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Abstract: This study outlines the applicability of four metaheuristic algorithms, namely,
whale optimization algorithm (WOA), league champion optimization (LCA), moth–flame optimization
(MFO), and ant colony optimization (ACO), for performance improvement of an artificial neural
network (ANN) in analyzing the bearing capacity of footings settled on two-layered soils. To this end,
the models estimate the stability/failure of the system by taking into consideration soil key factors.
The complexity of each network is optimized through a sensitivity analysis process. The performance
of the ensembles is compared with a typical ANN to evaluate the efficiency of the applied optimizers.
It was shown that the incorporation of the WOA, LCA, MFO, and ACO algorithms resulted in 14.49%,
13.41%, 18.30%, and 35.75% reductions in the prediction error of the ANN, respectively. Moreover,
a ranking system is developed to compare the efficiency of the used models. The results revealed that
the ACO–ANN performs most accurately, followed by the MFO–ANN, WOA–ANN, and LCA–ANN.
Lastly, the outcomes demonstrated that the ACO–ANN can be a promising alternative to traditional
methods used for analyzing the bearing capacity of two-layered soils.

Keywords: bearing capacity analysis; artificial neural network; metaheuristic algorithms

1. Introduction

Soil bearing capacity is one of the most crucial engineering parameters which needs to be
meticulously investigated before any construction action [1,2]. Thus, having an accurate approximation
of the bearing capacity is a very important prerequisite of many geotechnical engineering projects as it
is a function of various soil characteristics [3]. The ultimate applicable stress (Fult) is obtained based on
the maximum settlement ratio, which is 0.1 of the footing width [4,5]. In this regard, many scholars
investigated or introduced relationships to give the Fult [6,7]. Lotfizadeh and Kamalian [8] used the
stress characteristic lines method for forecasting the static bearing capacity of strip footing installed
on two-layered soils. Up to now, different numerical and analytical approaches were utilized to
analyze the bearing capacity [9–11]. However, as a matter of fact, traditional methods and laboratory
approaches are not applicable without spending a huge amount of time and money. On the other hand,
due to the high competency of artificial intelligence techniques in different engineering applications,
they can be used as inexpensive yet accurate models for estimating geotechnical parameters like
bearing capacity.
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The advent of soft computing approaches provided proper accurate models such as artificial
neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), etc. for numerous engineering
calculations with a focus on estimation tasks. These models were also successfully used for bearing
capacity analysis [12–14]. In this sense, Padmini et al. [15] employed three models of neuro-fuzzy, ANN,
and fuzzy for predicting the ultimate bearing capacity of shallow foundations (on cohesionless soil).
Their results showed the superiority of intelligent models to popular bearing capacity theories. Also,
Alavi and Sadrossadat [16] employed linear genetic programming to estimate the ultimate bearing
capacity of shallow foundations resting on rock masses.

Metaheuristic algorithms suggest potent solutions for several optimization problems. They are
also used for optimizing the performance of well-known predictive models like the support vector
machine (SVM), ANN, and ANFIS [17–19]. As for the application of metaheuristic algorithms in
bearing capacity analysis, different algorithms were applied to enhance the accuracy of the mentioned
models [2,20,21]. Moayedi et al. [22] applied the biogeography-based optimization (BBO) algorithm to
ANN and ANFIS for estimating the failure likelihood of shallow footings. The results showed that
the used algorithm can increase the classification accuracy of the ANN (from 98.2% to 98.4%) and,
more considerably, the ANFIS (from 97.6% to 98.5%). Likewise, Moayedi et al. [23] compared the
optimization capability of the dragonfly algorithm (DA) and Harris hawks optimization (HHO) in
adjusting the computational parameters of the ANN. Their study revealed that both these algorithms
can effectively handle the mentioned task. However, referring to the calculated values of area under
the curve (AUC), the DA (AUC = 0.942 and error = 0.1171) performed more accurately than the HHO
(AUC = 0.915 and error = 0.1350).

