Rb, the building envelope Rw, and the
thermal resistance of windows and doors Rg. The two ca-
pacitances Cb and Cw represent the thermal capacitance
of the building interior and envelope, respectively. The
model has two outputs: the room temperature Tb and the
wall surface temperature Tw, and two inputs: the con-
sumed power by an electric heating element Q̇ and the
outside temperature T∞. The parameter vector θ holds
the value of each of the five components. By applying
Kirchoff’s balance laws to the circuit, the model can be
expressed as a linear stochastic differential equation

dx
dt

= Axt +But +wt (12)

yt = xt + vt (13)

Table 1. Nominal parameter values and min/max limits for res-
istances [K/W] and capacitances [J/K].

Rg Rb Rw Cb Cw
θ0 0.15 0.20 0.30 1000k 200k

θmin 0.03 0.03 0.03 800k 1k
θmax 0.25 2.00 2.00 1800k 1000k

where

xt =

[
Tb
Tw

]
, ut =

[
Q̇
T∞

]
, B =

[
1

Cb

1
CbRg

0 1
CwRw

]

A =

[
− 1

CbRb
− 1

CbRg
1

CbRb
1

CwRb
− 1

CwRb
− 1

CwRw

]
and wt ∼ N (0,W ) is the process noise (model error), W is
the spectral density of wt . All states are measurable, hence
Eq. (13) with measurement noise vt ∼ N (0,V ). Observe
that the model equations are expressed in continuous time,
and discretised by the estimation software using a Runge-
Kutta 4th (Runge, 1895) order approximation. Observe
also that while the model is linear, the algorithm is not
restricted to linear models. The choice of Kalman Filter
implementation is determined by the type of model being
used (Brastein et al., 2019).

Table 1 lists a set of experimentally obtained nominal
parameters, which are used as initial guesses for model
calibration, and min/max limits which corresponds to the
bounds of the constrained parameter space Θ.

3.3 Calibration data
Figure 4 shows a set of calibration data, which consist of
four temperature measurements and one measurement of
supplied input power. The data was recorded in February
2018. Originally, the data was collected at 1 minute in-
tervals but has been downsampled to 30 min time-step, by

SIMS 60

54DOI: 10.3384/ecp2017051  Proceedings of SIMS 2019
Västeräs, Sweden, 13-16 August, 2019



Figure 4. Data recorded from sensor at different locations in the
building

Table 2. Estimated covariance matrices with corresponding KS
test result (critical value for 95% conf. is 0.062) .

# W
1
2

Tb
W

1
2

Tw
V

1
2

Tb
V

1
2

Tw
KSTb KSTw

S1 0.115 0.104 0.028 0.037 0.054 0.042
N3 0.117 0.077 0.019 0.145 0.046 0.035

extracting every 30th measurement. Two of the temperat-
ures correspond to model state Tb and the model input out-
door temperature T∞. The remaining two measurements
correspond to different alternative sensor locations for Tw,
one on the north wall (sensor N3) and one on the south
wall (sensor S1). Figure 4 shows that there is significant
differences between these two measurements in dynamic
content, due to the different construction materials used in
the North and South wall, which will lead to differences
in the identifiability analysis of the estimated parameters.
In the sequel, two different cases S1 and N3 are analysed,
distinguished by the choice of reference measurement for
the output Tw.

Optimisation algorithm

In (Brastein et al., 2019) COBYLA (Powell, 1994), based
on linear approximations, was used as the optimisation
algorithm A in Eq. (1). In this work, further experi-
mentation with other optimisation algorithms showed that
a quadratic approximation algorithm, such as BOBYQA
(Powell, 2009), gives significantly faster convergence, by
approximately a factor of 5, as well as more consistent res-
ults by improved ability to avoid local minima. BOBYQA
is therefore used in the sequel.

4 Results and discussion
A requirement for using Kalman Filters to obtain resid-
uals for subsequent evaluation of the likelihood function
in Eq. (3) is obtaining reasonable estimates for process
and noise covariance matrices, respectively W and V . In
(Brastein et al., 2019) V was obtained from data, while W
was found by manual experimentation. A better approach
is to estimate them from data, by including them in θ .

In order to reduce the number of free parameters, both
covariance matrices are assumed diagonal. Further, the

Figure 5. CP diagram of residuals for outputs Tb(red) and
Tw(green)

Figure 6. PL results for Cases S1 and N3. Green lines indicate
in increasing order 90%, 95% and 99% confidence limits.

square root of the diagonal elements are added to the para-
meter vector θ with some appropriate bounds in Θ and
subsequently estimated by numerical optimisation of Eq.
(1). The resulting covariances are shown in Table 2. Ob-
serve that the results corresponding to the state/measure-
ment Tb are similar for both cases, while the results for
Tw differ significantly. This is expected due to the dif-
ferences in noise characteristics and dynamic information
content in the data collected from the two sensors. For
Case S1 the estimates for W is similar for both states,
where as for Case N3 the differences between measure-
ments of Tb and Tw results in different estimates for the
corresponding elements in W .

The residuals obtained after optimising all parameters
must be analysed for normality, in order to justify the use
of the multivariate Gaussian in Eq. (3) for evaluation of
the likelihood function (Kristensen et al., 2004). Figure
5 shows a cumulative periodogram (CP), with 95% con-
fidence bounds obtained from the Kolmogorov-Smirnov
criterion (Madsen, 2007; Madsen and Holst, 1995; De-
coninck and Roels, 2017; Bacher and Madsen, 2011). The
CP plot shows that the residuals are well approximated
by a normal distribution. Additionally, the Kolmogorov-
Smirnov normality-test results are listed in Table 2. After
calibration of the parameters, including the noise covari-
ance matrices, residuals are found to pass the normality
tests.

4.1 Profile likelihood
Once the covariance parameters have been determined, the
remainder of this paper is focused on analysing the para-
meter space Θ by use of the Profile Likelihood (PL) (Raue
et al., 2009) method, first in a single parameter dimension,
and next in two parameter dimensions. The PL results
in Fig. 6 show, as expected, that some of the paramet-
ers have narrower profiles for the S1 Case compared with
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Figure 7. PL2 results for Case S1 (left) and Case N3 (right). Confidence limits, base on the χ2 distribution with 2 degrees of
freedom is indicate on the figure legend to the right.

the N3 Case. Since the excitation in Tw is much larger
for Case S1, it is expected that the identifiability analysis
reflects this by computing tighter confidence regions for
the parameters most affected by Tw. Observe in particu-
lar how the profiles for Cw and Rg indicates considerably
improved identifiability of these parameters for Case S1.
The profiles for parameter Cb is almost identical, which is
expected, since this parameter is not influenced by Tw.

A second observation from Fig. 6 is that Rw is dia-
gnosed as practically non-identifiable, since the profile ex-
tend towards infinity in the positive direction. Observe
also that Rb follows a similar trend, but with an abrupt
break in the profile, which leads to a bounded profile
for Rb. However, if parameters Rb and Rw are inter-
dependent, the projection of the likelihood function for
the parameter space Θ onto Rb will be affected by Rw,
and subsequently by the constraint imposed by Θ. This
type of constraints, in the presence of parameter inter-
dependence, is known to produce such breaks in the com-
puted profiles (Brastein et al., 2019), as discussed in Sec-
tion 2.1.

4.2 Profile likelihood in 2D
Next, the two-dimensional profile likelihood (PL2)
method is applied in order to investigate parameter inter-
dependency. The result is shown in Fig. 7. By projecting
the ML function in Eq. (3) onto a plane of two paramet-
ers, rather then a single parameter axis as in PL, it becomes
possible to diagnose parameter identifiability by observing
the shape of the confidence regions. First, observe that the
PL2 results show a similar improvement in identifiability
for Case S1 over Case N3 for the same parameters. The
confidence regions for Cw and Rg are significantly reduced
for Case S1, whereas the region for Cb is similar for both
cases. Hence, the results of the PL analysis is confirmed

by the PL2 results.
Further, the PL2 results also show that Rb and Rw are

highly inter-dependent, a fact which was not easily ob-
served in Fig. 6. The projected topology of these two
parameters shows a near linear relationship between them.
This explains why the PL profile for Rb contains an ab-
rupt break, caused by the constraint on Rw and their inter-
dependence. In this context, it is interesting to consider
whether this lack of identifiability for parameters Rb and
Rw are of practical, i.e. related to information content in
data, or structural nature. Parameter inter-dependency is
clearly caused by the model structure, not the data. How-
ever, the PL2 profile shows that while the parameters are
linearly dependant, e.g. Rb = cRw, neither parameter is
identifiable, since the profile is unbounded in one direction
in Θ. Hence, it is accurate to claim that these two paramet-
ers are practically non-identifiable, but also that there is
a structural problem of parameter inter-dependency. The
latter may be eliminated by re-parametrising the model,
say, by introducing the relationship Rb = cRw with the
constant c pre-determined based on Fig. 7. However, there
is no physical reason to assume that the thermal resistance
between the inside wall and the building interior should be
depending linearly on the thermal resistance of the wall it-
self, hence this modification of the model equations seems
somewhat ad hoc. A better alternative is to modify the
RC circuit model structure such that the parameter inter-
dependency is resolved.

4.3 Reduced order model for Case S1
From Fig. 6 and 7 for Case S1 it appears that the value of
Cw tends towards zero as Rb and Rw increases. This could
indicate that removing Cw, and replacing the state Tw by a
measurement Tw = T∞Rb+TbRw

Rb+Rw
, is an appropriate modifica-

tion. However, after calibrating the reduced model, the re-
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Figure 8. PL2 results after removing Rg from the model, for Case S1 (left) and Case N3 (right). Confidence limits, base on the
χ2 distribution with 2 degrees of freedom is indicate on the figure legend to the right. Likelihood threshold isolines and a 95%
confidence error ellipse boundary, based on the inverse Hessian, has been added to the plot for N3.

sidual analysis for output Tw, based on a CP diagram, does
not support the normality assumption, which in turn indic-
ates that the model order is to low. Hence, removing Cw is
not an acceptable modification to the model structure.

4.4 Parameter inter-dependence
Observe from Fig. 6 and 7 that for Case N3 there is a
significant flat region in the profiles of both Rb and Rw.
Table 3 contains a selection of values from within this re-
gion, which has been computed by keeping Rb constant
while optimising the remaining parameters. This experi-
ment shows that by varying the parameters within this op-
timal region, the total thermal resistance between building
interior and the outside temperature, Rtot =Rg||(Rb +Rw),
where || indicates a parallel connection of resistors, is
constant. Also, the time constant for the wall capacitor
τw = (CwRb||Rw) is approximately constant for the same
experiments. Since the total resistance Rtot < Rg it follows
that Rb and Rw can grow large, by compensating with Rg
and Cw, without affecting the models predictions. Com-
bined with the PL2 analysis results, this indicates an over-
parametrised model.

4.5 PL analysis of model without Rg
A natural next step is to reduce the number of parameters
by removing the presumed redundant parameter Rg from

Table 3. Optimised values of Rw, Rg and Cw with fixed values
of Rb from within the flat region observed in the PL results.

Rb Rw Rg Cw Rtot τw
0.700 0.993 0.093 163k 0.088 67.0k
0.900 1.277 0.092 126k 0.088 66.5k
1.300 1.844 0.091 88k 0.088 67.0k

the model circuit. Repeating the PL2 analysis of the model
with Rg removed gives the plots shown in Fig. 8. The pro-
files for all parameter combinations are now approxim-
ately elliptical, which indicates parameter independence.
Observe also from Fig. 8 that the min/max limits which
constitutes the bounds Θ has been changed to comply with
the reduced model structure. Further, all parameters now
have bounded profiles, which indicates identifiability. By
comparing Case S1 and Case N3, the effect of low excit-
ation in Tw for Case N3 is observed also for the reduced
model. In addition to obtaining a different optimal value
for Cw, as expected, since the sensor is mounted on a dif-
ferent wall, the profile is much wider for Case N3. This in-
dicates a wider confidence region for this parameter, hence
a more uncertain estimate.

Table 4. Optimal parameters with Rg removed.

Rb Rw Cb Cw
S1 0.040 0.048 1267k 419k
N3 0.035 0.051 1137k 2735k

With identifiable parameters, it is interesting to com-
pare the optimal parameter estimates, listed in Table 4, for
each case. Observe first that for both cases, the total ther-
mal resistance between building interior and outside tem-
perature Rb +Rw h 0.088, which was the value obtained
for the total resistance in Table 3. Observe also that both
resistances and the interior capacitance Cb is similar for
both cases, while the value obtained for Cw is much lar-
ger for the N3 case, as expected, due to the high grade
insulation used in the North wall.
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Hessian vs Profile Likelihood

Observe from Fig. 8 that the super-imposed Hessian based
error ellipse at α = 95% are similar to the 95% confidence
regions computed by thresholds on the likelihood profile.
Observe especially for the profile Rb vs Rw that the two
confidence region methods produce almost identical re-
gions, since the projected likelihood profile is almost sym-
metric. For e.g. Cb vs Cw the Hessian ellipse and likeli-
hood thresholds are of similar size, but the Hessian has an
offset due to the non-symmetric likelihood profile. This
shows the advantage of the profile likelihood based re-
gions, in that they can produce accurate results for asym-
metric parameter distributions.

5 Conclusion
In this paper, two different sensor locations, giving dif-
ferent dynamic information in the recorded calibration
data, was used to estimate and analyse parameters of a
thermal network grey-box model of building thermal be-
haviour. The sensor locations differ with respect to the
physical properties of the building, with one sensor fitted
to a high insulation sustainable wall, and the other to a
standard insulation wall. The profile likelihood method
was used, projecting the likelihood function in both one
and two parameter dimensions, to show the difference in
confidence regions produced by lack of excitation in the
calibration data. Confidence regions computed by apply-
ing a threshold to the 2D profiles were compared with er-
ror ellipses computed based on the Hessian, which shows
that while the two confidence region methods give similar
results, the PL method better represents the uncertainty
when the parameter distribution is asymmetric. The two-
dimensional likelihood profile results were used to dia-
gnose parameter non-identifiability, and the model struc-
ture was subsequently modified to resolve the problem,
thus obtaining identifiable parameters.
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Abstract

Obtaining accurate models that can predict the behaviour of dynamic systems is important for a variety
of applications. Often, models contain parameters that are difficult to calculate from system descriptions.
Hence, parameter estimation methods are important tools for creating dynamic system models. Almost
all dynamic system models contain uncertainty, either epistemic, due to simplifications in the model, or
aleatoric, due to inherent randomness in physical effects such as measurement noise. Hence, obtaining
an estimate for the uncertainty of the estimated parameters, typically in the form of confidence limits, is
an important part of any statistically solid estimation procedure. Some uncertainty estimation methods
can also be used to analyse the practical and structural identifiability of the parameters, as well as
parameter inter-dependency and the presence of local minima in the objective function. In this paper,
selected methods for estimation and analysis of parameters are reviewed. The methods are compared
and demonstrated on the basis of both simulated and real world calibration data for two different case
models. Recommendations are given for what applications each of the methods are suitable for. Further,
differences in requirements for system excitation are discussed for each of the methods. Finally, a novel
adaption of the Profile Likelihood method applied to a moving window is used to test the consistency of
dynamic information in the calibration data for a particular model structure.

Keywords: Parameter estimation, Uncertainty analysis, Bootstrapping, Profile Likelihood

1 Introduction

1.1 Background

1.1.1 Dynamic system models

Dynamic system models are important for a large
range of scientific and industrial applications, such as
model predictive control of dynamic systems Killian
and Kozek [2016], Wang [2009] or creating digital twins
of chemical process plants for monitoring or operator
training Rosen et al. [2015]. Typically, the performance
of the overall system depends on the accuracy of the
model predictions. Often, models contain parameters
that are difficult to obtain from system specifications.
Hence, calibration of model parameters is an important

part of developing good quality dynamic models. Ad-
ditionally, the model parameters are sometimes used as
soft-sensors for system variables that are otherwise dif-
ficult to measure. This requires a specific physical in-
terpretation of the estimated parameters, which places
further requirements on the model calibration process.

For many real world processes, models can be cre-
ated based on balance laws and application of detailed
knowledge about the physics and chemistry involved
in the process. This approach often includes approx-
imations in order to keep the model’s detail level man-
ageable. Such models are classified as mechanistic, or
white-box, since they describe detailed physical inform-
ation about the system mechanisms, using a mathem-
atical language, in a way that is interpretable by a
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human expert. For this type of models, parameters
tend to be derived from physical specifications of the
system. It is also common for such models to include
parameters that require estimation from measurement
data.

An alternative approach to creating dynamic system
models is the use of System Identification (SID) meth-
ods Ergon and Di Ruscio [1997], Ljung [1999], where
models are created by calibrating parameters of a pre-
determined mathematical structure in order to capture
the relevant dynamic system behaviour. SID mod-
els are created without explicit use of prior physical
information, hence, they are often classified as black-
box, or data-driven, models Kristensen et al. [2004].
One advantage of the SID approach is that it captures
the process behaviour directly from measurement data,
which avoids modelling errors caused by insufficient
specification of the system. To properly capture the
system behaviour, SID methods require a complete set
of basis functions Farrell and Polycarpou [2006]. If the
applied set of basis functions is insufficient, the identi-
fied model may still approximate the system behaviour,
but with model errors, e.g., non-linear system identi-
fied using a linear model structure. Further, SID meth-
ods obtain all system information from data, hence the
quality of the calibration data, in particular the level of
dynamic information, directly influences the quality of
the obtained model. Finally, the SID approach tends
to provide better statistics on the model accuracy, pro-
duced as part of the calibration procedure Johansson
[1993], Ljung [1999].

A third, intermediate, possibility is to combine cog-
nitively constructed model structures, based on naive
prior physical knowledge, with parameter calibration,
to create a simplified lumped parameter model. The
resulting model, often classified as grey-box, tends to
have most, if not all, its parameters unknown, which
requires full model calibration Berthou et al. [2014],
Bohlin and Graebe [1995], Kristensen et al. [2004]. Due
to the significant approximations applied in the cre-
ation of grey-box models, they should be treated in
a stochastic framework, using Stochastic Differential
Equations (SDE) to describe the dynamic system be-
haviour. These models are approximations by design,
using only limited physical insight, which introduces
significant epistemic uncertainty. However, since the
models are based on, at least, a naive physical under-
standing of the underlying system, the parameters are
often assumed to be physical constants.

Arguably, most white-box models contain some un-
certainty in the formulation, which gives rise to model
errors, and can therefore benefit from application of
grey-box modelling methods for parameter estimation.
This approach has indeed been claimed as a natural

framework for modelling dynamic systems in general
Bohlin and Graebe [1995], Kristensen et al. [2004].

1.1.2 Identifiability

Parameters of models derived, at least partially, from
prior knowledge of the underlying physical system are
often assumed to be constants of the system. Sub-
sequently, a globally optimal value, which can be ob-
tained unambiguously by optimisation, is assumed to
exist. This assumption should, however, be verified
in the context of parameter identifiability Ferrero et al.
[2006], Johansson [1993], Juhl et al. [2016a], Raue et al.
[2009]. This is especially important for grey-box mod-
els, which contain large epistemic uncertainty due to
the strong approximation applied in their construction.

It is well known that models can contain paramet-
ers that are structurally non-identifiable due to over-
parametrisation, which leads to parameter redundancy,
or parameters for which perturbations of the para-
meter values have no observable effect on the model
output Ferrero et al. [2006], Johansson [1993], Raue
et al. [2009]. Additionally, lack of sufficient excita-
tion of the system during data acquisition may lead to
practical non-identifiability of certain parameters De-
coninck and Roels [2017], Ferrero et al. [2006], Johans-
son [1993], Murphy and Van der Vaart [2000], Raue
et al. [2009]. If the measured inputs and outputs of
the physical system do not contain the necessary dy-
namic information, the influence of some parameters on
the error function used for parameter optimisation may
be negligible, thus leading to non-identifiability. While
structural identifiability is independent of the experi-
mental conditions, practical identifiability is a function
of the dynamic information content in the data-set, and
subsequently depends on the experimental configura-
tion Raue et al. [2009].

Due to these potential challenges with parameter
identifiability, a model structure may be designed with
parameters that are intended to have a specific physical
meaning, but it is not certain that the estimated para-
meters support this assumption Deconinck and Roels
[2017]. While the parameters of physical systems are
clearly constants of the system, the estimated paramet-
ers of a model are always subject to uncertainty and
potential non-identifiability.

1.2 Previous work

1.2.1 Parameter estimation and the CTSM
framework

Estimation of parameters requires a well defined ob-
jective function which adequately describes the model
fit. Several alternatives are used in the literature, such
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as the shooting/ballistic simulation error approach,
based on deterministic simulations Berthou et al.
[2014], Brastein et al. [2018], or the maximum likeli-
hood approach used in the Continuous Time Stochastic
Modelling (CTSM) framework Kristensen et al. [2004],
Madsen and Holst [1995]. CTSM is based on max-
imising the likelihood function Akaike [1998], Rossi
[2018] evaluated by computing residuals, which are
assumed to be Normal distributed, in a Kalman Fil-
ter. This method has previously been developed in
a number of publications Bacher and Madsen [2011],
Juhl et al. [2016b], Kristensen and Madsen [2003],
Kristensen et al. [2004], Madsen and Holst [1995] and
implemented in the CTSM framework Kristensen and
Madsen [2003]. This approach offers the advantage of
an objective function with a solid statistical framework,
which enables use of statistical tools for model valida-
tion and selection Kristensen et al. [2004].

1.2.2 Profile likelihood

While structural identifiability is well defined in the
literature, the practical identifiability of parameters is
less clearly defined Raue et al. [2009]. Although there
are several methods that can identify structural non-
identifiability, e.g., Power Series Expansion Pohjanpalo
[1978], it is desirable to have a method that can identify
both types of parameter identifiability. A good choice
is the Profile Likelihood (PL) method, which creates
profiles or distributions of the parameter likelihood,
and subsequently can produce likelihood based con-
fidence intervals Deconinck and Roels [2017], Murphy
and Van der Vaart [2000], Raue et al. [2009], Venzon
and Moolgavkar [1988]. These intervals can be used to
diagnose parameter identifiability Raue et al. [2009].

1.2.3 Bootstrapping for time-series data

The idea of Bootstrapping was first introduced in Efron
[1979], as a method of estimating the variance, i.e., un-
certainty, of a statistic. The method has become pop-
ular, due in part to its simplicity. The fundamental
idea in bootstrapping is to estimate properties, such
as the uncertainty of an estimated parameter, by ran-
domly drawing samples with replacement from the ori-
ginal data, thus obtaining multiple different data-sets.
These different data-sets will produce slightly different
parameter estimates, which allows estimation of the
uncertainty of the estimated parameter by computing
the mean and covariance of the bootstrapped estim-
ates. Data-sets generated by bootstrapping are often
called pseudo data-sets to emphasise the fact that they
are all re-combinations of the original data, and not,
new, independent data-sets collected from the physical
system. An interesting property of the bootstrapping

method is its intuitive similarity to the basis of the con-
fidence interval (CI) as presented in Kullback [1939],
Neyman [1937]; running multiple experiments to com-
pute the uncertainty of results.

A fundamental requirement of the bootstrap
method, as presented in Efron [1979], is that the
samples in the original data must be independently
and identically distributed (i.i.d), which is a prop-
erty not usually observed for time-series data Kun-
sch [1989]. Hence, there has been several adaptions
of bootstrapping for time-series data. One solution
is to fit a parametric Auto Regressive Moving Aver-
age (ARMA) model to the data, and bootstrap the
residuals, which are presumed i.i.d, to create new data-
sets Kunsch [1989], Lie [2009], Politis [2003]. However,
this approach is limited to systems which can be ad-
equately described by such model structures and thus
produce i.i.d. residuals. Hence, non-parametric ap-
proaches to bootstrapping for time-series data has been
receiving significant interest in research Kunsch [1989],
Lodhi and Gilbert [2011], Politis [2003], Politis and
Romano [1994]. In particular, various forms of block
based bootstrapping, i.e., methods that segment the
data into blocks, and draw randomly with replacements
from the blocks, rather than the samples themself, has
shown promising results Kunsch [1989]. Examples in-
clude overlapping and non-overlapping block bootstrap
Kunsch [1989], Lodhi and Gilbert [2011], moving block
bootstrap Kunsch [1989], and stationary bootstrapping
Politis and Romano [1994]. For a detailed review of
bootstrapping for time-series data, see Politis [2003].

1.3 Overview of paper

In this paper, selected methods for estimating un-
certainty of estimated parameters are presented and
demonstrated on two separate test cases. The methods
discussed in this paper are based on the use of numer-
ical optimisation, using a well defined objective func-
tion to evaluate the fit of a parameter set. The focus in
this paper is on analysing the parameters themselves,
rather than the prediction accuracy of the calibrated
model.

