
Sensur av hovedoppgaver
Universitetet i Sørøst-Norge
Fakultet for teknologi og maritime fag

Prosjektnummer: 2020-10
For studieåret: 2018/2020
Emnekode: SFHO3201-1 19H Bacheloroppgave

Prosjektnavn
TRYE App
Utført i samarbeid med: TRYE AS

Ekstern veileder: Hans Kristian Nilsen

Sammendrag: En fullstendig løsning som består av både software og hardware for
automatisk utleie av elektriske stisykler

Stikkord:
● Applikasjon
● Hardware
● Interfacing

Tilgjengelig: JA

Prosjekt deltagere og karakter:

Navn Karakter
Andreas Røed Kjønnerud
Tobias Hylleseth
Joachim nordholmen
Dawit Abamachu
Eebbaa Dhugaasaa

Dato: 15. juni 2020

________________ _______________ _______________
José M. M. Ferreira Karoline Moholth Emil Moholth
Intern Veileder Intern Sensor Ekstern Sensor

Group Members Supervisors Sensors
Andreas Røed Kjønnerud External Supervisor

Hans Kristian Nilsen
External Sensor
Emil MoholthTobias Hylleseth

Eebbaa Dhugaasaa Bantii
Internal Supervisor
José M. M. Ferreira

Internal Sensor
Karoline Moholth Mcclenaghan

T
Dawit Abamachu

Abstract
The market for renting out electric scooters has expanded rapidly throughout
the world in the last years, with projected annual compound growth rates of an
impressive 18.9% [9]. In the last couple of years it has also become a huge busi-
ness here in Norway, and there is massive competition for the customers. What
TRYE is trying to achieve, is to make a similar automated renting solution, but
to rent out their electric mountain-bikes. This is an innovative concept that has
not been done in Norway, and the system consists of a robust hardware solu-
tion that can fit on any electrical bike, with a complimentary automatic renting
software.

The TRYE App has therefore the potential to both be profitable and easy
to maintain. This report explains how we went on about creating the solution.

TRYE APP 1

Contents
1 Introduction 13

2 State Of The Art 14
2.1 Background . 14
2.2 Current state . 15
2.3 Cost and risks . 16

3 Project Overview 18
3.1 Our team, employer and key persons 18

3.1.1 Our team of computer scientists 18
3.1.2 Our university . 19
3.1.3 Our employer . 20

3.2 Process Model . 21
3.2.1 Project Workflow . 22
3.2.2 User Stories . 23
3.2.3 User Stories workload explained 23
3.2.4 Epics . 24
3.2.5 Process tools . 24
3.2.6 Roles and Responsibilities 25

3.3 Project Planning . 27
3.3.1 Visual representation . 27
3.3.2 Presenting and delivering our work 29
3.3.3 Work time . 29

3.4 Requirements . 30
3.4.1 Project Requirements . 30
3.4.2 Product Requirements . 30
3.4.3 Stakeholders . 31
3.4.4 Requirement Analysis . 32

3.5 Verification and Validation . 34
3.5.1 Validation . 34
3.5.2 Verification . 34
3.5.3 Verification Documentation 36

3.6 Project Risk Management . 37
3.6.1 Project risk identification 37
3.6.2 Probability-impact matrix 38
3.6.3 Project risk register . 40
3.6.4 Project risks . 41
3.6.5 Technical risks . 42

3.7 Finance Management . 43
3.7.1 The cost of development 43

TRYE APP 2

4 Technical Work Process 44
4.1 Versions in software . 44
4.2 Software concept . 45

4.2.1 Picking our development environment 46
4.2.2 How does Planet9 work as a development environment? . 46
4.2.3 The SMS Service . 47

4.3 Web server . 48
4.3.1 Initial server setup . 48
4.3.2 AWS server setup . 48
4.3.3 Final server setup . 49

4.4 Alpha 1 MA . 49
4.4.1 The OTP login system . 50
4.4.2 The User database . 50
4.4.3 The Main Menu Shell . 50
4.4.4 The Map . 51

4.5 Alpha 2 MA . 51
4.5.1 Planning for the Alpha 2 51
4.5.2 Redefined login system . 54
4.5.3 The Map . 55
4.5.4 The User page . 55
4.5.5 The Booking system . 55
4.5.6 The Unlocking system . 56
4.5.7 The History page . 57
4.5.8 The Help page . 57
4.5.9 PIN-code system . 59
4.5.10 MA Alpha2 Overview and Visuals 59

4.6 Alpha 1 AS . 66
4.6.1 Planning for the AS . 66
4.6.2 The Unlocking system for admins 69
4.6.3 The Booking viewing page 69
4.6.4 The Map . 70

4.7 Beta 1 MA(Release postponed) 70
4.7.1 Software system overview 71

4.8 Hardware Overview . 71
4.9 Hardware Concept . 74
4.10 Hardware Alpha 1 . 76

4.10.1 Identifying the Subsystems 76
4.10.2 Component selection for Hardware system 77
4.10.3 Existing System and its Hardware parts 80

4.11 Hardware Alpha 2 . 81
4.11.1 Read Data from Cable on the Bike 81
4.11.2 Bluetooth communication 82
4.11.3 Powering our System . 82
4.11.4 Retrieving speed from the existing system 83
4.11.5 Retrieving Battery Level from the Excising System 87