According to the literature review, despite the broad application of popular metaheuristics
(e.g., imperialist competition algorithm (ICA) and particle swarm optimization (PSO)) for bearing
capacity analysis [2,24,25], there are still many unused techniques which might be more capable.
Hence, the main focus of the present paper was to investigate the applicability of several metaheuristic
algorithms, namely, whale optimization algorithm (WOA), league champion optimization (LCA),
moth–flame optimization (MFO), and ant colony optimization (ACO), for optimizing the performance
of the ANN to discover powerful models. The necessity of coupling these algorithms lies in some
computational drawbacks [26,27] of the ANN which can be prevailed through proper adjustment of
the weights and biases. In other words, the main contribution of these algorithms to the stated problem
is to benefit metaheuristic advantages for the accurate evaluation of the relationship between bearing
capacity and soil parameters.

Hereafter, the paper is structured in four major parts. The used algorithms are described in
Section 2, data provision is explained in Section 3, results are presented and discussed in Section 4,
and Section 5 gives the conclusion.

2. Methodology

2.1. Artificial Neural Network

The artificial neural network (ANN) is the basic model of this study which we aimed to optimize.
ANNs showed high capability for estimating different engineering parameters [28–30]. Their high
robustness in dealing with complex and non-linear tasks makes the ANNs universal approximators [31].
The idea of neural learning was first suggested by McCulloch and Pitts [32]. The ANN can be represented
by different notions like radial basis function (RBF) and generalized regression neural network (GRNN),
but the most common of these is multi-layer perceptron (MLP) [33]. An ordinary view of the MLP
is depicted in Figure 1. It follows a so-called backpropagation (BP) learning method [34] with a
Levenberg–Marquardt (LM) training algorithm [35] by default. This model benefits the mentioned
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items in mapping the relationship between two variables called input(s) and target(s). Mathematically,
assuming T as the input of the j-th computational unit, the response (O) is calculated as follows:

O j = F (
M∑

m=1

TmWmj + b j), (1)

where F stands for the activation function, and the terms Wj and bj are the corresponding weight and
bias, respectively.

Figure 1. The structure of a multi-layer perceptron (MLP) neural network.

2.2. Hybrid Metaheuristic Algorithms

Due to the successful performance of metaheuristic algorithms in optimizing regular predictive
models, in this study, four recently developed algorithms are applied to the ANN. The considered
optimizers are the whale optimization algorithm (WOA), league champion optimization (LCA),
moth–flame optimization (MFO), and ant colony optimization (ACO), which are used as potential
search methods for finding the optimal solution to a given problem. In the case of this study, a general
MLP is given as the problem, and, concerning a cost function, the algorithms aim to find the best
weights and biases for the network.

The WOA was designed by Mirjalili and Lewis [36], inspired by the bubble-net hunting of
humpback whales. Three major stages of this algorithm are (a) shrinking encircling hunt, (b) exploitation
(i.e., bubble-net attacking), and (c) exploration (i.e., searching for the prey). More information about
the WOA can be found in previous studies [37–40]. The LCA was proposed by Kashan [41], based on
sporting competitions in sports leagues. Considering the league schedule programming and some
relationships for determining the winner/loser team in an artificial league, the most appropriate
solution is found. The LCA was detailed in previous studies [42–44]. As a novel nature-inspired
optimization technique, the MFO was suggested by Mirjalili [45]. The pivotal idea of this algorithm is
the navigation method of moths, which is known as transverse orientation. The candidate solutions in
the MFO are moths, and their positions in space express the problem’s variables. The optimization
process of this optimizer was well described in previous studies [46–48]. Lastly, the name ACO
implies a population-based optimization technique which mimics the foraging behavior of ant herds.
It was presented by Dorigo and Di Caro [49]. In this algorithm, artificial ants guide each other to
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achieve a proper (i.e., short) path leading to a promising food source. For more details, please refer to
References [50–52].

The pseudo-code of the WOA, LCA, MFO, and ACO algorithms are shown below.