The theoretical foundation of parameter estimation
and analysis is presented in Section 2. Sections 2.1 and
2.2 detail the foundation of parameter estimation and
the representation of uncertainty, respectively. Section
2.3 presents the theoretical foundation of each of the
discussed methods. Results of applying the methods
is presented in Section 3. Finally, recommendations
as to what applications each of the methods is most
suitable for are given in Section 3.3 before the paper is
concluded in Section 4.
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Figure 1: An overview of all the methods discussed in this paper, and how they are related. On the left-hand side,
six optimisation based methods are shown, and related with the two types of objective functions that
are discussed. The top three methods: Uninformed Random Picking, Randomised Initial Conditions
and straight forward Model Calibration, can be used with both types of objective function. The
lower three methods: Profile Likelihood 1D and 2D, and the Hessian curvature method, all require a
Maximum Likelihood objective function. The top right block in the figure shows the moving window
method, which can be used with all the six different methods to test the results for consistency in time.
Next, the discussed variations of bootstrapping for time-series data are shown, and associated with
model calibration, since the working principle of bootstrapping methods requires separate calibration
of parameters for each generated pseudo data-set. Further, the two types of bootstrapping for time-
series data, parametric vs non-parametric, are shown. Only non-parametric bootstrapping is discussed
in this paper, specifically simple block bootstrapping and stationary bootstrapping, as illustrated in
the lower right part of the figure.

2 Theoretical basis

This section discusses in detail several methods for es-
timating parameters of dynamic models, and, in partic-
ular, methods that also estimate the uncertainty and
identifiability of the estimated parameters. An over-
view of the methods is presented in Fig. 1.

2.1 Parameter estimation

Estimation of parameters θ for a known model struc-
ture M can formally be defined as solving the optim-
isation problem:

θ̂ = arg min
θ

g (θ;M,K,A) (1)

s.t. θ ∈ Θ

Here, Θ = {θ : θmin < θ < θmax; θ ∈ Rnθ} is a continu-
ous space of feasible values for the model parameters,
where θmin and θmax are the lower and upper bounds.
Hence, the space Θ forms inequality constraints for the
optimisation problem in Eq. (1). K are the experi-
mental conditions, including a set of measurements of

system inputs and outputs, which are defined in con-
tinuous time as input ut ∈ Rnu and output yt ∈ Rny ,
and the corresponding ordered sequences of discrete
time measurements uk and yk:

y[N ] = [y0, y1, . . . , yN ] (2)

u[N ] = [u0, u1, . . . , uN ]

Here, the integer subscripts k = 0, 1, . . . , N denote
the discrete time sampling instants and the subscript
enclosed in [·] is used to indicate an ordered sequence.
These measurements are used to evaluate the objective
function g (θ) when θ is varied over the feasible set Θ by
a numerical optimisation algorithm A.

2.1.1 Uncertainty of estimated parameters

A common assumption is that S ∈ M (Θ), where
S is the true system, and that there exists a true
parameter vector θ∗ such that M (θ∗) ≡ S . How-
ever, if the data used for parameter estimation, i.e.,
y[N ] and u[N ], is collected as measurements from the
physical system S, it will contain aleatoric uncertainty
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due to the inherent randomness of measurement noise
Bentley [2005], Ljung [1999]. Additionally, most dy-
namic system models contain approximations with re-
spect to S, which also introduces some epistemic uncer-
tainty in the model equations. Hence, the assumption
M (θ∗) ≡ S is almost always questionable. Further,

the estimate θ̂ depends on the amount of dynamic in-
formation in K, the choice of model fit objective func-
tion g (θ), and to some extent on the optimisation al-
gorithm A. Hence, even if there exists a well defined,
globally optimal, set of parameters θ∗, it may not be
possible to obtain an unambiguous parameter estim-
ate. Therefore, prior to interpreting a set of estimated
parameters as determined by the physical properties
of S, and subsequently assuming a physical interpreta-
tion to the estimated parameter values, it is necessary
to analyse the estimation uncertainty and identifiabil-
ity of the parameters Ljung [1999].

2.1.2 Stochastic parameter estimation

Dynamic system models are typically formulated with
uncertainty in both the state transition and measure-
ment equations Bohlin and Graebe [1995], Kristensen
et al. [2004], Simon [2006]. Such models can conveni-
ently be expressed as a continuous time stochastic dif-
ferential equation (SDE) for the state transition Jazw-
inski [1970]. Since the data used for calibration is typic-
ally available only at discrete time instants, a discrete
time measurement equation is a convenient formula-
tion. Adopting the notation of Kristensen et al. [2004]:

dxt =f (xt, ut, t, θ) dt+ σ (ut, t, θ) dωt (3)

yk =h (xk, uk, tk, θ) + ek (4)

where t ∈ R is the time variable and xt ∈ Rnx is
the continuous time state vector. The first and second
terms in Eq. (3) are commonly called the drift and dif-
fusion term, respectively Jazwinski [1970], Kristensen
et al. [2004]. The diffusion term expresses the pro-
cess noise as the function σ multiplied with the dif-
ferential of a standard Wiener process ωt Jazwinski
[1970], Kristensen et al. [2004]. The discrete time meas-
urement equation is given in Eq. (4). The CTSM
framework Kristensen and Madsen [2003], Kristensen
et al. [2004], Madsen and Holst [1995] presents a stat-
istically solid approach to estimating parameters in
such stochastic models. A Maximum Likelihood es-
timate of θ can be obtained by deriving the object-
ive g (θ) in Eq. (1) from the likelihood L (θ), defined
as the joint probability Pr (·) of observing the meas-
urement sequence y[N ] when θ and M are known,

i.e., L
(
θ; y[N ],M

)
= Pr

(
y[N ]|θ,M

)
. Note that while

L
(
θ; y[N ],M

)
is defined using probability, the result-

ing likelihood function is not a probability distribu-

tion, since the integral of the likelihood over all possible
parameters does not equal 1.

For simplicity of notation, the model structureM is
implicitly assumed known and omitted from the con-
dition. The likelihood can be expanded to conditional
probabilities by the chain rule:

L
(
θ; y[N ]

)
=

(
N∏
k=1

Pr

(
yk|y[k−1], θ

))
Pr (y0|θ) (5)

Equation (3) assumes the diffusion term to be ad-
ditive and independent of the state x, and driven by
a Wiener process Kristensen et al. [2004]. Hence, it is
reasonable to assume that the conditional probabilities
in Eq. (5) can be approximated by Gaussian distribu-
tions Kristensen and Madsen [2003], Kristensen et al.
[2004]. The likelihood can then be expressed as a mul-
tivariate Gaussian distribution Kristensen et al. [2004],

L
(
θ; y[N ]

)
= N∏

k=1

exp
(
− 1

2ε
T
k|k−1E

−1
k|k−1εk|k−1

)
√

det
(
Ek|k−1

) (√
2π
)ny

Pr (y0|θ) (6)

To ensure that Eq. (6) is justified, the normality as-
sumption on the residuals can, and should, be checked
during model validation Johansson [1993], Kristensen
et al. [2004]. Model validation is further discussed in
Section 2.1.4

The residuals εk|k−1 and their covariance Ek|k−1 are
needed to evaluate Eq. (6). These quantities can be
obtained by use of a Kalman Filter (KF):

ŷk|k−1 = E
[
yk|y[k−1], θ

]
(7)

εk|k−1 = yk − ŷk|k−1 (8)

Ek|k−1 = E
[
εk|k−1ε

T
k|k−1

]
(9)

The choice of KF implementation, either the standard
linear KF for linear models, or a non-linear variant
such as the Extended KF (EKF) or the Unscented KF
(UKF), depends on the model equations Brastein et al.
[2019a].

Equation (6) is further simplified by conditioning on
knowing y0, taking the negative logarithm, and elim-
inating the factor 1

2 . Finally, the objective g (θ) in Eq.
(1) is defined as g (θ;M,K) = ` (θ) where the log like-
lihood function ` (θ), omitting the dependency on y[N ]

for simplicity of notation, is given as

` (θ) =
N∑
k=1

εTk|k−1E
−1
k|k−1εk|k−1 + ln

(
det
(
Ek|k−1

))
(10)

The constant term c = N · ny · ln (2π) has also been
omitted.
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2.1.3 Deterministic parameter estimation

Dynamic system models typically contain both aleat-
oric and epistemic uncertainty caused by the inherent
randomness of measurements and the use of approx-
imations in the model equations, respectively. Despite
the well understood stochastic nature of such models,
it is a common practice to treat all uncertainty as aleat-
oric and present at the model output. This results in a
deterministic, sometimes called a shooting or ballistic,
simulation, approach, in which the simulated state tra-
jectory is completely determined by the given para-
meter vector θ, the initial conditions, and the meas-
ured system inputs. Essentially, the parameter estima-
tion problem is then formulated as a curve fitting of the
state trajectory transformed through the measurement
equation. Rewriting the model from Eqs. (3) and (4)
in discrete time without the diffusion term, let

x̂k|0 = f̃
(
x̂k−1|0, uk, θ

)
(11)

ŷk|0 = h̃
(
x̂k|0, uk, θ

)
+ ek

where the estimated state x̂k|0, and subsequently the
estimated output ŷk|0, at time k are computed using
only information available at initial time. The Ordin-
ary Least Squares (OLS) estimate of the parameters is
obtained by minimising the sum of square errors (SSE):

g̃ (θ) =

N∑
k=1

ε̃Tk|0Qε̃k|0 (12)

where Q is a weighting matrix. Here, the estimation
error ε̃k|0 = yk − ŷk|0 depends only on information at
initial time t0, which is in contrast to the residual ob-
tained by the one-step ahead predictions in Eq. (8).

It is interesting to observe that the estimate obtained
by minimising Eq. (12) corresponds to the maximum
likelihood estimate (MLE) obtained from minimising
Eq. (6) if, and only if, ε̃k|0 = εk|k−1 and the innova-
tion covariance Ek|k−1 is constant such that Q = E−1.
Hence, minimising Eq. (12) gives an MLE estimate
of the parameters only if the state transition model is
exact w.r.t. the data generating system S, i.e., the un-
certainty associated with the diffusion term in Eq. (3)
is zero and the measurement noise distribution is sta-
tionary with zero mean. Note also that if all measure-
ments have the same variance, i.e., E−1 = Q = c · I in
Eq. (12), the weighting matrix can be taken outside
the summation and subsequently eliminated, thus ob-
taining the unweighted least squares estimate.

While this can be a reasonable approximation, it is
rarely exactly true, except when the calibration data is
generated by simulations of the same model structure
M. Observe further that, assuming affine noise, this
corresponds to obtaining the quantities in Eqs. (7) to

(9) in a Kalman Filter with the process noise covariance
W = 0 and constant measurement noise covariance V.
Hence, the deterministic shooting error approach to
parameter estimation may be seen as a special case of
the scheme used in the CTSM framework and outlined
in Section 2.1.2.

An interesting observation from comparing the two
types of error calculation, e.g., ε̃k|0 = yk − ŷk|0 and
εk|k−1 = yk − ŷk|k−1, is that the SSE objective com-
puted based on ε̃k|0 in Eq. (12) will have a gradi-
ent that is strongly non-linear in the parameters, due
to the recursive predictor used in Eq. (11), i.e.,
ŷk|0 = f

(
ŷk−1|0, uk−1, θ

)
. In contrast, the one-step-

ahead prediction based likelihood objective in Eq. (10)
will have a gradient that is linear in the paramet-
ers, since the predictor for the output is a function
of measurements at previous time-steps, i.e., ŷk|k−1 =

f
(
y[k−1], uk−1, θ

)
.

2.1.4 Model validation

Since the objective function ` (θ) in Eq. (10) depends
on an assumption of normally distributed residuals,
computed from one-step ahead predictions in a KF,
it is necessary to verify the normality assumption sub-
sequent to estimating model parameters. The liter-
ature detailing the CTSM framework specifically calls
for evaluation of the residuals to verify the normality
assumption Kristensen and Madsen [2003], Kristensen
et al. [2004]. A practical test for normality can be
applied by computing and plotting a cumulative peri-
odogram (CP) of the residuals Deconinck and Roels
[2017], Kristensen and Madsen [2003], Kristensen et al.
[2004], where the Kolmogorov-Smirnov criterion can
be used to place confidence bounds on the CP test
Madsen [2007]. There are also a number of alternat-
ive tests for normality that can be applied such as the
zero-crossings test or the Kolmogorov-Smirnov test Jo-
hansson [1993].

The possibility of validating a dynamic system model
by testing the residuals for normality is a distinct ad-
vantage of the stochastic parameter estimation frame-
work. For a deterministic shooting simulation ap-
proach, in which there may be bias errors that carry
over from the state estimate at the previous time-step
as shown in Eq. (11), there can be no reasonable as-
sumption of normality for the estimation error ε̃k|0, un-
less the state transition model is exact Madsen [2007].

2.2 Expressing uncertainty of estimated
parameters

A convenient way of describing the uncertainty of es-
timated parameters is by defining a sub-region in Θ,
with some specific statistical criteria quantifying the
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uncertainty of the parameters in the sub-region relat-
ive to the true, but unknown, parameters θ∗. One pos-
sible choice is the use of a confidence region with stated
confidence α Neyman [1937], Raue et al. [2009]. In gen-
eral, a region of arbitrary shape in Θ can be defined as
a set, based on the difference in the objective function
relative to a presumed optimal estimate θ̂:{

θ : g (θ)− g
(
θ̂
)
< ∆

}
(13)

where the threshold ∆ is defined by some appropriate
statistical criterion. The definition of the threshold de-
pends on how the objective function g is defined, e.g.,
for a likelihood objective the thresholds can be com-
puted from the χ2 distribution as shown in Section
2.2.2. The set in Eq.(13), which contains any paramet-
ers θ for which the objective differs from the optimum
by less than ∆, can be of any shape, including multi-
modal. However, the computation of a free-form set
will require a large number of evaluations of the ob-
jective function for different θ in order to determine
the set members. Therefore, a common approximation
is to assume an ellipsoid, rather than free-form, region,
defined as {

θ :
(
θ − θ̂

)T
Σ−1

(
θ − θ̂

)
< ∆

}
(14)

where the size of the ellipsoid is determined by the
threshold ∆, again computed by some appropriate stat-
istical criterion. The weighting matrix Σ, typically the
covariance of the estimated parameters, determines the
rotation and relative length of the ellipsoid axes. Re-
gions defined as in Eq. (14) also define a set of θ based

on relative deviation compared to θ̂, but by assuming a
quadratic approximation, the ellipsoid region is much
faster to compute.

The points on the ellipsoid surface can be obtained
by utilising the Cholesky decomposition Σ = LLT , as-
suming Σ is positive definite Press et al. [2007]:(

θ − θ̂
)T

Σ−1
(
θ − θ̂

)
= ∆⇒

∣∣∣L−1
(
θ − θ̂

)∣∣∣2 = ∆

(15)
Next, suppose x is a point on a unit hypersphere, then
the ellipsoid surface boundary is obtained by the affine
transformation

θ = θ̂ +
√

∆Lx (16)

2.2.1 Asymptotic confidence regions

Two common ways of expressing uncertainty is by de-
fining a region in Θ, either a univariate, point-wise,
confidence interval (CI), or a multivariate, simultan-
eous, confidence region, both defined by their pre-
scribed confidence level α Neyman [1937].

Asymptotic CIs are based on the curvature of the
objective function, which can be computed by utilising
the covariance Σθ of the estimated parameters around
the optimum θ̂ Deconinck and Roels [2017], Raue et al.
[2009] to define a region on the form in Eq. (14). The
threshold is then ∆ = ∆α, where ∆αis computed from
the χ2

α,ndf
distribution, with degrees of freedom ndf

equal to the number of parameters in the simultan-
eous confidence region Press et al. [2007]. Observe that
for point-wise confidence intervals of single parameters,
Eq. (16) with x ∈ {cos (0) , cos (π)} = {1, −1} reduces
to the familiar confidence interval for a scalar variable,
where Σi,i = σ2

i Raue et al. [2009], i.e.;

θ̂i ±
√

∆αΣi,i (17)

For point-wise intervals, ∆α is drawn from the
χ2
α,ndf

distribution with ndf = 1 which is equivalent
to the Normal c.d.f. with α/2 confidence in each tail.
The use of asymptotic confidence regions is widespread
in all branches of science, particularly due to their ease
of computation. If the parameters are in fact Gaussian
distributed, the ellipsoid confidence regions are exact
which further strengthens their popularity.

2.2.2 Likelihood based confidence regions

Unlike the asymptotic confidence interval in Eq. (17),
a likelihood based confidence interval is computed by
applying a threshold on the likelihood function to com-
pute a confidence region in the form Eq. (13) Meeker
and Escobar [1995], Raue et al. [2009]. Let{

θ : ` (θ)− `
(
θ̂
)
< ∆α

}
, ∆α = χ2

α,ndf
(18)

where θ̂ is a freely estimated parameter vector, which is
presumed optimal, and the threshold ∆α is the α per-
centile of the χ2

α,ndf
-distribution with ndf degrees

of freedom. It follows from Wilks’ theorem Wilks
[1938] on the logarithm of the likelihood ratio Λ that
the test statistic

2 ln (Λ) = 2 ln

 L (θ)

L
(
θ̂
)
 = ` (θ)− `

(
θ̂
)

can be used to compare two models. The difference

in log likelihood ` (θ) − `
(
θ̂
)

is asymptotically χ2-

distributed Meeker and Escobar [1995], Raue et al.
[2009], with ndf equal to the difference in number of

free parameters between θ and θ̂ Press et al. [2007].
Arguably, likelihood based confidence intervals are

conceptually simpler than asymptotic CIs due to their
thresholded set definition. However, determining the
set members is computationally intensive. An advant-
age of the likelihood based CI is that, due to its set
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form definition, it does not assume a symmetric dis-
tribution of the parameters, and can in fact take on
any shape, including multi-modal. Hence, likelihood
based CIs are often considered superior to asymptotic
CIs Raue et al. [2009].

2.2.3 Parameter profiles or distributions

An alternative to presenting the uncertainty of the es-
timated parameters as regions in Θ is to present the
parameters as a distribution in Θ. Typically, a stat-
istical quantity is used to create the profile, such as a
probability density function or the log-likelihood. Pro-
files can be created over the entire Θ, or a subset of
Θ as projections to single parameters θi, or planes
Θi,j={θi, θj}, such that Θi,j ⊂ Θ. A parameter pro-
file is more descriptive than a confidence region, since
it shows how the uncertainty is distributed across the
parameter space Θ. Since parameter profiles can be
converted to confidence regions by applying some stat-
istically defined threshold, they may be considered
a superior form of uncertainty description. An ex-
ample of this approach is the Profile Likelihood method
presented in Section 2.3.4.

Another method of obtaining distributions of para-
meters, which are in fact probability distributions for
the parameter θ, is through the use of Bayesian statist-
ics and Markov Chain Monte Carlo (MCMC) methods.
However, these methods are beyond the scope of this
paper.

2.2.4 Interpretation of confidence regions

An interesting observation relating to the interpreta-
tion of the computed regions is that, while quite often
assumed in published literature, the confidence of the
computed regions is not a statement on the probabil-
ity of said region containing the true parameters θ∗,
as clearly stated in Neyman [1937]. Both θ∗ and the
computed confidence region are constants, not random
variables. Hence, their relationship is not a question
of probability, except for the trivial values of zero and
one, which simply state whether or not the true para-
meter is a member of the computed confidence region.
However, what can be stated in probabilistic terms is
the expected probability of capturing θ∗ in the CI, prior
to performing the experiment and computing the in-
terval, which is equal to the confidence α Kullback
[1939]. This expected probability of capturing θ∗ is
called the coverage probability. If multiple experiments
are carried out, with subsequent computations of CIs,
the ratio of intervals that successfully captures the true
parameter θ∗ to the total number of experiments per-
formed will be equal to the coverage probability Kull-
back [1939].

90.25%

95%

θi
 

θj 

95%

95%

Figure 2: Comparing a simultaneous confidence ellipse
for two parameters with the point-wise CIs
(green) for each parameter, shows that the
projections of the ellipse (grey) is wider than
the point-wise CIs. Also, the combined con-
fidence (0.95×0.95=0.9025) of both point-
wise CIs together is shaded in grey. Note
the difference between two combined point-
wise CIs (shaded square) and the simultan-
eous confidence ellipse.

2.2.5 Simultaneous and point-wise confidence
regions

As discussed in Sections 2.2.1 and 2.2.2, the uncer-
tainty of estimated parameters can be expressed as
confidence regions in Θ. However, it is often of in-
terest to make statements about the uncertainty of in-
dividual parameters, rather than simultaneous state-
ments about multiple parameters together. In this con-
text it is important to distinguish between simultan-
eous and point-wise, i.e., one-at-a-time, intervals. For a
simultaneous CI, the uncertainty of the estimated para-
meters is stated for multiple parameters together, i.e.,
the computed confidence region captures the true para-
meters θ∗ with coverage probability α Kullback [1939],
Neyman [1937]. In comparison, a point-wise CI holds
for that parameter alone, i.e., the coverage probability
for capturing the single parameter is α.

To create simultaneous scalar intervals for each
parameter, the higher dimension region can be pro-
jected onto each parameter, as illustrated in Fig. 2.
Such projected simultaneous intervals should not be
confused with point-wise CIs, nor should their com-
bined confidence be stated as α Johnson and Wich-
ern [2007], i.e., the coverage probability of all projected
intervals holding is not α. The projected shadow of
a higher order simultaneous confidence region is lar-
ger than the point-wise intervals Johnson and Wichern
[2007], Press et al. [2007], as illustrated in Fig. 2.

Since Θ typically has more than two dimensions,
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graphical presentation of confidence regions requires
projections of some form. In such cases, care should
be taken to clearly state the resulting confidence level.
Just as for the elliptic region projected onto a single
parameter axis in Fig. 2, a higher dimension ellipsoid
projected onto a plane will give a larger elliptic shadow
projection than a confidence ellipse computed for just
two parameters in the plane.

2.2.6 Diagnosing identifiability by analysing
uncertainty

Determining if a parameter is structurally or practic-
ally identifiable is important if the parameter value
itself is of interest, i.e., if a physical interpretation of
the parameter is assumed. A link between the uncer-
tainty of a parameter, in the form of a likelihood based
confidence interval as presented in Section 2.2.2, and
the structural and practical identifiability, was given in
Raue et al. [2009].

Structural non-identifiability is caused by redund-
ant parametrisation of the model equations, such that
a sub-set of the parameters θs has no effect on the
observable outputs y, and is therefore independent
of the experimental conditions K Raue et al. [2009].
Hence, there exists a manifold in the parameter space
Θ where the objective function ` (θ) has a constant
value. Further, it is possible to obtain a functional re-
lation between the parameters θs which describes this
equipotential manifold in the objective function. Con-
sequently, a likelihood based confidence interval will
be unbounded in both direction, i.e., [−∞,+∞], for
the structurally non-identifiable parameters in θs Raue
et al. [2009].

In contrast, practical non-identifiability is caused by
a lack of dynamic information about the system in K
and hence a direct result of the experimental design
and data acquisition process. Unlike structural identi-
fiability, practical identifiability is not clearly defined
in the literature Raue et al. [2009]. However, an el-
egant definition is found in Raue et al. [2009], where
practical non-identifiability is diagnosed if the corres-
ponding likelihood based confidence region, as in Eq.
(18), is extended to infinity in decreasing and/or in-
creasing direction , i.e., the objective function stays
below a specific threshold ∆α in at least one direc-
tion, despite the presence of a well defined optimum
θ̂. Observe that the use of likelihood based confidence
regions is necessary for determination of practical non-
identifiability, since the asymptotic CI will always be
symmetric and also finite if Σi,i > 0, and therefore can-
not present the necessary characteristics for diagnosing
practical non-identifiability Raue et al. [2009].

In Raue et al. [2009] the definition of parameter iden-
tifiability is presented as a true/false question. For the

Figure 3: The log-likelihood profile of two inter-
dependent parameters is plotted in the plane
of both parameters (right panel), with corres-
ponding projections to each of the two para-
meters.

case of structural identifiability, this is clearly appro-
priate. However, practical identifiability is a function
of the system excitation during data acquisition, and
hence the dynamic information content in K. There-
fore it may be appropriate to treat practical identifiab-
ility as a quantity, rather than a true/false property.
If the computed confidence region for a parameter is
wide, that parameter may arguably be considered less
identifiable than a parameter with smaller confidence
region. In particular, comparing parameters estimated
from two different data-sets of the same system with
different levels of excitation, the resulting CIs of the
same parameter may have different widths. Hence, it
is reasonable, and intuitively satisfactory, to relax the
definition of practical non-identifiability given in Raue
et al. [2009] to also include parameters with abnormally
wide CIs. Unfortunately, relaxing the diagnostic cri-
teria in this way leads to a cognitive judgment on what
width of a CI is abnormal for any specific parameter.
Resolving this question requires using system specific
knowledge, and is further complicated by variations in
scale of the parameters which makes normalisation a
prerequisite for comparing CIs for different paramet-
ers.