4.12 Hardware Beta 1 . 89

TRYE APP 3

4.12.1 Retrieving GPS Coordinates 89
4.12.2 Controlling the motor with Arduino 92
4.12.3 Modelling the data . 94
4.12.4 Connecting the Arduino to the internet 95
4.12.5 Sending data from the device to the server 95
4.12.6 Managing security during data exchange 96
4.12.7 Controlling the device from GCP 99
4.12.8 Combining all the Arduino Code 100
4.12.9 Choosing IoT servers . 101
4.12.10 Setting up IoT Server . 102
4.12.11 Simulating MQTTdata with python 102
4.12.12 Sending IoT data to database 102

4.13 Summary of the Hardware . 103

5 Conclusion of our work 104
5.0.1 Summary . 104
5.0.2 Reflection . 104
5.0.3 Future Work . 105

6 References 107

A Appendix 109
A.1 Sprint reports . 110

A.1.1 Sprint 1 . 110
A.1.2 Sprint 2 . 114
A.1.3 Sprint 3 . 118
A.1.4 Sprint 4 . 121
A.1.5 Sprint 5 . 124
A.1.6 Sprint 6 . 127
A.1.7 Sprint 7 . 130
A.1.8 Sprint 8 . 133
A.1.9 Sprint 9 . 136
A.1.10 Sprint 10 . 139
A.1.11 Sprint 11 . 145
A.1.12 Sprint 12 . 152
A.1.13 Sprint 13 . 158
A.1.14 Sprint 14 . 164

A.2 Version reports . 170
A.2.1 User Alpha Version 1 . 170
A.2.2 User Alpha Version 2 . 173
A.2.3 Admin Alpha Version 1 177

A.3 Epic reports . 180
A.3.1 MA epic . 180
A.3.2 AS epic . 184
A.3.3 WS epic . 187
A.3.4 CS epic . 190

TRYE APP 4

A.3.5 PS epic . 194
A.3.6 TS epic . 196

A.4 Software User Stories . 198
A.4.1 USN-10 Researching existing scooter apps 198
A.4.2 USN-11 Creating UML diagrams to get a better overview

of the application . 216
A.4.3 USN-12 Choosing a suitable development platform 222
A.4.4 USN-15 Setting up our Neptune work space (Planet9) . . 225
A.4.5 USN-17 Building databases in Planet9 235
A.4.6 USN-18 Creating a login system for our application . . . 240
A.4.7 USN-21 Finalizing our initial databases 246
A.4.8 USN-27 Setting up an interactive map in the application . 248
A.4.9 USN-28 Implementing a payment solution 252
A.4.10 USN-30 Creating a user friendly main menu navigation bar254
A.4.11 USN-33 Changing the registering system to the Alpha2

version . 258
A.4.12 USN-34 Setting up a one-time password feature 268
A.4.13 USN-39 Make users be able to view and edit their user

information . 273
A.4.14 USN-40 Finding a map made for mobile 280
A.4.15 USN-41 Finding a suitable date picker for an easy-to-use

rent interface . 283
A.4.16 USN-42 Initializing map when loading the main menu . . 288
A.4.17 USN-46 Displaying bikes in the bookings tab so they can

be selected . 290
A.4.18 USN-48 Displaying the booking history for the user . . . 295
A.4.19 USN-49 Calculate the availability for users 298
A.4.20 USN-50 Fixing a PIN-code system 303
A.4.21 USN-53 Make a test payment with Stripe 309
A.4.22 USN-54 Checking if bikes are available for unlocking . . . 316
A.4.23 USN-55 Making user be able to delete their account . . . 326
A.4.24 USN-57 Setting up a simple Admin app 329

A.5 Hardware User Stories . 333
A.5.1 USN-19 - Getting an overview of our electric mountain-

bike, includes the power system and hardware 333
A.5.2 USN-20 - Locating read data off of the signal cable to

retrieve speed and power data 338
A.5.3 USN-22 - Researching ways of powering our microcontoller 342
A.5.4 USN-23 - Finding out how to retrieve the speed of the bike348
A.5.5 USN-24 - Finding out how to retrieve the voltage level of

the battery . 354
A.5.6 USN-25 - Finding the limitations associated with Blue-

tooth communication . 358
A.5.7 USN-26 - Finding out how to retrieve the GPS coordinates 360
A.5.8 USN-29 Finding a way to stop the motor using a micro-

controller . 364

TRYE APP 5

A.5.9 USN-35 Model data sent from Arduino to the web server 369
A.5.10 USN-36 Finding a web server for communication 372
A.5.11 USN-37 Encryption method on our IoT device 377
A.5.12 USN-38 Connecting our IoT Module to a IoT Platform . 387
A.5.13 USN-44 Sending bike data to the server 393
A.5.14 USN-45 Combining all our hardware code 399
A.5.15 USN-51 Sending data to database 402
A.5.16 USN-56 Simulate MQTT data to limit data usage 408
A.5.17 USN-58 Finding a way to stop the motor using a micro-

controller . 411
A.5.18 USN-59 Changing the GPS coordinate code into a class

library . 417
A.6 Non technical User Stories . 421

A.6.1 USN-1 I as the risk manager need to perform a project
SWOT analysis to help analyze our group 421

A.6.2 USN-9 Analyze the risk for our project for a better un-
derstanding of how to reduce the risk 423

A.6.3 USN-43 Cleaning up differences in the documentation on
the website . 426

A.6.4 USN-47 Spellchecking our entire documentation stack with
Grammarly . 430

A.6.5 USN-60 Need to select the proper risk identification tech-
nique to our project . 433