Algorithm 1. The pseudo-code of the whale optimization algorithm (WOA) [53]

Initialize the whale population Xi (i = 1, 2, . . . , n)
Calculate the fitness of each search agent
X∗ the best search agent
while (t < maximum number of iterations)

for each search agent
Update a, A, C, l, and P
if1 (P < 0.5)

if2 (|A| < 1)
Update the position of the current search agent

else if2 (|A| ≥ 1)
Select a random search agent (Xrand)
Update the position of the current search agent
end if2

else if1 (P ≥ 0.5)
Update the position of the current search agent

end if1
end for
Check if any search agent goes beyond the search space and amend it
Calculate the fitness of each search agent
Update X∗ if there is a better solution
t = t + 1

end while
return X∗

Algorithm 2. The pseudo-code of the league champion optimization algorithm (LCA) [54]

Initialize the league size (L) and the number of seasons
(S); t = 1;
Generate a league schedule;
Initialize team formations (generate a population of L solutions) and determine the playing strengths
(function or fitness value) along with them. Let the initialization also be the team’s current best formation;
While t < = S × (L − 1)

Based on the league schedule at week t, determine the winner/loser among every pair of teams using a playing
strength-based criterion;

t = t + 1
For i = 1 to L
Devise a new formation for team i for the forthcoming match, while taking into account the team’s current best

formation and previous week events. Evaluate the playing strength of the resulting arrangement;
If the new formation is the fittest one (that is, the new solution is the best solution achieved so far for the

i-th member of the population), hereafter consider the new formation as the team’s current best formation;
End For
If mod (t, L−1) = 0

Generate a league schedule;
End If

End While
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Algorithm 3. The pseudo-code of the moth–flame optimization (MFO) algorithm [55]

While iteration < max iteration
Update flame number
Obj = fitness function (Moths);
if Iteration = 1

Sort the moths based on their objective functions; update the flames
Iteration = 0;

else Sort the moths based on their objective functions and flames from last iteration; update the flames
end
linearly decrease the convergence constant
for j = 1: Number of moths

for k = 1: Number of variables, update r and t
Calculate the distance of moth from each flame; update the values of the variables of moth from the corresponding flame

end
end
Iteration = iteration + 1;
end

Algorithm 4. The pseudo-code of the ant colony optimization (ACO) algorithm [56]

Initialization:
Algorithm parameters;
Ant population size K;
Maximum number of iteration NMax;

Generation:
Generating the pheromone matrix for the ant k;
Update the pheromone values and set x* = k;
i = 1;

Repeat
for k = 1 to K
Compute the cost function for the ant k;
Compute probability move of ant individual;
if f(k) < f(x*) Then

Update the pheromone values;
Set x* = k;

End if
End for
Until I > NMax;

3. Data Collection

By implementing a two-dimensional (2D) axisymmetric finite element method, a shallow footing
settled on a two-layered soil was analyzed in different conditions. The settlement (Uy) was derived in
each stage. A total of 901 analyses were carried out by 15-node triangular elements, where the effective
variables were unit weight ( kN

m3 ), friction angle, elastic modulus ( kN
m2 ), dilation angle, Poisson’s ratio (v),

applied stress ( kN
m ), and setback distance (m). Figure 2 illustrates the distribution pattern of these factors.

The descriptive statistics of the dataset are also presented in Table 1. As can be seen, the minimum
and maximum values obtained for the settlement were 0 and 0.10 m, respectively. Similar to a previous
study [23], it was deemed that, if the Uy is less than 0.05 m, the system fails; otherwise, it remains stable.
The failure and stability of the system are represented by values 1 and 0, respectively. The gathered
dataset (without normalization) was then randomly divided into two groups, namely, training (for
development of intelligent models) and testing (for evaluating the prediction capability of the models).
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In this regard, 721 samples (i.e., 80% of whole data) were specified to the first group, and the remaining
180 samples (i.e., 20% of whole data) served as the testing data (addressing unseen soil conditions).

Figure 2. Distribution of bearing capacity influential factors: (a) unit weight, (b) friction angle, (c) elastic
modulus, (d) dilation angle, (e) Poisson’s ratio, (f) applied stress, (g) setback distance, and (h) settlement.



Appl. Sci. 2019, 9, 5264 7 of 16

Table 1. Descriptive statistics of the used dataset.