2.2.7 Inter-dependent parameters and the effect of
constraints on projections

When projecting a higher order region onto a single
parameter θi or a plane Θi,j , it is important to con-
sider inter-dependent parameters. A projection of a
higher dimensional region in Θ will, due to parameter
inter-dependence, result in a projection that is wider
than any cross-section, since the dependency inform-
ation in the higher order structure is lost in the pro-
jection Johnson and Wichern [2007]. Further, if the
parameter space Θ is constrained or bounded, inter-
dependent parameters can introduce artefacts in the
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projection of one parameter, caused by the constraints
on another, inter-dependent, parameter.

An example of these phenomena is shown in Fig. 3.
The right panel shows a log-likelihood profile of two
parameters as a heat-map in the plane of both para-
meters. The left and centre panel show the same pro-
file, projected onto each parameter axis. First, observe
that the 2D profile in the right panel shows that the
parameters are inter-dependent, since there is a clear
linear relationship between the two parameters. Next,
observe that the one-dimensional profiles, which are
projections of the two-dimensional surface onto each
parameter, are wider than any cross-section taken from
the 2D profile. Finally, observe that for parameter θ1

the profile contains a sharp bend, highlighted by a red
circle in Fig. 3. When comparing to the full 2D pro-
file, it is clear that this bend is actually an artefact
in the θ1 profile, introduced by the constraint on θ2,
i.e., θ2,min < θ2 < θ2,max, and the inter-dependence
between the parameters.

2.3 Uncertainty estimation and analysis
methods

In this section, a selection of methods for estimation
of uncertainty and identifiability analysis is presented
with some illustrative examples. More extensive ex-
amples of these methods are given in Section 3.

2.3.1 Uninformed Random Picking

It is often helpful to visualise the shape of the ob-
jective function g in the parameter space Θ. Initially,
the optimal parameter estimate, the existence of a well
defined optimum, and/or the number of optima, is typ-
ically unknown. Hence, a method which requires no
assumptions about the objective function g (θ) and the
parameter space Θ, is desirable. An intuitive approach
is to evaluate the objective g (θ) for some selected set of
parameters θ{K} = {θk : k ∈ 1, ...,K} and plot the res-
ulting θk vs g (θk) as a scatter plot for each parameter.
A simple way of selecting θ{K} is by use of randomisa-
tion: drawing the parameters uniformly across Θ such
that θk ∼ U (θmin, θmax) for k ∈ {1, ...,K}. The result-
ing scatter plots will show that there exists an optimal
front in Θ which corresponds to the projection of the
objective g (θ) onto each parameter axis. Of course, a
large number of the randomly drawn points in θ{K} are
not located near the optimal front. However, by ran-
domised selection with large K, typically on the order
of 10.000 to 500.000 or higher depending on the di-
mensionality of Θ, the plots will contain enough data
near the optimal front to visually inspect the shape of
the objective function. Subsequently, the existence of a
well defined optimum, presence of flat regions, and the

Figure 4: The Random initial guess method is used to
test for local minima when estimating the
amplitude (A) and frequency (w) of a sim-
ulated sine wave with added noise. Out of
K = 200 repeated optimisations, only 12 cor-
rectly find the true parameters θ∗(marked
by a black circle in the figure). Blue dots
mark the randomised initial guess and red
dots mark the parameters obtained after op-
timisation.

number of modes, can be ascertained. This method is
often named Uninformed Random Picking (URP) Hoos
and Stützle [2004], where the term uninformed reflects
the fact that no prior assumptions is used in the choice
of θk.

The resulting plots will be a projection of K para-
meter vectors onto each of the nθ parameter axis in
Θ. Hence, the method suffers from the challenges re-
lated to such projections, as discussed in Section 2.2.7.
Examples of the use of the URP method is given in
Section (3.1.1).

2.3.2 Randomised initial guess

A variation of the Uninformed Random Picking
method from Section 2.3.1 is to use randomisation to
uniformly draw the initial guess θ0 and subsequently
optimise all parameters, i.e., repeatedly solve the op-
timisation problem in Eq. (1) K times, with a random-
ised initial guess θ0

k ∼ U (θmin, θmax) for k ∈ {1, ...,K}.
This method, although simple, can be a good test
to check the convergence of the parameter estimation
method. If repeated executions of the optimisation al-
gorithm A returns significantly different optimal estim-
ates θ̂k depending on the initial guess θ0

k, a physical in-
terpretation of the estimated parameters as constants
given by the system S must be considered questionable.
This may indicate a problem with parameter identifi-
ability, which should be analysed further. Since the
optimisation algorithm A allows directed exploration
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of the objective function, the number of iterations K
can be much lower than required for the URP method,
say, 10 to 500. As for the URP method, the choice
of K depends on the dimensionality of the parameter
space Θ.

Additionally, since optimisation is performed from a
number of different starting points in Θ, this method
can be useful to identify local minima in the parameter
space, provided the number of iterations K is large
enough to cover the parameter space with reasonable
density.

The resulting optimal estimates θ̂k are plotted to-
gether with the initial guesses θ0

k to indicate the tra-
jectories of the optimisation algorithm A. The results
can either be plotted for two parameters against each
other, forming a projection of the corresponding op-
timisation trajectories onto a plane of two parameters,
or they can be plotted for each parameter; θ0

k, θ̂k vs

g
(
θ0
k

)
, g
(
θ̂k

)
. The resulting plots will give a good

visualisation of the projected shape of the objective
function.

An example of this method is shown in Fig. 4. By
simulating a sine wave y (t) = A sin (wt), where the
parameters are amplitude A= 2 and frequency w = 10,
and adding Gaussian noise of standard deviation 0.5,
a calibration data-set is created. When estimating the
parameters of this simple model, a large number of
local optima are found, especially for A = 0 or w = 0.
Hence, the estimated solution θ̂ is highly dependent
on the initial guess θ0. Only 12 of the K = 200 re-
peated optimisations correctly obtain θ̂ = θ∗. This ex-
ample shows the importance of considering local min-
ima when estimating parameters. It is also interesting
to observe that there are different patterns of traject-
ories in each of the four quadrants of the plot. These
variations are caused by the optimisation method A,
and shows that also the chosen algorithm for optim-
isation can have a strong influence on the parameter
estimate.

2.3.3 Hessian of the likelihood function

A commonly used method for estimating the uncer-
tainty of the estimated parameters is to utilize the
shape of the objective function g (θ) directly by calcu-

lating the curvature around the optimal estimate θ̂, by
computing the Hessian of `(θ); H = ∇T∇` (θ)

∣∣
θ=θ̂

.
The covariance of the estimated parameters can be
computed as Σθ = 2H−1, where the factor 2 is included
to compensate for previously dropping the factor 1

2 in
the definition of ` (θ) in Eq. (10). The elements of
H are approximated as Kristensen et al. [2004], Raue

et al. [2009]:

hi,j ≈
(

∂2

∂θi∂θj
` (θ)

)∣∣∣∣
θ=θ̂

(19)

which can be numerically computed using, e.g., cent-
ral difference approximation. Observe that the Hes-
sian is by definition symmetric, which is a drawback if
the shape of the objective function is non-symmetric
around the optimum. Observe also that, from general
optimisation theory, while the curvature of any object-
ive function g could be considered an approximation of
uncertainty Nocedal and Wright [2006], the estimation
of parameter covariance Σθ from the Hessian requires
that a log likelihood objective g (θ) = ` (θ) is used.
This method obtains directly the parameter covariance
Σθ which can be used to construct an asymptotic con-
fidence region as in Eq. (14).

2.3.4 Profile likelihood

As discussed in Section 2.2.2, likelihood based CIs are
often considered superior to asymptotic CIs Raue et al.
[2009]. Further, parameter distributions are arguably
a more descriptive representation of uncertainty than
confidence regions. Hence, obtaining parameter distri-
butions based on the likelihood function is an attract-
ive tool for parameter analysis. An elegant method
for computing such distributions is the profile likeli-
hood (PL) method presented in Deconinck and Roels
[2017], Murphy and Van der Vaart [2000], Raue et al.
[2009]. The PL method explores the parameter space
by optimising the parameters in two steps, rather than
simultaneously as in Eq. (1). The profile likelihood
`PL (θi) is defined as the minimum log likelihood for
a given θi when the remaining parameters are freely
optimised Raue et al. [2009]:

`PL (θi) = min
θj 6=i

` (θj 6=i;M,K, θi) (20)

Values of θi must be chosen prior to optimising the
remaining θj 6=i Raue et al. [2009]. A straightforward
solution, if the objective function g is well behaved
within the constraints of Θ, is to use a brute force
approach with an even sampling of θi. Alternatively,
a two-sided gradient decent algorithm, using a freely
optimized parameter vector as a starting point, can
be applied Maiwald and Timmer [2008], Raue et al.
[2009]. The resulting likelihood distribution can be
plotted as a function of θi and subsequently analysed
according to the definitions of structural and practical
identifiability for likelihood based confidence intervals
Deconinck and Roels [2017], as discussed in Section
2.2.2. A threshold can be applied to the constructed
profile, as described in Section 2.2.2, where, by Wilks’
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Theorem Wilks [1938], the threshold ∆α can be drawn

from the χ2
α,ndf

distribution. The freely estimated θ̂ has
nθ degrees of freedom (d.o.f.), while the PL estimate
has nθ − 1 d.o.f., hence the threshold ∆α is computed
with ndf = 1.

Observe that since the PL method essentially pro-
jects the nθ dimensional space Θ onto the single para-
meter θi, by freely estimating the remaining paramet-
ers, the PL method tends to overestimate the width of
the likelihood based confidence interval if parameters
are not independent, as discussed in Section 2.2.7

2.3.5 Two-dimensional profile likelihood

In order to improve the PL methods projections un-
der the influence of inter-dependent parameters, the
method can be modified to hold out two parameters
rather than one, i.e.:

`PL2 (θi, θj) = min
θk 6=i,j

` (θk 6=i,j ;M,K, θi, θj) (21)

This projects the parameter space Θ onto the plane
of θi and θj ; Θi,j , which results in a two-dimensional
distribution that can be analysed in a similar way to
the one-dimensional PL Raue et al. [2009], using the
definition in Eq. (18) and discussed in Section 2.2.
The PL2 results can be plotted as topological sur-
faces Raue et al. [2009], which can be used to diagnose
parameter inter-dependence, since the two-dimensional
projections are capable of representing relationships
between parameters. These projections constitute an
exhaustive search over the plane Θi,j . Hence, both
local and global optima can be obtained from inspec-
tion of the projected profiles.

Applying a confidence threshold to the PL2 method
produces confidence regions in the Θi,j plane. Based
on confidence thresholds computed from the χ2-
distribution, a similar interpretation of these two-
dimensional topologies can be applied to diagnose iden-
tifiability by requiring that the region is bounded in all
directions Raue et al. [2009]. If there is an unbounded
equipotential valley with a constant optimal log like-
lihood, the parameter is structurally non-identifiable.
If the interval or region is unbounded in some direc-
tion but still has a well defined optimum, this indicates
a practically non-identifiable parameter Raue et al.
[2009]. Observe that since θ̂ has nθ free parameters
while the PL2 estimate has nθ−2, this gives ndf = 2 for
the computation of ∆α from the χ2-distribution in Eq.
(18).

While the extension of the PL method to create
projections in the plane Θi,j is intuitive, and the res-
ulting plots exhibit some interesting characteristics as
tools for analysing parameter identifiability and inter-
dependence, this modification strongly increases the

computation time of the method. To create the pro-
jections of ` (θ) onto Θi,j , a large number of object-
ive function evaluations must be performed. Using
a brute force sampling of Θi,j with N steps for each
parameter returns N2 pairs of parameter values, each
of which requires optimisation of the remaining para-
meters; θk 6=i,j . This process must be repeated for each
combination of parameters, which further increases the
computational burden. Hence, the method requires
careful use of parallelisation and software engineering
to be computationally feasible. Of particular import-
ance is utilising the fact that neighbouring points in
Θi,j are likely to have similar optimal values for θk 6=i,j .
Hence, using previously optimised free parameters as a
warm-start for computing new `PL2 (θi, θj) points sig-
nificantly reduces computation time.

Due to the extensive computation time for this
method, it is advisable to initially perform explorat-
ory analysis with relatively low number of steps N ,
with subsequent higher resolution analysis in specific
regions of interest. However, the initial analysis must
use a discretisation resolution sufficiently detailed to
find the regions of interest. The number of resolution
steps for each parameter which is required for success-
ful application of the PL2 method depends on the prob-
lem, and should be found by experimentation.

Finally, observe that when a brute force discretisa-
tion of Θi,j is used, the resulting set of optimised para-
meters constitutes an exhaustive search of the discret-
ised parameter space Θ. Hence, an estimate θ̂, which
is globally optimal within the accuracy and bounds al-
lowed by the brute force discretised Θ, can be obtained
by taking the minimum from all the `PL2 (θi, θj) pro-
files.

2.3.6 Bootstrapping for dynamic models

The data samples of a time-series are not independent.
Hence, the traditional bootstrapping method of ran-
domly drawing individual samples with replacement
is not applicable, because the sample to sample de-
pendency information would be lost in the generated
pseudo data-set Kunsch [1989], Politis [2003]. A pop-
ular modification of the bootstrapping method is to
divide the original data into blocks, either overlapping
or non-overlapping, with uniform or randomly chosen
lengths and/or starting points Politis [2003]. In this pa-
per, two versions of block based bootstrapping for time
series data is considered; non-overlapping block boot-
strap Lodhi and Gilbert [2011] and stationary bootstrap
Politis and Romano [1994]. The difference between
these two approaches is in how the data is separated
into blocks. Each method is outlined below.

The idea behind all bootstrap methods is to gener-
ate multiple pseudo data-sets, in order to estimate the
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Figure 5: An example of simple block bootstrapping
with K = 5 blocks, creating M = 2 pseudo
data-sets.

variance of some estimate, e.g., dynamic model para-
meters. Hence, the bootstrapping procedure must be
repeated M times, such that each iteration produces a
different pseudo data-set, and hence a different para-
meter estimate θ̂j . Note that any objective function
could potentially be combined with this type of boot-
strapping, e.g., the ballistic SSE approach in Section
2.1.3 or the likelihood ` (θ) in Section 2.1.2.

Based on these M estimated parameter vectors, the
mean parameter estimate, and the covariance of that
mean estimate can be computed, i.e:

θ̂ =
1

M

M∑
j=1

θ̂j

Σθ =
1

M − 1

M∑
j=1

(
θ̂j − θ̂

)2

(22)

Confidence regions on the form of Eq. 14 can then be
constructed for the mean parameter estimate, where
the threshold ∆ is drawn from the F-distribution John-
son and Wichern [2007].

Additionally, the resulting M parameter estimates
can be plotted as scatter plots or as histograms, either
for individual parameters or for combinations of two
parameters. Observe that these plots suffer from the
same limitations related to the projection of high di-
mensional parameter space Θ onto single parameter
axis as discussed in Section 2.2.7.

The first bootstrap method, non-overlapping block
bootstrapping, is achieved by dividing the data-set y[N ]

and u[N ] into K blocks of length l. Let y
(i)
[l] and u

(i)
[l]

be block i of measured system outputs and inputs, re-
spectively, where i ∈ {1, ...,K}. Each block is con-
structed by taking a consecutive sequence of samples
from the original data, y[N ] and u[N ], starting from

 
 

Start new block: k~U(0,N)

U(0,1)>p

?

Add next sample: k++

Pr(Yes) = 1-p

Pr(No) = p

Figure 6: Simplified block diagram of Stationary Boot-
strapping.
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Figure 7: Illustrative example of two iterations of
stationary bootstrapping, resulting in five
blocks of data, possibly overlapping, with
uniformly drawn starting point and geomet-
ric length distribution.

sample l · (i− 1), such that:

y
(i)
[l] =

[
yl·(i−1)+k : k ∈ [1, ..., l]

]
(23)

u
(i)
[l] =

[
ul·(i−1)+k : k ∈ [1, ..., l]

]
(24)

A pseudo time-series data-set is then created by
drawing K blocks randomly with replacement, as il-
lustrated in Fig. 5. As with traditional bootstrapping,
some blocks will not be drawn, while others may be
drawn multiple times. Hence, some data points will
not appear in the new pseudo data-set, while other
data points will appear multiple times. This is shown
in Fig. 5, where for the first pseudo data-set block 1
appears twice, as the 1st and 3rd block, while block 4
is not included.

An alternate method for drawing random blocks of
data is the stationary bootstrapping method Politis and
Romano [1994], where blocks of data are constructed
with a random length of geometric distribution Politis
[2003]. The advantage of this approach is to create
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bootstrapped data-sets that are themself stationary
series Politis [2003], Politis and Romano [1994].

The stationary bootstrap method is realised by use
of a probability test, and consists of two steps. First,
the starting point of each block is drawn uniformly
across all N original samples, k0 ∼ U (0, N). Next,
with probability 1−p, add the next consecutive sample
from the original series, or with probability p, start a
new block by again uniformly drawing a new starting
point. This test on p is repeated until the combined
length of all blocks is approximately N . The result-
ing blocks length will follow a geometric distribution
such that the probability of block i having length m
is Pr (li = m) = (1− p)m−1

p. This process is illus-
trated in Fig. 6. The expected length of each block is
E (l) = 1

p and the expected total number of blocks is

E (K) = N
p . An illustrative example of two iterations

of stationary bootstrapping is shown in Fig. 7. Com-
paring Fig. 7 to the non-overlapping block bootstrap-
ping in Fig. 5 shows the difference in the two methods,
in that the first method has non-overlapping blocks of
uniform length, which is randomly recombined to cre-
ate the pseudo data-set, while the stationary bootstrap
method uses randomisation to choose both the start
and length of each block.

Since both these approaches, indeed, all block based
bootstrapping methods for time-series data, involve di-
viding the original time-series data into blocks and
recombining them to form new pseudo data-sets, the
question of how to join together multiple randomly se-
lected blocks into a new complete data-set arises Kun-
sch [1989]. For estimation of parameters for dynamic
system models using a data-set that is essentially seg-
mented non-consecutive blocks, an intuitive solution is
to compute the objective function g(θ) for each block
and aggregate the results. If the objective is defined
on summation form as in Eq. (6), the overall objective
function for a block segmented data-set of K blocks
can be defined:

gB

(
θ;M, y[N ], u[N ]

)
=

K∑
i=1

g(i)
(
θ;M, y

(i)
[li]
, u

(i)
[li]

)
The initial conditions for evaluating the objective for
each block, g(i), such as the initial state, must be de-
termined for each block, rather than for the whole data-
set as in Eq. (1). If the states are measurable, the
choice of initial state for each block can be obtained
from the measurements. Alternatively, the initial state
can be treated as an unknown parameter and estimated
for each randomly drawn block.

An important consideration when performing block
based bootstrapping on time series data for dynamic
model parameter estimation, is the consistency of the
dynamic information in the data. If certain segments

of the data contain significantly less dynamic inform-
ation than the rest, e.g., if the system is in steady
state for parts of the original data-set, some iterations
of the bootstrap procedure may return pseudo data-
sets that are less informative w.r.t. parameter estim-
ation. These pseudo data-sets may produce practically
non-identifiable parameters Raue et al. [2009], which
manifest as outliers among the M bootstrap estimates.
Such outliers will significantly effect the computed cov-
ariance in Eq. (22). Hence, it is important to consider
the consistency of dynamic information in the original
data, prior to applying bootstrapping methods.

2.3.7 Consistency of dynamic information in
calibration data

An intuitive method for testing the consistency of
dynamic information content in data is to draw a
set of overlapping, consecutive, data segments, taken
equidistant across the data-set. Each segment is of
length l, and extracted from starting points w · (i− 1),
where w is the step length;

y
(i)
[l] =

[
yw·(i−1)+k : k ∈ [1, ..., l]

]
(25)

u
(i)
[l] =

[
uw·(i−1)+k : k ∈ [1, ..., l]

]
(26)

The approach constitutes a moving window that
travels across the data-set with step length w. The seg-
ment length l and the step length w are considered tun-
ing parameters and should be determined experiment-
ally. For each segment, a parameter vector θ̂(i) is estim-

ated by minimising the objective g(i)
(
θ;M, y

(i)
[l] , u

(i)
[l]

)
.

Note that this is fundamentally different from the boot-
strapping approach, since no randomisation is used to
combine multiple segments and the parameter estima-
tion is performed separately for each consecutive seg-
ment. As for the block based bootstrapping methods
in Section 2.3.6, the initial conditions needed to eval-
uate g(i) must be obtained for each segment, either as
estimated parameters or directly from observations if
the states are measurable.

For each segment, some appropriate method of un-
certainty estimation, e.g., the Hessian method of Sec-
tion 2.3.3 or the Profile Likelihood method in Section
2.3.4, is used to evaluate the uncertainty and/or iden-
tifiability of the estimated parameters. By plotting
the results as a function of the segment starting point
w · (i− 1), and observing how the parameter uncer-
tainty and/or identifiability changes with time as the
window is moved, the consistency of dynamic informa-
tion in the data can be evaluated. Observe also that if
the PL method is used, the results should be plotted as

the relative log likelihood ` (θ) − `
(
θ̂i

)
, since the op-

timal log likelihood will be different for each segment.
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If parameter calibration from different segments of
the data produce significantly different uncertainty es-
timates, this indicates an inconsistency in dynamic
information, which subsequently can influence uncer-
tainty estimation methods based on block bootstrap-
ping. Observe that since a small subset of the calib-
ration data is used, the uncertainty estimates for each
segment will be larger than what is obtained using the
complete original data-set.

In addition to test the consistency of dynamic in-
formation by estimating the uncertainty for each step,
the method also produces an estimate of the optimal
parameters θ̂(i) for each segment. These estimates can
be used to test if the optimal model parameters change
over time for a specific data-set. If the parameters are
interpreted as constants of the physical system, time
variation of θ can be an indication of unsatisfactory cal-
ibration data. Arguably, unexpected time variation of
parameters may also indicate an oversimplified model
structure, such that the calibrated parameters are af-
fected by unmodelled time-varying disturbances, res-
ulting in variations in the parameter estimates over
time.

2.4 Summary

Section 2 of this paper has presented the theoretical
foundation for a number of methods that can be used
to analyse the parameter estimation problem for dy-
namic models, in particular the identifiability and un-
certainty of the estimated parameter. Which method is
best suited for a particular application largely depends
on the application, and what type of analysis is of in-
terest. The aim of these methods is to obtain accurate
dynamic system models, but also to validate the estim-
ated parameters in the presence of aleatoric and epi-
stemic uncertainty. In many applications the choices
for experimental design is limited. Hence, paramet-
ers must be estimated under less than ideal conditions.
It is especially important in these cases to carefully
analyse the resulting parameter estimates in the con-
text of identifiability and uncertainty. In engineering
applications, parameters are often assumed, quite reas-
onably from a detailed physical understanding of the
underlying system, to be constants of the physical sys-
tem. However, due to the effects of measurement noise,
unmodelled disturbances, insufficient dynamic inform-
ation, modelling errors and simplifications, etc., it may
not be possible to obtain an unambiguous estimate of
the parameters. Hence, the methods presented in this
section can be valuable engineering tools for provid-
ing a thorough analysis of the parameter estimation
problem. In the sequel, examples of the application of
these methods to two experimental cases are presen-
ted. These examples illustrate the kind of insight that

can be gained by applying the methods to practical
parameter estimation problems.

3 Experimental cases

In this section, the methods presented in Section 2
are demonstrated on two test cases. The first case is
a simple first order model with a single input. The
parameters of the model are calibrated using data ob-
tained by simulating the same model, with added, ran-
domly generated, measurement noise. Hence, there is
no epistemic uncertainty in the parameter estimation,
only the aleatoric uncertainty of the output measure-
ment noise. The second case is an example of a grey-
box model, specifically a thermal network model of a
building, which aims to predict temperature variations.
These models are particularly interesting from a para-
meter estimation and analysis perspective, since they
are constructed cognitively based on naive physics, and
hence have significant epistemic uncertainty in them.

3.1 First order dynamic model

A first order model with input is defined as:

ẋ = −ax+ bu (27)

y = x+ vk (28)

where vk ∼ N (0,V) is the Gaussian distributed meas-
urement noise, u is the model input and the parameters
are θ = [a, b]. By Laplace transformation, the transfer
function from input to output is obtained as:

H (s) =
y (s)

u (s)
=

b

s+ a
=

K

τs+ 1
, (29)

which is a low-pass filter with exogenous input, with
gain K = b

a and time constant τ = 1
a . The output

y is hence simply the low-pass filtered input u plus the
measurement noise.