A.6.6 USN-61 We need to list all risks in the risk register for
better management of the project 435

A.7 Verification documents . 439
A.7.1 Verification spreadsheet 439
A.7.2 DC-01 Verifying USN-43 440
A.7.3 DC-02 Verifying USN-47 442
A.7.4 DV-01 Verifying USN-27 444
A.7.5 DV-02 Verifying USN-36 446
A.7.6 IV-02 Verifying USN-12 448
A.7.7 IV-03 Verifying USN-10 450
A.7.8 IV-04 Verifying USN-11 452
A.7.9 IV-05 Verifying USN-18 454
A.7.10 IV-06 Verifying USN-21 456
A.7.11 IV-07 Verifying USN-28 458
A.7.12 IV-08 Verifying USN-30 460
A.7.13 IV-09 Verifying USN-33 462
A.7.14 IV-10 Verifying USN-34 464
A.7.15 IV-11 Verifying USN-39 466
A.7.16 IV-12 Verifying USN-40 468
A.7.17 IV-13 Verifying USN-41 470
A.7.18 IV-14 Verifying USN-42 472
A.7.19 IV-15 Verifying USN-46 474
A.7.20 IV-16 Verifying USN-48 476

TRYE APP 6

A.7.21 IV-17 Verifying USN-49 478
A.7.22 IV-18 Verifying USN-50 481
A.7.23 IV-19 Verifying USN-53 484
A.7.24 IV-20 Verifying USN-54 487
A.7.25 IV-21 Verifying USN-55 490
A.7.26 IV-22 Verifying USN-57 493
A.7.27 TV-04 Verifying USN-15 496
A.7.28 TV-05 Verifying USN-17 498
A.7.29 TV-06 Verifying USN-38 500
A.7.30 TV-07 Verifying USN-44 504
A.7.31 TV-08 Verifying USN-35 508
A.7.32 TV-09 Verifying USN-51 511
A.7.33 TV-10 Verifying USN-26 515
A.7.34 TV-11 Verifying USN-59 519
A.7.35 TV-12 Verifying USN-58 522

A.8 Requirements . 525
A.8.1 Full list of requirements 525

A.9 Risk tables . 529
A.9.1 Table 1 Risk register . 529
A.9.2 Table 2 Project risk . 529
A.9.3 Table 3 Technical risk . 529
A.9.4 Description of SWOT Analysis for the project 537

A.10 Hardware Images . 539
A.10.1 hardware development process 539
A.10.2 hardware development process 540

A.11 Hardware Code . 541
A.11.1 Pseudo code Battery Reader 541
A.11.2 Pseudo code Speed Reader 542
A.11.3 Battery Reader Arduino Code 543
A.11.4 Speed Reader Arduino Code 545
A.11.5 GPS Reader Arduino Code 550
A.11.6 Arduino to GCP communication 553
A.11.7 Motor control with GCP communication 560
A.11.8 Pub/Sub to Firestore database 567

A.12 Agendas . 568
A.12.1 24th of January Agenda for Jose 568
A.12.2 27th of January Agenda for Simon 569
A.12.3 7th of February Agenda for Jose 570
A.12.4 14th of February Agenda for Jose 571
A.12.5 21th of February Agenda for Jose 572
A.12.6 28th of February Agenda for Jose 573
A.12.7 13th of March Agenda for Jose 574
A.12.8 18th of March Agenda for Jose 575
A.12.9 26th of March Agenda for Jose 576
A.12.10 3rd of April Agenda for Jose 577
A.12.11 24th of April Agenda for Jose 578

TRYE APP 7

A.12.12 1st of May Agenda for Jose 579
A.12.137th of May Agenda for Jose 580

A.13 Meeting notes . 581
A.13.1 6th of January Group Meeting 581
A.13.2 7th of January Group Meeting 582
A.13.3 8th of January Group Meeting 583
A.13.4 9th of January Group Meeting 584
A.13.5 10th of January Group Meeting 585
A.13.6 13th of January Group Meeting 586
A.13.7 24th of January Meeting with Jose 587
A.13.8 27th of January Meeting with TRYE 588
A.13.9 7th of February Meeting with advisor 589
A.13.10 7th of February Meeting with Hans Kristian 590
A.13.11 7th of February Meeting with Jose 591
A.13.12 14th of February Meeting with Jose 592
A.13.13 28th of February Meeting with Jose 594
A.13.14 13th of March Meeting with Jose 596
A.13.15 20th of March Meeting with Jose 598
A.13.16 23th of March Meeting with Simon 600
A.13.17 27th of March Meeting with Jose 602
A.13.18 4th of April Meeting with Jose 604
A.13.19 17th of April Meeting with Jose 608
A.13.20 24th of April Meeting with Jose 610
A.13.21 1st of May Meeting with Jose 612
A.13.22 5th of May Meeting with TRYE 614
A.13.23 8th of May Meeting with Jose 616
A.13.24 15th of May Meeting with Jose 619

A.14 Work hours . 622
A.14.1 Work hours Joachim . 622
A.14.2 Work hours Andreas . 622
A.14.3 Work hours Tobias . 622
A.14.4 Work hours Eebbaa . 622
A.14.5 Work hours Dawid . 622

A.15 Project assignment and terms . 648
A.15.1 Assignment from TRYE 648
A.15.2 Rental terms from TRYE 649