Features Symbol Descriptive Index

Mean Standard Error Median Mode Standard Deviation Sample Variance Skewness Minimum Maximum

Friction angle X1 36.75 0.13 36.00 36.00 3.91 15.28 −0.14 30.00 42.00
Dilation angle X2 8.28 0.09 8.00 8.00 2.61 6.83 −0.39 3.40 11.50

Unit weight (kN/m3) X3 20.44 0.02 20.50 20.50 0.65 0.43 −0.95 19.00 21.10
Elastic modulus (kN/m2) X4 41,087.68 546.65 35,000.00 35,000.00 16,408.72 269,246,192.50 0.22 17,500.00 65,000.00

Poisson’s ratio (v) X5 0.29 0.00 0.29 0.29 0.03 0.00 0.14 0.25 0.33
Setback distance X6 4.19 0.07 5.00 5.00 2.08 4.31 −0.13 1.00 7.00

Applied stress (kN/m2) X7 289.74 7.89 245.65 0.00 236.97 56152.92 1.26 0.00 1132.65
Settlement (m) Y 0.04 0.00 0.03 0.00 0.03 0.00 0.46 0.00 0.10
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4. Results and Discussion

To meet the objective of the study (i.e., investigating the optimization capability of the
abovementioned metaheuristic algorithms), the algorithms should be coupled with the ANN. The aim
of this work was to let this algorithm find the most appropriate matrix of the weights and biases for
the ANN. To this end, firstly, an ANN with one hidden layer containing six neurons (determined by a
trial-and-error process) was proposed as the base model. Thus, regarding the number of input/output
parameters, the considered MLP took the form 7 × 6 × 1. Note that, in the present study, the activation
functions of the hidden and output neurons were set to be “tangent-sigmoid (i.e., Tansig)” and
“purelin”, respectively. Next, it was mathematically synthesized with the WOA, LCA, MFO, and ACO
algorithms to create WOA–ANN, LCA–ANN, MFO–ANN, and ACO–ANN neural ensembles.

4.1. Hybridizing the ANN Using Metaheuristic Algorithms

After creating the ensembles, a population-based trial-and-error process was carried out to achieve
the best-fitted complexity of the metaheuristic algorithms. To do so, all four networks were tested
with nine different population sizes including 10, 25, 50, 75, 100, 200, 300, 400, and 500. Each model
performed 1000 repetitions to minimize the error. In this process, root-mean-square error (RMSE)
was set as the objective function (OF) to measure the training error in each iteration. This function is
expressed in Equation (2). Figure 3a shows the obtained RMSEs for the tested population sizes. Also,
the convergence curve of the most accurate one is illustrated in this figure.

RMSE =

√√√
1
N

N∑
i=1

(
Yiobserved −Yipredicted

)2
, (2)

where N is the number of data, and Yi observed and Yi predicted stand for the observed and predicted
stability values.

Figure 3. Executed sensitivity analysis based on the population size: (a) obtained RMSE values, the
convergence curves of (b) MFO-ANN, (c) WOA-ANN, (d) ACO-ANN, and (e) LCA-ANN.

As can be seen, all four models exhibited an acceptable error in analyzing the relationship between
the stability condition and its influential parameters. In detail, the smallest error was obtained for the
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WOA–ANN with a population size of 400 (RMSE = 0.307658318), LCA–ANN with a population size
of 200 (RMSE = 0.312263011), MFO–ANN with a population size of 50 (RMSE = 0.298588793), and
ACO–ANN with a population size of 10 (RMSE = 0.274504799).

4.2. Accuracy Assessment Criteria

The classification accuracy of the models was measured using a well-known criterion, namely, the
area under the receiving operating characteristic curve (AUROC). Note that it was obtained by plotting
the ROC diagrams, which is a good way of assessing the accuracy in diagnostic problems, such as
natural hazard models [57–61]. Moreover, two error criteria of RMSE and mean absolute error (MAE)
were used to measure the performance error of the models. Equation (3) expresses the formulation of
the MAE.

