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Abstract

Path�nding algorithms �nd a path from one node to another in a data structure known as
a graph. They are heavily used in GPS devices. For GPS devices in cars, a graph is created
from the world’s road networks, which can then be used to �nd a path from the user’s current
location to their destination.

To build an autonomous �ying drone, it has to �nd it’s way around the world. Because they
do not have to follow a road network, it may be possible to take a direct path. However, this
ignores the terrain, and it may naively �y over a mountain, spending a lot of energy climbing to
the required altitude. Airborne LIDAR scanning can create very high resolution surface maps.
By converting these maps into a graph, we can use a path�nding algorithm to �nd the path
of least resistance. This allows the drone to �y around buildings and hills rather than above
them.

However, the problem with this is that these graphs become very large. For roads, they can be
heavily simpli�ed, but this is not the case for terrain. This means that path�nding algorithms
become extremely slow. To be as e�cient as possible, the paths should be rounded out, which
requires post-processing.

The assignment given to us by Kongsberg Defence & Aerospace is to investigate whether a
machine-learning based approach could work in this case. The hope is that a machine-learned
approach can be run in a fraction of the time, and not require post-processing. To make invest-
igation easier, we had to build a web service which allows us to run and compare the di�erent
implementations we came up with.

In this report, we show how the service is built, and what the �nal result was. We explain
the di�erent machine-learning approaches we have experimented with. The chosen process
model, using the principles of Kanban, is explained in detail.

In the end, we show that the idea de�nitely has potential, and that further research in this �eld
is warranted. We were unable to draw any meaningful conclusions as to the viability of this
approach.
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1. Introduction

1.1. Node Graphs

When going by car, one can use a GPS device to �nd a path to one’s destination. When selecting
a destination, it will show a map of the area, and show which turns to make at each intersection
to get to the destination. This path is typically the shortest which was found.

How does the computer represent and think about the map?

Figure 1.1.: Satellite view on Google Maps

When �nding the shortest path, one considers which directions to choose at the intersections.
Therefore we need a way to represent the intersections. Intersections are connected to each
other with roads. This maps almost perfectly onto a graph.

17
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Figure 1.2.: Intersections represented as nodes

A graph consists of nodes and edges. The nodes, sometimes called vertices, are connected to
each other by the edges. In the case of converting a map into a graph, intersections map to
nodes, and the edges are the roads connecting these intersections.

We see that a path starts at one node and stops at another. The path between them can then
be represented as a list of edges to follow. Back to roads and intersections, this tells us which
roads to take to get to the ending intersection.

Since we are looking for the shortest path, we need some way to calculate how long a path
is. We assign a weight to each edge, creating a weighted graph. We can use the weights to
calculate the path’s cost, by summing the weights of all edges in the path.

By changing how we assign weights, we can get a path with many di�erent characteristics. If
an edge indicates a road, then the weight can represent the time it takes to travel across that
road. The paths we calculate will be the one which takes the least time. We could also optimise
for distance to save fuel, or even combine them.
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Figure 1.3.: The start and stop nodes, as well as the edges making up the path, colourised.

1.1.1. Node Indexing

Because it is helpful to have a system for referring to speci�c nodes in the node graph, each
node has a unique number. This number is called an index. No two nodes can have the same
index.

We can use this idea to represent a speci�c edge. For this, the notation (a, b) will be used to
represent an edge connecting node a and b. For example, (2, 4) would be the edge connecting
the node with index 2 and 4.

1.2. Pathfinding Algorithms

Given a node graph, how can one tell if two nodes are connected? We can do it by starting at
the �rst node, and listing all the edges connected to the current node. These edges will indicate
the nodes the current node is connected to.

We apply this operation to all the nodes in the list. We stop when there are no new nodes
to �nd, or we have found the node we were looking for. This method of moving through the
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Figure 1.4.: A weighted graph, marked in yellow is a path with 9 cost.

Figure 1.5.: An indexed node graph with nodes 0 through 8, with edge (2, 4) marked.

network by connected nodes is called graph traversal.

We can use a similar approach for �nding the path with the lowest cost in a weighted graph.
By keeping track of two additional properties of a node while traversing the graph, we can �nd
the cheapest path:

• Cost of the cheapest path from the start node, to this node.

• Which edge that is a part of the cheapest path.

By keeping track of the cheapest cost for getting to a node from the start node, you can use
this to �nd the cheapest cost of getting to the connected nodes.

The latter property is required, because the cheapest path can be followed backwards. By
starting at the last node of the path, and following this edge and repeating the process, one
ends up at the starting node.

These properties are shown in Figure 1.7.
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Figure 1.6.: Traversing a graph. List of edges on right side, current node marked with green,
and visited nodes grey.

Algorithms which traverse weighted graphs to �nd the cheapest paths are called path�nding
algorithms. The order in which new nodes are traversed, a�ect the outcome of the algorithm.
This is one place where the algorithms di�er from each other.

Dijkstra’s algorithm is commonly used to �nd the most e�cient path to a node in a graph.
However, this comes at the expense of speed, as it has to traverse a large number of nodes.

Other path�nding algorithms, such as A*, may not always �nd the most e�cient path. A* is
a variant of Dijkstra’s algorithm which takes the distance between the current node and the
destination into account. The result is that the algorithm always tries to move towards the end
point. This helps reduce the time taken by trying the more relevant paths �rst.

1.3. Drone Paths

How can we apply these techniques to a �ying drone? These drones are not restricted to
following a road network, and can �y above obstacles.

In such a scenario, the drone can be at any point on the map, and move to any adjacent spot.
Mapping this to a graph is trivial, each point on the map is one node, connected to the points
around it.
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(a) Traversing the graph, calculating the cheapest
costs of getting to new nodes.

(b) A fully explored weighted graph, with start
node marked with green and stop node
marked with red. Each node indicating the
cheapest cost of getting to that node, and the
edge to that path.

Figure 1.7.: Node properties needed to �nd cheapest path.
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Figure 1.8.: A node graph in the shape of a grid, representing a map with unrestricted move-
ment.

The path�nding we will be doing in this bachelor assignment, is �nding �ight paths for drones.
The maps to be used are heightmaps of areas in Norway, from the Norwegian Mapping Au-
thority (NMA). Because drones are not restricted in where on a map they can �y, the grid
representation of the map as described earlier is necessary.

Cost associated with each edge will be the height at each position in the heightmap. When
doing path�nding on such a weighted graph, the most e�cient paths from one point to another
will be the paths closest to the ground.

1.3.1. The Flaws

There are some problems with using traditional path�nding to �nd �ight paths. First of all,
because of the grid structure of the node graph, the number of edges will be massive. As
shown in Figure 1.9, adding four points to a map increased the edge count by 40%.

Figure 1.9.: Going from a 4x3 grid to a 4x4 grid adds 7 more edges, for a total of 24.
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Because path�nding algorithms have to traverse the node graph, the more edges there are, the
longer it will take. When the amount of edges signi�cantly increases, so does the processing
time and processing resources needed to calculate the path.

Figure 1.10.: A drone cannot move in right angles like on the left. It has to turn in arcs like on
the right.

In addition, with a path in a grid node graph such as this, any turns are sharp 90 degree turns.
This is impossible for the drone to achieve while maintaining momentum. This means that
the drone either has to move very slowly, or be forced to perform powered braking, wasting
energy. For the drone to move at a reasonable pace, turns have to be smooth curves as shown
in Figure 1.10.

The way this problem has been solved in the past, is to post-process the path to smooth out
the turns as much as possible. This processing adds another layer of calculation which needs
to be done.

This smoothing out has at least one major �aw. Even though Dijkstra is able to �nd the most
optimal path in the node graph, smoothing it out means altering the path. This means that we
can end up in a situation where the �nished path is sub-optimal around obstacles, as shown in
Figure 1.11.

Figure 1.11.: Post-processing on the path making it not optimal any more.

If unlucky, the smoothing out of the turn may have the turn end up in an area with bad cost.
And in the worst-case, smoothing out the turn may leave it overlapping the corner of a building
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or something similar.

The task assigned to us by Kongsberg Defence & Aerospace, is to investigate machine learning
as an alternative approach for calculating these �ight paths. The hope is that we can output
paths with smooth turns directly, much faster. In addition, they wanted a web service where
one can play around with the algorithms and be able to compare our solutions to traditional
algorithms.

1.4. Why Machine Learning

In traditional programming, programs are written by writing an explicit set of instructions,
which the computer should follow one by one. Any meaningful program will take an input
and create some kind of output. There is a problem however, when the task at hand is hard to
de�ne. For example, how does one write the instructions for recognising whether an object is
a chair or not? Or given an image of handwriting, determine what digit is written?

In cases such as these, an alternative approach is needed. One way to approach this problem is
to create an algorithm which can take some input, and adjust itself to «learn» what it should
output. These algorithms are called machine learning algorithms. They are given an input
which they use to create an output, which is then compared to the expected output, so that it
can see what it did wrong and adjust itself to be a little more correct each time.

These algorithms are not only for when the task is hard to de�ne though. In 1952, machine
learning was used to play checkers . As computer resources were heavily limited at the time,
iterating through the future rounds of the game was not an option. This meant that they had
to use machine learning instead. By showing the examples of input where the correct output is
known, which is called labelled data, it is able to learn and generalise what to output. In other
words, it will learn how to give correct answers for both the data it was shown, but also for
new inputs which it hasn’t seen before.

Similarly, machine learning solutions have been studied as a method for designing interplan-
etary trajectories real-time on board spacecraft[1]. As spacecraft processing power is signi�c-
antly slower than that of modern desktop computers, machine learning models are pre-trained
to approximate these functions. Essentially the heavy processing is done beforehand, and the
approximations themselves can then be calculated with signi�cantly less processing power, as
well as with more consistent calculation times. Therefore, if an approximation for path�nding
algorithms can be achieved with machine learning, their post-training calculation time will be
signi�cantly faster, and also more consistent.

A human shown a 3D-heightmap of an area would be able to tell where the lowest �ight path
should be. Machine learning is able to perform human tasks e�ciently, and the thinking is that
this could be true in this case as well.

Using machine learning to calculate the path, given the heightmap, would remove the need for
iterating through the node graph. As well as if it was trained with the turn radius in mind,
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it would no longer need the post-processing. Both these aspects would greatly reduce both
processing time and resources needed for calculating a path, while maintaining accuracy. In
addition, this would avoid the problem of the curve smoothing altering the most e�cient path,
which may even mean that it would be more accurate than using traditional path�nding.

1.5. Service

The customer wanted a web service. It must allow a user to �nd paths from a start point to an
end point easily. The service is broken down into 3 parts as shown in Figure 1.12. A path�nding
module is an implementation of a path�nding algorithm.

Figure 1.12.: Simpli�ed view of the software architecture

The service seeks to o�er a more user friendly experience of the path�nding modules. The
user should be able to use and see the result of path�nding module without needing to know
how it internally works.

All modules should be compatible as long as they follow the LAPS path�nding module protocol.
For the user, this means that di�erent modules will be controlled from the same interface, and
removes the need to be familiar with multiple programming languages and interfaces.

This also removes the need the create a new UI for each new module, and as the result is
expected to vary from module to module, having a universal UI will be bene�cial. This will
also allow external modules to be used.

Usability is one of the main reasons to create the service. A web-based solution would allow
the service the be used without having to download anything. The service can also be accessed
by mobile devices if needed.

The service can be divided into the frontend and backend. The frontend is what runs in the
user’s browser and interacts with. The frontend should be responsible for collecting user data,
and present the results from the path�nding modules.

The backend should be responsible for the communication between the path�nding modules
and the frontend. The backend runs on a separate server side, and from the users perspective
will be interacted with through the frontend.

It should be also be able to run the path�nding algorithms, store user maps, manage account
and other things that might be required.
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The backend must validate that the user’s inputs are valid. If it is done by the front-end, it
would be trivially easy for a malicious entity to crash the service or worse.

1.6. Division of Labour

One can see our assignment as a whole consisting of two assignments. The two tasks do not
have much in common, but are connected. As a result, we thought it would be best to split up
the group into two main areas: the service and the path�nding.

As individuals, we have experience with di�erent technologies. Henrik and Vetle have a keen
interest in machine learning and experience working with it. The other half weren’t as inter-
ested in working on the machine learning part of the task. Therefore it made sense to assign
them to the machine learning part and the others to the service.

Håkon had earlier experience working on server-side applications and wanted to work on the
backend side of the service. Even wanted to work on the frontend. With limited experience in
that domain, the project would be a way to get familiar with web development as a whole for
him.

In the end, each member of the group ended up working on something they are interested in or
already have experience with. This way we all get to work on things we think are interesting.

From there the machine learning crew eventually started investigating di�erent approaches in
parallel, helping each other out when they got stuck. The service half ended up splitting the
work between the server-side (backend) and the client-side (frontend).

One of the challenges with this approach is that we have to have a concrete plan for gluing
everything together. If the entire group was working in close contact with each other, each
part would be easier to keep integrated. This meant that we had to de�ne some stable inter-
face between each of the components that we could target. We elaborate on this later in the
report.
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1.7. The Group

Even T. Røraas
evenrr@gmail.
com
Frontend, group leader

Henrik Thue Strocka
henrik.strocka@
protonmail.com
Machine learning

Håkon Jordet
haakon.jordet@
gmail.com
Backend

Vetle A. H. Neumann
vetle.neumann@
protonmail.com
Machine learning

1.8. Other Parties

Internal Examiner

Karoline Moholth McClenaghan

The internal examiner is responsible for arranging the bachelor project. They will be one of
three responsible for grading the project. The groups will mostly interact with the internal
sensor through the three presentations.

Internal Adviser

Henning Gundersen

The internal adviser’s task is to assist the group, mainly in bachelor process. The internal
supervisor can also assist academically or help �nd people who can help the group.

External Examiner

Anders Ronningstad

The examiner that represent the business/customer. Will be one of three responsible for grad-
ing the project. The external sensor must be present at all of the groups presentations.
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External Adviser

Jan Dyre Bjerknes

The external supervisor represent the business/customer. They are the group’s main connec-
tion with the customer. The demands of the �nal product is provided through the external
supervisor. It is also their role to make sure the group have the resources needed. Hardware,
software or guidance should be provided by the supervisor if needed.
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Part II.

The Process
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2. Requirement analysis

We need a formal process to de�ne tests, risks and requirements. We went with a pipeline-
based approach. We start out with a user story, then gradually break it down.

2.1. User stories

User stories are a paragraph or two which explains some functionality the system has. They
come in the form: «As an [actor], I want [feature] because [reason]». User stories can come
from multiple sources, primarily directly from the customer. However, the group can also write
one based on our own ideas, or based on something we discuss with the customer.

User stories are useful, because they give us a good description of something the system should
do. They explain who the feature is for and why they want it. If the reasoning behind a feature
is weak, we can reconsider whether it is worth it to implement the functionality at all.

User stories are assigned an incrementing ID pre�xed with «U.». This gives us names like U.1
and U.5. The complete list of user stories can be found in Appendix G.

2.2. Features

Features are derived from user stories and contain one speci�c request the customer wants
developed. Multiple features can come from a single user story and a feature can appear in
multiple user stories. Once every requirement of a feature is achieved, the function is con-
sidered done. Each feature is to have a technical document in which the overall function is
explained, as well as listing every requirement belonging to that feature.

User stories are broken down into features because as a pure software project, it makes docu-
menting the requirements orderly. As all the heavily connected requirements and information
regarding their implementation are collected in one place, it gives the developer a simple way
of getting up to speed on all the relevant information they might need. As well as in the case
that a speci�c requirement depends on other requirements being implemented beforehand, it
is an easy place to check the status of these.

We knew from the beginning that several of the features were fairly ambitious. We didn’t
expect to �nish all of our features, which is what ended up happening. We document all our
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features in Chapter 10. Note that they are named the same as user stories, but the pre�x is «F.»
instead of «U.».

2.3. Requirements

Requirements are derived from features and is the smallest division of a feature within the
scope of the project. Multiple requirements can come from a feature, and all requirements
have to be categorised under a feature. When developing it is the requirements that will be
worked on, but will be broken down into subtasks. More about that in Section 3.2.

Features in themselves do not have a priority, but requirements do. Not every requirement of
a feature has to be developed sequentially, as it’s more important to assess and develop the
highest priority of requirements than to focus on �eshing out every feature.

User stories sometimes do not describe a whole feature, but may instead describe aspects of
that feature. In this case, the description of the feature will be made into requirements and be
put as requirements of the feature it is relevant to.

Because our features are broken down into requirements, each requirement is named after
the feature it comes from. This is also why we have chosen to document them as part of the
feature documentation in Chapter 10. Like the features, we also knew from the beginning that
we likely wouldn’t �nish them all. For convenience, the full list of requirements can be found
in Appendix J, and the full list of features in Appendix K.

2.4. Tests

To verify the system requirements, tests are needed. Ideally, there should be at least one test
for every requirement, such that each requirement has de�ned methods which can be followed
to ensure it is met. Each requirement can have multiple tests, and tests can be for multiple
requirements. The tests written are to be documented and listed in the Tests table. Tests may
become obsolete with time as the system develops.

A test can be an automated software test, or it can be a manual test which we have to do
ourselves. Unsurprisingly, an automated test is preferable.

Test veri�cation shall be done on all implemented requirements before they are shown to the
customer for validation. The status of each performed test are to be noted, and every failed test
must be properly assessed to ensure that the system is working as intended. Every test must
be marked whether or not the test is still relevant, and if it has been performed or not, as well
as whether the performed test passed or not.

The system tests are not the same as the software tests. Software tests that are implemented
ensure that the code does what it is expected of it, whereas the system tests are to verify
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the requirements. However, there may be some overlap: some system tests might consist of
running software tests.

Tests are tied to our requirements. This means that in theory, we are meeting the requirement
if all the associated tests pass. As a result, our tests are documented next to the requirements
which they actually test, in Chapter 10.

2.5. Risks

Risks are uncertain events that might happen during the project. If an unforeseen event hap-
pens it might cause problems and force the group to deviate from the original plan. The group
might lose time or material due to an unforeseen event, resulting in a having a negative impact
on the �nal product. There is no such thing as a risk-free project. Risk management is about
detecting potential risk, �nding mitigations and creating solutions to mitigate damage. High
impact risks should be prioritised before low impact risk, and likely risks will have an higher
impact than an unlikely one.

To make sure risks are analysed and mitigations are planned, risks need to be visited regularly.
Therefore, during each Functional Analysis meeting, risks related to functionality that is to
be added to the system are identi�ed and possible mitigations are discussed. The estimated
impact of the risk is also discussed, by determining both its probability of happening and the
impact it will have if it happens. New information discovered during development relevant to
prior determined risks, is to be brought up so that these risks can be revisited to redetermine
probability, impact or mitigation, if needed.

We tie risks to features. We document our risks in Appendix H.
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3. The Project

3.1. Process Model

The process model chosen to develop and work on this project was Kanban, which was chosen
with consideration to both the project and the team. Because the project involves investigat-
ing path�nding without being able to know whether or not this was a viable solution to the
problem, an agile model was chosen to adapt well to change if the approaches we implement
don’t work.

Kanban, Japanese for “signboard” or “billboard”, is a project model with few rules or guidelines.
Its core principles are: To visualise the work�ow, and pulling work instead of pushing[2].
Developers of the team choose themselves what tasks to work on next, and visualising the
work�ow ensures that developers have the information they need when making that decision.
Pulling work means to only accept more work once a task has been completed, which is a
way of reducing work-in-progress meant to reduce lead time on tasks. As work-in-progress is
limited and the progress is visualised, tasks stuck in the system are immediately made clear to
the team and can be assessed early.

Since there are few guidelines, the execution of the Kanban process is tailored to suit the needs
of the team. As work�ow is visualised and time goes on, any bottlenecks in the process are
made apparent. Together these two aspects encourage the �nal core principle of Kanban called
Kaizen, meaning “continuous improvement”. Teams using the model should make changes to
the process as they go to remove bottlenecks in the process.

3.2. Task Pipeline

Due to the team and the project being monodisciplinary, there was less need for a multidiscip-
linary systems engineering approach, which meant we could tailor our Kanban process as a
software development process. Work items go through the system one stage at a time, moving
to the next stage whenever it is done in the current stage. The stages of the task pipeline are
illustrated in Figure 3.1.
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3.2.1. Backlog

The backlog consists of features to implement. Before something can be worked on, it needs to
be split up into requirements and subtasks. These tasks can then be moved into To-do. During
replenishment meetings, the team and the customer prioritise which features have the highest
priority to implement.

Figure 3.1.: The task process

3.2.2. To-do

To-do are tasks ready to worked on for implementation by a developer, and team members
choose which task to work on from this stage once they are done with the task they were
working on. Chosen tasks are moved to Working and split into one or more subtasks by the
person who picked it. Each task inherits the priority of its parent.

3.2.3. Working

Each team member can have a limited number of items in Working at once and must judge if it
is better to wait for code to be completed before moving the task. This is how we ensure that we
follow this core principle of Kanban. The exception to the rule is when a subtask depends on a
di�erent subtask being completed. At that point, the developer can move on to a di�erent task.
The developer will move the blocked task into the Waiting category when this happens. The
Waiting category should contain as few items as possible. Work should immediately resume
on an item when it is unblocked.

3.2.4. Testing

Written code must be tested before the subtask is considered done in this stage. Code testing
is done with both unit tests to ensure the code works by itself, and then with integration tests
to ensure that the system is working as intended. The testing process will be performed via a
Continuous Integration (CI) tool. This will also notify whether any newly added code breaks
previously written functionality. In addition to writing the code and tests the subtask must

35



LAPS Final Report

also be documented in the relevant features technical documentation. This documentation is
then used in the code review process.

3.2.5. �ality Assurance

Once a subtask is considered done, before it can be merged with the system, it must go through
Quality Assurance (QA) where the code undergoes Code Review by at least one other person
other than the author of the code. This is to make sure the code is readable, potential defects or
bugs can be noticed early, and helps share knowledge. When all subtasks for a task has passed
QA they are merged back together and moved to Finalise Documentation.

We were initially quite zealous about reviewing each other’s code, using our review process in
Appendix A. However, thanks to the COVID-19 pandemic, it became harder to communicate
and the reviews slowly died out. Because of the way the group is divided, working on di�erent
things, none of us really had much code in common in the �rst place. This made the issue
worse, and at one point we had to give in and stop doing it, because they just didn’t get done
in the end.

3.2.6. Finalise Documentation

Before a task can be considered forAcceptance Testing all documentation must be both complete
and �t together properly. In this stage the documentation is veri�ed to be consistent and of
high enough quality as a whole to be considered done. After this the task will be move to
Acceptance Testing.

3.2.7. Acceptance testing

Implemented requirements that are merges and tested undergo an Acceptance Test during Ac-
ceptance Meetings. Here features of the system are veri�ed that they comply with the re-
quirements of the system, and validated with the customer that it is satisfactory and what
they intended. Tasks which pass acceptance testing are considered done and will no longer be
modi�ed.

3.2.8. Finalisation

After a task has been veri�ed to be completed its technical documentation must also be com-
pleted. Here the �nal parts of the technical documentation is written and the technical docu-
mentation as a whole is veri�ed to be accurate.
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3.2.9. Visualisation

Visualising the process pipeline and its tasks is done using a Kanban board. A Kanban board is
a board divided into columns for each stage of the process pipeline, with an additional column
for tasks that are done. Work items are represented by cards on the board that are moved as the
task moves through the system. Each card must have enough information on it so that team
members can make decisions on which tasks to work on next, this includes the date card was
added, which feature it belongs to if it is a requirement, and who is assigned to the task.

3.3. Meetings

Regular meetings are an important part of our model. Without them, our setup would devolve
into chaos pretty quickly. In this section we give an overview of every type of meeting we
have.

3.3.1. Standup Meetings

Standup meetings held between the team every weekday with core-hours, at 09:15 while stand-
ing up. These shall last at most �fteen minutes. At the beginning of the meeting the team shall
walk through cards that have been stuck in the system for multiple days, with the exception
of backlog or done items, to discuss the cause and identify if it is a problem. After which the
team states what they are working on and what they are planning on doing for during the day,
stating any issues they are having with their current task if there is any, so that the other team
members are aware of the issue and can discuss potential solutions after the meeting.

3.3.2. Replenishment Meetings

Held once a week with the team and customer, in which what tasks on the backlog are of
the highest priority will be discussed and subsequently put on top of he backlog. The team
shall have suggestions for what is highest priority to present to the customer. To-do is �lled
up with as many tasks as �t from the top of the backlog after prioritisation. This ensures the
development direction of the product will never stray from what the customer wants, and the
team is always working on the items of highest priority.

3.3.3. Acceptance Meetings

If any features are completed they will be shown to the customer during Acceptance Meetings
which are held once a week. Once the customer has validated that it is what they wanted the
feature is considered done. If it fails validation, we have to add new tasks to the system to �x
the issues raised.
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As both the Replenishment Meetings and Acceptance Meetings are held with the same parti-
cipants and at the same frequency, they have been combined as two phases of one meeting.

3.3.4. Functional Analysis Meetings

At least once per week the team shall meet for a Functional Analysis meeting. Here, any new
User Stories must be processed if there are any. They shall be discussed and analysed to be
broken down into Features, Requirements and Tests, as well as Risks shall be evaluated. The
team shall also inform the other members of information discovered that may change other
requirements, or introduce new risks.

3.3.5. Retrospective Meetings

Held once every other week retrospective meetings is for summarising what has happened
since the last, both good and bad. They will be held after the standup meeting at around 9:30
but no later than 12:00. There will be several questions asked to all group members related
to the work done in the last two weeks. Summarised the talking points will be What we did
right/wrong why it happened and what actions can be done to mitigate/further them.

3.4. Milestones

Because the Kanban process of development is an evolutionary process there should be mile-
stones for the team so they have something to work towards. It also helps you plan ahead.
They should be set before any work has begun and be given an estimated time-frame for com-
pletion, this way the team can estimate whether they are on or behind schedule. There should
neither be too much nor too little development time between milestones. If they are too close
they are no longer e�ective, if they are too far apart the process loses �exibility.

A big risk with the Kanban model chosen for this project is that the team starts falling behind
on tasks. There is no way in the Kanban model to see if you are on track to �nish the tasks you
need. This is why milestones is included in the process model used, their purpose is to serve as
guiding for what features and requirements are prioritised. If implemented properly the team
will know if they are on track to �nish on time and deliver a good product. They are di�erent
from sprints, in that multiple milestones can overlap and be worked on at the same time. This
combines well with the split nature of our project.
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Figure 3.2.: LAPS milestones

3.4.1. Explanations

When coming up with what our milestones should be, we based them around what we wanted
to come up in terms of the �nal product. The following is an explanation of all our milestones
as seen in Figure 3.2.
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Presentation 1/2/3

Each presentation is a milestone in and of itself as we have to prepare and execute them. They
are major events in the timeline.

Submit Report

Perhaps the biggest milestone of all is when we submit this very report. It will be a major relief
to all group members, and we are very much looking forward to it.

API

The �rst milestone is to de�ne an API which the backend and path�nding modules can com-
municate through. This has to be stable, and must allow the two subsystems to be developed
independently of each other.

Service: Enter waypoints, display paths

This milestone is all about getting a very minimal version of the website working. It entails
being able to insert a start and end point, submit this to the path�nding subsystem, and display
the path it returns.

Service: Multiple modules

Central to our service is the idea of comparing di�erent versions of algorithms. Therefore, we
need a good way to select between the di�erent versions and algorithms which are available.

Service: Admin Panel

The main idea of the admin panel is to be able to add new modules to the running system. This
is an important part of our requirements which we very much intend to add. It will require
authentication.

Service: Pathfinding Statistics

In order to �gure out whether or not an algorithm is better than a di�erent version, we want
to use statistics. The service should keep track of things like average run time, average cost of
the paths calculated by the algorithm etc. We can then accumulate data over a long period of
time, collecting a bit of data every time a module runs a job.
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Service: �eue System

In order to compare algorithms later down the line, we need to have some sort of queuing
system. This is because we likely want to run hundreds of iterations of each algorithm in
order to get the best possible idea of how it works. The queue system is necessary to not
overload our server, if we were to submit every job immediately, we may run out of memory,
and throughput will grind to a halt. With a proper queue system it will be easier to share the
load across a network of servers, rather than only having one.

Service: Algorithm Comparison

We want to be able to compare the di�erent algorithms. We want to do this with both statistics
and by displaying the result side-by-side. If we achieve this milestone, we can say that we have
a fairly �nished product.

Pathfinding: Straight Line

To know if we have a basic framework that works our �rst milestone is to create a straight
line. This is because it is relatively simple to do and can easily be used to test the frontend as
well.

Pathfinding

Path�nding paths made with Dijkstra, A*, or any other path�nding algorithm. This is so that
we will be able to know the theoretical minimum altitude, and have something to compare our
performance with.

Pathfinding: Curved Machine Learned path

In this milestone the machine learning algorithm can produce a path similar to and A* optimal
path but it can also curve the path to �t the drones �y radius. This path has to be a �yable path
but it does not have to be the optimal path.

Pathfinding: Valid Path Horizontally

Here the path has to be optimal and generated to �t the drones turning radius.
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Pathfinding: Valid Path Vertically

The machine learning models are able to generate paths that are theoretically �yable, at least
vertically.

Pathfinding: Valid Flight Path

If the path is valid both horizontally and vertically, then we have made quite the achievement
on the path�nding front.

3.5. Tools

We need to use collaboration tools in order to succeed in producing a product. They are essen-
tial to good cooperation within the team, which is what drives our success.

3.5.1. Electronic Kanban Board

For our Kanban Board needs, we use Trello. Trello is a general purpose management board
program that can be customised to suit any project. It also has functionality like assigning users
to cards, categories and more. We customised it to �t our model as described in Section 3.1.
We use the assignment feature to keep track of who is doing what.

3.5.2. Git

Version control is an important aspect for any development team, especially since the problem
is a purely software problem. We decided early on to use Git for this purpose. Git is a very
powerful version control system, and is one we have a lot of experience using, making it the
natural choice.

There are many Git services out there which are free to use. A Git service provides repository
hosting, and normally an issue tracker and other features. GitHub serves the needs of our
project very well, and we use its pull requests to good e�ect together with Travis CI.

We use Git to keep track of application source code, documentation source code, and our bib-
liography database.
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3.5.3. Communication

For communications between members we use Discord. This is not used as a place to store
important �les, it is just used as a means to communicate. We also use it to host meetings
between the group members.

We communicate with everyone else using e-mail, and hold meetings with people outside the
group using Skype.

3.5.4. File Storage

For �le storage, we use Google Drive. We use this for everything apart from source code
and images etc we need in our report and documentation. We also store the PDFs of all of
our documents there when we �nish them and have no intention of going back and editing
them.

3.5.5. Travis CI

Travis CI is a Continuous Integration tool which will automatically build and test our code for
us. We use Travis to ensure that our code will build and passes the tests at all times. Every time
we push a commit, Travis will automatically run the tests for us from a clean slate. It is im-
portant that it runs from a clean slate, because certain things in our development environment
might suddenly be relied upon by our tests without us realising it.

Because the backend is the only part of the system which has tests, it is the only part which
gets tested this way.

A branch is a di�erent version of the code base which is separate from the rest. It is tracked
independently of the other branches and we can choose which branch to push our code to.
Travis treats our staging branch specially.

On this branch, we use continuous deployment (CD) to automatically deploy our code. We use
this with the backend and the frontend. The process goes something like this:

• A new commit is pushed to the staging or production branches.

• Travis automatically runs every test.

• If the tests succeed, Travis builds our code in release mode, copies the �les over to our
server, and �nally restarts the service.

This prevents us from doing a manual, error-prone deployment ourselves. It is not possible to
do it incorrectly by accident, since the whole process is automated. All we have to do to deploy
our website is push the code, and wait for it to complete. If we make a mistake and a test fails,
our code will not get deployed.

43



LAPS Final Report

3.5.6. Code Coverage

When writing automated tests, it is important that the tests cover as much of the code base as
possible. To this end, we have setup code coverage tracking in the backend with codecov.
io. When the tests succeed in CI, we use a tool called tarpaulin1 to run them again. Tarpaulin
will then output a report saying which source code lines were tested and which were ignored.
This gives us an idea of how well-tested the backend is.

It is easy to get lost in a fruitless process of trying to get the coverage percentage as high as
possible. This is mostly a waste of time which doesn’t add much value. It is there to show
which pieces of code are tested and not. Even with 100% coverage, we are not guaranteed that
the application will produce the expected results in every possible case. Therefore we decided
to only use the coverage reports to make sure that there aren’t large stretches of untested code.
By creating a report every time the source code is built, we can strive to keep the coverage
high with every commit.

We do not use Test-Driven Development (TDD). While TDD has its bene�ts, it has a tendency
to slow development. This is a problem for a bachelor’s project such as ours starting from a
blank slate. Furthermore if one has large quantities of tests for every little function the way one
is supposed to, refactoring can slow down a lot. Some refactoring requires changes to every
test because of an API change. We wanted to avoid this due to lack of time.

1https://github.com/xd009642/tarpaulin
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Part III.

Implementation
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4. Technologies

In this chapter we write about the technologies which make up our project, and justify why
we chose them.

4.1. PyTorch

A framework developed by Facebook and has begun to see wide adoption within the research
community is PyTorch. Among many reasons the one we considered most important was its
ability for rapid prototyping and ease of use. To be able to create your own custom machine
learning model is as simple as extending a class, and then mixing and matching many of its
prede�ned models together.

This ability to use our own custom models further down the line in a new solution is what
makes PyTorch excellent for our project for two reasons. The �rst is that it allows us to write
small parts of our model as separate modules and only modify the part we want to investigate.
Say the model contains a convolutional part and a fully connected neural network part, say
we want to change our convolution part we can then replace it without having to worry about
breaking the fully connected part.

Which brings us to the second and potentially biggest bene�t, when you train a model you
will get a matrix of weights for each module, therefore the old weights can be used in the new
model because the last layer was never changed. This can save huge amounts of computing
time by only training the part of the model that has actually been changed.

4.2. Jupyter Notebooks

Jupyter is a web-based method of running Python code. It provides a web interface for accessing
the directory it is hosted in, as well accessing Notebook documents, both of which can be done
remotely. These documents are divided into cells, which can be either of the type markdown
or code. The markdown allows text, has support for text, code blocks, pictures, videos and
LaTeX, which provides a way of explaining code in the same place it is written. In the code
cells, declared variables are remembered between cells.
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4.3. Docker

Docker is a service which allows one to run software in a containerised environment. A con-
tainer is an environment which is separated from the host machine, and cannot interfere with
it. In the case of Docker, a container needs a full installation of an operating system to oper-
ate, but it uses the host system’s kernel. This essentially means that a Docker container is a
lightweight virtual machine.

A Docker image is an immutable base one can create containers from. An image is created from
a build �le known as a Docker�le. We can base new images on other images in the Docker�le.
The �le itself is just a list of commands to run in the image to produce a new one. We can also
perform other operations, such as copying �les into the image and more. This means that one
can put pretty much anything in an image quite easily.

When one wants to actually run a container, one creates one from an image. This copies the
�lesystem of the image into the container’s directory, which allows multiple containers to be
created from the same image. Each container is therefore also independent of both the host
and each other. One can also mount shared volumes to share data between containers.

Multiple Containers from the same image may be run at the same time. This allows for easy
scaling of servers, as they may be started and stopped depending on demand. Containers are
only meant to run one process at a time, and one should instead run multiple of them with one
process on each. Docker-Compose is a tool made to make both starting and stopping multiple
containers as well as scaling easier. It is con�gured via a docker-compose .yaml �le, in which
the con�gurations regarding how to run and scale the Containers is stated.

4.4. Redis

Redis1 is an in-memory, key-value database. It has many uses which make it a great choice
for our use case. As described in Section 7.3, our architecture is spread out across multiple
processes. Because of this, it’s a good idea to have a central database which can be reached
from every part of the system. Redis is a good choice for Inter-Process Communications(IPC)
as well, which makes using it a great option as it can be used for several things at once.

4.4.1. Redis as a general-purpose database

Redis is primarily a key-value database. This means that we can assign values to keys, and
index values based on keys. There are several data types which can be assigned to each key.
The relevant ones for database usage are the string, hash set, list, set, and sorted set.

1https://redis.io
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Strings

The string type is the simplest. It is simply a binary string which can contain arbitrary bytes,
and which can be of any length.

Hash sets

The hash set is almost the same as a string, but it is in itself a key-value structure indexed by
a key. In our application, we use a hash set to keep track of what map data is available. Every
map has an ID. All map data is stored in a single hash set, and the map ID is used to index
it. This is quite useful for us, because the only thing we have to do to see which maps are
available, is to list the keys in this hash set.

Lists

The list is a potential building block for using Redis for Inter-process-communications(IPC). It
is not possible to directly assign to a list. Instead, one can push elements onto the list, from
either the left or the right side. Conversely, one can pop elements o� the list from either side.
This means that lists can be used as a stack, just by choosing the direction one pushes and pops
from.

Sets and sorted sets

A set is a group of unordered, unique elements. As an example, we have to keep track of which
path�nding algorithms are available. By storing this in a set, we can guarantee that the set
only contains one of each entry.

There are also sorted sets, which are just like sets, except each element has an associated score,
which allows one to sort the set.

Persistence

While Redis is an in-memory database, it is suitable for persistent use case as well, provided
your data �ts in memory. Redis will automatically dump it’s database to disk at a given interval
if enough keys have changed. This dump can be read back from disk at a later time.
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4.4.2. Redis for Inter-Process Communications

Using Redis lists, or streams, which are just lists with more advanced features, it is possible
to use Redis for inter-process communications, or IPC for short. Its high performance makes
Redis suitable for this purpose, which will scale to a large number of clients at once. In addition,
by connecting Redis instances together, one can easily split the load across multiple machines.
Redis also supports channels for passing messages.

Lists have blocking pops which make it easy to sleep until a message is received, but in other
cases one might desire look for a message on a set interval instead.

To make lists work for communication, we just have to have one or more consumers push
elements onto the list. It is then up to the consumer of that message to pop elements back o�
the list. Figure 4.1 is a visual representation of how this would work. In this case, the list works
as a queue of messages, because we pop from one end and push from the other. If we push and
pull from the same side, the list acts as a stack instead.

Message 1 Message 2 Message 3 Message 4

Producer

Consumer

Work queue

Figure 4.1.: Using Redis lists to communicate

If clients A and B both are blocking and waiting for an element, whichever client started listen-
ing �rst will get the element[3, commands/BLPOP]. This means that we can have any number
of consumers when applying the pattern in Figure 4.1.

4.5. Rocket

Rocket2 is an HTTP framework for Rust. Rocket requires very little boilerplate to work with
web-development technologies such as cookies, dynamic routing and more. We want to use
asynchronous I/O, so we have to use a development version of Rocket. Rocket has been around
for a while, and was written before Rust had built-in support for asynchronous I/O, and it hasn’t
been fully updated to use the built-in support. We believe that the time we save working with
Rocket instead of another framework we are not familiar with will far outweigh the time spent
�xing API breakages.

We initially tried using a di�erent framework, which had numerous issues and we didn’t �nd
it very nice to work with. There was a breaking point where we decided that it wasn’t worth

2Link: https://rocket.rs

49

https://rocket.rs


LAPS Final Report

the extra e�ort, and so we went to Rocket, despite having to use development versions of both
Rocket and Rust itself.

4.6. Vue.js

The frontend has to be written in JavaScript, because it has to run in the browser. We want a
single-page application, and to that end it is extremely useful to use a proper framework for
this. This allows us to use modern techniques to build our application and makes it easier.

To that end, we have chosen Vue.js. It is a JavaScript framework which works using compon-
ents: Each component has one purpose and can be re-used multiple times. Each component
can have it’s own internal state which does not change anything else in the application. Most
importantly, components allow us to split up our code into smaller, manageable chunks. These
component �les contain the HTML template to create them, the JavaScript code, and the style
sheet to make it look right.

Vue is also reactive. That means that we bind the data and display together. When the data
changes, the display is updated automatically. This means that the component code itself has
zero relation to what actually appears on the site. It is only concerned with updating data.

4.7. JSON

JavaScript Object Notation, or JSON for short, is a serialisation format. A serialisation format
is a way to convert a data structure to a string of characters or bytes. The output can later
be converted back into the corresponding data structure. This allows one to share data easily
across multiple clients.

JSON was originally designed to be used with JavaScript[4], but has become one of the most
common serialisation formats around. It allows one to serialise complex data structures. It’s
easy to read and understand for humans, which is very helpful during development and de-
bugging.

Because of this, JSON is the only serialisation format used in LAPS. There is only one exception.
JSON does not support comments, and isn’t the best �t for con�guration �les. Therefore, we
use TOML3 for backend con�guration �les. See Listings 1 and 2 as examples and comparison
between the two formats.

3url: https://github.com/toml-lang/toml
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{
"redis": {

"address": "127.0.0.1:6379",
"password": "some-password"

}
}

Listing 1: A snippet from the backend con�guration serialised as JSON. Note how JSON does
not support comments.

[redis]
# The Redis server to use.
address = "127.0.0.1:6379"
password = "some-password"

Listing 2: The same data as in Listing 1 but in TOML format instead.
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5. Algorithms

5.1. Dijkstra

The classic way to �nd a path between A and B with the lowest cost is by using a path�nding
algorithm, and there are two major path�nding algorithms. A* and Dijkstra where A* is a
modi�ed version of dijkstra. This project will be using the dijkstra algorithm because it has
the potential of being modi�ed more easily, this is explored more in chapter Section 6.7.1.

When the dijkstra algorithm start it creates two sets of nodes, one called open-set contains all
nodes on the grid except the starting node. Then you have the closed-set, this is all the nodes
the algorithm has previously visited. This set is empty at the beginning. The last initialisation
step Dijkstra does is to set the start node as the current node it is investigating. Figure 5.1a
shows the state at the beginning of the algorithm.

When it is done with the initialisation step the algorithm will start by going through all the
neighbouring nodes that are in the open set and calculate their cost. This is done by taking the
cost of the current node and adding that to the travel cost from itself to the neighbour node.
Figure 5.1b shows Dijkstra after it has calculated the cost value of the �rst set of neighbours
shown in light green.

This step is then repeated until the current node is the stop node. When selecting the next
current node djikstra will always choose the node in the open set with the least cost. The grid
with all the cost values for each node can be seen in Figure 5.2a. Then to get the actual path it
is only a matter of tracing the lowest cost neighbour node for each node starting at the end, as
shown in Figure 5.2b.
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(a) First stage of Dijkstra’s algorithm.
Green is the start node and red is the
end node.

(b) Second stage of Dijkstra’s algorithm
when it has investigated the neigh-
bours of the start node.

(a) Dijkstra �nished with calculating a
path with each cost value has a sep-
arate color.

(b) Dijkstra �nished with calculating all
needed cost values, the optimal path
is highlighted with black circles.
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5.2. Machine Learning

The task itself requires the use a machine learning algorithm to approximate a path with the
least height di�erence from A to B. But machine learning algorithms are a broad �eld with a
multitude of di�erent approaches and solutions for all kinds of problems.

5.2.1. Neural Networks

Currently the most popular machine learning architecture is neural networks. At its core a
Neural Network is a ℝn → ℝm dimensional function that is organised into layers of nodes
as seen in Equation (5.1). The �rst layer is called the input layer and is the function input
parameters. The last layer is called the output layer and represents the values that the network
will output. The layers in-between are called hidden layers and are only there to give the
network more weights to tune.

Figure 5.3.: Example Neural Network Structure [5]

The weights of a neuron are an individual scalar for each connection the neuron has. Each
neuron is connected to all neurons in its previous layer, as represented by a black line in Fig-
ure 5.3. So the value of each neuron in a neural network is a weighted sum of all nodes in
its previous layer as shown in Equation (5.1). In addition to this the output of the weighted
sum is usually passed trough a function called a activation function. This is done for a multi-
tude of reasons but the most important is to stop the values of the network from skyrocketing.
Equation (5.2) is a common activation function called Sigmoid.

n∑i=0 wi ⋅ ni (5.1)

f (x) = 1e + e−x (5.2)
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Forward Propagation

Forward propagation is a term given to the action of passing some input values through a neural
network. As the values of each layer are calculated sequentially, the data propagates forwards.
This term leads into how a network ’learns’ by using an algorithm called backpropagation.

5.2.2. Backpropagation

The key to how a neural network approximates a function is by adjusting each weight for each
connection in the network. It does this is in the form of an algorithm called backpropagation,
if the name does not give it away it works in the reverse order from forward propagation. By
starting at the output nodes and calculating the error for each.

An error function is a function that describes how wrong an output is. For a function to be
usable as an error function it has to be continuous and di�erentiable. This means you can
extract from the error function how to change the output to minimise it, making the output
more ’right’.

To change the output of each node without controlling the inputs, you adjust the incoming
weights for each input. To decide how much you should adjust each weight you can use the
chain rule to �gure out how ’important’ each input in the sum is for the �nal output of the
node. The process is repeated for each node in each layer, starting at the �nal layer moving
backwards, hence the name.

5.2.3. Convolutional Neural Networks

A problem neural networks ran into early with image classi�cation was the problem of extract-
ing locally speci�c features. It was easy to �atten an image into a list of colour values, but in
this format the network was very bad at extracting features from an image and using those to
classify it.

To solve this problem neural networks can employ special convolution layers to do the feature
extraction. What convolution layers to is to reduce the size of the feature space by moving
an N × M �lter matrix of weights across the image. So each new pixel will be a sum of the
dot-product of all pixels from that �lter, as described in Equation (5.3).

N∑i=0 wi ⋅ xi (5.3)

The example shown in Figure 5.4 shows a 4 × 4 image being convoluted by a 3 × 3 �lter. Here
the output would be a 2x2 image also called a feature map. The reason this can extract features
is because usually pixels next to each other is part of a local feature, and these features are
usually part of a bigger feature. For example how a �nger is a part of a hand, a hand a part
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of an arm etc. So by stacking the convolution layers they are able to extract more and more
complex features from a given image.

Figure 5.4.: Convolution �lter example on a 4x4 image.[6]

These layers are trained much the same way a normal neural network layer are trained via
backpropagation, but now the weights are inside a �lter and not directly connected to the
previous layer.

5.2.4. Reinforcement Learning

Reinforcement learning problems consists of two parts, an environment and an agent. The en-
vironment is the problem domain, consisting of states with information describing the current
state of the domain, and actions which a�ects the state and moves the environment into a new
state. An example of an environment is Pong, where the states are the position of the paddles
and the ball, and the states are either moving the paddle up or down.

The other part of a reinforcement learning problem is the agent, which uses a policy for picking
actions depending on what the current state is. Upon choosing an action the agent is given
feedback - called the reward - to tell it how good the selected action was so that it may adjust
its policy. The agents job is to adjust its policy to pick the actions that maximise total reward.
5.5 illustrates the relation between the agent and environment.

Figure 5.5.: Reinforcement Learning environment and agent[7]

To maximise total reward the agent has to decide how it will weight immediate rewards In
comparison to long-term reward. Though immediate rewards are good, if an action gives lower
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reward now but results in signi�cant reward in ten steps, that action would be better. This also
leads to exploitation vs exploration. When the agent is learning, if it only performs actions
which give the highest reward it may be missing actions which would lead to higher rewards.
Therefore the agent has to make a balance in its policy between exploitation and exploration
of actions[7].

5.2.5. Graph Neural Networks

Graph neural networks are an emerging sub�eld within the broader machine learning �eld.
Graph Neural Networks di�er in the way they operate on data. Normally a neural network
operate on euclidean data, but it is hard to represent some data in this format. Often it makes
more sense to structure data in the form of non-euclidean graphs.

Figure 5.6.: Example of object detection data in euclidean and non-euclidean space.[8]

This has some advantages, mainly that it is often easier to model data and data relations in
terms of graphs. Even for some data we normally does not see as graphs it can make sense to
structure them as graphs, for example images where each node is a pixel with connections to
each node besides it.

GNNs originates from image processing with convolution, more speci�cally its ability to ex-
tract spatial localised features. GNNs aim to be able to do the same but more generally on all
graph structures.The way a normal GNN work is by using feature information about a node
and its neighbours to estimate a D dimensional vector that represents the information of that
neighbourhood using the following formula:

ℎv = f (xv , xco[v], ℎne[v], xne[v])
Where xco[v] is the feature of the connection with node v. ℎne[v] is the D dimensional vector
that represents node v. xne[v] is the features of neighbour node v. Here f can be seen as a
standard neural network that can be optimised.
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6. Pathfinding

When approaching a machine learning problem, the �rst step is to identify what inputs the
model will have, and what outputs would be achievable. At its core, machine learning is just
approximation if functions. The tasks machine learning excels at are tasks that humans perform
well. This is important when deciding on outputs.

Once we have an idea of what the inputs and outputs should be, the category and type of ma-
chine learning should be decided. There are three primary categories: supervised-, unsupervised-
and reinforcement-learning. The categories are not hard boundaries and there are types which
are hybrids between these categories. The category determines the way the model learns.

To investigate path�nding machine learning solutions on heightmaps, a cost function has to be
designed. The best path to generate is the path with the least cost. Because of the limited time
on the project and to mitigate for RI.3.31, it was important that we focused on the problem with
the as little complexity as possible. Therefore we initially chose the simplest cost regarding
heightmaps: altitude at each node. The cheapest path is the path with the least changes in
altitude across it. Similarly, the outputs we focused on would need to be the ones with lowest
complexity, while still giving us useful insight to the problem.

6.1. Development Environment

The chosen tool for developing the path�nding solutions was Jupyter Notebooks. Hosting a
Notebook Server allows us to access the Jupyter Notebook remotely, which has the advantage
of allowing development on a di�erent computer than the one running the code. This is critical,
because this way we can use very powerful servers to train the models. Training takes a lot of
computing time, and reducing the training time allows us to try out more models in less time.
Each person developing on the path�nding was given access to their own Jupyter Notebook on
a training server. This was to mitigate RI.3.8, which states that working in the same directory
on the same computer may cause con�icts.

For hosting the development environment, it was decided to use Docker2 as this would give us
a consistent environment in which we could develop and run the path�nding modules.

If we end up with a machine that is not powerful enough as per RI.1.1, Docker allows us to move
the development environment. We could very easily deploy the same Docker image from the

1The model does not converge on a solution to the problem.
2See Section 4.3
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old machine to the new one. Docker is widely used in software deployment exactly because
of this, and understanding it would be bene�cial if we decided on using it in that use case as
well.

A reverse proxy places multiple HTTP servers behind one port, and will redirect tra�c to the
right server based on the URL or a header. This allowed us to have di�erent notebooks on dif-
ferent subdomains. This helped keep them separate such that the machine learning developers
did not interfere with each other.

6.1.1. USN Machine Learning Server

For the �rst part of the project we did not have access to a powerful server for machine learning.
This limited us quite a bit up until we were given access to a server at USN. We did not have it
set up and running until after the second presentation. Before then, we used Docker containers
to set up a development environment on a group member’s gaming computer. Moving to the
new server was a cinch thanks to the containers.

Then when the server had been con�gured properly some time was spent con�guring our
models and training data to work on the GPU. After everything was con�gured, the models
could be trained approximately 100 times faster.

The servers had four GPUs. After a while, it became apparent that memory management on
the GPUs was a problem. When both machine learning developers were training a model at
the same time, the memory would often �ll up. This caused the programs to either crash or
slow down signi�cantly. To solve this problem, we allocated two GPUs to each developer.

6.2. PyTorch

This ability to use our own custom models further down the line in a new solution is what
makes PyTorch excellent for our project for two reasons. The �rst is that it allows us to write
small parts of our model as separate modules and only modify the part we want to investigate.
Say the model contains a convolutional part and a fully connected neural network part, say we
want to change our convolutional part we can then replace it without having to worry about
breaking the fully connected part.

Which brings us to the second and potentially biggest bene�t, when you train a model you
will get a matrix of weights for each module, therefore the old weights can be used in the new
model because the last layer was never changed. This can save huge amounts of computing
time by only training the part of the model that has actually been changed.
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6.3. Problem Analysis

When investigating a problem, it is often smart to start o� with a simpli�ed version of the
problem and tackle it one challenge at a time. Our task of developing a machine learning based
solution for path�nding is a complex task. We can break it down into many smaller parts which
allow us to lay the groundwork, one step at a time. As our time on this project is limited, it is
important to have some simpler goals, in case the more complex goals are hard to achieve.

The output of a neural network will always be a list of numbers. It is how you interpret these
numbers that enable the bridge between the output and the path.