TRYE APP 8

List of figures
2.1 The Segway. (source:wikimedia) 14
2.2 VOI scooters. The ”black box” in the front is where the hardware

is placed. (source:voiscooters.com) 17

3.1 Example of our trello board . 21
3.2 Process model . 21
3.3 Category of Requirements with their corresponding subsystems. 33
3.4 Usage of requirements in different phases. 34
3.5 Some of risk identification techniques. 38
3.6 Five by four probability-impact matrix. 38
3.7 Shows a table of some chosen risk register. 40
3.8 Shows a table of some chosen project risks. 41
3.9 Shows a table of some chosen technical risks. 42
3.10 Shows a table containing all the parts bought during the project. 43

4.1 Version Gantt chart . 44
4.2 Initial visualization of the application 45
4.3 AWS server setup visualized . 49
4.4 Final server setup visualized . 49
4.5 Use case diagram for registering process 52
4.6 Use case diagram for the main menu 53
4.7 Sequence diagram for the registering process 53
4.8 Diagram of database tables and relations 54
4.9 Booking sequence . 56
4.10 Unlocking sequence . 57
4.11 Report button added to help page 58
4.12 The damage report form . 58
4.13 Calling the email API using Ajax request in javaScript 59
4.14 Class diagram MA . 60
4.15 The initial login page where customers enter their phone number 61
4.16 On this page existing users can choose to log in with their PIN,

while new customers can choose to receive login-information on
their phone . 62

4.17 In the verification tab users enter the code they received to verify
their phone number . 63

4.18 The registering form for new customers 64
4.19 Users have to agree to the terms of service before being able to a

book bike. 65
4.20 A user friendly main menu user interface with a sidebar and the

map with a overview of the rental locations 66
4.21 Use case diagram of the admin application 67

TRYE APP 9

4.22 Unlocking sequence for admins 68
4.23 Display bookings sequence for admins 69
4.24 Software system . 71
4.25 System overview of the hardware 72
4.26 Communication overview between the Arduino and the mobile app 73
4.27 Every user story used to develop the hardware 74
4.28 Hardware subsystems . 76
4.29 Arduino MKR NB 1500 and Its Antenna(source:arduino.cc) . . . 78
4.30 NEO-6M GPS Module (source:core-electronics.com) 79
4.31 A single channel 5 V relay (source:embededstudio.com) 79
4.32 DC-DC step down buck converter(source:embededstudio.com) . . 80
4.33 eMBike subsystems (source:shimano) 81
4.34 figure showing how pulse width modulation works (source:commons.wikimedia.org) 83
4.35 Illustration for rotational motion of the wheel.(source:SlidePlayer.com) 85
4.36 A switch with a pulldown resistor. 86
4.37 A more detailed view of Fig 4.11. 86
4.38 A voltage divider giving a 0-5 V on A0. 88
4.39 Calculation of R2 to find output voltage. 88
4.40 The battery level on existing system.(source:shimano) 88
4.41 The interface of Arduino with GPS NEO-6M Module. (source:arduino

project hub) . 90
4.42 When latitude, longitude, and time is displayed. 90
4.43 Location for current address. 91
4.44 Pins of a Relay . 92
4.45 Shimano eBike wiring (source:shimano) 93
4.46 Connection between Relay, Arduino, Battery, and Motor 94
4.47 Device connection with MQTT bridge using JWT (source:cloud.google.com) 98
4.48 The order the code was arranged 101

TRYE APP 10

Abbreviations
ADC Analog to Digital Conversion.

AS Admin System.

ASR Admin System Requirements.

AWS Amazon Web Server.

CS Control System.

CSR Control System Requirements.

ECC Elliptic Curve Cryptography.

ECDSA Elliptic Curve Digital Signature Algorithm.

eMTB electrical Mountain Bike.

GCP Google Cloud Platform.

GND Ground.

GPS Global Positioning System.

HTTP HyperText Transfer Protocol.

IDE Integrated Development Environment.

IoT Internet of things.

JSON javaScript Object Notation.

LTE Long-Term Evolution.

MA Mobile Application.

MAC Medium Access Control.

MAR Mobile Application Requirements.

MQTT Message Queuing Telemetry Transport.

NMEA National Marine Electronics Association.

OTP One Time Password.

TRYE APP 11

PS Power System.

PSR Power System Requirements.

RX Receiver Data.

SM Shimano Mountain Bike.

SWOT Strengths, Weaknesses, Opportunities, Threats.

TS Tracking System.

TSR Tracking System Requirements.

TX Transmitter Data.

UML Unified Modelling Language.

USB Universal Serial Buss.

USN User Story Number.

UUID Universal Unique Identifier.

VCC Voltage at Common Collector.

WS Web Server.

WSR Web Server Requirements.

TRYE APP 12

Chapter 1

Introduction
The project is divided into six major systems. These are referred to as epics
(main systems) for the final product. The systems are listed below:

• Software application for customers which is a mobile application (MA).

• Admin application for the TRYE owners called the admin system (AS).

• Web server which will host our development workspace and database
(WS).

• GPS tracking system (TS).

• Power system (PS).

• A control system that consists of a microcontroller (CS).