The model is excited with six different input signals,
each a total of 10 second of data at ∆t = 0.01, presen-
ted in Fig. 8. The six data-sets are chosen to demon-
strate the effect of different types of excitation on the
various methods to be tested. As shown in Fig. 8, the
first three data-sets are a step (STP), a square wave
(SQR), and a sine wave (SIN), where short-hand names
are given to simplify tabulating results in the sequel.
The square and sine wave have a signal period T = 2s.
The remaining three excitation signals are pseudo ran-
dom binary sequences (PRBS), i.e. signals generated
by drawing a sequence of random binary numbers and
transforming those into a non-uniform square wave sig-
nal. The length in time of each bit, i.e., bit-length, is
0.1s (PR1), 0.2s (PR2) and 0.5s (PR5) for the last
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Figure 8: Six different input signals (red) are used to
excite the first test case model. For each sig-
nal, the model is simulated deterministically
to obtain the output (blue). The three left
panels show the Step, Square wave and Sine
wave signals. The Square wave and Sine wave
both have a period of T = 2s. The right
panels show the three pseudo random bin-
ary sequence (PRBS) signals, which differ in
what length in time each bit in the sequence
represents (0.1s, 0.2s or 0.5s).

three data-sets. Hence, a value of true/false in the
PRBS indicates input u = 1/u = 0 for 0.1s, 0.2s or
0.5s, respectively.

The model is simulated for each of the six input sig-
nals, with parameters a = 1, b = 1 and added meas-
urement noise vk ∼ N

(
0, 0.12

)
, to obtain an output.

Hence, for this model, the true parameter vector θ∗ is
known. The resulting input-output data-sets are used
as y[N ] and u[N ] in the following tests. Since there is no
diffusion term in the state transition in Eq. (27), and
the calibration data is simulated with the same model
for which parameter analysis is performed, the model
is exact, hence W = 0. As expected, due to the sim-
plicity of the model, and the simulated data-set, the
residuals are close to Gaussian, as shown by the CP
diagrams in Fig. 9

3.1.1 Uninformed Random Picking and Profile
likelihood

When starting to analyse the parameter space, a good
first step is to visualise the shape of the objective func-
tion g (θ) in the parameter space Θ. Usually, the exist-

ence of a well defined, unambiguous, optimum θ̂ is not
known initially. Hence, a good starting method is the
Uninformed Random Picking (URP) method described

Figure 9: Cumulative Periodograms for all six data-
sets show that the residuals are close to Gaus-
sian distributed, well within the 95% confid-
ence bounds.

in Section 2.3.1. The result of using URP as an explor-
atory tool on the first order model is shown in Fig.
10. Additionally, the Profile Likelihood (PL1) method
is applied to show that both methods obtain the same
optimal front across Θ. Observe from Fig. 10 that the
grey dots correspond to each of K = 50.000 randomly
drawn θj , each simulated to compute g (θj), while the
red line is the PL1 profile. The PL1 profile corresponds
closely to the optimal front obtained by the URP.

Plotting the results together with the likelihood pro-
file, shows that the same information, the shape of the
objective, is obtained by both methods. Hence, it is in-
teresting to compare the methods on computation time
and implementation. For this simple model, the execu-
tion time of URP (K = 50.000) and PL1(500 steps in
θi) are 12s vs 17s, hence the computation time is short
enough to be insignificant. However, for larger models,
there may be significant differences. The PL1 method
requires optimisation of nθ−1 parameters for each step
in θi, hence, a large number of parameters significantly
increases the load on the optimisation algorithm. In
contrast, the URP method requires no optimisation,
but is affected by the dimensionality of Θ due to the
dispersion of the randomly drawn points. With large
number of parameters, K must be chosen large enough
that the randomly drawn parameters reasonably covers
the whole space Θ, which results in longer computation
time.

An interesting observation when comparing PL1 and
URP, since they both give essentially the same result,
is that URP is significantly easier to implement, since it
does not require an optimisation algorithm. For some
applications, this may be a distinct advantage.

Next, observe that both the URP and the PL1
method rely on projections to plot the results as
functions of a single parameter. These projections
are known to overestimate the width of the pro-
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Figure 10: Exploratory analysis of the ` (θ) objective using the PL1 (red) and the URP (grey) methods. Results
for parameter a (left) and b (right) show that both parameters are unambiguously identifiable for all
six data-sets.

Figure 11: PL1 and URP results, zoomed in around the optimum, for parameter a (left) and b (right).

files/intervals, as discussed in Section 2.2.7.

Finally, observe that the plots in Fig. 10 are ob-
tained as a form of exploratory analysis, hence with
wide bounds on Θ and subsequently with a large range
on the objective score axis; relative log likelihood

` (θ)−`
(
θ̂
)
< 1000 is used here. These plots are inter-

esting as a first step, but for the purpose of estimating
uncertainty of the optimal estimate θ̂, only the imme-
diate neighbourhood of θ̂ is of interest. Hence, Fig. 11
shows the same results but with different scaling on
the axis. Here, the width of Θ is significantly reduced,
and also the range in objective score is reduced to a
more reasonable 10. This likelihood range allows for
adding confidence thresholds at α equal to 90% and
95%. From Fig. 11 it is immediately apparent that

the Step and PRBS (0.5s) data-sets produce narrower

shapes around θ̂ than the other four data-sets, which
indicates better estimation accuracy, i.e., tighter con-
fidence bounds from the applied thresholds.

3.1.2 Randomised initial conditions

Another useful method, especially as an initial explor-
atory analysis tool, is the use of randomised initial con-
ditions with subsequent optimisation, discussed in Sec.
2.3.2. The result of applying this method is shown
in Fig. 12, where the results are plotted as a vs
b, i.e., both parameters against each other. Hence,
Fig. 12 shows the whole parameter space Θ for this
model. As shown, the optimum (1, 1) is obtained for
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Figure 12: Randomised initial conditions shows that
the optimum is globally unambiguous in
Θ and obtained independent of the initial
guess θ0. Results are shown only for data-
set Step (other five sets show the same be-
haviour).

all K = 500 randomly drawn initial guesses, which
shows that the optimum is unambiguously obtainable
in Θ, and not influenced by the initial guess θ0

j . For
comparison, see Section 2.3.2 where another example
of this method is shown in Fig. 4 in which there are a
large number of local minima. Together with the res-
ults in Section 3.1.1, Fig. 12 shows that the objective
function has a well defined single global optimum. The
major difference between results from the six different
data-sets is the shape of the objective around the op-
timum, and subsequently the accuracy of the obtained
parameter estimate, which will be further discussed in
the sequel.

3.1.3 Profile Likelihood 2D and Hessian

A natural next step is to perform a detailed analysis of
the neighbourhood around θ̂, i.e., the parameter ranges
obtained from the PL1 analysis shown in Fig. 11. To
analyse the parameter space, the two-dimensional Pro-
file Likelihood (PL2) method from Section 2.3.5 is used.
The results, shown in Fig. 13, use the same range for
all six data-sets in order to directly compare the ob-
tained profiles. For comparison, ellipses as in Eq. (14),
computed by using the Hessian method from Section
2.3.3, are added to the PL2 plots. Observe first from
Fig. 13 that the parameter distributions in Θ are very
well approximated by the Hessian based ellipses. This
is expected, due to the simplicity of the model and
the simulated data with added Gaussian noise. Both
methods use the same objective function ` (θ), with the
only difference being that the Hessian method assumes
a quadratic distribution to compute elliptic regions.

Figure 13: PL2 heat-maps with 90%, 95% and 99%
confidence iso-lines, for all six data-sets,
with added 95% confidence ellipses (thick
line), computed from the Hessian of ` (θ),
for comparison.

Table 1: Standard deviations of parameters computed
with the Hessian method.

Data a b σa σb
√
σaσb

STP 0.997 1.003 0.016 0.016 0.015
SQR 1.003 1.010 0.022 0.021 0.021
SIN 0.974 0.973 0.026 0.025 0.025
PR1 0.980 0.986 0.024 0.024 0.023
PR2 0.991 0.996 0.027 0.025 0.025
PR5 0.993 1.000 0.019 0.017 0.018

Next, observe that the elliptic confidence regions in
Fig. 13 are rotated at an approximately 45 degree
angle, or equivalently from Table 1 that the covariance
σaσb between the two parameters is significant, com-
pared to the variance of each variable. This indicates
that the parameters are dependent, which is expected
from Eq. (29), since K = b

a . The parametrisation
of the model in Eq. (27) was chosen specifically to
demonstrate this point. Subsequently, as discussed in
Section 2.2.7, the PL1 projections from Fig. 11 are
too wide. Indeed, by projecting the PL2 results in
Fig. 13 onto each of the two parameter axes, the res-
ulting profiles would be exactly the results from the
PL1 method. Hence, it can be observed that the PL1
method significantly over-estimates the width of the
parameter profiles due to parameter inter-dependence.
Note that it is recommended to attempt resolving para-
meter inter-dependence by choosing a different para-
metrisation in Eq. (27), e.g. choosing the parameters
K and τ such that the state transition equation be-
comes ẋ = 1

τ (−x+Ku).
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Figure 14: Consistency of dynamic information for identification parameters a (left) and b (right) is examined
using a window length of l = 200 samples, equivalently 2 seconds. The window offset is varied on
the interval t0 ∈ [0, 8[ seconds in steps of w = 1, or equivalently ∆t = 0.01. At each step, the Profile
Likelihood method is used to evaluate identifiability of the parameters using the information in the
window. The results are plotted as a heat-map with time offset on the horizontal axis, and the thick
line represents the optimal parameter estimate for each window. The parameters are examined on
the interval [0.3, 1.7].

Finally, observe from inspection of Fig. 13 and the
corresponding quantified standard deviations and cov-
ariance of the parameters in Table 1, that the Step and
PRBS (0.5s) data-sets provide slightly more accurate
estimates of the parameters, compared with the other
four. The variations in parameter estimation uncer-
tainty, and correspondingly the shape of the neighbour-
hood around θ̂ in Θ, are caused by the use of different
excitation signals. Hence, the differences between the
results illustrate the well known fact that the choice of
excitation signal during experiments directly influences
the parameter estimation uncertainty.

3.1.4 Consistency of dynamic information

Next, it is of interest to assess the consistency of dy-
namic information in the data-sets, using the Moving
Window method described in Section 2.3.7. The res-
ults of applying the Profile Likelihood (PL), described
in Section 2.3.4, to data segments of length l taken
equidistantly across the original data with step length
w, is shown in Fig. 14. The PL method provides better
estimates of the uncertainty and identifiability for the
data in each step of the moving window, compared with

the Hessian, since it can represent asymmetric distribu-
tions. The results, which for this method is a function
of parameter θi and the time offset w · (i− 1), are plot-
ted as heat-maps with confidence iso-lines at 90%, 95%
and 99%. Figure 14 shows that there is a significant
difference between the Step data-set and the other five
sets in that the Step data-set has large segments where
the parameter uncertainty is high, i.e., large equipo-
tential bands in the parameter direction. This indic-
ates that there is insufficient dynamic information in
these segments of the data to obtain good parameter
estimates. Observe also that for the Square and Sine
wave data-sets, the results are the least affected by the
window offset, hence, these data-sets contain the most
consistent dynamic information. Similarly, the optimal
estimate, marked by a thick black line in Fig. 14, is
showing significant fluctuations for the Step data-set,
while for the Square and Sine Wave data-sets, the es-
timates are mostly consistent w.r.t. the time window
offset.

These considerations will be especially important in
the sequel, when block based bootstrapping methods
are used, but the results are also interesting in them-
selves, as a way to test the dynamic information con-
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Table 2: Bootstrap results (M = 200 iterations), Case
A: Simple (K = 10), Case B: Simple (K = 5),
Case C: Stationary (p = 0.005).

Data # a b σa σb
√
σaσb

S
T

P A 0.958 0.985 0.080 0.073 0.074
B 1.009 1.018 0.063 0.058 0.060
C 1.013 1.015 0.065 0.070 0.061

S
Q

R A 1.049 1.033 0.026 0.015 0.019
B 1.005 1.025 0.014 0.007 0.008
C 1.001 1.014 0.018 0.016 0.015

S
IN

A 0.975 0.965 0.017 0.025 0.015
B 0.970 0.970 0.018 0.021 0.016
C 0.977 0.977 0.028 0.025 0.026

P
R

1 A 0.976 1.006 0.068 0.058 0.059
B 0.979 0.983 0.024 0.028 0.025
C 0.949 0.951 0.033 0.034 0.032

P
R

2 A 1.063 1.040 0.051 0.039 0.043
B 1.026 1.032 0.031 0.018 0.023
C 0.999 1.007 0.029 0.026 0.027

P
R

5 A 0.991 0.997 0.046 0.040 0.038
B 0.994 1.011 0.025 0.036 0.030
C 1.014 1.027 0.020 0.023 0.020

tent of different excitation signals, especially when us-
ing calibration data obtained from physical systems
with limited choices in the experimental design.

3.1.5 Bootstrapping

The use of bootstrapping methods for dynamic data
to estimate the uncertainty of estimated parameters,
is discussed in Section 2.3.6. Here, the simple block
bootstrap, with block lengths l = 100 and l = 200,
respectively 1 and 2 seconds of data, is tested and
compared with the Stationary Bootstrap method us-
ing p = 0.005. The results, after M = 200 iterations,
are presented in Table 2. First, observe that, as ex-
pected based on the results in Section 3.1.4, the Step
data-set shows considerably higher covariance than the
other data-sets. Since large segments of the Step data-
set does not contain sufficient dynamic information for
parameter estimation, some of the randomised pseudo-
data-sets created by bootstrapping does not contain
enough information to estimate parameters, hence the
higher covariance. This is further illustrated by Fig.
15, which shows how the Step data-set produces sig-
nificantly larger spread in parameter estimates, com-
pared with the Square Wave data-set. Note that a
much higher number of iterations, M = 10.000, was
used for Fig. 15 in order to obtain a good histogram
illustration. From Section 3.1.4, the Square and Sine
Wave data-sets are known to have significantly better
consistency of dynamic information across the data-set

Figure 15: Histogram (top) and scatter plot (bottom)
showing how data with poor dynamic in-
formation content (left panels, Step data-
set) induces outliers in the results. Plots are
obtained using Stationary bootstrap with
tuning parameter probability p = 0.005 and
M = 10000 iterations.

compared with the Step data-set. Hence, more con-
sistent parameter estimates with lower variance is ob-
tained from the block-based bootstrapping methods.

Next, observe that the Stationary Bootstrap method
produces approximately the same results as the block
based bootstrapping with l = 200, in this case. This
may be explained by the Stationary Bootstrap using
p = 0.005 which gives an expected block length also of
200.

Finally, observe that for the datasets for which the
dynamic information is of sufficient consistency, the es-
timates of the parameter uncertainty Σθ for cases B
and C in Table 2 are similar to those obtained from
the Hessian method in Table 1.

3.1.6 Frequency information in input and output

A commonly used method of examining dynamic in-
formation content in data is to compute a frequency
spectrum using the Fast Fourier Transform (FFT) al-
gorithm. Due to its widespread use and popularity,
computationally efficient implementations exist, which
makes this an easily accessible tool for analysing data.
Applying FFT to the six data-sets, both the input sig-
nal and the measured output with noise, gives the res-
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ults shown in Fig. 16. Comparing the FFT results
to those obtained by the parameter analysis methods
presented previously provides some interesting insight
into the differences in results obtained from each of the
six excitation signals.

First, comparing the Sine and Square wave data-
sets, observe that the Sine wave has only one frequency
component at f = 0.5Hz, excluding the mean signal
level component at 0Hz, while the Square Wave con-
tains also higher order harmonics of the base frequency.
However, since the model is essentially a low-pass filter
with a critical frequency of 1

2π , these higher order har-
monics are damped, thus having only limited effect on
the model output. Note however that despite having
almost identical frequency information in the output y,
the spectra for the input u differ significantly. The fact
that these higher order harmonics in the input spectra
are damped, thus not significantly infuencing the out-
put y, is also informative w.r.t. the input-output rela-
tionship of the model, thus producing slightly smaller
confidence regions for the Square Wave data-set.

A similar observation can be made from comparing
the three PRBS data-sets. For the sets with bit-length
0.1s and 0.2s more of the input signal power is located
in the damped frequency region of the model. Hence,
the PRBS signal with bit-length 0.5s produces better
parameter identification results, since more of the fre-
quency information is passed through the model.

Finally, comparing the Step and Square Wave data-
sets shows why the Step data-set produces the nar-
rowest confidence regions from parameter estimation.
Observe that the Step data-set contains the most sig-
nal strength in the frequency pass-band of the model.
Since more of the information in the input u affects the
output y, the parameter estimation methods produce
estimates with lower uncertainty.

3.1.7 Comparing excitation signals

An interesting observation can be made from compar-
ing the results of the various methods for all six data-
sets. While the Step data-set gives the best estimation
accuracy for the Likelihood based methods, such as the
Hessian curvature method and the Profile Likelihood
method, it also produces the worst estimation accuracy
when bootstrapping is used. The reason for this can be
observed from the consistency plot in Fig. 14. While
the Step data-set contains segments of data that are
largely uninformative for the purpose of estimating dy-
namic model parameters, the segments that do contain
sufficient information produce the highest accuracy es-
timates. The PL confidence bands produced when the
step change in the input is included in the moving win-
dow are the tightest among all the results produced,
hence, give the lowest estimation uncertainty. How-

Figure 16: The Fast Fourier Transform (FFT) can be
used to obtain a frequency domain repres-
entation of the dynamic information content
in both input and simulated output. Input
u (red) and output, including measurement
noise, y (blue) is shown.

ever, since bootstrapping randomly selects segments of
data, there will be some bootstrapped pseudo data-sets
that do not contain data from the informative segment
of the Step data-set and therefore produce outlier para-
meter estimates such as the ones shown in Fig. 15.

This example shows that assessing dynamic inform-
ation content for model calibration is not straightfor-
ward, even in this simple case. Hence, it is useful to
apply a method for evaluating the consistency of dy-
namic information, such as the one presented in Section
2.3.7.

3.1.8 Computation time

An important consideration for any numerical estim-
ation method is the computation time it takes to ob-
tain results. Typically, computation time depends on
hyper parameters of the method, such as the resolu-
tion of likelihood profiles or the number of iterations
for bootstrapping and randomisation based methods.
Further, computation time also depends on the dimen-
sionality nθ of the parameter space Θ. Some selec-
ted examples of computation times for the previously
presented results are given in Table 3. Since all the
parameter estimation methods are based on a large
number of simulations of a known model structure with
varying parameters θ and a set of measurement data
y[N ] and u[N ], the computation time is also influenced
by the complexity of the model, the choice of Kalman
Filter implementation for computation of residuals and
the size N of the calibration data-set. Further, since
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Table 3: Computation time for the LP model from the
Step data-set. The other data-sets produce
comparable execution times.

Method Time
PL1 (resolution 500) ∼ 13s
PL1 (resolution 5000) ∼ 90s
URP (K = 50.000) ∼ 19s
URP (K = 500.000) ∼ 160s
Rand. Initial Conditions (K = 50) ∼ 7s
Rand. Initial Conditions (K = 500) ∼ 57s
Moving Wnd. (res. 200, w = 1, l = 200) ∼ 575s
Moving Wnd. (res. 200, w = 1, l = 100) ∼ 317s
Moving Wnd. (res. 100, w = 1, l = 200) ∼ 311s
Moving Wnd. (res. 200, w = 10, l = 200) ∼ 57s
PL2 (400× 400 resolution) ∼ 2800s
Hessian ∼ 1s
Bootstrap A (M = 200) ∼ 14s
Bootstrap B(M = 200) ∼ 23s
Bootstrap C(M = 200) ∼ 24s
Bootstrap C(M = 10.000) ∼ 990s

most of the presented methods use numerical optimisa-
tion, computation times can be influenced by optimisa-
tion related effects, such as variations in computation
time due to obtaining estimates at different local min-
ima. Hence, it is interesting to compare and discuss
the computation time for a known model and data-set.

First, observe that for the PL1 and randomisation
based methods, i.e., URP and Random Initial Con-
ditions, the computation time is approximately linear
in the resolution/randomised iterations. However, the
number of iterations of the randomisation methods re-
quired to adequately explore the parameter space Θ de-
pends on the dimensionality. The PL1 method how-
ever projects the likelihood function of the parameter
space onto each parameter axis. Hence, the effect of
high dimension parameter spaces will be more signific-
ant for the randomisation based methods than the PL1
method.

Next, comparing the PL2 exhaustive search of
Θ with the ellipsoid approximation obtained from com-
puting the Hessian, the difference in computation time
is around three orders of magnitude. Further, the PL2
method projects the likelihood function of the entire
parameter space Θ onto each possible plane. Hence,
the computational time increases exponentially with
the number of parameters nθ.

The computation time of the Moving Window ana-
lysis, which applies the PL1 method on a moving win-
dow sub-set of the data, is shown to be approximately
linear in the step length w. This is expected since
the step length directly determines for how many win-

dows of data the PL1 method is executed. Further, the
computation time is also linear in the window length
l. The number of window data sub-sets is nw = N−l

w
which is only somewhat affected by l. However, the
PL1 method is approximately linear in the length of
the data used, which results in the computation time
for the Moving Window analysis being also approxim-
ately linear in l. Finally, the computation time is linear
in the PL1 resolution, which was previously shown for
the PL1 method applied to the full data-set. Naturally,
the same applies when the method is used on a small
sub-set of the data.

Finally, the computation time is approximately the
same for the bootstrap methods in cases B and C. This
is expected, since Case B uses blocks of fixed length
l = 200 while the Stationary Bootstrap method in Case
C uses p = 0.005, which gives the average block length
E (l) = 1

p = 200. Comparing this to Bootstrap Case
A shows that both bootstrap methods are approxim-
ately linear in the expected block length. Additionally,
since bootstrapping must be repeated M times in order
to simulate running M experiments, the computation
time is also approximately linear in M .

3.2 Thermal network model of a building

The second test case consists of a thermal network
model of a small experimental building located at the
Porsgrunn Campus of the University of South-Eastern
Norway (USN). Thermal network models are created
cognitively based on naive physical descriptions of the
thermodynamics of the buildings, and can be expressed
as Resistor-Capacitor (RC) circuit analog models Ber-
thou et al. [2014], Deconinck and Roels [2017], Fux
et al. [2014], Madsen and Holst [1995]. Specifically,
the R3C2 model, partially based on the R4C2 model
presented in Berthou et al. [2014], is created by ignor-
ing heat convection and radiation. Due to the strong
simplification used in these models, they contain signi-
ficant epistemic uncertainty, in addition to the aleat-
oric measurement uncertainty induced by acquiring
data from a physical building. Due to the simplified
nature of the model, the assumption S ∈ M (Θ) is
clearly unjustified here. However, it may still be pos-

sible to obtain θ̂ such that M
(
θ̂
)

is a good approx-

imation of S. Hence, it is interesting to analyse the
parameter space Θ of this model to evaluate the iden-
tifiability and estimation uncertainty of θ̂.

The model circuit equivalent is shown in Fig. 17.
The model has two outputs: the room temperature
Tb and the wall surface temperature Tw, and two in-
puts: the consumed power by an electric heating ele-
ment Q̇ and the outside temperature T∞. Five com-
ponents form the model structure: the thermal res-
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Figure 17: Simplified thermal network model with
three resistors and two capacitors.

Figure 18: Calibration data for the R3C2 model.
Temperatures T∞ (red), Tw (blue) and
Tb (green), and also the power consumption
Q, was recorded in February 2018.

istance between room air and wall Rb, the building
envelope Rw, and the thermal resistance of windows
and doors Rg. The two capacitances Cb and Cw rep-
resent the thermal capacitance of the building interior
and envelope, respectively. Additionally, the process
and measurement noise covariances W and V are also
estimated as model parameters, since they are needed
in the Kalman filter. Both covariance matrices are as-
sumed diagonal, adding a total of four noise related
parameters to the vector θ.

A calibration data-set for this model is shown in
Fig. 18. The data was collected from the experimental
building during February 2018, using a pre-installed
data acquisition system and set of sensors Brastein
et al. [2018].

3.2.1 Profile Likelihood of R3C2 model

Initially, both PL1 and PL2 methods were used to per-
form an exploratory analysis of the parameter space of
the R3C2 model. The results of these analyses, presen-
ted in Figs. 19 and 20, show that there is a problem

with the parameter space of this model, particularly
that the parameter Rb and Rw are inter-dependent.
Observe from Fig. 20 that the Rb vs. Rw plot shows
a linear relationship. Hence, the PL1 results for these
two parameters in Fig. 19, which can be considered a
projection of the PL2 result onto the individual para-
meter axis, show a large equipotential flat region which
extends up to at least 5 K

W . Observe also that for

Rb the PL1 profile makes a sharp bend at around 4.5 K
W ,

such that the profile is bounded for Rb. However, as
discussed in Section 2.2.7, inter-dependent parameters
can cause artefacts in the PL plots, due to the bounds
on one parameter having a limiting effect on the other
dependent parameters. The bend in the profile of Rb is
an example of such an artefact.