Currently the problem is quite complex with many parts that add complexity and are candidates
to be simpli�ed. The �rst simpli�cation that was done was to change the environment from
3D to 2D with the value at each point being the height of the ground. This means that the
algorithm only has to deal with two dimensions and each point has a de�ned value.

Further these values can be used to de�ne a good cost function. Here, we can create quite
a complex function can take a large amount of information into account. In the interest of
keeping the problem simple we chose to use the total height of all the nodes in the path as the
cost. This mean that the optimal path in this simpli�ed case is the path with the lowest total
height.

Next was the problem of turn radius, in the real world few vehicles has a perfect turn radius
of 90 degrees so this has to be taken into consideration in the �nal product. However for a
simpli�ed problem assuming a perfect 90 degree turn radius is okay. Together all these simpli-
�cations allow us to use traditional path�nding algorithms to generate a “optimal” path within
the constraints of the simpli�cations.

Because of this “optimal” path that is now available, it can be used to verify and guide the ma-
chine learning algorithms. With the hopes that once the machine learning results are accurate
enough the simpli�cations can be removed on layer at a time.

Before an implementation can be made there is one more aspect to decide: How will the ma-
chine learning algorithm output a path that is of any use to the user? There are many ways
to do this and each implementation will discuss how it is done in that particular case, but they
all lie on a spectrum depending on how much processing has to be done before the path is
usable.

On one hand there are the machine learning algorithms that directly outputs a path that is
usable without any modi�cation to it. On the other there are algorithms that require intense
processing before the path is usable. Algorithms that produce a path immediately may be
harder to train because some of the work is o�oaded to the post-processing stage.

The last thing to take into consideration for a machine learning based solution is that it is
inherently an approximation of the problem domain. So even if the algorithm outputs directly
usable path it is still only an approximation.
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Figure 6.1.: Machine learning output control over path.

6.4. Convolutional Neural Networks

As speci�ed in Section 5.2.3 one of the main bene�ts of CNN’s is their ability extract local
features from an image. In many ways similar to how a human could look at an image of an
object and immediately know what the object is. This property emerges in a neural network
when convolution is used. The hope was to utilise this property when generating the path
from an image.

6.4.1. DeepStar Structure

Convolution Layers

As described in Section 5.2.1 any input for a neural network is simply a series of numbers.
This is no di�erent for convolutional neural network, the numbers are just expressed a bit
di�erently. Instead of being a series of input numbers the image is expressed as a matrix vectors.
So each pixel get a cell in the matrix, and each cell contains a vector with one dimension for
each colour channel used.

As the image is run through the convolution layers of it is converted to a feature by the �lters
described in Section 5.2.3. This feature map is on the same matrix format as the input image
and is an representation of the features the convolution layers has learned. However these
convolution layers are not able to make the predictions that we need.

Classification Layers

This is where a normal neural network as explained in Section 5.2.1 is used. This network is put
in between the output of the convolution layers and the output of DeepStar, and is responsible
for taking the feature map and using it to make a prediction. In this case it has to predict the
path between the start and stop point in the input image, Figure 6.4 shows the classi�cation
layer of DeepStar.
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Fla�ening

However to do this the matrix formatted output of the convolution layers has to be converted
to a series of numbers that the network can read. This is done by going trough every cell in
the matrix and stacking every vector on top of each other. So by the end you have a series of
numbers where every set of three values represent one cell or pixel in an image. This process
is called �attening.

Loss function

As explained in Section 5.2.2 backpropagation is the way a neural network can train and learn
how to approximate a solution. An an essential part in this process is to determine how wrong
an output is. This is done by a loss function, or sometimes called an error function.

How this is done varies widely depending on the use case, but for DeepStar a simple loss
function called MSELoss can be used. This loss function measures the mean squared error for
output as explained by Equation (6.1) where x is the actual output of the network and y is
the expected output of the network. It is this loss function output that is the accuracy of a
network.

N∑n=0(xn − yn)2 (6.1)

Normally the accuracy of a network is hard to conceptualise, this is because by de�nition the
accuracy is just a number assigned by the loss function that describes how wrong the output
of a network is. As the complexity of a loss function increases so does the understandability of
the resulting accuracy of a network.

This however is usually not a problem because as long as the same loss function is used a lower
score is always better. So an loss of 0.15 is always better than a loss of 0.2 unless they use a
di�erent loss function. This means that unless two networks use the same loss function their
accuracy values cannot be compared.

Pooling

6.4.2. Version 1

To keep the input simple for the �rst iteration a three channel (RGB) input image was used.
The red channel represented the heightmap, and green and blue channels represented the start
and stop point respectively. Because no proper heightdata was available yet it was substituted
with a simplex noise function instead. See Figure 6.2 for an example.
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Figure 6.2.: Example noise map input data. The red channel contains the noise, and its hard to
see but there is a green and a blue dot for the start and stop point.

A noise function is similar to a random number generator but instead of producing truly ran-
dom numbers it produces random numbers that are dependent on its neighbours. This means
that the noise map substitution will have a more smooth transition between values than if a
random number generator was used.

Output

Next the format of the output had to be determined. Keeping it simple for the �rst version it
was decided to have the network output two values. Each value would be interpreted as X and
Y respectively and be within the range [0, 1]. Meaning an output of (0, 0) being top left and(1, 1) bottom right of the image. This kept the output simple and independent of image size.

Combining the two outputs of the network it would only be able to output a single point on
the image. It was decided this point would be the median point of the dijkstra path between
the start and stop point. The idea being that this network could be run recursively to produce
a more �ne grained path.
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Figure 6.3.: Convolution layers of deepstar v1

Network Structure

When the input and output for this version had been de�ned an internal structure that would
translate the input to the output had to be de�ned. This is where the less scienti�c nature of
machine learning rears its ugly head. Because how do you go about creating this structure,
you know there will be at least a convolution part and a classi�cation part. Bu other than that
it is mostly guesswork and gut feeling that guides this process.

Keeping with the ethos of keeping it simple the �rst attempts had two convolutional layers
followed by a two layer deep classi�cation neural network. As many �rst attempts do it did
not work very well, but after a lot of trial and error the structure shown in Figure 6.3 and
Figure 6.4 was arrived at.

Figure 6.4.: Classi�cation layers of deepstar v1
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Results

It was able to achieve an average accuracy of around 16 pixels. At �rst glance this seems like
a really good result. It turned out that when applying the algorithm recursively the error kept
accumulating. The end result was a path that is not much of use. However this result did prove
that the network was converging on something.

Figure 6.5.: Dijkstra optimal path overlaid in blue. Green dots are where the network predicts
the path to go.

As stated in Section 6.4.1 normally the accuracy of a network is hard to conceptualise. However
because of the way this network has been structured it has a quite elegant interpretation.

Because of the MSE loss function used the accuracy is de�ned as the mean squared error of the
two outputs. Therefore because it can be de�ned as x2e + y2e where x and y is the two outputs.
This can then further be put into the circle formula which gives.

R2 = x2e + y2e (6.2)

This results in the accuracy being the squared distance between the outputted point and the
expected point.

6.4.3. Version 2

Because machine learning is more of an art than a science, gut feeling is on of the most im-
portant prats of deciding how to move forward. In the case of DeepStar there was also the fact
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that the schools computing server was still unavailable. So for the second version the goal was
to try and reduce the computing overhead and maintain or increase the network accuracy.

By version two some heightmap data had been created and from here on DeepStar would use
actual height data from the Kongsberg region. This was done by taking a 1km by 1km slice of
height data, the slicing that image again into many smaller 256x265 images to use as training
data.

Input

The �rst and most obvious optimisation that could be done was to reduce the amount of colour
channels in the input image. In version one the G and B channel where mostly empty except
for a single pixel at the start and stop point. This would mean the network wold take a single
channel heightmap as an input in addition to two points for the start and stop point.

Structure

This was achieved by saving the height map as a single channel greyscale image, and then
feeding that into the convolution layers. The convolution layers was kept the same except
they took one channel as input instead of three.

The start and stop point was instead fed directly into the classi�cation layer as shown in Fig-
ure 6.8. Four inputs was added on top of the �attened feature map input, these four inputs
would represent the X and Y for the start and stop point. The input would be normalised to
UV coordinates in the range [0, 1], same as the output.

Figure 6.6.: Classi�cation layers of deepstar v2
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Results

There are many ways to tweak a neural network and it is not immediately obvious how those
changes will a�ect the network. There is a umbrella term for all those parameters you can
change on a network, they are called hyper-parameters. Examples of these hyper parameters
is all the way from the learning rate used by the optimisation algorithm, to the structure of the
network.

It is these hyper-parameters that are tweaked to see how well a version preforms. There is no
guarantee we have stumbled upon the most optimal values, but because of the �nite time at
some point you have to cut your losses av move on.

After much tweaking with the hyper parameters the accuracy of the network never went above
the previous seven pixels. So in the end, the second attempt ended up being more of a sidestep in
terms of performance than a forward step. However, we decided to keep this data structure for
future versions because it ful�lled the primary requirement of reducing the size and computing
overhead of the network.

6.4.4. Version 3

Now that the network was computationally less expensive and would train quicker it was time
to focus on how to improve its accuracy. To avoid going in blind and just trying random things,
it was decided to lend some tricks from other �elds within machine learning. Speci�cally face
keypoint detection[9].

In face keypoint detection the aim of the network is to detect key-points on any given face.
These points can the be used further to determine features about the face or classify it. An
example of face keypoint detection can be seen in Figure 6.7.

Figure 6.7.: Example of face key point detection[10].
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Output

More speci�c the idea is to borrow the way it outputs its keypoints. It is done by splitting the
image into chunks. So if the image is 256x256 pixels it could be split into a 64x64 chunks with
each chunk being 4x4 pixels. Then each chunk is given an individual output that represents
that chunk.

The output of the network is now 128 unique values where each value represents a unique
label. The output went from two output nodes as seen in Figure 6.4 to 128 output nodes. The
�rst 64 outputs belong to the �rst axis and the last 64 outputs belong to the second axis. Here
each row and each column is given a unique output called a label and by selecting one of each
the network can specify a chunk.

Figure 6.8.: Classi�cation layers of deepstar v3

Results

The rest of the network structure and input was kept the same, including the UV normalised
input positions. After some days of trial and error with tuning the networks hyper-parameters
it was able to achieve a good accuracy.

This is where a problem arose, because now even though the loss function was not changed
the output was completely di�erent. This mean that the Equation (6.2) was no longer ful�lled.
This mean that there was no scienti�c way to compare version 2 and 3, so to judge this it was a
matter of maximising the networks accuracy and visually compare the resulting paths as seen
in Section 6.4.4.

As seen here the paths seems to have about the same accuracy but it is hard to tell. At the very
least it does provide any signi�cant improvement over the last solution.
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(a) DeepStar V2 Output (b) DeepStar V3 output.

6.4.5. Auto Encoder

Auto Encoders are a special type of machine learning algorithms. As seen in Figure 6.10 they
take the input data and compress it down into a smaller vector. How small this vector are is
dependent on how the network is setup. After the data has been compressed it is run through
the reverse process, where a separate network takes that compressed data and tries to recreate
the original data.

Figure 6.10.: Illustration of an auto-encoder[11].

This is useful for us because if we use convolution layers the compressed vector that is used
to recreate the image becomes the same feature map that is used by the previous versions
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of DeepStar. The idea is that after the auto encoder has been trained the decoding part that
produces the feature map can be taken from the auto encoder and replace the convolution
layers of DeepStar

This concept has a name and is called transfer learning. Because now we are separately training
the convolution layers of deepstar and the classi�cation layers. As long as the parameters of
the convolution layers does not change it does not have to be retrained and the training process
can be sped up.

Results

After about a day of hyper-parameter tuning for the auto encoder it was able to reproduce the
images with a pretty good accuracy as seen in . It was now time to insert it into DeepStar and
see if it will increase the accuracy. As you can see in the comparison in the it did not make a
signi�cant improvement.

6.5. Graph Neural Network

After trying many di�erent ways to improve the performance of the CNN, we felt it was time
to investigate something a bit di�erent. During our research on improvements we discovered
a new type of neural network called graph neural network. As the name suggest this type of
network uses graphs like in Figure 6.11, instead of normal euclidean data structures.

Figure 6.11.: Example of a graph with nodes and edges from[12].

The reason we felt this was a natural technology to investigate is because our problem already
works on a graph and it felt natural to apply this method to our problem.

The �rst problem was how to represent our data as a graph. Even though our problem lends
itself to a graph representation, it was at this time presented as an image. We ended up con-
verting the heightmap to a graph node with each pixel being a node with edges connecting
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it to its four closest neighbours. The value of each node was the height at that point and the
value of the edge was the travel distance between the two nodes.

Figure 6.12.: Example of a image converted to a graph. With a start point of (0, 0) and stop point
of (2, 2).

With the input of the network de�ned, the hard part remained. How do we output a path from
a graph network? One limitation of graph networks is that the output will always be on graph
form with the exact same shape as the input graph. The only parameter you can change is the
dimensionality of each node.

In the end, we narrowed it down to two possible approaches for the output. The �rst was to
have the network learn an edge value. The value should let one start at the beginning and
always follow the edge with the highest value in a depth �rst search.

The result would then be the path. The second and the one we went for was to have each node
output 1 if the path was on that node and 0 if it was not.

With the input and output de�ned it was time to investigate what structure the network should
have. To keep it simple in the beginning, we decided on a two layered edge convolution solution
using a network called spline-conv. This network utilised pseudo-coordinates for each node
and a spline to smooth the result. The hope here was that in the future we could extract this
line and have a path that is independent of the underlying graph.
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6.5.1. Version 1

As this was towards the end of our project, we only had time to make one version of this
network. The results were underwhelming.

Figure 6.13.: Output of GraphStar v1 converted back into image form.

As you one can see in Figure 6.13 it outputted some data at the start and stop points, but failed
to do anything more. We believe this is because the network had a hard time propagating the
data throughout itself. In an edge convolution, the output of a node can only be a�ected by its
neighbouring nodes and itself.

6.6. Reinforcement Learning

Note: As to keep the documentation about the machine learning related choices and the imple-
mentation details separate, documentation on reinforcement learning code is located in Sec-
tion 10.12.

The movement limitations of a drone are very strict, with a maximum turn radius and the
fact that it cannot change its velocity instantly. After having looked at supervised learning for
placing every pixel of the path, there seemed to be some pixel inaccuracies. Because of this it

72



LAPS Final Report

did not seem like this approach would be suitable for generating a manoeuvrable path pixel for
pixel, at least without additional processing.

Instead, having the machine learning output which pixel to move to from the current one until
the goal is reached seemed like a good idea. Convolutional networks are designed to analyse
pixels in close proximity to each other, which seemed like it would complement this approach
well.

As we did not have access to any algorithm which could produce the most optimal manoeuv-
rable paths, we had no data for training a supervised learning network to do this. So the
alternative was to look at this problem as a reinforcement learning5.2.4 problem.

To give a quick recap on reinforcement learning: In normal supervised learning the algorithm’s
output is compared to the correct output. In a reinforcement learning approach, the problem
is divided into steps, where a machine learning algorithm has to pick which action to take at
each step, and is given a scalar reward to signify how well it did after each step. The part of the
reinforcement learning that selects actions each state is referred to as the agent, and it trains
itself via interacting with the environment and learning from the rewards, to always pick the
options which in the long run gives the highest rewards.

Because of this approach being divided into steps as, it seemed like a possible solution to our
problem. In addition, since the actions available to the agent are designed freely, we could
design the actions to take considerations to the movement restrictions of the drone, so that no
matter how badly it chose it would still create a �yable path.

6.6.1. Designing an Environment

Training a reinforcement learning agent to solve your problem, �rst requires having an en-
vironment for it to interact with and learn from. Which is why the �rst step is designing
and implementing this. In this section the general design principles behind an environment is
discussed, as multiple environments were created for this project.

There are three main parts of an environment, that has to be designed:

• States - the information determining the current state, consisting of all the information
that will be available to the agent.

• Actions - which actions are available at every step and how they a�ect the state, and
when the episode ends.

• Rewards - the reward system for every action picked.
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States

The state and what makes up the state has to be considered. The state is all the information
that the agent should have access to which it will use in its policy to determine action.

It is also important that the information in a state ful�l the Markov Property, which is that
future states shall only depend on the current state and not any other information[13]. This is
so that the agent acting on the environment has all the information it needs to learn how to
maximise the reward.

Actions

An environment is divided into episodes, and each episode is divided into steps. A step is made
up of an action, and the processing of that action and how it a�ects the environment.

Actions are the agent’s available methods for interacting with the environment. The agent will
have access to the same actions every step. If the environment was an implementation of pong
for example, the actions would be to move either up or down (possibly also staying still).

The episode is at some point considered done. Often either because the agent has «lost» the
game, too much time has passed, or the agent has «won». Once it is considered done, there is
no point in choosing additional actions, and the environment is reset.

Rewards

As mentioned before, the reward in reinforcement learning is the scalar value that is associated
with each action for each state. The Reinforcement Learning algorithms are developed such
that the agent is able to maximise the total reward it gets each episode.

Environments require a form of reward system, to determine the reward for each action at each
state, which will in turn tell let the agent now how well the chosen action was. One example
of a reward system is OpenAI’s cartpole environment[14]. The goal of the environment is
controlling a cart either left or right to keep a pole balanced, and the episode ends if the pole
goes outside the playing area or falls over. The reward the agent gets at every step is simply
one, regardless of the state of the pole (as long as it is upright), which means maximising the
reward e�ectively means balancing the pole as long as possible.

As reinforcement learning algorithms take the reward of future states into consideration when
selecting the action on the current state, it will view the actions leading to states with reward
as higher reward than those which do not. In the cartpole example this means that actions
which keep the pole balanced more rewarding than those which do not, even if both actions
have the same reward in this step.
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(a) OpenAI’s Atari Pong environment (b) OpenAI’s cartpole environment.

Reward functions should not tell the agent how to perform the task, only assess the immediate
result of the chosen action. The reward of the action that ends the episode (if there is one)
should be zero[7].

An interesting result of the algorithms aiming to maximise reward, is that it will avoid actions
that result in negative rewards. This means that instead of focusing on giving positive rewards
for good actions, one can focus on punishing the bad actions instead, and it will have the same
results.

There are two main types of de�ning rewards:

• Discrete Rewards - giving rewards for events that happen.

• Continuous Rewards - having a function which continuously give rewards depending on
how good the current state is.

Discrete rewards work based on the fact that reinforcement learning algorithms try to max-
imise reward in the long run, so if you only give reward one time the expected rewards will
propagate backwards through the environment.

Continuous rewards make training easier and convergence faster. There are bene�ts of discrete
rewards as well though, such as the agent should avoid speci�c areas or stay inside others.
Mixed rewards are also a possibility, by doing both[15].
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6.6.2. Learning Algorithms

As with supervised learning, there is a range of algorithms within the reinforcement learning
category. The simplest of which is Q-learning, which is keeping a table of Q-values, estimated
reward for an action with future states taken into consideration, and updating the values of the
table each time they are chosen to make the estimate closer to the real value. Theoretically with
enough episodes and training, the Q-table will eventually be correct and following it will grant
the maximum reward of the environment. The problem with this approach is that the Q-table
consists of a row for every state, and a column for every action, meaning as the information in
the state grows the number of Q-table cells increase exponentially. As the values are updated
individually this also increases the training time exponentially.

Deep Q-learning and Double Deep Q-learning aim to solve this, by instead of keeping a table of
the values estimating the values using neural networks. The result is that the Q-table doesn’t
have to be kept in memory no matter the size, and the agent is able to generalise patterns in
the states, so that not every cell of the table has to be reached multiple times to be learned. As
the states of our environments contain the whole map, using this method or a similar one is
necessary, as the amount of potential states increase exponentially with the size of the map.
Because of this, Double Deep Q-learning was the �rst algorithm investigated as a potential
solution.

Figure 6.15.: There are a plethora of learning algorithms to choose from[16].

Q-Learning

Speci�cally, Q-learning works by initialising a Q-table with a row for every state, and a column
for every action available. Each cell in the table has a Q-value, which is an estimation for how
good an action is when in that state. If the Q-table were perfect, then one would achieve the
highest rewards by always selecting the action with the highest Q-value. The trained Q-table
is an approximation of the perfect theoretical Q-table, and is adjusted gradually step by step,
approaching it.
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Each time a step is taken, the Q-value for the action selected is adjusted. It is adjusted based
on the reward it just gained by performing that action. But an action is not only as good as the
immediate reward it gains, but also how good the future states it leads to are.

It takes into account the value of future states, by taking the Q-values of the actions in the state
it arrives at into account. This way, if a Q-value is adjusted based on a high reward it got, the
next time that state is reached this Q-value is taken into consideration by the action that lead
to it.

Q(s, a) ← Q(s, a) + � [r +  maxa′ Q(s′, a′) − Q(s, a)] (6.3)

Equation (6.3) is the speci�c equation used to adjust the Q-values at each step[7].

Figure 6.16.: Q-table with all values initialized to zero, with adjusted values after training[17].

By only selecting the actions with the highest Q-value, the algorithm will never learn. It will
keep selecting the action it tried before, and not explore new possibilities. This is a problem in
scenarios where gets bad rewards this step, but great rewards further down the line.
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Because of this, we should force the agent making the selections to explore more possibilities.
This way, cells with a high reward may still be discovered, and can be taken into consideration
when doing further training. This is done by having a chance � to select a random cell each
time it is going to perform an action.

Finding a balance between exploration and exploitation can be done by tweaking �. If one only
explores, the agent will never exploit the good actions, and will produce inaccurate Q-Values.
Therefore, a common way to balance the parameter is to start with a high � value, and slowly
reduce it. This way it will do a lot of exploring initially, but more exploiting later on.

Deep Q-Learning

The main parts of the Deep Q-Learning algorithms are:

• Policy and target neural network

• Replay bu�er

• Training loop

The policy and target networks are the neural networks essentially doing the same job as the
Q-table; estimating the Q-value of actions based on the current state. They are identical in
structure, and can be in the form of any neural network, for example convolutional.

Training neural networks requires a lot of data and many batches of learning. It would be hard
for a neural network to learn how to accurately estimate the Q-value of a state it has only
seen a few times. The replay bu�er aims to solve this by keeping track of a large number of
the previously seen transitions, so that they can be trained on multiple times. A transition is
simply the collection of information returned when taking a step, consisting of:

• State before step

• Action chosen

• Reward gained

• Whether or not this step ended the episode

• The new state (assuming the episode is not over)

Together these aspects are used in the training loop, which is the part of the code responsible
for training the code.

78



LAPS Final Report

Figure 6.17.: A sequence diagram of the training loop.
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6.6.3. Cardinal Directions Environment

Because of the time-related machine learning risks, RI.3.3 and RI.3.5, and as was stated earlier,
it is important that we focus on simple representations of the problem before we increase
the complexity. So instead of focusing on drones and their movement with turn radius, the
simplest movement would be only moving in cardinal directions in a grid. The states and
reward function was based o� of this core idea of the environment.

The states chosen for this environment is initially to only have the start and goal position be the
state with a static map, so that we are able to know whether or not the agent is working, instead
of it being hard/impossible for the agent to learn the environment. Then as the environment
uses di�erent maps on each episode the map must be a part of the state, so that the agent is
able to take this into its decision. As the movement in this environment is simply cardinal
directions with no consideration for turn radius or velocity, only the position (and eventually
the map) as part of the state is required to determine what the future state will be, meaning it
ful�ls the Markov Property.

The static map that was chosen as a test map, was one which the upper left corner has zero in
height value, whereas the rest of the cells has Manhattan distance in value. Manhattan distance
simply means the how many horizontal and vertical cells they are apart, in other words the
sum of the absolute di�erence between the horizontal and vertical positions of the cells. This
method for generating the static map was chosen because it is easily implemented, cheap to
compute, can be scaled to any size, and provides a map which shouldn’t be too hard to learn.

Because the map allowed to scale to any size, it allowed for resizing the grid. The impact of
this is that the more grid cells the more possible states, and each state is something that the
network has to learn and generalise.

For the episode to end, the drone would have to reach the goal. Because this could end up in
the episode lasting in�nitely, an additional done condition was added, which was that if the
episode lasts too long it will be stopped early.

The initial reward function that was used for this environment, was to give a reward at each
step, that has the negative value of the elevation of the new grid cell. The idea was then that
the agent would learn that each move it did would punish it, and the only way to stop this
would be to reach the goal. This way the path with the highest reward, would be a path that
both reaches the goal and has the lowest total height.

Implementing the Learning Algorithm

To create an agent for this environment, as mentioned earlier, Double Deep Q-Network was
chosen as the learning algorithm to use. Because there is a number of concepts involved in
the algorithm, it was initially chosen to be implemented from scratch, as it would help with
understanding how it works.
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(a) Movement in the cardinal directions environ-
ment

(b) The static map, with dark blue low value, and
yellow high

Figure 6.18.: The cardinal directions environment

After having spent some time implementing it, it failed to converge. To verify that it was
working properly, and that it was not the environment at fault, it was con�gured to train on
OpenAI’s cartpole environment, but did not converge on this either. With machine learning if
there is a single mistake it is not unusual for the code to not converge, and it is incredibly hard
to pinpoint what is at fault.

Instead of spending unnecessary time troubleshooting this Double Deep Q-Learning imple-
mentation, a pre-made implementation was pulled from a PyTorch tutorial about the algorithm3.
The time spent was not wasted time though, as it signi�cantly helped in understanding the core
ideas behind the algorithm, which is a pretty central algorithm within reinforcement learn-
ing.

Rendering

To use convolutional neural network with reinforcement learning, the input of the network
has to be in the form of an image. This means that the current state of the environment, along
with all the information in the state needs to somehow be conveyed with an image. As usual
with neural networks though, there is no de�nite way of doing this, so it is just a matter of
trying what you think will work.

Since we only care about the contents of the image, and it is made on the spot, kept in memory
and not stored as a �le, these images will be referred to as RGB-arrays. These images are

3https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
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(a) Notebook (b) RGB-array (with heightmap in red channel)

Figure 6.19.: Render modes of environments

implementation-wise just arrays with three channels for red, green and blue, where every
array has an index for each pixel, and each pixel can have a value from 0 to 255.

The process of creating the images, will be referred to as rendering.

As stated before, the state of this environment was only comprised of the current position of
the drone, as well as the goal position, with heightmap planned to be added as well. Because
there is only three di�erent properties, with there being three channels in an RGB image, it
was well suited to put one of the properties in each.

Since the previous positions of the drone was not a part of the state, because they do not a�ect
the current choice, they were not represented in the image. Somehow displaying the di�erent
previous positions the drone has been in is useful though, as it is hard to determine anything
about the drone’s behaviour without this information.

Therefore it made sense to create a separate rendering method, which displayed this additional
information. The Notebook rendering method was created, which displays the start and stop
position of the drone, as well as the heightmap, and the path the drone has taken. Both of these
rendering methods are shown in Figure 10.2.

Recall that an episode is made up of episodes, and steps that make up those episodes, where
there is a reward for each step. And because the point of the reinforcement learning is to
maximise the reward gained, it is helpful to have some graphs displaying these properties as
well.

Therefore, two useful graphs are also added to the display of the training:
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• Episode durations - a graph displaying each episode, and how long that episode lasted.
For this environment, reaching the goal ends the episode, so the shorter the duration the
better.

• Episode reward - the reward gained each episode. More reward is of course better. Be-
cause reward can vary wildly between episode, a mean line is also plotted, to show how
it is progressing over the episodes.

These three panels - the two graphs and the notebook rendering - was helpful in showing the
progress of the learning. They are shown in Figure 6.20.

Figure 6.20.: Episode Performance Plotting

6.6.4. Training on the Cardinal Directions Environment

After training for several hours, the graphs showing the agent’s performance showed no im-
provement. In other words the model failed to converge. As usual, there was no easy way to
pinpoint what was at fault. There were several things that could be causing this:

• Mistake from when the learning algorithm was changed to work with our environment.

• Parameters of the learning algorithm and/or network, causing the converging to be slow.

• Bad reward function, resulting in the environment to be hard to learn.

To solve this, process of elimination was used to remove one by one until the problem was
solved. As the easiest one of the three to troubleshoot was the reward function, this was sim-
pli�ed into an even easier reward function so that the learning function would guaranteed be
able to learn it.

Instead of taking the height into consideration, the reward function was made into only giving
positive reward for moving in the right direction, and a negative reward for moving in the
wrong direction. This reward system is visualised in Figure 6.21.

Even with height removed from the reward function, it did still not converge. With there being
many parameters to tweak, and changing them showed no obvious change in performance, it
was hard to tell whether or not this was at fault.

83



LAPS Final Report

Figure 6.21.: Positive reward when moving in direction of green arrows, and negative for mov-
ing in direction of red arrows.

To test whether or not the learning algorithm was the problem, a traditional Q-learning imple-
mentation was made. This Q-Learning implementation turned out to be a lot quicker, because
the algorithm adjusting the model was a lot faster than the one using a neural network.

This let us tweak the parameters, and see the results of them signi�cantly faster than with the
Deep Q-Learning implementation. It allowed us to tweak the parameters and the environment
in such a way that it would �nally converge.

Speci�cally, it was noted that a too low epsilon would end up making the path only go in one
direction. As well as adjusting the rate at which it took into consideration the Q-Values higher
helped it converge.

In addition, it was helpful to add a better way of determining whether or not to end the episode
early. By adding a variable counting the number of mistakes made, or bad moves, and ending
the episode early if there were too many. This also helped keeping more important states in
the replay bu�er. For example, if the agent runs into a wall two hundred times in a row, these
new states may push out other states it could learn more from.

Training With Height Consideration

As discussed earlier, the chosen planned reward function for this environment was to take
the negative value of the height of the cell moved to. This way, since the episode only ends
when the goal is reached, it would constantly be punished for not having reached the goal. To
maximise reward, it would have to minimise the total punishment, which could be done by
reaching the goal and minimising total height.

This was implemented in both the reward function, and the state information. The rendering
method was changed to convey the new state information, by displaying the height values of
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Figure 6.22.: Path as a result of too low epsilon.

the grid in each pixel of the red channel in the RGB-Array.

After training it failed to converge. But because the height values was a part of the state
information now, implementing this via a normal Q-Learning algorithm to try another learning
agent, converged �ne. Though because of the static map, there would theoretically be more
possible states. But this does not a�ect the Q-Learning, as because of the static map only a
limited amount of states would be visited. Therefore the additional possible states do not make
any di�erence.

To reduce the amount of parameters, as well as trying an alternative machine learning architec-
ture to see how it would fare; The structure of the network was changed to a deep feed forward
structure, which is when there is no convolutional layers, and every neuron is connected.

A deep feed forward structure takes scalar numbers as input, so rendering the network was
not necessary, and it could instead take the values of the state information, instead of being
conveyed as an image.

This network model converged rather quickly, but would scale badly when increasing the size
of the grid. Though it would converge at a grid size of 5x5, it failed for larger sizes and showed
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little to no improvement at 10x10.

Because it was seemingly the convolutional aspect of the network structure which kept it from
converging, it was suspected that the method of rendering was not well suited for the conver-
ging part.

In hopes of improving the converging speed, several options for the rendering of the RGB-
Array was implemented:

• Blurring points - Blurring both start and stop a certain size. In other words the centre
would be 255 in colour, and it would linearly decrease proportionally with the Manhattan
distance, until it was zero.

The idea behind this is that convolutional neural networks only activate the surrounding
neurons in the next convolutional layer, that colouring a single dot would have little
impact after these layers. Therefore the blurring, so that both the start and the stop
would activate more neurons, while still accurately conveying the positions.

• Centring the drone position - Looking at implementations for reinforcement learning
agents which learned the cartpole environment mentioned earlier, one of the rendering
tricks used was to crop the image around the cartpole. This way the cartpole environ-
ment would keep the images more static even with di�erent states, and it in theory help
generalising the information.

This was implemented in our rendering methods, by padding the sides and rendering the
drone position in the middle of the image. The padding was done so that no matter the
position of the drone, no pixels would need to be sacri�ced or would be out of the frame
of the render.

In theory this would hopefully allow the model to only generalise better the position
of the drone and how it a�ects the environment, and be one less thing for the agent to
learn.

These approaches made seemingly little to no di�erence in performance.

While taking a step back to analyse and think about why the convolutional aspect of the model
made it not converge, we found . It noted that when having pooling enabled when training on
position related data, it would converge worse.

Similarly, it was noticed that during the process of rendering the RGB-Array, the arrays were
resized to �t the structure of the convolutional neural network. This resizing had by default
enabled interpolation of the images. Interpolating an image means using an algorithm to try
to make scaling an image more smoother and less noticeable. This often means smoothing out
the image to make the stretching out less jarring. Interpolation caused the image to be harder
to generalise for the agent, as it would blur the position of the drone inconsistently.

With these changes made to both the agent and the rendering method, the model �nally con-
verged. But because of a bad reward system, its behaviour was well rewarded, but did not
perform as intended.
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Modifying the Reward Function

Recall that the current system is to reward with the negative of the height of the grid in the
heightmap. With the only ways of ending the episode to reach the end, or taking too many
turns. The static map currently in use is upper left corner is zero in height, with all other cells
having height value of Manhattan distance from this cell.

With the model converging with this reward function, it would simply move to the upper left
corner and stay there as much as possible. It failed to learn that moving to the goal is worse
reward this step, but much better in the long run, as it would end the episode earlier.

It would also do a great job of detecting ways to exploit the reward function. On moving, if
the drone tried moving to a position outside of the grid, it would get moved back and given
zero reward. It quickly learnt that by repeatedly doing this it would get no negative reward, in
contrast to moving around on the grid. This resulted in it spending all its turns moving into
the wall.

This is not uncommon in the �eld of reinforcement learning. Exploiting design �aws in the
reward function not intended by the developer, is called reward gaming[18]. In general, if there
is something potentially exploitable, reinforcement learning tends to �nd it. It was for example
able to discover a new bug in the 1983 Atari game Q-Bert, which was not known[19].

Most likely because it has two learn two policies which it tries to maximise, both staying in
the low height zones, as well as reaching the end, it fails to balance them. Instead it ends up
only maximising reward from one of them.

Attempting to �x the problem of it not reaching the end by adjusting the reward function, the
idea was that combining the reward function with Dijkstra’s algorithm would make it possible
to learn it what the correct way is.

By calculating the cheapest cost for getting to the goal position using Dijkstra’s algorithm, for
all the choices available for the agent at that state, we can compare whether this move was the
most optimal or not.

The di�erent modi�cations on reward functions that were tested, using Dijkstra’s Algorithm
were as follows (best means best cost, current means current cost):

• 0 reward when hitting wall, as it would not move - It learnt that walls were safe to bump
into, so would rush to a wall and stay there.

• best/current otherwise. Would travel in�nitely, refusing to go to goal as it would keep
gaining reward if it did not.

• 1 if optimal, and − bestcurrent otherwise. As the reward for going in correct direction were
greater than going wrong, it would get close to the goal, then further away and repeat
this to farm points.

• 1 if optimal, and − ( bestcurrent ) otherwise. Failed to generalise the path in any meaningful
way, just bad paths.
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None of the attempted reward functions utilising Dijkstra’s algorithm showed promising res-
ults. This method brings with it the problem of how do you de�ne a sensible reward function
from the results of a path�nding algorithm. We found no obvious answers that gave intended
results.

In addition to the problem with the cost function, as shown in Figure 6.23 even with converged
paths, it provides sudden unexpected movement. This indicates that if this approach is to take
consideration for drone manoeuvrability its actions would either have to be veri�ed to con�rm
its �yable, or change the environment such that only the allowed movement are selectable
actions.

Figure 6.23.: Shaky reinforcement learning path.

6.7. Movement Restrictions

After having investigated the problem giving the algorithm full control over the path, with
the intention of looking at taking movement restrictions into consideration at a later stage, we
did not get to a point where it would be sensible to introduce that additional complexity into
the data. But as we wanted to investigate how well machine learning dealt with movement
restrictions, we looked at the problem using another approach.

Whereas our �rst approach was to look at machine learning solutions where the machine learn-
ing is responsible for controlling the path in its entirety, therefore choosing all the points of the
path. Instead the approach we wanted to investigate was to let the majority of the path creation
be handled by an algorithm which could produce a path, and have the machine learning only
control aspects of it.
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To give an example of this idea, consider the scenario where the path is composed of two
straight lines. The points of the path are then the points along the straight lines, and the
normal evaluation method of minimising the sum of elevation of all the points making up the
path still applies. The inputs for the machine learning is the heightmap, as well as the start and
stop point.

Would the machine learning in this scenario, be able to determine where to position the mid-
point in such a way as to minimise the total elevation of the path?

Figure 6.24.: A path consisting of two straight lines.

By taking this approach we are reducing the control the machine learning has over the path, to
instead try to make it learn how to utilise the algorithm to create the path with the least total
elevation.

The main bene�ts of it is that the decrease in control means less for it to learn, although possibly
at the expense of this output being more complex and harder to generalise. In addition to
this, we are able to use path generating algorithms which ensure that the resulting path is
manoeuvrable by a drone.

As our main motivation for using this approach was that we could see how well machine learn-
ing fared with movement restrictions in place, we wanted an algorithm which could produce
a simple manoeuvrable path. The easiest such a path would be one like the example, with the
machine learning outputting the midpoint. But because of drone turn radius, for such a path
to be �yable the midpoint angle would had to be smoothed out.

To smooth out the turn, there are multiple alternatives. One can either assume that the curve
is taken as soon as or after the turning point is reached, a post-turn. Or one can assume that
the turn is begun before the turning point, a pre-turn.
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(a) Post-turn (b) Pre-turn

Figure 6.25.: Types of Turns

Both the alternatives were discussed but the latter of which, the pre-turn, was chosen because
it has the bene�ts:

• As the heightmaps when used in the modules are in the form of arrays, taking a post-
turn might have the turn end up outside the grid, for which there are no de�ned height
values in the array.

Doing the turns in the pre-turn method, ensures that the turns end up inside the grid,
assuming all the three points are inside.

• Imagine a turn on the points A, B, and C, where B is the turning point. The three points
will make up the two vectors AB, and AC. Doing a pre-turn would maintain the BC angle,
when it arrives at C. Whereas with the post-turn method, this angle is not maintained,
making this angle vary more and harder to �nd.

This may only seem like a minor point, but when considering paths consisting of two
turns or more, meaning four or more points, knowing this arrival angle is necessary for
calculating the rest of the path.

When the path is expressed as a geometric set as lines and curves like this, using an alternative
method of getting the total elevation of the path is possible. When taking the sum of the heights
of the cells visited during the path as the total elevation, straighter paths will inherently be
better, as seen in Figure 6.27a and Figure 6.27b. This is because of the imperfections that are
brought into the scenario when bringing a diagonal path into a square grid.

The alternative method of getting the total elevation, is to follow the line/curve, and once
you’ve moved a speci�c distance along the line/curve take the height at that point. This is
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(a) Post-turn near edge (b) Pre-turn near edge

Figure 6.26.: Near-edge turn comparison

(a) Sum of cells traversed, 8
cells

(b) Sum of cells traversed, 10
cells (c) Sampling height along line

Figure 6.27.: Methods of �nding total elevation
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essentially sampling the height, and avoids this diagonal issue. This sampling method is illus-
trated in Figure 6.27c.

This method of doing turns was implemented as a Python module, as a part of the gym-drone
package on GitHub at LAPS-Group/gym-drone. Because it starts the turn "short" of the turn-
ing point, we refer to it as the turn short algorithm, and the module is called the turn_short
module.

Implementation

The Python module consists of three public functions:

• �ight_possible

• shortest_turn

• get_turn_height

Some geometric information was inferred by looking at the problem, which was used to solve
how to implement this:

• The turn will be between points A, B and C. A and C being the Start and Stopping points,
B being the turn point. Forming vectors AB and BC. The angle of ABC is � .

• The turn of a drone can be interpreted as a circle arc, or a circle.

• It is assumed that the turn will be be symmetrical, in relation to B. This means that the
centre of the turning circle, will lie on �2 .

• The point at which the turn begins/ends, will be a tangent to the circle. This means that
the angle between B, this point, and the circle centre will be 90. Forms a right triangle.
On Figure 6.28 this is the triangle formed by point a, B and the centre.

As there is a right triangle, we are able to use sin, sine, cosine and tangent functions on it.
Function �ight_possible uses this to calculate the radius of the circle for the point closest to the
turning point. This tells us the maximum turn radius which can make the turn at that point. If
the turn radius of our drone is less than this, then it is able to make the turn.

Similarly shortest_turn uses the almost same approach. But by knowing the turn radius of the
drone, we can instead calculate the starting end ending waypoints of the turn, and the circle
centre position.

Using the notations used in Figure 6.28, the equations would be:

radius of turn = |||B⃗a||| ⋅ tan �2 (6.4)
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|||B⃗a||| = turnradiussin �2 (6.5)

Figure 6.28.: Geometric representation of the turn short.

Lastly, get_turn_height utilises these functions to �nd the two straight lines, as well as the circle
arc forming the turn. Then sampling is done as explained previously.

6.7.1. Dijkstra with movement restrictions

Because graph start version one was not showing much promise of future prospects ,and it was
only two weeks left before the group would start focusing only on documentation in prepar-
ation for the hand in. It was decided that we would stop working on graph start and focus all
of our e�orts on reinforcement learning. Because at the time it showed more promise.

With one person freed up the �rst thing that was done was to integrate the turn short algorithm
into Dijkstra. The hope here was that we could then generate the most optimal �yable path
using the Dijkstra algorithm.

To enable Dijkstra to use any custom movement algorithm the idea was to generate new edges
for each step Dijkstra does. So instead of using the graph edges you give the graph into a
custom function that then outputs all edges Dijkstra can use. In this case that algorithm is the
turn short algorithm as explained aboveSection 6.7.

By doing it this way it meant that Dijkstra could support any custom movement algorithm with
minimal modi�cations. But it did also introduce some potential problems. Because the turn
short algorithm needs two points to determine if it can swing to a destination, this implicitly
means that Dijkstra’s available edges is not just dependent on the node its currently on but
also the previous. And because Dijkstra considers a node closed when it has been visited once
it means in some very speci�c cases it can be unable to �nd a path when one is available.
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Figure 6.29.: Example of dijkstra with the turns short algorithm. Purple and Yellow is the pre-
vious and current point, and green is the available edges.

However this is an extremely rare case when using real world heightmaps and the situation
will probably never arise with our data. And as you can see in Figure 6.30b it has the option
of using the edges beyond the intersection so it would still �nd a path. Therefore it was not a
priority �xing this, but it is still important to be aware of it.

Figure 6.31.: Example of Dijkstra with turn short enabled.
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(a) Dijkstra uses node at intersection to
get into top quadrant.

(b) Dijkstra cannot now use the node at
the intersection.
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The last thing to consider with this new implementation, we have already discussed how com-
puting time grows exponentially with the size of the map for the normal dijkstra. This becomes
even worse with the turn short version, the main time sink is the recomputing of edges for each
step the algorithm has to take. On average it is about 5x slower.

6.8. DeepStar Version

To round o� the investigation into supervised learning with CNNs we decided to generate some
training data using the new and modi�ed turn short Dijkstra. This is to see if the network could
converge on a more �yable path. As show in Section 6.4.2 does converge at least somewhat.
The hope is that we would get about the same results just with more �yable paths.

6.8.1. Version 4

In addition this version would generate an image of the path instead. To do this it would use
an autoencoder as described in Section 6.4.5, with one modi�cation. Instead of recreating the
image from the feature map the decoder would generate a image of the path instead.

To keep things simple the Dijkstra algorithm was restricted to one turn short point. This mean
that it could essentially place one point to turn with and then go to the destination. This also
meant that the problem of it being slower than normal Dijkstra is somewhat alleviated, on
a 32x32 pixel image it went from about one path per second to four paths per second when
generating data.

Results

This approach at �rst seemed very promising reaching a very low loss. However it ended up
being a cautionary tale of why you need to understand every aspect of your code. Because the
loss function that was used is the MSELoss function, this loss function worked �ne for all the
other version however it had an subtle �aw that made it inadequate for this use case.

Because in the image that the autoencoder targeted most pixels would just be empty, This was
because the goal was for the output image to just contain a pixel path. With most pixels being
empty when you took the average error of all those pixels, just outputting a blank image gave
it really high accuracy. This was not technically wrong but it is very unproductive for this case
and made the loss look really good while in reality it meant nothing.

The �x for this problem was to change to a loss function that is more adapted to the situation.
That loss function is called Binary Cross Entropy Loss, this loss function is similar to the one
used in DeepStar version 3 and can be read more about here https://pytorch.org/
docs/stable/nn.html#bceloss.
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6.9. Reinforcement Learning

We wanted to see if reinforcement learning would be able to learn how to utilise the turn short
algorithm, and how it would perform. By creating an environment in which the actions select
the positioning of the turn short points, it could possibly learn how to use it to select waypoints
resulting in good paths.

The least complex way of using the turn short would be to create a path with only one turn.
This way the �rst and last points of the turn short would be the starting and stopping points
of the turn, and the turning point would be the only point left to choose.

Each time the environment is reset, a random start and stop point is chosen, and the agent is
tasked at selecting where it thinks the most optimal turning point will be located.

This same approach could be done using supervised learning, by using a dataset which has
a heightmap, with start and stop indicated, and the best turning point labelled. However a
problem arises when considering multiple turns.

If for example considering a 20x20 heightmap, with one turn there is approximately 202 points
where the most optimal turn point may be located. But when you are considering two turns,
you have to �nd the most optimal position for both the �rst and the second turning point. This
exponentially increases the complexity, and for only two turns there would be 204 solutions.

Generating such a dataset, by iterating through all the possibilities, would be infeasible. Espe-
cially when considering that a dataset may require tens of thousands of entries for a network to
generalize it. Thus reinforcement learning was instead used, as it would circumvent the need
for training data.

6.9.1. Implementation Details

Using the same method that was used in DeepStar Version 3, instead of using a value in the
range [0, 1] to indicate position, having individual labels indicating chunks of the grid. Each
chunk represents a possible position on the heightmap the turning point may be.

To translate this into an reinforcement learning environment, the state is comprised of the
heightmap, as well as a start and stop position. The actions available to the agent, is selecting
which chunk to place the turning point in. Instead of using coordinates for selecting the chunks,
there is one action available for each chunk. Since there is only one turn, there will only be one
turning point to place. This means there will only be one step until the episode is considered
done.

Visualised, the start and stop points are points A and C respectively, and B is the selected
turning point in the grid in Figure 6.25b and Figure 6.26b.

Because the grid is divided into chunks to choose from, instead of selecting an individual pixel
on the grid, it reduces the amount of possibilities which can be chosen between. The size of
the chunks can also be increased, resulting in less chunks.
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Figure 6.32.: An 8x8 grid, divided into a 4x4 chunk grid. Each chunk is indexed.

The reward system for the environment is similar to the reward system used in the previous
environment, where the reward for each step is the negative of its total height. Because this is
using the turn short approach, the total height is calculated using the sampling method, though
this should not make any di�erence.

As not all turns are possible because they require turning angles too steep for the drone’s turn
radius, these are an exception in the reward system. If an action representing a chunk which
creates an impossible turn, then the reward is instead an arbitrarily chosen negative number,
with higher magnitude than most badly selected paths.

Instead of using the static heightmap for this approach, as two di�erent types of heightmaps
were used:

• Height maps from Norwegian Mapping (NMA) Institute in the Kongsberg area, made for
and previously used in DeepStar, 10,000 images.

• Arti�cial height maps, provided by project’s external supervisor. A total of 100,000 im-
ages in 31x31 resolution.

Before using the heightmaps they were both normalised. Normalising data before using it
in training means pre-processing it, so that the values in the data are within in a common
range. It is an important step of machine learning which may increase stability of the model
as well as learning rates. Implementation and explanation for the normalisation process is in
Section 10.12.

In this context, normalising the heightmap images will a�ect the best path in most scenarios.
This is because the sum of the values of the pixels (representing the height) is used to �nd the
most optimal path. We chose to ignore this consequence of the normalisation though in favour
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of the increased learning rates, until we received enough progress where we could investigate
those consequences.

Rendering was done like last reinforcement learning environment; red channel for indicating
height, green and blue for start and stop positions respectively, both blurred.

6.9.2. Training Results

Training on the arti�cial images provided faster converging rates, and as such, we chose to use
these arti�cial images for training. This could be due to multiple factors, among them:

• Data quality - the images in the heightmap were of varying quality. Some had spots with
zero height data, and some of the images were blank.

• Quantity - the number of images may have helped generalize the learning better.

• Data more similar - the arti�cial height data only had smooth height bumps. Whereas
the NMA heightmaps had a wide of features, such as trees, cli�s, and buildings, causing
abrupt height di�erences in the images.

Training was �rst done with a single convolutional neural network layer. As mentioned earlier,
starting with a simpler network structure increases the converging rate, but limits how well
it performs. In this case it converged after approximately a day, and learned how to get bet-
ter rewards. As predicted, it did not perform well. The points in every step were seemingly
arbitrarily placed, and frequently attempt to make impossible turns.

The same training was attempted on a more complex network, with three convolutional layers
and no pooling. It kept improving after training it for several days. Unfortunately, each episode
kept taking more time, most likely because of some sort of a memory leak.

Training Result Discussion

As the convergence was not reached in the model, it is hard to tell how good it is able to
do reinforcement learning on this training data. Nonetheless, it shows that a convolutional
network like this can converge on smooth heightmaps without some of the more complex
features of a real heightmap.

Network structures used in this investigation were low in complexity, with only three convo-
lutional layers. Even with this low complexity we did not have time to manage to see how well
it performed after having converged, as we got to this point exactly at the end of the project
and were out of time.
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7. Architecture

In order to achieve our requirements, in particular those derived from U.11 like F.2, we need to
have a solid architecture to build upon. The architecture describes how the di�erent compon-
ents in the system �t together. This is very important in our case, because our project is split
in two parts; path�nding implementation and a web service.

7.1. Considerations

These are the considerations we had in mind while designing the architecture:

• There must be a separation of frontend and backend.

• The user must be able to select between di�erent path�nding implementations.

• Path�nding implementations must be able to be added and removed while the system is
running.

• Height data must be readily available across the whole system.

• It should be as simple as possible to implement.

• The architecture must be robust enough to allow the system to run for weeks continu-
ously.

7.2. Development

We spent a lot of time in the �rst few weeks discussing how the architecture should be. Once
we had decided on something, we stayed true to our design to the end for the most part. Some
changes had to be made further down the line as we added more features, leading to previously
unforeseen situations which had to be handled.

The initial architecture design was very much a team e�ort, involving everyone in the group.
After that, Vetle and Håkon discussed the amendments to the design, in particular how module
management should be handled.

1See Appendix G
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7.3. Design

We decided that the best course of action would be to have an architecture which is split up into
multiple parts. We wanted to have separation of concerns for the path�nding implementations
and the rest of the system. We refer to one of these implementations as a module.

Each module is it’s own independent program, taking the form of a Python script2. We chose
Python because it is a very commonly used language in the machine-learning world, and is
the language the machine learning team wanted to work with. This approach has several
bene�ts:

• Simplicity of development: the algorithm can be developed and tested completely inde-
pendently of the system if one wants to. It can then integrated later on without much
e�ort. The actual system integration can consist of a simple library.

• Ease of implementation: Because each module is independent, we don’t need to have
some other program which forwards messages to the right module, reducing complexity.

• Containerisation: Each module can run in a containerised environment. This means that
it is almost impossible for modules to interfere with each other or the system accident-
ally3. We use Docker to do this in the system.

• If a module fails or crashes, it cannot take the whole system with it.

• All we have to do to register a new module is to launch it in a new process.

Figure 7.1 shows our software architecture. As one can see, it is based around Redis, which
we use to pass messages and as a general purpose database. See Section 4.4, and in particular
Section 4.4.2 for an explanation of how this works.

We base our architecture around Redis for a few reasons:

• Because we can use it as both a database and a message broker, there’s no need for
another database, reducing complexity.

• Our data is non-relational in nature. We would not really see much bene�t from a rela-
tional database.

• It is highly performant, so using it as a middleman will not a�ect the speed that much.

• Using some kind of message broker makes communications a lot easier.

• Simplicity. Redis is very simple and easy to use. This helped make development easier
and the �nal product less complex.

2If we wanted to, we could support di�erent programming languages as well, since the modules are independent
programs which follow a protocol.