The task of the MA is to make it easy for the users to communicate with the
bike trough the TRYE server. This includes making it possible to book bikes,
make payments, and unlock bikes. The task of the AS is to give the company
owners at TRYE an overview of the customers and bikes. The task of the CSR
is to make it possible to send and receive important data from the app with a
mobile IoT network, and both lock and unlock bikes depending on if the bike
has been booked. The TSR are achieved with a GPS module and its task is to
give location data to the hardware system which is then sent to the software.
The PSR are responsible for giving power to the microcontroller from the bike.

TRYE APP 13

Chapter 2

State Of The Art
2.1 Background

We are now seeing all kinds of different small battery-driven transportation
devices all over the world, with everything from scooters to hoverboards. To
find out why there has been a massive growth in these devices in recent years,
we have to go back to 2002 when the Segway was launched. Upon launch, it
was extremely anticipated, and it seemed to be the future of transportation.

Figure 2.1: The Segway. (source:wikimedia)

TRYE APP 14

The Segway had a futuristic look, but 3 main concerns made it more of a
luxury gadget than a common transportation device:

• It had a price of 4950 dollars which makes it too expensive for most people.

• It was very heavy (12KG), which meant it was not very portable.

• The batteries did not have a great capacity at the time which meant
charging had to be done frequently.

Ever since the early 2000s, the capacity of batteries has greatly improved,
and the price of the batteries has been substantially reduced. This means that
newer devices such as electrical scooters and hoverboards have become a pre-
ferred transportation device as they are both affordable and portable. It is
especially popular for the younger generation who don’t have the possibility of
driving a car.

This means that some people might want to temporarily use these transporta-
tion devices for traveling through densely populated areas while avoiding queues
and being environmentally friendly. This opened a whole new market for rent-
ing electrical transport devices, especially electrical scooters.

The two main factors that created the marked for renting out electrical scooters
is that it is profitable for the owners and that the range of the electric scooter
is up to about 30 miles for the customer.

Statistics prove that there has been a price-drop for batteries used for trans-
portation of an impressive 86%[13] from 2010 to 2016. It is, therefore, safe to
say that this is one of the reasons why the electric scooter rental market was
established in 2017.

As mentioned above, the electrical scooter rental explosion started in 2017 when
Lime started using an automated renting solution for their electrical scooters[5].
After their huge success in the United States of America, similar companies
across Europe started taking inspiration from their solution. In 2019, VOI
launched its scooters in Oslo as the first electrical scooter rental company in
Norway[21]. The reason we went on about researching electrical scooter rental
solutions, is because it is the only solution on the market that is similar to what
we are trying to achieve.

2.2 Current state

In the current market, there are several different scooter rental companies in
the larger cities of Norway, making it a huge market with many competitors
fighting for the same customers. We will be testing two of the biggest operators
in the Norwegian market which are VOI and CIRC.

TRYE APP 15

The business idea is quite simple. Customers download an app on their phone
where they can locate the scooters and activates them by adding a payment
solution that supports either a credit card or PayPal. Then they will be auto-
matically charged by how long they ride, and a startup fee. The scooters can be
found anywhere in the cities, and you can park them close to wherever you want.

It is clear that the different technical solutions are inspired by one another,
and they all contain hardware and a software solution. When it comes to the
software solution, the appearance of the apps (User Interface) is all different,
meanwhile, the functionality of the apps are very similar. The software solu-
tions contain a login solution, booking solution, and payment solution. The
hardware solutions contain an IoT communication system, a tracking system,
and an unlocking system.

2.3 Cost and risks

The expenditures for creating an automatic rental solution is mostly accounted
for working hours of testing and integrating the core functionalities. As the
hardware components mostly consist of a cheap microcontroller, the cost of the
hardware adds up to a very reasonable figure. Most of the risks associated with
the solution are related to malicious users trying to hack or exploit our system.
This brings us to another significant expenditure of creating this solution, secu-
rity. A lot of work hours are needed to test and verify that none of the features
in the system can be exploited. This is to protect sensitive customer data like
credit card information, location information, and personal information. A leak
of this kind is to be avoided, as it might end up with a lawsuit as well as dam-
aging customer privacy. A known security concern is that malicious customers
could find a way to unlock bikes without actually paying. There have also been
reports of scooters being stolen, and that the hardware is replaced so someone
could use it as their personal scooter[12].

Our cost assumptions were confirmed by looking at an article from a profes-
sional electrical scooter rental app developer. They assume a development time
of 147 days of development and the total cost of 7056 dollars[10]. This means
that the cost of development time and scooters with hardware are the two main
expenditures.

TRYE APP 16

Figure 2.2: VOI scooters. The ”black box” in the front is where the hardware
is placed. (source:voiscooters.com)

TRYE APP 17

Chapter 3

Project Overview
3.1 Our team, employer and key persons

3.1.1 Our team of computer scientists

Software Developer Software Developer Hardware Developer
Product Owner Process Manager Verification Manager
Document Manager Finance Manager Joachim Nordholmen
Andreas Kjønnerud Tobias Hylleseth

Hardware Developer Hardware Developer
Requirements Risk Manager
Eebbaa Dhugaasaa Dawit Abamachu

TRYE APP 18

3.1.2 Our university

The University of Southeast-Norway is the fourth-largest university in Norway
and has more than 18000 students and around 1600 employees. The university
offers profession-oriented and education directed at the current work sector, re-
search, and conveys knowledge with high international quality. It used to be a
university-college when it was established in January 2016 when the college in
Buskerud and Telemark merged. On the 4th of May 2018 it received its univer-
sity status[6].