MAE =
1
N

N∑
i=1

(
Yiobserved −Yipredicted

)
. (3)

4.3. Accuracy Assessment of the Predictive Models

In this part, the results of the best-fitted models (i.e., with elite population sizes) are evaluated to
examine their simulation capability. As is known, the results of the training phase address the learning
quality of the model, and the testing results indicate the generalization capability for unseen conditions
of the problem.

In the training phase, the calculated values of RMSE and MAE for the typical ANN were 0.3465
and 0.3055, respectively. Both of these indices experienced considerable decreases by applying the
WOA (0.3076 and 0.2555), LCA (0.3122 and 0.2592), MFO (0.2985 and 0.2430), and ACO (0.2745 and
0.1783) optimization techniques. Also, in terms of the AUROC, the accuracy of the ANN was increased
from 0.956 to 0.969, 0.964, 0.969, and 0.965, respectively. At a glance, it can be deduced that the models
can improve the learning capability of the ANN. Figure 4 displays the predicted and actual stability
values for the ensemble models. The output ranges were [−0.196124259, 1.163826771], [−0.285459666,
1.165811194], [−0.280854543, 1.220819059], and [−0.323683705, 1.197618633], respectively.

Figure 4. Cont.
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Figure 4. The results obtained for (a) WOA-ANN, (b) LCA-ANN, (c) MFO-ANN, and (d) ACO-ANN
predictions in the training phase.

Similar to the first phase, all the neural-metaheuristic ensembles surpassed the ANN in the testing
phase which means the algorithms have performed efficiently in adjusting the computational weights
and biases of this tool. In detail, the RMSE was reduced from 0.3465 to 0.3076, 0.3122, 0.2985, and
0.2745. As for the MAE, it fell from 0.3055 to 0.2555, 0.2592, 0.2430, and 0.1783. The differences between
the actual and predicted stability values (labeled as error) are illustrated in Figure 5, along with the
histogram of the errors. The products of the WOA-ANN, LCA-ANN, MFO-ANN, and ACO-ANN vary
in the extents [−0.19260775, 1.121547514], [−0.221848351, 1.183820947], [−0.176990489, 1.103579629],
and [−0.072023941, 1.206028442], respectively.

Moreover, the ROC curves for the prediction of ensemble models are shown in Figure 6.
The calculated areas under the curves indicate more than 90% accuracy for all five models.
However, the AUROCs of the hybrid ensembles were significantly higher than the unreinforced
ANN (AUROC = 0.930).
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Figure 5. The results obtained for (a,b) whale optimization algorithm (WOA)–artificial neural network
(ANN), (c,d) league champion optimization algorithm (LCA)–ANN, (e,f) moth–flame optimization
(MFO)–ANN, and (g,h) ant colony optimization (ACO)–ANN predictions for the testing samples.
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Figure 6. The receiver operating characteristic (ROC) curves of (a) WOA–ANN, (b) LCA–ANN,
(c) MFO–ANN, and (d) ACO–ANN predictions in the testing phase.

Until now, all used criteria confirmed that the metaheuristic algorithms can develop a more
powerful ANN compared to the BP learning method. The results of the WOA–ANN, LCA–ANN,
MFO–ANN, and ACO–ANN tools are evaluated in this section to compare the efficiency of the
algorithms. A score-based system was developed to rank the models and determine the most accurate
one. As Table 2; Table 3 denote, each model received three scores based on the calculated RMSE, MAE,
and AUROC. Then, the summation of these scores determined the model producing the most consistent
outputs in each phase. According to Table 3, the ACO-based model grasped the highest scores in terms
of all accuracy criteria except for the training AUROC (0.965) which was second to the WOA and MFO
(0.969). Therefore, it grasped the highest overall scores in both training and testing phases, followed by
the MFO, which closely surpassed the WOA, while the LCA featured the lowest rank.
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Table 2. The obtained values of root-mean-square error (RMSE), mean absolute error
(MAE), and area under the receiver operating characteristic curve (AUROC). MLP—multi-layer
perceptron; WOA—whale optimization algorithm; LCA—league champion optimization algorithm;
MFO—moth–flame optimization; ACO—ant colony optimization; ANN—artificial neural network.