3It is possible for a module to interfere with the database as they must have access to it to function. Very recently,
Redis 6.0.0 was released, which added support for restricting access using a user system. We could generate a
user for each module, and only allow them to touch the parts they need to work.
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Figure 7.1.: The LAPS software architecture

7.4. Backend communications

Like we said, we use Redis to pass messages. This is a di�erent approach from what we might
have otherwise written where we would have to manage connections to each module. Instead,
we only have to manage our connection to Redis. If we were to restart the backend, it wouldn’t
cause all path�nding modules to fail because the connection was closed. Instead, they do not
know that it happened at all, and everything will starts working again once the backend starts
up.

The messaging speci�cations can be found in the Appendix E. Below, we give a short explan-
ation of what the communications between the backend and the path�nding modules. Note
that every message is serialised as JSON4.

4See Section 4.7 for details.
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7.4.1. Startup and Shutdown

When a path�nding module starts up, it has to tell the backend that it exists. It does this by
sending the registration message containing it’s name and version. This is used to keep track
of which modules are available in the system. The backend listens for registration messages
on a single Redis key.

Conversely, we have a message to do the opposite: the shutdown message. It has the exact
same contents as the registration message, but removes the module from the list of registered
modules. This keeps the list of registered modules up to date without zombies. Just like the
startup message, the shutdown messages are also sent to a common Redis key.

7.4.2. Accepting Pathfinding Jobs

When a module is registered, it is ready to receive path�nding jobs. It does this by receiving a
job request from the backend and returning the path. The job request contains everything that
the module needs to calculate the path. This includes, but is not limited to: Map ID, start point,
end point and job ID. The job ID is a simple number which must be contained in the response
to the backend. The backend uses this number internally to tell jobs apart.

Each module has it’s own work queue that it listens for jobs at. This is the best way to �nd out
which jobs it should do, because it allows us to use blocking list operations in Redis, and we
know that the job ends up in the right spot.

7.4.3. Returning the Result

After receiving a job, the path�nding module does it’s thing and produces a result. The result
is the path represented as a list of points. After calculating the result, they are sent to a job
results list. This list is not unique to each module, and instead is where every single module
puts its results. This is where the job ID comes in, to determine which job we are getting the
results to.

The jobs can have three di�erent outcomes: success, failure and cancelled. If no errors occur
the outcome is a success, and the resulting path is returned. A failed or cancelled job result is
used to give the user feedback that something has happened. This is a much better situation
than waiting inde�nitely for a result that will never appear.

7.4.4. Logging

Sometimes we want to know what a module is doing and what events lead it up to that state.
We reach for logging in this case. So as an attempt to integrate logging into the system, we
decided that the modules should be able to send their own log messages to the system. These
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are picked up by the backend which stores them. In our architecture implementation, we also
make the module output log messages to standard output.

This works similarly to returning job results, except that we send the module name and version
instead of some arbitrary ID. These messages contain the log level and a UNIX timestamp of
when the log was recorded.

7.4.5. A Note on Parallelisation

By using a work queue, we can fairly easily have several workers completing jobs in parallel.
This is a fairly easy way to run several jobs in parallel. No changes are required by the module
developer. The downside is that it does not help with delay, only throughput. A job will still
take 20 seconds to complete, but multiple jobs can be executed at the same time.

We decided to embrace this. The only tweak we had to make to the architecture was to add
a worker number �eld to the log messages to tell the workers apart. This helps us �lter out
which message came from what worker, which is helpful when trying to understand what went
wrong in the module.

7.5. Backend API

While we can use Redis to communicate in the backend, we also have to send and receive
commands to the website. This is done using a REST API as shown in Figure 7.1. Our API is
described in detail in Appendix F.

7.6. Frontend

To communicate between the frontend and the backend, we are using a normal REST API.
Unlike the software architecture for path�nding modules, we came up with it as we went
along. We had no way of knowing how everything would be implemented, nor what features
we would end up actually having the time to implement, and to some extent the API needed to
re�ect this. We wanted to have a single-page application as much as possible, which is why we
needed an API rather than using server-side template rendering. However, it was important
that whatever API we came up with was well-documented, which we feel we have done.

7.7. Map data

When we export height data from the NMA, we receive this as a GeoTi� �le. This is an Ti�
image �le with additional geographical data, such as projection, coordinates and resolution.
This �le format is not very widely supported outside of the geographical world, and it would
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be much easier to convert into a more wide-spread format. GeoTi� format �les should in theory
be readable by any image reader compatible with plain Ti� �les, but most of the readers we
tried spat out an error message when it reached the geographical tags.

Therefore, it was decided that we should convert the data into a much more common format
to make handling the map data easier. We decided to go with PNG, as it is a lossless com-
pressed format which is widely supported. Because PNG does not support geographical data
like GeoTi� does, we extract metadata when doing this conversion as well, and make it avail-
able through the REST API and in the database.

This converted image is greyscale and normalised, i.e the lowest height point is set to be com-
pletely black, and the highest point is made completely white. This has the e�ect of making
all heights relative to each other, which means the algorithms perform the same no matter the
general elevation of the area one is in.

We store the data in two hash sets in Redis: one for the actual map data, and one for the
metadata. The image data is stored at laps.mapdata.image and the metadata at
laps.mapdata.meta. They both indexed by the map id. By storing the mapdata in Re-
dis, we ensure that they are easily accessible by not just the backend, but also by each of the
path�nding modules.
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8. Frontend

8.1. Purpose

The frontend serves to present the product and be the user. The frontend should present what
a user, not a developer, needs to use the product. It should be as easy to use as possible, with a
self-describing interface.

8.2. So�ware

All websites use HTML to describe its structure. A pure HTML website is static, it cannot
change. This would not su�ce for this project. CSS and JavaScript are needed to give websites
their appearance and interactivity respectively.

Cascading Style Sheets, or CSS for short, allows us to style websites. It can be used to change
where HTML elements are placed, fonts, colours, sizes of elements and much more. JavaScript
is a scripting language which can modify the contents and style of a website dynamically. It is
a full-blown programming language which also sees use outside of the browser.

8.2.1. Vue

VueJS[20] or simply Vue, is a JavaScript framework. It makes it much easier to make user
interfaces, because pure JavaScript can be quite unwieldy.

The main thing that sets Vue apart is it’s reactive components. Components allow one to break
up frontend code into chunks, which are responsible for one task each. Components consist of
the HTML, CSS and JavaScript needed to create and run that component in the browser. For
example, a component could be a login form. The HTML part would contain the form elements,
the style part the CSS, and the script the code to send the login form to the server.

Reactive components take it a step further. It allows binding data to components. When the
data changes, the website is automatically updated to match the new data. With pure JavaS-
cript, we would have had to tell it how to update the page. With Vue, this is not necessary.
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8.2.2. Axios

Axios[21] is a library that helps us make HTTP requests. We could have used the built-in
JavaScript API’s for this, but Axios is much easier to use. Because we have to make a lot of API
calls to the backend, this makes the code easier to write.

8.3. Sending Job Requests

One of the �rst features added was for the user to �nd paths between two points. This is
a basic feature that should be implemented early. The initial implementation was simple, as
the backend was also in early development and only needed coordinates to calculate a path.
The coordinates had to be typed into text boxes, and the frontend would send the appropriate
message to the backend.

Figure 8.1.: Data �ow of early job request feature

To implement this, we used Vue’s reactive feature. We bind an input �eld to a variable, which
will be automatically updated whenever a user types something in the �eld. In the case of
Listing 3, it is bound to coordinates.start.x which is the start point’s x-coordinate. We can also
change the variable in code and have the change be re�ected immediately.

<input
v-model="coordinates.start.x"
@change="fieldUpdated"

/>

Listing 3: An input element bound to a variable, which calls the fieldUpdated method
when the data changes.

There are four of these input �elds, which are used to input the x- and y-coordinates of both
the starting point and the end point. The fieldUpdated method is run when any of the
�elds change. We will come back to this function later.

8.3.1. Selecting the Map to Use

As the service grew, more features were added. Eventually, we added the ability to select the
map to use when calculating the path. This required a way to select the map in the frontend.
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There was an added map ID �eld in the API call to �nd the path. We added a dropdown menu
to the frontend to allow the user to select the map. The dropdown menu gets its elements from
the backend through an API call. The updated �ow of data can be seen in Figure 8.2.

Figure 8.2.: Frontend �ow diagram with selection of maps added.

8.3.2. Selecting a Pathfinding Algorithm

The last element added to the request is the user’s choice of algorithm. This was also imple-
mented with a dropdown menu. The �ow diagram in Figure 8.3 illustrates this.

Figure 8.3.: added map input

8.3.3. Collecting the Data

With the coordinates, map id, algorithm and algorithm version, we have everything we need
to �nd the path. Most of the user data is collected from di�erent elements of the UI, which are
controlled from di�erent components. This creates the need to enable communication between
the di�erent components.
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{
"start": { "x": 0, "y": 0 },
"stop": { "x": 1, "y": 1 },
"map_id": 1,
"algorithm": {

"name": "sample-algorithm",
"version": "1.0.0"

}
}

Listing 4: Example data the backend needs to run a path�nding job. Taken from Appendix F

The store serves as a centralised location to store any JavaScript object. This is useful as it
allows us to collect all the user input in one place. We will describe the store a little later.

After collecting all the data, we can craft the request that the backend needs to calculate a path.
The body of an example request can be seen in Listing 4.

We fetch the coordinates from the store and convert them from strings to integers:

this.coordinates.start.x = parseInt(store.markers[0].x);
this.coordinates.start.y = parseInt(store.markers[0].y);
this.coordinates.stop.x = parseInt(store.markers[1].x);
this.coordinates.stop.y = parseInt(store.markers[1].y);

Then we get the selected map id from the store:

this.coordinates.map_id = store.map_id;

Finally, we �ll in the algorithm name and version:

this.coordinates.algorithm.name =
store.selected_algorithms.name;

this.coordinates.algorithm.version =
store.selected_algorithms.version;

Sending the Job to the Backend

We take the object containing the user data and convert it into JSON as a string. The backend
requires that the content type HTTP header is set to JSON, so we have to do that too. The
request is made asynchronously which means the code should not block and wait for it to
complete, but instead run other code until an answer is returned. When that happens, we can
continue and use the result. This function will only request a job with the speci�ed coordinates,
map and algorithm. The backend returns a job token is given which then can be used to request
the results of the job. The code can be seen in Listing 5.
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//convert coordinates to JSON
let message = JSON.stringify(this.coordinates);

//Start the job based on sent information and
//returns id to fetch result when done
let res = await axios.post(getRoute("/job"), message, {

headers: {
"Content-Type": "application/json",

}
});

Listing 5: The code that sends the job request to the backend

8.4. Ge�ing the Job Results

After requesting a job we do not get the result of the job, but instead we get a token that rep-
resents the job. This is because jobs are expected not be �nished instantly. We use a technique
known as long-polling to get the results of the job. By using a token system, job results can be
reused, without having to rerun the job.

First we make a request for the job result. The function will wait until a result is given. If the
result is not ready, the backend will return a code indicating that we should poll again. The
backend does not send any status updates. The code can be found in Listing 6.

Note the error handling code. The backend returns the error code 504 when the result not ready
yet. If this happens, we just have to try again and hope we get the result back this time.

If the request is successful we should have received an array of coordinates. This list of co-
ordinates can be followed to get from the start point to the end point. We send the returned
array to store, so it can accessed elsewhere in the code.
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getJobResult: async function () {
try {
const c = await axios.get(getRoute("/job/" + this.job_token));

mutations.setrecivedCoordinates(c.data);

} catch (error) {
console.log(error);
//If the error is a time out send a new request
if (error == 504) {
console.log("504:timed out sending new request");
this.getJobResult();

}
else if (error != 504)
{console.log("something went wrong", error)}

}
}

Listing 6: The code which polls for job results.

Figure 8.4.: Diagram of job result
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8.5. The store

The service is split over many components. The store is a place where data can be stored by
any of the components. This is helpful if we have a piece of data that needs to be used in
multiple places, especially if the data is needed in another component than where it is from.
This allows for centralised data storage.

However, because the store can also be used by all components, we should be careful of what
data we store in it. If a variable is used in multiple places, it can be overwritten somewhere by
accident which causes problems. Troubleshooting can also be painful as it is not obvious where
the store has been updated. Therefore the store should only be used where necessary. Writing
data should have a higher cost than reading data. Something like the users selected start and
stop point make sense to put in the store as it is expected to be used by multiple components,
but only written from one place.

If multiple functions rely on a piece of data, it is easier to manage the many relationship to the
store, that many relationships to the source. As long as the source is in sync with the store, all
the other dependencies should also be provided with the correct data. If there is a lot of tra�c
between two components and only between them, a special relationship should be made, like
a child/parent relationship.

Figure 8.5.: Example of how multiple function uses the same data sent through the store

This function is run after the input �eld for coordinates changes. The coordinates are updated
in the store and from there can be accessed by other parts of the frontend.
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fieldUpdated() {
mutations.setMarker(
this.coordinates.start.x,
this.coordinates.start.y,
0

);
}

The function that is called in the store

setMarker(x, y, markerNumber) {
store.markers[markerNumber].x = x;
store.markers[markerNumber].y = y;

}

Then we can call the variable wherever we needed it. Here we get the currently selected map
id from the store.

this.coordinates.map_id = store.map_id;

8.6. Select algorithm

When the website loads a request is made to the backend to list all available algorithms. These
are in return displayed in the form of a dropdown menu.

this.algorithms_arr = await axios.get(getRoute("/algorithms"));
let i = 0;
for (i = 0; i < this.algorithms_arr.data.length; i++) {
let alg =

this.algorithms_arr.data[i].name +
" " +
this.algorithms_arr.data[i].version;

this.options.push({ text: alg, value: i });

console.log(JSON.stringify(this.options[i]));
}

The returned data is put into a for loop. The for loop is simple. It runs through the length of the
returned algorithm data. It assigns a value which is the same as the spot in the array. Because
of Vue we can’t simply select a spot in the array based on the index. This is because Vue has to
add a new variables to its reactive system. Therefore if options[3] is not de�ned during render,
even if we declare options as an array, options[3] would be unde�ned. The easiest way to do
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this with array is simply to use push to add a new value, as this also adds the new value to
vue render. Using push to add a new value isn’t exactly uncommon, but if we don’t know why
push works, but directly setting the value doesn’t can cause some issues. If an value is already
declares either at render time or through adding later the value can be changed directly.

Figure 8.6.: Dropdown Menu

After we have a selectable, formatted list of the algorithms, we must display them. We bind
the select HTML element with the new array with all the options we just made. Option.text is
the what the users will see and option.value is the value that will be used when the user select
that option.

<select v-model="selected" @change="onChange($event)"
class="drop-down">
<option v-for="option in options"
v-bind:value="option.value">
{{ option.text }}

</option>
</select>

After the user selects an option, the onChange function will be run. When an algorithm is
selected it get updated in the store so that other functions can use it. This where we get the
selected algorithm from, when we send a job request.

onChange(event) {
mutations.setselected_algorithms(
this.algorithms_arr.data[this.selected]

);
}

8.7. Select map

Both maps and algorithms are present the user in a dropdown menu. The di�erence is that the
map menu displays all available maps and the algorithm menu display algorithms. As how the
dropdown menu is explained under the select algorithm section, there is no need to reexplain
it.

When a map is selected a link that is used to fetch a map from the backend is generated.
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All the maps are stored in the backend. Based on the selected map we generate a path to the
selected map. This can be used to call the map where we need it.

onChange(event) {
//takes the selected option and generate the request path
this.map_link = getRoute(

this.map_path + this.mapList.data.maps[this.selected]
);

}

8.8. Map

8.8.1. Display map

We wanted be able to interact with the map directly. We wanted to be able to click on it to
place objects, and display the paths. An HTML canvas is natively supported way of creating
a element that can be changed by code. Unfortunately there is currently no direct support for
a canvas alternative in Vue, and therefore we must use HTML and edit the element through
JavaScript directly.

We start by declaring the canvas element:

<canvas id="c" height="200" width="500" v-on:click="placeMarker">
</canvas>

For now the element is empty there is no problem declaring from the start, if the element used
by Vue, declaring it before we where ready to input data could cause issues. We will also add
more or less everything we need through JavaScript.

We want the map to be displayed right after we select it in the menu. So the �rst thing is to
use the selected maps id and request it from the backend. Create a new image object and set
the source to the selected map.

var base_image = new Image();
base_image.src = this.map_link;

We can now take the width and height of the picture and use it to scale the canvas size. Now
with the size of the canvas set correctly we can add the image to the canvas. If we set the
canvas too small, parts of the image will not be displayed and if set it to large, the user would
be able to interact with the outside of the map. The last part is especially important as a if the
user selected a coordinate outside of the map, the backend will return an error.

base_image.onload = function () {
let pictureSize = document.getElementById("c");
var height = base_image.height;
var width = base_image.width;
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pictureSize.width = width;
pictureSize.height = height;
map.drawImage(base_image, 0, 0);

};

Figure 8.7.: Example of a displayed map
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Figure 8.8.: Diagram for every step to display a map

8.8.2. Display returned path

We now have placed the map and have the result from our selected path�nding module. We
can fetch the coordinates from the store and use them. The way the results are given is that
each coordinates represent a pixel on the map, with an X-axis pointing down. The origin is in
the top-left corner.

<div id="draw-cordinates">
<div v-for="(point, index) in recivedCoordinates.points" :key="index">
<canvas
width="2"
height="2"
v-bind:style="{
left: recivedCoordinates.points[index].x + mapOffSetX + 'px',
top: recivedCoordinates.points[index].y + mapOffSetY + 'px',
backgroundColor: colour,
Zindex: 1,
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}"
>
</canvas>

</div>

We loop through all returned coordinates, and place red dots at the corresponding location on
the map. The red dots are 2 pixels wide and tall, as smaller dots are hard to see. The path is
meant to be visual, not to be perfectly accurate. The coordinates themselves should be used
for an accurate depiction of the path if that is needed.

To make sure the points are aligned with the map we need the o�set of the map. getBound-
ingClientRect gives the position av the element from the corner of the current window. For
the x axis, this is all we need to do. For the y axis we need to take into account the if window
has been scrolled. Simply adding the scroll value should be enough. We then update it in the
store.

var e = document.getElementById("c");
var rect = e.getBoundingClientRect();
mutations.setmapOffSetX(rect.x);
mutations.setmapOffSetY(rect.y + window.scrollY);

Figure 8.9.: Result of a path
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8.8.3. Placing Markers

We wanted our users to be able to select start and stop by clicking on the map. The template
element is used to toggle on or o� the elements inside it. We only want the marker to appear
after it has been placed. The markers position is controlled by using Vue to change the CSS.
What we are seeing here is just the visual display showed to the user.

<template v-if="displayM1 == true">
<img
:src="images.marker1"
style="width: 1%; height: 5%; position: absolute; z-index=2"
v-bind:style="{
left: x1 - 12 + 'px',
top: y1 - 24 + 'px',
Zindex: 2,

}"
/>

</template>

The map is inside a canvas, therefore we can add a function that will be called when the canvas
element is clicked.

<canvas id="c" height="200" width="500" v-on:click="placeMarker">

We can get some information about what happen on the click, luckily this includes where
on the screen the click was. We subtract the displacement of the map and we can get the
coordinates. We also set the render to true, so that the marker actually appears on the map. The
selected marker �ip between 1 and 0 so that the markers will be placed in turn. When x1 and
y1 is updated the, CSS that controls the markers position is also updated. The getPointHeight
function is to measure the height at the location the marker was placed. At the end the markers
position is updated in the store.

if (this.selectedMarker == 0) {
this.x1 = event.clientX;
this.y1 = event.clientY + window.scrollY;
this.selectedMarker = 1;

this.displayM1 = true;

let cordX1 = Math.round(event.clientX - rect.x);
let cordY1 = Math.round(event.clientY - rect.y);
this.marker1Height =
Math.round(this.getPointHeight(this.x1, this.y1));
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mutations.setMarker(cordX1, cordY1, 0);
}

8.9. getRoute

Most of the calls made to the backend will look something like this:

this.algorithms_arr = await axios.get(getRoute("/algorithms"));

The only odd piece of code is the getRoute function. For a while the frontend was developed
on a backend hosted locally on the development computer. After we get our server up and
running we could host the backend there. The path to a server hosted backend is di�erent
than a locally hosted backend. So by running the path through getRoute we can get the correct
path.

When we build the frontend it checks if we are running production(locally) or not (server
side).

if (env.production) {
console.log("Running in production mode");
routeAlias = "./frontend/route_production.js";

} else {
console.log("Not using production");
routeAlias = "./frontend/route.js";

}

If we are running production getRoute it returns the path as-is:

export function getRoute(path) {
return path;

}

If we are not running production, all the paths are modi�ed to the server version:

export function getRoute(path) {
return "https://staging.laps.website" + path;

}

This makes development of the frontend easier as there is no need to run the backend locally
anymore.
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8.10. Admin panel

There are certain features that we would like users to have accesses to. Most of these features
are already available through the backend. But as the users cannot access the backend, creating
a frontend implementation is needed. To make sure these features are not abused, they are all
locked behind an admin login.

8.10.1. Upload/delete map

Upload map

First we create a input that excepts ti� �les which what our maps uses.

<label
>GeoTiff file:
<input
type="file"
ref="file"
accept="image/tiff"
v-on:change="handleFileUpload()"

/></label>
<button v-on:click="submit()">Submit</button>

When the submit button is pressed the submit function is run. The function creates a form
with the uploaded map �le, sends it to the backend.

submit: async function () {
if (this.file == null) {
alert("Please select a file!");
return;

}
let url = getRoute("/map");
let formData = new FormData();
formData.append("data", this.file);
try {
await axios.post(url, formData, {
headers: {

"Content-Type": "multipart/form-data",
},
withCredentials: true,

});
await this.refreshMaps();
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} catch (err) {
console.log(err);
alert("Failed to upload map: " + err.response);

}
}

Delete map

The maps currently available is presented in a list and in the list a button is generated, when
pressed runs the deletemap function with the given map id.

<li v-for="map in maps">
ID: {{ map }} <button v-on:click="deleteMap(map)">Delete</button>

</li>

The delete map function sends a delete request to the backend.

deleteMap: async function (map) {
let url = getRoute("/map/" + map);
try {
await axios.delete(url, {

withCredentials: true,
});
await this.refreshMaps();

} catch (err) {
console.log(err);
alert("Failed to delete map: " + err.response.data);

}
}

8.10.2. Upload module

Uploading a module works similar to uploading a map. Rather than looking for ti� �le we look
for a tape archive.

<div id="moduleUploader">
<h2>Upload new module</h2>
<label
>Module tape archive:
<input
type="file"
ref="file"
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accept="application/x-tar"
v-on:change="handleFileUpload()" /></label

><br />
<label>Name: <input type="text"

name="name"
v-model="input.name" /></label

><br />
<label
>Version:
<input type="text" name="version"
v-model="input.version" /></label

><br />
<button v-on:click="submit()">Submit</button>

</div>

When the submit button is pressed the submit function is run. We then check that all �elds are
�lled in. Add the �le to a form, and attempt to send it to the backend.

submit: async function () {
if (this.input.name == "" || this.input.version == "") {
alert("Please input name and version");
return;

}
if (this.file == null) {
alert("Please select a file!");
return;

}

let url = getRoute("/module");
let formData = new FormData();
formData.append("name", this.input.name);
formData.append("version", this.input.version);

//Need to set the content-type header on the module field,
//so recreate the file:
console.log(this.file);
let file = new File([this.file.slice()], "module.tar", {

type: "application/x-tar",
});
formData.append("module", file);
axios
.post(url, formData, {
headers: {

"Content-Type": "multipart/form-data",
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},
withCredentials: true,

})
.then(function (data) {
alert("Successfully uploaded module!");

})
.catch(function (err) {
alert("Failed to upload module: " + err.data);

});
}

8.10.3. Running modules

From the admin panel we can see which modules that are running, we can stop them and restart
them. In this case restarting also works as the start function. We create a list that displays all
available modules.

<li v-for="module in modules">
{{ module.name }} {{ module.version }} State: {{ module.state }},
<a v-bind:href="moduleRoute(module, 'logs')">Logs</a>
<button v-on:click="restartModule(module)">Restart</button
><button v-on:click="stopModule(module)">Stop</button>

</li>

We also create two buttons for each function. They will run either the restart function or stop
function, with the associated module. For stop function the only thing we need to do is send a
request to the backend with the correct id and the backend will do the rest.

stopModule: function (module) {
let url = this.moduleRoute(module, "stop");
axios.post(url, { withCredentials: true }).catch(function (err) {
alert("Failed to stop module: " + err);

});
}

It works more less the same for restarting a module.

restartModule: function (module) {
let url = this.moduleRoute(module, "restart");
axios.post(url, { withCredentials: true }).catch(function (err) {
alert("Failed to restart module: " + err);

});
}
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8.11. Map data

Map data is in greyscale. The higher the point, the more white is in the pixel.. Therefore we can
use this to get some information about the paths that is sent from the modules. The backend
also have stored the lowest point in the map and the heights map. So this map for example
have its lowest point of 142 meters and high point of 216 meters.

8.11.1. Using Colour to get Height

Because we used a canvas element the present the map, we can get data about what is in the
element. This allows us the select a pixel in the canvas and get the colour of that pixel. By
doing some math, we can calculate the height in this point. First take the colour code from
between 0 to 255, where 0 is the lowest point(black) and highest point is 255(white). We take
the point percentage from the highest point, so p ÷ 255 to get the percentage. The maps are
normalised, so the tallest point on the map always has the value of 255, and the lowest point is
always 0. The percentage we found earlier can therefore be used to �nd the height. Then add
back the lowest point.

getPointHeight: function (x, y) {
//get the RBG code from pixel with coords
//x and y with size 1 by 1 pixel
let pointRBG = this.mapCanvas.getImageData(x, y, 1, 1);
//Find the percentage of maximum value
let precetangeOfHeight = pointRBG.data[0] / 255;
// multiple the percentage with difference between
//the highest and lowest point
let pointHeight = precetangeOfHeight * this.mapTotalHeightDiff;
//We add back the lowest to point to get the accurate
// height or the height over the sea
let pointHeightfromSea = pointHeight + this.mapData.min_height;

return pointHeightfromSea;
}

8.11.2. Useful data

With the ability to �nd the height of a speci�c pixel, we can get some useful data out of it.

• Lowest point

• Average height for the map

• Highest point
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Figure 8.10.: Example of greyscale map
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• Height for start and stop point

• Accumulated height di�erence

The lowest point height and highest point heights has to be retrieved from the backend, but we
also get the average height as well. As we already have a function to get the height of a point,
and we have the start and stop point, we get the height from the start and stop point easy as
well.

We wanted to �gure out the accumulated height of the path. There is already a function that
�nds the height in a speci�c coordinate. We also have an array of coordinates that make up
the path. To get the accumulated height we take the di�erence in height and the next point
and add this to the total accumulated height. After we run through the entire array we get the
total accumulated height.

accumulatedHeight: function () {
let height = 0;
for (let i = 1; i < this.recivedCoordinates.point.length; i++) {

//find the height of the points
let point1 = this.getPointHeight(
store.recivedCoordinates.point[i - 1].x,
store.recivedCoordinates.point[i - 1].y

);
let point2 = this.getPointHeight(
store.recivedCoordinates.point[i].x,
store.recivedCoordinates.point[i].y

);
//adds the total difference to the
//accumulated height difference
height = height + Math.abs(point1 - point2);

}
console.log(height);

}

As this was one the last functions to be added to the service, the UI element are not done. The
functions are �nished but haven’t yet a way for them to presented.
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9. Backend

The backend is the glue that holds the entire application together. Without it, there would be
no website, and thus no service. The backend is implemented as an HTTP server, listening to
REST API calls. Build instructions and a general overview of the source code can be found in
Appendix B. The REST API reference can be found in Appendix F.

9.1. Programming language

We want the backend to be fast, secure and reliable. We should therefore choose a language
which will �t all these criteria. Traditionally, developers have chosen to write their applications
in C or C++ when performance is important. In our case, backend performance is not a hugely
important thing, because the main factor limiting performance is going to be the path�nding
modules.

Security is an important factor for us. We are going to expose the service to the internet, and as
such, using a language like C or C++ is a bad idea, due to the lack of memory safety provided by
those languages. It is certainly possible to write good, sound code, especially when one utilises
the more modern features of C++. However, there is still a risk. According to Microsoft, 70%
of security vulnerabilities come from memory issues[22].

As a famous example, consider Heartbleed. Heartbleed was a bug in OpenSSL which allowed
clients to read server memory. There was a bu�er over�ow in the heartbeat handling. The
heartbeat would receive data of some speci�ed length, and send it back to the client to verify
that the connection was open. All an attacker had to do was to maliciously set the length �eld
to be greater than actual length of the data, and the server would happily send back data that
lived past the end of the bu�er[23].

We therefore chose to write the backend in Rust. Rust is a systems programming language
which enforces memory safety at compile time[24, Chapter 4]. These safety guarantees also
include thread-safety, which helps boost productivity, as it is impossible (provided we do not
use unsafe and opt out of this safety) to rack up a number of memory-safety related bugs which
can be hard to track down. Rust can provide all this with performance comparable to C++, as
it is compiled down into optimised machine code.

Rust is also Håkon’s preferred programming language, and since he is the main developer of
the backend, it was a natural choice.

128



LAPS Final Report

9.2. Tests

Every REST endpoint has associated unit tests which are run continuously as we develop the
backend. Testing of a web application can be quite a task, but because the backend relies so
heavily on Redis to manage it’s internal state, we can spoof situations. By carefully setting
values, we can simulate any state the backend can �nd itself in. The downside of this is that
we cannot run the tests in parallel as they would interfere with each other, but we don’t have
hundreds or thousands of tests, so it doesn’t really matter.

When we implemented path�nding module uploading as per RQ.4.3, the state issue was made
worse than it already was. While Redis allows the selection of multiple, separate databases, the
Docker daemon doesn’t really have an equivalent. Afterwards, we completely abandoned the
idea of parallelising our tests, which is done by default in Rust.

We tried to test one piece of code per test as much as possible. This means that our tests are
rather long because we try to test as many situations as possible for each piece of code. For
example, we try to extensively test each endpoint when fed both valid and invalid inputs. The
result is that most tests are > 100 lines long. However, we have quite good coverage (> 80%)1.
The main reason it isn’t higher is that there is a fair bit of setup code which doesn’t get run
when we run the tests.

9.3. Pathfinding modules

Path�nding modules are managed by the backend using Docker2. Docker provides a REST API
which we tap into using a library called Bollard3. We have complete control of the Docker
daemon this way. A module consists of a Docker image, which is built from user-supplied
�les.

9.3.1. Communications

Like we explained in Section 4.4.2, Redis is a great choice for inter-process communications.
We use the list approach for the communications link between the backend and the path�nding
modules. Most messages are multiplexed over a single key such that we only have to have one
task4 listening for events at once. The backend implements the architecture we described in
Chapter 7.

1https://codecov.io/gh/LAPS-Group/laps/branch/master
2See Section 4.3 for more information about Docker.
3url: https://github.com/fussybeaver/bollard
4«Task» is the term used to describe an asynchronous operation running in the background when working withn → m threading. The �rst part of Steve Klabnik’s talk Rust’s journey to Async/Await[25] is a great introduction

to the topic.
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9.3.2. Shutdown and Startup Messages

Our architecture requires modules to register themselves in the system. These come in the
form of startup and shutdown messages. We use these to keep track of which modules are
available to the user. Essentially, we store it as a Redis set. Each member of the set is one
path�nding module. Using a set allows us to easily determine if a module is active by using
the Redis command SISMEMBER.

We keep track of how many instances of the same module have started. Whenever we receive
a startup message, we increment this number by one. Conversely, we later decrement the
number when a module shuts down. When we read a startup message, we add the module
to the set of running modules. Using a set helps us here because trying to add a set member
which already exists is a no-op.

The counter comes into play when we receive a shutdown message. After decrementing it, we
check if it has reached zero. If it has, then we can remove the module from the set of running
modules. When this happens, we make sure to cancel any jobs that the module has in it’s
queue, and clear the cache of any jobs using this module. More on the cache in Section 9.3.5.

It is important to cancel the queued jobs. If we don’t, the user will be waiting for their jobs to
complete, but they never will. It is much better to return some kind of error message to the
user to improve the user experience. We respond to every job in the queue with a cancellation,
and then delete the module’s work queue. This is done to prevent «zombie jobs» where if the
module is restarted, it will calculate jobs which are no longer needed.

Originally, we only had the set. This caused problems when we wanted to run multiple in-
stances of the same module; if one of them were to shut down, the module would appear to be
down. With multiple workers, this wouldn’t be true as the remaining could still receive jobs.
Implementing the counter approach solved this issue.

9.3.3. Module management

In order to achieve F.45, in particular RQ.4.2 and 4.3, we need to have some way to manage
modules. Management as per these requirements is to upload, start, stop and delete any module
independently of one another.

We do not have to explicitly keep track of which modules have been uploaded in a database.
Instead, all we have to do is to get a list of Docker images using the API, and use the data in
tags to tell us the name and version of each module. A Docker image can be tagged with a
name and a version, which we use to tell which module the image refers to.

5See Section 10.4
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Uploading of New Modules

When a path�nding module is uploaded, a Docker image is built from the upload. The upload
consists of a multipart form with four parts: a name, a version, number of allowed workers
(which we will get back to) and a tape archive (.tar) containing the source for the module.
The name and version �elds are used by the backend to tag the image, so we can identify it
later.

The archive must contain at least two �les: requirements.txt and main.py.
requirements.txt is a list of Python packages required to run the module, and they will
be installed into the image when it’s built. This will be di�erent for every module. main.py
is the entry point for the module. This is the �le that gets executed when the module starts
up. The LAPS module running library, laps.py6, is included into the image by default and
should not be supplied by the user. Figure 9.1 shows the �le system of a minimal module
containing only the required �les.

/workdir

laps.pymain.py requirements.txt

Figure 9.1.: A work directory for a minimal built module image. Note that this �gure omits all
the operating system components, which are still present, just not relevant.

Removal of Modules

We found that it was necessary to delete modules in some cases. Sometimes one uploads the
wrong module by accident, sometimes it has to be modi�ed, etc. To do this, we have to delete
any containers which may have been created from the module image, the image itself, and any
traces which remain in the database afterwards. This �rst makes sure that the module being
stopped is not currently running.

Starting and Stopping Modules

As we explained in Section 4.3, we have to create a container from a Docker image to actually
execute it. This is where the module workers �eld comes in. When creating the containers,
we have to create as many containers from the image as there are workers assigned to the
module.

6Read more in Section B.5
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So that’s what we do. We make sure to name our containers in a �xed pattern. One can see a
glimpse of this scheme in Figure 9.2. Because container names must be unique, we can’t just
name each worker container after the module and call it a day. We also include the worker
number. The worker number is a number we use to separate the workers from each other.
The naming scheme is just the module name, version and worker number, concatenated with
hyphens.

Using the names of the containers, we can determine if we have to create the containers or not.
If they are already created, we can start them right away. We can end up in this situation by
stopping the module at some point, and then deciding to start them up again. Starting them is
done through the Docker API.

Figure 9.2 illustrates what this looks like. On the right, we see the images and their tags,
illustrating the name and version of the module. This is how one normally uses these tags.
When we want to start a module, we create the containers if needed, as shown in Figure 9.3.
Note how the name of the container is created from the name and version of the module but
separated by a dash instead of a colon. This is because Docker does not support versioned
containers, so we roll our own solution.

Note that we use the Docker API to determine what state the module is in: running, failed or
stopped. In Section 7.4.1 we explained that modules send a message to the backend when it
starts up to register itself with the system. This might seem redundant when we can instead
prod Docker to determine the same information. However, this turns out to be quite useful in
certain situations.

deepstar:4

deepstar:5

dijkstra:1.0.0

Docker images

Backenddeepstar-5-0

deepstar-5-1

Running containers

deepstar-4-0

Stopped containers
Docker containers

Figure 9.2.: How we create containers from images. Note how no names are capitalised. Docker
does not allow us to use uppercase letters in image names, so we have to keep them
lowercase.
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Figure 9.3.: Module startup �ow chart

By allowing modules to register themselves from outside the management system, it becomes
easier to debug and prototype new modules. We can quickly and easily develop and test our
module without having to repackage it, making integration of an algorithm less tedious. It also
helps us debug potential backend issues, and is easier to test.

To stop a module, we don’t have to do anything special. We just tell Docker to stop each of the
containers created for the module.

Ge�ing Module State

A module can be in one of three states: Running, stopped and failed. The states are forwarded
to the frontend such that we can get the overview of available path�nding modules, as per
RQ.4.17. For every Docker image, we get every container which is associated with that image.

7See Section 10.4
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We then investigate each container to determine the state of each module.

Because we are working with several containers, we have to get the state of each worker con-
tainer of the module. If all the states are the same, we return that the overall state is that state.
If there are di�erent states, we build a message string based on the states we retrieve, which
can be displayed in the frontend.

If an image has no associated container at all, that means that the module never was started,
so we return that the module is stopped. If a container is found to be running, we don’t have
to do anything and can mark it as running. If however a container has exited, there are two
possible reasons:

1. The module was shut down successfully.

2. The module failed with some error.

We can tell if there was an error or not based on the exit status of the container in standard
UNIX fashion. A nonzero exit value means that there was a failure. If the exit code is nonzero,
we return that the container failed along with the error code.

9.3.4. Logging

Because we are executing arbitrary Python scripts when running a path�nding module, there
are many ways this can fail. To counter this, we had to have some kind of logging infrastructure
in place to help the user debug the issue. Docker has builtin log support which would have
been a good choice. However, the library we used in the backend to communicate with Docker
did not expose this API.

We got around this by making our own logging system. It was not the deciding factor in this
decision, because what we really wanted was a logging system which is well-integrated into
our system. This also gives us complete control of how we manage the logs, and we use this
to put module logs into the server logs as well.

A side e�ect of this is that the logs are duplicated three times: When we store them in our
database, in Docker’s stdout logs and in the server logs. The only place we really care about
the logs is when they are stored in the database, so we can get rid of the others if this duplication
causes lots of disk space.

Like we explained in Section 7.4.4, we receive log messages from the path�nding modules.
Depending on their level, we emit a corresponding log message in the backend as well. After-
wards, we use the information in the message to create a pretty version of the log and store
this in a list which is unique to each module. When retrieving the logs, all we have to do is to
concatenate each element in the list with newlines in between before we can send it back to
the user.
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9.3.5. Job submission

In order to submit a job, we communicate with the path�nding modules through Redis. This
is well and good, but it is not something that a user can do themselves for security reasons.
Therefore, we expose an API endpoint to submit jobs on their behalf. We take JSON data which
describes the job. The exact data is described in Appendix E, but it contains everything we need
to execute the job.

When a job is received, we have to do a couple of checks. First, we check if the job is cached.
More about how the caching works in a bit, but if the job hasn’t been seen before, we have to
tell a path�nding module to run the job. First o�, we have to make sure that the job is valid.
We only cache valid jobs, so we can safely do this after the cache check.

A job is considered valid if it ful�ls the following requirements:

• The map with the requested ID exists.

• The requested path�nding module exists.

• All coordinates are positive. Coordinates are based on the pixels in the map image, so
negative values are incorrect.

• No coordinates are outside of the map bounds. A map with n ×m pixels cannot contain
the position (0, m + 1).

If the job is found to follow these requirements, we can continue. This is where we hand the
job over to the module. First, we have to generate a job ID. This ID is used to keep track of
which results are for which job. They are generated using a simple counter stored in Redis,
which counts up from 1. Job IDs only have to be unique, and if we just count upwards we are
guaranteed to have a unique one every time8.

With the job ID calculated, we can submit the job. We serialise the job to JSON, which is our
de�ned format from the path�nding modules. Then we push the data onto the queue of the
correct path�nding module, where one of the workers for the module will pick it up.

Next, we generate a random token. This random token is returned to the submitter of the job
and is used to get the token back. We can now cache the job submission, more about that in a
second. We create a job mapping in Redis which maps this random token to a job id. The main
reason for this layer of indirection is that we can tell the di�erence between a job that has been
submitted and is not ready, and a job that has never been submitted at all. If the mapping key
does not exist, we know for a fact that the job was never submitted.

Figure 9.4 shows how the mapping is laid out. Notice how there is only ever one mapping
which goes to each result. The entire job submission pipeline is illustrated in Figure 9.5.

8The counter is a 64-bit signed integer value, so we can submit a job every second for billions of years, and will
not run out.
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Result for job #1

Result for job #2

Result for job #3

Job results

ABCD

EFGH

IJKL

Job mappings

Figure 9.4.: Job mapping. Here one can see the layer of indirection between the mapping and
the actual result.

Caching

After generating the mapping of a token to a job ID, we can cache the job. We do this by
making a job cache key based on the job’s parameters. This means that a job with the exact
same parameters will always map to the same cache entry. In the cache entry itself, we store
the token which maps to a particular job ID.

This means that job caching is completely transparent to the frontend. If a submitted job hits
the cache, we just return the previously generated token for that particular job, just like we
would if the job hadn’t been completed before.

9.3.6. Ge�ing job results

As stated in Section 7.4.3, the backend receives path�nding results in one place. To make these
results available across the system, we place the job result into a Redis list. The key of the list
only depends on the ID of the job which was received. This way, we can see if a job is ready by
polling for list elements at the key where the job result ends up. It also means that the list will
only ever have one element in it. The list allows us to use blocking operations with Redis.

When the user wants to retrieve the result of a job, all they have to do is to present the job
token they received when submitting the job. If a mapping to a job ID exists, we can move on
to the next step. If not, we simply return a 404 Not Found because the token has expired or
is just invalid. We then look at the job mapping to determine which job ID it maps to. From
there, we can wait for a value to be put there. The process is illustrated by Figure 9.6.

The backend will return an error if the job output is an error or a cancellation.
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Figure 9.5.: Job submission routine as a �owchart

Long-polling

We do the waiting by using long-polling. Long-polling is a primitive yet e�ective technique
for this kind of thing. The idea is that we perform some blocking operation on the server9

and respond to the client when the data is ready or a timeout is reached. When the timeout is
reached, the client can try to get the resource again if the resource is still desired.

There are better alternatives to long-polling such as a WebSocket. A WebSocket works much
like a traditional network socket, but uses HTTP as the transport layer[26]. This makes them
a good replacement for long-polling, and can be used for general-purpose two-way commu-
nication.

Websockets would be bene�cial in this case, however we decided against it as it adds complex-
ity. It is not something that we have experience with from before, which means it might have

9Blocking the processing of that particular request at least, not necessarily the whole thread.
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Figure 9.6.: Getting job results as a �owchart

taken up valuable time. It is an area of the service which can be improved upon in the future.

Implementation

We use the Redis BRPOPLPUSH command to poll for a job result. This command takes an
element o� of the list and pushes it to another list immediately, returning the popped element.
By popping and pushing to the same list, we e�ectively do nothing if the list has only one
element. This makes it a good choice for a polling design such as this.

So we perform a blocking list pop operation on the key where jobs come from. If the operation
times out, we return and ask the client to poll again. If there is a value, all is well and we can
return the result of the job to the user.

Because this operation can take a long time, it will hog the Redis connections we have pooled.
This is bad, because if will grind the service to a halt, waiting for the connections to be released.
Therefore, we have a separate connection pool speci�cally for polling jobs. This way, we can
hog them for a long time without impacting the rest of the application. If no connections are
available, we return a service unavailable error.

We keep track of how many clients are polling using a counter in Redis which is incremented
whenever a client is polling, and decremented whenever we are done processing the poll. The
maximum number of polling clients can be set using the con�guration �le.

We initially had a much more complex implementation of this. The reason was that we weren’t
sure if caching of job results would still work if we kept it as a list. The thinking was that
because we empty the list, the expiry of the result would reset. As it turned out, this assumption
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was incorrect when we use BRPOPLPUSH because the list does not actually ever get removed.
This means that the timeout remains, and the result expires after the allocated time.

Initial, thrown-out implementation

The initial implementation used a normal Redis value with GET. We would see if a job result
was available, and if it wasn’t, we would sleep for some period of time before trying again, and
keep trying in a loop until we either got the result back, or the polling timed out. We could
thankfully drop this approach later, reducing server load and making our code cleaner. This
also resulted in slightly faster response times.

9.3.7. Map Management

In order to make setup of the service as painless as possible, it was really important to be able to
import new maps and delete old ones into the system quite easily. This ties into requirements
RQ.4.2 and RQ.4.3.

Import

In order to add new map data, we need to have some kind of conversion routine. To achieve this,
we have written a Rust crate (Rust jargon for library), named laps_convert. It lives in our
repository. It has a couple of functions which can convert from any raster format supported by
the GDAL library. GDAL was chosen because it supports a large number of map data formats,
and there were ready-made Rust bindings available for it. It parses the �le for us such that we
can perform processing on it.

These functions in laps_convert takes an input raster �le and reads the height data con-
tained within them. We also extract some simple metadata, which can be retrieved by any
path�nding module and with the REST API. The height value for each point is given in units
above sea level. These units could be anything, depending on the source of the data. We do
not touch the unit at all.

When importing the image, we normalise it, such that all height samples are relative to each
other. The normalisation algorithm works like this:

• Find the lowest and highest points in the data, Hmin and Hmax.

• For every point, use Equations (9.1) and (9.2) to do the conversion [Hmin, Hmax] → [0, 255]
to get a pixel value.

• Export the result to a greyscale PNG.
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r(A) = Amax − Amin (9.1)

ℎ(x, A, B) = (x − nmin) ⋅ r(A)r(B) + Bmin (9.2)

Equation (9.2) converts a number x ∈ A to a number ℎ(x) ∈ B.

To do quick-and-dirty conversions between geographical data and data our system can use, we
have integrated the laps_convert crate into a command-line utility. The utility performs
the conversion and can immediately upload it to a running system. The main use for this tool
was to upload map data properly before it was added to the REST API. It can still be useful for
importing data in bulk.

Deletion

We wanted a way to remove maps from the system, because we found that some maps were way
too big. This caused massive memory usage, causing modules to fail and crash. Unfortunately,
just deleting the map causes any queued jobs using that map to fail. It’s also useful to be able
to remove maps which were uploaded by accident.

As it turned out, deleting a map caused chaos in the system. Any jobs in the queue which used
the map would immediately fail, taking the modules with them. To counteract this problem,
we added a helper function which will fail if the map doesn’t exist, and allow the module to
skip ahead to the next job if the map does not exist.

To actually perform the deletion, we just delete the map data from both the image hash set and
the metadata hash set.

9.4. Administrators

Administrators are the only users able to upload new maps and modules. They are also the
only ones who are allowed to start and stop modules. This allows us to manage the service
remotely without being logged into the actual server, and be con�dent that only authorised
users have modi�ed the service. We can also use this to see who made what change and when
in the server logs.

9.4.1. Passwords

A password is sequence of characters used to authenticate a user account.
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Password Hashing

If someone gets access to the database, they can scrape if for passwords and every user’s pass-
word is compromised. This would allow them to sign in to any other services that the user may
have had the same password on. To prevent this, one doesn’t store the passwords themselves,
but instead a hashed version of the password. A hash is an output of a hashing function.

A hashing function is a function which takes a string of bytes as input, and outputs a di�erent
string, often of a �xed length. In general, one wants a hashing function without collisions.
This means that no two inputs should have the same hash. Furthermore, for password hashing
purposes, one wants it to be non-reversible[27].

There are many purpose-built password-speci�c hashing functions. From 2013 to 2015, the
Password Hashing Competition was held. It was a competition to design the best possible hash-
ing function for passwords, judged by security experts. The winner of the competition was
Argon2[28]. Based on this, we decided to use the Argon2 algorithm for LAPS.

Hash Salting

If several users use the same password, their password hashes will also be the same. If an
attacker successfully �gures out this password, multiple users can be compromised at once. It
is also possible to cross-check with databases obtained from several sources to see who has the
same passwords.

We can avoid this problem by salting the hash. A salt is just some extra bytes we put at the
end of the input data we are hashing. We can store the salt right next to the hash. By using a
randomly generated salt, we ensure that each hash is unique, even if the underlying passwords
are the same. This means a precalculated hash can no longer be used to determine what the
password is.

We salt the hash using an 8-byte salt, generated using a cryptographically secure pseudo-
random number generator.

9.4.2. Usernames and Database Storage

Each administrator has their own Redis hash set where we store the data on the administrator.
Currently, we store their password hash and whether or not they are a super admin as two
separate hash �elds.

But what about the usernames? As it turns out, we do not need to store them at all. Instead,
the username is encoded in the key used to store the administrator’s information. This way
we can just generate a key from the their username. If no data exists at the key, we know that
the account does not exist. See Figure 9.7 for an example of what the keys look like.
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laps.backend.admin.admins.jan
laps.backend.admin.admins.karoline
laps.backend.admin.admins.håkon

Figure 9.7.: Some example administrator keys. To avoid having case-sensitive usernames, the
usernames themselves are always converted to lowercase when creating the key.

9.4.3. Registration

There are two ways to register an administrator: If none have been registered from before,
we simply accept the request for what it is, and register whichever administrator as a super
admin. We have this mode such that when the service is deployed the �rst time, we have a
way to register the super admin in an easy and painless way. If however; there already exists
one or more admins, one can only register an administrator if one is logged in and is a super
administrator.

To do the actual registering, we generate the appropriate key based on their username as de-
scribed earlier. We then generate a random salt for the password hash, and calculate the hash
using the Argon2 algorithm using the salt and password. Out comes a string which encodes
the hash, the salt, and our hash parameters.

When an administrator is registered, we store the hash settings, hashed password and salt in
the database under a single string. When validating a password, this string is parsed to retrieve
the settings used to hash it. We can then calculate the hash using the same settings, and if they
match, we have successfully authenticated. This also contains the salt of the hash. This also
allows us to change the hash settings on registration as much as we’d like without breaking
any logins.

9.4.4. Authentication

To log in to the server, a POST request is made to /login. This will attempt to authenticate
the administrator with the username and password provided. We again generate an admin key
based on the username. Then, we get the hash and the super admin status from the database.
The provided password is hashed using the hash settings and salt we stored in the database. If
there is a match, we successfully authenticated.

9.4.5. Sessions

You don’t want to have to send in the password every time a user tries to access restricted
content. It would be slow, and needlessly complicate the user interface code. Therefore, we
use something called a session. A session is a way to keep track of which users have already
authenticated.
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When a user has authenticated, we create a session object which we can store in the database.
This object is used to keep track of which user the session maps to. We could store all kinds of
state about the current session in the object if we wanted to, but in our case we only store the
username and super admin status of the user.

When the session object tracking our state has been created, we generate a random token.
This token maps directly to a session on the server. We write the session token into a private
session cookie in the user’s browser. The user’s browser will then automatically send the
session cookie with every request from now on. When a user attempts to do something which
requires authentication, we can check if the session token exists and points to a valid session
in the database.

Username: root
Super: true

Session #1

Username: Jan
Super: false

Session #2

Username: Jan
Super: false

Session #3

Database

Session: 1

User #1’s laptop

Session: 2

User #2’s laptop

Session: 3

User #2’s phone

Figure 9.8.: Session example

Figure 9.8 is a visualisation of how sessions work. Notice how a new session was created for
user #2 even if they were already logged in elsewhere.

9.4.6. Implementation

Using Rocket’s request guards, we can very easily make an endpoint require a valid admin-
istrator session. We just add a function parameter of type AdminSession. The database
lookup is done in the implementation of the FromRequest trait for AdminSession. The
code for this is found in the main repository insrc/web/admin/adminsession.rs.

When we initially insert the session into the database, we use Redis’ expiry feature to auto-
matically expire the session after some time. This forces the user to log back in if they have
not used their session for some time. When the session cookie is deleted by the client, there is
no way to get the session back. By having an expiry date on the session, we keep our memory
clean of unused sessions. To prevent the expiration of sessions which are currently in use, we
reset the expiration timer every time a session is used.
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If a client connects with a session cookie for an invalid session, we assume this means that the
session has simply expired, and delete the cookie ourselves.

9.4.7. Map data

Retrieving the list of maps is simple. As explained in Section 7.7, the data is available in Redis,
so all we have to do is run the Redis command HKEYS laps.mapdata.images, and
serialise the result to JSON. Without prodding at the database manually, it is impossible to
have mapdata which consists of only metadata or only the image. This means that we can be
con�dent that only checking one of the keys is enough.

When a map is requested, we just check that the requested ID exists in the database. If it does,
we can stream the data directly back to the client.
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10. Features and Requirements

A feature is our subdivision of user stories. In this chapter we mention each feature, it’s re-
quirements and tests, and explain how we have achieved each one.