Our campus in Kongsberg has a wide variety of subjects, but it is most known
for its studies within technology and science. Our group all are on the program
computer science.

Internal sensor

Karoline Moholth McClenaghan

University lecturer, Faculty for technology, science, and maritime subjects

Institute for science and industrial systems at University of Southeast-Norway,
Campus Kongsberg

Our internal sensor is working with grading the student’s work during all the
bachelor projects in Engineering. She will decide together with our external sen-
sor the individual grades on all the project group members. Our internal sensor
naturally takes responsibility that the censoring process is fair and that we are
graded correctly. Our internal sensor also takes care of the internal supervisor
and students during the process and gives them what support they need.

Internal supervisor

José M. M. Ferreira

Professor, Faculty for technology, science, and maritime subjects

Institute for science and industrial systems at University of Southeast-Norway,
Campus Kongsberg

The internal supervisor works with the project group and guides them dur-
ing the bachelor project. The supervisor has weekly meetings with the group
to discuss the progress. The supervisor’s main task is to guide the group on
how they perform the project but can also help with technical or other aspects
students might ask about. The internal supervisor is also present in the panel
which will grade the students to give their insights.

TRYE APP 19

3.1.3 Our employer

TRYE AS is a newly founded company that is working on an innovative renting
solution for eMTB’s. It is owned 50/50 by its founders Hans Kristian Nilsen
and Simon Haugan. Currently they are renting out bikes manually from their
office in Mjøndalen. They take bookings by call or their booking system on their
website. They have high expertise in eMTB’s since it is one of their hobbies
that they are trying to make a living out of. Renting out eMTB is a new market
in Norway, with very few competitors at the moment.

External supervisors

Simon Haugan and Hans Kristian Nilsen

TRYE

External supervisors are representatives from the company who is both a cus-
tomer and a resource to the group. This means the supervisors should both
supervise the group by giving them specified requirements and all the equip-
ment the group needs to complete the project. They should also be available
for the group to discuss with and give their input and information that the
group needs. They have no responsibility when it comes to the censoring of the
project, but they are expected to attend presentations and give their input to
the evaluation procedure.

TRYE APP 20

3.2 Process Model

The process model that we made use of in this project is heavily inspired by
SCRUM, however, it is not strictly SCRUM. We have on the other hand been
very interested in having an agile approach to our system development. In our
model, we have focused on having an agile approach to our project development
and we have picked the tools necessary to achieve our goals.

Changes to the SCRUM are listed below:

• User Stories visualized with the help of Trello.

• Modifications done to the SCRUM-specific roles

In order to have a successful project development, it is important to pick the
right process model. For our project, we decided that the combination of
SCRUM and software-oriented Trello and User Stories would be an essential
tool for us to perform as best as possible. As this bachelor thesis is software-
heavy, our development is extremely agile and changes can be done several
times a day depending on the limitations/opportunities we find throughout the
development.

Figure 3.1: Example of our trello board

Progress has been realized with the help of weekly sprints, daily stand-up
meetings and a detailed list of end goals to keep track of the progress made.
More about this is explained within the Project Workflow part of the report.

Figure 3.2: Process model

TRYE APP 21

3.2.1 Project Workflow

Following the fundamentals of agile, our project development starts with a
proper analysis of the requirements given. From the refined and hierarchically
built requirements, we were able to build short and concise User Stories, and
the development process took place.

The User Stories are put into Trello, which is an excellent tool for handling
User Stories and is initially put in the ”To Do” section of the tool. When a
group member starts working on a User Story, the User Story is then put in the
”In progress” table in Trello. From here on out, the work done is put into the
”Verify” table, then, thoroughly verified, and if substantial improvements are
needed for the User Story to be finalized, it is moved back to the ”In progress”
table. On the other hand, if the User Story being verified has fulfilled the de-
sired requirements, the User Story is finished and is moved to the ”Done” table.

Although this seems like a long and overly complicated workflow, it has been
wonderful to work with for the past months. However, it is important to empha-
size that without a proper requirement analysis, and close cooperation with our
employee (TRYE), the development might have failed. As Systems can be large
and extremely complex, breaking problems into smaller fragments is a must, and
is an important part of a successful design process.
You can not expect the employer to be familiar with agile approaches and tools,
so visualizing the problem for the employer is a crucial part of figuring out ex-
actly what needs to be produced. Nobody wants to buy a solution that does
not fit their problem.

Throughout our development, we have had 14 weekly sprints. A sprint is a
period of time that can be specified to fit specific projects. In our case, one
sprint lasted one working week. One working week is in our case from Monday
to Friday. To supplement the sprints, and to ensure that everything were going
as planned, I as the Process Manager implemented the use of daily stand-up
meetings both in the morning and afternoon, as well as Sprint planning meet-
ings and Sprint conclusion meetings.

The stand-up meetings in the morning were a maximum of ten minutes, and
started with the questions, ”What am I going to work on today”, and ”Why did
I choose to work on this specifically”. These were done at exactly 9:00 AM every
morning and after every team member had explained their thoughts and plan,
we started working. One of the reasons why the stand-up meetings were such a
success was that it allowed us to work on different parts of the system, and still
know how the other group members were doing. This was especially important
when everyone had to do their work from home. As a group we worked hard
to start the day at the same time, and also end it together. This enabled us to
have a short conclusion of our working day, and to report to the other group
members how we did throughout the day.