Subsequently, the R3C2 model is found to be over-
parameterised. After some experimentation, based on
previous experience with the model Brastein et al.
[2019b], the resistor Rg is removed from the circuit
model in Fig. 17, in an attempt to make the remaining
parameters identifiable. The resulting model, named
R2C2, is used in the sequel and further analysed.

3.2.2 Profile Likelihood of R2C2

The first analysis performed on the reduced R2C2
model is a combination of the PL1 method and the
URP method. The results, presented in Fig. 21, show
that all four parameters are now identifiable, since the
likelihood based confidence intervals are bounded with
a clearly defined minima. Secondly, comparing URP to
PL1 shows that although the URP method successfully
captures the general shape of the objective function
around θ̂ using K = 500.000 randomly drawn paramet-
ers, it is not enough to properly capture the optimal
front. Hence, there is some small difference between
the PL1 and URP results. By its use of numerical
optimisation, the PL1 method successfully finds the
optimal profile in likelihood space for each parameter.
The main result from the application of PL1 is to ob-
tain reasonable bounds θmin and θmax on Θ for fur-
ther analysis, something for which the PL1 method is
ideally suited.

Next, the PL2 method is used to further analyse
the parameter space Θ, in particular to test for inter-
dependency of parameters and further study the iden-
tifiability. For comparison, the Hessian method from
Section 2.3.3 is used to compute the covariance of the
estimated parameters Σθ, and subsequently compute
an elliptic confidence region for the true parameters
θ∗. The Hessian ellipses are superimposed on the PL2
heat-maps in Fig. 22. Two interesting observations
can be made from these results. First, the results show
that after removing Rg, all parameters are identifi-
able, i.e., the confidence regions are bounded, given the
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Figure 19: PL1 results for the R3C2 model.

Figure 20: Selected PL2 results for the R3C2 model shows that the parameters Rw and Rb are inter-dependent.

Figure 21: PL1 and URP results for the reduced R2C2
model show that even with K = 500.000
randomly drawn parameter vectors, the
coverage is not good enough, since the op-
timal front from the PL method is not the
same as that of the URP method. However,
the shape of the objective is still approx-
imated by the URP method, indicating its
usefulness also for higher dimensional para-
meter spaces.

Figure 22: PL2 and Hessian ellipses (thick black) for
the R2C2 model. Iso-lines trace the 90%,
95% and 99% confidence bounds computed
from the PL2 results, based on the χ2

ndf
-

distribution with ndf = 2. The Hessian
method is used to compute Σθ and super-
impose an elliptic approximate confidence
region at α = 95%.
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Figure 23: Consistency of dynamic information for the R2C2 model. The top four plots show the results of
applying PL1 to a moving window of length 96 (2 days), while the lower four plots use a window
length of 192 (4 days).

data in Fig. 18. The parameters Rb and Rw are still
inter-dependent, as illustrated by the rotation of the
approximately elliptic PL2 profile, but there is still a
clearly defined optimum. Second, the Hessian method
produces a reasonable approximation of the 95% iso-
line confidence bounds in all the projected parameter
planes. Where the PL2 method and Hessian method
differ, it can be observed from Fig. 22 that the PL2
method, which by brute force computation captures
the true projection of ` (θ) onto Θi,j , finds profiles that
are not quite elliptic. The discrepancies observed visu-
ally therefore seem reasonable w.r.t. the shape of the
PL2 profile. Observe for example that the Cb vs Cw

profile is elongated in the increasing direction of both
parameters, hence the discrepancy between PL2 and
Hessian ellipse is mostly located towards the decreas-
ing parameter directions.

Table 4: Optimal parameters with normalised stand-
ard deviations computed with the Hessian
method for the R2C2 model.

Rb Rw Cb Cw

θ̂i 0.0434 0.0512 1.446× 106 0.481× 106

σi
θ̂i

0.0233 0.0210 0.0467 0.0702

The optimal parameters, which are the same for both
PL2 and Hessian methods, are shown in Table 4 to-
gether with the standard deviations computed from in-
verting the Hessian, normalised over the optimal para-
meters.

3.2.3 Consistency of dynamic information

Since it is of interest to test bootstrapping methods
also on the R2C2 model, a verification of the dynamic
information content is first needed. A typical challenge
for building thermal behaviour models is the restric-
tions on experimental design, since weather, includ-
ing outside temperature, is a model input. Addition-
ally, there are limitations to acceptable ranges of in-
door temperature and limited available input power for
heating, which further complicates the experimental
design for this type of models. Therefore, model cal-
ibration must often be performed on low informative
data. Hence, methods that can evaluate the quality of
the dynamic information in the data is of interest. By
using the PL1 method for a moving window of data,
as discussed in Section 2.3.7, it is possible to obtain a
visual diagnosis of estimation accuracy and parameter
identifiability for segments of the data.

As shown in Fig. 23, the estimation accuracy of
parameters in a window of length 96 samples (2 days)
is somewhat poor for significant segments of data, in
particular for the first part of the data-set. The para-
meter Cw is particularly difficult to identify, even for
the 192 sample (4 days) window. From inspecting the
calibration data in Fig. 18 this result is expected, due
to the limited variation observed in temperature Tw.
For the parameters Rb, Rw and Cb, the consistency
test shows that the uncertainty is mostly consistent in
time, with only minor variations, for the 4 day window
case. The results also show that the optimal value for
these three parameters do not vary significantly over
time, for the window length of 4 days. However, the
parameter Cw is estimated with significant time vari-
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Figure 24: Bootstrap results for the R2C2 model, with M = 10.000 iterations represented as scatter plots with
95% confidence ellipses, simultaneous for the projected parameters, for the mean estimate (left) and
corresponding 2D histograms (right). Both the scatter plots and the histograms are presented as
two-dimensional projections onto each possible parameter combination plane Θi,j .

ations also for the longest window length, as shown in
the lower right panel of Fig. 23. This indicates poor
identifiability of Cw, and may result in unsatisfactory
results if block-based bootstrapping methods are used
to estimate uncertainty.

3.2.4 Bootstrapping

The parameters of the R2C2 model is next analysed
using Stationary bootstrapping with p = 0.005, which
gives expected, i.e., average, block length E (l) = 200,
since a window length of 192 samples (4 days) appears
to be an acceptable choice based on the results in Fig.
23. The resulting mean parameters and normalised
standard deviations, after running bootstrapping for
M = 10.000 iterations, is shown in Table 5.

Table 5: Optimal parameters with normalised stand-
ard deviations computed with the Bootstrap-
ping method for the R2C2 model.

Rb Rw Cb Cw

θ̄i 0.0432 0.0509 1.443× 106 0.528× 106

σi
θ̄

0.043 0.067 0.093 0.131

Comparing the results in Table 5 with Table 4,
the estimated mean of the M bootstrapped iterations
agrees well with the result obtained by optimisation
and PL2 brute force exhaustive search. The normalised
covariances obtained by bootstrapping, i.e., the covari-

ance of M iterations of repeated generation of pseudo
data-sets with subsequent parameter estimation, are
approximately two times larger than those obtained by
inverting the Hessian of the likelihood function. Con-
sidering the significantly different theoretical founda-
tion of these two methods of uncertainty estimation,
a difference of a factor of two or three may be con-
sidered a reasonable agreement between the two meth-
ods, in particular since the consistency test in Fig. 23
showed that the calibration data contains some low in-
formative regions which can cause outliers in the boot-
strapped parameter estimates. A histogram over all
M iterations is shown in Fig. 24. Since the para-
meter space is of a dimension higher than two, the
histograms are plotted as projections onto parameter
planes Θi,j , similar to the projected profiles obtained
from the PL2 method. Interestingly, the shape of the
histograms is similar to the PL2 profiles obtained in
Fig. 22. However, due to the effect of outliers caused
by some of the randomised pseudo data-sets being sig-
nificantly less informative than the full data-set, the
spread of the histogram. i.e., the covariance of the
mean estimate, is larger than the covariance obtained
from the Hessian in Table 4. Observe also the cluster-
ing of parameter estimates at the edges of the histo-
gram plots, which indicates that for certain iterations
of the bootstrap methods, the obtained parameters are
located at the constraints of the parameter space Θ.
This is a further indication that some pseudo data-sets
are non-informative w.r.t. parameter estimation, since
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the resulting parameters at the bounds of Θ deviate
significantly from those obtained when the full data-
set is used.

3.2.5 Computation time

Computation times for the various analysis methods
applied to the R2C2 model are shown in Table 6. First,
observe that the computation times are considerably
longer than those found for the simple first order model
in Table 3, e.g., the URP method with K = 500.000
randomly drawn parameters was completed in ∼ 160s
for the first order model but took ∼ 0.15h = 540s for
the R2C2 model. Despite using a dataset with only ap-
proximately half the number of samples, 480 vs 1000,
the computation time for the R2C2 model is approx-
imately 3.4 times longer. This extended computation
time is caused by increased model complexity. First,
the model has two states rather than one. Addition-
ally, the R2C2 model uses a UKF rather than a stand-
ard KF, which further increases computational time.
When analysing the R2C2 model, the software evalu-
ates the model’s equations ∼ 540.000 times per second
for a total of ∼ 1100 simulations per second. Com-
parably, the simpler first order model’s equations are
evaluated ∼ 3.100.000 times per second, for a total
of ∼ 3100 simulations per second. Since the URP
method does not use optimisation, model complexity,
length of the data-set and the number of URP itera-
tions K are the main factors that influence computa-
tion time, hence the results can be directly compared.
Accounting for differences in data-set length, the in-
creased model complexity of the R2C2 model, includ-
ing its use of UKF with Runge-Kutta 4th order dis-
cretisation Runge [1895] of the state equation, increases
computation time by approximately 540

160
1000
480 = 7 times.

Next, observe that the stationary bootstrap, which
shows similar results to the PL2 method, is about 40
times faster. This increased computation speed is ob-
tained at the cost of inducing outlier estimates, caused
by Bootstrapped pseudo data-sets that are less inform-
ative w.r.t. parameter estimation than the full data-
set. Hence, due to these outliers, the uncertainty es-
timate is somewhat inflated compared to that obtained
when computing the Hessian of the Likelihood function
over the whole data-set.

Finally, observe from Table 6 that the Moving Win-
dow analysis computation time is only approximately
linear in the window length l. The analysis using a
longer window length of 192 is finished with a 1.62
times longer computation time, compared with the
window length of 96. While this method is theoret-
ically linear in window length l, the shorter window is
less informative w.r.t. parameter estimation, as Fig.
23 shows. Hence, the task of the numerical optimiser

Table 6: Computation time for the LP model from the
Step data-set. The other data-sets produce
comparable execution times.

Method Time
PL1 (resolution 500) ∼ 4.35h
URP (K = 500.000) ∼ 0.15h
Moving Wnd. (res. 200, w = 1, l = 96) ∼ 3.60h
Moving Wnd. (res. 200, w = 1, l = 192) ∼ 5.77h
PL2 (400× 400 resolution) ∼ 15.18h
Stationary Bootstrap (M = 10.000) ∼ 0.35h

is more challenging, which increases the computation
time slightly for the shorter window. This example
illustrates that calculating computation time for com-
plex analysis methods is not straight forward. The
Moving Window with PL1 method consists of both a
numerical optimisation method, a Kalman filter imple-
mentation, the model structure, and the Profile Likeli-
hood algorithm, all of which influence the computation
time.

3.3 Method recommendations

Each of the methods presented in this paper has its ad-
vantages and disadvantages. Since they each compute
and represent the uncertainty of estimated parameters
in different ways, they can be used for different applic-
ations.

First, with regards to representation of uncertainty
as profiles or regions, this is a question of usage. As
an uncertainty estimate for comparison, regions or in-
tervals may be preferable, since they can be quantit-
atively compared. Profiles are more descriptive, since
they can represent how the uncertainty is distributed
across an entire parameter domain. Hence, for applic-
ations where the parameters themselves are of interest,
i.e., assumed to be determined by the physical proper-
ties of the system, representing parameters as distribu-
tions is perhaps preferable since they capture the most
information about the underlying physical system.

Second, with respect to choosing what methods to
use, the first question to consider is whether it is reas-
onable to assume that the parameters are well approx-
imated by a Gaussian distribution, such that a quad-
ratic approximation can be used to obtain ellipsoid re-
gions for describing the uncertainty. In such cases, and
when confidence regions rather than profiles are de-
sirable representations, the Hessian method for com-
putation of estimation covariance is preferable, due
to its computational simplicity and speed. The Hes-
sian method is based on analysing the curvature of the
likelihood function ` (θ) around an optimal estimate θ̂,
which must first be obtained by calibration of all para-
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meters and hence is subject to local minima problems.
Hence, the Hessian method may only estimate the un-
certainty of a pre-determined, presumed optimal, θ̂.
Therefore, it should be ascertained, if possible, whether
a particular θ̂ is a global or local optimum.

The Profile Likelihood (PL1) method Maiwald and
Timmer [2008], Meeker and Escobar [1995], Murphy
and Van der Vaart [2000], Raue et al. [2009], Venzon
and Moolgavkar [1988] is an attractive choice if the
practical identifiability of parameters is questionable.
This method, unlike the Hessian based method, can
represent non-symmetric confidence regions which can
be used to diagnose identifiability Raue et al. [2009].
Further, the method allows representation as profiles,
which may also be an advantage in some cases. The
PL1 method can also be used for obtaining reasonable
limitations on parameters in an exploratory analysis.
Although it is known to give projections onto single
parameters, which can be too wide if there are inter-
dependent parameters, it is still a useful analysis tool.

The Uninformed Random Picking (URP) method
Hoos and Stützle [2004] is a simple alternative to
PL1, and provides approximately the same results if
the number of randomly drawn parameters K is large
enough. However, being a stochastic method, the dis-
tribution of randomly drawn parameters across para-
meter space can not be guaranteed. Hence, the optimal
front in parameter space may not be detected unless a
sufficiently large number of parameters is used. This is
challenging for high dimension parameter spaces. The
main advantage of URP is its simplicity, and that it
does not require an optimisation algorithm.

The two-dimensional Profile Likelihood (PL2)
method provides the most information about the para-
meter domain. In particular, it is the only method
presented in this paper which can diagnose para-
meter inter-dependency and identifiability, as well as
handle multimodal objective functions with local min-
ima. Bootstrapping methods may show large disper-
sion in estimated parameters if parameters are non-
identifiable, but the exhaustive exploration of the en-
tire parameter space Θ offered by the PL2 method
still provides more detailed and clear diagnostic con-
clusions. Since the method obtains highly descript-
ive profiles of combinations of parameters, this method
provides the most detailed information about the para-
meter space Θ. Hence, if methods like PL1 or URP
indicate problems with identifiability, it may be useful
to apply the PL2 method to obtain a better analysis of
the parameter space. Finally, the PL2 method is guar-
anteed to find the global optimum in Θ, within the ac-
curacy allowed by the discretisation for the brute force
search.

Repeatedly optimising the parameters with random

initial guesses can be used to test the parameter op-
timisation procedure for sensitivity to the initial con-
ditions. Additionally, this method is a useful tool for
identification of local minima in the objective func-
tion. If there are multiple locally optimal solutions,
this method will likely find them faster than the PL2
method, provided that the distribution of randomised
initial conditions is dense enough, i.e., it needs a large
enough number of repeated randomised initial condi-
tions with subsequent optimisation of parameters such
that at least one of the randomly drawn initial guesses
will be close enough to the local optima to find them.

Bootstrapping Politis [2003] is perhaps the most in-
tuitive way to obtain confidence regions, since it re-
sembles the basic idea of computing coverage probab-
ilities for multiple experiments Neyman [1937]. How-
ever, as the results have shown, if the dynamic inform-
ation content in the data varies in time, block based
bootstrapping can create pseudo data-sets that are un-
informative w.r.t. parameter estimation and hence
provide poor parameter identifiability. Subsequently,
there can be outlier parameter estimates among the M
iterations which affect the computation of mean para-
meters and the covariance. When there are variations
in dynamic information content in the calibration data,
special care should be taken when selecting the block
lengths for bootstrapping. Regardless, bootstrapping
is much faster than the PL2 method, and is there-
fore a useful alternative or augmentation to the PL2
method, in particular where computational resources
and/or time is a challenge. Arguably, bootstrapping
may also provide a more realistic estimation of the un-
certainty of the parameters, provided the consistency of
dynamic information in the calibration data is accept-
able, since the method approximates running repeated
experiments in a way that is similar to the idea of cov-
erage probability calculation for confidence intervals.
Due to its simplicity of implementation, bootstrapping
methods may be preferable as an initial estimate of the
uncertainty of estimated parameters.

Finally, a moving window combined with the PL1,
or the Hessian method, can be used to test for con-
sistency in dynamic information w.r.t. a particular
model. Since this method, especially based on the PL1
method, is somewhat time consuming, it is most use-
ful as a diagnostic tool to test for sources of diverging
results in other methods, such as block based boot-
strapping.

4 Conclusion

In this paper, a number of different methods for para-
meter estimation and analysis has been presented. Two
test cases, a simple first order model with simulated
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data, and a thermal network building grey-box model
with measurement data from a physical building, was
used to demonstrate the application of these methods.

The main results from these two test cases are,
firstly, demonstrating the usefulness of one- and two-
dimensional Profile Likelihood Raue et al. [2009].
These methods obtain descriptive profiles for each
parameter, which can both estimate the uncertainty
of the parameter estimate, diagnose the identifiabil-
ity of the parameters and test for presence of local
minima. The two-dimensional Profile Likelihood was
shown to be particularly useful for detecting over-
parametrisation for the second test case. Further, the
one dimensional profile likelihood method was used
with a moving window to check the consistency of dy-
namic information, and subsequently the identifiability
and estimation uncertainty of the parameters as a func-
tion of time, with respect to a specific model structure.
The latter was shown to be useful in combination with
block based bootstrapping, to test for segments of data
that are uninformative w.r.t. parameter estimation.

For the first test case, six different simulated data-
sets were used. Of these six sets, the simple input
step and the Pseudo Random Binary Sequence with
0.5s bit length gave the lowest overall estimation un-
certainty. However, since the step data-set contains
significant segments of data in which the system is in
steady state, and hence produce non-identifiable para-
meters, the use of block based bootstrapping method
results introduce outliers in the parameter estimates
which significantly inflate the covariance of the mean
parameter estimate. Hence, the interesting conclusion
for this test case is that the data-set which produces
the lowest estimation uncertainty for the Profile Like-
lihood and Hessian based method gives the highest un-
certainty for the block based bootstrap method. Hence,
what methods to use is also affected by the dynamic
information content in the calibration data, and con-
sequently the experimental design used to obtain that
data, in addition to the application requirements and
desired representation of resulting parameters.
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Abstract

The potential reduction in energy consumption for space heating in buildings realised by the use of predictive control systems

directly depends on the prediction accuracy of the building thermal behaviour model. Hence, model calibration methods that

allow improved prediction accuracy for specific buildings have received significant scientific interest. An extension of this

work is the potential use of calibrated models to estimate the thermal properties of an existing building, using measurements

collected from the actual building, rather than relying on building specifications.

Simplified thermal network models, often expressed as grey-box Resistor-Capacitor circuit analogue models, have been

successfully applied in the prediction setting. However, the use of such models as soft sensors for the thermal properties of a

building requires an assumption of physical interpretation of the estimated parameters. The parameters of these models are

estimated under the effects of both epistemic and aleatoric uncertainty, in the model structure and the calibration data. This

uncertainty is propagated to the estimated parameters. Depending on the model structure and the dynamic information

content in the data, the parameters may not be identifiable, thus resulting in ambiguous point estimates.

In this paper, the Profile Likelihood method, typical of a frequentist interpretation of parameter estimation, is used to

diagnose parameter identifiability by projecting the likelihood function onto each parameter. If a Bayesian framework is

used, treating the parameters as random variables with a probability distribution in the parameter space, projections of

the posterior distribution can be studied by using the Profile Posterior method. The latter results in projections that are

similar to the marginal distributions obtained by the popular Markov Chain Monte Carlo method. The different approaches

are applied and compared for five experimental cases based on observed data. Ambiguity of the estimated parameters is

resolved by the application of a prior distribution derived from a priori knowledge, or by appropriate modification of the

model structure. The posterior predictive distribution of the model output predictions is shown to be mostly unaffected by

the parameter non-identifiability.

Keywords: thermal network models; grey-box models; Profile Likelihood; Bayesian parameter estimation; Markov Chain

Monte Carlo; parameter distribution; posterior predictive distribution; parameter identifiability

1. Introduction1

1.1. Background2

The reduction of anthropogenic CO2 emissions is perhaps the most important task in modern science. The energy3

consumed by space heating in buildings is considerable [1]. According to the Energy Performance of Buildings Directive4

(EPBD) [2], the energy consumed by buildings accounts for 40% of the total energy consumption within the European Union5

(EU). Hence, the development of model predictive control strategies that can effectuate energy reductions by improved6

thermal control has received significant scientific interest [3, 4]. For control systems, development of accurate prediction7

models is essential.8
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Another application of interest for building thermal modelling is the classification of building properties related to space9

heating, for improved evaluation of the energy performance of existing buildings [5]. By classifying actual energy performance,10

development of taxation schemes could be utilised to motivate investments in energy reduction technology. Given that there is11

often discrepancies between physical buildings and their blueprints, typically due to continuous modifications or workmanship12

issues, energy classification schemes could with benefit be based on energy and temperature data recorded from the building13

to be classified. A popular method for modelling building thermal behaviour is the use of simplified thermal network models14

expressed as a Resistor-Capacitor analogue [3, 4, 6–9]. Regardless of their proven efficiency in the prediction setting, the15

parameters of a thermal network model may not be suitable as soft sensors for monitoring building properties, since this16

assumes a physical interpretation of the parameters as constants of the physical building [5, 10]. For such an assumption to17

be justified, the verification of parameter identifiability is essential, in order to ensure unambiguous parameter estimation.18

1.2. Previous work19

Thermal behaviour models of buildings20

For widespread use of model predictive control and/or classification systems in buildings, a simple modelling method that21

can both produce physically interpretable parameters and make accurate predictions of future thermal behaviour is needed.22

Models of building thermal behaviour based on exact physical specifications of a building often become intractable due to the23

complexity of building structures, and may require specialised software to simulate [1]. Additionally, existing buildings may24

deviate from blueprints and specifications of the building, which further exacerbates the challenge of developing a physics-25

based white-box model [5]. In contrast, data-driven models typically use simple model structures, with parameters that are26

calibrated from data acquired from existing buildings. Such data-driven black-box models, e.g., from system identification27

methods, typically have improved prediction performance due to being calibrated for specific buildings, but in general lack28

physical interpretability [11–15].29

A reasonable compromise between the physics-based white-box and the data-driven black-box models is the use of grey-box30

thermal network models [3–5, 7, 9]. Thermal network (TN) models, typically expressed as Resistor-Capacitor (RC) electric31

analogue models, are based on a naive physical, cognitive understanding of the building thermodynamics, with relatively32

few lumped parameters that are calibrated from observational data. These models contain significant epistemic uncertainty33

in their formulation, resulting from model approximations and unmodelled or unrecognised disturbances [8], in addition to34

the aleatoric uncertainty introduced by random measurement noise. Hence, they can with advantage be formulated using35

stochastic differential equations (SDE) [8, 16–19]. Since the structure of a grey-box TN model is developed based on a36

physical description of the building, the parameters are often assumed to have a physical interpretation. However, due to37

the inherent uncertainties involved in the formulation of such models, a through analysis of parameter identifiability, which38

may lead to ambiguous parameter estimates, is needed prior to such interpretation.39

Another point of interest regarding interpretation of TN models is the model states. The temperature state nodes in40

the RC circuit are typically chosen to representation a specific part of the building, e.g., the room interior or the building41

envelope internal surface, hence a physical interpretation of the states are assumed from the model structure. However, since42

the parameters that determine the relationship between these nodes are calibrated from measured data, the model is trained43

to predict the temperature at the specific sensor locations [20]. If the states are directly measurable, each state corresponds44

to a specific sensor location. Hence, the physical interpretation of TN model states is determined by both the model structure45

and the sensor location. Compared to the black-box system identification (SSID) paradigm, where the model structure to46

be calibrated is some general state mapping, the grey-box TN structure constrains the state representation. in comparison47

for an SSID model, which also effectually learns to predict the system response at the sensor locations, a change of basis for48

the state space will result in equivalent descriptions of the system, with the same outputs given the same measured data,49

but with different state representations.50
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Parameter estimation51

Estimation of parameters requires a well-defined objective function. Using a statistically founded objective function, such52

as the likelihood function or the posterior distribution, computed from Bayes’ theorem by the inclusion of a prior distribution,53

of the parameters, allows the use of statistical tools for model validation and analysis [10, 16, 21]. The evaluation of the54

likelihood function and/or the posterior parameter distribution for SDE models has previously been presented in detail in55

the Continuous Time Stochastic Modelling (CTSM) framework [16, 22]. By utilising a Kalman Filter (KF) to compute the56

one-step ahead prediction residuals, which are subsequently assumed normally distributed, the likelihood can be efficiently57

evaluated for an SDE model [16]. The grey-box SDE approach has been claimed as a natural framework for modelling58

dynamic systems in general [23].59

Parameter identifiability analysis and prediction accuracy60

A common assumption for parametrised model structures is that there exist an unambiguous set of parameters, which is61

optimal in the sense that it produces the best model fit in some specified statistical sense. However, there are cases for which62

the objective function used for the estimation of parameters is in some way non-informative for a subset of the parameters,63

thus resulting in ambiguous solutions. This subset of parameters is denominated as non-identifiable. If the non-identifiable64

parameters are perturbed in some way, the objective function is either unchanged, or the change is insufficient to determine65

the bounds of the estimated parameter with a desired prescribed level of confidence [10]. A good diagnostic tool is found in66

the framework of the Profile Likelihood (PL) method [5, 10, 21, 24].67

Since the objective function compares model predictions with measured data, non-identifiability may be caused by either68

the model structure or by a lack of dynamic information in the data. The former is the cause of structural non-identifiability,69

which presents as a flat equipotential manifold, bounded or unbounded depending on the model structure, in the parameter70

space [10]. Structural identifiability is well covered in the literature, and there exist several diagnostic methods based on a71

multitude of theoretical foundations [10, 13, 21, 25, 26].72

If non-identifiability results from a lack of dynamic information in the calibration data, the affected parameters are73

diagnosed as practically non-identifiable. For a parameter to be identifiable according to the PL method [10], the likelihood-74

based confidence interval (CI), and subsequently also the likelihood profile, must be bounded in both directions. Hence a75

practically non-identifiable parameter may be diagnosed by inspecting the likelihood profile for the presence of a well-defined76

optimum that is insufficiently pronounced to produce a bounded CI [10].77

The PL method, based on the likelihood function and computation of CIs, has a distinctly frequentist approach to78

parameter estimation. If a Bayesian framework is used, where parameters are treated as random variables that have a79

distribution in parameter space, the Markov Chain Monte Carlo (MCMC) method [21, 27–31] can be used to infer the80

posterior distributions from the measurement data, typically visualised by obtaining marginal posterior distributions for81

single parameters or pairs of parameters [27, 30, 31]. The Bayesian framework combines the likelihood function with a82

prior by use of Bayes’ theorem, thus computing the posterior distribution of the parameters [27]. The use of the Bayesian83

framework and MCMC for calibration of TN models was also reported in [32]. Alternatively, a variation of the PL method,84

called the Profile Posterior (PP) method [21], may be used to visualise the posterior distribution by obtaining projections,85

rather than marginal distributions. Similar arguments w.r.t. the identifiability of parameters drawn from the PL method86

can be applied to the posterior distribution [21].87

There are also several other methods that can be used to investigate parameter identifiability, some of which are reviewed88

in [33]. Some possibilities are the use of the Hessian matrix evaluated at the optimal estimate to compute confidence89

bounds, and the testing for convergence problems in the optimisation algorithm by repeated optimisations with randomized90

initial guess [34]. For simple linear models, structural identifiability can sometimes be evaluated analytically [35]. Another91

possibility is the use of graphing tools to analyse the interactions between parameters and model output [36].92
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Figure 1: Both the PL/PP and the MCMC methods explore parameter space on the same likelihood/posterior hyper-surface.