10.1. Feature 1

F.1 is about being able to place waypoints. This feature is essential, because it is the main way
the user will input which points to calculate a path between. Implementing it is the starting
point for the user interface.

Requirements RQ.1.1, RQ.1.2, RQ.1.3
Description Place start and stop waypointsF.1
Userstories U.1

10.1.1. Requirements and Tests

RQ.1.1 User stories U.1 Tests T.1.1.1
Done Category UI
Priority Origin LAPS
1 Description The user must be able to place two markers on a map.

RQ.1.2 User stories U.1 Tests T.1.2.1
Discarded Category UI
Priority Origin LAPS
5 Description The user must be able to place markers by typing in coordin-

ates.

RQ.1.3 User stories U.1 Tests T.1.3.1-2
Done Category UI
Priority Origin LAPS
2 Description The user must be able to move and change waypoints.
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T.1.1.1 Requirements RQ.1.1 Related
Passing Description Test if markers work
Done Criteria Click on the map, and a marker appear. Attempt to click

more than the limited amount of marker, and check if you are
stopped.

T.1.2.1 Requirements RQ.1.2 Related
Passing Description Test if the user can manually input coordinates
Done Criteria Identify the input �elds. Insert a random value in all the �eld.

Press the create path button. If the values are invalid an error
message is displayed. If the values are valid, no error appears.

T.1.3.1 Requirements RQ.1.3 Related
Untested Description Test if markers can be deleted
Not Done Criteria Select a placed marker in the marker menu, press the delete

button. Run a test and make sure the marker is not counted

All of these requirements are describe the user interface. It is important to us that it is intuitive
and easy to use, and we believe that the requirements re�ect this. We believe that the tests
verify that the requirements are met pretty well.

10.1.2. Implementation

10.1.3. RQ 1.1: Place markers on map

This requirement was successful and we where able to generate a path. The explanation of
how it works can be found in Section 8.8.2.
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Figure 10.1.: A calculated path with markers

10.1.4. RQ 1.2: Typing in coordinates

This requirement was discarded as most of it functionality is covered wither in rq 1.1 or rq
1.3

10.1.5. RQ 1.3: Move waypoints

This requirements was solved by placing the �rst marker on the �rst click, the second marker
on the second click, and on the third click move the �rst marker again and so on. How it was
done is hereSection 8.8.3 in the main document.

10.2. Feature 2

F.2 is the main driving force behind LAPS. The path�nding subsystem is of critical importance
for the project to succeed. In order to �nd these paths, some architecture must be in place. This
feature allows the user to actually use the path�nding subsystem, and select which algorithm
to use.
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Requirements RQ.2.1-2.7
Description Path calculation between two waypointsF.2
Userstories U.1

10.2.1. Requirements

Requirement RQ.2.1 is by far the most important one. Without it, nobody would be able to �nd
the path between two points. RQ.2.6 speci�es that there are multiple path�nding models to
choose from. This is a central part of our application and it is visible in this requirement.

RQ.2.1 User stories U.1 Tests T.2.1.1
Done Category General
Priority Origin LAPS
1 Description The user must be able to �nd a path between two points.

RQ.2.2 User stories U.1 Tests T.2.2.1
Discarded Category UI, Backend
Priority Origin LAPS
5 Description The user must be shown an estimated processing time for the

algorithm.

RQ.2.3 User stories U.1 Tests T.2.3.1
Discarded Category UI, Backend
Priority Origin LAPS
7 Description The user must be warned if the estimated processing time

exceeds 5 minutes.

RQ.2.4 User stories U.1 Tests T.2.4.1
Not Done Category UI
Priority Origin LAPS
6 Description The user must be able to export a calculated path as a �le.

RQ.2.5 User stories U.1 Tests T.2.5.1
Done Category UI, Backend
Priority Origin LAPS
2 Description The user must be able to see the available path�nding al-

gorithms

RQ.2.6 User stories U.1 Tests T.2.6.1
Done Category UI, Backend
Priority Origin LAPS
2 Description The user must be able to select their desired algorithm.
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RQ.2.7 User stories U.1 Tests T.2.7.1
Not Done Category Path�nding
Priority Origin LAPS
4 Description The calculated path must be at least one meter above the

heightmap.

10.2.2. Tests

T.2.1.1 Requirements RQ.2.1 Related
Passing Description Test that the service works with di�erent models
Done Criteria Do a test run in one model, then another, if no problems occur

the test is passed

T.2.1.2 Requirements RQ.2.1 Related
Passing Description Verify that the backend can properly submit jobs and get their

result.
Done Criteria Run the unit test for checking the submit job endpoint and the

get result endpoint.

T.2.1.3 Requirements RQ.2.1 Related
Passing Description Verify that job submission and polling rate-limiting works.
Done Criteria Run the unit test verifying the rate-limiting.

T.2.2.1 Requirements RQ.2.2 Related
Passing Description Test if the service can generate a path between two points
Done Criteria Use a test model that draws a straight line between the two

points. Make sure a line is created

T.2.3.1 Requirements RQ.2.3 Related
Untested Description Test that user is warned if the calculation time is over 5

minutes
Not Done Criteria Run a test model that will never �nish, see if the user is

warned

T.2.4.1 Requirements RQ.2.4 Related
Untested Description Test if the user can save/export a path made by a model
Not Done Criteria Attempt to export a path and run it on a secondary computer

or a new instance of the service

T.2.5.1 Requirements RQ.2.5 Related
Untested Description Test that the user can access a description of a model
Not Done Criteria After selecting a model make sure a information panel can

be opened to provide necessary information
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T.2.5.2 Requirements RQ.2.5 Related
Passing Description Verify that the backend can properly list the registered

path�nding algorithms.
Done Criteria Run the unit test for the list algorithms endpoint.

T.2.6.1 Requirements RQ.2.6 Related
Untested Description Test if the service shows an estimate of time
Not Done Criteria As time is based upon the module, its only required that a

time is shown at all, make sure that a time is present some-
where on the screen after a model as been run

T.2.7.1 Requirements RQ.2.7 Related
Untested Description Test that the paths the models make are at least one meter

from anything in the height map
Not Done Criteria Generate at least �ve di�erent paths and manually check

that it is at least one meter away from anything from in the
height map

10.2.3. Implementation

RQ.2.1 User stories U.1 Tests T.2.1.1
Done Category General
Priority Origin LAPS
1 Description The user must be able to �nd a path between two points.

Requirement RQ.2.1 states that the user must be able to �nd a path between two points, without
specifying any characteristics of the path. Therefore the chosen method for approaching this
requirement, was to implement a path�nding module using the Dijkstra’s algorithm. This
would allow us to both test returning a path, as well as it would give us the theoretical best
paths which we could compare our own algorithms to. This would make testing RQ.11.4 easier,
which states that the calculation time of the algorithm must be faster than that of traditional
algorithms.

The current implementation of Dijkstra’s algorithm we are using is taken from https://
gist.github.com/econchick/4666413 and is an optimised version of Dijkstra for
Python. This code was later modi�ed to work with the Section 6.7

To be able to �nd a path between two points, we use the architecture that we designed. One
can read about the architecture in Chapter 7. To �nd the path between two points, we turn the
request into a path�nding job, and submit the job using the architecture. The user can then
retrieve the result once it has been calculated by one of our path�nding modules. Being a web
service, the only way a user can submit jobs is through the API provided by the backend. Our
frontend is one implementation of a client.
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How the backend handles the submission is somewhat complicated and is detailed in Sec-
tions 9.3.5 and 9.3.6.

Frontend

The service uses two waypoints, split into an x and y axis. This gives start x, start y, end x and
end y. The frontend automatically converts them into the correct JSON format and sends it to
the backend. A function is set to wait for an answer from the backend. An async function is
used a it will not �nish before a promise is either ful�lled or broken. This allows the function
to wait for response, especially for jobs that might take a while. In return a list of coordinates
are given on JSON format. The returned coordinates are pushed into the store where they can
be accesses by other components. Format on both sent and received messages can be found in
the api backend section Appendix E. The library Axios was used to make the http request.

RQ.2.2 User stories U.1 Tests T.2.2.1
Discarded Category UI, Backend
Priority Origin LAPS
5 Description The user must be shown an estimated processing time for the

algorithm.

This requirement was not completed due to lack of time and interest: other requirements were
deemed more important.

RQ.2.3 User stories U.1 Tests T.2.3.1
Discarded Category UI, Backend
Priority Origin LAPS
7 Description The user must be warned if the estimated processing time

exceeds 5 minutes.

This requirement depends on RQ.2.2, which was discarded. As a result, this one was too.

RQ.2.4 User stories U.1 Tests T.2.4.1
Not Done Category UI
Priority Origin LAPS
6 Description The user must be able to export a calculated path as a �le.

This requirement was not completed due to lack of time. However, it could all be done in the
frontend code.
RQ.2.5 User stories U.1 Tests T.2.5.1
Done Category UI, Backend
Priority Origin LAPS
2 Description The user must be able to see the available path�nding al-

gorithms

In order see the available path�nding algorithms, we have to keep track of which modules have
registered themselves. We can then return a list of all the registered modules. As explained
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in Section 9.3.2, we store all registered modules in a set. All we have to do from the backend
perspective is to retrieve the members of that set and return it as a list.

RQ.2.6 User stories U.1 Tests T.2.6.1
Done Category UI, Backend
Priority Origin LAPS
2 Description The user must be able to select their desired algorithm.

In order to allow for the selection of algorithms, we had to bake this into the software architec-
ture from the beginning. As one can see in the speci�cation in Appendix E, each module has
it’s own designated work queue. This makes it easy to send the job to the correct module.

Backend

For the end-user to be able to select which algorithm they want, the REST API had to have
some sort of parameter to tell the backend which module to use. Instead of using an ID system
like we do for maps, we instead take the name and version of the module as a string. See
Appendix F for details.

Frontend

The user should be able to select an algorithm from those currently implemented. The front
end does a request to the backend. The format should be in the api section as it might change.
In return a list of all available algorithms is returned. The available to be used is presented in
a dropdown menu. A for loop runs through all the names in the received list, pushes them to
options. For the data to be added to vue reactive element it is important that they are pushed
into the array rather than setting its location through index. By pushing the new data, the new
data is added the vue reactive element. Only the name and version is used in the dropdown
menu, and when the name is selected, it is used to reference in the received data. This way if
more elements are added to the algorithms list, it will not break. The selected algorithm is sent
to the store where it can be used by other components.

10.3. Feature 3

This feature is about displaying path�nding results to the user. From U.1 it is clear that this
should be done directly in the website, as opposed to having to download it and open it in some
external program.

Requirements RQ.3.1, RQ.3.2, RQ.3.3, RQ.3.4
Description Map display with pathF.3
Userstories U.1

152



LAPS Final Report

10.3.1. Requirements

RQ.3.1 User stories U.1 Tests T.3.1.1-2
Done Category UI
Priority Origin LAPS
1 Description The resulting path must be displayed on the map, at least

partially.

RQ.3.2 User stories U.1 Tests T.3.2.1
Not Done Category UI
Priority Origin LAPS
5 Description The website must be well-behaved on mobile devices.

RQ.3.3 User stories U.1 Tests T.3.3.1
Not Done Category UI
Priority Origin LAPS
1 Description Height data for a calculated path must be shown to the user.

RQ.3.4 User stories U.1 Tests T.3.4.1
Not Done Category UI
Priority Origin LAPS
4 Description Every feature must be usable with a touch screen.

Our requirements emphasise how we want to display the results on the map we will implement
in F.1. From U.2 we derive that we want the website to designed with mobile devices in mind,
which is further re�ected in these requirements.

10.3.2. Tests

T.3.1.1 Requirements RQ.3.1 Related
Passing Description Test that the path is visible inside the map
Done Criteria Generate at least �ve di�erent paths and visually check that

they are inside the map

T.3.1.2 Requirements RQ.3.1 Related
Passing Description Verify that the backend can return a list of map data and re-

trieve the data.
Done Criteria Run the unit test for checking the maps list endpoint and get

map endpoint.
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T.3.2.1 Requirements RQ.3.2 Related
Untested Description Test that the service works on mobile devices
Not Done Criteria Open the service on a mobile device. Test that all menus

can be opened. Click various buttons, to assure they are not
small and unresponsive. Place two markers on the map, cal-
culate a path.

T.3.3.1 Requirements RQ.3.3 done Related
Untested Description Make sure heights are displayed in the map
Not Done Criteria visually see if height data is displayed. Compare heights

with another map the make sure the data is correct

T.3.4.1 Requirements RQ.3.4 Related
Untested Description Test the service is usable on a mobile device
Not Done Criteria Open the service on a mobile device. Test that all menus

can be opened. Click various buttons, to assure they are not
small and unresponsive. Place two markers on the map, cal-
culate a path.

10.3.3. RQ 3.1: Display Map Path on top of the Map

To display the map, the backend has to provide the frontend with mapdata. This is explained
in Section 9.4.7.

Frontend: Map Display

This components will take an map id display the corresponding map. This component will also
automatically call upon its child component, the draw map component. This component will
request the coordinates data from the store. It then loops through the given coordinate array,
and for each point places a red dot. As the called draw component is called as the child will
have the same starting point as where the map is placed on the site.

Frontend: Path Display

Display of the path in the front end. The front end receives an array with points and a corres-
ponding map. For each point in the array a corresponding marker is placed on the map. For
now the path is generated by assuming every point to complete the path is given. The map
uses pixels of the image as the coordinates. As a single pixel quite di�cult to see, each point is
instead 2x2 pixels. The map is only meant for visual aid, and if an precise path is needed, the
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coordinates themselves should be used.

10.4. Feature 4

This feature is all about administration of the service as a whole, being able to insert new
algorithms and map data.

Requirements RQ.4.1-RQ.4.6
Description Remote access admin panel.F.4
Userstories U.2

10.4.1. Requirements

RQ.4.1 User stories U.2 Tests
Done Category UI, Backend
Priority Origin Jan Dyre Bjerknes
3 Description An administrator must be able to see an overview of

path�nding modules.

RQ.4.2 User stories U.2 Tests
Done Category UI, backend
Priority Origin Jan Dyre Bjerknes
3 Description An admin must be able to start and stop path�nding modules.
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RQ.4.3 User stories U.2 Tests
Done Category UI, backend
Priority Origin Jan Dyre Bjerknes
3 Description An admin must be able to upload new path�nding modules,

and delete existing ones.

RQ.4.4 User stories U.2 Tests
Not Done Category UI, backend
Priority Origin LAPS
4 Description The admin must be able to view and change the settings of

path�nding modules, if there are any

RQ.4.5 User stories U.2 Tests
Done Category UI, backend
Priority Origin LAPS
7 Description A super admin must be able to add other administrators.

RQ.4.6 User stories U.2 Tests
Done Category Backend, UI
Priority Origin LAPS
3 Description Administrators must be able to add new map data to the sys-

tem, and delete them.

RQ.4.7 User stories U.2 Tests
Done Category Backend, UI
Priority Origin LAPS
3 Description Administrators must be able to view module logs.

10.4.2. Tests

T.4.1.1 Requirements RQ.4.1 Related
Passing Description Backend unit test testing that modules can be uploaded and

are listed correctly.
Done Criteria Log in as an administrator, and use the module upload end-

point to upload the test module. Verify that the list of returned
modules contain that module, and that it is not yet running.
Upload a module which exits immediately with a failure, and
start it. Verify that the list of modules contain both modules
where one has failed and the other is stopped.
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T.4.2.1 Requirements RQ.4.2 Related
Passing Description Backend unit test to verify that modules can be started, restar-

ted and stopped.
Done Criteria Log in as an administrator, and upload the test module with

the upload module endpoint. Verify that it is not currently run-
ning. Start it with the restart module endpoint and check that
the status code is correct and that the module is running. Re-
start it again, this time check that the status code indicating
a restart was returned, and check that the module is still run-
ning. Now stop the module with the stop endpoint and verify
that it was stopped. Start it back up, and verify that it is run-
ning. Finally, stop it twice, and verify that an error is returned
when trying to stop it when it isn’t running.

T.4.3.1 Requirements RQ.4.3 Related T.4.1.1
Passing Description Backend unit test to verify that modules can be deleted
Done Criteria Log in as an administrator, upload the test module and start

it. Try to delete it, which should fail. Stop it, and then use the
module deletion endpoint to remove the module. Check that
there are no containers with the module image, and that the
module image is removed. Verify that there are no remnants
of the module in the database.

T.4.5.1 Requirements RQ.4.5 Related
Passing Description Backend unit test to verify that registration works.
Done Criteria Use the register endpoint to verify that the initial super admin

can be registered. Try to register a new admin without signing
in, which should fail. Sign in as the super admin, and register a
new admin. Verify that the created admin is not a super admin.
Try to create another admin with the same username, which
should fail. Try to create admins with too long and too short
passwords, which should fail. Log in with the non-super admin
registered earlier, and try to register an admin, which should
fail.

T.4.6.1 Requirements RQ.4.6 Related
Passing Description Backend unit test for adding mapdata.
Done Criteria Log in as an administrator. Use the map upload endpoint to try

to upload an invalid image, which should fail. Upload a valid
map and check that it gets the ID of 1. Upload another and
check that the ID is 2. Use the deletion endpoint to delete one
of the maps. Verify that no trace of it remains in the database.
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T.4.7.1 Requirements RQ.4.7 Related
Passing Description Backend unit test for module logs.
Done Criteria Log in as an administrator, upload the test module, and start it.

Any module sends a log message when it registers itself. Use
the get logs endpoint to check for this message in the module
logs.

10.4.3. RQ.4.1: Pathfinding Module Overview

As explained in Section 9.3.3, we handle path�nding modules using Docker. Each module has
it’s own image. To get the overview of path�nding modules, we simply return a list of all
images which currently exist. Each image is tagged with the module name and version. We
simply look at this tag to get the name and version out. To every element of this list, we add
a state �eld to show what state the module is in. We get the state of each module as described
in Section 9.3.3.

When showing this data in the frontend, we bind the module data to a reactive element which
displays the information.

10.4.4. RQ.4.2: Start and Stop Modules

Admins starting and stopping modules was covered in Section 9.3.3.

As shown in Section 11.2.2, the list of modules has buttons on each module entry which calls
the restart and stop module API endpoints. The stop button is only shown if the module is
running.

10.4.5. RQ.4.3: Uploading and Deleting Pathfinding Modules

The backend exposes an endpoint for uploading a module on POST /module, as described
in Appendix F. The handling of this is described in Section 9.3.3.

Conversely, there’s a deletion endpoint as well. We wrote about this in Section 9.3.3.

In the frontend, each module list entry has a delete button which will make the delete module
API call. There is a dedicated uploading panel as seen in Figure 11.5. It builds the correct
request to delete a module when clicked, and is only shown if the module is stopped.

10.4.6. RQ.4.5: Registering New Administrators

To add new administrators, we have to create an entry for them in the database. We describe
the process in Section 9.4.3. The frontend has an admin registration form shown to the admin
if they are a super admin, which can be seen in Figure 11.7
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10.4.7. RQ.4.6: Import and Removal of Mapdata

In the REST API, there are endpoints for importing and deleting maps. We have detailed how
this is done in Section 9.3.7.

10.4.8. RQ.4.7: Module Logs

We describe how the logging system works in Sections 7.4.4 and 9.3.4.

10.5. Feature 5

Requirements RQ.5.1-RQ.5.5
Description Admin Authorization.F.5
Userstories U.2

10.5.1. Requirements

RQ.5.1 User stories Tests
Done Category UI, Backend
Priority Origin LAPS
3 Description Administrators should be authenticated using a password.

RQ.5.2 User stories Tests
Done Category Backend
Priority Origin LAPS
4 Description Password authentication must use a modern cryptographic

hashing algorithm

RQ.5.3 User stories Tests
Done Category Backend
Priority Origin LAPS
5 Description The password must be any valid UTF-8 string.

RQ.5.4 User stories Tests
Done Category Backend, UI
Priority Origin LAPS
7 Description The password cannot be longer than 128 bytes.
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RQ.5.5 User stories Tests
Done Category Backend
Priority Origin LAPS
3 Description Only registered administrators are allowed to access admin-

istration features.

10.5.2. Tests

T.5.1.1 Requirements RQ.5.1 Related
Passing Description Backend unit test to check that login works
Done Criteria Register an administrator. Try to sign in as a user which does

not exist, and again with the wrong password, where both
should fail. Then log in with the correct password. Verify that
we got a session cookie back.

T.5.4.1 Requirements RQ.5.4 Related T.4.5.1
Passing Description Backend unit test to verify that the backend denies passwords

which are too short or too long.
Done Criteria This test is done in the same unit test as T.4.5.1. Try registering

with passwords which are too short and too long, which should
fail. Check that a password of correct length is accepted and
registers an admin.

10.5.3. RQ.5.1: Authentication With a Password

In Section 9.4.4 we describe how we use a password scheme to authenticate administrators.

The login page shows up when someone goes to the login page directly, or tries to access the
admin panel without being logged in. If logged in, the user is redirected to the admin panel
as logging in again is unneeded. It is just a very simple page that sends a login request to the
backend.

10.5.4. RQ.5.2: Use a Modern Password Hashing Algorithm

As we show in Section 9.4.1, we decided to use Argon2. Argon2 is an algorithm that was chosen
as the best in the Password Hashing Competition[27].

10.5.5. RQ.5.3: Passwords Can be any Valid UTF-8 Sequence

We achieve this requirement by simply using the String type from the Rust standard library
in the registration form. The String type is guaranteed to be valid UTF-8. Therefore, the
form will fail to parse if it is not valid UTF-8.
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10.5.6. RQ.5.4: Password Cannot be Longer than 128 bytes

To achieve this requirement, we simply set the max password length in the con�guration �le.
We simply refuse a registration request if the password is found to be too long. We also require
passwords to be of a con�gurable minimum length.

10.5.7. RQ.5.5: Authorisation Required for Admin Features

We achieve this requirement by using the session system described in the report. Every admin-
istration feature is gated to require an administrator session, which is trivially easy by using a
request guard from Rocket.

10.6. Feature 6

F.6 is not quite a feature in and of itself, but it is a way for us to declare requirements for the
path�nding API, which has to be stable and powerful.

Requirements RQ.6.1-6.3
Description API for path�nding modules.F.6
Userstories U.2

RQ.6.1 User stories U.1 Tests T.6.1.1
Done Category Backend
Priority Origin LAPS
1 Description Height data must be available across the system

RQ.6.2 User stories U.1 Tests
Done Category Backend
Priority Origin LAPS
1 Description The backend must be able to get paths from path�nding mod-

ules

RQ.6.3 User stories U.1 Tests
Done Category Backend
Priority Origin LAPS
1 Description Path�nding modules must get start and end points, as well

as map ID, from the system.

These requirements were all listed in Section 7.1, where we explain some of the thinking behind
our software architecture.

161



LAPS Final Report

T.6.1.1 Requirements RQ.6.1 Related
Passing Description Test that path�nding module have access to height data
Done Criteria Path�nding modules are able to connect to the Redis data-

base, and get map data from the laps.mapdata.image and
laps.mapdata.meta keys.

10.7. Feature 7

Requirements RQ.7.1-RQ.7.3
Description Select multiple path�nding algorithms.F.7
Userstories U.3

We wanted this feature to allow the user to compare the outputs of path�nding algorithms
side by side. This could have been implemented entirely in the frontend. We had to drop this
feature due to a lack of time.

10.7.1. Requirements

RQ.7.1 User stories U.3 Tests
Not Done Category Backend, UI
Priority Origin Jan Dyre Bjerknes
5 Description The user must be able to choose at least 2 path�nding al-

gorithms, and display the result from these at the same time.

RQ.7.2 User stories U.3 Tests
Not Done Category UI
Priority Origin Jan Dyre Bjerknes
8 Description The user must be able to see statistics of each path from the

di�erent algorithms

RQ.7.3 User stories U.3 Tests
Not Done Category UI
Priority Origin LAPS
8 Description The user must be able to toggle visibility of each result sep-

arately.

10.8. Feature 8

Requirements RQ.8.1-RQ.8.4
Description Path�nding module statistics comparison.F.8
Userstories U.3
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We wanted to collect statistics on the performance of path�nding modules over time. We also
imagined running a lot of purely random jobs to help build a database of statistics for how fast
the module runs and how good each path is on average. We would not have displayed any of
this data ourselves, instead opting to export it into a format like CSV which could be imported
into databases or spreadsheets for processing.

The original vision for the feature was to run hundreds of jobs in bulk and return the statistics
of that run. However, accumulating data over time would have been much better. This is
because it would not prevent others from using the service in any way, and the data would be
more indicative of the kind of jobs which actually get run.

We decided to not pursue this feature as we ran out of time.

10.8.1. Requirements

RQ.8.1 User stories U.3 Tests
Not Done Category Backend
Priority Origin LAPS
8 Description The service must be able to generate random waypoints and

run path�nding algorithms on these.

RQ.8.2 User stories U.3 Tests
Not Done Category Backend, UI
Priority Origin LAPS
9 Description The user must be able to choose a sample size.

RQ.8.3 User stories U.3 Tests
Not Done Category UI
Priority Origin LAPS
5 Description The user must be able to view and compare statistics of run

samples between the algorithms.

RQ.8.4 User stories U.3 Tests
Not Done Category UI
Priority Origin LAPS
8 Description The user must be able to export statistics data.

10.9. Feature 9

Requirements RQ.9.1-RQ.9.4
Description Jobs panel.F.9
Userstories U.3
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Our vision for this feature was a redone queue system which was based on your user. The
plan was to add some queue management which would allow users to see a reactive list of
jobs which are speci�c to them. One would be able to see how far along their jobs were in the
queue, and cancel them if they wanted to. Administrators would be special and would be able
to see every single job, not just for their own user.

By requiring a user to submit jobs, we could limit how many jobs which can be submitted at
once. In the current system, this is just not feasible. We don’t have a reliable way to tell user
apart. There are many approaches to have a crack at this problem, but none are as e�ective
as requiring login. Basing it on users IP addresses would not be the best solution, due to the
following reasons:

1. Users behind the same network most likely have the same address.

2. Easily circumvented with the use of a proxy or VPN, which changes the IP the requests
are coming from.

After requiring signing in to submit a job, the next step would be to change the backend to
have queues speci�c to users. From there we could have a global queue which give a user a slot
to run one of their jobs. When that slot is reached, we could run a job from the user’s queue.
This way we could be selective about how many slots a user can have in the global queue, with
the goal being to more evenly distribute resources between users.

We could then simply give the user a stream of updates about what happens to their queued
jobs. They would receive updates when a job is sent to a path�nding module, when a job is
completed, and more. It’s hard not to imagine storing a list of their completed jobs as well, act-
ing as an archive of what jobs have been completed before. We would probably use a websocket
to implement this, which is like a traditional network socket, but is built upon HTTP[26] for
this. It would allow the client to act as a passive subscriber, rather than as an active consumer.
This would make the implementation simpler, and save resources on the server.

This is another feature which we had to abandon due to a lack of time. It would probably
have been the feature which would have required the most changes overall to the system, and
therefore be the most time-consuming of them all.

10.9.1. Requirements

RQ.9.1 User stories U.1, U.3 Tests
Not Done Category Backend
Priority Origin LAPS
4 Description The back-end must be able to queue tasks.
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RQ.9.2 User stories U.1, U.3 Tests
Not Done Category UI, Backend
Priority Origin LAPS
5 Description The user must be able to view status of tasks which they have

in the queue.

RQ.9.3 User stories U.1, U.2, U.3 Tests
Not Done Category UI, backend
Priority Origin LAPS
5 Description An administrator must be able to view the status of each task.

RQ.9.4 User stories U.1, U.3 Tests
Not Done Category UI, backend
Priority Origin LAPS
5 Description The user must be able to cancel queued tasks.

10.10. Feature 10

Requirements RQ.10.1-RQ.10.2
Description Valid path checking.F.10
Userstories U.3

The idea behind this feature was to help an algorithm developer by letting the user know
whether a returned path is actually valid. Exactly how it would look and function was never
decided. The most important thing to have done when implementing this would be to set some
criteria that any valid path must have.

This is another feature which was abandoned due to lack of time.

10.10.1. Requirements

RQ.10.1 User stories Tests
Not Done Category Backend
Priority Origin LAPS
3 Description The service must check if the path is �yable.

RQ.10.2 User stories Tests
Not Done Category UI
Priority Origin LAPS
4 Description The UI must highlight the un�yable parts of a path if it is

un�yable.
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10.11. Feature 11

Requirements RQ.11.1-RQ.11.4
Description Machine learning-based path�ndingF.11
Userstories U.4

10.11.1. Requirements

RQ.11.1 User stories U.4 Tests
Not Done Category Backend
Priority Origin LAPS
6 Description The computing time must vary less than 10%.

RQ.11.2 User stories U.4 Tests
Not Done Category Backend
Priority Origin LAPS
6 Description The computing time must not grow exponentially with grid

size

RQ.11.3 User stories U.4 Tests
Done Category Backend
Priority Origin LAPS
6 Description Computing time cannot vary based on map complexity

RQ.11.4 User stories U.4 Tests
Not Done Category Backend
Priority Origin LAPS
6 Description The calculation time for �nding a path must be faster than

that of traditional algorithms

10.12. Feature 12

Feature 12 is the investigation of using Reinforcement Learning to perform path�nding. The
turn short Python module is also covered in this section, as it was utilized by this feature, as
well as Feature 13.
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10.12.1. Requirements

RQ.12.1 User stories U.5 Tests T.12.1.1-2
Not Done Category Path�nding
Priority Origin LAPS
2 Description Return the resulting path as a list of points.

RQ.12.2 User stories U.5 Tests T.12.2.1
Not Done Category Path�nding
Priority Origin LAPS
2 Description Calculate path using deep Q-learning, with states as possible

movement.

RQ.12.3 User stories U.5 Tests
Not Done Category Path�nding
Priority Origin LAPS
2 Description The Machine Learning model shall be in ONNX format.

RQ.12.4 User stories U.5 Tests
Not Done Category Path�nding
Priority Origin LAPS
3 Description Path takes consideration to drone stats.

RQ.12.5 User stories U.5 Tests
Not Done Category Path�nding
Priority Origin LAPS
2 Description The module must be API compatible.

The requirements are similar to that of Feature 13, as they’re both concerning machine learning
investigations, so they’re similar in nature.

10.12.2. Risks

Related
Category Machine learning
Description Training server is not powerful enough to

train our models
Impact Prob. RiskRI.3.1

Mitigation Make sure we have adequate time to train
models, and consider acquiring more
powerful server, or reduce complexity of
models.

3 2 6
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Related
Category Machine Learning
Description The model does not converge on a solu-

tion to the problem.
Impact Prob. RiskRI.3.3

Mitigation Simplify problem domain. 3 3 9

These two risks were perhaps the most prominent ones. The biggest issue with these risks
and mitigating them, is that it is extremely hard to predict or have any idea how details of the
models, the training data, and the parameters will a�ect the training.

For the �rst risk; simplifying the neural network model will reduce the training time it takes
for it to converge, as the expense of reducing the accuracy it will achieve. So in some scenarios
this is a suitable mitigation, but the reduced accuracy can result in the converged model being
insigni�cant.

Similarly with the latter risk. In some scenarios it is a suitable mitigation, but in scenarios
where the problem has been simpli�ed, but gradually increasing the complexity causes it to
not converge, simplifying the problem is not a valid mitigation.

These risks where encountered and discussed in the Reinforcement Learning sections of the
Technical Path�nding chapter in the report.

Related
Category Machine Learning
Description Problem is too complex to solve with our

limited experience and time
Impact Prob. RiskRI.3.5

Mitigation Focus on simple representations of the
problem that give meaningful results, in-
stead of trying to focus on solving the
problem immidiately.

5 3 15

Focusing on simple representations of the problem and slowly increasing the complexity was
done from the beginning, and is discussed in the Technical Path�nding.

Related
Category Machine Learning
Description Model over�tting Impact Prob. RiskRI.3.6

Mitigation Do frequent error function tests on val-
idation data, and stop training if it gets
worse.

3 4 12

A paper released in 2018 showed that over�tting is an issue with reinforcement learning as well,
and not just supervised learning[29]. Therefore it is important to validate the trained models
on validation data, separate from the training data, prior to using the model in production.
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10.12.3. Reinforcement Learning General

Reinforcement Learning (RL) problems are divided into two main parts; an environment, and
an agent trying to learn the problem.

This feature documentation will mainly focus on the environments and how they are imple-
mented. The learning algorithms and agents are discussed step by step in the report.

10.12.4. Environments

The environment is the code that runs the problem, or some sort of representation of the prob-
lem. It is responsible for keeping track of the environment’s state as well as handling the selec-
ted action and its e�ect on the state. Because the selected language for the machine learning
is Python, the same language is used for the environments.

OpenAI’s python module called gym, is used for developing the environments. It aims at stand-
ardising Reinforcement Learning environments, so that they are easier to use, �nd references
for, and to implement. They provide some example environments such as Atari games, as well
as a collection of physics based ones[30].

The structure of an OpenAI environment consists of a class, that contains the following meth-
ods:

• Init - initialise the environment and members of the environment class as needed.

• Reset - reset the environment, and return the new state of the environment.

• Step - perform the action as given by the argument, and return the new state of the
environment, the reward of the action, a boolean for if the episode is over or not, and
optional information which is not to be used by the agent.

• Render - create a visualisation of the environment in the mode indicated by the argu-
ment. What modes are supported depends on the implementation of the environment.

Both the Reset and Render methods were implemented in the Notebooks as well, because they
were often modi�ed which takes long time to install after every time you make a modi�cation.
In addition, the render methods use PyTorch for putting the images on the GPU, which could
not / should not be done in a package.

When trying to use the environment, it is essential for the implementation of the agent to be
able to know what it is expected to give as an action, as well as how the environment will be
returning the state. Therefore OpenAI implements a module named spaces. Spaces is to be used
in the Init function to declare both the shape of the states by de�ning self.observation_space,
and similarly the shape of the actions with self.action_space.

Environments are implemented in the LAPS-Group/gym-drone GitHub repository, and are
structured as a Python package, which means they can be installed using Python’s package
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(a) Notebook (b) rgb_array

Figure 10.2.: Render modes of environments

installer pip. Once installed they can be imported, and initialised using the gym environments
make function.

There are three di�erent environments in the module:

• CardinalDirectionsEnv

• TurnShortV0/V1

Each environment has their own behaviour and observation space. They all have a number
of optional parameters, and some mandatory, to the Init function implemented via Python
kwargs. These are listed and explained in the environment’s individual explanation.

To initialise the gym environment, the make function from the OpenAI gym module is used.
It takes as argument the name of the environment type to be initialised, as well as kwargs for
any parameter of the environment to be set.

10.12.5. Cardinal Directions Environment

The initial simpli�cation of the problem chosen to investigate was one which the actions are
simply moving in cardinal directions on a grid one node at a time. Start position as well as goal
position is selected randomly upon restart, and the environment is considered done when the
goal is reached.
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(a) Movement in the cardinal directions environ-
ment

(b) The static map, with dark blue low value, and
yellow high

Figure 10.3.: The cardinal directions environment

This environment has a discrete action space with four possible values, which are zero through
four, with 0 being right, 1 up, 2 left, 3 down. In other words the agent can choose between the
numbers 0 through 3, when selecting an action.

(0… 3) (10.1)

The observation space is a tuple of four discrete values, �rst and second being x and y of the
drone, and similarly third and fourth the x and y of the goal position:

(dronex , droney , goalx , goaly ) (10.2)

This is returned as a tuple when the Step function is called, or the Reset function. Additionally
the _get_obs() (get observation) function serves to o�er a way of getting this information,
without a�ecting the state of the environment.

The reward at each step is the negative altitude at each point, with the exception of the goal
position where the reward is zero. Each episode is only done when the drone reaches the goal
position, and trying to move outside the grid moves the drone back to the position it was before
it tried to move outside.

The static map used for the height values is upper left cell having zero in height, and all other
cells has height equal to the lattice distance from this cell. This static heightmap is visualised
in Figure 10.3b.
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Init options, passable to the OpenAI gym.make function used to initialise the environment,
are:

• rows / columns - the number of rows and columns can be speci�ed. The heightmap will
be initialised in the shape speci�ed by these two parameters. If no argument given, the
default value of both is 8.

• memory_capacity - number of visited points to keep track of. This is used to display the
path in the notebook render, as shown in Figure 10.2a.

• ax - a matplotlib plot object, which is where the notebook renders will be plotted to. This
is to allow the render to be shown in a subplot, instead of forcefully taking up the entire
plotting area.

10.12.6. TurnShortV0/V1 Environments

The turn short environment was made to explore an alternative approach to the drone path
problem, with much of the path being decided by another algorithm, instead of the machine
learning deciding all of it. It is dependent on the turn_short Python Module, which is a part of
the same package the gym_drone module comes in.

General overview of this environment is that it is an environment using the turn short al-
gorithm to create a path from a Start point to a Goal point, by having the action at each step
placing a waypoint.

Di�erence between V0 and V1, is that V0 can only handle one turn. V1 can handle one turn, but
has an Init option allowing amount of turns to be speci�ed. Because of this, V0 is deprecated
in favour of V1. Because of this, V1 will be described here.

Init and Reset

Available Init options for this environment are:

• training_data_dir (required) - the path leading to the directory containing training data,
in the form of PNG heightmaps.

• training_samples - amount of training samples to be loaded in. Default is 0, which will
load every image in the folder.

• shape - row/column shape of the heightmap grids.

• subsampling - how many chunks to divide width/height into.

• steps - number of steps, each step is one waypoint to be placed. 4 for example means
placing four waypoints, resulting in four turns.
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• turn rate - turn rate of the drone. This determines how sharp the turns are done. This is
discussed again in the Section 6.7.

• ax - a matplotlib plot object, which is where the notebook renders will be plotted to. This
is to allow the render to be shown in a subplot, instead of forcefully taking up the entire
plotting area.

This environment uses heightmaps as opposed to a static map. Therefore it will upon initial-
isation of the environment load the amount of training data as speci�ed by training_samples,
from the training_data_dir. For this, it uses the Python Imaging Library Pillow.

The function _load_training_data is the function responsible for this loading. It initialises the
instance variable (member) _training_data, which is a numpy array to contain all the height-
maps loaded from the data directory. The array is three dimensional: �rst index specifying
which image, second and third the row and the column of that image respectively.

self._training_data = np.zeros(
(number, rows, columns), dtype=np.uint8)

Listing 7: Initialising the empty array, which is to contain all the height data.

In case of a grey scale image, there is only one channel the height data can be in. For RGB
images, it is assumed that the height data is stored in the red channel, and the other channels
are ignored.

Upon resetting, a random start and stop position is picked, as well as a new height map is
loaded. Because choosing a path when the two points are right next to each other is rather
meaningless, the selected points are selected randomly until they have a Manhattan distance
of at least 10.

Heightmap loading is done by selecting a random image from the previously mentioned _train-
ing_data, and passed to the get_heightmap function. If the training data resolution is larger
than the grid size provided by shape (the Init option), get_heightmap will return a crop from
the heightmap the correct size, from a random position in the image.

Actions and Observations

Observation space for this environment, is similar to that of the CardinalDirectionsEnv, with
drone positions as well as a goal position. But because it is necessary for the agent to know
which point was the previous, as that will a�ect the next chosen turn, this is stated as well.

(lastx , lasty , dronex , droney , goalx , goaly ) (10.3)

173



LAPS Final Report

It was intended to make the heightmap a part of the observation space as well, as that is neces-
sary information for the agent to know when making its decision. But because only convolu-
tional neural networks were used and lack of time, this information is instead only conveyed
through the rendering instead. This way the agent will still have access to it.

The actions available at each step, is selecting which chunk the next waypoint should lie in.
Therefore the action space is simply one discrete number, up to the �nal chunk index. As the
number chunks to divided the width and height into is de�ned by the subsampling, the number
of chunks total will be this square. Subtract one as its an index.

(0… subsampling2 − 1) (10.4)

How big a chunk is is de�ned by the subsampling Init option, which allows for increasing the
chunk sizes so that there will be less chunks, and therefore less actions to learn. Notice in
Figure 10.4 that when selecting chunks, the middle point of the chunk is used. Whereas with
the Start and Goal point, they lie in centre of grid cells.

When waypoints to be placed is only one, the �rst and �nal points of the turn is decided.
The action selected will only place the turning point, as shown in Figure 10.4a, where B is the
turning point.

In the case that there are two or more points to be placed, the behaviour is a bit di�erent.
Looking at Figure 10.4b, when placing one point at a time:

• In the �rst step, A is the start point, and B is placed. As there is only two points, the
reward will only take into account the height of the straight line formed.

• Step two, A and B are the last two waypoints placed, and C is to be placed next. But
because there are only two steps, it is forced to consider D as the end point so that the
path ends properly. Therefore the height considered is the BCD turn.

Reward after selecting an action will be the sampled height of the path that was decided upon
that step.
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(a) 8x8 grid, divided into 4x4 chunk grid. This is a
1 step path, and action 5 is selected.

(b) 2 step path, with �rst action 1 then 8 selected.
For �rst step, the green line height is used for
reward. For the second, the red.

Figure 10.4.: Turn short actions, and their paths, visualized

10.13. Feature 13

Feature 13 is path�nding using a convolutional neural network. Because of a convolutional
neural networks ability to extract features we think CNNs are a good candidate to solve the
path�nding problem.

Because of convolutional neural networks ability to extract features from images we think they
are a good �t for extracting information from a heightmap. There are a multitude of ways to
generate a path with a neural network but we decided on choosing a midpoint a then running
it recursively to generate a path of su�cient detail. What gives convolutional neural networks
the ability to extract features from an image is their use of convolution. Convolution works
by combining multiple pixels into one pixel by weighted summing. This has been proven
with networks such as alexNet, and currently all leading image classi�cation algorithms uses
CNN.

10.13.1. Requirements

RQ.13.1 User stories U.5 Tests
Done Category Path�nding
Priority Origin LAPS
2 Description Take a heightmap, start and stop as an input.
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To make sure there is some level of compatibility between versions and to guide us in develop-
ment there is an requirement for both the input and the output of the algorithm. The input and
output requirements come from features and our job as the developers is to create an internal
structure for the algorithm for ful�l all these requirements.

RQ.13.2 User stories U.5 Tests
Done Category Path�nding
Priority Origin LAPS
2 Description Approximate the midpoint of the most e�cient path, using

convolutional neural networks.

As there is a multitude of ways for the network to output a path one has to be chosen. This
requirement speci�es that the network will use the midpoint method. Here the network will
always attempt to predict the median point of the optimal path between two points.

As the optimal path is hard to de�ne there is no requirement for what the optimal path is, this
is to keep the investigation �exible. So in our case a optimal path refers to the lowest cost path
with the restrictions outlined in Chapter 6.

10.13.2. Docker

All the machine learning and path�nding is done in Python via a Jupyter Notebook, which is
hosted using Docker. This development environment is documented in the «Machine Learning
Development Environment»Section 6.1.

10.13.3. Implementation

For the input of the network we decided to give it greyscale images of size 256 × 256 with the
value at each pixel being the height for that pixel. In addition the network was fed the start
and stop point for each endpoint. The positions was given in the form of relative values in the
range [0, 1], where (0, 0) was at pixel (0, 0) and (1, 1) was at pixel (256, 256)
The output of the network comes in the form of a label. Each position that the network can
choose is assigned a label, so for a 256 × 256 image there would be 65536 labels. To reduce the
labels and simplify the network the amount of labels was downscaled to 128 × 128 chunks, this
gave the network 16384 labels.

Because convolutional neural networks is a supervised machine learning algorithm we had to
generate the training data. To generate training data Dijkstra was used to �nd the optimal path
between the start and stop point and the midpoint of the was extracted. This was then stored
in a .csv �le with the start and stop points.

It is important that the training data we have is of high quality and has no missing parts, and
an evenly distributed start and stop points. The risk here is that randomly a small area has very
little data and the network never learns to deal with that area. This is a hard mistake to spot as
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Related
Category Machine Learning
Description Unbalanced dataset used to train model,

resulting in portions of the output never
being trained properly

Impact Prob. Risk

RI.3.9

Mitigation Make sure the dataset is balanced, oth-
erwise employ methods such as up-
sampling, downsampling, or SMOTE

3 3 9

Figure 10.5.: Risk RI.3.9

Related
Category Machine Learning
Description Unexpected results in edge cases. Impact Prob. RiskRI.3.4

Mitigation Test models in multiple scenarios and de-
tect any anomalies.

2 4 8

Figure 10.6.: Risk RI.3.4

it may not reveal itself until the network happens to try and predict a path through that area.
Further risks include that the network is over-�tted, this happens when a network instead of
predicting the output just learns the training data. It will then have really good accuracy on
the training data, but terrible accuracy in the real world. It is important to take all this into
consideration when creating the data set.

Related
Category Machine Learning
Description Model over�tting Impact Prob. RiskRI.3.6

Mitigation Do frequent error function tests on val-
idation data, and stop training if it gets
worse.

3 4 12

Figure 10.7.: Risk RI.3.6

By having a large dataset of high quality meaning the data is properly normalised, has no
missing �elds and is correctly labelled, the risk of over �tting can be kept low. In addition
to this the training notebook used to train Deepstar has visualisations that can show if the
network is over-�tted.

This risk was especially prominent during the �rst half of the project as we did not have access
to a dedicated computing server. To mitigate this all models was deliberately kept simple and
the scenarios where simpli�ed to ensure we could run the models in a reasonable time frame.
As time went on and we made the algorithm run on the GPU on the server this risk was reduced
signi�cantly, allowing us to venture into more and more complex models.
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Related
Category Machine learning
Description Training server is not powerful enough to

train our models
Impact Prob. RiskRI.3.1

Mitigation Make sure we have adequate time to train
models, and consider acquiring more
powerful server, or reduce complexity of
models.

3 2 6

Figure 10.8.: Risk RI.3.1

Related
Category Machine Learning
Description Not enough data for machine learning Impact Prob. RiskRI.3.7

Mitigation Prepare data early in model investiga-
tions, to ensure you have enough time to
generate and prepare data

4 3 12

Figure 10.9.: Risk RI.3.7

For deepstar data generation turned out not to be much of a risk, this was because we had the
ability to generate training data. This means we essentially have unlimited training data we
just have to invest the time into generating it. Because of this when we got access to the school
computing server training data became a non-issue.

There are a multitude of ways to visualise data sets, and for our purposes we build a custom data
visualiser for each model we are using. So each model has a corresponding Jupyter notebook
for visualising the model output and the input data used for training. For Deepstar we kept it
simple to just display the start, end and midpoints of the data set on the map, all at once. For
the output we simply just calculated the optimal path and the predicted path from the module
and displayed them side by side.

Because the network predicts the midpoint between two points to get a proper path the module
has to do this recursively. How many times depends on the distance but between 4-5 runs is
satisfactory for the paths we are computing. To �ll inn the missing gaps just draw lines from
point to point.

10.13.4. Tests

These tests are for a general machine learning based path�nding module as described in Sec-
tion 9.3.
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T.13.1.1 Requirements RQ.12.1, RQ.13.1 Related
Passing Description Test that the resulting path is sent to the correct Redis channel
Done Criteria Resulting path is sent to correct Redis key, depending on

whether the model is deployed or in staging.

This test is to verify that the output of the module is sent to the correct Redis channel so that
it can be properly read by the backend.

T.13.1.2 Requirements RQ.12, RQ.13 Related
Passing Description Test that resulting path is in correct format
Done Criteria Resulting path adheres to JSON schema.

This test is to verity that the output is in the correct JSON schema, this is important especially
if you manually construct the output for the module.

T.11.1.1 Requirements RQ.11.1 Related
Untested Description Test that the computing time varies less than 10%

Done Criteria Run at least 20 di�erent paths inside a model, check time
shortest and longest are within 10%

T.11.2.1 Requirements RQ.11.2 Related
Passing Description Test that the time doesn’t grow exponential with time
Done Criteria Run a model in 10 map sizes, make sure the doesn’t grow ex-

ponentially larger

T.11.3.1 Requirements RQ.11.3 Related
Untested Description Test that map complexity doesn’t e�ect computing time

Done Criteria Run at least 10 di�erent maps with the same size, all results
should be within 10%

To ensure the customer will have a relative predictable computing time for the algorithm we
have included this test. Traditional algorithms su�er especially from increasing computing
time depending on distance, so we hope to achieve more consistency.
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Part IV.

Conclusion
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11. The Final Product

We were unable to meet all of our requirements and several features were dropped. However,
we ended up with a functional product which is good enough to keep building upon without
major changes.

11.1. Pathfinding

From the beginning there was much uncertainty about how far the path�nding would come.
In the end not all requirements where met, there where many reasons for this. For example
the ONNX requirement turned out to be not as important. There where also a lack of tests for
all machine learning solutions.

In the end three path�dning modules was created. The �rst and easiest one is a simple Dijkstra
based path�nding module. This module runs a Dijkstra and is able to �nd the optimal path,
however this path is not �yable.

The second module that was created was a DeepStar based path�nding module as shown in
Figure 11.3. This module is mean to demonstrate how far DeepStar got during the development.
As explained before deep star was sadly not able to produce any accurate results. However
everything around it works and the limiting factor is research into how to make the machine
learning algorithm work.

The last module that was created was created to show o� the modi�ed turn-short based Dijkstra
algorithm. This module is extremely slow but it serves as a good baseline for creating �yable
paths that are Dijkstra optimal, withing the constrains of our simpli�cations at least.

11.2. The Service

The backend is what glues the entire project together. Without it, there would be no link
between the path�nding and the user interface. A well-written backend just works in the
background, and the user does not even notice that it’s there. If the user were to notice it, it
would probably be bugs or some kind of issue.

The backend provides a REST API which can be used by any client to run the frontend. On the
surface, the backend allows users to run path�nding jobs and get the results. However, there is
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more to it than that. The backend also manages the path�nding modules themselves, and gives
administrators and developers the tools they need to control every aspect of the service.

11.2.1. The UI

The frontend managed to complete all priority 1 requirements for the frontend which was
considered the minimal goal. Beyond this many of the lower priority requirements where also
�nished, and some where not �nished as was expected.

The �nished result have given us a website the o�ers most of what we set out todo. It allows for
casual user who might not be familiar with the modules to be able to use them. First we wanted
the user the be able to select variables in which the module would run on. This included the
start and stop points, which map to be used and module to be used.

Figure 11.1.: Selecting map, module, and start/stop points

We can allow the user to preview the map before they submit. Here they can also select the
markers positions from clicking on the map.
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Figure 11.2.: Map where a user have selected a start stop point

Finally we can display a path that was created from one of the path�nding modules.
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Figure 11.3.: Display of a path generated by a module

11.2.2. Admin Panel

The administration functionality requires authentication, which uses a modern, purpose-built
password hashing algorithm1. Once authenticated, an administrator has a number of options
available to them.

Module Management

The �rst thing an administrator will see when they go to the admin panel at /admin is the
list of available modules. This can be seen in Figure 11.4. From there they can manage the
modules. It is possible to:

1See Section 9.4.1 for details
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Figure 11.4.: The admin panel list of path�nding modules.

• See the state of the modules. Notice how the Dijkstra module has partially failed, letting
the administrator know how many instances have failed, and the unique exit codes for
debugging.

• Get the logs. The link takes the admin to a page where all the logs are for that module.

• Restart the module. If the module isn’t running, a restart is the same as starting it nor-
mally.

• Stop a module if it is running.

• Delete stopped modules.

Figure 11.5.: The module uploading panel

There is also the module uploading panel, as shown in Figure 11.5. This allows the adminis-
trator to upload modules. The admin explicitly states what the name and version of the module
is. The upload itself has to be a tape archive as we talk about in Section 9.3.3. The last �eld,
the number of workers, describe how many workers which can be spawned by the backend. A
higher number means more jobs can be processed at once, but will increase memory usage on
the server signi�cantly.
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Figure 11.6.: Admin map management

Map Management

Administrators can also manage maps. By using the upload panel here, one can upload map
data from GeoTi� �les. All the necessary conversions will be done to integrate the map into
the service. They can also delete the maps with a very simple interface, as illustrated in Fig-
ure 11.6.

Admin Registration

If the administrator is a super admin, an admin registration widget is shown to the user. The
con�rm box is just there to verify that the password which is typed in is correct. It updates the
status as the password and con�rm boxes are shown in Figure 11.7.
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Figure 11.7.: Administrator registration
.
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12. Lessons Learned about Machine
Learning for Pathfinding

Though we did not make great progress into solving the problem, we were able to come up
with and explore some potential solutions for it. What we have experienced, based on both our
limited experience with this subject but as well as the general research area, you either get it
to work or you don’t know why it doesn’t work.