TRYE APP 22

The principles were essentially the same as the stand-up meetings in the morn-
ing, however, the questions were flipped to ”What did I end up working with”
and ”Am I on track to finish my work within my original estimation”.

In our project, a sprint started on Mondays, and on Monday morning we had
longer morning meetings where we planned the workload throughout the week.
This included making User Stories if this was not done before, estimating the
workload needed for each, and making sure we had enough work to do through-
out the entire week. On Friday evenings it was time to conclude how we did in
the sprint.

3.2.2 User Stories

A User Story is fundamentally just an informal description of one or more fea-
tures of a system. As our system contains software, hardware, and cooperation
between the two, our User Story differentiates from the common understand-
ing of User Stories. When documenting our work done in the User Stories, we
started off with giving it a status. ”To do”, ”In Progress” and ”Done” were
the main status phrases to visualize progress. However, we did also make use
of more technical terms such as ”Waiting for”, meaning a bottleneck prevented
the User Story from being finished and ”Verify” to express that the User Story
required a verification.

3.2.3 User Stories workload explained

When figuring out how we were to measure progress to our development, we
decided on making use of a feature in Trello where you can give User Stories
a number that estimates the work needed to get done with the User Story. In
our first couple of Sprints (A Sprint is in our Project one week of work, 5 days)
we tried some different scoring systems to estimate the work needed, meanwhile
still being easy to use and easy to understand. Our first solution was as fol-
lows: 1 Point meant that the task was easy and would be solved within a short
amount of time. 2 Points meant that the task was of medium difficulty and
would require more time than the 1 Pointer, but still be a fairly easy task that
would not require a lot of time. 3 Points were the maximum of our first scor-
ing system, making User Stories with 3 Points the hardest/most technical tasks.

At the start, it seemed like the 1-2-3-Pointers worked excellent and properly
described and made track of our progress. In reality, it performed poorly. The
reason for the failure of the first point-system was found out when we on Fridays
had our weekly review meeting and found out that we all had different expec-
tations on how time-consuming a 2-Pointer would be, etc. We had defined the
time consumption as ”Short amount”, ”Medium amount” and ”Large amount”
of time, and we had all different ideas of what the different terms meant. This
caused us to steer away from vague definitions to the point system we used

TRYE APP 23

throughout the rest of our project.

The new Point system is as following: One day’s work equals one point. If
a task is thought to require approximately three days of work, three points are
allocated to the specific User Story. This made analyzing every sprint a lot
easier, as detailed statistics of ”How many points per week did we score as a
team”, ”How many points did I as a software engineer get last week”. Again,
the idea of an approximation is that it is thought to be, not exactly how it will
turn out. As the project went along, we learned to approximate more accu-
rately, meaning that cross User Story cooperation became an option, instead of
constantly meeting bottlenecks due to unrealistic time approximation.

3.2.4 Epics

An epic is a top-level system where most technical user stories are derived from.
The epics were put into its own Trello board to keep an overview of the progress
of our main systems for the project. When the project is finished the status of
the epics will be reported in epic reports.

3.2.5 Process tools

• Trello

Trello is an extremely powerful tool when it comes to visualizing the progress
of User Stories. You can create as many User Stories as you would want, and
assign group members to each specific User Story. There is also support for extra
features known as ”Power-ups” in Trello, and a Power-up we used throughout
the entire project was giving the User Story individual points to define the
expected workload. Each individual User Story was also given a colored flag to
express the urgency of the User Story.

• Zoom

As everyone had to start working from home due to the COVID-19 outbreak,
we needed to make use of new tools to be able to talk to anyone we needed to
talk with.

• Google Drive

Google Drive is where we have stored our entire stack of documentation, making
it possible for us to collaborate more easily than sending files back and forth.

TRYE APP 24

• Discord

Discord made it possible for us to continue with our stand-up meetings and
Sprint plannings/conclusions. Within Discord we created three different voice-
channels. One for the software development, one for the hardware development
with its complementary software, and one for the stand-up meetings[11].

3.2.6 Roles and Responsibilities

At the start of the project we quickly assigned fixed individual roles to each
group member. In addition, rotating roles were also assigned. The combination
of fixed and rotating roles turned out to be a great addition to avoid a static
work environment.

Product Owner

The Product Owner is the sole person responsible for managing the Product
Backlog, and maximizing the value of the product resulting from the work of the
Development Team.[22] Although this is the formal definition of what a Product
Owner does, it fit quite nicely with how we made use of the Product Owner in
reality. The Product Owner did set up Trello to ensure that the Product Backlog
(In our case User Stories) were visible, but as the Product Owner also worked
as a Software Developer every group member had to contribute to the visibility
of the backlog. Moreover, as it is not uncommon to see key stakeholders as
Product Owners, the Product Owner did his best to ensure the value for our
employee (TRYE) was maximized.

Process Manager

The work of the Process Manager is to ensure that the way progress is made
and that the way we cooperate is done well. Although the Process Model itself
is decided by the group as a whole, it is the responsibility of implementing
it. Moreover, as there are no leaders within a stand-up meeting, it is their
responsibility to plan it. The same goes for Sprint reviews, and even though
SCRUM is a process model that focuses on collaboration instead of commanding,
it is the Process Managers responsibility to lay the foundation of a sufficient
development environment.