Table 1: Method overview.

Name Description

PL1D L (θ; y [N ]) projected to parameter θi

PL2D L (θ; y [N ]) projected to plane Θi,j

PP1D p (θ|y [N ]) projected to parameter θi

PP2D p (θ|y [N ]) projected to plane Θi,j

MCMC p (θ|y [N ]) marginalised to θi or Θi,j

Since the parameter non-identifiability results from the objective function being non-informative for a sub-set of the para-93

meters, adding more information to the estimation problem is a reasonable strategy towards resolving the non-identifiability.94

Experimental redesign may be used in order to collect more informative data, either by improved dynamic information95

content in existing measurements or by adding new measurements from the system S [10, 21]. The literature on system96

identification covers a range of experimental design considerations, including optimal experimental design for certain types97

of systems, see e.g. [11, 37]. A popular approach is the use of a Pseudo Random Binary Sequence (PRBS) applied to98

the actuator which may result in improved system excitation, thus improving practical identifiability of model parameters99

[6]. However, for occupied buildings, the choice of excitation for the active heating system may be limited due to occupant100

demands. If obtaining more data is not possible, redesigning the model structure M, such that the model better represents101

the actual experimental data collected, may also resolve the non-identifiability [10, 21].102

Finally, an important observation is that model structures with non-identifiable parameters can also provide reasonable103

predictions of the system outputs, but the non-identifiable parameters are arguably without a physical interpretation and104

can be considered nuisance parameters [5]. Indeed, ambiguous parameters without physical interpretation is the norm in105

traditional black-box calibration methods, such as system identification (SID) [11–15].106

1.3. Overview of paper107

In this work, the two projection-based methods, PL and PP, are compared to the MCMC method, on the basis of five108

experimental cases with differences in model structure, use of priors, identifiability of parameters and choice of training data.109

The theoretical foundation for the methods is presented in Section 2. The model, data and experimental setup of each case110

is presented in Section 3. The results are presented and discussed in Section 4, and the work concluded in Section 5.111

2. Methods112

2.1. Overview113

In the sequel, the Profile Likelihood (PL) and the Profile Posterior (PP) methods [10, 21] are discussed and compared114

with the Markov Chain Monte Carlo (MCMC) method [27, 30, 31]. These methods are ideal for the study of parameter115

identifiability and allows detection of ambiguous parameter estimates. Despite fundamental differences in theoretical basis,116

i.e., the PL/PP methods are based on a frequentist interpretation of parameter estimation while the MCMC is typical of the117
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Bayesian statistics framework, the methods share certain similarities. As shown in Fig. 1, all these methods seek to obtain118

estimates of the likelihood function L
(
θ; y[N ]

)
, or by inclusion of a prior p (θ), the posterior distribution p

(
θ|y[N ]

)
. Each119

method explores the parameter space by taking samples θk and evaluating them on the same likelihood/posterior hyper-surface.120

However, there are some important differences; the use of deterministic vs. stochastic exploration of the parameter space,121

and the use of projection in the PL/PP methods vs. marginalisation in MCMC to obtain partial projections/distributions122

of selected parameters. An overview of relevant variations of the methods is given in Table 1, together with a short-hand123

name for each method for future reference. The PL1D/PL2D and PP1D/PP2D are collectively referred to as the PL and124

PP methods, respectively.125

2.2. Parameter estimation and analysis126

For simplified models, e.g., thermal network models, the uncertainty in the state transition can be large. Hence, it is

convenient to express such models as a grey-box model using a continuous time stochastic differential equation (SDE) for

the state transition Eq. (1); adopting the notation of [16]:

dxt =f (xt, ut, t, θ) dt+ σ (ut, t, θ) dωt (1)

yk =h (xk, uk, tk, θ) + vk (2)

where t ∈ R is the time variable and xt ∈ Rnx is the continuous time state vector. The first and second terms in Eq.

(1) are commonly referred to as the drift and diffusion term, respectively [16, 38]. The drift term expresses the deterministic

transition of the conditional mean state, while the diffusion term expresses the increments of the uncertainty linked to the

conditional state covariance. The diffusion term, i.e. the process noise, is expressed as the function σ multiplied with the

differential of a standard Wiener process ωt [16, 38]. The measurement equation, given in Eq. (2) is formulated in discrete

time where vk ∼ N (0, V ) is the measurement noise. The continuous time input ut ∈ Rnu and output yt ∈ Rny have the

corresponding ordered sequences of discrete time measurements uk and yk taken from the system S:

y[N ] = [y0, y1, . . . , yN ] (3)

u[N ] = [u0, u1, . . . , uN ]

Here, the integer subscripts k = 0, 1, . . . , N denote the discrete time sampling instants, and the subscript enclosed in [·] is

used to indicate an ordered sequence. The estimation of unknown parameters can be formulated as an optimisation problem,

defining the objective function g (θ):

θ̂ = arg opt
θ

g (θ;M,K,A) (4)

s.t. θ ∈ Θ

Here, M is a predetermined model structure parametrised by θ ∈ Θ, where Θ ⊆ Rnθ is a set of feasible values for the model127

parameters that form inequality constraints for the optimisation problem. Parameters in θ are sampled from the parameter128

space Θ by an algorithm A. The experimental conditions K include the input and output measurements u[N ] and y[N ] as129

defined in Eq. (3). In the sequel, the dependency on M, K and A is omitted for simplicity of notation.130

A statistically well-founded choice of objective g (θ) is the likelihood function131

L
(
θ; y[N ]

)
= p

(
y[N ]|θ

)
(5)

which describes the joint probability of observing the measurement sequence y[N ] given M (θ). An elegant method for132

evaluating the likelihood function L
(
θ; y[N ]

)
for grey-box SDE models on the form of Eqs. (1) and (2) is presented in the133

framework named Continuous Time Stochastic Modelling (CTSM) [16]. The CTSM approach is summarised in Section 2.3.134

An alternative choice for g (θ) is the posterior distribution of the parameters p
(
θ|y[N ]

)
, which combines the likelihood, by135

Bayes’ theorem, with a prior distribution p (θ) on the parameters, and with the evidence p
(
y[N ]

)
, a scaling factor that is136
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independent of θ;137

p
(
θ|y[N ]

)
=

p
(
y[N ]|θ

)
p (θ)

p
(
y[N ]

) (6)

Both the likelihood L (θ; y [N ]) and the posterior p (θ|y [N ]) are statistical quantities that relates different values of θ with the138

data y[N ], hence representing density functions [39] over the parameter space Θ. Observe that, unlike the posterior distribu-139

tion, the likelihood is not a probability distribution over the parameters but takes its random variable as the measurements140

y[N ] in the sample space, given a known parameter θ.141

It is interesting to note that the maximisation of the likelihood function is typically associated with a frequentist statistics142

framework, whereas the use of a posterior distribution is typical of a Bayesian approach. In the frequentist framework, as for143

the likelihood function, the model parameters are considered constants, while the data is the random variable. Hence, the144

frequentist goal is to estimate some statistic of the true parameter θ∗, such as a confidence interval (CI) [40, 41]. Observe145

that the confidence level of a CI is not a probability statement, as unequivocally stated in [40], since neither the CI nor the146

true parameter θ∗ are considered to be random variables.147

In contrast, the Bayesian approach to statistics treats the parameters as random variables that are subject to probabilistic148

treatment, i.e., described by a probability distribution rather than as constants. Typically, the posterior distribution cannot149

be obtained analytically, and some variation of the Markov Chain Monte Carlo (MCMC) method is used instead to estimate150

the posterior distribution of the parameters given the data.151

Both the likelihood function and the posterior distribution can be directly optimised to obtain a parameter point estimate,152

respectively denominated the Maximum Likelihood Estimate (MLE) θ̂MLE and the Maximum Aposteriori Estimate (MAP)153

θ̂MAP. However, for the purpose of analysing the results of the parameter estimation, it is useful to visualise the objective154

function over the feasible region Θ; either the whole of Θ or some sub-region of particular interest. Since Θ is typically high155

dimensional, it is necessary to create plots for single parameters, or combinations of two parameters. Since the posterior156

p (θ|y [N ]) is a probability density function (p.d.f.), the posterior for individual parameters or combinations of two parameters157

can be found by marginalisation, i.e., integrating out the remaining parameters. The likelihood function L (θ; y [N ]), however,158

is not a p.d.f., and results for individual parameters are therefore obtained by projections onto individual parameters or159

planes of two parameters. These projections can be computed and analysed in the framework of the Profile Likelihood (PL)160

method, typically considered part of the frequentist statistics framework [21], in order to diagnose parameter identifiability161

[5, 10, 21, 42].162

If the prior p (θ) is chosen as flat, i.e., a diffuse prior is used, p (θ) = c for θ ∈ Θ and p (θ) = 0 for θ /∈ Θ where typically163

c = 1, the posterior is proportional to the likelihood p
(
θ|y[N ]]

)
∝ p

(
y[N ]|θ

)
over the support of the prior, i.e., where p (θ) ̸= 0164

, since the evidence scaling constant p
(
y[N ]

)
is independent of θ. If the prior is flat and unbounded, i.e., p (θ) = c for165

θ ∈ Rnθ , the proportionality p
(
θ|y[N ]]

)
∝ p

(
y[N ]|θ

)
holds for all θ. Hence, methods that operate on a target distribution166

π (θ) ∝ p
(
θ|y[N ]

)
, such as MCMC, can also be used with the likelihood p

(
y[N ]|θ

)
by assuming p (θ) = 1 for θ ∈ Θ.167

Observe that the use of a feasible region θ ∈ Θ is equivalent to selecting a uniform bounded prior with a constant value168

c = 1 in the defined space Θ and zero otherwise in Rnθ . However, the introduction of such a feasible region does not exclude169

the use of prior distribution p (θ), since one may well choose Θ = Rnθ . If a non-uniform prior is used in addition to a feasible170

region Θ, this is equivalent to multiplying the non-uniform prior with a uniform bounded prior p (θ ∈ Θ) = 1.171

Arguably, by effect of their omission in methods operating on the likelihood directly, the use of flat unbounded priors172

is the default in the frequentist framework, but it is non-typical in Bayesian statistics [42, 43]. In practice, particularly173

in engineering, there is often some prior information that could be made use of in the estimation in the form of a prior174

distribution derived from physical system specifications.175

For non-flat priors, many estimation methods based on the likelihood function can be modified to instead optimise on176

the posterior by including the prior through Bayes’ theorem in Eq. (6). An example of this is the modification of the PL177
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into the PP method presented in [21]. If numerical optimisation is used on the posterior distribution directly, i.e., a prior178

is included with the likelihood function to form an objective function, the resulting parameter estimate is a MAP point179

estimate. Indeed, this is supported in the CTSM framework as well [16, 18, 22].180

2.3. Computing the likelihood and the posterior distribution for parameters of grey-box models181

Both the MCMC and the PL/PP methods require evaluation of the likelihood function L
(
θ; y[N ]

)
, either used directly182

in PL, or for the evaluation of the posterior distribution p
(
θ|y[N ]

)
in PP and MCMC. The CTSM framework [8, 16, 17, 23]183

presents a statistically well founded method for computing L
(
θ; y[N ]

)
for grey-box models on the SDE form of Eq 1.184

The likelihood function is defined in Eq. (5). By application of the product rule P (A ∩B) = P (A|B)P (B)[38], Eq. (5)185

can be expanded such that [16]:186

L
(
θ; y[N ]

)
=

(
N∏

k=1

p
(
yk|y[k−1], θ

))
p (y0|θ) (7)

In general, evaluating Eq (7) requires knowing the initial probability density function and successively solving the Kolmogorov187

forward equation [16, 38]. However, by assuming a normal distribution for the one-step ahead prediction residuals, a simpler188

alternative, the multivariate Gaussian distribution, can be used [16]:189

L
(
θ; y[N ]

)
=

 N∏
k=1

exp
(
− 1

2ϵ
T
k|k−1E

−1
k|k−1ϵk|k−1

)
√
det
(
Ek|k−1

) (√
2π
)ny

 p (y0|θ) (8)

By conditioning on knowing the initial distribution p (y0|θ), this expression can be iteratively evaluated in a Kalman Filter

that estimates the quantities [16, 38]:

ŷk|k−1 = E
[
yk|y[k−1], θ

]
(9)

ϵk|k−1 = yk − ŷk|k−1 (10)

Ek|k−1 = E
[
ϵkϵ

T
k

]
(11)

where ŷk|k−1 is the predicted output at time k given the measurements up to and including time k−1, i.e., the one-step-ahead190

prediction. The choice of KF implementation depends on the type of state transition model; linear or non-linear, and in the191

latter case, on the model being differentiable such that the model can be linearised for propagation of the covariance [44].192

The assumption of normally distributed residuals can be verified by statistical testing [13, 16, 17, 22]. One possible193

method is the use of a cumulated periodogram (CP), which by use of plotting indicates if the resulting residuals are reasonably194

approximated by a normal distribution [16, 17, 22]. Another, numerical, alternative is the use of the Kolmogorov-Smirnov195

(KS) test criterion [13]. The KS criterion can also be used in combination with the CP diagram to compute confidence196

bounds for the normality assumption on the CP diagram [17]. Other alternatives for normality testing include counting197

zero-crossings, the auto-correlation function (ACF) [13], the inverse ACF or the partial ACF [17].198

By taking the negative logarithm, and eliminating the factor 1
2 , the result ℓL (θ) = −2 lnL

(
θ; y[N ]

)
, where dependency199

on y[N ] is omitted in the sequel for notation simplicity, is obtained as200

ℓL (θ) =
N∑

k=1

ϵTk1k−1E−1
k|k−1ϵk|k−1 + ln

(
det
(
Ek|k−1

))
(12)

If instead the posterior distribution p
(
θ|y[N ]

)
∝ L

(
θ; y[N ]

)
p (θ) is chosen, after eliminating the scaling by evidence p

(
y[N ]

)
201

and applying the same transformation as above, ℓP (θ) is obtained as:202

ℓP (θ) = ℓL (θ)− 2 ln p (θ) (13)

Hence, in log space, the application of a prior p (θ) is implemented by simply subtracting a value from ℓL (θ) that depends203

only on the parameter θ. It is interesting to observe that the use of independent normal prior distributions N
(
θp,i, σ

2
p,i

)
for204

each parameter in ℓp (θ) is similar to L2-norm Tikhonov regularisation [45, 46], which indicates that application of non-flat205

priors can be useful for improving the generalisation capability of a calibrated model.206
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2.4. The stochastic discrete time linear model207

For a linear time invariant (LTI) model, which is the form typically used for thermal network models, Eqs. (1) and (2)

can be written on discrete time form as [38]:

xk = Ãxk−1 + B̃uk + wk (14)

yk = C̃xk + vk

where wk ∼ N (0,W) is the process noise (model error), vk ∼ N (0,V) is the measurement noise and the discrete time208

model matrices Ã = exp (∆t ·A) and B̃ = A−1
(
Ã− I

)
B are computed from the standard linear continuous time model209

matrices A and B [45, 47]. Observe that the three model matrices Ã, B̃ and C̃, and also the noise covariances W and V are210

typically functions of θ. For the noise covariances W and V, the square root of the diagonal terms are included in θ, while the211

off-diagonal terms are assumed zero. This assumption is clearly reasonable for the measurement noise, but also commonly212

used for the process noise covariance [32]. A further extension on the presented work could be to include the off-diagonal213

terms of W in θ as well.214

By using the SDE framework outlined in Section 2.3, the noise parameters in W and V influence L
(
θ; y[N ]

)
through215

the computed Kalman gain. In the limit case of zero measurement noise V ≡ 0, the innovation covariance in the KF216

Ek|k−1 = C̃Xk|k−1C̃
T and the standard equations for the linear Kalman Filter [48] give the Kalman gain217

Kk = Xk|k−1C̃
T
(
C̃Xk|k−1C̃

T
)−1

= C̃−1 (15)

The aposteriori updated state is218

x̂k|k = x̂k|k−1 + C̃−1
(
yk − C̃x̂k|k−1

)
= C̃−1yk (16)

and the one-step ahead predicted output is219

ŷk|k−1 = C̃
(
ÃC̃−1yk−1 + B̃uk

)
+ ϵk|k−1 (17)

Hence, the model in the KF is treated as a first order autoregressive model in this limit case. However, the model structure220

and parametrisation are still the same grey-box TN structure and not the general black-box structure used in typical Auto221

Regressive model with Exogenous input (ARX) models. Since Xk|k =
(
I − C̃−1C̃

)
Xk|k−1 = 0, the state estimate covariance222

Xk|k−1 = W and Eq. (8) with Ek|k−1 = C̃WC̃T gives the weighted least squares prediction error parameter estimate.223

In the limit case of W ≡ 0, indicating a deterministic model with no diffusion term, it can be shown that the aposteriori224

state covariance Xk|k ≤ ÃkX0

(
ÃT
)k

[38, 49] which will approach zero for a well-behaved stable system. If the initial state is225

also deterministic, X0 ≡ 0, the state trajectory in the KF is independent of the measurements yk, since Xk|k = 0 → Xk|k−1 = 0226

and therefore227

Kk = Xk|k−1C̃
TE−1

k|k−1 = 0 → x̂k|k = x̂k|k−1 (18)

Hence, Eq. (8) with Ek|k−1 = V gives the weighted least squares estimate for a shooting/ballistic, i.e., deterministic, state228

trajectory [38].229

Both these limit cases are intuitively satisfactory and consistent with the common sense intuition of the KF. Given perfect230

measurements with V ≡ 0, it is natural to rely exclusively on the measurement at the previous time-step at the expense of231

the previous estimates. In the case of W ≡ 0, the perfect model predictions are trusted and the data ignored in the state232

propagation, with data only used to compute the error.233

Since the SDE grey-box framework includes both of these limiting cases, it may arguably be considered a general frame-234

work, i.e., an intermediate between the purely autoregressive one-step-ahead prediction error and the deterministic output235

error, depending on the noise parameters. If both noise covariances W and V are non-zero, and correctly estimated or known236

apriori, the Kalman Filter gives the optimal estimate of the state.237

Arguably, the limit case of V ≡ 0 results in an LS parameter estimation that is similar to typical black-box methodology,238
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while the limit case W ≡ 0 simulation error is more typical of a white-box modelling approach. Hence, the balance between239

these two limit cases through the Kalman gain can arguably be considered a mathematical expression for the intermediacy240

of grey-box models, between the white- and black-box approaches.241

2.5. Identifiability of parameters242

Since the model structure M is designed to be a representation of a system S, it is often assumed that S ∈ M (Θ) and243

that consequently there exists a true parameter vector θ∗ such that M (θ∗) = S. However, this is rarely the case outside of244

simulation experiments, since the model structure M is only an approximation of S. In the case of thermal network models245

based on a naive physical approximation of S, the similarity of M to S is especially questionable. The estimate θ̂ depends on246

several factors, such as the amount of dynamic information in K, the choice of objective function g (θ), and to some extent on247

the algorithm A. Hence, the subject of parameter identifiability is of particular importance for simplified grey-box models,248

if the estimated parameters θ̂ are themselves of interest.249

A model structure M may be over-parameterised such that a subset θs of the parameters has no effect on the model250

predictions ŷ, either because the model in Eqs. (1) and (2), and therefore also g (θ), is free of certain parameters, or the251

combined effect of several parameters cancels out. The parameters θs, denominated as structurally non-identifiable, result252

in unbounded confidence intervals (CI) [10]. Similarly, over-parametrisation may lead to the parameters in θs being inter-253

dependant, such that only some functional combination of the parameters are identifiable, resulting in equipotential, possibly254

bounded, manifolds in the parameter space. Additionally, if the dynamic information content in the data is insufficient for255

estimation of certain parameters, these parameters are practically non-identifiable [10]. Based on the definition given in256

[10, 21], parameters are practically non-identifiable when the likelihood is only somewhat affected by perturbations of the257

practically non-identifiable parameters, such that a well-defined optimum exists, but the likelihood is not sufficiently sensitive258

to produce a bounded CI at the desired level of confidence.259

The use of CIs as diagnostic criteria for identifiability is a distinctly frequentist statistics approach [40]. A formal260

definition of non-identifiability, based on the Bayesian framework of computing probability distributions of parameters, is261

given in [25, 42]. The subset of identifiable parameters is defined such that θ = (θi, θs). Parameters θs are non-identifiable262

if [25]:263

p
(
θs|θi, y[N ]

)
= p (θs|θi) =⇒ θs ⊥⊥ y[N ]|θi (19)

That is, no additional information is obtained about θs from the data y[N ] once the identifiable parameters θi are known264

[25]. Hence, the non-identifiable parameters are conditionally independent of the data, given the identifiable parameters [25].265

Since p
(
θs|θi, y[N ]

)
∝ L

(
θi, θs; y[N ]

)
p (θs|θi) p (θi), Eq. (19) implies that the likelihood L

(
θi, θs; y[N ]

)
is free, i.e., unaffected,266

by θs [25, 42], which is similar to the description of structural identifiability given in [10, 21].267

As discussed in Section 2.4, the measurement and noise covariance matrices W and V are here considered functions of268

θ. Specifically, the noise covariance matrices are assumed diagonal, with the square root of the non-zero terms included in269