This is a side e�ect of how “unscienti�c” machine learning can be, as there is no clear and
mathematically de�ned way to approach a problem with. Machine learning is often explained
as more of an art than a science, you need experience and even with that you might not know
where to begin. And even then to tune the algorithms hyper parameters is a case of trying and
seeing what sticks.

For future projects we would recommend having a more methodical approach, with less vari-
ations between the attempts, to be able to pinpoint the e�ects of changing the hyper para-
meters. There are multiple technologies that enables this by having the computer go through
many di�erent hyper parameters. We did not invest time into this at the beginning, for both
the reason of computing power and time.

The problem turned out to be much harder than anticipated. As it was a problem domain not
explored much before, it was hard to judge whether or not the decisions we made were the
right ones, and if it brought us any closer to a meaningful solution or not.

In addition we had limited experience within the �eld of machine learning, only being familiar
with the main concepts beforehand and no experience with PyTorch, as machine learning is
not something we had been taught in our program.

We were also only two people working on the machine learning investigation, which did not
make the matter any easier. All these factors adds up, and all in all the months we had to
investigate the problem was too little time to be able to get huge progress on the problem.

We did not manage to �nd any evidence against machine learning being a viable solution, but
what we did �nd were some methods which seemed promising, but were not explored well
enough to be certain in our �ndings.

In particular, we did not manage to �nd how well a more advanced network structure with more
training time would be able to perform on the reinforcement learning Turn Short approach. The
complexity increase from placing one point to two points or more is not too big, as it is mostly
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the same operation. Therefore if the agent would be able to meaningfully well place one point,
this may indicate that it would be able to do the same with more waypoints.

Using more advanced learning algorithms may both increase the learning speed and the accur-
acy it is able to achieve, so it is possible that there is much more well suited algorithm for the
problem which would be able to learn it.

189



LAPS Final Report

13. Reflections

In this chapter, we re�ect on the project as a whole.

13.1. The Process Model

The model worked quite well in the beginning. We were able to follow it to a tee, and didn’t
really have any problems. It became apparent that the tree structure of features, requirements
and tests were not the best way to organise, but it worked well enough to not cause any major
issues.

Unfortunately, the machine learning half of the group had trouble following the model. This
was due to the nature of their work being investigative. It is very hard to come up with require-
ments for a model like that, and we didn’t even know if using machine learning here was even
possible. For future projects that decide to do a half investigative project it might be smart to
look into somewhat separate project models as well.

However, the service half had more conventional tasks. This worked better with the model
pipeline. However, some tasks took a very long time, which made the model hard to follow.
We had a Kanban card up for about a month, which was stuck. This happened because the task
took a lot longer than expected.

The card got stuck, because there was an API change in the backend. This change was neces-
sary because there was originally no way to select which algorithm one wanted to use, and
there was only one available. This change meant that some of the frontend code had to be
changed. The reason it took so long was that a dropdown menu wasn’t able to grow dynamic-
ally.

The card eventually became a conglomeration of every frontend task required to achieve a
minimal viable product, making it too large for it’s own good. With hindsight, we should have
changed it. Another issue was that we also had exams during this period.

13.1.1. The COVID-19 Shakeup

When the university, and indeed all of Norway, was closed due to the pandemic, the project
model fell apart. Because we now were working from home, it became harder to collaborate
e�ectively. This meant that over time, we used the model less and less. One thing which may
have prevented this could have been pair programming. The problem with that, is that we
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all had di�erent responsibilities, and therefore there were few things which more than one
member had had their hands on.

We didn’t need any equipment other than a development environment and remote servers.
This meant that it was mostly business as usual in terms of our ability to work, but it did cause
issues with communications. For example one plan was to do pair code review, this fell through
when we where forced to work from home. We did identify this problem and decided to instead
verify our own code within the two sides of the project.

Another important part is how the pandemic a�ected our working habits. Sitting at home, it
is harder to remain focused on the task at hand. The line between work and free time became
fuzzy. Some of us dealt with this better than others. Despite general productivity taking a dive,
we were still able to produce results.

The pandemic did not just impact us negatively, because we where all working from home,
including our customer, we where able to have daily meetings with him. This allowed us to get
rapid feedback on our progress and new ideas on what to do for that day. This mean for the
last four weeks of our progress we managed to do a lot of rapid prototyping for the machine
learning part of our project. This arrangement mostly bene�ted the machine learning part.

The Project Model

After the pandemic hit, our project model continued as normal for a while. It eventually broke
down by a lot, as it was harder to communicate with each other. When communicating via
text, it is harder to keep others responsible for certain things. Nonetheless, we kept certain
aspects of the model for a long time.

In particular, we kept doing the standup meetings every day. This worked quite well as a way
to keep in touch with what was happening in the di�erent parts of the project. Because we
were using a project model which demanded independence, we were pretty well prepared for
this situation, as everyone kept working on their parts.

13.2. Working Together

In general it was pretty easy to work together. We all went to the same high school (vide-
regående) in Kongsberg, and some members have known each other since primary school.
This meant that we were good friends from the beginning, which helped us be comfortable
with each other and speak our mind.

In the beginning, there were many arguments as to how things should be done. Sometimes we
ended up pretty annoyed at each other. However, this did not end up plaguing the project too
much. Usually everything had cooled down the next day and we were back to normal.
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These arguments pretty much faded away as the project went along. It seems like we did all
our arguing early in the project. When the deadline for this report was approaching fast, we
all felt the stress, but we were all on good terms.

13.3. Hours Worked

We kept track of how many hours we worked during the course of the project. After �nishing
our work for the day, we put the hours into a spreadsheet. Each week report has a list of hours
worked that week. See Figures 13.1 and 13.2 for an overview.

13.4. The Product

In this section, we break down how we think the �nal product turned out.

13.4.1. Frontend

Overall the frontend succeeded in what it set out to do. The goal was to let users who where
unfamiliar with how the modules works to have some interactions with them. All the require-
ments that had priority 1 was implemented. Many of the lower level requirements where also
implemented. Some of the features implemented in the backend needed a frontend element
to allow users to interact with. The frontend where able to implement all features that the
backend needed it to.

There still more things the frontend ideally should implemented. Many requirements that
where purely in the frontend where deprioritized. As we wanted the features implemented in
the backend to also have their frontend UI. This left the frontend to a certain degree more of
a way to interact with the backend/modules than its own things. This isn’t necessarily bad,
and was the main purpose of the frontend, but I would have liked to see more frontend only
features.

13.4.2. Backend

In general, we believe that the backend turned out quite well. An important part of this is the
extensive error handling. Writing it in Rust really helped in this regard. If a function can fail,
one uses a wrapper type, and to get the resulting value, one has to unwrap this type, as shown
in Listing 8. This means that one always knows which function calls can fail, and forces one
to handle them in some way. In the vast majority of cases, we bubble them up to the user and
return an appropriate error code.

The code is pretty well-tested. Like we said in Section 9.2, most parts of the backend code tests
which veri�es that it behaves correctly. One of the reasons there test suite is so expansive is
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(a) Hours worked as columns.

(b) Hours worked as a line graph.

Figure 13.1.: Number of hours worked by each team member per month.
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Member Total Hours
Even 579.4
Henrik 666.4
Håkon 675.45
Vetle 671.75

(a) Total number of hours as a
table. (b) Relative hours worked as a pie chart.

Figure 13.2.: Total number of hours worked by each team member

fn divide(x: i32, y: i32) -> Result<i32, &'static str> {
if y == 0 {
Err("Cannot divide by zero!")

} else {
Ok(x / y)

}
}

divide(1, 0); // -> Err("Cannot divide by zero!")
divide(25, 5); // -> Ok(5)

match divide(1, 0) {
Ok(n) => println!("Got {}", n),
Err(e) => println!("Error: {}", e)

}

Listing 8: Rust error handling example
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because the frontend was developed separately. This forced us to write a lot of tests, but this
was very useful as complexity grew and we touched older parts of the code.

As a result of the well-done error handling and thorough tests, we believe that the backend
turned out quite well. All it’s functionality is well-tested and it has for the most part just
worked as we gradually got the frontend in place.

13.5. Further Developments

A project can rarely be called complete. There are many things which we can improve upon.
In this section we shed some light on what can be done in the future to further the product as
much as possible.

There are some features and some requirements which we did not get to complete due to a lack
of time.

13.6. Frontend

A few days before our group was starting to do purely documentation the customer asked to get
some some data about returned path. Some days of work but where put into this, and the feature
where mostly done, but had to get the rest of documentation in place. Future developments
would certainly contain �nishing this feature. It might also be done, but as documentation
takes priority, it will be �nished after this and therefore not be properly documented.

The aesthetic of the website should also be improved. The website never looked terrible, but
just a bit simple. Artistic design isn’t the strong suit of the frontend developer either.

Another feature that was coming up in developments was the ability to have multiple paths on
the map at once, and therefore see some comparison of how modules would generate di�erent
paths. This would been nice to see the di�erence between something like Dijkstra and one of
our machine learning algorithms.

13.6.1. Backend

Besides the aforementioned code improvements and completions of requirements, there are a
lot of things to add in the backend. For example, there should be a way to refresh a module.
There may be changes to the software architecture which have to be handled in the runtime
library.
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After we developed and tested the backend, there has been a signi�cant update to Redis, ver-
sion 6.0.01. This version adds user functionality. This means that we can further isolate the
path�nding modules from the rest of the system. We could use this feature to disallow mod-
ules from changing certain keys and more. This would allow us to make it impossible for the
modules to cause issues by overwriting backend data.

Sometimes we make changes to the module library because we have made changes to the
general architecture. If we haven’t changed the API of the module library yet, we should be
able to refresh the module with the latest version of the library. This would mean that we need
to store the module tarballs uploaded to the service. If we rebuild the module image from the
tarball, then we will be up to date.

13.7. Milestones

As we expected, we did not complete all our milestones. We have made an overview of which
milestones we have completed in Figure 13.3 as of handing in the report. As one can see, we
have achieved about half of the milestones we set up.

1Changelog:https://raw.githubusercontent.com/antirez/redis/6.0/
00-RELEASENOTES
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Figure 13.3.: Completed Milestones. The grey colour symbolises that we have yet to achieve
that milestone.
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13.8. General Thoughts

13.8.1. Even

Going into this project I knew very little about JavaScript and never used Vue before. Having
to learn a new software while product was being developed o�ered some challenges. Writing
code while still being unfamiliar with the language, meant a lot of it wasn’t gonna be ideal.
This meant that a lot the code was probably going have to be rewritten at some point. I also
had �gure what was good enough to let stay. I could have designed the frontend not as a web
service, and used language i am more familiar with. However I wanted to challenge my self,
and this seemed like a good way to do it. I also my now have a better understanding of these
languages, for latter uses. It’s not unrealistic to expect, while working in software, that you are
going to enter a project where you have to learn a new language, while simultaneously having
to show progress on the project itself. I thought this served as good experience of that, as the
bachelor project is a more serious project, that we wish to do well in.

One disappointment was that the COVID situation came in at a very unfortunate time. Devel-
opment speed was picking up and I was getting over it the initial learning curve. Having to
reorganise working rhythms and having to work more alone it became harder to keep motiv-
ation up.

I think overall i learned a lot from this project. During the entire project I felt that I was being
challenged by the tasks at hand. I ended up getting some good experience about working on a
larger project than I had previously worked on.

13.8.2. Henrik

Even though as of writing this we did not manage to achieve a proper machine learning based
solution to path�nding I still think this project went well. Prior to this i only had partial the-
oretical knowledge about machine learning. So over the course of this project i learned much
about how to develop a proper machine learning solution, and the di�culties of how to do
so.

The knowledge I gained in the PyTorch library is especially valuable, this is because it is a
commonly used framework in both academia and production settings. So whenever i go i can
take my experience with building machine learning solutions with me.

As has been described before in this report there was so much trial and error involved in invest-
igating this. I don’t think I quite realised it when I began working just how much guesswork
goes into developing a machine learning solution. The best I could do was to try to emulate
what i read in research papers and tutorials and adapt them into my situation.

I am very thank full that my half of the project was from the beginning designed to be in-
vestigative, i now have a lot of respect for people who can develop working machine learning
algorithms on a schedule.
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13.8.3. Håkon

I am very pleased with how the backend turned out. I wasn’t used to documenting my code as
extensively as I have done, but I got used to it pretty quick. I think the code base itself is one
of my better works. Nothing is ever perfect, and the backend code isn’t either. There are a few
things I want to tear out and re-think, but all in all it is good.

In some places we assume that a certain error will never happen. Things like serialising a struct
to JSON, reading module responses and such. In certain places we should probably handle
the error. For example we assume that modules follow the protocol. If it sends a message
on an unexpected format, we just unwrap the error, which causes the thread to panic. This
sometimes crashed the backend when I was developing the module development library. That
could be better, but in the real world it does not matter that much because modules are already
considered trusted.

13.8.4. Vetle

During this project, I was very often worried and stressed out about our lack of progress re-
garding path�nding. Nonetheless, I had a good time working on this project. I got to work on
a group with close friends, still staying friends by the end haha.

I am very thankful for the opportunity to work on a machine learning related project such
as this, as it is a �eld I �nd very interesting but have not yet had the chance to work with
much before this. It always made me super happy whenever I got to speak with somebody
knowledgeable on the subject, and discuss our problem. I have learned so much during this
project about the subject machine learning, the process, as well as the tools, which I am happy
about. All in all it has been a great experience.
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A. Code review process

• Am I able to understand the code easily?

– Tabs/Spaces

– Ensure that proper naming conventions

– Code should �t in the standard 14 inch laptop screen.

– Code commented

∗ Each public function has a description

∗ All parts of every function has adequate explanation

∗ You can understand the code in a reasonable timeframe

– Avoid multiple if/else blocks.

• Is the code written following the coding standards/guidelines?

– Proper �le structure

– Code follows pattern

– Code is maintainable

– No hard coding, use constants/con�guration values.

– Too much generalisation

– Is the code properly logged

• Is the same code duplicated more than twice?

– Group similar values under an enumeration (enum).

– Use framework features, wherever possible instead of writing custom code.

• Can I unit test / debug the code easily to �nd the root cause?

• Is this function or class too big? If yes, is the function or class having too many respons-
ibilities?
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B. Guide to the backend source code

B.1. Introduction

This is an overview of the source code for the backend. The source code can be found in
our main repository on our GitHub, https://github.com/Laps-group/laps. It
is structured like pretty much every other Rust project, with the backend speci�c source code
in the src folder. The frontend code lives in the same repository in the frontend folder.

B.1.1. Build instructions

To compile and run the backend, one needs a nightly Rust compiler and an installation of the
GDAL library. For convenience, a Nix expression resides in the repository which automatically
sets up the required libraries if one is using the Nix package manager. Note that a nightly Rust
toolchain must still be provided. A nightly Rust toolchain can be set up through rustup1.

Check out the gdal_sys crate2 for information on how to successfully link the backend with
the GDAL library. Other than this, the only dependencies are Rust ones which are downloaded
and built automatically by Cargo.

The backend is the root crate in the workspace, so in order to build only the backend, running
cargo build is enough. The backend can conversely be built and run with cargo run
as per usual.

The backend will serve the required �les from the frontend if they are built. To build the
frontend, install the JavaScript dependencies by running npm install. The frontend can
then be built using npm run build, or alternatively with npm run build_prod for
building a minimised version.

B.1.2. Logs

The backend uses logging extensively. Depending on the Rocket environment which has been
set, the backend will log di�erently. On certain log levels, the log output from Rocket itself
is disabled entirely. The best way to get a feel for what each environment sets is to read the
source code of the setup_logging function in main.rs.

1url:https://rustup.rs
2url: https://github.com/georust/gdal/tree/master/gdal-sys
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B.2. Workspace

The backend consists of a workspace of crates. There are only two extra crates as of now,
laps_convert andlaps_convert_cli. One is our crate for converting map data into
usable formats, and the other is the command-line utility which allows one to do so manually.
The backend also uses laps_convert in the admin panel code.

B.3. High-level overview

Most of the code resides in the webmodule. This is the code which de�nes the REST endpoints
to be used in the frontend. It contains a function which bootstraps the entire backend. It will
spawn the module handling code, the web server itself, and connect to Redis.

There’s a couple other �les in the source directory. The module_handling module con-
tains all the needed code to handle path�nding modules. The handlers within listen to every
message sent from the modules.

Furthermore, there’s a module which de�nes error types, types, and another which de�nes
a lot of utility functions for creating Redis keys etc.

B.3.1. Web modules

Each of the web modules have self explanatory names which explain what category they are.
In each of the �les are the function handlers for each endpoint, as well as a set of tests which
test that endpoint.

B.4. Tests

The backend has been developed using tests. We would not call it test driven development, but
there is a lot of test code. The test code resides at the bottom of various source �les, and some
tests reside in their own �le dedicated to tests as the volume of test code was high.

As we have mentioned, the tests can only be run sequentially. To make this easier, we are using
a library called serial_test, which forces all tests to run in sequence.
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B.5. Module runtime library

Because the path�nding module API can change a bit between releases, we eventually decided
to put the library in the same repository as the backend. This was especially apparent when
we started to build Docker images for each module automatically in the backend.

The module_runner directory contains laps.py, which is the class responsible for giv-
ing modules an API for interfacing with the rest of the system. It also contains the Docker�le
used to build the module images from the input tarball. The API reference can be found in
Section D.6.
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C. Guide to the machine learning source
code

This is an overview of the machine learning source code, the source code can be found in the
GitHub repository athttps://github.com/Laps-group/Pathfinding. The most
important �les can also be found as PDFs on the memory stick under source_code/machine_learning.

C.1. Utilities

C.1.1. Custom python loader

In the top level one will �nd the loader.py �le. This is a custom python loader that was created
to let us import Jupyter notebooks into other Jupyter notebooks.

C.1.2. LAPS.py

For development, the repository has a copy of the LAPS runtime library.
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C.2. DeepStar and GraphStar

Figure C.1.: DeepStar and GraphStar overall �le structure.

As both DeepStar and GraphStar were created using supervised learning and by the same per-
son they follow identical structures that will be explained in this chapter.

The algorithms are split into versions, where each version represents a major idea or modi�ca-
tion to the code. There is no hard rule for what deserves a version bump, but generally a version
bump occurs when the input or output is no longer compatible with previous versions. This
versioning system is strictly for internal use and is not comparable to semantic versioning.

Each version contains a minimum of four Jupyter notebook �les and two folders. The �rst
folder is the data that is used for that version. This folder is itself split into training and valid-
ation data. The split between training and validation data is done manually, in order to have
increased control of what is used in each from version to version. The second folder is called
models and contains all previously saved models.

C.2.1. Training Notebook

Of the four Jupyter notebooks, one is shared between versions. This is the training notebook.
This notebook started out in version one as a simple, purpose-built model trainer. When Graph-
Star came around, it morphed into a general-purpose model training notebook. The speci�cs
of this notebook and its evolution is discussed. Apart from this notebook, the rest are purpose-
built for each version.
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C.2.2. Model Notebook

The �rst �le called Model.ipynb contains the PyTorch model de�nition of the network and a
accompanying data loader. The model de�nes the internal structure of the network as well
as the input and output. In addition to this, each model de�nition has two methods, called
get_optim and get_loss. They de�ne the optimisation and loss algorithms used by the
training notebook to train the network.

The data loader de�nes how the data folder will be structured and how to load the data into
memory. It does not de�ne how the data is fed to the model during training as there is a data
transformation layer between it and the model. This is to allow for the re-purposing of data
loaders for new models.

C.2.3. Data Generation Notebook

The next �le, DataGeneration.ipynb, is responsible for generating the data that the data loader
can use. This data generator is guaranteed to generate data compatible with the data loader.
Some versions share the data generation if their inputs are similar enough.

C.2.4. Visualisation Notebook

Then there is the last �le that is usually created in a versions lifespan called Visualizaiton.ipynb.
This �le is the �le that contains all visualisations that are related to that version. This can range
all the way from model structure visualisation to output comparison.

C.2.5. Reinforcement Learning

The reinforcement learning code is split into two parts:

• A Python Package - A Python package containing two modules: gym_drone, which is
all the OpenAI reinforcement learning environments, and turn_short.

• Jupyter Notebooks - Implementations of the learning algorithm Double Deep Q-Learning,
as well as normal Q-learning. These notebooks are all based on the same notebook, and
then iterated on.

The gym_drone environments are explained in Section 10.12, and the turn_short module is
explained in Section 6.7.

Jupyter Notebooks for reinforcement learning were not changed much, as it is mainly the en-
vironments which were changed. The notebooks are:

• cardinal_directions_q_learning.ipynb - Q-Learning implementation, connected to the
Cardinal Directions Environment.
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• cardinal_directions_ddqn.ipynb - Double Deep Q-Learning connected to the Cardinal
Directions Environment.

• turn_short.ipynb - Double Deep Q-Learning algorithm connected to the Turn Short En-
vironment.

C.2.6. Running the code

All code is currently setup so that you can pull from the repository, and as long as all the
required depndencies has been installled it should run. Currently it is recommended to run on
the GPU as running any models on the CPU takes a considerable amount of time.
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D. Writing a Pathfinding Module

In this chapter we explain how to write a path�nding module to work with the system.

D.1. Introduction

Modules are written in Python. There is a set protocol that each module has to follow to work
with the system. Modules communicate with the backend using Redis, but this is not something
a module developer needs to concern themselves with. We have written a library which module
developers should use instead of using the protocol directly. One can read about the protocol
in Appendix E.

When a module receives a path�nding job, it has to calculate a path from the job and return it
to the backend. This is done using a callback. The callback is called whenever a job is received,
and must return the result of the job. The returned path is expected to be continuous from the
start point to the end point. The system does not interpolate at all, if this is needed, it is the
responsibility of the module developer.

D.2. Ge�ing Started

To get started writing a path�nding module, one needs administrator access to a running in-
stance of the service. It is also possible to work somewhat outside the system by running the
module in development on a server which hosts the service. This is the easiest way, because it
gives more direct feedback without having to package the module, import it into the system,
and start it.

If one wants to run the module locally, it is important to make sure one has a current version
of the runtime library. This can be gotten from the source tree of the backend and frontend, in
the module_runner directory. The �le should lay in the same folder as the module code.

All modules have an entry point which must be named main.py. Begin by importing the
runtime library and creating an instance of the laps.Runner class like so:

import laps

# The scope is important to handle shutdowns correctly
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with laps.Runner() as runner:
pass

The Runner class constructor automatically parses the command-line arguments.

Next, de�ne the callback and register the module:

import laps

def callback(runner, job):
# Extract the start and stop points from the job object.
start_x, start_y = (job["start"]["x"], job["start"]["y"])
stop_x, stop_y = (job["stop"]["x"], job["stop"]["y"])

# Return some path(a dummy in this case)
return [{"x": x, "y": y} for x,y in [(1, 2), (2, 3), (3, 4)]]

with laps.Runner() as runner:
runner.run() # Register and run the module.

And that is pretty much all one needs to write a very simple module. Of course, this one is no
good as it does not perform any actual calculations, it returns the same path no matter what.
A good path would go from the start point to the stop point, where all the points are next to
each other.

Map data is stored as greyscale PNG images. Retrieving the byte data for one is as simple
as using the Runner.get_map_data function. While it is possible to get the data from
Redis directly, this is not considered good practice because these helper functions perform
error handling automatically1. The higher the intensity of a pixel, the taller the map is at that
point.

import laps, io
# Or use some other library capable of decoding PNG images
from PIL import Image

def callback(runner, job):
# If the metadata is relevant for this algorithm,
# one can retrieve this as well:
metadata = runner.get_map_metadata(job)

image_bytes = runner.get_map_data(job)
with Image.open(io.BytesIO(image_bytes)) as img:
pixels = img.load()
# do stuff with the pixel data here

1See Section 9.3.7 for details.
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D.3. Running the Module

If one has a local development environment, all one has to do is to execute the module entry
point script. It takes some command line arguments which are mostly for use in the deployed
version of the service. To run it locally, one only has to specify the name and version that the
module should register itself as. Something like

$ python3 main.py my-module 0.1.0

should be enough. Log messages saying that the module is registered should be seen in the
terminal. The module is now waiting for jobs. It might be worth having a look at the help to
see the available command line options:

$ python3 main.py --help

If not working locally, the module must be packaged �rst.

D.4. Packaging and Uploading a Module

Modules are packaged as uncompressed tape archives. One can put whatever �les the module
needs in there. This means one can split it up into multiple �les quite easily. The two required
�les are main.py, the entry point of your module, and the requirements �le containing a
list of pip packages the module needs to run. The list of requirements must be separated with
newlines, and must be available on pip. Place the list into a �le calledrequirements.txt.

When the �les are in order, one can create the archive:

$ tar cvf module.tar main.py requirements.txt

To upload the module, go to the admin panel. There one will �nd a form to submit a module.
Select the tape archive created earlier, and give it a name and a version. Consider setting the
number of workers to a higher value, and press the upload button. If all goes well, refresh the
page. It is now possible to start the module from the menu. Depending on which dependen-
cies are needed, the module might take some time to upload and be converted into a Docker
image.
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D.5. Best Practices

When writing a module, it is a good idea to put as much of the initialisation code into the
Runner scope as possible:

do_setup()

with laps.Runner() as runner:
runner.run(callback)

Bad

with laps.Runner() as runner:
do_setup()

runner.run(callback)

Good

The reason for this is that the good code will catch any error that might occur in thedo_setup
function and log the error, allowing one to see what the error is inside the system. If done out-
side, the module will simply exit with an error, and the only way to �gure out why is to look
at the Docker logs directly.

D.6. laps.py API Reference

The entire �le consists of two classes.

D.6.1. The JobFailure Exception

This exception is an constitutes a recoverable error. Any other exception will cause the worker
to exit. By raising this in the handler callback, the job will be registered as failed, and the
module will start listening for a new one. It inherits from Exception and can be used how
one would expect.

Several internals rely on this exception to work correctly, so it should never be caught in module
code.

D.6.2. The Runner class

The Runner class is what communicates with the backend and allows one to write a module.
The Redis connection it uses internally can be used from self.redis. If one wants to store
data in Redis, one must use the helper methods on the class, to avoid name clashing.

def run(self, handler):
Connect to the backend and start listening for path�nding jobs. handler is a callback func-
tion which is called whenever a job is received. The callback is called with (self, job)
as arguments. The job object is a dict whose �elds describe the job.
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The handler function must return a list of points which were found in the path. This list has
to be a list of dicts with «x» and «y» as �elds for every point. The list of points should be a
continuous path from the start point to the end point.

def get_map_data(self, job):
Get map data as a greyscale PNG, from the map id speci�ed in the job object. Because this
returns the raw data, a PNG decoder must be used to get the pixel data out. It is recommended
to use this method instead of a pure Redis call, because the

def get_map_metadata(self, job):
Get the metadata for the map speci�ed in the job object. This returns a dict containing the
data.

def create_redis_key(self, name):
Use name to create a Redis key unique to this module. If one wants to use Redis, one should
always use a key returned by this method, to prevent name collisions. Note that all workers
of a module will get the same keys. If one wants to store data unique to a module, one must
include self.worker_number in the name parameter.

log_error, log_info, log_debug, log_warn
Takes a message and logs it. The log output will be visible in the admin panel, in stdout, and
in the server logs. The di�erent methods denote di�erent severities.

216



LAPS Final Report

E. Pathfinding Module Protocol

In this appendix, we specify the path�nding module protocol. This is the communication
scheme used by the backend and the path�nding modules to communicate. Read more about
the design and rationale in Chapter 7.

All communications use Redis as a message broker1 and are serialised to JSON2

Below, each message is described. An example for each one is provided, in order to get a feel
for what the message looks like.

E.1. Registration

Key: laps.backend.register-module

{
"name": "some-module",
"version": "0.0.0"

}

When a new path�nding module is started, it will notify the backend that it exists. It does this
by specifying it’s own name and version, and pushing this to a list of registration messages.

E.2. Shutdown

Key: laps.backend.module-shutdown

{
"name": "some-module",
"version": "0.0.1"

}

The shutdown message should be sent whenever a path�nding module gets shut down. The
only di�erence between this message and the registration message is the list it is pushed to.

1See Section 4.4.2 for a refresher on how this works
2See Section 4.7.
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E.3. Job Submission

Key: laps.runner.«name»:«version».work

{
"job_id": 1,
"map_id": 2,
"start": {

"x": 1,
"y": 2,

},
"stop": {
"x": 1,
"y": 2,

}
}

Replace «name» and «version» with the name and version of a path�nding module. This is
the job submission message. It is sent to a path�nding module by the backend. The job id �eld
is meant for the backend to keep track of which job result is which. The map ID �eld indicates
which map the job is for.

E.4. Job Result

Key: laps.backend.path-results

{
"outcome": "success",
"job_id": 1,
"path": [
{"x": 10, "y": 20}, {"x": 11, "y": 25}, {"x": 30, "y": 30}

]
}

In this message, the path is passed as a list of points with x and y values. It is sent by a
path�nding module when it completes a job. It is vital that the module replies with the job
ID it received when it initially received the job. This is used by the backend to tell job results
apart.

The outcome �eld can be one of three di�erent states (in lowercase):

1. Success: The job completed without issue.
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2. Failure: An error made this job impossible to complete.

3. Cancelled: Refusing to complete this job for an unknown reason. This is usually sent
by the backend when a module has shut down, and it is cancelling all the jobs in that
module’s queue.

If the outcome is a failure or cancellation, the path �eld can be absent.

E.5. Logging

Key: laps.moduleLogs

Log messages are sent whenever a module logs an event. These are received and stored by
the backend such that an administrator can look at the logs later in case there is an issue. The
instant �eld is the UNIX timestamp when the entry was logged. The module �eld is used to
tell logs apart.

{
"message": "Hello, world",
"level": "info",
"module": {

"name": "some-module",
"version": "1.0.0",

},
"instant": 1587635315

}
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F. Backend REST API

This appendix describes in detail everything there is to know about the REST API exposed by
the backend to power the web application.

F.1. Pages Served by the Server

While not technically a part of the API, it is important to know what the server serves. The
following pages are served by the server and are meant to be the pages a user navigates to in
their browser. Each page has it’s own corresponding JavaScript �le meant for each page.

• /: The index of the application. Meant to hold the path�nding functionality of the ser-
vice.

• /admin: The admin panel. The user will be redirected to the login page if not logged
in.

• /login: The login page. The user will be redirected to the admin panel if logged in.

Any images which are part of the frontend are served statically under the /images pre�x.
The served JavaScript �les are: /index.js, /admin.js, and /login.js. These are
meant to be the output of a JavaScript bundler such as webpack. Any stylesheets must be
bundled as part of these �les.

F.2. Jobs

POST /job

RETURN VALUE
202 Accepted with a base64 encoded token for polling the result.

DESCRIPTION
Submit a job to be run using the given algorithm.

PARAMETERS
JSON serialised values
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{
"start": { "x": 0, "y": 0 },
"stop": { "x": 1, "y": 1 },
"map_id": 1,
"algorithm": {

"name": "sample-algorithm",
"version": "1.0.0"

}
}

GET /job/«token»

RETURN VALUE
A JSON-encoded list of points on success, 204 No Content when pending. Can also return 503
Service Unavailable if too many clients are already polling.

DESCRIPTION
Poll the result of a path�nding job.

PARAMETERS
The token given as part of the URL.

EXAMPLE RESULT

{
"points": [
{ "x": 0, "y": 0 }, { "x": 1, "y": 1 }

]
}

F.3. Maps

GET /maps

RETURN VALUE
A JSON-encoded list of strings.

DESCRIPTION
Get a list of each available set of map data.

PARAMETERS
None.

EXAMPLE RESULT
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{
"maps": ["1", "2"]

}

GET /map/«ID»

RETURN VALUE
A greyscale PNG image with the map data.

DESCRIPTION
Get an image of the map with a given ID.

PARAMETERS
The ID as part of the URL.

GET /map/«ID»/meta

RETURN VALUE
A JSON-encoded data structure containing the metadata for the given map.

DESCRIPTION
Retrieve the metadata for a given map ID.

PARAMETERS
The ID as a URL segment.

EXAMPLE RESULT

{
"x_res": 1.0,
"y_res": 1.0,
"max_height": 300.0,
"min_height": 100.0,
"average_height": 200.0

}

F.4. Algorithms

GET /algorithms

RETURN VALUE
A JSON-encoded list of available algorithms.
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DESCRIPTION
None

PARAMETERS

EXAMPLE RESULT

[
{
"name": "some-module",
"version": "0.1.0"

},
{
"name": "some-module",
"version": "1.0.0"

}
]

F.5. Administration

All administration endpoints apart from POST /login require the user to be logged in.

F.5.1. User management

GET /admin/me

RETURN VALUE
Username and super admin status of the currently logged-in user.

DESCRIPTION
Get information about the currently logged-in user.

PARAMETERS
None.

POST /login

RETURN VALUE
204 No Content with a session cookie on success, 403 Forbidden on authentication failure.

DESCRIPTION
Log in to an administrator account.
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PARAMETERS
Plain form with keys username and password for username and password respectively.

POST /register

RETURN VALUE
201 Created on success, 403 Forbidden if not authorised.

DESCRIPTION
Register a new administrator. Only available for a super admin, or when no admins have been
registered yet.

PARAMETERS
Plain form with username and password, the same as the login endpoint.

F.5.2. Map management

POST /map

RETURN VALUE
An unsigned integer with the ID of the new map.

DESCRIPTION
Add a new map to the system from a GeoTi� �le.

PARAMETERS
A multipart form with a �eld «data» of mime type «image/ti�» containing the GeoTi� data.
EXAMPLE RESULT

{
"username": "admin1",
"super": 0

}

DELETE /map/«ID»

RETURN VALUE
204 No Content on success, 404 Not Found if no such map exists.

DESCRIPTION
Delete a map from the system.

PARAMETERS
The map ID from the URL.
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F.5.3. Module management

POST /module

RETURN VALUE
201 Created on success.

DESCRIPTION
Upload a module to the system, making available to be launched.

PARAMETERS
A multipart form with the following �elds:

• name, text �eld with the name of the uploaded module.

• version, text �eld with the version of the uploaded module.

• workers, an optional text �eld with the number of workers the service can run of this
module in parallel. Defaults to 1 it not set.

• module the actual tar archive containing the module �les. Must be a �le �eld with
MIME type Application/x-tar.

GET /module/all

RETURN VALUE
JSON-serialised list of metadata for all path�nding modules.

DESCRIPTION
List all path�nding modules, and their state. State is one of «running», «stopped», «other»
«failed». When the state is «failed», the exit code of the module is also returned. See the
example. If the state is «other», an additional �eld, message should be displayed instead.

PARAMETERS
None.

EXAMPLE RESULT

[
{
"state": "running",
"name": "some-module",
"version": "0.1.0"

},
{
"state": "failed",
"exit_code": 1,
"name": "running-module",
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"version": "1.0.0"
}

]

GET /module/«name»/«version»/logs

RETURN VALUE
200 OK On success with the log contents as the body in plain text. 404 Not found if the module
does not exist.

DESCRIPTION
Get the log output of a path�nding module as plain text.

PARAMETERS
The name and version of the module as URL parameters.

POST /module/«name»/«version»/restart

RETURN VALUE
204 No Content on restart, 201 Created if a module was previously stopped and has been started.
404 Not Found if module does not exist.

DESCRIPTION
Start or restart a path�nding module.

PARAMETERS
The name and version of the module as URL parameters.

POST /module/«name»/«version»/stop

RETURN VALUE
204 No Content on success, 400 Bad Request if module was not running.

DESCRIPTION
Stop a path�nding module, allowing it to complete it’s current job before shutting down.

PARAMETERS
The name and version of the module as URL parameters.
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DELETE /module/«name»/«version»

RETURN VALUE
204 No Content on success, 400 Bad Request if module is running. 404 Not Found it the module
does not exist.

DESCRIPTION
Delete a path�nding module, leaving no trace of it on the server.

PARAMETERS
The name and version of the module as URL parameters.
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G. List of User Stories

As a user, I want to insert start and end points to calculate a path between. I want to
see this path directly in the user interface without pop-ups or having to download
a report �le. It would be convenient if I could access the service from any device,
because I’m not pulling out my laptop in the middle of the woods while �ying my
drone.
Features Related OriginU.1

F.1, F.2, F.3 Jan Dyre Bjerknes

As an administrator, I want to be able to add trained models to the website. I don’t
want to have to redeploy the service just to add a new model if it can be avoided,
so I want to do this through a web interface.
Features Related OriginU.2

F.4, F.5, F.6 LAPS

As a machine learning developer, I want to see the di�erences between the al-
gorithms and if the �ight paths outputted are �yable. This lets me compare the
results of my machine learning model with others, as well as letting me know if the
model working correctly.
Features Related OriginU.3

F.7, F.8, F.9, F.10 Jan Dyre Bjerknes

As a user, I would like to have the computational time of the model reasonably
consistent. I would also like the time to be overall shorter than common path�nding
solutions.
Features Related OriginU.4

F.11 Jan Dyre Bjerknes

As the customer, I want to be able to investigate whether machine-learning-based
path�nding is suitable for my needs.
Features Related OriginU.5

F.8, F.11, F.12, F.13 Jan Dyre Bjerknes
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H. List of Risks

ID Description Page
RQ.1.X Non functional group risks. 2
RQ.2.X Website risks. 2-3
RQ.3.X Machine learning risks. 3-4

Related
Category Group | Website | Machine learning RI.0.0
Description Example description. Impact Prob. RiskRI.0.0

Mitigation Example mitigation 0 0 0

Each risk is assigned an ID in the grey �eld on the left. The �rst two letters stand for risk,
and the two numbers stand for feature and risk index respectively. Further we have the person
responsible for managing this risk. This includes mitigating it and making sure it is taken into
consideration when implementing new features. Then we have a description of what the risk
is followed by a explanation of how to mitigate it. Last we have a list of related risks and last
there is the risk matrix. Each risk is assigned an impact and probability between 0 and 5, then
by multiplying them together we get the risk factor. The colour represents the urgency of the
risk. Green should be addressed, but isn’t urgent. Yellow is urgent, and should be addressed
soon as possible. Red is very urgent and should be addressed as fast as possible.

Refer to Figure H.1 for the risk matrix with this setup.

Risk are categorised into the following categories:

1. Group risks

2. Website risks

3. Path�nding risk

Related
Category Group
Description A person on the group quits Impact Prob. RiskRI.1.1

Mitigation Make sure everybody in group is content 4 1 4
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5 5 10 15 20 25
4 4 8 12 16 20
3 3 6 9 12 15
2 2 4 6 8 10
1 1 2 3 4 5

1 2 3 4 5

Figure H.1.: Risk matrix

Related
Category Group
Description The electronic kanban board fails Impact Prob. RiskRI.1.2

Mitigation Export all information the an external
data storage on regular basis

2 2 4

Related
Category Group
Description A member is sick Impact Prob. RiskRI.1.3

Mitigation Arrange for the member to work from
home if possible. Attempt to keep all
group members up to date on work so a
healthy member can take over the sick
members work, if needed.

2 4 8

Related
Category Group
Description Parts of the project is plagiarized Impact Prob. RiskRI.1.4

Mitigation Make sure the group members are aware
of the consequences of plagiarism. Make
sure the report is proof read for plagiarism

5 1 5

Related
Category Group
Description Work or information is not properly doc-

umented
Impact Prob. RiskRI.1.5

Mitigation Set of more time to documentation. Ask
other group member to proof read to
make the standard is good

3 3 9
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Related
Category Group
Description Members of the group fail to use the Kan-

ban task board regularly
Impact Prob. RiskRI.1.6

Mitigation Check the board regularly for tasks that
have not moved, to detect infrequent Kan-
ban updates

3 2 6

Related
Category Website
Description Path�nding module �nds a invalid path. Impact Prob. RiskRI.2.1

Mitigation Implement path validation into service to
make sure path is �yable.

2 2 4

Related
Category Website
Description User inputs invalid data Impact Prob. RiskRI.2.2

Mitigation Do user input validation on backend and
frontend.

2 2 4

Related
Category Website
Description The webiste host server can’t keep the

server online all the time
Impact Prob. RiskRI.2.3

Mitigation Change host or host the website ourself. 1 2 2

Related
Category Website
Description User connection is broken midway

through interaction
Impact Prob. RiskRI.2.4

Mitigation Save session data and give on reconnect. 2 2 4

Related
Category Machine learning
Description Training server is not powerful enough to

train our models
Impact Prob. RiskRI.3.1

Mitigation Make sure we have adequate time to train
models, and consider acquiring more
powerful server, or reduce complexity of
models.

3 2 6
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Related
Category Machine learning
Description Path�nding time estimate is consistently

o�.
Impact Prob. RiskRI.3.2

Mitigation Keep track of path�nding time estimate
accuracy.

1 3 3

Related
Category Machine Learning
Description The model does not converge on a solu-

tion to the problem.
Impact Prob. RiskRI.3.3

Mitigation Simplify problem domain. 3 3 9

Related
Category Machine Learning
Description Unexpected results in edge cases. Impact Prob. RiskRI.3.4

Mitigation Test models in multiple scenarios and de-
tect any anomalies.

2 4 8

Related
Category Machine Learning
Description Problem is too complex to solve with our

limited experience and time
Impact Prob. RiskRI.3.5

Mitigation Focus on simple representations of the
problem that give meaningful results, in-
stead of trying to focus on solving the
problem immidiately.

5 3 15

Related
Category Machine Learning
Description Model over�tting Impact Prob. RiskRI.3.6

Mitigation Do frequent error function tests on val-
idation data, and stop training if it gets
worse.

3 4 12

Related
Category Machine Learning
Description Not enough data for machine learning Impact Prob. RiskRI.3.7

Mitigation Prepare data early in model investiga-
tions, to ensure you have enough time to
generate and prepare data

4 3 12
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Related
Category Machine Learning
Description Multiple people working in the same dir-

ectory on the same computer may cause
con�icts for eachother, especially when
doing git version control.

Impact Prob. Risk

RI.3.8

Mitigation Setup multiple development environ-
ments when working on server.

2 3 6

Related
Category Machine Learning
Description Unbalanced dataset used to train model,

resulting in portions of the output never
being trained properly

Impact Prob. Risk

RI.3.9

Mitigation Make sure the dataset is balanced, oth-
erwise employ methods such as up-
sampling, downsampling, or SMOTE

3 3 9
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I. List of Tests

ID Passing Description Page
T.1.X.X Untested Select waypoints start and stop waypoints. 2
T.2.X.X Untested Path calculation between two waypoints. 2-3
T.3.X.X Untested Map display with path. 3
T.4.X.X Untested Remote access admin panel. 3-4
T.5.X.X Untested Admin Authorisation. 4-5
T.6.X.X Passing API for path�nding module. 4-5
T.10.X.X Untested Valid path checking. 5
T.11.X.X Untested Machine learning based path�nding. 5
T.12.X.X Untested Investigate deep Q-Learning as a solution for path�nding. 5-6

T.0.0.0 Requirements RQ.0.0 Related T.0.0.0
Untested Description Example description
Not Done Criteria Example criteria

T.1.1.1 Requirements RQ.1.1 Related
Passing Description Test if markers work
Done Criteria Click on the map, and a marker appear. Attempt to click

more than the limited amount of marker, and check if you are
stopped.

T.1.2.1 Requirements RQ.1.2 Related
Passing Description Test if the user can manually input coordinates
Done Criteria Identify the input �elds. Insert a random value in all the �eld.

Press the create path button. If the values are invalid an error
message is displayed. If the values are valid, no error appears.

T.1.3.1 Requirements RQ.1.3 Related
Untested Description Test if markers can be deleted
Not Done Criteria Select a placed marker in the marker menu, press the delete

button. Run a test and make sure the marker is not counted
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T.1.4.1 Requirements RQ.1.4 Related
Untested Description Test that markers can be marked as either start or stop for

the path
Not Done Criteria Have at least to waypoints placed on the map. Go to the

marker menu and mark one as start and another stop, do a
test run and make sure the service uses the correct marker
as start and the correct marker as stop.

T.2.1.1 Requirements RQ.2.1 Related
Passing Description Test that the service works with di�erent models
Done Criteria Do a test run in one model, then another, if no problems occur

the test is passed

T.2.1.2 Requirements RQ.2.1 Related
Passing Description Verify that the backend can properly submit jobs and get their

result.
Done Criteria Run the unit test for checking the submit job endpoint and the

get result endpoint.

T.2.1.3 Requirements RQ.2.1 Related
Passing Description Verify that job submission and polling rate-limiting works.
Done Criteria Run the unit test verifying the rate-limiting.

T.2.2.1 Requirements RQ.2.2 Related
Passing Description Test if the service can generate a path between two points
Done Criteria Use a test model that draws a straight line between the two

points. Make sure a line is created

T.2.3.1 Requirements RQ.2.3 Related
Untested Description Test that user is warned if the calculation time is over 5

minutes
Not Done Criteria Run a test model that will never �nish, see if the user is

warned

T.2.4.1 Requirements RQ.2.4 Related
Untested Description Test if the user can save/export a path made by a model
Not Done Criteria Attempt to export a path and run it on a secondary computer

or a new instance of the service

T.2.5.1 Requirements RQ.2.5 Related
Untested Description Test that the user can access a description of a model
Not Done Criteria After selecting a model make sure a information panel can

be opened to provide necessary information
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T.2.6.1 Requirements RQ.2.6 Related
Untested Description Test if the service shows an estimate of time
Not Done Criteria As time is based upon the module, its only required that a

time is shown at all, make sure that a time is present some-
where on the screen after a model as been run

T.2.7.1 Requirements RQ.2.7 Related
Untested Description Test that the paths the models make are at least one meter

from anything in the height map
Not Done Criteria Generate at least �ve di�erent paths and manually check

that it is at least one meter away from anything from in the
height map

T.3.1.1 Requirements RQ.3.1 Related
Passing Description Test that the path is visible inside the map
Done Criteria Generate at least �ve di�erent paths and visually check that

they are inside the map

T.3.1.2 Requirements RQ.3.1 Related
Passing Description Verify that the backend can return a list of map data and re-

trieve the data.
Done Criteria Run the unit test for checking the maps list endpoint and get

map endpoint.

T.3.2.1 Requirements RQ.3.2 Related
Untested Description Test that the service works on mobile devices
Not Done Criteria Open the service on a mobile device. Test that all menus

can be opened. Click various buttons, to assure they are not
small and unresponsive. Place two markers on the map, cal-
culate a path.

T.3.3.1 Requirements RQ.3.3 done Related
Untested Description Make sure heights are displayed in the map
Not Done Criteria visually see if height data is displayed. Compare heights

with another map the make sure the data is correct

T.3.4.1 Requirements RQ.3.4 Related
Untested Description Test the service is usable on a mobile device
Not Done Criteria Open the service on a mobile device. Test that all menus

can be opened. Click various buttons, to assure they are not
small and unresponsive. Place two markers on the map, cal-
culate a path.
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T.4.1.1 Requirements RQ.4.1 Related
Passing Description Backend unit test testing that modules can be uploaded and

are listed correctly.
Done Criteria Log in as an administrator, and use the module upload end-

point to upload the test module. Verify that the list of returned
modules contain that module, and that it is not yet running.
Upload a module which exits immediately with a failure, and
start it. Verify that the list of modules contain both modules
where one has failed and the other is stopped.

T.4.2.1 Requirements RQ.4.2 Related
Passing Description Backend unit test to verify that modules can be started, restar-

ted and stopped.
Done Criteria Log in as an administrator, and upload the test module with

the upload module endpoint. Verify that it is not currently run-
ning. Start it with the restart module endpoint and check that
the status code is correct and that the module is running. Re-
start it again, this time check that the status code indicating
a restart was returned, and check that the module is still run-
ning. Now stop the module with the stop endpoint and verify
that it was stopped. Start it back up, and verify that it is run-
ning. Finally, stop it twice, and verify that an error is returned
when trying to stop it when it isn’t running.

T.4.3.1 Requirements RQ.4.3 Related T.4.1.1
Passing Description Backend unit test to verify that modules can be deleted
Done Criteria Log in as an administrator, upload the test module and start

it. Try to delete it, which should fail. Stop it, and then use the
module deletion endpoint to remove the module. Check that
there are no containers with the module image, and that the
module image is removed. Verify that there are no remnants
of the module in the database.

T.4.5.1 Requirements RQ.4.5 Related
Passing Description Backend unit test to verify that registration works.
Done Criteria Use the register endpoint to verify that the initial super admin

can be registered. Try to register a new admin without signing
in, which should fail. Sign in as the super admin, and register a
new admin. Verify that the created admin is not a super admin.
Try to create another admin with the same username, which
should fail. Try to create admins with too long and too short
passwords, which should fail. Log in with the non-super admin
registered earlier, and try to register an admin, which should
fail.
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T.4.6.1 Requirements RQ.4.6 Related
Passing Description Backend unit test for adding mapdata.
Done Criteria Log in as an administrator. Use the map upload endpoint to try

to upload an invalid image, which should fail. Upload a valid
map and check that it gets the ID of 1. Upload another and
check that the ID is 2. Use the deletion endpoint to delete one
of the maps. Verify that no trace of it remains in the database.

T.4.7.1 Requirements RQ.4.7 Related
Passing Description Backend unit test for module logs.
Done Criteria Log in as an administrator, upload the test module, and start it.

Any module sends a log message when it registers itself. Use
the get logs endpoint to check for this message in the module
logs.

T.5.1.1 Requirements RQ.5.1 Related
Passing Description Backend unit test to check that login works
Done Criteria Register an administrator. Try to sign in as a user which does

not exist, and again with the wrong password, where both
should fail. Then log in with the correct password. Verify that
we got a session cookie back.

T.5.5.1 Requirements RQ.5.5 Related
Untested Description Test that admin features are placed behind password authen-

tication
Not Done Criteria Attempt to access admin features without being logged in,

make sure the user can’t access them. As admin access the
admin features, make sure they are available

T.6.1.1 Requirements RQ.6.1 Related
Passing Description Test that path�nding module have access to height data
Done Criteria Path�nding modules are able to connect to the Redis data-

base, and get map data from the laps.mapdata.image and
laps.mapdata.meta keys.

T.10.1.1 Requirements RQ.10.1 Related
Untested Description Test the path created from a model is �yable
Not Done Criteria Create a test model that draw a straight line between the

start and end point, make sure you get an error. Then run a
proper model and make sure the user gets no errors. Visually
check that the error messages are given appropriately
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T.11.1.1 Requirements RQ.11.1 Related
Untested Description Test that the computing time varies less than 10%

Done Criteria Run at least 20 di�erent paths inside a model, check time
shortest and longest are within 10%

T.11.2.1 Requirements RQ.11.2 Related
Passing Description Test that the time doesn’t grow exponential with time
Done Criteria Run a model in 10 map sizes, make sure the doesn’t grow ex-

ponentially larger

T.11.3.1 Requirements RQ.11.3 Related
Untested Description Test that map complexity doesn’t e�ect computing time

Done Criteria Run at least 10 di�erent maps with the same size, all results
should be within 10%

T.12.1.1 Requirements RQ.12.1, RQ.13.1 Related
Untested Description Test that the resulting path is sent to the correct Redis chan-

nel
Not Done Criteria Resulting path is sent to correct Redis key, depending on

whether the model is deployed or in staging.

T.12.1.2 Requirements RQ.12, RQ.13 Related
Untested Description Test that resulting path is in correct format
Not Done Criteria Resulting path adheres to JSON schema.

T.12.2.1 Requirements RQ.12 Related
Untested Description Test Reinforcement Learning Environment
Not Done Criteria Perform gym-drone unit tests.

T.13.1.1 Requirements RQ.12.1, RQ.13.1 Related
Passing Description Test that the resulting path is sent to the correct Redis channel
Done Criteria Resulting path is sent to correct Redis key, depending on

whether the model is deployed or in staging.

T.13.1.2 Requirements RQ.12, RQ.13 Related
Passing Description Test that resulting path is in correct format
Done Criteria Resulting path adheres to JSON schema.
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J. List of Requirements

ID Category Feature Page
RQ.1.X UI Select waypoints start and stop waypoints. 2
RQ.2.X UI,Backend Path calculation between two waypoints. 2-3
RQ.3.X UI Map display with path. 3
RQ.4.X UI,Backend Remote access admin panel. 3-4
RQ.5.X Backend Admin authorisation. 4
RQ.6.X Path�nding API for path�nding modules. 4
RQ.7.X Backend Select multiple path�nding algorithms. 5
RQ.8.X UI Path�nding module statistics comparing. 5
RQ.9.X Backend Jobs panel. 5-6
RQ.10.X Backend Valid path checker. 6
RQ.11.X Path�nding Machine learning-based path�nding. 6-7
RQ.12.X Path�nding Investigate deep Q-learning as a solution for path�nding. 7
RQ.13.X Path�nding Investigate convolutional neural networks as a path�nding

solution.
8

RQ.0.0 User stories U.0 Tests T.0
Not Done Category Example Category
Priority Origin Example Origin
0 Description This is a example description

Each requirement is assigned an ID that is shown in the grey �eld in the top left. The �rst two
letters is always RQ and stands for requirement, following that is two number that comes from
the parent feature id and its index within that feature respectively. Below that there is a status
�eld that currently can be in three states Done, Not Done and Discarded. In the bottom left
there is a priority. Priority ranges from 1 to 10, where 1 is the most important.