Models
Network Results

Training Testing

RMSE MAE AUROC RMSE MAE AUROC

MLP 0.3465 0.3055 0.956 0.3687 0.3312 0.930
WOA–ANN 0.3076 0.2555 0.969 0.3399 0.2832 0.939
LCA–ANN 0.3122 0.2592 0.964 0.3426 0.2868 0.935
MFO–ANN 0.2985 0.2430 0.969 0.3330 0.2706 0.939
ACO–ANN 0.2745 0.1783 0.965 0.3133 0.2128 0.944

Table 3. The developed ranking system based on the calculated accuracy criteria.

Models
Scores

Training Testing

RMSE MAE AUROC Score RMSE MAE AUROC Score

MLP 1 1 2 4 1 1 2 4
WOA–ANN 3 3 5 11 3 3 4 10
LCA–ANN 2 2 3 7 2 2 3 7
MFO–ANN 4 4 5 13 4 4 4 12
ACO–ANN 5 5 4 14 5 5 5 15

Moreover, in comparison with the HHO and DA applied to the same data by Moayedi et al. [23],
it was deduced that the methods of the current study present a more accurate analysis and approximation
of bearing capacity. In detail, the RMSE and MAE obtained for the DA–MLP (superior to the HHO–MLP)
were 0.3421 and 0.2904, which are larger than the results obtained for our WOA–ANN, MFO–ANN,
and ACO–ANN. Also, the best AUROC of this study was higher than that for both models in the
mentioned reference (0.944 vs. 0.942).

4.4. Presenting the Neural Predictive Formula

In this section, due to the largest accuracy obtained for the ACO–ANN, the neural relationship
of this model was extracted and presented in the form of Equation (4) to predict the stability value
using the considered effective parameters. Note that this formula was developed by the optimized
parameters of the MLP output neuron. There were six middle parameters (A, B, . . . , F), which are
expressed by Equation (5).

Stability value ACO-ANN = 0.0684 × A + 0.1911 × B − 0.4022 × C − 0.8409 × D − 0.0458 × E − 0.9175 × F − 0.5984. (4)


A
B
C
D
E
F


= Tansig







0.1966 −0.5483 −0.9172 −1.1127 0.2130 −0.8492 0.2915
−0.8962 0.6059 −1.1167 −0.2273 −0.1856 0.8686 0.1111
−1.0910 −0.1197 −0.0399 0.3251 1.0160 −0.9038 0.3303
0.6287 0.3309 −0.7786 −0.1076 0.7085 −0.7997 1.0031
0.3544 1.2248 −0.5554 −0.6322 0.6777 0.0116 0.6907
−0.9035 0.0708 −0.8111 0.2542 1.0138 0.2361 −0.8017





DOS
Sand
Loam
Clay
MC
LL
LI




+



−1.8084
1.0850
0.3617
0.3617
1.0850
−1.8084




(5)

Tansig (x) =
2

1 + e−2x − 1. (6)

5. Conclusions

The optimization potential of four wise metaheuristic techniques, namely, WOA, LCA, MFO, and
ACO, was evaluated in this paper. The algorithms were coupled with an artificial neural network,
and the developed ensembles were applied to an important geotechnical problem, bearing capacity
analysis. It was revealed that ACO–ANN was the most accurate model. After that, the MFO–ANN
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was the second efficient ensemble. Based on the findings of this study, the combination of neural
computing and metaheuristic techniques (especially the ACO–ANN) provides fast and inexpensive
yet accurate models for analyzing the stability of the footings over two-layered soils. This is in contrast
to the use of traditional methods (e.g., laboratory studies and finite element techniques), which are
time-consuming and entail implementing costly and destructive tests. Furthermore, a comparison
with conventional methods (MLP neural network) showed that using metaheuristic techniques can be
an advantageous way of enhancing their performance (i.e., around 95% accuracy of prediction). In fact,
this research suggests the use of powerful inspirations from real-world phenomena for optimizing the
computational parameters of the ANN.
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