θ. Identifiability of these parameters is treated in the same way as for the thermal model parameters. For a more thorough270

analysis of noise model parameter identifiability, see e.g. [35].271

Resolving non-identifiability by application of a prior272

If both the likelihood and the priors are non-informative for a sub-set of the parameters, there is clearly a problem with273

the application of any parameter estimation method, since there is no information from which to estimate the non-identifiable274

parameters. The solution is to introduce more information into the parameter estimation problem, by either redesigning275

the experiment to obtain more informative data and/or new measurements, or by revising the model structure to better fit276

the available data. A third possibility is the addition of a non-flat prior distribution, based on prior physical information of277

the system. Experimental design is particularly challenging for the study of building thermal behaviour since buildings are278
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subject to weather conditions and occupancy demands that are usually beyond experimental control [4]. Hence, the use of279

priors to resolve non-identifiability is particularly interesting for building thermal modelling.280

The local sensitivity of the log posterior distribution in Eq. (13) to perturbations of θ can be estimated by the Hessian:281

HP = ∇T∇ℓP
(
θ; y[N ]

)∣∣
θ=θ̂

= HL − ∇T∇2 ln p (θ)
∣∣
θ=θ̂

(20)

where HL = ∇T∇ℓL
(
θ; y[N ]

)∣∣
θ=θ̂

is the Hessian of the likelihood function [10, 16, 50]. Hence, if the likelihood is insufficiently282

affected by perturbations of θ in certain directions, as indicated by HL, the addition of a prior can be seen to introduce283

another source of sensitivity to perturbations of θ and therefore resolve the non-identifiability. Note that while a prior284

may resolve non-identifiability and therefore result in unambiguous parameter estimates, it does not necessarily guarantee a285

physical interpretability of the estimated parameters. Note also that the obtained HP describes the sensitivity of ℓP
(
θ; y[N ]

)
286

which is data dependent [10, 16, 50].287

2.6. Profile Likelihood and Profile Posterior288

The PL method [5, 10] can be used to estimate uncertainty and diagnose identifiability of the parameters by projecting289

the likelihood function L
(
θ; y[N ]

)
onto each parameter θi. The likelihood profile ℓPL1D (θi) is defined as the minimum negative290

log likelihood ℓL (θ), computed for values of a single parameter θi, when the remaining parameters θj ̸=i are freely optimised291

[10, 51]:292

ℓPL1D (θi) = min
θj ̸=i

ℓL
(
θj ̸=i; y[N ], θi

)
(21)

Values of θi are chosen, either by a brute force discretisation of θi or using a gradient decent method, prior to optimising the293

remaining θj ̸=i [10]. A likelihood-based CI can be obtained by applying a threshold to the likelihood function [10, 51]. Let294 {
θ : ℓL (θ)− ℓL

(
θ̂
)
< ∆α

}
, ∆α = χ2 (α, ndf) (22)

where θ̂ is a freely estimated, presumed optimal parameter vector, and the threshold ∆α is the α percentile of the χ2-295

distribution with ndf degrees of freedom [52]. By using Eq. (22) to set a threshold on the likelihood profile ℓPL (θi) of296

each parameter, it is possible to diagnose parameter identifiability. As discussed in Section 2.5, structurally non-identifiable297

parameters produce unbounded CIs, or equivalently, flat likelihood profiles [10]. A likelihood-based CI, unlike the Hessian298

based asymptotic CI, is not necessarily symmetric, and can therefore be unbounded in one direction. Hence, a practically299

non-identifiable parameter can be diagnosed if the at least half unbounded likelihood profile has a well-defined minimum [10].300

Only parameters that produce bounded CIs, and consequently have sufficiently convex likelihood profiles, are identifiable by301

optimisation of ℓL (θ).302

The PL method can be extended to project the posterior distribution, rather than the likelihood function, by inclusion303

of a prior p (θ) by Bayes’ theorem [21]. The PP method is defined, similarly to Eq. (21), by obtaining the posterior304

profile ℓPP1D (θi) as the minimum negative log posterior, given in Eq. (13), for a prescribed value of θi when the remaining305

parameters are freely estimated, i.e.:306

ℓPP1D (θi) = min
θj ̸=i

ℓP
(
θj ̸=i; y[N ], θi

)
(23)

As for the PL method, the posterior profile is obtained for some selected values of θi, and subsequently plotting ℓPP1D (θi).307

Observe that by replacing the log likelihood ℓL by the log posterior ℓP, the obtained profile is offset by the log of the prior,308

−2 ln p (θi). Finally, observe that the PL method can be considered as a special case of the PP method, with the prior309

p (θ) = 1 → −2 ln p (θ) = 0 for all θ ∈ Rnθ .310

Profiling in two parameter dimensions311

The typical implementation of the PL/PP method [5, 10, 21] projects the likelihood/posterior of the nθ dimensional312

space Θ onto the single parameter θi. These projections are known to overestimate the width of the obtained profiles if there313

are inter-dependent parameters. Hence it is of interest to project the likelihood/posterior in a way that visualises potential314

10



parameter interactions. A possible modification of the PL method is then to hold out two parameters rather than one, hence315

the PL2D method obtains [44, 45];316

ℓPL2D (θi, θj) = min
θk ̸=i,j

ℓL
(
θk ̸=i,j ; y[N ], θi, θj

)
(24)

PL2D projects the log likelihood onto the plane Θi,j = (θi, θj) s.t. θi, θj ∈ Θ. The resulting two-dimensional profiles317

can be analysed similarly to the one-dimensional profiles [10], using the definition in Eq. (22). The profiles are computed318

for all combinations of parameters, i.e., by projecting the objective function to all possible planes Θi,j . Since ℓL (θ) is319

typically similar for neighbouring θ, previous PL2D estimates can be used as a warm-start for new points in Θi,j to improve320

computational efficiency [20]. A confidence region in the Θi,j plane is obtained by applying the ∆α threshold from Eq.321

(22). Observe that since the optimal estimate θ̂ has nθ free parameters while the PL2D estimate has nθ − 2, this gives322

ndf = 2 for the computation of ∆α from the χ2-distribution in Eq. (22). Based on these two-dimensional profiles, and the323

computed confidence regions, parameters are considered identifiable if their corresponding confidence regions are bounded324

in all directions. If the region contains an unbounded equipotential valley in the log likelihood space, the parameter is325

considered structurally non-identifiable. If the profile has a well-defined minima, but is unbounded in one direction, i.e., the326

log likelihood is below the ∆α threshold, this indicates a practically non-identifiable parameter [10]. Subsequently, the size327

and shape of a bounded region estimates the accuracy with which the parameters can be estimated.328

The free estimate θ̂ may with advantage be chosen as the minimum ℓPL2D (θi, θj) obtained from all profiles, since such a329

search approximates, subject to the limitations imposed by discretisation in the brute force exploration, a free optimisation330

of all parameters, using the already computed ℓPL2D results. Since the PL2D profiles cover the entire parameter space Θ,331

this procedure is less affected by local minima than a direct numerical optimisation.332

The PL2D method may also be modified to project the posterior rather than the likelihood, thus the PP2D method333

projects:334

ℓPP2D (θi, θj) = min
θk ̸=i,j

ℓP
(
θk ̸=i,j ; y[N ], θi, θj

)
(25)

This modification is analogous to the extension of the PL1D method into the PP1D method.335

2.7. MCMC336

The projection methods PL1D/PL2D, based on the interpretation of CIs, are typically considered part of a frequentist337

approach to parameter estimation [21]. In the Bayesian framework, the goal is to infer a probability distribution for the338

parameter θ, now considered a random variable. Given that the posterior distribution is often not analytically obtainable,339

the Markov Chain Monte Carlo (MCMC) method is instead used to compute an estimate of the posterior. Unlike regular340

Monte Carlo (MC) methods, MCMC draws samples of θ, such that each sample depends on the previous sample, by defining341

a transition probability p (θk|θk−1). If the transition probability is chosen to fulfil the detailed balance equation342

π (θk−1) p (θk|θk−1) = π (θk) p (θk−1|θk) (26)

the generated samples will be drawn proportional to the target distribution π (θ) ∝ p
(
θ|y[N ]

)
. Hence, the posterior and its343

parameters, e.g., mean and covariance, can be approximated by computing the empirical distribution as a histogram over344

the sequence of samples θ[K]. In this work, the MCMC method of choice is the basic Metropolis algorithm [30, 31] using345

a normal isotropic proposal distribution θck ∼ q (θk|θk−1) = N (θk−1,Σq) where θck is a candidate for the next step θk in346

the Markov Chain, and Σq is the covariance of the proposal distribution, centred on the current step θk−1 [27–29]. The347

work of Hastings [28, 31, 53], a generalisation of the work of Metropolis [28, 30], shows that if the proposal distribution348

q (θk|θk−1) is chosen such that it ensures every possible value of θ will eventually be visited, and this is combined with349

an acceptance probability test of the generated proposal, the resulting transition probability p (θk|θk−1), constituted of the350

combined proposal-acceptance scheme, fulfils the requirement of Eq. (26). The acceptance criterion using a normal proposal351
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distribution is defined from the probability ratio:352

α =
π (θck)

π (θk−1)
= exp (0.5 (ℓP (θk−1)− ℓP (θck))) (27)

The next step in the Markov Chain is then chosen as θck with probability pa = min (1, α). Observe that α is greater than 1353

if the proposal constitutes an improvement, in which case the proposal will be accepted with probability 1 [27, 28].354

Posterior predictive distribution355

An advantage of the Bayesian parameter estimation framework, and of the MCMC method, is that the representation of356

parameter uncertainty, expressed in MCMC as the empirical distribution of the samples θ[K], enables better estimation of357

the model’s prediction uncertainty. The posterior predictive distribution can be inferred from a set of simulated state/output358

trajectories obtained by Monte Carlo (MC) simulation of the model in Eq. (14).359

Note that by using the covariance propagation equations of an LTI system [48], it is possible to compute the uncertainty

of the predicted state and output trajectory for a single parameter estimate. However, the use of the MCMC sampled set θ[K]

allows accounting for uncertainty in the parameters. Additionally, the MC simulation method is not restricted to linear or

time invariant systems. For a test dataset of length N , assume x0 is known with covariance X
(i)
0 and let x̂0|0 ∼ N (x0, X0).

Then, for each time k ∈ [1, N ] compute

x̂
(i)
k|0 = Ãx̂

(i)
k−1|0 + B̃uk + wk

ŷ
(i)
k|0 = C̃x̂k|0 + vk (28)

where x̂
(i)
k|0 and ŷ

(i)
k|0 are the estimated future state and output at time k, given only measurement information at time 0,360

computed using the i-th accepted parameter proposal in θ[K]. The process noise wk ∼ N (0, W) and the measurement noise361

vk ∼ N (0, V) are drawn independently at each time-step, for each i-th trajectory, using a random number generator (RNG).362

The model matrices Ã, B̃ and C̃, and the covariance matrices X0, W and V, are all potentially functions of the i-th sample363

in θ[K], hence potentially different for each trajectory. Over these K trajectories, the distribution of the predicted output for364

the test set is computed, for each time-step k, as a histogram over the set of estimated outputs ŷ(i)k , i ∈ 1, 2, . . . ,K. A similar365

approach is used in [32].366

2.8. Comparing MCMC and Profiling methods367

Exploration by drawing samples368

The projection based PL/PP methods explore Θ by selecting samples of θ deterministically. If a brute force method369

is used, where the parameter θi or the plane Θi,j is discretised with a prescribed resolution, the sampled values for each370

computed profile are completely determined apriori. If a hill-climbing method is used, the next sample is also determined371

deterministically by evaluating the gradient of the current sample. In contrast, the MCMC method explores the parameter372

space Θ stochasticity, using randomisation to select the next sample, such that each new sample is drawn proportionally373

to the target distribution π (θ) [27–29]. Hence, assuming proper mixing of the chains, the majority of the samples will be374

drawn from the regions of high posterior density. These are, naturally, the regions of most interest for inference about the375

parameters [27–29]. Subsequently, again assuming proper mixing of the chains, the majority of the computation time will376

be spent analysing the most interesting regions in Θ.377

In contrast, the deterministic brute force sampling of the PL/PP methods explore the parameter space Θ exhaustively378

within the prescribed discretisation, which is significantly more time-consuming. The advantage of such exhaustive searches is379

that they are guaranteed to obtain the global optimum, within the precision allowed by the discretisation of Θ. Additionally,380

deterministic exploration is unaffected by the flat manifolds caused by non-identifiable parameters, whereas the stochastic381

exploration of MCMC in such conditions can result in convergence failure for chains of finite length [21]. Observe that the382

MCMC methods with appropriately selected proposal distributions are also theoretically guaranteed to obtain the global383
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Figure 2: RC circuit model of the building.

optima for infinite chain lengths [27–29]. In practice however, MCMC samples Θ sufficiently for parameter inference even384

with reasonably short chain lengths.385

Since the profiling methods explore the posterior by projections onto individual parameters, or planes of two parameters,386

the method must be executed repeatedly for each parameter or combination of parameters of interest. This further exacerbates387

the computational burden. For the one-dimensional projection methods PL1D and PP1D, computation time is linear in the388

number of parameters nθ and usually comparable to MCMC. For the PL2D/PP2D methods, however, the computation time389

is exponential in nθ, thus, even moderately large numbers of parameters may lead to infeasible computation times.390

Projection and marginalisation391

Since the MCMC method draws samples in proportion to the target distribution π (θ) ∝ p
(
θ|y[N ]

)
, the posterior distribu-392

tion p
(
θ|y[N ]

)
, or its hyper-parameters, can be estimated directly on the set of samples θ[K], e.g., by computing a histogram393

[27–29]. In order to plot the results, the posterior is often presented as marginalised distributions over one or two parameters.394

It is common practice to present marginal distributions for all possible combinations of parameters and present the results395

as corner plots [27].396

In contrast, the PL/PP methods obtain the estimated profiles by projecting the likelihood/posterior onto individual397

parameters or planes of two parameters. The resulting profiles are similar to the marginalised histograms obtained by398

MCMC, but with one important difference. The projections are computed using optimisation over the remaining parameters,399

as illustrated in Eq. (23). This procedure returns the optimal density for the given θi, or given (θi, θj) pair for PL2D/PP2D.400

In contrast, the marginalisation used in MCMC computes the integral over the remaining parameters. For some distributions,401

such as the normal distribution, these two quantities are proportional. Hence, if the scale of the resulting profiles/distributions402

is ignored, these methods will, for some cases, result in similar profiles/distributions, particularly for the high posterior403

density regions where the stochastic exploration of MCMC gives the most accurate results.404

3. Experimental setup405

3.1. Model406

Figure 2 shows a thermal network model structure, which was developed to approximate the thermal behaviour of an

experimental building, located at Campus Porsgrunn of the University of South-Eastern Norway (USN). The model is

partially based on the R4C2 model presented in [7]. The RC circuit consists of five components: the thermal resistance

between room air and wall Rb, the building envelope Rw, and the thermal resistance of windows and doors Rg, and the two

capacitances Cb and Cw representing the thermal capacitance of the building interior and envelope, respectively. The model

has two outputs: the room temperature Tb and the wall surface temperature Tw, and two inputs: the consumed power by

an electric heating element Q̇ and the outside temperature T∞. The model can be expressed on the form of Eqs. (14) with
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Figure 3: Training and test datasets, consists of three temperature measurements, Tb(green), Tw(blue) and T∞(red), and one measurement of

input electrical power, Q̇.

state transition matrix A, input matrix B, state vector x and input vector u given as:

A =

 − 1
CbRb

− 1
CbRg

1
CbRb

1
CwRb

− 1
CwRb

− 1
CwRw


B =

 1
Cb

1
CbRg

0 1
CwRw

 (29)

xk =

 Tb

Tw


t=tk

, uk =

 Q̇

T∞


t=tk

Since all states are observable, the measurement matrix C = I → ŷk = x̂k. The model is LTI, hence a standard KF can407

be used. The noise covariance matrices W = diag
(
w2

b, w
2
w

)
and V = diag

(
v2b, v

2
w

)
are also estimated from data, and are408

assumed diagonal. The parameter vector is then θ =
[
Rg Rb Rw Cb Cw wb ww vb vw

]
.409

A variation of this R3C2 model, is the R2C2 model where the thermal resistance Rg is removed, equivalent to setting410

Rg ≡ ∞ in the R3C2 model.411

3.2. Training and test datasets412

Figure 3 shows three independent sets of data, collected from the experimental building in February 2018, which consist413

of three temperature measurements, Tb, Tw and T∞, and one measurement of input electrical power, Q̇ , supplied to an414

electric heater. The data has been downsampled to a sampling interval of 30 minutes. This sample interval was determined415

experimentally by repeatedly increasing the downsampling ratio and using the PL1 method to test that the downsampled416

data produced similar results as the higher sample rate original data-set. Note that a sample time of 30 minutes is arguably417

reasonable for the main thermal behaviour of a building, but may be excessively long for the heater dynamics and solar418

gains. However, for this particular data-set, a sample rate of 30 minutes was found acceptable. The temperatures Tb and Tw419

are used as reference data for the model outputs, while T∞ and Q̇ are the model inputs. The two training datasets are used420

for parameter estimation and analysis, while the testset is used only for evaluation of the posterior predictive distribution,421

i.e., to evaluate how well the calibrated model predicts future system behaviour.422

3.3. Experiment cases and setup423

In the sequel, five different experiment configurations, as listed in Table 2, are analysed and compared.424

Case 1 uses the full R3C2 model from Fig. 2 with the priors for all parameters p (θ) = 1 for θ ∈ Rnθ . As the results in425

Section 4 show, Case 1 results in non-identifiable parameters. As discussed in Section 2.5, there are several ways to resolve426

parameter non-identifiability.427

Case 2 uses the same model structure, but with the addition of a prior on the parameter Rg. The parameter Rg represents428

the thermal resistance of windows and the door, and can hence be computed by hand. The door in the building has a U-value429
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Table 2: Configuration for each experiment case.

# Model Description

1 R3C2 uniform priors p (θ) = 1

2 R3C2 p (Rg) = N
(
0.24, 0.012

)
3 R2C2 Rg removed, p (θ) = 1, θ0 = θ̂MAP

4 R2C2 Same as 3 + added noise σ = 0.1

5 R2C2 Same as 3, but using Training 2 dataset

of 1.2
[

W
m2K

]
and an area of 1.76

[
m2
]
, while the two windows have U-values 1.3

[
W

m2K

]
and a total area of 1.57

[
m2
]
. The430

resulting total UA value is then 4.1
[
W
K

]
, which gives an estimated thermal resistance Rg = 0.24 [34]. The covariance of the431

prior, i.e., the uncertainty of the estimated mean value 0.24 is chosen as 0.012. With application of a prior distribution based432

on physical information of the building, the parameters are shown to be identifiable.433

Case 3 instead resolves the non-identifiability by modifying the model structure into the R2C2 model, by removing434

the parameter Rg from the model and effectively lumping the thermal resistance of windows and the door together with435

the remaining Rb and Rw. All four parameters of the R2C2 model structure are identifiable, despite using uniform priors.436

Additionally, Case 3 starts the MCMC chains from the MAP estimate θ̂MAP, rather than drawing the initial sample uniformly437

from the feasible region Θ as is done in Cases 1 and 2, thus negating the need for a burn-in phase in MCMC.438

Case 4 uses the same setup as Case 3, except that a random noise component v′k ∼ N
(
0, 0.12

)
is added to the data439

for Tb and Tw prior to analysing the estimated parameters. As the results will show, comparing Cases 3 and 4 reveal some440

interesting insight into the estimation of noise covariance parameters for this model. Case 5 also uses the same setup as441

Case 3, but now a different dataset, Training 2, is used. The other four cases all use Training 1 for estimation and analysis.442

For Case 5, however, the Training 2 dataset has slightly more dynamic information content, which, as the results will show,443

is reflected in the parameter analysis.444

For each case, the posterior distribution of the parameters p
(
θ|y[N ]

)
is estimated using the MCMC method. The results445

are presented as marginal distributions, both as one dimensional (1D) for each parameter, and as two dimensional (2D)446

distributions over two parameters. Additionally, each case is analysed using the profiling methods of Section 2.6 in one and447

two dimensions in order to obtain projected profiles of the log posterior ℓP (θ). Note that the experimental cases use different448

feasible regions Θ, as evident from the result plots in Section 4. Hence, the results for different cases must be compared by449

taking into account the differences in parameter limits. Note that, for simplicity, the projection method is refereed to in the450

sequel as PP, since the PL variation can be considered a special case of PP with uniform priors.451

Post-processing of results452

The marginal posterior distributions from MCMC are log-transformed, in the form of Eq. (13), to facilitate comparison453

with the PP1D/PP2D methods. Additionally, the results are shifted in log space such that the minimum of each profile/log454

distribution is zero, as discussed in Section 2.8. Since the goal is to analyse the parameter estimation problem, it is the shape455

in log space and distribution over the parameters that are of interest, not the scale or the minimum log posterior value.456

The PP1D/PP2D methods, being based in numerical optimisation, naturally respect the bound of the feasible region. In457

the Bayesian framework, the constraint θ ∈ Θ is equivalent to a prior distribution p (θ ∈ Θ) = 1 and p (θ /∈ Θ) = 0, hence in458

the MCMC implementation any proposed θ /∈ Θ is automatically rejected.459

The results from MCMC and PP2D are presented as corner plots, with 2D profiles/marginal posterior distributions for460

each possible combination of parameters. Additionally, the marginal posterior for each parameter is plotted together with461

the PP1D profile, for comparison of results.462
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Figure 4: Comparison of projected profiles from PP1D and PP2D, with the marginalised posteriors obtained from MCMC, for Case 1. The top

panel shows the 1D marginals/projections plotted together, where the PL1D projections are plotted in red and the marginalised posterior for each

parameter is plotted in blue. The lower left and right panels show corner plots, a set of two-dimensional distributions/projections, one for each

possible parameter combination, for the MCMC marginalised posterior and the PL2D projections, respectively.