In the top row you can view what user stories this requirement came from and what test is
derived from this requirement. Below that is the category for the requirement and last there
is a �eld for where the requirement originated from and a shortened description of what the
requirement is. For a more detailed description and documentation if the requirement is com-
pleted see the feature technical documentation.
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RQ.1.1 User stories U.1 Tests T.1.1.1
Done Category UI
Priority Origin LAPS
1 Description The user must be able to place two markers on a map.

RQ.1.2 User stories U.1 Tests T.1.2.1
Discarded Category UI
Priority Origin LAPS
5 Description The user must be able to place markers by typing in coordin-

ates.

RQ.1.3 User stories U.1 Tests T.1.3.1-2
Done Category UI
Priority Origin LAPS
2 Description The user must be able to move and change waypoints.

RQ.2.1 User stories U.1 Tests T.2.1.1
Done Category General
Priority Origin LAPS
1 Description The user must be able to �nd a path between two points.

RQ.2.2 User stories U.1 Tests T.2.2.1
Discarded Category UI, Backend
Priority Origin LAPS
5 Description The user must be shown an estimated processing time for the

algorithm.

RQ.2.3 User stories U.1 Tests T.2.3.1
Discarded Category UI, Backend
Priority Origin LAPS
7 Description The user must be warned if the estimated processing time

exceeds 5 minutes.

RQ.2.4 User stories U.1 Tests T.2.4.1
Not Done Category UI
Priority Origin LAPS
6 Description The user must be able to export a calculated path as a �le.

RQ.2.5 User stories U.1 Tests T.2.5.1
Done Category UI, Backend
Priority Origin LAPS
2 Description The user must be able to see the available path�nding al-

gorithms
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RQ.2.6 User stories U.1 Tests T.2.6.1
Done Category UI, Backend
Priority Origin LAPS
2 Description The user must be able to select their desired algorithm.

RQ.2.7 User stories U.1 Tests T.2.7.1
Not Done Category Path�nding
Priority Origin LAPS
4 Description The calculated path must be at least one meter above the

heightmap.

RQ.3.1 User stories U.1 Tests T.3.1.1-2
Done Category UI
Priority Origin LAPS
1 Description The resulting path must be displayed on the map, at least

partially.

RQ.3.2 User stories U.1 Tests T.3.2.1
Not Done Category UI
Priority Origin LAPS
5 Description The website must be well-behaved on mobile devices.

RQ.3.3 User stories U.1 Tests T.3.3.1
Not Done Category UI
Priority Origin LAPS
1 Description Height data for a calculated path must be shown to the user.

RQ.3.4 User stories U.1 Tests T.3.4.1
Not Done Category UI
Priority Origin LAPS
4 Description Every feature must be usable with a touch screen.

RQ.4.1 User stories U.2 Tests
Done Category UI, Backend
Priority Origin Jan Dyre Bjerknes
3 Description An administrator must be able to see an overview of

path�nding modules.

RQ.4.2 User stories U.2 Tests
Done Category UI, backend
Priority Origin Jan Dyre Bjerknes
3 Description An admin must be able to start and stop path�nding modules.
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RQ.4.3 User stories U.2 Tests
Done Category UI, backend
Priority Origin Jan Dyre Bjerknes
3 Description An admin must be able to upload new path�nding modules,

and delete existing ones.

RQ.4.4 User stories U.2 Tests
Not Done Category UI, backend
Priority Origin LAPS
4 Description The admin must be able to view and change the settings of

path�nding modules, if there are any

RQ.4.5 User stories U.2 Tests
Done Category UI, backend
Priority Origin LAPS
7 Description A super admin must be able to add other administrators.

RQ.4.6 User stories U.2 Tests
Done Category Backend, UI
Priority Origin LAPS
3 Description Administrators must be able to add new map data to the sys-

tem, and delete them.

RQ.4.7 User stories U.2 Tests
Done Category Backend, UI
Priority Origin LAPS
3 Description Administrators must be able to view module logs.

RQ.5.1 User stories Tests
Done Category UI, Backend
Priority Origin LAPS
3 Description Administrators should be authenticated using a password.

RQ.5.2 User stories Tests
Done Category Backend
Priority Origin LAPS
4 Description Password authentication must use a modern cryptographic

hashing algorithm

RQ.5.3 User stories Tests
Done Category Backend
Priority Origin LAPS
5 Description The password must be any valid UTF-8 string.

243



LAPS Final Report

RQ.5.4 User stories Tests
Done Category Backend, UI
Priority Origin LAPS
7 Description The password cannot be longer than 128 bytes.

RQ.5.5 User stories Tests
Done Category Backend
Priority Origin LAPS
3 Description Only registered administrators are allowed to access admin-

istration features.

RQ.6.1 User stories U.1 Tests T.6.1.1
Done Category Backend
Priority Origin LAPS
1 Description Height data must be available across the system

RQ.6.2 User stories U.1 Tests
Done Category Backend
Priority Origin LAPS
1 Description The backend must be able to get paths from path�nding mod-

ules

RQ.6.3 User stories U.1 Tests
Done Category Backend
Priority Origin LAPS
1 Description Path�nding modules must get start and end points, as well

as map ID, from the system.

RQ.7.1 User stories U.3 Tests
Not Done Category Backend, UI
Priority Origin Jan Dyre Bjerknes
5 Description The user must be able to choose at least 2 path�nding al-

gorithms, and display the result from these at the same time.

RQ.7.2 User stories U.3 Tests
Not Done Category UI
Priority Origin Jan Dyre Bjerknes
8 Description The user must be able to see statistics of each path from the

di�erent algorithms

RQ.7.3 User stories U.3 Tests
Not Done Category UI
Priority Origin LAPS
8 Description The user must be able to toggle visibility of each result sep-

arately.
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RQ.8.1 User stories U.3 Tests
Not Done Category Backend
Priority Origin LAPS
8 Description The service must be able to generate random waypoints and

run path�nding algorithms on these.

RQ.8.2 User stories U.3 Tests
Not Done Category Backend, UI
Priority Origin LAPS
9 Description The user must be able to choose a sample size.

RQ.8.3 User stories U.3 Tests
Not Done Category UI
Priority Origin LAPS
5 Description The user must be able to view and compare statistics of run

samples between the algorithms.

RQ.8.4 User stories U.3 Tests
Not Done Category UI
Priority Origin LAPS
8 Description The user must be able to export statistics data.

RQ.9.1 User stories U.1, U.3 Tests
Not Done Category Backend
Priority Origin LAPS
4 Description The back-end must be able to queue tasks.

RQ.9.2 User stories U.1, U.3 Tests
Not Done Category UI, Backend
Priority Origin LAPS
5 Description The user must be able to view status of tasks which they have

in the queue.

RQ.9.3 User stories U.1, U.2, U.3 Tests
Not Done Category UI, backend
Priority Origin LAPS
5 Description An administrator must be able to view the status of each task.

RQ.9.4 User stories U.1, U.3 Tests
Not Done Category UI, backend
Priority Origin LAPS
5 Description The user must be able to cancel queued tasks.
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RQ.10.1 User stories Tests
Not Done Category Backend
Priority Origin LAPS
3 Description The service must check if the path is �yable.

RQ.10.2 User stories Tests
Not Done Category UI
Priority Origin LAPS
4 Description The UI must highlight the un�yable parts of a path if it is

un�yable.

RQ.11.1 User stories U.4 Tests
Not Done Category Backend
Priority Origin LAPS
6 Description The computing time must vary less than 10%.

RQ.11.2 User stories U.4 Tests
Not Done Category Backend
Priority Origin LAPS
6 Description The computing time must not grow exponentially with grid

size

RQ.11.3 User stories U.4 Tests
Done Category Backend
Priority Origin LAPS
6 Description Computing time cannot vary based on map complexity

RQ.11.4 User stories U.4 Tests
Not Done Category Backend
Priority Origin LAPS
6 Description The calculation time for �nding a path must be faster than

that of traditional algorithms

RQ.12.1 User stories U.5 Tests T.12.1.1-2
Not Done Category Path�nding
Priority Origin LAPS
2 Description Return the resulting path as a list of points.

RQ.12.2 User stories U.5 Tests T.12.2.1
Not Done Category Path�nding
Priority Origin LAPS
2 Description Calculate path using deep Q-learning, with states as possible

movement.
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RQ.12.3 User stories U.5 Tests
Not Done Category Path�nding
Priority Origin LAPS
2 Description The Machine Learning model shall be in ONNX format.

RQ.12.4 User stories U.5 Tests
Not Done Category Path�nding
Priority Origin LAPS
3 Description Path takes consideration to drone stats.

RQ.12.5 User stories U.5 Tests
Not Done Category Path�nding
Priority Origin LAPS
2 Description The module must be API compatible.

RQ.13.1 User stories U.5 Tests
Done Category Path�nding
Priority Origin LAPS
2 Description Take a heightmap, start and stop as an input.

RQ.13.2 User stories U.5 Tests
Done Category Path�nding
Priority Origin LAPS
2 Description Approximate the midpoint of the most e�cient path, using

convolutional neural networks.

RQ.13.3 User stories U.5 Tests
Not Done Category Path�nding
Priority Origin LAPS
2 Description The Machine Learning model shall be in ONNX format.

RQ.13.4 User stories U.5 Tests
Not Done Category Path�nding
Priority Origin LAPS
3 Description Path takes consideration to drone stats.

RQ.13.5 User stories U.5 Tests
Done Category Path�nding
Priority Origin LAPS
2 Description The module must be API compatible.
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K. List of Features

Requirements RQ.1.1, RQ.1.2, RQ.1.3
Description Place start and stop waypointsF.1
Userstories U.1

Requirements RQ.2.1-2.7
Description Path calculation between two waypointsF.2
Userstories U.1

Requirements RQ.3.1, RQ.3.2, RQ.3.3, RQ.3.4
Description Map display with pathF.3
Userstories U.1

Requirements RQ.4.1-RQ.4.6
Description Remote access admin panel.F.4
Userstories U.2

Requirements RQ.5.1-RQ.5.5
Description Admin Authorization.F.5
Userstories U.2

Requirements RQ.6.1-6.3
Description API for path�nding modules.F.6
Userstories U.2

Requirements RQ.7.1-RQ.7.3
Description Select multiple path�nding algorithms.F.7
Userstories U.3

Requirements RQ.8.1-RQ.8.4
Description Path�nding module statistics comparison.F.8
Userstories U.3

Requirements RQ.9.1-RQ.9.4
Description Jobs panel.F.9
Userstories U.3
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Requirements RQ.10.1-RQ.10.2
Description Valid path checking.F.10
Userstories U.3

Requirements RQ.11.1-RQ.11.4
Description Machine learning-based path�ndingF.11
Userstories U.4

Requirements RQ.12.1-RQ.12.5
Description Investigate deep Q-learning as a solution for path�nding.F.12
Userstories U.5

Requirements RQ.13.1-RQ.13.5
Description Investigate convolutional neural networks as a solution for

path�nding.F.13
Userstories U.5
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27th January 2020 Meeting– Ext. Supervisor Week 2 Meeting

Discussion

KDA - KDA are interested in the problem and our investigation on it, and they’ll be the con-
tractors for the project. The team may in the future be invited to have a presentation about the
project at KDA.
Servers - The server plan as of now is to use two di�erent servers, one for hosting the web
service itself, and another more powerful server for training the machine learning models. For
the web service server a remote renting solution with Linux was discussed, whereas for the
other one there is a server located at the school which External Supervisor will investigate if
we may use this one for the training.
Budget - Budget for things that are not the server was discussed and External Supervisor will
come with a status update later.
Meeting with Kongsberg Digital - External Supervisor will talk to Kongsberg Digital in the
near future to possibly set up a meeting regarding machine learning and frameworks.
Simpli�cation - Details that are small regarding the problem may be ignored to focus on the
core issue instead, as long as the impact is estimated and the decision is reasoned for.
Service Map Area - Having all of NMA’s heightmaps were not a requirement, instead the
service should o�er a few maps on prede�ned areas for the user to choose between. The size
of the maps was also discussed as too big maps could serve as a problem for the implementa-
tion, External Supervisor stated that there was no need for maps bigger than approximately a
kilometer, so this was noted as a soft requirement to the service.
What Determines a Good Path - This topic was brought up and lightly discussed but the
topic was postponed for now and will be brought up again once we are deeper into the project
where it is more relevant.
Expo Presentation Idea - Our Expo Presentation Idea with the Augmented Reality Sandbox
at Devotech was brought up and External Supervisor was fond of the idea, and he came up
with ideas for �ying the generated path in VR, and using a mold of Kongsberg on the sandbox
to shape it like Kongsberg.
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28th April 2020 Meeting– Meeting with internal supervisor

Discussion

0.1 What we are working on

• Henrik - Graph networks, back to basics, creating a better loss function.

• Vetle - Simpli�ed the problem. Implemented normal Q-learning to verify that it works.
By simplifying the problem the training is faster and it’s possible to verify that it actually
works.

• Håkon - Very basic admin panel UI, focus on documentation, �xing bugs.

• Even - Admin panel work was cut o� for a bit, started working on more interactive map.

0.2 Feedback on backend implementation documentation

We received feedback on some of the documentation which we had written. It was generally
pretty good, but there were a few things we still have to work on.
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5th February 2020 Meeting– Meeting with Ext. Supervisor 4

Discussion

Our intended main point of discussion for this meeting was our presentation. However, because
it was postponed we didn’t get to talk about this.

We discussed the budget for the project. We will have to pay for miscellaneous small items
such as snacks in meetings out of pocket.

Meeting with Kongsberg Digital

Finally, we talked about our meeting with Kongsberg Digital on Monday. The best way of
presenting our problem to them was discussed. Again, we do not have to make a perfect
presentation, we just have to explain our problem well enough to be understood. We should
not be afraid to ask questions, since they do not expect us to be fully educated engineers yet.

We need to remember to talk about our architecture questions because it is very relevant to
their experience in deploying machine-learning solutions.
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9nd March 2020 Meeting– Meeting with internal supervisor

Discussion

0.1 Process Model

Due to the freedom we are given, we no longer feel there is a need for a replenishment meeting
with our customer every week as of now, so we will be dropping that from our process model.
We will continue to have a meeting with our customer every week but it will be more of a
general meeting. We also introduced our new process for �nalizing feature documentation.

0.2 Documentation

We discussed the option of having a numbered version on all feature documentation to indicate
how complete that document is. Version 1.0 being when the document has passed the �nalize
documentation stage of our process model. Further it was discussed about having background
information in an appendix to be handed in with the paper.

0.3 Webpage

We discussed our plans for the webpage and that we should set it up by the second presentation
so people can view our project easily. It does not need to be anything fancy just some text about
us and what we do, and it has to be dynamic.

0.4 Future meeting

We discussed when to do the next meeting as the next two weeks will be put aside for exam
preperations. Two dates was possible 19th or 13th, friday the 13th was decide as the date for
our next meeting.
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24th May 2020 Meeting– Meeting with Ext. Supervisor 8

Discussion

The groups progress war borugh up and vetle was having some issues with his optimazation
algorithm for reinforcement learning. Potential solutions was discussed.

Even was asked about dropdown menus and how they are created.

Further discussion about modi�cation to the dijkstra algorithm to make it more realistic be-
having, and discussion about new ways to train convolutional neural networks.

Timeframe for the project was discussed.
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20th of march Meeting– Meeting with Ext. Supervisor 4

Context

The last week and a half the group have practiced for upcoming exams, however these where
cancelled because of corona, as such work have instead resumed on the project. We expect
this to last for a bit and for the unforeseeable future all meetings will be online rather than in
person. We are also unsure when exams will be held.

Presentation 2

We discussed how we planned to do our presentation 2 as meeting in person is not longer an
viable option. As all documentation have to be turned in by tuesday, the group e�ort towards
this.

Server

We informed Jan that we contacted Dag to get the testing server working. However it seems
like something have happened and we can no longer access it. Because of the corona we can
not freely enter krona to �gure out what is wrong. Jan have proposed, as he have access to
krona could let us in.

progress

Since last meeting most work have been done towards exams, however since they where can-
celled more free time was available

• Vetle- Continued work towards reinforcement learning

• Even - Finishing minimal viable product for the frontend

• Henrik - Finalize documentation for 2. presentation

• Håkon - Finalize documentation for 2. presentation
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30th March 2020 Meeting– Meeting with internal supervisor

Discussion

0.1 What we are working on

• Henrik -Working on graph network

• Vetle - Working on reinforcement learning

• Håkon - Working on caching

• Even - Working on documentation for frontend

0.2 Feedback on the presentation

This is the �rst meeting after our second presentation. We talked about some of the things that
could have been better. Our documentation could be better, and we should have focused more
about what we have done so far.

0.3 Expo

We talked about expo. Unsure if expo is fully canceled or is made into a digital expo". We don’t
know yet.

0.4 Documentation

Documentation needs to be improved, especially code documentation.

0.5 Working digitally

We talked about working digital and some of the challenges.
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24th May 2020 Meeting– Meeting with Ext. Supervisor 6

Discussion

This meeting was our �rst since the second presentation. As every member of the group has
made good progress, we discussed our progress.

We talked about Henrik’s experiments with graph networks. An issue was raised that working
on graphs will have the same problems as the traditional path�nding algorithms have. How-
ever, we believe that it can be circumvented by using a special kind of network which generates
a path which includes all the nodes, instead of a path from node to node.

Vetle was able to show o� his work on a reinforcement-learned algorithm, displaying the paths
he’s been able to generate thus far. An issue was raised considering that the algorithm might
be trying to optimise for two potentially incompatible variables at once. Because of this, we
want to have meetings more often to discuss our progress.

Even explained that he has kept on documenting and improving his work.

Håkon talked about having implemented the suggestions he received after the second present-
ation: submitting the same job twice will now return the result from a cache instantly, and
validating job input. Moreover there was talk about how the admin panel feature is coming
together, and how it is now possible to upload a GeoTi� �le directly into the backend and have
it deal with the conversion.

Afterwards we discussed the GUI a little bit more. There was a discussion on features which
are desired in the frontend, in particular being able to see the height of the generated path from
the side. Another feature which was discussed was to display various pieces of data about the
path and map in the frontend, which requires backend tweaks as well.
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27th January 2020 Meeting– Meeting with internal supervisor

Discussion

Process model

Exact details of our project model do not matter that much. What matters is that the model as
a whole works for us and is well-documented.

Documentation

• It’s better to document too much than too little.

• We must document our choices for the �rst presentation.

• In the weekly reports, it should be visible who did what.

• We should document how we handle administrative matters. If something goes wrong,
we can backtrack on it and explain how it happened.

The binder

The binder should contain every piece of documentation which we think is important to read.
Any other pieces of documentation should be placed on the �ash drive, and might not be read.
It should have a front page with our logo and a presentation of us. Having some kind of contents
listing is also a good idea. It should contain an overview of the �ash drive as well, to make it
easy to �nd documents.

The presentation

• Appear con�dent.

• Make the room focus on us.

• We need to show that we have a good understanding of the project.

• Should talk about what we are going to work on next.
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15th May 2020 Meeting– Meeting with internal supervisor

Discussion

0.1 What we are working on

• Al members are currently working on documentation.

0.2 Things we worked on

Our documentation is generally good, but we need to get everything documented.

We are still lacking �gures and sources.

We should also remember to make clear who did what. As we are only four and the task is
relative separated, it should be to hard to do but still important.

In source code we should consider adding name of the author/authors, a short description and
a version of the �le. We already have source control on github, we will probably not use time
on this.

The poster should be �nished by the 25th of may.

Time is set of for the next meeting the 19 of may 2 o’clock, and if not comes up should be the
time of the next meeting.
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24th May 2020 Meeting– Meeting with Ext. Supervisor 7

Discussion

The group’s progress was brought up to supervisor. Henrik has been working on graph neural
networks as a proposed solution to the problem. External supervisor pointed out that the
resulting path has to be maneuverable, which means it has to be decoupled from the grid.
Henrik mentioned that this will hopefully not be a problem, as there are graph neural network
implementations which use spline algorithms, which are able to smooth out the path and its
turns.

Progress on the reinforcement learning (RL) and the Deep Q-Learning approach, along with
using Dijkstra’s algorithm for the reward function and insights from that investigation was
discussed. Supervisor discussed how RL agents are quick to �nd �aws with reward functions
and utilize those �aws to get high rewards. Alternative ways of using Dijkstra in the reward
function was brought up and discussed, which will hopefully yield better results. The formal
mathematical de�nition of the problem is also being worked on.

On the frontend progress has been incremental, and a bug involving listing up multiple al-
gorithms was discussed, where supervisor weighed in with possible workarounds for the prob-
lem.

Regarding the backend progress, the feature of uploading modules was announced to super-
visor. This allows one to simply upload a .tar �le containing the model and its �les, and it will
be added to the service. Adding support for map metadata was also brought up as it is needed
for the path�nding modules, particularly the point density of the map itself. No unit was given
for these, but supervisor mentioned that the user uploading map should be given the oppor-
tunity to specify which unit, and in the case that there is no speci�ed unit then it is safe to
assume it’s in meters. In addition to this, supervisor discussed map projections, and that this
was something Håkon could spend some time on learning about and developing around if he
found it interesting.

Because of next week being exam week, progress will be slowed down temporarily. A su-
pervisor had a �exible schedule next week, the group was given opportunity to schedule the
meeting on either late Wednesday, Thursday or Friday.
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5th May 2020 Meeting– Meeting with internal supervisor

Discussion

0.1 What we are working on

• Vetle - Work to make the algorithms take into account turn radius. The drone needs to
be able to turn early enough. Focus working on the turn short

• Henrik - Stopped working on graph network to get turn short done. Work is also done
towards getting a dijkstra module that can take into account turn radius.

• Håkon - Worked on documentation and added so that multiple modules can run parallel.

• Even - Finished work on interactive map that lets the user place markers by mouse. Work
started on getting map data.

0.2 Feedback on chapter 4 the project

Most criticism was of a lack of sources and in some places �gures would be helpful to help
explain some things. The content seems mostly �ne, and the writing is good enough.

0.3 misc

Final presentation is on 11th of june.
We should talk to karoline about what should be on the USB and when it needs to be there,
especially the expo poster.
We have 1 week left of product development 2 weeks of documentation, and roughly 2 weeks
of presentation prep.
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27th January 2020 Meeting– Meeting with ext. Supervisor 3

Discussion

First presentation

We got feedback on our �rst presentation draft. We talked about dealing with handling pres-
sure, and went through each slide in the draft.
We talked about needing to get the following points into the presentation:

• Time management

• Explain the problem:
– Weaknesses using current methods
– Potential strengths of a machine learning-based approach

• Presenting the members of the group

• That the problem is from KDA

• We have to de�ne interfaces between components

Meeting with Kongsberg Digital

We discussed the logistics of our meeting with Kongsberg Digital. We need to present our
problem to them in the shape of a short presentation. It does not need to be a particularly
good presentation, we just have to get the problem across. They are apparently quite familiar
with how to deploy machine-learning based software, and therefore probably have a number
of good tips for us.

Minimum viable product

We discussed that our minimum viable product is actually rather large. We discussed shrinking
it down a little, such that it does not include all requirements which are currently set to priority
level 1(highest).

What constitutes a good path?

We talked about �guring out what makes one path better than others. There are many di�erent
approaches to this, and pitfalls in every direction. Which version we pick may change during
the course of the project. In certain cases, it will be hard to compare this approach to the
traditional approach, so measuring deviation from the ideal line using Dijkstra is not a good
method.

Userstories

We discussed our userstories. They were pretty solid, except for the fact that they lack any
mention of machine-learning, which is something we will be adding in some form or another.
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27th January 2020 Meeting– Meeting with ext. Supervisor 3

Misc

• Wishes of a dark theme for the website were put forward

• We’re starting to see a slight scope creep. We need to make sure we don’t start working
on too much, and have no chance of �nishing it.

• Server update: There is a server we can use for training on campus. All we need to do to
get the ball rolling is talk to Dag Samuelsen or Henning Gundersen.

Second Presentation

We discussed possible times for the second presentation. We decided that the best time for it
would be on Thursday, 26th of March.
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27th January 2020 Meeting– Initial Meeting with External Supervisor

Discussion

Nature of the project, why we’re making it - Software that generates �ightpaths usually
use normal path�nding algorithms on grids that generates paths between the nodes, with in-
stant 90 degree turns. As a result the �ightpath will have to be modi�ed before being used by
anything �ying which results in the real path that is taken no longer being the optimal path.
This project is therefore meant as an investigation to explore machine learning solutions as a
way of avoiding this problem, in addition to making the calculation possibly faster and more
constant than that of path�nding algorithms.
Requirements - As this is more of an investigation than a product development at its core,
there will be less customer requirements than that of a normal project, and the group will
therefore have more say in the derived requirements and design choices.
Server solution - Server needs will be dealt with and considered in the future once more is
known about how demanding the software will be. A discussed possibility is using a heavy
server for training of the machine learning, and then later deploying a lightweight pre-trained
software on a less powerful server.
Code repository - As this project is not con�dential, the group can freely choose code repos-
itory service themselves.
Future meetings with External Supervisor - Meetings at about an hour long will be held
once a week, with a list of questions or topics that will be brought up in the meeting, written
and sent to external supervisor at least 24 hours in advance.
First presentation date - First presentation should preferably be the 30th or 31st of January.
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Meeting Request

Participants Vetle André Ho�meyer Neumann
Henrik Thue Strocka
Even Thonhaugen Røraas
Håkon Jordet
Henning Gundersen

Location Group room 2263
Date and Time 28th April 2020 14:00

Expected duration 1 Hour
Today’s date 24th May 2020

Subjects to discuss

• Oppdatering på fremdrift.

• Tilbakemelding på dokumentasjon.



Meeting Request

Participants Vetle André Ho�meyer Neumann
Henrik Thue Strocka
Even Thonhaugen Røraas
Håkon Jordet
Jan Dyre Bjerknes

Location Group room 2263
Date and Time 17st January 2020 13:00

Expected duration 1 Hour
Today’s date 27th January 2020

Subjects to discuss

• We present our progress

• Budget, to servers and other

• Contract. We have printed out the standard contract, and dicussing signing it.

• Dicussing meeting Kongsberg Automasjon

• We present our project model



Meeting Request

Participants Vetle André Ho�meyer Neumann
Henrik Thue Strocka
Even Thonhaugen Røraas
Håkon Jordet
Henning Gundersen

Location Skype
Date and Time 17th March 2020 13:15

Expected duration 1 Hour
Today’s date 24th May 2020

Subjects to discuss

• What to do going forward.

• How to handle second presentation.



Meeting Request

Participants Vetle André Ho�meyer Neumann
Even Thonhaugen Røraas
Håkon Jordet
Jan Dyre Bjerknes

Location Group room 2263
Date and Time 3rd April 2020 11:00

Expected duration One Hour
Today’s date 24th May 2020

Subjects to discuss

• Documentation

• Progress update



Meeting Request

Participants Vetle André Ho�meyer Neumann
Henrik Thue Strocka
Even Thonhaugen Røraas
Håkon Jordet
Jan Dyre Bjerknes

Location Group room 2263
Date and Time 24st January 2020 13:00

Expected duration 1 Hour
Today’s date 27th January 2020

Subjects to discuss

• Our Presentation

• Meeting with Kongsberg Digital

• Our Progress

• Minimum Viable Product

• Framework Updates

• KDA Logo



Meeting Request

Participants Vetle André Ho�meyer Neumann
Henrik Thue Strocka
Even Thonhaugen Røraas
Håkon Jordet
Henning Gundersen

Location Group room 2263
Date and Time 21st April 2020 14:00

Expected duration 1 Hour
Today’s date 24th May 2020

Subjects to discuss

• Ukentlig dokumentasjon fram til innlevering.

• Hva vi har gjort fram til nå.

• Planen fram til innlevering.



Meeting Request

Participants Vetle André Ho�meyer Neumann
Even Thonhaugen Røraas
Håkon Jordet
Jan Dyre Bjerknes

Location Group room 2263
Date and Time 31st January 2020 12:00

Expected duration One Hour
Today’s date 30th January 2020

Subjects to discuss

• Discuss documentation

• The question sent on email



Meeting Request

Participants Vetle André Ho�meyer Neumann
Henrik Thue Strocka
Even Thonhaugen Røraas
Håkon Jordet
Henning Gundersen

Location Group room 2263
Date and Time 3th March 2020 11:15

Expected duration 1 Hour
Today’s date 24th May 2020

Subjects to discuss

• Gå over avtalt dokumentasjon.



Meeting Request

Participants Vetle André Ho�meyer Neumann
Even Thonhaugen Røraas
Håkon Jordet
Jan Dyre Bjerknes

Location Group room 2263
Date and Time 27th February 2020 13:00

Expected duration One Hour
Today’s date 24th May 2020

Subjects to discuss

• Server

• Our progress since last time



Meeting Request

Participants Vetle André Ho�meyer Neumann
Even Thonhaugen Røraas
Håkon Jordet
Jan Dyre Bjerknes

Location Group room 2263
Date and Time 24th April 2020 11:00

Expected duration One Hour
Today’s date 24th May 2020

Subjects to discuss

• Progress update

• Documentation to look over to next meeting.



Meeting Request

Participants Vetle André Ho�meyer Neumann
Even Thonhaugen Røraas
Håkon Jordet
Jan Dyre Bjerknes

Location Group room 2263
Date and Time 31st January 2020 12:00

Expected duration One Hour
Today’s date 24th May 2020

Subjects to discuss

• Discuss documentation

• The question sent on email



Meeting Request

Participants Vetle André Ho�meyer Neumann
Even Thonhaugen Røraas
Håkon Jordet
Jan Dyre Bjerknes

Location Group room 2263
Date and Time 19th February 2020 13:00

Expected duration One Hour
Today’s date 24th May 2020

Subjects to discuss

• Server

• Our progress since last time



Meeting Request

Participants Vetle André Ho�meyer Neumann
Even Thonhaugen Røraas
Håkon Jordet
Jan Dyre Bjerknes

Location Group room 2263
Date and Time 8th April 2020 11:00

Expected duration One Hour
Today’s date 24th May 2020

Subjects to discuss

• Progress update



Meeting Request

Participants Vetle André Ho�meyer Neumann
Even Thonhaugen Røraas
Håkon Jordet
Jan Dyre Bjerknes

Location Group room 2263
Date and Time 5th February 2020 12:00

Expected duration One Hour
Today’s date 24th May 2020

Subjects to discuss

• Thoughts on report if you had time to read it.

•



Meeting Request

Participants Vetle André Ho�meyer Neumann
Henrik Thue Strocka
Even Thonhaugen Røraas
Håkon Jordet
Henning Gundersen

Location Group room 2263
Date and Time 20th January 2020 11:15

Expected duration 45 min
Today’s date 27th January 2020

Subjects to discuss

• Process model, comments on Kanban.

• Administrative documentation, how much.

• Important things for �rst presentation.

• How much documentation for �rst presentation.



Meeting Request

Participants Vetle André Ho�meyer Neumann
Henrik Thue Strocka
Even Thonhaugen Røraas
Håkon Jordet
Henning Gundersen

Location Group room 2263
Date and Time 10th February 2020 11:15

Expected duration 45 min
Today’s date 24th May 2020

Subjects to discuss

• Thoughts on �rst presentation

• Thoughts on the report



Meeting Request

Participants Vetle André Ho�meyer Neumann
Henrik Thue Strocka
Even Thonhaugen Røraas
Håkon Jordet
Henning Gundersen

Location Group room 2263
Date and Time 27st January 2020 13:15

Expected duration 1 Hour
Today’s date 27th January 2020

Subjects to discuss

• Our Presentation

• Documentation



Meeting Request

Participants Vetle André Ho�meyer Neumann
Henrik Thue Strocka
Even Thonhaugen Røraas
Håkon Jordet
Henning Gundersen

Location Group room 2263
Date and Time 17th February 2020 11:15

Expected duration 1 Hour
Today’s date 24th May 2020

Subjects to discuss

• Discuss how we would like to review documentation in the future.

• Project update

•
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27th January 2020 LAPS Group– Starting point for the product

1 Introduction

To start writing the service, a few things should be in place �rst. We should have a few user-
stories which cover the most basic functionality of the service. We have a few of these already,
and have derived features from them. From those, we have derived some requirements. We
use this as a starting point.

Because we have these in place, as well as an idea of what our general architecture should be,
we will be able to start development after the �rst presentation.

Our project is very open-ended. We can use the technologies we think are best to solve the
problem at hand. We’re writing the service from scratch. This means we have zero legacy code
to deal with, which gives us a lot of freedom in our technology- and architecture choices.

Figure 1: High-level architecture

The general architecture can be seen in Figure 1. It emphasises a separation of front-end and
back-end. The path�nding modules are hot-swappable. That is, we can use any of the available
modules to generate a path. These are all going to be handled as a single service. This service
will not be available to the user, but will instead be communicated with by the back-end.

The back-end’s responsibilities are:

• Powering the Front-end

• Collect and pass on path data from path�nding service

• (Possibly) Coordinating the training of di�erent path�nding modules

2



27th January 2020 LAPS Group– Starting point for the product

2 Architecture: Server-side («the cloud»)

As stated in Section 1, the server-side part of the service has numerous responsibilities and
consists of multiple components. In order to achieve this, there needs to be some sort of in-
terface between the two. De�ning these interfaces is part of the systems engineering process,
and is vital to our success.

It is not clear right now what this interface should be, because we do not have requirements
for it yet. It will likely �uctuate as our needs change. While stability is important in this case,
we know from experience that forcing it to be too stable too quickly is a bad decision. Thus,
we will try our best to keep it stable, while at the same time adapting it to our needs.

Speaking of interfaces, the interface between the front-end and the back-end will take the form
of a RESTful API. This means using HTTP methods in the correct manner, and changing the
request path to indicate di�erent functionality. Compared to the internal server API, this is
going to be more volatile. The front- and back-end are deployed as one, and we can a�ord
to change it much more as we go along. In addition, a number of front-end features depend
directly on functionality in the backend and may require more data in the future.

2.1 Programming language

A programming language is a tool: We need to pick the right tool for the job. For the path�nd-
ing subsystem, the choice is between C# on .NET core and Python. Both have solid machine-
learning frameworks which make it easy to de�ne and use models. Both of them also run in
Linux environments, which is important for the deployment of our service. Both of them have
server capabilities which allows us to communicate with the back-end easily.

There are many libraries and programming languages suited for back-end development. We
want to write our back-end in Rust. Rust is a systems programming language with a focus on
safety. It has an ownership and borrowing model which will ensure that your code is memory-
safe, without the use of a garbage collector[1, Chapter 4].

Rust’s safety guarantees also include thread safety[1, Chapter 16]. All of this allows us to write
and deploy a backend which is free of data races, bu�er over�ows other soundness issues.

2.2 HTTP Frameworks

We need some kind of HTTP library or framework in order to write the backend. There are
many available for Rust, and we have narrowed it down to two choices. Before we start work-
ing, we have to decide which one to use.

3



27th January 2020 LAPS Group– Starting point for the product

2.2.1 Rocket

Rocket1 is a very solid HTTP framework. It has many features which make writing web ap-
plications using it a breeze, and it’s powerful request guards provides a solid abstraction for
authentication, database connections and more.

The downsides of Rocket are that it depends on unstable Rust features, and that the latest stable
version is about a year old with outdated dependencies. Work is on-going to get a new version
out supporting asynchronous I/O. An alternative could be to use this development version of
Rocket, but that means relying on an API which is subject to change.

2.2.2 Warp

Like Rocket, Warp2 is a Rust HTTP server framework. It is a lot simpler than Rocket in design
and features, but is a good starting point to build a solid architecture. Advantages of warp:

1. Support for asynchronous I/O.

2. Works on stable Rust 1.39 or newer.

3. It’s �lter system makes code re-use easy in each endpoint handler.

4. Supports Websockets and multipart forms natively.

3 Machine learning approaches

Because of the nature of the project being focused on research and the external sensor not
limiting our choice we did not have many requirements for frameworks. Because of this we
stood free to choose what frameworks from the many there was to choose from. So a list
was compiled from all compatible frameworks on AWS(Amazon web cloud) because they are
the biggest distributor of cloud computing. From there the group assigned pros and cons for
each framework to decide which one was an option. Torch was chosen because of its ease of
use and its leaning towards researching instead of a �nal product and was suitable for rapid
prototyping.

As discussed in our process model the group had to be really agile when developing because
machine learning is notoriously hard, and coupled with the research aspect and very little
previous research done on the matter there is no sure way to accomplish the task. Therefore
there was a brainstorming session where the group came up with three plans that each had a
di�erent way to approach the problem via machine learning.

1Link: https://rocket.rs
2Link: https://github.com/seanmonstar/warp
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27th January 2020 LAPS Group– Starting point for the product

3.1 Plan A

Plan A is the plan that the group felt had the biggest chance of succeeding and was conceived
with the help of the external supervisor. The plan focus on using a unsupervised approach
called Deep Q Learning. This works by using a neural network to generate a set of weights
for all actions the agent can preform given the current state he is in, in this case the state will
probably be the agent position on the grid. The agent then chooses the action with the smallest
weight.

This approach has two main advantages, the �rst is that this approach does not require any
pre-labelled data hence the unsupervised learning. The second advantage is that if convolution
is use in the neural network it should have the ability to extract features from the height map,
in a similar way to how humans can look at a map and quickly draw a path around a big
mountain.

3.2 Plan B

Plan B is in many was similar to Plan A because it aims to exploit the same feature from
Convolutional Neural Networks. But instead of using it to generate weights for a Q Learning
algorithm it will instead directly generate the path. This in turn negates one of the advantages
of Plan A because now the model needs pre-labelled data to train from. Which means the group
has to �nd a way to generate su�cient data and label it.

3.3 Plan C

Plan C is to use what is called a generational adversarial neural network, this is a complex
name for a simple concept. It revolves around having two neural networks, a generator which
tries to generate fake paths to fool the discriminator which tries to distinguish between the
fake paths and the real paths. After the training the end result is that the group hopefully has a
generator network that can generate paths that accurate enough to be indistinguishable from
real paths.

4 Architecture: Client side

On the client side, we want to have a mostly single-page web application. In order to do this,
we will be utilising a RESTful API. The site will be almost exclusively JavaScript-driven. This
implies that we do not render HTML on the server. This is a sensible choice for building singe-
page applications, and makes the distinction between front-end and back-end greater, making
it easier to work together on the site.

To power the UI, we will be using the JavaScript framework Vue.js. We mainly chose Vue
because none of us have much frontend development experience on the web, and Vue is simpler
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27th January 2020 LAPS Group– Starting point for the product

than many of the other frameworks. Vue has a large following developing components which
we will be able to re-use in our project. simple yet powerful framework which allows us to
split our code up into components, which helps keep the code clean.

Without having tried writing applications in the other frameworks out there, there is a risk
that our choice of Vue is a mistake and will cost us in the long-run.

5 Where to go from here

Now that we have a general architecture design in mind, we can start working on the project.
Feature F.1 is essentially our minimum viable product. So to start with we set up the skeleton to
build the rest of our architecture on. It is important that we do not stick to the plan too much.
Excessive planning means the team is no longer agile, and does not �t in with our project
model.

Because of our agile model, we will be doing continuous, incremental improvements to the
website. This allows the customer to comment on our progress and give us a better explanation
of what they want.

References

[1] Steve Klabnik and Carol Nichols. The Rust Programming Language. No Starch Press, 2019.
isbn: 9781718500440. url: https://nostarch.com/Rust2018.
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24th May 2020 LAPS Group– Next steps after the 2nd presentation

1 Introduction

Now that we have had some weeks to work on the �nal product, we have achieved most of the
milestones to create a minimum viable product. In this document, we explain where we are in
relation to our milestones and what our next steps are following the 2nd presentation.

2 Milestones

As a reminder, Figure 1 displays what our milestones are. We have achieved the bottom-most
milestone: de�ning the path�nding API. On the path�nding side, we have implemented a
simple path�nding module which uses an implementation of Dijkstra’s algorithm, so we have
achieved the �rst two milestones there.

On the website side, progress is somewhat split. The backend is further along than the frontend.
This is because there is less that needs doing on the implementation side. The backend sup- legg til

hvorfor
backenden
er lengre
foran

ports submission and retrieval of path�nding jobs, while allowing the selection of path�nding
algorithms. It allows for listing of algorithms such that the user can know which ones are avail-
able. Finally, it allows for retrieval of map data. Therefore, we can see that we can technically
start working on features required for the admin panel in the backend.

The frontend have as of presentation 2 a few of the core features implemented. Primarily
the ability to take user input in the form of a start and stop and sending it to the backend,
where it will be used further. The user can select maps as long as they are currently uploaded
into the backends database. The frontend supports display and selecting path�nding mod-
ules. All expected outcomes of a path�nding should currently be useable in the frontend, and
therefore adding new path�nding modules should be easy. The �rst two milestones for the
frontend/backend have been accomplished and work towards the next one have begun.

3 Next steps

In the backend, there are a lot of small tasks which need doing. Up until this point, the focus
has been on creating a minimum viable product, and working on documenting everything as
well as we can. There are a lot of smaller things which really should be done. Some of which
are relevant to features later on, while some improve existing functionality in subtle ways.

After doing many of the improvements we want to do in the backend, we can start working
on features we need for the admin panel. The main thing is having some way to manage
path�nding modules, being able to start and stop them from code as needed, while keeping
them running if the backend exits. We also need some way to automatically import map data.
When these are in place, we can design an initial version of the API to manage the modules,
and start implementing it. Afterwards, we can working towards the other milestones down the
line.

1



24th May 2020 LAPS Group– Next steps after the 2nd presentation

As the frontend have reached a point where all expected path�nding modules are supported,
work can be focused on moving features currently done in the backend to the frontend and
the expansion of new features. Some things that can should added after backend support is
created, is user uploaded maps, a login feature, and an admin panel. Purely on the frontend, a
function to display end and stop points before they are sent to the backend should be added.
Also making the start/end points placeable with a mouse. Currently the map is displayed at
the resolution it is received, this is because the coordinates system is based on pixels. Large
map will therefore be impractical to use, and almost unusable on small screens like phones or
tablets. A map should rather be scaled to a default size, and match the coordinates accordingly.
Because most of the work have gone into development of the basic functionality, the website
isn’t as aesthetically pleasing it should be.

For the path�nding modules, we want to have some kind of build system to make deployment
a lot easier. Currently we have to manually convert the Jupyter notebooks into plain Python
�les and manually manage dependencies. It would be very convenient to have some kind of
build system which would do this automatically for us.

We will continue to investigate di�erent machine learning solutions and network layouts. Our
focus will probably shift away from convolution and more towards reinforcement learning and
graph neural networks, as they show more promise going forward.
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Figure 1: Milestones Diagram
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1. Completed Tasks

1.1. Documents

This week we built up some document templates in order to make our documents have a dis-
tinct look and feel to them. We do this in order to make them easily recognizable, and for
consistency. This consists of a LATEX class �le with a number of de�nitions and a custom title
page.

This class �le is by no means �nal and will likely keep evolving as the project continues.

We also created template �les in order to ensure that every document of the same type will have
roughly the same structure. This helps us ensure that we write about everything we agreed
on.

1.2. Proccess

This week we selected our process model for the project. We’ve decided to use Kanban, because
we think that will work the best with how we work. We were looking for an agile model, and
we were torn on using SCRUM or Kanban. We �gured that Kanban would work best for our
group.

1.3. Meeting with external advisor

We also had our �rst meeting with our external advisor, Jan Dyre Bjerknes. He cleared up a
lot of questions we had about the project, namely about our requirements. We learned that we
can do things the way we think is best. We also don’t have a large amounts of requirements,
and are free to choose the requirements that we think is the best for the project.

We talked about what the best time for the �rst presentation would be. It will be the 30th or
31st of January.

1.4. Meeting with internal supervisor

We had our �rst meeting with our internal supervisor this week. We discussed a few things, and
set up a meeting schedule for every Monday. We found out we would have the �rst presentation
on the 31st of January, which we will have to book a room for.
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1.5. Structure of thesis

While the �nal report is months away, we �gured it was a good idea to have the general struc-
ture of our thesis set up. This allows us to write it over a long time-period. To do this, we
looked at a large number of previous year’s theses, and looked at what we liked and disliked
in each of them. We came up with a structure which we think will be a good starting point. It
is almost certainly going to change.

1.6. Name

We debated for a while about what the name of the project should be. Our external advisor
gave us free reign of the name, without any preferences. We landed on calling the project
Low-Altitude Path�nding Service, or LAPS for short. The project group is known as LAPS
Group.

1.7. Gan� Diagram

We created a setup for our Gantt diagram. This is contained in an Excel �le, where we can
easily type in our data and it will present a Gantt diagram of this data.

1.8. Requirements presentation

We �gured out how to present requirements in technical documents the way we want them
to look. It is important to us that this is done consistently across the documents, and that it
is fairly quick to do. To do this, we need to write LATEX code to do this for us. This will most
likely be done next week.

1.9. Logo

Because we were given free reign over our logo, we have asked a friend who professional
designer to turn our logo idea into a real logo. If he doesn’t want to do it, we will probably
commission one from somewhere.

1.10. Hour tracking

We set up an hour tracking spreadsheet to track how much we’ve worked. Appendix A shows
a table of our hours worked this week.
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2. Tasks for next week

2.1. Requirements

Next week we have to get the �rst requirements written down properly. We want to have
layered requirements, where the essential requirements are the top-level ones. As development
progresses, we break these requirements down into many smaller requirements, to the point
where every feature has it’s own set of requirements. It requires some indication of which
requirements are given by the customer, and which are design decisions on our part.

2.2. Improve document templates

We will keep on improving our document templates. In particular, we want to add our logo
somewhere, and have some kind of decoration on every page of text. There are also templates
for a few types of documents which are missing and have to be added.

2.3. Document process model

Having decided on what we want our process model to be, we want to formalise it. This
document will contain an in-depth explanation of why we think the model we have chosen is
right for us and our project. It will describe how we intend to document who did what and our
progression throughout the weeks.

2.4. Meeting with Jan

We will be meeting with our external supervisor again this week.

A. This week’s working hours

Date Even Henrik Håkon Vetle
Mon. Jan 6 1.75 1.75 3.75 1.75
Tue. Jan 7 3.5 4 4 4

Wed. Jan 8 4 4.5 4.5 4.5
Thu. Jan 9 1.5 5 5 4.5
Fri. Jan 10 3.5 5 5 5
Sat. Jan 11 0 0 0 0

Sun. Jan 12 0 0 0 0
Total 14.25 20.25 22.25 19.75

: Person was sick : Weekend
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1. General

This week we continued to work towards a minimum viable product. Our current goal is to be
able to present it on our second presentation on the 26th of march. This week focus has also
begun to shift from prototyping to documenting as we need most documentation done by next
week because the exam period will occupy the next two weeks after that.

1.1. Håkon Jordet

This week, I �nished up a couple Trello cards which had failed QA, mostly having to change
documentation. I also did a little behind-the-scenes re-vamp of the backend logging system,
set up our brand new server, and continuous delivery of the backend + frontend.

1.1.1. Backend

I had originally used tracing instead of normal logging. Tracing is a type of logging built around
spans. When a span is in scope, the span becomes part of the logged message. A span can have
information associated with it, for instance an IP. This makes log output easier to read when
using asynchronous IO. When using asynchronous IO, the running thread will jump to working
on another task when it has to wait for IO. This massively increases the number of requests
which can be processed at once, and improves CPU utilization. This makes it hard to tell which
event is related to what request, as an example.

However, tracing does not play well with Rocket. Rocket has it’s own logging facilities, using
the Rust crate log1. I was initially using a compatibility layer which allows crates using log to
work with a tracing subscriber. This caused issues while unit testing, where it felt much more
natural to depend on Rocket for logging(and therefore printing of any useful information if
the test fails). In general, it was not pretty and the choice was made to change to the log crate
instead.

1.1.2. Architectural

We �nally got a server and domain up and running. Our domain ishttps://laps.website.
I spent a lot of time getting the server up and running. I con�gured the HTTP server, iptables
chains(�rewall), encryption(HTTPS) and a deployment scheme in general.

We have two deployment environments: Staging and production. Production is the latest ver-
sion of the site which we will show o� to the world. It will be what the machine learning
developers use when testing out the newest versions of their algorithms. They are running on
the same server, but are isolated from each other. We do this with normal administration tech-
niques, i.e running staging and production as di�erent users with di�erent home directories.

1link: https://crates.io/crates/log
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The other one, staging, will be mostly used for frontend development. The idea is that a fron-
tend developer can have a testing environment for their latest and greatest work. This envir-
onment will be set up and ready to go automatically, removing the need for any setup on the
frontend developer’s local machine. It also allows them to use VueJS’ hot reloading features,
which requires one to run a specialized web server.

URLs will have to be changed to work in this mode. Every relative path must be changed into an
absolute one which points to the staging instance. A request that looks like GET /maps/1
has to be changed to GET https://staging.laps.website.

To facilitate running both staging and production versions of the site at once, I will �nd a way
for the two backends to not interfere with each other.

1.1.3. Continuous Delivery(CD)

I have successfully integrated CD into our work�ow. It is a modern pattern where we con-
tinuously release new versions of our software. This is done by automating the deployment
process. If we are on a git branch we deploy, in our case, staging and production, it will �rst
automatically run all tests and ensure that they are working. If everything works, we can safely
move on to deployment. Deployment executes a script which can be used to deploy the applic-
ation. Many CD service providers have integration with cloud services like AWS and Azure
and can deploy directly to them.

In our case, we are using Travis CI, which is completely free to use as long as one’s project
is open source. Any commit to any branch will trigger the build, but only the production
and staging branches will trigger deployment. When making a pull request on Github, it will
automatically build and test that as well, which serves as a way to verify the new code auto-
matically.

When a deployment is triggered, we �rstly decrypt an SSH key which can be used to log in to
the deployment and staging users on our server. It is encrypted in order to only allow Travis’
servers from reading the key and logging in to our system. Then, the backend is compiled in
release mode, suitable for production. It bundles up the frontend code. Finally, it stops the
running staging service and copies the built �les to the server, and restarts the staging service.
When that is done, it has successfully built, deployed and restarted the application for us.

1.2. Even Thonhaugen Røraas

A path is sent to the front end in form of array with points. Each points have an x and y value,
these values are the same as the pixel values in the received. Therefore marking the points
on the map is quite easy. A new vue component request the coordinate values, and places
a red dot according to the points. To send data between the components, such as sending
the coordinates to the component that places them, a store to store variables was created. In
the store each component can request or update values such as all other components can use
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them. As vue focus on splitting up function in the website into components, having good
communication between them is important.

1.3. Henrik Thue Strocka

Much like last week my focus started with �guring out a solution to using a CNN to predict
the midpoint of a path. This week my goal was to convert it from a continous problem to a
labelling problem. This week i managed to create a labeling CNN, i took inspiration from how
AlexNet was structured. Sadly the results was very dissepointing, not much better than the
results gotten last week.

However this got me thinking about why my solutions where not working. And i think the
essence of it is that i have an additional data source for the network to consider which all of
the networks i have drawn inspiration from has not had. That is the start and stop point for
the path, for the other networks, object detection and face keypoint detection all the data has
been in the images.

So my hypothesis is that because the convolutional layer only has access to half the data in the
form of a grayscale heightmap, i belive it has a hard time converging on some proper values
for what features to extract from the image. In Fig 1 you can see a image representation of
the �rst 10 convolution �lters from each layer, as you can see they are pretty much random
suggesting that it is indeed struggeling to extract any features.

The way i plan to solve this is to use what is known as an auto encoder for �rst train the
convolution part of the network to be able to extract features from the image. Then after
that layer has been trained i can then train the fully connected layer at the end using those
feature maps and the start and stop point for the path. After reading this paper on positional
properties in convoltuonal networks, https://openreview.net/forum?id=rJeB36NKvB, my hope
is that the posistions of each feature will be kept and the network can output a good geuss for
the midpoint.

1.4. Vetle André Ho�meyer Neumann

In retrospect I forgot to �ll this in but it is explained in the next week summary.
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A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. Feb 22 0 0 0 0

Sun. Feb 23 0 0 0 0
Mon. Feb 24 6.75 6.5 7 5
Tue. Feb 25 0 0 0 0

Wed. Feb 26 6.75 7 6.5 7
Thu. Feb 27 6.5 8 7.5 9

Fri. Feb 28 7.15 8.25 7 7
Total 27.15 29.75 28 28

Overall Total 224.9 227.4 228.75 243.75

: Had lectures : Not part of our normal working hours : Person was sick
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1. Completed Tasks

Technical work has o�cially begun. We had a functional analysis meeting in addition to a
replenishment meeting on Wednesday, without the customer as he is out for the weekend, and
work on the service has begun. Focus has been on the requirements with priority 1, as they
are the intended minimum viable product, which we are hoping to have completed within the
customer gets back.

Within the path�nding part of the task, it was decided on the functional analysis meeting
that the chosen approaches we want to investigate �rst, is Deep Q-Learning in addition to
Convolutional Neural Networks in a simpli�ed scenario.

As a group, we worked on de�ning the API between path�nding modules and the backend.
Our main focus was on ensuring that it is as simple as possible while still being useful. We
decided to base everything around Redis, and currently it only has 5 types of messages being
passed from end to end.

We discussed with Dag about using a server located at Krona with 4 GPUs for training the
machine learning models, but were required to come up with an estimation of teraFLOPS before
using it.

1.1. Håkon Jordet

After we had de�ned our path�nding module API, I set out to document it as well as I could.
I wrote about it in detail in it’s own document, at least for now. Afterwards, I wrote an initial
python library in order to make it quick and easy for the machine-learning guys to get started.
I tested this with an initial implementation of the back-end. The library I wrote has several
issues, but it was intended for them to mold to suit their needs.

Speaking of back-end, I did a lot of work to go towards the minimum viable product. Namely, I
started to work on the backend part of the project. First of all, I wrote about which framework
and language we use for it, Rust with Warp. Then I got to work on RQ.1.1, namely by adding
endpoints for the user to submit a path. As of right now they are not integrated to the actual
website at all, but I have been testing using the curl utility from the command line.

I also looked into RQ.6.1: Height data must be available across the system. I did a lot of test
exporting of data and trying to display this data using a python script. We were considering
making our own format which gets rid of all geographical data, but we discovered that we could
export the data in GeoTIFF format, which is just an image format with some extra geographical
data. This is a better option than creating our own format and converting a point cloud into
said format.

1



14 February 2020 LAPS Group– Summary of project week 6

1.2. Even Thonhaugen Røraas

As i never used Vue and very little javascript, most of the time where spent on learning these.
Some time where also set of to settings up a developing environment, such as installing Vue
dependencies. Vue also have premade plugins created by the community for common features.
Taking advantage of this could save development time.

Some code was also written, but limited. A simple application that takes a coordinate from the
user converts into JSON for transfer to the back end for further use. The intention is not as
permanent solution, but rather to see that a connection can be established between the frontend
and backend. Hopefully if we can establish a channel and format early such as development
can progress in both FE and BE. The code is not yet test against the backend, and will be done
next week.

1.3. Henrik Thue Strocka

The task i was assigned to �rst is to investigate the option of using convolutional neural net-
works directly to generate a path. My hope is that convolution part of the network will be able
to extract features that the normal network can then use to �nd the midpoint of the path.

Because neural network does not deal well with variable inputs or outputs all training data
had to be of the same size. Therefore this week i also wrote a data generator that generated
a random heightmap using perlin noise and using dijkstra found the best path with the least
height di�erence. This program does not tak into account how well the drone can turn but its
a good starting point to see if the network can produce some decent results.

Because of the inability to output variable outputs i decided to have the network generate the
midpoint of the path and then run it recursively however many times i saw �t generate a proper
path.

I was able to create the model and start training it and the initial results where very promising.
From just around 1k training images i was able to train the network on my shitty laptop to
produce pretty accurate results. The network output points had an average distance from the
correct point by just 5 pixels in a 256 by 256 image.

1.4. Vetle André Ho�meyer Neumann

The standard way of doing machine learning via Python is to use a Jupyter Notebook via
a Docker setup. Dockers are similar to Virtual Machines, in that they are containers with
processes for running things, which makes it so as long as you’ve set up the docker correctly
the application running inside it will be easily portable and work with little to no extra e�ort
on another system.

The planned setup we will be using which I’ve been working on is having a Jupyter Notebook
docker, with all the tools for developing the machine learning models. Docker containers are
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only supposed to host one process at a time, and as we are currently working without a ded-
icated server for the backend (hosting the service on our local computers) I’ve temporarily set
up a Redis docker container, so that we can communicate with the server running locally from
the Jupyter Notebooks.

As we are as of now not using the server at Krona, and instead on our own computers, having
a docker setup for training the machine learning models will make setting it up on the server
extremely easy.

I’ve also started working on the simpli�ed Deep Q-Learning approach, starting on implement-
ing the Q-Learning environment, though that’s still in the early stages.

2. Not Completed Tasks

3. Tasks for next week

Work on minimum viable product continues, and it will hopefully be achieved before the meet-
ing with the customer on Wednesday.

A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. Feb 8 0 0 0 0

Sun. Feb 9 0 0 0 4
Mon. Feb 10 7.25 7 7 7
Tue. Feb 11 2 0 0 0

Wed. Feb 12 7 9 7 7
Thu. Feb 13 6 7 6 8

Fri. Feb 14 7 7 7 7
Total 29.25 30 27 29

Overall Total 166.75 164.15 172.45 180

: Had lectures : Not part of our normal working hours
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1. General

This week we did our second presentation and as a result we will not include our individual
contributions in this week report, anything of notice will be included in next weeks report.
The week started with the group �nalizing our documentation making sure the relevant people
received it on time. The second part of our week was spent wirting the presentation, recoding
it and editing it all together, we did underestimate the time it would take to do this and for our
next presentation we will de�nitely allocate more time for presentation preparation.

A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. 21th March 1 0 0 5

Sun. 22th March 6 5 3 10
Mon. 23th March 8 7 7 6
Tue. 24th March 9 7 7 7

Wed. 25th March 10 7 7 7
Thu. 26th March 6.5 10 7 7

Fri. 27th March 0 0 0 0
Total 40.5 35 31 42

Overall Total 319.15 320.4 325.45 351.75

: Not part of our normal working hours : Person was sick
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1. General

This week was cut somewhat short by our impending exams, where most of the group decided
to spend some of our time working on assignments.

2. Håkon Jordet

I decided to spend almost all of my time this week working on the project, because there were
things I really wanted to get done. I was quite successful. In the last report I mentioned working
on uploading path�nding modules and running them. I fully implemented everything we need
to make that all work. You can now start and stop modules individually. You can get a list of
modules with their name, version and running status.

Next, I worked on administrator authentication. I did a simple implementation earlier, just to
make sure that I would ensure that the endpoints which require authentication actually do. I
had chosen a bad hashing algorithm for the password storage, using a general-purpose hashing
function instead of a password hashing one. After some research I decided to replace it with
Argon2.

Until now, there was no way to actually register admins. In the unit tests, I would simply
hash the passwords and write them to the database manually, not so anymore. I added two
admin registration endpoints. One of them requires no authentication. This one is intended to
be used when initialising the backend for the �rst time, creating a super admin from scratch.
It will only allow one to register if there are no admins registered from before. The second
registration endpoint requires one to be an authenticated super admin. It allows the admin to
easily register a new administrator.

3. Even Thonhaugen Røraas

4. Henrik Thue Strocka

The �rst three days of this week was spent working on the Graph Neural Network and the
progress has gone suprisiningly smoothly. After struggeling with the library installation and
cuda errors i was able to get prebuilt graph based neural network called SplineConv working.
With this working i feel it is time i go into detail as to why i wanted to use graph neural
networks a bit more, and this implementation more especially.

So as stated in our second presentation convolution is not good a remembering and extract-
ing positional information from images. So because path�nding is an inherently graph based
problem and by representing the problem on graph from you remove the positional element,

1
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i feel this network suits this problem uniquely well. The downside is graph based convolu-
tional networks are signi�cantly more complex and there is so much to learn. But they are
not too di�erent to be incorperated into vetls RL solution should i come upon som promising
solutions.

The next stage for me right now is to generate a custom dataset and use that in my own custom
implementation to try and �nd a solution. Hopefully this will not take too long.

5. Vetle André Ho�meyer Neumann

A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. 4th April 0 0 0 0

Sun. 5th April 0 0 0 0
Mon. 6th April 0 0 9 0
Tue. 7th April 0 0 10 0

Wed. 8th April 0 0 7 0
Thu. 9th April 0 0 8 0
Fri. 10th April 0 0 5 0

Total 0 0 39 0
Overall Total 0 0 406.45 0

: Not part of our normal working hours : Person was sick
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1. General

Thanks to the rapid spread of COVID-19 in Norway, USN has been closed, and exams post-
poned. We had initially planned to not work this week, but because the exams were postponed,
we carried on.

Because we have to self-isolate, we all worked from home. We �nd that our model works pretty
well for this, and we substitute face-to-face contact with having voice calls. We have our usual
standup meeting this way.

1.1. Håkon Jordet

1.1.1. Admin panel

I worked on the admin panel this week. I wrote a conversion library for the system which uses
the GDAL library internally. It was extracted into a Rust crate such that it could be used both
in the backend and in a standalone CLI tool. I then integrated this into the backend.

This took quite a long time because I had to handle multipart forms manually. Rocket does not
support these, so I had to roll my own implementation to get it working. I did get it to work in
the end, and now there’s a POST method at /map which will upload any map, as well as unit
tests to verify that it works.

1.1.2. Building pathfinding modules

Next, I got to work on building path�nding modules. For the admin panel, we need some way
to build the path�nding modules and easily integrate it with the system. It was decided to use
Docker for this, because each module could then be built as a Docker image, and we can use
the Docker API to create containers and run them on the �y depending on which path�nding
modules should be active at a time. Because the machine-learned path�nding modules haven’t
been integrated into the system yet, I only wrote a packaging script for our simple Dijkstra
module.

1.1.3. Admin authorisation

After making the map upload tool, I realised that if we were to put the map uploader out onto
the open internet, there would be problems. As such I decided that I needed to work on admin
authorisation next. This would prevent someone from spamming the service and bringing it
o�ine, as it has to accept quite large �les. For reference, some of the GeoTi� �les we have
exported have been upwards of 200MB, so we have to con�gure the web server to accept �les
which are that big.

1
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1.2. Even Thonhaugen Røraas

The website now request information against the backend server rather than a locally hosted
backend. Most work have gone towards �xing problems with updating the request format, that
was updated for the backend up not locally.

Because the jobs could only be tested against the server a few issues are �rst now coming
into view. One error was that the documentation for the backend didn’t match the actual
backend, which caused some issues. Progress towards mvp is mostly done and if no major
setback happens should be done soon.

1.3. Henrik Thue Strocka

1.3.1. Graph Neural Networks

This week was spent working on a new potential solution for our machine learning algorithms.
A new type of neural network called Graph Neural Networks, as the name implies they work
on graphs instead of euclidean data.

The �rst part of the week i spent trying to get the library torch-geometric to work. This is a
library for developing and using graph neural networks in pytorch. There is possible to write
graph neural networks from scratch in vanilla pytorch but it requires alot of boilerplate code
and is suboptimal.

However this was easier said than done and because of some CUDA errors i was unable to get
it working. And with our appointment with dag on thursday i decide to put the graph neural
network on hold until we had the server up and running.

For the remainder of the week is spent some time trying di�erent approaches and improvement
to our existing convolutional approach.

1.4. Vetle André Ho�meyer Neumann

These last weeks I’ve been working on the reinforcement learning agent, and the environment.
The environment itself is a representation of a problem in which you are in a certain state, and
you have a set of actions to choose from to take you to a new state. The state of the environment
is all the required information for solving the problem that should be accessible for the agent.
For example if you made an environment for blackjack, the state would be all the visible cards,
and you would avoid giving it information it shouldn’t have, like the value of cards that aren’t
visible. The agent is the part of the reinforcement learning that makes the decisions regarding
which action to take. The environment should also give a number reward, to tell the agent
how good the choice was, and its the agents job to �gure out how to maximize the reward via
reinforcement learning.

2
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The reinforcement learning approach I’ve been trying to implement is double deep Q-learning,
which uses neural networks to approximate how well each action is, without keeping a table
of every action and its states. This approach or something similar is necessary for us, as our
goal is to remove the pre-processing which means training the network on each map to �nd a
path on would be missing the point, which in turn means the map has to be a part of the state.
This exponentially increases the amount of possible states, and it would not be feasible to keep
a table with all these states, both in terms of resources and the time it would take to train it.

So I’ve spent some time learning reinforcement learning, in addition to learning PyTorch. One
of the problems with machine learning is that if you’ve done something wrong, it will just give
you wrong output, but it is extremely hard to pin down what causes the wrong output.

In addition to these things we recently got access to the server at USN, and I’ve moved and set
up the Jupyter Notebook development environment there instead of at my own computer.

A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. 14th March 0 0 0 0

Sun. 15th March 0 0 0 0
Mon. 16th March 2.5 5 7.5 6
Tue. 17th March 4 6 6 7

Wed. 18th March 6 5 7 7
Thu. 19th March 7 7 8 10

Fri. 20th March 6 7 9 8
Total 25.5 30 37.5 38

Overall Total 271.65 278.4 273.45 302.15

: Not part of our normal working hours : Person was sick
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1. General

This week was our �rst week after our second presentation, and therefore we focussed on
developing our product. As such we did not do too much as a group other than settling into
our new work routine working from home. We decided to double our meetings to twice a day
to compensate for working from our homes.

2. Håkon Jordet

This week I implemented a few things which came up after the second presentation. Namely,
I vastly improved caching of jobs. Before, we kept the results of a path�nding job for quite
a while, but didn’t really do anything with it unless someone requested the same exact job
ID back again. I made it such that if a submitted path�nding job is identical to a previous
one, it will return the ID of that job. If the job is complete, the client will receive the result
immediately.

I also worked on improved validation. Before, a path�nding module would crash if someone
input invalid coordinates for the path. Now the server will reject the job if the coordinates
are outside the map instead of passing it along to the path�nding module, probably taking it
down.

Other than that, I have been working on uploading modules. They’ve taken on many forms
over the week, but now I have a format which I’m happy with. A user only has to provide a
main.py Python �le, and a requirements.txt which is a list of pip packages which are needed
to run the module. These are uploaded together as a tarball, which allows multi-�le modules.
After being uploaded, we build a runtime Docker image on the server which executes the
module.

3. Even Thonhaugen Røraas

After the second presentation one of the feedback was our documentation, the frontend was
de�nitely lacking. Some time have been spent on document features that where implemented
but not documented. Sometime was also spent given better comments of what the code does
in the code itself. Clutter and things no longer used was removed. While going through code
mistakes and bugs where found. Some time was spent �xing these.

4. Henrik Thue Strocka

This i spent continuing to investiga Graph Neural Networks and how to design a structure
for our problem. The idea of a graph neural network in itself is not too complex and is not

1
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too hard to implement, except all the boilerplate described before. But the big problem is how
to implement convolution on graphs. Because there is no implicit topological structure for a
graph de�ning the kernel is hard.

However there have been done research on this topic and there are solutions out there to solve
this problem of bringing convolution to the graph domain. And this week i was able to install
the needed libraries in order to run these solutions. It was some struggle with some cuda
version compatability but i can now run the library without any errors. So for next week i
hope to get an Graph Convolution implementation running.

5. Vetle André Ho�meyer Neumann

This week I have continued on the reinforcement learning agent, and have �nally got it work-
ing with Double Q-Learning. The agent does not seem to learn the environment very well,
although it is learning it is just not learning how to get a good reward.

The current cost function gives negative reward ("punishment") on every step, where the
amount of negative reward is the height at that point, with the only way to end the epis-
ode being reaching the goal. Based on this reward function it is learning that the lowest points
on the map, and staying in those points, grants it highest reward. As a result of this it fails to
reach the goal.

In the next week I will focus on trying to use Dijkstra to assess its reward instead. I will also
�x the environment rendering, as it’s very makeshift at the moment and not in the Jupyter
Notebook which makes it hard to show to other people.

A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. 28th March 0 0 0 3

Sun. 29th March 0 0 0 2
Mon. 30th March 3 0 9 7

Tue. 31st March 5 0 8 5
Wed. 1st April 6 0 8 7
Thu. 2nd April 6 0 8 6

Fri. 3rd April 5.5 0 9 7
Total 25.5 0 42 37

Overall Total 0 0 367.45 388.75

: Not part of our normal working hours : Person was sick
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1. General

This week is our �rst week where all members of the group can solely focus on the bachelor
project. However the corona situation continues to a�ect us and we have decided as a group
to make some changes to our project model. Because before the outbreak we would sit in the
same room and interact with each other for at least 7 hours a day we would get much more
exposure to each other’s code. With our only scheduled communication being reduced to our
daily meetings the divided nature of our task has been exacerbated. Therefore the decision
was made to reduce the importance of QA and instead have the two teams approve the code
internally.

This will reduce our understanding of each other code but we feel this change is needed to
keep us agile in this uncertain future. We still plan on updating each other on our progress
during our daily meetings.

2. Håkon Jordet

This week I spent a lot of time on the documentation. I looked through most of the documenta-
tion for my parts of the system, and rewrote it. I also made sure that as many things as possible
have been properly documented, in particular the module handling code.

While going through the documentation and documenting things I’ve done before, I noticed
that there were several places where the code could be better, and I made sure to spend the
time to improve these places. In particular, I completely changed how job polling works. I had
misunderstood how the Redis command RPOPLPUSH works, which meant I could use it to
poll for job results again. I thought it would reset the expiry of the list if popping and pulling
from the same list when that list only has one element. Turns out it doesn’t, so I could remove
the rather complex polling with this command. This means less CPU usage.

3. Even Thonhaugen Røraas

Leftover work from before the exam, was �nished. Mainly adding a dropdown menu to show
selectable maps that are available. Work on the frontend implementation of the admin panel
has begun. This will include letting the user upload maps, modules and starting and stopping
modules. To limit access to unwanted users a authentication feature is being worked on as
well. Work initially started on the upload map feature but had to be redirected towards the
login feature as all request made had to be done from an admin account which meant the
feature could not be tested before the login feature. There where problems with implementing
the login feature. Mostly coming from the development being done locally and request being
made towards the server. But when the login feature was made it was test on the server towards
the server. This caused issues developing the login feature.

1
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4. Henrik Thue Strocka

The �rst part of this week was spent creating a data generator that converted our dataset into
graph form. This was quite labor intensive but it had to be done and after struggling with
PyTorch’s tensors for a couple of days I had a working program. The dataset itself is pretty
much identical to the last ones but it employs no blurring and is entirely node based. The node
being as described by Vetle in our �rst presentation.

With the data generator done I left it on overnight to generate some su�cient data I went
to work creating a custom network. The network I created was an extension of the pre built
SplineConv network that did not have self-loops. Self loops are simply edges on a graph that
connect to itself, this was removed so the path�nding could not be stuck in a loop.

However initial results was disappointing and its clear that more tweaking is needed, that is
my aim for next week.

5. Vetle André Ho�meyer Neumann

This week after investigating cost functions for the Reinforcement Learning, I discovered that
although it was learning the cost function somewhat, but would perform many steps in the
wrong direction, often taking up to a thousand extra steps for getting from start to stop on a
40x40 grid. To solve this the problem was simpli�ed even further, by ignoring heightmap and
only focusing on making the RL agent move in the correct direction.

Small things were changed as well, such as the way the images are rendered for the neural
network, as the images were being rescaled to �t the convolutional network, and this rescaling
in the case that it was not a 1:1 rescale would blur the image.

The way the environment rendered the gym was also changed to allow the rendering to be a
subplot instead of a main plot, and as a result a better graph plot of the environment could be
made.

2
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A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. 18th April 0 0 0 0

Sun. 19th April 0 0 0 0
Mon. 20th April 7.5 8 7 5

Tue. 21st April 6.5 7 7 6
Wed. 22nd April 7 7 8 7
Thu. 23th April 7 9 8 7

Fri. 24th April 5 10 8 5
Total 33 41 38 30

Overall Total 392.65 432.4 462.95 435.75

: Not part of our normal working hours : Person was sick
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1. Completed Tasks

1.1. Documents

This week, we �nished setting up our document macros. This allows us to quickly easily, and
more importantly consistently typeset tests, requirements, risks and user-stories. The color
scheme is not �nal and is likely to change in the future.

T.1 Requirements RQ.1 Related T.2
Passing Description Verify milking is managable

Not Done Criteria Passing criteria for the test

Figure 1: Example test

Figure 1 is an example of a test. Status refers to whether or not the test has been fully made.
The state of the test is displayed. It displays whether the test is passing, failing or isn’t tested
yet. The testers are the people responsible for writing and performing the tests. In our case,
many tests are going to be automated code tests, and therefore the responsibility is more about
ensuring that we have written tests which can be executed automatically as the project goes
on, ensuring things do not break.

RQ.1.2 User stories U.2 Tests T.1
Discarded Category UI
Priority Origin Jan Dyre Bjerknes, Henrik Thue Strocka
3 Description A very good description of the requirement. Can be several

lines long.

Figure 2: Example requirement

Related
Responsible Henrik Thue Strocka RI.3
Description A description of the risk at hand Impact Prob. RiskRI.1

Mitigation How to avoid this risk 3 6 18

Figure 3: Example risk

Figure 3 is an example of a risk. We have

1.2. User stories

We have written a list of user stories for the service in general. They will probably �uctuate a
bit between now and the �rst presentation, but the gist is this:

• The service must consist of a path�nding algorithm and a user interface.

2



20 January 2020 LAPS Group– Summary of project week 2

This is a short and concise user story.
Features Related OriginU.1

F.1.69, F.1.1337, F.1.420 U.2 Håkon Jordet

Figure 4: Example risk

• The path�nding algorithm must produce a �ight path between two points in space, using
height data. This path must be �yable by the drone, with tweakable drone parameters.

• A calculated path must be displayed on a map in the user interface.

1.3. Discuss possible pathfinding algorithm sthick

1.4. Writing documentation

We worked on documentation and stu�

• Risk

• Features

• User stories

• Tests

1.5. Meeting with Jan

2. Tasks from last week which aren’t completed

While a lot of time was spent working on typesetting risks etc., not much time was spent
making the document templates look better. We hope to have a logo up soon, so we will be
revisiting it when we have to add our new logo.

3. Tasks for next week

3.1. Writing more documentation

We now have a better idea of what our documents should be. Now that we have an initial
version of documentation templates and utilities, it will be much easier to sit down and write
the documentation we need.
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3.2. Define numbering systems

We have talked a little bit about what the identi�ers of risks, requirements, user stories and
such should be. We have yet to de�ne a system for what the naming should be. We should
de�ne a set of rules for how it should be done. This would make them consistent.

In addition, there are more numbering systems which we have to de�ne. What scale does risk
probability follow? How many levels of priority should we de�ne? What will our formula for
risk factor be? Questions like these need to be answered before we can use this system.

3.3. Create plans for starting the product

We haven’t worked on the product yet, which means we have to lay out a plan for starting to
work on it. We want to show o� our plan forward on the �rst presentation.

3.4. Going forward with pathfinding

Going forward we have created 4 plans A-D going forward. This is so we always have a backup
option if one plan fails, because of the nature of machine learning we will end up in a lot of
dead ends. We have also looked into multiple choices for ML frameworks, we have not decided
yet but we are leaning towards Torch or Tensor �ow.

A. This week’s working hours

Date Even Henrik Håkon Vetle
Mon. Jan 13 6.75 7 7.25 4
Tue. Jan 14 0 0 0 0

Wed. Jan 15 7 7 7 7
Thu. Jan 16 7 7 5.25 7

Fri. Jan 17 7 6.75 8.2 7
Total 27.75 27.75 27.7 25

Overall Total 42 48 49.25 44.75

: Had lectures : Not part of our normal working hours : Sick
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1. General

This week work has continued on the minimum viable product. The Frontend/Backend team
has working on the most vital of functions for the product, whereas the Machine Learning
team has mostly continued their work on the Convolutional Neural Network approach.

1.1. Håkon Jordet

This week, I decided to change the HTTP framework of the backend. It was decided that while
Rocket does not yet have a stable asynchronous release, we should build our application around
it anyway, as it provides a much better development experience. The time we may(but likely
won’t) spend �xing breakages is saved by being faster to develop for.

After that, I �gured out how we want to share map data in the application. I realized that
working with the raw GeoTi� �les was cumbersome at best, and since we can disregard most
of the geographical data anyway, we could convert it into a more commonly used image format.
It was decided to convert any GeoTi� �le into a normalized PNG, where the lowest point in the
height data is a black pixel, and a fully white pixel being the highest point. This has another
bene�t in that it makes 150+MiB .tif �les into 2.4MiB .png �les.

I found out how to store the image data in the database, which the rest of the application can
now build upon. As of yet there is no automated importer tool to perform the .tif → .png
conversion and load it into the system. So for a while forward, we have to manually convert
them and load them up into the database.

Next, I added backend API endpoints to list and retrieve map data in the frontend. They simply
return the raw .PNG �les.

Finally, I started designing a new job submission scheme. Currently, it is extremely simplistic
in that it will return the calculated path immediately. I have split this up into two API calls:
One to submit the job, and one to poll for it’s status. After the user has submitted a job, the
API returns a token. This token is then used to poll for a job’s status.

There are a few bene�ts to this. The main one being the ability to keep previous jobs for a
certain time. I store every piece of data about the job in Redis, and I ensure that the job result
expires after a given time frame. This is essentially a type of caching.

1.2. Even Thonhaugen Røraas

Finished coordinate sender function of the front end. Started taking advantage of vues com-
ponent system. Vue allows Html, javascript and css to be placed in a single �le rather than
the three typical layers they are normally put into. Components are therefore pieces of html,
javascript and css that belongs together and ful�ll a function. The coordinate sender code was
moved into a component. Work have started on map display. So far the service is able to fetch
a map from the backend and display it.

1
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1.3. Henrik Thue Strocka

This week was focused on �ning the viability of our Convolutional Neural Network for me.
As stated in the previous week report it showed signs of promise and i was able to improve
the accuracy down to around 7 pixels. This however was not good enough as i discorded even
small innacuracies in the midpoint amplify themselves and makes the path useless.

Figure 1: Image showing a ML generated path. Each dot is a midpoint. The blue line is the
optimal dijkstra path.

The paths would usually start okay with the �rst midpoint being okay, but as the next step
would use a wrong midpoint it would just get worse and worse. First i belived this was because
of a lack of training data, we did have a data generator but it used an un-optimized version of
dijkstra and was very slow. So i spent the day and used an optimized version i found on github.
This version was around 100x quicker and now i was able to generate up to 10k training data
points per hour. However we are now meeting the problem of limited computing power to
train the Network.

One interesting thing about the midpoints is that you can see there are some paths that are more
often used by the algorithm. The network itself also underwent major changes this week. The
only change i found that ended up being beni�cial for the network was to pass the start and
endpoints directly to the fully connected neural network layers, instead of passing them in as
separate color channels. This also had the bene�t of reducing weights and decreasing training
time.

2
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Figure 2: Image showing all start points distributed on the map.

Figure 3: Image showing the midpoint of all paths.

1.4. Vetle André Ho�meyer Neumann

This week I have continued on machine learning infrastructure, as well as learning how Redis
work so that I could make the Python Dijkstra’s Algorithm implementation work with the
backend, which I did. This is then our �rst complete path�nding module.

With infrastructure out of the way, I’ve began reading up on Reinforcement Learning, and will
hopefully have the environment implemented by next week.

3
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2. Tasks for next week

Minimum viable product was not achieved within this week. We are still working on map
display in regards to frontend, as well as (backend minimum viable product here).

As work with reinforcement learning has been started on and is now focused, we will hopefully
have a simple implementation of that within next the end of next week.

A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. Feb 15 0 1 0 2

Sun. Feb 16 2 2 0 4.5
Mon. Feb 17 6.5 7 7 7
Tue. Feb 18 1.75 3 0 0

Wed. Feb 19 6.75 7 7 7
Thu. Feb 20 7 6.5 6.5 7.25

Fri. Feb 21 7 7 7 7
Total 31 33.5 27.5 34.75

Overall Total 197.75 197.65 200.95 215.75

: Had lectures : Not part of our normal working hours
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1. Completed Tasks

This weekend and the monday the team spent quite some time preparing the documentation
in preparation for the �rst presentation delivery. Afterwards, the Thursday and Wednesday
were spent working on the presentation itself, and External Supervisor got us an External
Sensor. On the wednesday evening, the day before the presentation, one of the team members
got ill and the presentation was postponed to the 7th of February as a result. The Thursday
was then mostly spent working on the documentation again as we realised some �aws we had
overlooked.

With the documentation mostly in place, technical planning was begun. As the �rst milestone
and the �rst thing to establish before the parts of the team can begin working seperately is
the API, we begun researching API design. We quickly realised that the API we need depends
on the software architecture, and we moved over to researching this topic instead. As we will
be meeting with Kongsberg Digital on monday where we will discuss deployment of machine
learning, we are hoping they might have some thoughts on the subject.

2. Not Completed Tasks

The parts in the documentation which are written as of now have, though subject to change,
been completed. The only exception is parts of the background, which might require a bit more
reworking.

3. Tasks for next week

The tasks for the next week is primarily meeting Kongsberg Digital, and having the present-
ation. Other than that we will continue working on the architecture, as well as the API if we
get that far.

1



31 January 2020 LAPS Group– Summary of project week 4

A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. Jan 25 5 5.5 7 5

Sun. Jan 26 2.5 8 7.5 5
Mon. Jan 27 7.5 7.5 7.5 7.5
Tue. Jan 28 4.5 4 0 4.5

Wed. Jan 29 5.5 4.5 4.5 4.5
Thu. Jan 30 6 0 6.5 9

Fri. Jan 31 6.5 0 6.5 6.5
Total 37.5 29.5 39.5 42.5

Overall Total 72.75 77.65 78.95 75.5

: Had lectures : Not part of our normal working hours : Sick
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8 February 2020 LAPS Group– Summary of project week 5

1. Completed Tasks

Monday 3rd of February we had plans with our customer to take a trip to Kongsberg Digital in
Asker. They have experience researching and deploying machine learning based solutions in
a professional capacity. The hope was that our bachelor group could learn a bit about what it
takes to set up machine learning based services.

The trip started with all parties having a small presentation about themselves and what they
did, in addition our group presented our problem and our ideas for how to solve them. Then
following the presentation we discussed Kongsberg Digital’s �ve point plan to decide if ma-
chine learning is a good solution to a project. The trip was a success and the group learned a
lot about what it takes to solve problems using machine learning and deploy it.

Because our �rst presentation was moved to this Friday because of sickness the rest of the
week was spent preparing for the presentation and modifying our documentation. As our goal
was to be able to start working once the �rst presentation was completed.

2. Not Completed Tasks

Because of sickness no progress was done on writing machine learning modules or writing the
service.

3. Tasks for next week

For next week the customer is out of town and we cannot have a meeting with him. However
we have decided on a meeting the 19th of February, so our goal is to have something concrete
to show him at that meeting. So the goal for next week is to have at least some progress in
both machine learning and the service aspect of our project.

1



8 February 2020 LAPS Group– Summary of project week 5

A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. Jan 25 0 0 0 0

Sun. Jan 26 0 0 0 4
Mon. Jan 27 7 7 7 7
Tue. Jan 28 0 0 0 0

Wed. Jan 29 6 7 7 7
Thu. Jan 30 8.25 7 7 9

Fri. Jan 31 6 6 6 6
Total 27.25 27 27 33

Overall Total 137.5 134.15 145.45 151

: Had lectures : Not part of our normal working hours
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20 January 2020 LAPS Group– Summary of project week 3

1. Completed Tasks

This week has been a full-on documentation week to get everything done for the �rst presenta-
tion next week. Because of this we have not been working too much on features but instead doc-
umenting and de�ning how everything will be documented.We started the week with agreed
on the last details on how our identi�cation system is supposed to work and documented it.

We also did a bit of work on the way forward after the presentation. For the machine learning
part of our project we formulated 4 rough plans for what to do going forward. These plans
are very broad and will only serve as guidelines, we decided to not go into too much detail as
documentation is our focus this week.

The frontpage and structure for our binder was also �nalized this week. We settled on a front-
page with a table of contents with each category of documents. And at each category we start
with an explanation of how this is documented.

This week we started on our presentation by laying out a basic structure and deciding on what
to say where. We did not go into too much detail but we wanted a general layout to compare
when we went to see the �rst presentation.

2. Tasks for next week

Next week we have the deadline for our documentation handing before our �rst presentation.
So before Thursday documentation will have �rst priority. Then for the rest of the week we
will �nalize our presentation and prepare for the to present it.

A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. Jan 18 0 0 0 0

Sun. Jan 19 0 0 0 0
Mon. Jan 20 6.75 7 7 7
Tue. Jan 21 1 0 0 0

Wed. Jan 22 7.25 7.15 7 6.75
Thu. Jan 23 8.75 8.5 8 10

Fri. Jan 24 7 7 7 7
Total 30.75 29.65 29 30.75

Overall Total 72.75 77.65 78.95 75.5

: Had lectures : Not part of our normal working hours : Sick
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24th May 2020 LAPS Group– Summary of project week 14

1. General

This is the �rst week of our two week long focus on documentation before the hand-in date.
So we have decided to stop writing our individual contributions for this week and next since
we are all working mostly on documentation.

A. This week’s working hours

Date Even Henrik Håkon Vetle
Sat. 2nd May 0 0 3 3.5
Sun. 3rd May 4 11 3 6

Mon. 4th May 6 9 9 11
Tue. 5th May 6 12 9 10

Wed. 6th May 9 8 8 6
Thu. 7th May 8.5 12 9 9

Fri. 8st May 6 8 9.5 7
Total 45.5 56 44.5 50.5

Overall Total 495.15 566.4 574.45 566.75

: Not part of our normal working hours : Person was sick

1



Visualization

May 24, 2020

Author: Henrik Strocka

Copyright (c) 2020 LAPS Group

1 Deep Star V1 Visualization

This notebook is a collection of all methods used to visualise DeepStar V2

[1]: import os, sys

module_path = os.path.abspath(os.path.join('../..'))
if module_path not in sys.path:

sys.path.append(module_path)

import loader, torch, torchvision

from torchvision import transforms
from PIL import Image, ImageDraw

from DeepStar.V2.Model import DeepStar
from Dijkstra.Dijkstra import *

0.00934910774230957
(357.7999999999999, ((0, 29), ((7, 14), ((5, 5), ()))))

1.1 Visualization Settings

Img Size: Dimensions of the map to be used. Save File: Pytorch weight dictionary to load the
network weights from. Map FIle: Image of the map to be used for visualization. Seed: GPU
seed to use for computation.

[2]: img_size = (256, 256)
save_file = "models/deep_star_v2.pt"
map_file = "data/images/map.png"
seed = 0

1



1.2 Load Model

Load the specified deepstar model and set the seed to ensure a determenistic output.

[40]: torch.manual_seed(seed)

net = DeepStar()
net.load_state_dict(torch.load(save_file))

[40]: <All keys matched successfully>

1.3 Data Visualization

1.3.1 Helper Functions

Guess To Point

Converts a normalized guess between [0 - 1] to a pixel value.

G: Guess tensor.

Img Size: Size of image used to guess.

Return: Pixel coordinate of the guess.

[4]: to_tensor = transforms.ToTensor()

def guess_to_point(g, img_size):
return (round(g[0][0].item() * img_size[0]), round(g[0][1].item() *␣

↪→img_size[0]))

Guess Point

Uses the loaded network to guess the midpoint between a start and a stop point. Start and Stop
position will be normalized in the function.

Net: Network to use for the guess.

Img: Map to feed the network.

Start: Path start point.

Stop: Path stop point.

Img Size: Map size.

Return: A normalized guess at the midpoint on the map.

[5]: def guess_point(net, img, start, stop, img_size):
img_tensor = to_tensor(img).unsqueeze(0)
sx, sy = start
ex, ey = stop
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sx = sx / img_size[0]
sy = sy / img_size[1]

ex = ex / img_size[0]
ey = ey / img_size[1]

pos_tensor = torch.FloatTensor([sx, sy, ex, ey]).unsqueeze(0)
return guess_to_point(net(img_tensor, pos_tensor), img_size)

Load World

Load a normalized heightmap world of nodes from a grayscale image.

Img: Pillow image to be converted.

Return: 2D Normalized world array.

[6]: def load_world(img):
world = []
pixels = img.load()

for x in range(img_size[0]):
world.append([])
for y in range(img_size[1]):

if isinstance(pixels[x, y], int):
value = pixels[x, y]

else:
value = pixels[x, y] if len(pixels[x, y]) == 1 else pixels[x,␣

↪→y][0]

world[x].append(Node(float(value) / 255, (x, y)))

return world

Add Point

Add a point to a pillow image with the given color.

Img: Pillow image to use.

Point: Pos for the point.

Color Space: Index of color channel to add the point to.

[7]: def add_point(img, point, color_space):
x, y = point
img.paste(color_space, (x - 1, y - 1, x, y))

Add Point

Add the start and endpoint to the image in their separate color channel.
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Img: Pillow image to use.

Start: Start point to add to the Green channel.

End: Stop point to add to the Red channe.

[8]: def add_points(img, start, end):
sx, sy = start
ex, ey = end

img.paste((0, 255, 0), (sx - 1, sy - 1, sx, sy))
img.paste((0, 0, 255), (ex - 1, ey - 1, ex, ey))

Get Midpoints

Get a midpoint guess betwean each index pair in the path list.

Net: Netowrk to use for the guess.

Path: List of points, a guess will be made between each pair of points.

Return: A path with the midpoint for each index par inserted between them.

[ ]: def get_midpoints(net, path, start, stop):
new_path = []

for i in range(len(path) - 1):
with Image.open(map_file) as img:

g = guess_point(net, img.convert('L'), path[i], path[i + 1],␣
↪→img_size)

new_path.append(g)

return_path = []
for i in range(len(path)):

return_path.append(path[i])

if (i < len(new_path)):
return_path.append(new_path[i])

return return_path

1.4 Test Loaded Network

Gues midpoint between a start and a stop point, using the image specified in the settings at the
beginning.

[52]: start = (52, 25)
stop = (200, 200)

with Image.open(map_file) as img:
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img = img.convert('L')
guess = guess_point(net, img, start, stop, img_size)

world = load_world(img)
edges = get_edges(world)
dijkstra_path = dijkstra(edges, start, stop)
path = get_path(dijkstra_path)
midpoint = get_path_midpoint(path)

print(midpoint)
print(guess)
print(math.sqrt(math.pow(midpoint[0] - guess[0], 2) + math.pow(midpoint[1]␣

↪→- guess[1], 2)))

(168, 70)
(120, 114)
65.11528238439882

1.5 Visualize Data Distribution

Visualize a data column in the csv file. Change the column name to view different data. Currently
there is only three columns, Start, End and Midpoint.

[11]: column_name = "Midpoint"

import pandas as pd
csv = pd.read_csv("data/images/data.csv", encoding = "UTF-8")

def to_tuple(t):
return tuple(map(int, t.replace('(','').replace(')', '').split(', ')))

with Image.open(map_file) as img:
img = img.convert("RGB")
for p in csv[column_name]:

add_point(img, to_tuple(p), (0, 255, 0))

display(img)
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1.6 Test Run On The Network

Test run on the selected mab between the start and stop point.

[45]: start = (25, 50)
stop = (100, 200)

path = [start, stop]

# Calculate the path using DeepStar
for i in range(1):

path = get_midpoints(net, path, start, stop)

with Image.open(map_file) as img:
# Load Image
world = load_world(img)
pixels = img.load()

# Run djikstra on world loaded from image.
img = img.convert("RGB")
edges = get_edges(world)
dijkstra_path = dijkstra(edges, start, stop)

# Add djikstra path to image.
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for d in get_path(dijkstra_path):
add_point(img, d, (0, 0, 255))

# Draw lines between each pixel guessed by deepstar
draw = ImageDraw.Draw(img)
draw.line(path)

#del draw
for p in path:

add_point(img, p, (0, 255, 0))

display(img)
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DataGeneration

May 24, 2020

Author: Henrik Strocka

Copyright (c) 2020 LAPS Group

1 DeepStar V1 Data Generation

[ ]: import os, sys
module_path = os.path.abspath(os.path.join('../..'))
if module_path not in sys.path:

sys.path.append(module_path)

import loader, random, noise, csv

from PIL import Image
from Dijkstra.Dijkstra import *

1.1 Data Generation Settings

Data Settings Shape: Dimensions of the output image.

Output: Output folder for the data.

Validation: Wether to generate validation data or training data.

Image: How many images to create.

[ ]: shape = (256, 256)
output = "data/"
validation = False
images = 60000

Noise Settings Note: Noisemap will not be overitten if it already exists

Scale: Noise scale.

Octaves: How many times to apply the noise.

Persistence: How much the noise amplitue changes for each octave.

1



Lacunarity: How much the noise frequency changes for each octave.

[ ]: scale = 100.0
octaves = 6
persistence = 0.5
lacunarity = 2.0

1.2 Data Generation

1.2.1 Helper Functions

Get Height Calculates the perlin noise height at a given point (i, j).

Return: A float value between -1 and 1

[ ]: def get_height(x, y):
return noise.pnoise2(x/scale, y/scale, octaves=octaves,␣

↪→persistence=persistence, lacunarity=lacunarity, repeatx=shape[0],␣
↪→repeaty=shape[1], base=0)

Generate Map Calculates noise values for the entire grid with the dimensions given in the shape
setting. The heightvalues are normalized to between 0 and 1.

Return: A grid of dimensions (shape.x, shape.y) that contains normalized perline height noise.

[ ]: def generate_map():
grid = []
for i in range(shape[0]):

grid.append([])
for j in range(shape[1]):

n = get_height(i, j)
n += 1
n /= 2

grid[i].append(Node(n, (i, j)))

return grid

Get Node Get node at point.

World: World of nodes to use.

Point: Coordinates of the node to load.

Return: Node at point give.

[ ]: def get_node(world, point):
return world[point[0]][point[1]]
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Get Random Points Calculates a random start and stop inside the shape given in the settings.

Return: Start and End point (Not node).

[ ]: def get_random_points():
start = (random.randrange(0, shape[1]), random.randrange(0, shape[1]))
end = (random.randrange(0, shape[1]), random.randrange(0, shape[1]))

return start, end

Create Image Create a training image for DeepStar. The R axis contains the heightdata from
the grid, G and B axies contains the start and stop point respectivly.

Return: RGB training image fro DeepStar.

[ ]: def create_image(grid):
im = Image.new("L", shape)
pixels = im.load()

for i in range(shape[0]):
for j in range(shape[1]):

intNoise = int(grid[i][j].value * 256)
pixels[i, j] = intNoise

return im

1.3 Load Image

Create a world of nodes from a pillow image.

Img: Image to create world from.

Return: Node world that is compatible with dijkstra and deep star.

[ ]: def load_image(img):
world = []
pixels = img.load()

for x in range(shape[0]):
world.append([])
for y in range(shape[1]):

if isinstance(pixels[x, y], int):
value = pixels[x, y]

else:
value = pixels[x, y] if len(pixels[x, y]) == 1 else pixels[x,␣

↪→y][0]

world[x].append(Node(value / 256, (x, y)))
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return world

1.4 Create Files

Make sure the necessary files are present, if they are not generate them. This cell also makes sure
a world has been created and its edges been retrived.

[ ]: # Handle world generation
world = generate_map()
edges = get_edges(world)

subfolder = "images"
if (validation):

subfolder = "validation"

# Generate required files.
if (os.path.isfile(f'{output}{subfolder}/map.png')):

img = Image.open(f'{output}{subfolder}/map.png')
world = load_image(img)

if (not os.path.isfile(f'{output}{subfolder}/map.png')):
img = create_image(world)
img.save(f'{output}{subfolder}/map.png')

if (not os.path.isfile(f'{output}{subfolder}/data.csv')):
with open(f'{output}{subfolder}/data.csv', 'w') as file:

writer = csv.writer(file)
writer.writerow(["Start", "Stop", "Midpoint"])

1.5 Generate Data

Generating the actual data and writing it to the csv. As the heightmap is always the same it does
not need to write a image for each path and can store only the necessary values in a csv file. The
path are calculated using dijkstra to make sure its the optimal path.

[ ]: with open(f'{output}/{subfolder}/data.csv', 'a') as file:
writer = csv.writer(file)
for image in range(images):

# For each path get a random start and stop point.
start, end = get_random_points()

# Calculate the optimal path
path = dijkstra(edges, start, end)
try:
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path = get_path(path)
except:

continue

# Sometimes the path will be none, just ignore it if that is the case␣
↪→(BUG)

if path is None:
continue

# Calculate the median point of the path.
midpoint = get_path_midpoint(path)
if len(path) < 11:

midpoint = path[len(path) - 1]
else:

midpoint = path[10]

# Save the generated data to the master CSV file.
writer.writerow([start, end, midpoint])
print(image)
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Model

May 24, 2020

Author: Henrik Strocka

Copyright (c) 2020 LAPS Group

1 DeepStar V2 Model Definition

This notebook is responsible for defnining the version network structure and the accompanying
data loader.

[1]: import time, torch, torch, csv
import torch.nn as nn
import pandas as pd
import torch.optim as optim
import torch.nn.functional as F
import torch.utils.data as utils

from torchvision import transforms
from PIL import Image

1.1 DeepStar Network Definition

DeepStar consists of up to five convolution layers. This can easely be commented out depending
on hardware limitations and software needs. It uses a two layer feed forward fully connected
classification network to make the predictons.

Get Optim: Currently we are using the SGD optimizer function.
https://pytorch.org/docs/stable/optim.html#torch.optim.SGD

Get Loss: Currently we are using the Csross Entry Loss.
https://pytorch.org/docs/stable/nn.html#torch.nn.CrossEntropyLoss

[3]: class DeepStar(nn.Module):
# Network creation
def __init__(self, prediction_size):

super(DeepStar, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=4, stride=2, padding=0)
self.pool1 = nn.MaxPool2d(kernel_size=1, stride=1, padding=0)
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self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=2)
self.pool2 = nn.MaxPool2d(kernel_size=1, stride=1, padding=0)

self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=1, stride=1, padding=0)

self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=1, stride=1, padding=0)

self.conv5 = nn.Conv2d(256, 512, kernel_size=1, stride=2, padding=0)
self.pool5 = nn.MaxPool2d(kernel_size=1, stride=1, padding=0)

self.conv_out = 512 * 9 * 9
px, py = prediction_size

self.fc1 = nn.Linear(self.conv_out + 4, px*py*2)
self.dropout1 = nn.Dropout(p=0.25)
self.fc2 = nn.Linear(px*py*2, px*py + 1)

def __name__(self):
return "DeepStar"

# Loss function this models uses
def get_loss(self):

return nn.CrossEntropyLoss()

# Optimization algorithm used by this model
def get_optim(self, lr, momentum):

return optim.SGD(self.parameters(), lr=lr, momentum=momentum)

# Instructions for how to do the forward pass
def forward(self, img, points):

img = self.forward_conv(img)

l = img.view(-1, self.conv_out)
l = torch.cat((l, points), 1)

l = F.relu(self.fc1(l))
l = self.dropout1(l)

return self.fc2(l)

def forward_conv(self, img):
img = F.relu(self.conv1(img))
img = self.pool1(img)
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img = F.relu(self.conv2(img))
img = self.pool2(img)

img = F.relu(self.conv3(img))
img = self.pool3(img)

img = F.relu(self.conv4(img))
img = self.pool4(img)

img = F.relu(self.conv5(img))
img = self.pool5(img)

return img

1.2 DataLoader

This dataloader is identical to DeepStar V1. See there for more info.

[4]: class PathDataLoader(utils.Dataset):
def __init__(self, data_dir, prediction_size):

self.map = f'{data_dir}/map.png'
self.data_path = f'{data_dir}/data.csv'
self.to_tensor = transforms.ToTensor()
self.data = pd.read_csv(self.data_path, encoding = "UTF-8")
self.size = prediction_size

def __len__(self):
return len(self.data["Start"])

def __getitem__(self, idx):
with Image.open(self.map) as img:

imgWidth, imgHeight = img.size
width, height = self.size

sx, sy = self.to_tuple(self.data["Start"][idx])
ex, ey = self.to_tuple(self.data["Stop"][idx])
mx, my = self.to_tuple(self.data["Midpoint"][idx])

label = round((mx / imgWidth) * width) + (width - 1) * round((my /␣
↪→imgHeight) * height)

img_tensor = self.to_tensor(img)
pos_tensor = torch.FloatTensor([sx / imgWidth, sy / imgHeight, ex /␣

↪→imgWidth, ey / imgHeight])
label_tensor = torch.LongTensor([label])
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#print(f'{img_tensor.size()}-{pos_tensor.size()}-{label_tensor.
↪→size()}')

return img_tensor, pos_tensor, label_tensor

def to_tuple(self, t):
return tuple(map(int, t.replace('(','').replace(')', '').split(', ')))
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Model

May 24, 2020

Author: Henrik Strocka

Copyright (c) 2020 LAPS Group

1 DeepStar V1 Model Definition

This notebook is responsible for defnining the version network structure and the accompanying
data loader.

[ ]: import time, onnx, torch, torch, csv
import torch.nn as nn
import pandas as pd
import torch.optim as optim
import torch.nn.functional as F
import torch.utils.data as utils

from torchvision import transforms
from PIL import Image

1.1 DeepStar network definition

Version one of DeepStar consists of three convolutional layers. These layers are max pooled with
a kernel size of one, this was because if max pooling was removed it preformed significantly worse.
The convolution layers currently gives 256 layers of 20x20 feature maps. These are then fed into a
fully connected neural network for classification. The output of the model is two normalized values
between [0-1] one for X and one for Y.

Get Loss: The function used by this model, currently the MSE loss function is used. Read more
at https://pytorch.org/docs/stable/nn.html#mseloss.

Get Optim: The optimisation algorithm used by the model, currently the Adadelta algorithm is
used. Read more at https://pytorch.org/docs/stable/optim.html#torch.optim.Adadelta

[ ]: class DeepStar(nn.Module):
# Network creation
def __init__(self, do_pool = True):

super(DeepStar, self).__init__()
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#Three convolution layers with their accompanying pooling layer.
self.conv1 = torch.nn.Conv2d(1, 64, kernel_size=7, stride=3, padding=0)
self.pool1 = torch.nn.MaxPool2d(kernel_size=1, stride=1, padding=0)

self.conv2 = torch.nn.Conv2d(64, 128, kernel_size=4, stride=2,␣
↪→padding=0)

self.pool2 = torch.nn.MaxPool2d(kernel_size=1, stride=1, padding=0)

self.conv3 = torch.nn.Conv2d(128, 256, kernel_size=3, stride=2,␣
↪→padding=0)

self.pool3 = torch.nn.MaxPool2d(kernel_size=1, stride=1, padding=0)

self.conv_out = 256 * 20 * 20
self.do_pool = do_pool

# Three feed forward fully connected classification layer.
self.fc1 = torch.nn.Linear(self.conv_out + 4, 64)
self.fc4 = torch.nn.Linear(64, 32)
self.fc5 = torch.nn.Linear(32, 2)

def __name__(self):
return "DeepStar"

# Loss function this models uses
def get_loss(self):

return torch.nn.MSELoss()

# Optimization algorithm used by this model
def get_optim(self, rho, lr, weight_decay):

return optim.Adadelta(self.parameters(), rho=rho, lr=lr,␣
↪→weight_decay=weight_decay)

# Instructions for how to do the forward pass
def forward(self, img, points):

img = self.forward_conv(img)

l = img.view(-1, self.conv_out)
l = torch.cat((l, points), 1)

l = F.relu(self.fc1(l))
l = F.relu(self.fc4(l))
return self.fc5(l)

# Convolution layers forward pass
def forward_conv(self, img):

img = F.relu(self.conv1(img))
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img = self.pool1(img)

img = F.relu(self.conv2(img))
img = self.pool2(img)

img = F.relu(self.conv3(img))
img = self.pool3(img)

return img

1.2 DataLoader

To be able to train the network as defined above it needs a way to load the data into memory. This
is the purpose of this custom data loader. Currently we only use one map and one csv file for all
paths generated on that map. The map is a grayscale heightmap normalzied to between 0 and 1.
The data is a list of start and stop points.