Tuning463

The PP2D method is executed with an experimentally obtained discretisation resolution of 200×200 grid, and a resolution464

of 400 for PP1D. The MCMC method is applied with 12 chains of length 105, except for in the non-identifiable Case 1 which465

uses chain length 2 × 106 and a thinning factor of 20. For Cases 1 and 2, a fixed burn-in of 10000 samples is used. Cases466

3, 4 and 5 initialise the chains at θ̂MAP, hence, no burn-in phase is needed. The proposal distribution is chosen as normal467

isotropic: q (θk|θk−1) ∼ N
(
θk−1, σ

2
q

)
where σq = l · diag

(
θ0
)

and θ0 is some nominal parameter vector close to the MAP468

estimate θ̂MAP. The step length l = 0.01 has been selected for all cases, such that for Cases 2 to 5 the proposal acceptance469

rate is around 50%. For Case 1, the acceptance rate is found to be around 25, due to the thin elongated valley in the posterior470

hyper-surface for the non-identifiable case resulting in an increase in rejected proposals.471

4. Results and analysis472

4.1. Marginal and projected posteriors473

Figure 4 presents the marginal posterior plots from MCMC together with the PP1D and the PP2D projections. Observe474

that the resulting projections/profiles are similar for most parameters. Since the plots are shifted in log space, this similarity475

indicates proportionality in non-log space.476

The presence of flat, equipotential regions in the posterior hyper-surface indicates that parameters Rb and Rw are non-477

identifiable. The corresponding PP2D profile in Fig, 4 shows a linear inter-dependence between the parameters Rb and478

Rw, which is indicative of a structural problem with the R3C2 model, resulting in non-identifiable parameters because of479

over-parameterisation.480

Next, observe that the marginal posteriors for parameters Rb and Rw show considerable random fluctuation in regions481

that the PP1D and PP2D methods identify as flat. Since MCMC is based on a stochastic exploration of the parameter space482
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Figure 5: Diagnostic plots for Case 1: 2D and 1D trace plots are shown in the left and middle panels. The 2D trace plots contain the burn-in

phase of 10000 samples, indicating that all chains reach the high-density regions. The right panel shows the ACF plot for each chain after removal

of the burn-in phase, which indicates that the MCMC method does not properly converge for Case 1.

it is not surprising that the similarity of the results is only approximate. The MCMC method draws samples in proportion483

to their posterior density, focusing exploration of Θ on areas of high posterior density, hence the similarity of the results is484

stronger in these regions.485

The differences between projected and marginal posteriors are most pronounced for the parameters Rg and Cw. The486

marginal posteriors are not proportional to the projected posteriors for Rg and Cw, since for these parameters, the optimum487

obtained by projections is not proportional to the integral over remaining parameters. In contrast, the marginal and projected488

posterior of the parameter Cb are nearly identical in shape.489

Since the parameters are subject to the constraint θ ∈ Θ, the inter-dependence between Rb and Rw introduces artefacts490

in the profiles, such as the sharp bend that occurs in the profile for Rb at ∼ 0.9. This phenomenon is caused by the dependant491

parameter Rw being actively constrained < 1.0, hence producing sub-optimal posterior projections for higher values of Rb.492

The same effect is observed on the MCMC marginal posterior plots, since the bends are caused by the bounds on the493

parameters and not the analysis method. However, in the Bayesian framework, the constraint θ ∈ Θ can be interpreted as494

a prior on the parameters which reshapes the likelihood hyper-surface, consequently resulting in the observed bends in the495

marginal posteriors of Rb and Cw, as discussed in Section 2.2. The Bayesian interpretation of this phenomenon is arguably496

more satisfactory than that of artefacts induced by active constraints in optimisation.497

Because of inter-dependant, and therefore non-identifiable, parameters, the shape and extensiveness of the posterior498

hyper-surface become difficult to traverse using the stochastic predict-accept/reject scheme of the Metropolis algorithm.499

These difficulties are evident by the diagnostic plots given in Fig. 5. For Case 1, the elongated, narrow and flat structure500

of the posterior hyper-surface for parameters Rband Rw causes the Metropolis algorithm to sample the posterior somewhat501

ineffectively, resulting in an average proposal acceptance rate of ∼ 25% for the defined proposal distribution q (θk|θk−1),502

subsequently with high autocorrelation over the chains. Hence, significantly longer chain lengths were required for Case 1,503

where K = 2× 106 for all 12 chains, than for the other four cases.504

Although the 2D trace plots in Fig. 5 show that all chains quickly reach the high posterior density region for all505

parameters, from their uniformly drawn starting points θ0 ∼ U (θmin, θmax), the 1D trace plots show that the chains are not506

reaching equilibrium, except for in the parameter Cb. Since the chains do not converge, the resulting parameter samples507

θ[K] are not properly representing the posterior distribution, hence producing less accurate estimates of p
(
θ|y[N ]

)
. The508
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Figure 6: Marginal and projected posterior for Case 2, with left and right panels showing the MCMC and PP2D results, respectively. A comparison

between the 1D marginal distributions (blue) and the PP1D projections (red) is shown in the top panel.

autocorrelation function (ACF) plots show significant correlation even at high lag values for all parameters except Cb. This509

is indicative of MCMC chains that are “clumpy” [27, 29], as a consequence of failure to converge. Despite the convergence510

failure, comparison with PP1D and PP2D projected posteriors suggests that the MCMC results are representative of the511

posterior, although with reduced accuracy.512

The resulting marginal distributions and projections of the posterior hyper-surface of Case 2, reshaped by the addition of513

the prior of Rg, i.e., p (Rg) = N
(
0.24, 0.012

)
, are presented in Fig. 6. All five parameters are now indicated as identifiable by514

bounded marginal and projected posterior distributions. Despite the different theoretical foundation of the methods discussed515

in Section 2.6, the marginal and projected posteriors are nearly identical once shifted in log space. The similarity is much516

stronger than for Case 1, since the challenging equipotential regions in the posterior hyper-surface have been eliminated. As517

evident from the marginal and projected 2D posterior of parameters Rb and Rw, there is still a strong correlation between518

them, but there is now a well-defined optimum.519

The differences between the use of a stochastic rather than deterministic exploration of the parameter space is most520

pronounced in the low posterior density regions. Since the high-density regions are the primary area of interest for these521

analyses, the somewhat random exploration of the low posterior density regions of MCMC is of no practical consequence.522

Hence, both methods arguably provide the same insights of the parameter space of Case 2. Since the parameters now have523

well-defined optima, convergence of the MCMC chains occurs well within the predetermined burn-in phase, hence shorter524

chain lengths where required for Case 2.525

The results for Case 3 are presented in Fig. 7. As shown by the marginal and projected posteriors, the posterior hyper-526

surface has been further reshaped by the removal of Rg. As for Case 2, all parameters have bounded profiles and are therefore527

identifiable. However, the uncertainty, i.e., the span of the log posterior projections and marginal distributions, is greatly528

reduced for Case 3. Hence a reduction in the region of interest Θ is required, compared to Case 2, as shown in the ranges of529

the plots in Fig. 7.530

Next, observe that the similarity between the marginal and projected posteriors is stronger for Case 3 compared with531

18



Figure 7: Marginal and projected posterior for Case 3, with left and right panels showing the MCMC and PP2D results, respectively. A comparison

between the 1D marginal distributions (blue) and the PP1D projections (red) is shown in the top panel.

Figure 8: 1D marginal distributions (blue) and the PP1D projections (red) for Cases 4 (top) and 5 (bottom).

Case 2, although there are still some minor differences in the low posterior density regions due to the stochastic exploration532

of MCMC. These results further confirm that the two methods produce results that are proportional for the reshaped533

hyper-surface of Case 3. Hence, both methods provide the same insight into the parameter estimation problem.534

The 1D marginal and projected posterior results for Cases 4 and 5 are shown in Fig. 8. Since the model structure535

and prior configuration are the same as for Case 3, the structural identifiability and parameter inter-dependency are also536

the same. The results for Case 4 are nearly identical to Case 3, but Case 5 obtains slightly different MAP estimates and537

uncertainties, since a different dataset is used for the parameter estimation.538

Noise parameters539

When calibrating grey-box thermal network models for the purpose of using the estimated parameters to classify building540

thermal behaviour, naturally, the thermal resistance and capacitance parameters are of primary interest. However, in this541

paper, the parameters of the noise covariance matrices W and V are also estimated from the data. Hence, it is interesting542

to study the identifiability of the noise parameters; the square root of the diagonal elements of each noise covariance matrix.543

The PP1D projected profile and the MCMC marginal 1D posterior for noise parameters wb, ww, vb and vw for all five544

cases are presented in Fig. 9. First, observe that the noise parameters for Cases 1, 2 and 3 are nearly identical, despite545

some of the thermal parameters of Case 1 being non-identifiable. Observe also that the projections/marginal distributions546

are quite similar, indicating that similar information is obtained by both PL/PP and MCMC methods also for the noise547

parameters.548
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Figure 9: 1D marginal distributions (blue) and the PP1D projections (red) for the noise parameters wb, ww, vb and vw for all five cases, presented

in increasing order.

Table 3: MAP parameters with normalised standard deviations computed with the Hessian method, together with normality test results from

using Zero-Crossing (ZC) and Kolmogorov-Smirnov (KS) on residuals using the θ̂MAP estimate.

# Rg Rb Rw Cb Cw wb ww vb vw Output Tb Tw

1
θ̂MAP (0.101) (0.515) (0.607) 1.449 (0.041) 0.148 0.137 (0.000) (0.004) ZC 247 253

σ
θ̂MAP

× × × 4.6% × 3.2% 3.6% × × KS 0.035 0.049

2
θ̂MAP 0.236 0.072 0.084 1.444 0.293 0.149 0.137 (0.003) (0.002) ZC 243 253

σ
θ̂MAP

6.0% 5.7% 5.7% 4.7% 8.8% 3.2% 3.7% × × KS 0.039 0.050

3
θ̂MAP n/a 0.043 0.051 1.446 0.481 0.151 0.136 (0.010) (0.010) ZC 243 253

σ
θ̂MAP

n/a 2.6% 2.7% 4.9% 7.1% 3.2% 4.9% × × KS 0.038 0.050

4
θ̂MAP n/a 0.043 0.051 1.369 0.486 0.169 0.158 0.088 0.088 ZC 246 259

σ
θ̂MAP

n/a 2.7% 2.8% 5.3% 8.0% 5.7% 5.5% 11.5% 10.7% KS 0.030 0.027

5
θ̂MAP n/a 0.040 0.048 1.270 0.419 0.128 0.103 (0.002) 0.041 ZC 247 259

σ
θ̂MAP

n/a 1.4% 1.5% 6.3% 4.5% 3.2% 5.2% × 18.0% KS 0.052 0.041

Next, observe that the profiles for the measurement noise parameters in V are unbounded towards the minimum of Θ.549

As discussed in Section 2.4, the noise parameters influence the likelihood through the computed Kalman gain. Since the550

Kalman filter estimated state trajectory is optimal when both W and V are correctly estimated [48], the values of all four551

noise parameters are structurally identifiable. However, if the optimal estimate of the measurement noise V is much smaller552

than the process noise W, the Kalman gain approaches the inverse of the measurement matrix, i.e. K → C̃−1. Hence,553

the updated state depends almost exclusively on the measurement, such that x̂k|k ≈ C̃−1yk. If the model uncertainty is554

indeed much larger than the measurement uncertainty, relying exclusively on measurements to update the state trajectory555

is arguably reasonable. However, this results in practically non-identifiable measurement noise parameters, since estimating556

lower values for the elements of V only drives K slightly closer to C̃−1, and therefore only produces an upper bound on vb557

and vw. This effect can be observed in Fig. 9 for both measurements in Cases 1, 2 and 3, and for measurement Tb in Case558

5. For Case 4, with the addition of artificial noise, the measurement noise parameters are both structurally and practically559

identifiable with well-defined minima and bounded CIs.560

4.2. MAP point estimates with uncertainty561

Since the posterior hyper-surface for most parameters and experimental cases is known to be asymptotically Gaussian562

[17], the uncertainty of the MAP estimate for identifiable parameters can be estimated by the Hessian from Eq. (20), i.e.,563

the covariance of the MAP estimate is ΣθMAP
= 2H−1

P . The θ̂MAP estimate and estimated standard deviation σi =
√
Σi,i564

are shown, together with normality test results of the θ̂MAP estimate, in Table 3. The parameter values enclosed in (·) are565
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ambiguous, previously diagnosed as non-identifiable, and used only to test the residuals for normality. The corresponding566

uncertainty estimates are noted as ×. The elements denoted as n/a are not relevant due to use of the R2C2 model. The567

standard deviation σ is normalised over the θ̂MAP estimate to facilitate comparison of different parameters. The residual568

for the θ̂MAP estimate for all five cases passes both the Zero-Crossing (ZC) test with acceptance range ⟨219, 262⟩ and the569

Kolmogorov-Smirnov (KS) test with threshold (< 0.062), both at confidence α = 95%. The three resistance parameters are570

given in unit [K/W ], the two capacitances in unit 106 [J/K] and the four noise parameters in unit [K].571

There are several interesting observations to be made from Table 3. First, comparing Case 2 and 3, lumping Rg into572

the remaining resistance parameters Rb and Rw results in correspondingly decreased estimates of thermal resistance. Next,573

observe that the MAP estimate of Cb, and the corresponding uncertainty, is approximately the same for all five cases,574

although slightly lower for Case 5. Note also that the model prediction uncertainty parameters wb and ww are nearly575

identical for the first three cases. These observations indicate at least some correlation of the estimated parameters to the576

physical properties of the building, which is further discussed in Section 4.4.577

Further, observe that although the inclusion of a prior on Rg in Case 2 produced unambiguous MAP estimates, the578

uncertainty of the remaining estimated parameters is significantly lower in Case 3, where Rg = ∞.579

Comparing Cases 3 and 4, the uncertainty in the four thermal parameters is not significantly affected by the addition580

of artificial measurement noise in Case 4. This comparison indicates that a slight increase in measurement noise does not581

adversely affect the parameter estimation uncertainty. However, the use of a different dataset in Case 5 significantly reduces582

the uncertainty of the thermal parameters. The important factor determining the uncertainty of the estimated parameters583

is the dynamic information content related to the system behaviour contained in the data, assuming a reasonable signal to584

noise ratio. Finally, observe that the MAP estimates of the four thermal parameters are in reasonable agreement for Cases585

3, 4 and 5, which indicates that the estimated parameters are consistent irrespective of the data-set used for calibration, at586

least to some degree considering the datasets where recorded consecutively.587

4.3. Posterior predictive distribution for the Test dataset588

Figure 10 shows the posterior predictive distributions discussed in Section 2.7, for each experimental case, computed by589

Monte Carlo (MC) simulation of the model in Eq. (14) for a thinned subset of the parameter samples in θ[K]. To reduce590

computation time, a thinning factor of 100 is used for this computation. The plots are created by repeatedly simulating591

the test-set ballistically, with randomly generated measurement and process noise vk and wk, thus creating one simulated592

trajectory for each θ ∈ θ[K]. The lower right plot shows the standard deviation σk of at each time step over the set of K593

ballistic simulations such that594

σ2
k = V

[
ŷk|0

]
=

1

K − 1

K∑
i=1

(
ŷ
(i)
k|0 − ȳk|0

)2
where ȳk|0 = E

(
ŷk|0

)
= 1

K

∑K
i=1 ŷ

(i)
k|0. Note that the test-set measurements of future system inputs uk are used to compute595

the posterior predictive distributions in order to separate the uncertainties of the model predictions with those introduced596

by using more realistic predicted system inputs.597

First, observe from Fig. 10 that Cases 1, 2 and 3 produce similar prediction results, despite the differences in model598

structure and parameter posterior distributions, and from the lower right panel showing the standard deviation (SD) that599

the empirical SD is nearly identical for the first three cases. Comparing cases 4 and 5 to Case 3 shows that the SD of the600

predictions is increased for Case 4 but decreased for Case 5. Since Case 4 has artificially added measurement noise, it is601

expected that the output predictions will have increased uncertainty, due to larger values of the generated measurement noise602

parameters vb and vw. For Case 5, the variance of the output trajectories is reduced, since the estimated parameters in θ[K]603

have less variation due to improved dynamic information in the Training2 dataset. The similarity of the model predictions604

for each case is further demonstrated by the root mean square error (RMSE) of the MAP predictions shown in Fig. 10. The605
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Figure 10: Prediction posterior from repeated ballistic simulations over θ[K] of the Test dataset for all five cases. For each case, the temperatures

Tb and Tw are plotted as upper/lower temperature, respectively. The plots show the MAP estimate (blue), credibility bands of 50%, 95% and

99% (light to dark) and the reference measurements (red). The lower right plot shows the standard deviation of the outputs, computed over all K

trajectories, at each time step.

observed differences in predictions over the four-day horizon are likely to be of no practical significance for use in a predictive606

controller.607

The similarity of the posterior predictive distributions of Cases 1, 2 and 3 shows that all three variations of the model608

are in fact able to learn the information in the training set necessary to predict the test set. The fact that Case 1 has609

some non-identifiable parameters with a significant equipotential region in their posterior distributions does not prevent the610

model from successfully predicting the output. Comparing Cases 4 and 5 to Case 3 further indicates that it is the dynamic611

information content in the training data that most significantly affects the posterior predictive distributions, as long as the612

model structure is sufficiently complex to learn the appropriate system behaviour.613

These results show that the presented grey-box model may adequately predict the system behaviour, even if the parameters614

are not unambiguously identifiable, and that the prediction accuracy largely depends on the information content in the615

training data. For black-box models, there is usually no assumption of physical interpretability of the model coefficients,616

hence unambiguous optimal parameter estimates are of no consequence. Methods such as system identification [11] and617

Artificial Neural Networks (ANN) [54, 55] typically produce non-unique system description models whose ability to predict618

future data, assuming adequate model complexity, depends mostly on the information content in the training data.619

By including the stochastic process and measurement noise terms in the model and learning their parameters from data,620

the model predictions can also reflect these important uncertainties. The computation of a posterior predictive distribution,621

rather than a single MAP or MLE trajectory, could facilitate use of stochastic MPC methods [56]. Calculating the simulation622

RMSE to a worst case error of 1.5K, computed over a reasonably long prediction horizon of four days is likely sufficient for623

the purposes of model based control [3].624
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Figure 11: Log posterior marginal distributions with credibility 2.5 and 97.5 percentiles (red) MAP estimates (black) of the two time-constants,

T1 and T2, and the total heat-loss resistance RTOT of the building.

4.4. Physical interpretation of estimated parameters625

Given that all five cases show similar predictive capabilities, despite Case 1 having some non-identifiable parameters and626

Table 3 showing large variation in the model parameters, it is interesting to consider if there are any similarities between627

the cases that are not expressed in the model parameters. Three properties of interest are the eigenvalues λ1 and λ2 of628

A, or rather their negative inverse, i.e., time-constants T1 = −λ−1
1 and T2 = −λ−1

2 , and the total resistance to heat-loss629

RTOT = Rg|| (Rb +Rw) between the indoor temperature Tb and the outdoor temperature T∞, where || indicates a parallel630

connection of resistors, i.e., a harmonic sum. Note that for Cases 3, 4 and 5, Rg = ∞ → RTOT = Rb +Rw.631

Since the posterior distribution generated by MCMC is represented by a set of samples θ[K], the quantities T1, T2 and632

RTOT can be computed for each sample in θ[K] and the marginal posterior distribution for each quantity computed by633

histogram. The marginal log posterior ℓP (θ) = −2 ln p
(
θ|y[N ]

)
for each quantity is given for all five cases in Fig. 11, together634

with the MAP estimate and 2.5 / 97.5 credibility percentiles, computed from interpolation on the cumulative empirical635

distribution.636

First, observe that these quantities have bounded profiles with a well-defined optima, also for Case 1. Even though the637

MCMC method’s trace plots in Fig. 5 show a large variation in the model parameters, the time-constants and total resistance638

are well-defined. When MCMC proposes a new sample θck, if that sample gives time-constants T1 and T2, or a total thermal639

resistance RTOT that differs substantially from the MAP estimates shown in Fig. 11, the resulting log posterior ℓP (θ) would640

produce a very low acceptance probability α.641

Next, observe that all three quantities are in reasonable agreement for the first four cases, with the MAP estimate for642

each case falling within the credibility limits for all the other cases, except the MAP of T1 for Case 1 falling just below the643

2.5% credibility limit of Case 3. The similarity, despite using different model structures, priors and noise on training data,644

indicates that the time-constants and total resistance are somewhat invariant to the experimental setup. The consistency645

of RTOT ∼ 0.094 for Cases 1 to 4 explains why there is a strong correlation between Rb and Rw as illustrated in Section646

4.1. Given that Rg is determined by the prior, omitted, or has a well-defined optimum, the values of Rb and Rw must fulfil647

RTOT ∼ 0.094. However, it is difficult to see any physical reason for this correlation.The interpretation of the individual Rb648

and Rw parameters as physical properties of the building is therefore questionable.649

Finally, note from the marginal posterior distributions in Fig. 11 that the differences between Case 5 and Cases 1 through650

4 are significant, e.g. a value of RTOT = 0.094 would give a very low posterior probability based on the distribution of Case651

5. The Case 5 MAP estimate for each quantity is outside the 2.5/97.5 percentiles for Cases 1 to 4. While the results of Case652

5 cognitively appear similar to Cases 1 to 4, the presented results are not similar enough to conclude with sufficient statistical653
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credibility that the parameters are consistent also when different calibration data is used.654

4.5. Comparing MCMC and PP methods655

As the results from the five experimental cases have shown, the MCMC and PL/PP methods indeed provide similar results.656

Even though the theoretical foundation of the methods differ significantly, in particular in the stochastic vs. deterministic657

exploration of Θ and the use of projection vs. marginalisation to present results, both methods produce estimates of the658

same posterior parameter distribution. Note, however, the projected and marginalised posterior is not always proportional659

as shown in Case 1. The advantage of the projection-based methods is mainly that they are not affected by flat regions660

in the likelihood function or posterior distribution. Additionally, the deterministic projections of each prescribed point in661

Θi,j allow an exhaustive exploration of the feasible region Θ.The method will therefore obtain both global and local minima,662

including any equipotential manifolds. The main advantages of MCMC are computational speed and the way that the663

target distribution is represented as a set of samples θ[K] that can be used for further analysis, such as computing derived664

parameters, e.g. time constants or total thermal resistance.665

Computation time666

Deterministic brute force exploration is, naturally, quite time-consuming. The accuracy at which a global optimum can667

be found depends on the resolution of the parameter discretisation used in the brute force grid exploration. Hence, the668

key to successful use of the PL2D/PP2D methods is a reasonable compromise between computation time and resolution.669

The computational burden is further exacerbated by the need to project the log likelihood or log posterior to all parameter670

combinations Θi,j of interest. In contrast, the MCMC method is specifically designed to explore the most interesting areas,671

i.e., the areas of Θ with the highest posterior density. Additionally, since the resulting 2D distributions are computed from672

histograms by marginalising out the other parameters, there is no need to run the method multiple times. All computation673

times discussed here are given for the method configurations stated in Section 3.3. All the methods discussed in this paper674

can easily be parallelised, and can thus take advantage of modern multi-core CPU architectures.675

The MCMC method computes in around ∼ 12min for Cases 2 through 5.Due to non-identifiable parameters, Case 1676

required around 20 times long chains to produce a reasonable approximation of the posterior, thus taking a computation677

time of ∼ 4.5h. In contrast, the PP2D method takes around ∼ 6.5h to compute all ten projections for Cases 1 and 2. The678

PP2D method is not affected by the shape of the posterior surface. Case 1 and 2 therefore takes approximately the same679

time to compute. The six projections in Cases 3, 4 and 5 are computed in around ∼ 2.5h. The reduction in computation680

time is due to a lower number of parameters in the last three cases, resulting in fewer projection planes Θi,j and also fewer681

free parameters to optimise for each projected point. The PL1D/PP1D methods, requiring discretisation only of single682

parameters and only one projection per parameter, are significantly faster at around ∼ 3min. Note that if only 1D posterior683

distributions were of interest, the MCMC method could likely have been configured with significantly shorter chains.684

Predictive posterior and combined parameter distributions685

A distinct advantage of MCMC is the ability to compute posterior predictive distributions for the model output. By using686

MC simulations over the set θ[K], a set of K independent state and output trajectories can be computed. The uncertainty of687

the predictions, given both model uncertainty wk ∼ N (0, W), measurement uncertainty vk ∼ N (0, V) and the uncertainty688

in the parameter estimates as expressed in θ[K], can be estimated for each time-step over the K trajectories, as discussed in689

Section 2.7.690

Another use of the sampled set θ[K] is the possibility to compute combined parameters, such as the eigenvalues of A or691

the total resistance to heat-loss RTOT discussed in Section 4.4. Marginal distributions for these combined parameters can692

then be computed and analysed to provide a more flexible analysis and deeper insight into the model’s behaviour.693
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5. Conclusion694

In this paper, both frequentist and Bayesian frameworks for parameter estimation were used to obtain a detailed analysis695

of the parameter space of a grey-box thermal network model for a building [21, 43]. The Profile Likelihood (PL), the Profile696

Posterior (PP) and the Markov Chain Monte Carlo (MCMC) methods were used to estimate the shape of the posterior697

distribution for the parameters of a thermal network grey-box model expressed as a stochastic differential equation (SDE)698

[16].699

Five experimental cases were investigated, one of which has non-identifiable parameters. This non-identifiability was700

shown to be resolved by application of either a prior distribution for the parameter Rg, or by the removal of Rg from the701

model, in Case 2 and 3, respectively. Cases 4 and 5 showed how, and under what conditions, the covariance of the process702

uncertainty wk and the measurement uncertainty vk can be estimated from data for the given model. By using the sampled703

set θ[K] from MCMC, the eigenvalues, and subsequently the time-constants, of the state transition model A, and also the704

total thermal resistance RTOT, were shown to have well-defined bounded distributions even for the non-identifiable Case 1.705

The estimates of the time-constants and total thermal resistance were found to be similar for the first four cases, but with706

significant differences in Case 5, which used a different training dataset.707

A distinct advantage of the MCMC method is the ability to use the sampled set of parameters θ[K] to propagate the708

uncertainty of the parameter estimates into the model output predictions, by computing the posterior predictive distribution.709

The resulting distributions for all five cases were found to be in reasonable agreement. Hence, all the models are found able710

to learn the necessary knowledge about the physical building from the training data necessary to predict the independent711

test set. This result indicates that while parameter identifiability is important for justifying a physical interpretation of the712

model parameters [5], the presented model’s ability to predict system behaviour is not significantly affected by non-identifiable713

parameters. This result is well-know from the black-box modelling paradigm [11]. Since grey-box models explicitly applies714

prior physical knowledge of the system to create a model structure, the interpretation of parameters as physical constants715

of the system is often assumed [5]. The results presented here show that, even if the model correctly predicts the system716

behaviour, assumptions of physical interpretation of parameters should be supported by an identifiability analysis.717

Finally, the use of both PP and MCMC methods to explore the posterior distribution shows that the shapes of the718

respectively resulting projected and marginal distributions are near identical in log space, i.e., proportional, and therefore719

convey the same diagnostic information about the parameter space for most of the presented cases [21]. The main advantage720

of the projection methods, due to the deterministic exploration of the parameter space, is that the equipotential manifolds721

in the log posterior space caused by non-identifiable parameters do not affect the method’s ability to obtain projections of722

the posterior [21]. The MCMC method’s main advantages are computational efficiency, achieved by focusing exploration of723

the parameter space on regions of high posterior density, and also the possibility of utilising the sampled set of parameters724

θ[K] to compute the posterior predictive distribution and marginal distributions for other parameters derived from the725

sampled θ [27, 29]. Producing a stochastic forecast for the temperatures in the building could facilitate use of stochastic726

Model Predictive Control (MPC) [56, 57], which also accounts for uncertainty in the calibrated model parameters.727
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