[ ]: class PathDataLoader(utils.Dataset):
def __init__(self, data_dir):

self.map = f'{data_dir}map.png' # Path to map used to train on
self.data_path = f'{data_dir}data.csv' # Path to csv file containing␣

↪→all generated data
self.to_tensor = transforms.ToTensor() # Functino for converting pillow␣

↪→images to pytorch tensors
self.data = pd.read_csv(self.data_path, encoding = "UTF-8") # Read CSV␣

↪→data file
self.img_tensor = self.to_tensor(Image.open(self.map)) # Convert map to␣

↪→pytorch tensor

# Get the length of this dataset
def __len__(self):

return len(self.data["Start"])

# Get data at index
def __getitem__(self, idx):

# Read start, stop and path midpoint.
sx, sy = self.to_tuple(self.data["Start"][idx])
ex, ey = self.to_tuple(self.data["Stop"][idx])
mx, my = self.to_tuple(self.data["Midpoint"][idx])

img_tensor = self.img_tensor # Map converted to a pytorch tensor
input_tensor = torch.FloatTensor([sx / 256, sy / 256, ex / 256, ey /␣

↪→256]) # Input start and stop normalise to [0-1] and converted to tensor
expected_tensor = torch.FloatTensor([mx / 256, my / 256]) # Expected␣

↪→output converted to tensor
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return img_tensor, input_tensor, expected_tensor

# Parse csv file tupels to python tupels
def to_tuple(self, t):

return tuple(map(int, t.replace('(','').replace(')', '').split(', ')))

4



Visualization

May 24, 2020

Author: Henrik Strocka

Copyright (c) 2020 LAPS Group

1 Deep Star V2 Visualization

This notebook is a collection of all methods used to visualise DeepStar V2

[ ]: import os, sys

module_path = os.path.abspath(os.path.join('../..'))
if module_path not in sys.path:

sys.path.append(module_path)

import loader, torch, torchvision, matplotlib, time

import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt

from PIL import Image, ImageDraw
from torchvision import transforms
from IPython.display import clear_output

from Dijkstra.Dijkstra import *
from DeepStar.V3.Model import DeepStar

1.1 Visualization Settings

Img Size: Dimensions of the map to be used.

Save File: Pytorch weight dictionary to load the network weights from.

Map FIle: Image of the map to be used for visualization.

Seed: GPU seed to use for computation.

1



[ ]: img_size = (256, 256)
prediction_size = (32, 32)

load_file = False
save_file = "Trained Models/deep_star_v2.pt"
map_file = "../V2/data/images/map.png"
seed = 0

1.2 Load Model

Load the specified deepstar model and set the seed.

[ ]: torch.manual_seed(seed)

net = DeepStar(prediction_size)

if load_file:
net.load_state_dict(torch.load(save_file))

1.3 Visualize Layer Filters

Loop through the layers and display each filter as an image. Each pixel represents the weight in
that filter. This image is just the raw weights and are not meant to be human readable, see next
visualisation for a better overview.

[ ]: layers = 5 # How many layers of convolution there is
conv_start = 0
conv_stop = 10 # How deep you want to visualize the filters

# Create a numpy figure.
fig, ax = plt.subplots(layers, conv_stop - conv_start)
visited = 0
for i, layer in enumerate(net.state_dict()):

if "bias" in layer:
continue

if visited >= layers:
break

visited += 1
for a, filt in enumerate(net.state_dict()[layer][conv_start:conv_stop]):

axis = ax[visited - 1, a]
axis.imshow(filt[0, :, :])
axis.axis('off')
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1.3.1 Get Activation

Hooks into a forward pass, when the event is invoked the weights will be added to the activation
list.

Return: Hook that will be called.

[ ]: activation = {}
def get_activation(name):

def hook(model, input, output):
activation[name] = output.detach()

return hook

1.4 Visualize Convolution Activation

Combine the weights and a forward pass to create an activation image. The higher the value in a
stop the more the filter is triggered at that stop.

[ ]: layer_name = "conv2" # Layer to hook into for visualisation.

# Start and Stop point to use for this visualizaiton
start = (20, 20)
end = (200, 200)

to_tensor = transforms.ToTensor()
net.conv1.register_forward_hook(get_activation(layer_name)) # Register a hook␣
↪→to get the image to display

with Image.open(map_file) as img:
imgWidth, imgHeight = img.size

sx, sy = start
ex, ey = end

img_tensor = to_tensor(img).unsqueeze(0)
pos_tensor = torch.FloatTensor([sx / imgWidth, sy / imgHeight, ex /␣

↪→imgWidth, ey / imgHeight]).unsqueeze(0)
net(img_tensor, pos_tensor)

act = activation[layer_name].squeeze()
fig, axarr = plt.subplots(1, act.size(0))
for idx in range(act.size(0)):

axarr[idx].imshow(act[idx], interpolation='nearest')
axarr[idx].axis("off")
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1.5 Visualize Network Progress

Loop over all layers and create a animation that displays how the network has learned over time.

[ ]: %%capture
layers = 5
conv_start = 0
conv_stop = 10

figs = []
for x in range(5):

net = DeepStar(prediction_size)

fig, ax = plt.subplots(layers, conv_stop - conv_start)
figs.append(fig)

visited = 0
for i, layer in enumerate(net.state_dict()):

if "bias" in layer:
continue

if visited >= layers:
break

visited += 1
for a, filt in enumerate(net.state_dict()[layer][conv_start:conv_stop]):

axis = ax[visited - 1, a]
axis.imshow(filt[0, :, :])
axis.axis('off')

[ ]: for i, fig in enumerate(figs):
clear_output(True)
display(fig)
time.sleep(1)
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Model

May 24, 2020

Author: Henrik Strocka

Copyright (c) 2020 LAPS Group

1 DeepStar V3 Model Definition

This notebook is responsible for defnining the version network structure and the accompanying
data loader.

[1]: import time, torch, torch, csv
import torch.nn as nn
import pandas as pd
import torch.optim as optim
import torch.nn.functional as F
import torch.utils.data as utils

from torchvision import transforms
from PIL import Image

1.1 DeepStart network definition

Get Optim: Currently we are using the SGD optimizer function.
https://pytorch.org/docs/stable/optim.html#torch.optim.SGD

Get Loss: Currently we are using the Cross Entropy Loss.
https://pytorch.org/docs/stable/nn.html#crossentropyloss

[2]: class DeepStar(nn.Module):
def __init__(self, prediction_points):

super(DeepStar, self).__init__()
self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)

self.conv1 = nn.Conv2d(1, 32, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(32)

self.conv2 = nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(64)
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self.conv3 = nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=0)
self.bn3 = nn.BatchNorm2d(128)

self.conv_out = 128 * 29 * 29
self.dropout = nn.Dropout(p=0.2)

self.fc1 = nn.Linear(self.conv_out, 256*13)
self.fc2 = nn.Linear(256*13, 256*13)
self.fc3 = nn.Linear(256*13, prediction_points*2)

def __name__(self):
return "DeepStar"

def get_loss(self):
return nn.CrossEntropyLoss()

def get_optim(self, lr, momentum):
return optim.SGD(self.parameters(), lr=lr, momentum=momentum)

def forward(self, img):
img = self.forward_conv(img)

l = img.view(-1, self.conv_out)

l = F.elu(self.fc1(l))
l = self.dropout(l)

l = F.elu(self.fc2(l))
l = self.dropout(l)

return self.fc3(l)

def forward_conv(self, img):
img = F.elu(self.bn1(self.conv1(img)))
img = self.max_pool(img)

img = F.elu(self.bn2(self.conv2(img)))
img = self.max_pool(img)

img = F.elu(self.bn3(self.conv3(img)))
img = self.max_pool(img)

return img
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1.2 DataLoader

[5]: class PathDataLoader(utils.Dataset):
def __init__(self, data_dir):

self.data_path = f'{data_dir}/data.csv'
self.image_path = f'{data_dir}/images/'
self.to_tensor = transforms.ToTensor()
self.data = pd.read_csv(self.data_path, encoding = "UTF-8")

def __len__(self):
return len(self.data["Start"])

def __getitem__(self, idx):
with Image.open(f'{self.image_path}{self.data["Map"][idx]}') as img:

img_tensor = self.to_tensor(img)
key_tensor = torch.FloatTensor(self.data.iloc[idx, 1:])

return img_tensor, key_tensor
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Model

May 24, 2020

Author: Henrik Strocka

Copyright (c) 2020 LAPS Group

1 DeepStar Auto Encoder Model Definition

This notebook is responsible for defnining the version network structure and the accompanying
data loader.

[1]: import time, torch, torch, csv
import torch.nn as nn
import pandas as pd
import torch.optim as optim
import torch.nn.functional as F
import torch.utils.data as utils

from torchvision import transforms
from PIL import Image

1.1 DeepStar Network Definition

This auto encoder currently cosists of a three layerd decoder and a three layered encoder. It is
designd to be trained as an auto-encoder, but by changing decode to False it will only encode the
data and output the feature map.

Get Optim: Currently we are using the Adam optimizer function.
https://pytorch.org/docs/stable/nn.html#mseloss

Get Loss: Currently we are using the MSE Loss. https://pytorch.org/docs/stable/optim.html#torch.optim.Adam

Use Decoder: Set wether to decode the feature map back to its original image.

Flatten Data: Set wther to flatten the output image, this works with both the feature map and
the output image.

[4]: class DeepStarEncoder(nn.Module):
def __init__(self, decode=True, flatten=False):

super(DeepStarEncoder, self).__init__()
self.decode = decode
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self.flatten = flatten

self.conv1 = nn.Conv2d(1, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 4, 3, padding=1)
self.conv3 = nn.Conv2d(4, 2, 3, padding=1)

self.pool = nn.MaxPool2d(2, 2)

self.t_conv1 = nn.ConvTranspose2d(2, 4, 2, stride=2)
self.t_conv2 = nn.ConvTranspose2d(4, 16, 2, stride=2)
self.t_conv3 = nn.ConvTranspose2d(16, 1, 2, stride=2)

def __name__(self):
return "DeepStar"

def get_loss(self):
return nn.MSELoss()

def get_optim(self, lr):
return optim.Adam(self.parameters(), lr=lr)

def use_decoder(self, use):
self.decode = use

def flatten_data(self, flatten):
self.flatten = flatten

def forward(self, img):
x = F.relu(self.conv1(img))
x = self.pool(x)

x = F.relu(self.conv2(x))
x = self.pool(x)

x = F.relu(self.conv3(x))
x = self.pool(x)

if self.decode:
x = F.relu(self.t_conv1(x))
x = F.relu(self.t_conv2(x))
x = self.t_conv3(x)

if self.flatten:
x = x.view(-1, 2048)

return x
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1.2 DataLoader

Because we use a custom dataset we have to have a custom data loader. The training data for
an auto-encoder is very simple and currently consits of a simple directy of heightmaps it has to
recreate.

[ ]: class ImageDataLoader(utils.Dataset):
def __init__(self, map_folder, data_length):

self.map_folder = map_folder
self.data_length = data_length
self.to_tensor = transforms.ToTensor()

def __len__(self):
return self.data_length

def __getitem__(self, idx):
with Image.open(f'{self.map_folder}{idx}.png') as img:

return self.to_tensor(img)
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DeepStar

May 24, 2020

Author: Henrik Strocka

Copyright (c) 2020 LAPS Group

1 Training Notebook

This is a general purpose model training notebook. This notebook has evolved over time and is
used by all version to train their models.

[ ]: import os, sys

module_path = os.path.abspath(os.path.join('../..'))
if module_path not in sys.path:

sys.path.append(module_path)

# Uncomment this to better debug CUDA errors.
#os.environ['CUDA_LAUNCH_BLOCKING'] = "1"

import loader, time, torch
from DeepStar.V2.Model import DeepStar, PathDataLoader

import torch.utils.data as utils
import matplotlib.pyplot as plt

2 Network Training Settings

All settings related to training and model creation is setup here.

[ ]: # Saving/Loading
save_name = "models/deep_star_v2" # Save name for the savefiles, _{epoch} will␣
↪→be appended to the save name.

load = False # Whether to load the save_name at startup.
save = True # Wether to auto save for each epoch.

#Tensor device configuration
use_gpu = True # Wether to run the model on the gpu.
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gpu_device = 0 # What gpu to run the model on.
seed = 0 # GPU prng seed to ensure reproduceability

# Training Configuration
n_epochs = 20000 # How many epochs to run this program for.
validate_network = True # Wether to run a validation batch after each epoch.

# Data Loading
data_folder = "data" # Folder where data can be loaded fra.
num_workers = 1 # Number of gpu workers to use for data loading.
batch_size = 10 # How much data to train the model at once.
shuffle_data = True # Wether to randomize the data order.

# Custom properties
paths_per_image = 100 # How many paths there is per heightmap.
do_pool = False

#Critation
lr=1
rho=0.9
eps=1e-06
weight_decay=0

#Loss
weight=None
reduction='mean'

2.1 Model setup

Here the model is created and pretrained weights are loaded. The model is also moved to the GPU
here if that setting is enableled.

[ ]: net = DeepStar(do_pool)

if (load):
net.load_state_dict(torch.load(f'{save_name}.pt'))

if (use_gpu):
torch.cuda.empty_cache()

device = torch.device(f'cuda:{gpu_device}' if torch.cuda.is_available()␣
↪→else "cpu")

torch.cuda.set_device(device)
net.to(device)
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3 Train Confguration

These cells specifies how the data from the custom data loader will be put into the network, and
what the network is expected to output. This is used as an intermidiate layer to glue together the
dataloader and the network model. This is also the only part of this notebook that is specific for
each implementation, the example shown here is DeepStar V1.

[ ]: # Setup training data from training data folder
train_data = PathDataLoader(f'{data_folder}/images/')
train_loader = utils.DataLoader(train_data, batch_size=batch_size,␣
↪→shuffle=shuffle_data, num_workers=num_workers)

# If validation data has been enabled setup validation loader from validation␣
↪→data folder.

if validate_network:
val_data = PathDataLoader(f'{data_folder}/validation/')
val_loader = utils.DataLoader(val_data, batch_size=batch_size,␣

↪→shuffle=shuffle_data, num_workers=num_workers)

[ ]: loss = net.get_loss()
optimizer = net.get_optim(rho, lr, weight_decay)

# Glue together the data and the network
def execute(net, data):

img, points, e = data
return net(img, points), e

4 Network Training

4.1 Training Setup

This is the method that runs one batch of training, meaning it iterates through all the data in the
given data loader and trains the network on it. It executes the network via the execute command
setup in the train configuration cell.

Run Batch

Data Loader: The data loader to use for this batch.

Net: The model to use for this batch. As specified in Model Setup.

Optim: The critation algorithm to use to modify the network weights.

Loss: The loss function to use for error calculation.

Use GPU: Wether to use GPU for thi batch.

Do Print: If you want the method to print the progress throughout the run.
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[ ]: def run_batch(data_loader, net, optim, loss, use_gpu, do_print=False):
running_loss = 0.0
print_every = n_train_batches // 10
start_time = time.time()
total_train_loss = 0

for i, data in enumerate(data_loader):
# Load data into the GPU if it is enabeled
if (use_gpu):

for a,d in enumerate(data):
data[a] = data[a].to(device)

# Reset optim algorith, if this is not done the weights will be summed␣
↪→and become to big

optim.zero_grad()
output, expected = execute(net, data)

# Calculate the loss
loss_size = loss(output, expected)

# Run backpropergation algorithm as defined in model
loss_size.backward()
optim.step()

# Calculate and print statisitcs
running_loss += loss_size.data.item()
total_train_loss += loss_size.data.item()

if do_print and (i + 1) % (print_every + 1) == 0:
print(f'Epoch {epoch+1}, {int(100 * (i+1) / n_train_batches):d}% \t␣

↪→train_loss: {(running_loss / print_every):.4f} took: {(time.time() -␣
↪→start_time):.2f}s')

running_loss = 0.0
start_time = time.time()

return total_train_loss

4.2 Training Loop

The main loop that runs the notebook and trains the model. It will run for the set amount of
epochs and save once a epoch. This cell also deals with visualizing the performance, currently
there is no graph visualisation only simple print statements. For future work it might be worth
investing time into creating a proper graph.
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[ ]: # Calculate the amount of training an validation batches
n_train_batches = len(train_loader)
if validate_network:

n_val_batches = len(val_loader)
else:

n_val_batches = 0

training_start_time = time.time()
print(f'Training with {n_train_batches} training batches and {n_val_batches}␣
↪→validation batches.')

for epoch in range(n_epochs):
train_loss = run_batch(train_loader, net, optimizer, loss, use_gpu,␣

↪→do_print=True)

# Run a validation batch if its enabeled
if validate_network:

val_loss = run_batch(val_loader, net, optimizer, loss, use_gpu)
print(f'Validation loss = {(val_loss / len(val_loader)):.4f}')

# Save once a epoch
if save:

torch.save(net.state_dict(), f'{save_name}.pt')

print(f'Training finished, took {(time.time() - training_start_time):.2f}s')

4.3 Save

This cell is just so you can manually save if you want to.

[ ]: if save:
torch.save(net.state_dict(), f'{save_name}_0.pt')
print("Saved")

5



Normal Q-Learning-Copy1

May 25, 2020

Author: Vetle A. H. Neumann

Copyright (c) 2020 LAPS Group

1 DQN Agent

Code taken from PyTorch DQN tutorial, then modified to work on our environment.

Source of original code: https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

[ ]: import gym
import gym_drone
import math
import random
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple
from itertools import count
from PIL import Image

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T

# set up matplotlib
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:

from IPython import display

plt.ion()

# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
#device = "cpu"
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Intialize environment along with the matplotlib figure. - DroneCardinal-v0 is the name of the
environment to initialize - Rows and columns determine the shape of the environment area - Memory
capacity says how many of the last steps shall be remembered and displayed when rendering with
’notebook’ mode. - Ax takes a matplotlib plot, which it will plot to if given, otherwise plot to the
default pyplot. This makes it so we can have the rendering of the playing as a matplotlib subplot.

[ ]: fig, ax = plt.subplots(nrows=2, ncols=2)
fig.set_figwidth(30)
fig.set_figheight(14)

grid_shape = (40, 40)
env = gym.make('DroneCardinal-v0',

rows=grid_shape[0],
columns=grid_shape[1],
memory_capacity=50,
ax=ax[1][0]).unwrapped

env.reset()

[ ]: import os, sys

module_path = os.path.abspath(os.path.join('../..'))
if module_path not in sys.path:

sys.path.append(module_path)

import laps, redis, loader
from Dijkstra.Dijkstra import *

grid = env._grid

grid = []
width, height = grid_shape
for x in range(width):

grid.append([])
for y in range(height):

grid[x].append(Node(env._grid[x, y], (x, y)))

edges = get_edges(grid)

Set up the ReplayMemory object type.

It is how transitions in the environment is stored, and randomly given back with the sample
function, to train the neural network.

[ ]: resize = T.Compose([T.ToPILImage(),
#T.Resize(40, interpolation=Image.CUBIC),
#T.Resize(40),
T.Resize(40),
T.ToTensor()])
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pos_blur_size = 10
goal_blur_size = 10
white_channel = np.zeros(grid_shape)

screen = env.render(mode='rgb_array')
last_drone_pos = tuple(env._get_obs()[:2])
last_goal_pos = tuple(env._get_obs()[2:])
def get_screen(new_episode=False):

global screen, last_drone_pos, last_goal_pos
drone_pos = tuple(env._get_obs()[:2])
goal_pos = tuple(env._get_obs()[2:])

if new_episode:
screen = env.render(mode='rgb_array')
screen[:, :, 0] = white_channel
deblur_position(last_goal_pos, goal_blur_size, 2)
blur_position(goal_pos, goal_blur_size, 2)
last_goal_pos = goal_pos

deblur_position(last_drone_pos, pos_blur_size, 1)
blur_position(drone_pos, pos_blur_size, 1)

last_drone_pos = drone_pos
last_goal_pos = goal_pos

# blur grid
#screen = blur_grid(screen)
# recenter around drone
#screen = recenter_grid_on_position(screen)
# set the red channel (height) to zero

output = screen.transpose((2, 0, 1))
_, screen_height, screen_width = output.shape
output = np.ascontiguousarray(screen, dtype=np.float32) / 255
output = torch.from_numpy(output)
output = output.type(torch.FloatTensor)
return resize(screen).unsqueeze(0).to(device)

def blur_position(position, blur_radius, channel):
global screen
size_x, size_y = screen[:, :, channel].shape
for d_x in range(blur_radius * 2 + 1):

d_x -= blur_radius
for d_y in range(blur_radius * 2 + 1):

d_y -= blur_radius
# If the distance to the point is greater than the
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# distance to be blurred, skip this cell.
distance = abs(d_x) + abs(d_y)
if distance > blur_radius:

continue
x, y = position
x += d_x
y += d_y
# Check if index is inside grid
if x < 0 or x >= size_x or y < 0 or y >= size_y:

continue
screen[x, y, channel] = 255 / (distance + 1)

def deblur_position(position, blur_radius, channel):
global screen
size_x, size_y = screen[:, :, channel].shape
for d_x in range(blur_radius * 2 + 1):

d_x -= blur_radius
for d_y in range(blur_radius * 2 + 1):

d_y -= blur_radius
x, y = position
x += d_x
y += d_y
# Check if index is inside grid
if x < 0 or x >= size_x or y < 0 or y >= size_y:

continue
screen[x, y, channel] = 0

def recenter_grid_on_position(rgb_array):
rows, columns = grid_shape
drone_pos = env._drone_pos
drone_x, drone_y = drone_pos
offset_x = (columns - 1) - drone_x
offset_y = (rows - 1) - drone_y

new_grid = np.zeros((rows * 2 - 1, columns * 2 - 1, 3)) + 255
for x, column in enumerate(rgb_array):

for y, row in enumerate(column):
for channel, cell in enumerate(row):

#new_grid[x + offset_x, y + offset_y, channel] = #rgb_array[x,␣
↪→y, channel]

new_grid[x + offset_x, y + offset_y, channel] = cell
return new_grid

[ ]: plt.imshow(np.swapaxes(np.swapaxes(np.squeeze(np.asarray(get_screen().cpu()),␣
↪→0), 0, 2), 0, 1))

plt.axis('off')
plt.show()
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[ ]: env.step(1)
plt.imshow(env.render(mode='rgb_array'))
plt.show()

[ ]: BATCH_SIZE = 128
GAMMA = 0.9
#GAMMA = 0.1
EPS_START = 0.9
EPS_END = 0.2
#EPS_END = 0.0
EPS_DECAY = 40000
TARGET_UPDATE = 10

# Get screen size so that we can initialize layers correctly based on shape
# returned from AI gym. Typical dimensions at this point are close to 3x40x90
# which is the result of a clamped and down-scaled render buffer in get_screen()
init_screen = env.render(mode='rgb_array')
screen_height, screen_width, _ = init_screen.shape

# Get number of actions from gym action space
n_actions = env.action_space.n

#policy_net = DQN(screen_height, screen_width, n_actions).to(device)
#target_net = DQN(screen_height, screen_width, n_actions).to(device)
#target_net.load_state_dict(policy_net.state_dict())
#target_net.eval()

#optimizer = optim.RMSprop(policy_net.parameters())
#memory = ReplayMemory(10000)

# Reset these whenever
episode_durations = []
episode_rewards = []
episode_best_reward = []

[ ]: steps_done = 0
def select_action(state):

global steps_done, q_table
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \

math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:

state = get_state()
return np.argmax(q_table[state])

else:
return random.randrange(n_actions)
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[ ]: episode_durations = []
episode_rewards = []
episode_best_reward = []
def plot_durations():

# Plot episode durations
ax[0][0].cla()
durations_t = torch.tensor(episode_durations, dtype=torch.float)
ax[0][0].set_xlabel('Episode')
ax[0][0].set_ylabel('Duration')
ax[0][0].plot(durations_t.numpy())
# Take 100 episode averages and plot them too
if len(durations_t) >= 100:

means = durations_t.unfold(0, 100, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
ax[0][0].plot(means.numpy())

# Plot episode rewards
ax[0][1].cla()
rewards_t = torch.tensor(episode_rewards, dtype=torch.float)
best_rewards_t = torch.tensor(episode_best_reward, dtype=torch.float)
ax[0][1].set_xlabel('Episode')
ax[0][1].set_ylabel('Reward')
ax[0][1].plot(rewards_t.numpy())
ax[0][1].plot(best_rewards_t.numpy())
if len(rewards_t) >= 100:

means = rewards_t.unfold(0, 100, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
ax[0][1].plot(means.numpy())

# Plot environment
env.render()

# Plot environment as seen by the agent
ax[1][1].imshow(np.swapaxes(np.swapaxes(np.squeeze(np.asarray(get_screen().

↪→cpu()), 0), 0, 2), 0, 1))
ax[1][1].axis('off')

# pause a bit so that plots are updated
plt.pause(0.001)
if is_ipython:

display.clear_output(wait=True)
display.display(fig)

2 Q-Learning Functions

To reduce amount of possible states, use only 4 different start and stop positions.
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[ ]: possible_start_points = [(5,5), (grid_shape[0] - 5, 5), (5, grid_shape[1] - 5),␣
↪→(grid_shape[0] - 5, grid_shape[1] - 5)]

LEARNING_RATE = 0.25

def encode(drone_x, drone_y, goal_index):
state = drone_x
state *= grid_shape[0]
state += drone_y
state *= grid_shape[1]
state += goal_index
return state

def decode(state):
out = []
out.append(state % grid_shape[1])
state = state // grid_shape[1]
out.append(state % grid_shape[0])
state = state // grid_shape[0]
out.append(state)
return list(reversed(out))

def get_state():
state = env._get_obs()
goal_index = possible_start_points.index(tuple(state[2:]))
return encode(state[0], state[1], goal_index)

q_table = np.zeros((encode(grid_shape[0] - 1, grid_shape[1] - 1, 3) + 1, 4)) + 1

3 Training Loop

Reward Function: 1 for correct direction, 0 otherwise.

[ ]: num_episodes = 20000
episode_durations = []
episode_rewards = []
episode_best_reward = []

possible_start_points = [(5,5), (grid_shape[0] - 5, 5), (5, grid_shape[1] - 5),␣
↪→(grid_shape[0] - 5, grid_shape[1] - 5)]

for i_episode in range(num_episodes):
# Initialize the environment and state
env.reset()

#env._goal_pos = (5, 5)
env._goal_pos = random.choice(possible_start_points)
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mistakes = 0

state = get_state()
last_state = state
total_reward = 0
highest_grid_value = np.amax(env._grid)
for t in count():

last_x, last_y, _, _ = env._get_obs()

# Select and perform an action
action = select_action(state)
state_tuple, reward, done, _ = env.step(action)
drone_x, drone_y, goal_x, goal_y = state_tuple
drone_point = (drone_x, drone_y)
goal_point = (goal_x, goal_y)

# Hijack reward calculation (temporary?)
if (drone_x, drone_y) == (goal_x, goal_y):

reward = np.float64(0)
else:

diff = abs(goal_x - drone_x) + abs(goal_y - drone_y)
last_diff = abs(goal_x - last_x) + abs(goal_y - last_y)
if (last_diff > diff):

reward = np.float64(1)
else:

reward = np.float64(0)

total_reward += reward
if t == 0:

episode_best_reward.append(abs(last_x - goal_x) + abs(last_y -␣
↪→goal_y))

if t > 200:
done = True

if reward == 0:
#done = True
mistakes += 1
if mistakes >= 10:

done = True
pass

# Perform one step of the optimization
state = get_state()
# Adjust using the Q-Learning algorithm
q_table[last_state][action] += LEARNING_RATE * (reward + GAMMA * np.

↪→amax(q_table[state]) - q_table[last_state][action])

last_state = state
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#if done or mistakes > 10:
if done:

#print(t + 1)
episode_durations.append(t + 1)
# episode_rewards.append(max(total_reward - mistakes, 0))
episode_rewards.append(max(total_reward - mistakes, 0) /␣

↪→episode_best_reward[-1])
episode_best_reward[-1] = 1
if i_episode % 500 == 0:

plot_durations()
break

print('Complete')
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turn_short_v2

May 25, 2020

Author: Vetle A. H. Neumann

Copyright (c) 2020 LAPS Group

1 DQN Agent

Code taken from PyTorch DQN tutorial, then modified to work on our environment.

Source of original code: https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

[ ]: import gym
import gym_drone
import math
import random
import time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple
from itertools import count
from PIL import Image

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T

# set up matplotlib
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:

from IPython import display

plt.ion()

# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
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#device = "cpu"

2 Intialize Environment and Matplotlib Figure

• TurnShort-v1 is the name of the environment to initialize
• training_data_dir (required) specificies location of training data
• shape determine the shape of the environment area
• subsampling is how many chunks the grid should be divided into, in both directions
• steps is how many turns
• turn rate is the turn radius of the drone
• ax takes a matplotlib plot, which it will plot to if given, otherwise plot to the default pyplot.

This makes it so we can have the rendering of the playing as a matplotlib subplot.

[ ]: fig, ax = plt.subplots(nrows=2, ncols=2)
fig.set_figwidth(30)
fig.set_figheight(14)

grid_shape = (31, 31)
env = gym.make('TurnShort-v1',

shape=grid_shape,
training_samples=0,
subsampling=31,
steps=1,
turn_rate=4,
training_data_dir='/workspace/unsorted/',
ax=ax[1][0]).unwrapped

env.reset()

3 Set up the ReplayMemory object type

It is how transitions in the environment is stored, and randomly given back with the sample
function, to train the neural network.

[ ]: Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))

class ReplayMemory(object):

def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0

2



def push(self, *args):
"""Saves a transition."""
if len(self.memory) < self.capacity:

self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity

def sample(self, batch_size):
return random.sample(self.memory, batch_size)

def __len__(self):
return len(self.memory)

4 Network

The network is a convolutional neural network, which uses ReLu activation function.

[ ]: class DQN(nn.Module):

def __init__(self, h, w, outputs):
super(DQN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=1)
self.bn1 = nn.BatchNorm2d(16)
self.conv2 = nn.Conv2d(16, 32, kernel_size=2, stride=1)
self.bn2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 32, kernel_size=2, stride=1)
self.bn3 = nn.BatchNorm2d(32)

# Number of Linear input connections depends on output of conv2d layers
# and therefore the input image size, so compute it.
#def conv2d_size_out(size, kernel_size = 5, stride = 2):
# return (size - (kernel_size - 1) - 1) // stride + 1
#convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w)))
#convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h)))
#linear_input_size = convw * convh * 32
#self.head = nn.Linear(linear_input_size, outputs)
self.head = nn.Linear(25 ** 2 * 32, outputs)

# Called with either one element to determine next action, or a batch
# during optimization. Returns tensor([[left0exp,right0exp]...]).
def forward(self, x):

x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x)))
return self.head(x.view(x.size(0), -1))
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5 Get Image of Screen

Resize the image to fit neural network, change order of channels to fit the expected PyTorch input
type, and send image to device.

[ ]: resize = T.Compose([T.ToPILImage(),
T.Resize(31),
T.ToTensor()])

pos_blur_size = 10
goal_blur_size = 10

# create screen array, rows*columns*channels in size
# channels are RGB
screen = np.zeros((grid_shape[0], grid_shape[1], 3), dtype=np.uint8)
def get_screen(new_episode=False, points=None):

global screen
state = env._get_obs()
last_pos = state[:2]
drone_pos = state[2:4]
goal_pos = state[4:]
# these are only done once
if new_episode:

screen[:, :, 0] = env._heightmap
screen[:, :, 1:] = np.zeros((grid_shape[0], grid_shape[1], 2), dtype=np.

↪→uint8)

# Scale red channel to be approximately 0 to 255
max_value = np.amax(env._heightmap)
min_value = np.amin(env._heightmap)

# output[:, :, 0] /= max_value
# output[:, :, 0] *= 255

# Linear scale, in which every number is moved down
# by the lowest, so that lowest point lies at 0, and
# every point is linearly scaled by the factor needed
# to move the moved highest point to 255. The result is
# lowest point is at 0 and highest is at 255, and every
# other is somewhere inbetween
def scale_linear(highest, lowest, number):

return (number - lowest) * (255/(highest - lowest))

for y, row in enumerate(screen[:, :, 0]):
for x, cell in enumerate(row):

screen[y, x, 0] = scale_linear(max_value, min_value, cell)
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# blur goal position
blur_position(goal_pos, goal_blur_size, screen[:, :, 2])

# make copy of screen, by value, to modify for current frame
current_screen = screen[:, :, :]
if last_pos != (None, None):

# blur last position
blur_position(last_pos, pos_blur_size, current_screen[:, :, 1])

current_screen[env._drone_pos[0], env._drone_pos[1], 1] = 255

#blur_position(drone_pos, pos_blur_size, current_screen[:, :, 1])
#blur_position(drone_pos, pos_blur_size, current_screen[:, :, 2])
if points is not None:

current_screen[:, :, 1] = np.zeros((grid_shape[0], grid_shape[1]),␣
↪→dtype=np.uint8)

for point in points:
current_screen[point[0], point[1]] = 255

pass

output = current_screen.transpose((2, 0, 1))
_, screen_height, screen_width = output.shape
output = np.ascontiguousarray(current_screen, dtype=np.float32) / 255
output = torch.from_numpy(output)
output = output.type(torch.FloatTensor)
return resize(current_screen).unsqueeze(0).to(device)

def lattice_distance(a, b):
a_x, a_y = a
b_x, b_y = b
return abs(a_x - b_x) + abs(a_y - b_y)

def blur_position(position, blur_radius, table):
size_x, size_y = table.shape
for d_x in range(blur_radius * 2 + 1):

d_x -= blur_radius
for d_y in range(blur_radius * 2 + 1):

d_y -= blur_radius
# If the distance to the point is greater than the
# distance to be blurred, skip this cell.
distance = abs(d_x) + abs(d_y)
if distance > blur_radius:

continue
x, y = position
x += d_x
y += d_y
# Check if index is inside grid
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if x < 0 or x >= size_x or y < 0 or y >= size_y:
continue

table[x][y] += 255 / (distance + 1)

6 For Testing the Get Screen Method

[ ]: env.reset()
env.step(1)
print(env._get_obs())
test = get_screen(True)
plt.imshow(np.swapaxes(np.swapaxes(np.squeeze(np.asarray(test.cpu()), 0), 0,␣
↪→2), 0, 1))

plt.axis('off')
plt.show()

7 Setup Networks

[ ]: BATCH_SIZE = 128
GAMMA = 0.9
EPS_START = 0.9
EPS_END = 0.01
EPS_DECAY = 35000
TARGET_UPDATE = 10

# Get screen size so that we can initialize layers correctly based on shape
# returned from AI gym. Typical dimensions at this point are close to 3x40x90
# which is the result of a clamped and down-scaled render buffer in get_screen()
#init_screen = env.render(mode='rgb_array')
#screen_height, screen_width, _ = init_screen.shape
screen_height, screen_width = grid_shape

# Get number of actions from gym action space
n_actions = env.action_space.n

policy_net = DQN(screen_height, screen_width, n_actions).to(device)
target_net = DQN(screen_height, screen_width, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()

optimizer = optim.RMSprop(policy_net.parameters())
memory = ReplayMemory(10000)

# Reset these whenever

6



episode_durations = []
episode_rewards = []
episode_best_reward = []

8 Select Action Based on Policy Network

[ ]: steps_done = 0
def select_action(state):

global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \

math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:

with torch.no_grad():
# t.max(1) will return largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
state = get_screen()
policy_net.eval()
return policy_net(state).max(1)[1].view(1, 1)

else:
return torch.tensor([[random.randrange(n_actions)]], device=device,␣

↪→dtype=torch.long)

9 Function for Plotting Graphs

Episode_durations is how long each episode lasted.

Episode_rewards is rewards for each episode.

Episode_best_rewards is the best reward for every episode, this way the rewards may be compared
to what the theoretical best rewards could’ve been.

[ ]: episode_durations = []
episode_rewards = []
episode_best_reward = []
def plot_durations():

# Plot episode durations
ax[0][0].cla()
durations_t = torch.tensor(episode_durations, dtype=torch.float)
ax[0][0].set_xlabel('Episode')
ax[0][0].set_ylabel('Duration')
ax[0][0].plot(durations_t.numpy())
# Take 100 episode averages and plot them too
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if len(durations_t) >= 100:
means = durations_t.unfold(0, 100, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
ax[0][0].plot(means.numpy())

# Plot episode rewards
ax[0][1].cla()
rewards_t = torch.tensor(episode_rewards, dtype=torch.float)
best_rewards_t = torch.tensor(episode_best_reward, dtype=torch.float)
ax[0][1].set_xlabel('Episode')
ax[0][1].set_ylabel('Reward')
ax[0][1].plot(rewards_t.numpy())
ax[0][1].plot(best_rewards_t.numpy())
if len(rewards_t) >= 100:

means = rewards_t.unfold(0, 100, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
ax[0][1].plot(means.numpy())

# Plot environment
ax[1][0].cla()
env.render()

# Plot environment as seen by the agent
ax[1][1].cla()
ax[1][1].imshow(np.swapaxes(np.swapaxes(np.squeeze(np.

↪→asarray(get_screen(True).cpu()), 0), 0, 2), 0, 1))
ax[1][1].axis('off')

# pause a bit so that plots are updated
plt.pause(0.001)
if is_ipython:

display.clear_output(wait=True)
display.display(fig)

Algorithm for Adjusting Network
[ ]: def optimize_model():

if len(memory) < BATCH_SIZE:
return

transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))

# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
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#non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
# batch.next_state)), device=device,␣

↪→dtype=torch.bool)
#non_final_next_states = torch.cat([s for s in batch.next_state
# if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)

# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = policy_net(state_batch).gather(1, action_batch)

# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
#next_state_values = torch.zeros(BATCH_SIZE, device=device)
#next_state_values[non_final_mask] = target_net(non_final_next_states).

↪→max(1)[0].detach()
# Compute the expected Q values
#expected_state_action_values = (next_state_values * GAMMA) + reward_batch
expected_state_action_values = reward_batch

# Compute Huber loss
loss = F.smooth_l1_loss(state_action_values,

expected_state_action_values.unsqueeze(1))

# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():

param.grad.data.clamp_(-1, 1)
optimizer.step()

10 Training Loop

Reward Function: Negative of total height, and -50,000 (chosen because it is lower than most
normally encountered values).

[ ]: #so that learning can be stopped, and continiued where it left off
last_episode = 0
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[ ]: num_episodes = 2500000
EPS_DECAY = 50000
EPS_START = 0.9
EPS_END = 0.15

possible_start_points = [(5,5), (grid_shape[0] - 5, 5), (5, grid_shape[1] - 5),␣
↪→(grid_shape[0] - 5, grid_shape[1] - 5)]

for i_episode in range(last_episode, num_episodes):
last_episode = i_episode
# Initialize the environment and state
env.reset()

current_screen = get_screen(True)
state = current_screen
total_reward = 0
for t in count():

# Select and perform an action
action = select_action(state)
state_tuple, reward, done, info = env.step(action.item())
last_x, last_y, drone_x, drone_y, goal_x, goal_y = state_tuple
last_point = (last_x, last_y)
drone_point = (drone_x, drone_y)
goal_point = (goal_x, goal_y)

# Overwrite reward function
if info['points_traversed'] == []:

reward = -50000
else:

reward = -1 * info['total_height']
reward = torch.tensor([reward], device=device).type(torch.float)

# Observe new state
last_screen = current_screen
current_screen = get_screen(True)

if not done:
next_state = current_screen

else:
next_state = None

# Store the transition in memory
memory.push(state, action, next_state, reward)

# Move to the next state
state = next_state

# Perform one step of the optimization (on the target network)
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optimize_model()
if done:

episode_rewards.append(reward)
if i_episode % 200 == 0:

plot_durations()
break

# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0:

target_net.load_state_dict(policy_net.state_dict())

print('Complete')

10.1 Save Model and Data

[ ]: # convert from tensor to normal list
episode_rewards_list = [i.item() for i in episode_rewards]
episode_best_reward_list = [i.item() for i in episode_best_reward]

file_name = "no_pooling_three_layer"
with open(file_name + ".txt", "w") as output:

output.write(str(episode_rewards_list))

with open(file_name + "_best"+ ".txt", "w") as output:
output.write(str(episode_best_reward))

torch.save(policy_net.state_dict(), file_name + "_policy_net.pt")
torch.save(target_net.state_dict(), file_name + "_target_net.pt")
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Lazy Redraw V2

May 25, 2020

Author: Vetle A. H. Neumann

Copyright (c) 2020 LAPS Group

1 DQN Agent

Code taken from PyTorch DQN tutorial, then modified to work on our environment.

Source of original code: https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

[ ]: import gym
import gym_drone
import math
import random
import time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple
from itertools import count
from PIL import Image

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T

# set up matplotlib
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:

from IPython import display

plt.ion()

# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
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#device = "cpu"

2 Intialize Environment and Matplotlib Figure

• DroneCardinal-v0 is the name of the environment to initialize
• Rows and columns determine the shape of the environment area
• Memory capacity says how many of the last steps shall be remembered and displayed when

rendering with ’notebook’ mode.
• Ax takes a matplotlib plot, which it will plot to if given, otherwise plot to the default pyplot.

This makes it so we can have the rendering of the playing as a matplotlib subplot.

[ ]: fig, ax = plt.subplots(nrows=2, ncols=2)
fig.set_figwidth(30)
fig.set_figheight(14)

grid_shape = (40, 40)
env = gym.make('DroneCardinal-v0',

rows=grid_shape[0],
columns=grid_shape[1],
memory_capacity=50,
ax=ax[1][0]).unwrapped

env.reset()

3 Load Dijkstra

Load Dijkstra and calculate the edges.

[ ]: import os, sys

module_path = os.path.abspath(os.path.join('../..'))
if module_path not in sys.path:

sys.path.append(module_path)

import laps, redis, loader
from Dijkstra.Dijkstra import *

grid = env._grid

grid = []
width, height = grid_shape
for x in range(width):

grid.append([])
for y in range(height):

grid[x].append(Node(env._grid[x, y], (x, y)))
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edges = get_edges(grid)

4 Set up the ReplayMemory object type

It is how transitions in the environment is stored, and randomly given back with the sample
function, to train the neural network.

[ ]: Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))

class ReplayMemory(object):

def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0

def push(self, *args):
"""Saves a transition."""
if len(self.memory) < self.capacity:

self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity

def sample(self, batch_size):
return random.sample(self.memory, batch_size)

def __len__(self):
return len(self.memory)

5 Network

The network is a convolutional neural network, which uses ReLu activation function.

[ ]: class DQN(nn.Module):

def __init__(self, h, w, outputs):
super(DQN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2)
self.bn1 = nn.BatchNorm2d(16)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2)
self.bn2 = nn.BatchNorm2d(32)

3



self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
self.bn3 = nn.BatchNorm2d(32)

# Number of Linear input connections depends on output of conv2d layers
# and therefore the input image size, so compute it.
def conv2d_size_out(size, kernel_size = 5, stride = 2):

return (size - (kernel_size - 1) - 1) // stride + 1
convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w)))
convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h)))
linear_input_size = convw * convh * 32
self.head = nn.Linear(linear_input_size, outputs)

# Called with either one element to determine next action, or a batch
# during optimization. Returns tensor([[left0exp,right0exp]...]).
def forward(self, x):

x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x)))
return self.head(x.view(x.size(0), -1))

6 Lazy Redraw of Blur

Arrays are passed by reference, not value. Therefore pre-calculate the blur in every pixel and store
it on the GPU, so that it does not have to be calculated again, and only the reference needs to be
changed.

This speeds up rendering of the screen by approximately 25%.

[ ]: def blur_position(grid, position, blur_radius):
size_x, size_y = grid.shape
for d_x in range(blur_radius * 2 + 1):

d_x -= blur_radius
for d_y in range(blur_radius * 2 + 1):

d_y -= blur_radius
# If the distance to the point is greater than the
# distance to be blurred, skip this cell.
distance = abs(d_x) + abs(d_y)
if distance > blur_radius:

continue
x, y = position
x += d_x
y += d_y
# Check if index is inside grid
if x < 0 or x >= size_x or y < 0 or y >= size_y:

continue
grid[x, y] = 1 / (distance + 1)
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blur_radius = 10
blur_arrays = np.zeros((grid_shape[0], grid_shape[1], grid_shape[0],␣
↪→grid_shape[1]))

for y, array_row in enumerate(blur_arrays):
for x, array in enumerate(array_row):

blur_position(blur_arrays[y][x], (y, x), blur_radius)

blur_tensors = torch.tensor(blur_arrays, dtype=torch.float64, device=device)

7 Get Image of Screen

Resize the image to fit neural network, change order of channels to fit the expected PyTorch input
type, and send image to device.

[ ]: resize = T.Compose([T.ToPILImage(),
T.Resize(40),
T.ToTensor()])

screen = None
white_channel = np.zeros(grid_shape)
def get_screen(new_episode=False):

global screen
drone_pos = tuple(env._get_obs()[:2])
goal_pos = tuple(env._get_obs()[2:])

if new_episode:
screen = env.render(mode='rgb_array')

# ignore heightmap
#screen[:, :, 0] = white_channel

screen = screen.transpose((2, 0, 1))
_, screen_height, screen_width = screen.shape
screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
screen = torch.from_numpy(screen)
screen = screen.type(torch.FloatTensor)
screen = resize(screen).unsqueeze(0).to(device)

# blur drone position
screen[0][1] = blur_tensors[drone_pos[0], drone_pos[1]]
# blur goal position
screen[0][2] = blur_tensors[goal_pos[0], goal_pos[1]]

return screen
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8 For Testing the Get Screen Method

[ ]: test = get_screen(True)
plt.imshow(np.swapaxes(np.swapaxes(np.squeeze(np.asarray(test.cpu()), 0), 0,␣
↪→2), 0, 1))

plt.axis('off')
plt.show()

9 Setup Networks

[ ]: BATCH_SIZE = 128
GAMMA = 0.9
#GAMMA = 0.1
EPS_START = 0.9
EPS_END = 0.01
#EPS_END = 0.0
EPS_DECAY = 20 * 4000
TARGET_UPDATE = 10

# Get screen size so that we can initialize layers correctly based on shape
# returned from AI gym. Typical dimensions at this point are close to 3x40x90
# which is the result of a clamped and down-scaled render buffer in get_screen()
init_screen = env.render(mode='rgb_array')
screen_height, screen_width, _ = init_screen.shape

# Get number of actions from gym action space
n_actions = env.action_space.n

policy_net = DQN(screen_height, screen_width, n_actions).to(device)
target_net = DQN(screen_height, screen_width, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()

optimizer = optim.RMSprop(policy_net.parameters(), lr=0.1, momentum=0.9)
memory = ReplayMemory(10000)

# Reset these whenever
episode_durations = []
episode_rewards = []
episode_best_reward = []
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10 Select Action Based on Policy Network

[ ]: steps_done = 0
def select_action(state):

global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \

math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:

with torch.no_grad():
# t.max(1) will return largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
state = get_screen()
policy_net.eval()
return policy_net(state).max(1)[1].view(1, 1)

else:
return torch.tensor([[random.randrange(n_actions)]], device=device,␣

↪→dtype=torch.long)

11 Function for Plotting Graphs

Episode_durations is how long each episode lasted.

Episode_rewards is rewards for each episode.

Episode_best_rewards is the best reward for every episode, this way the rewards may be compared
to what the theoretical best rewards could’ve been.

[ ]: episode_durations = []
episode_rewards = []
episode_best_reward = []
def plot_durations():

# Plot episode durations
ax[0][0].cla()
durations_t = torch.tensor(episode_durations, dtype=torch.float)
ax[0][0].set_xlabel('Episode')
ax[0][0].set_ylabel('Duration')
ax[0][0].plot(durations_t.numpy())
# Take 100 episode averages and plot them too
if len(durations_t) >= 100:

means = durations_t.unfold(0, 100, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
ax[0][0].plot(means.numpy())
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# Plot episode rewards
ax[0][1].cla()
rewards_t = torch.tensor(episode_rewards, dtype=torch.float)
best_rewards_t = torch.tensor(episode_best_reward, dtype=torch.float)
ax[0][1].set_xlabel('Episode')
ax[0][1].set_ylabel('Reward')
ax[0][1].plot(rewards_t.numpy())
ax[0][1].plot(best_rewards_t.numpy())
if len(rewards_t) >= 100:

means = rewards_t.unfold(0, 100, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
ax[0][1].plot(means.numpy())

# Plot environment
ax[1][0].cla()
env.render()

# Plot environment as seen by the agent
ax[1][1].cla()
ax[1][1].imshow(np.swapaxes(np.swapaxes(np.squeeze(np.asarray(get_screen().

↪→cpu()), 0), 0, 2), 0, 1))
ax[1][1].axis('off')

# pause a bit so that plots are updated
plt.pause(0.001)
if is_ipython:

display.clear_output(wait=True)
display.display(fig)

Algorithm for Adjusting Network
[ ]: def optimize_model():

if len(memory) < BATCH_SIZE:
return

transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))

# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,

batch.next_state)), device=device,␣
↪→dtype=torch.bool)

non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
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state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)

# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = policy_net(state_batch).gather(1, action_batch)

# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
next_state_values[non_final_mask] = target_net(non_final_next_states).

↪→max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch

# Compute Huber loss
loss = F.smooth_l1_loss(state_action_values,

expected_state_action_values.unsqueeze(1))

# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():

param.grad.data.clamp_(-1, 1)
optimizer.step()

12 Training Loop

Reward Function: 1 for correct direction, 0 otherwise.

12.1 Save Model and Data

[ ]: num_episodes = 20000000
episode_durations = []
episode_rewards = []
episode_best_reward = []

def lattice_distance(a, b):
a_x, a_y = a
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b_x, b_y = b
return abs(a_x - b_x) + abs(a_y - b_y)

for i_episode in range(num_episodes):
# Initialize the environment and state
env.reset()
mistakes = 0

current_screen = get_screen(True)
state = current_screen
total_reward = 0
highest_grid_value = np.amax(env._grid)

for t in count():
last_x, last_y, _, _ = env._get_obs()

# Select and perform an action
action = select_action(state)
state_tuple, reward, done, _ = env.step(action.item())
drone_x, drone_y, goal_x, goal_y = state_tuple
drone_point = (drone_x, drone_y)
goal_point = (goal_x, goal_y)

# Hijack reward calculation
if (drone_x, drone_y) == (goal_x, goal_y):

reward = np.float64(0)
else:

diff = abs(goal_x - drone_x) + abs(goal_y - drone_y)
last_diff = abs(goal_x - last_x) + abs(goal_y - last_y)
if (last_diff > diff):

reward = np.float64(1)
else:

reward = np.float64(0)

total_reward += reward
reward = torch.tensor([reward], device=device).type(torch.float)
if t > 200 or lattice_distance(drone_point, goal_point) < 2:

done = True
if reward == 0:

#done = True
mistakes += 1
if mistakes >= 10:

done = True

# Observe new state
last_screen = current_screen
current_screen = get_screen()
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if not done:
next_state = current_screen

else:
next_state = None

# Store the transition in memory
memory.push(state, action, next_state, reward)

# Move to the next state
state = next_state

# Perform one step of the optimization (on the target network)
optimize_model()

# Append max reward possible for graphing
if t == 0:

episode_best_reward.append(abs(last_x - goal_x) + abs(last_y -␣
↪→goal_y))

if done:
# The amount of steps the episode took
episode_durations.append(t + 1)
# Total reward gained divided by maximum, to get value between 0␣

↪→and 1 of performance
episode_rewards.append(max(total_reward - mistakes, 0) /␣

↪→episode_best_reward[-1])
episode_best_reward[-1] = 1
# Only plot graphs every hundreth episode for performance
if i_episode % 100 == 0:

plot_durations()
break

# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0:

target_net.load_state_dict(policy_net.state_dict())

print('Complete')

12.2 Save Model and Data

[ ]: # convert from tensor to normal list
episode_rewards_list = [i.item() for i in episode_rewards]
episode_best_reward_list = [i.item() for i in episode_best_reward]

file_name = "drone_cardinal"
with open(file_name + ".txt", "w") as output:

output.write(str(episode_rewards_list))
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with open(file_name + "_best"+ ".txt", "w") as output:
output.write(str(episode_best_reward))

torch.save(policy_net.state_dict(), file_name + "_policy_net.pt")
torch.save(target_net.state_dict(), file_name + "_target_net.pt")
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