Verification Manager

When work from the product backlog is done, it is the responsibility of the
Verification Manager to ensure everyone in the group has a clear idea of how to
Verify their work sufficiently. Failure of clarity and prepared documents can end
in lack of documentation, and most importantly User Stories that do not fulfill
their requirements. As the Verification Manager worked as a Hardware Devel-
oper as well, the important work done in the project was to develop detailed
templates and routines for documenting, verifying, and validating progress.

TRYE APP 25

Requirement Manager

The Requirement Manager is responsible for creating easy-to-understand re-
quirements derived from the original requirement list we were given. In our
project, the requirement manager decided to have hierarchically distributed
requirements, while still keeping it crystal clear what requirement would be
solved by fulfilling a sub-requirement. In the end we had a split requirement-
tree-structure that successfully broke down large and complex requirements into
requirements that were easy-to-understand.

Risk Manager

The primary responsibility of the risk manager is to understand the scope of
the project and the environment in which we manage it. Then the risk manager
can facilitate and coordinate the risk discussion in the group and motivate the
group to identify risks in a different parts of the project. After knowing the
identified risks, the risk manager takes these risks to the team of the project so
that the team can assess, evaluate, and prioritize the risk. When the critical
and less critical risks are known and prioritized, the risk manager is responsible
for analyzing the risk for the project. When the risk analyzing process has been
done, the risk manager can focus on the critical risks that can affect the project
positively and negatively. The risk manager has a responsibility to reduce the
probability of the harmful risks that may impede the objectives of the project
and maximize the opportunity of positive risks that increase the achievement of
the project. It is also the responsibility of the risk manager to design the risk
responses. It means the risk manager can make the risk management strategies
that could help us to avoid and mitigate the risk or if the risk is beyond to
control, the manager’s decision to accept it.

Finance Manager

The Finance Manager is responsible for keeping track of expenses and making
the needed orders of components. In our project there were close to a mini-
mum of needed components to get a working system, which made the role less
time consuming than other roles. This meant that the Finance Manager could
manage other roles at the same time.

Documentation manager

One of the responsibilities connected to being the documentation manager is to
make sure all documents are following the rules of documentation according to
references and plagiarizing, and oversee that all members are filling out the doc-
uments in the correct way and adding them to the final report as appendixes.
He also has the responsibility to make the shell in Overleaf with headers, ref-
erences, and diagrams. The documentation manager will also look through the
final report and find bad grammar and language.

TRYE APP 26

Rotating Roles

In our project we had two Rotating Roles in addition to the fixed roles assigned
at the start of the project. These are:

1. Secretary

2. Chair Person

As we were five members in our project team, the Secretary and Chair Person
roles were assigned to each member every 5th week. The positives of Rotating
Roles is that we avoid a static work environment, and ensure that the workload
of each team member totals up to approximately the same.

Secretary

The Secretary is a rotating role that is responsible for writing meeting reports
after meetings and documenting communication between the team and external
teams/collaborators. Examples of external teams are our Employer (TRYE)
and our Internal Supervisor.

Chair Person

The Chair Person is a rotating role that is responsible for writing meeting agen-
das ahead of meetings, and mail them to the person/team we are meeting with.
In our project, meeting agendas were written to our Employer (TRYE) and the
Internal Supervisor.

3.3 Project Planning

A good bachelor project requires detailed project planning. It will give our
team an overview of the important events and critical stages of the project, and
guides the team to meet the expectations of the bachelor project. This chapter
explains the project plan, which includes important events and schedules.

3.3.1 Visual representation

A visual representation in the form of a timeline diagram can help the team
visualize the entire project. We chose to use Gantt diagrams for time scheduling
representation. In the Gantt chart we have critical events such as presentations
for the sensors and finish of different versions of the software application and
hardware. The overall timeline Gantt chart is shown below but is also in the
appendix.

TRYE APP 27

TRYE APP Gantt Chart
ID Task name Start date Due date

Duration
(days) Timeline

1 Project 01-01-2020 06-12-2020 163
2 Before 1. Presentation 0
3 - Project planning 01-13-2020 02-06-2020 24
4 - Requirement analysis 01-13-2020 02-06-2020 24
5 - Verification Planning 01-29-2020 02-07-2020 9
6 - Preperation for first presentation 02-07-2020 02-12-2020 5
7 FIRST PRESENTATION 02-12-2020 02-13-2020 1
8 Before 2. Presentation 0
9 - Concept planning 02-13-2020 02-21-2020 8

10 - App development (Initial Prototype) 02-13-2020 03-04-2020 20
11 - Hardware development (Initial Prototype) 02-13-2020 03-10-2020 26
12 - Prototype validation 03-04-2020 03-18-2020 14
13 - Preparing for second presentation 03-14-2020 03-23-2020 9
14 SECOND PRESENTATION 03-24-2020 03-25-2020 1
15 Before 3. Presentation 0
16 - Configuring the server 03-19-2020 04-03-2020 15
17 - Finishing app 04-01-2020 04-17-2020 16
18 - Finishing hardware 04-13-2020 04-29-2020 16
19 - Verification and Validation 04-28-2020 05-08-2020 10
20 - Finish Documentation 05-04-2020 05-27-2020 23
21 - Make last presenation 05-20-2020 05-29-2020 9
22 - Prepare for last presentation 05-29-2020 06-05-2020 7
23 THIRD PRESENTATION 06-02-2020 06-12-2020 10

3.3.2 Presenting and delivering our work

In the time-span of our project, our group needed to attend three obligatory
presentations for the sensors, our supervisors, and others who might be inter-
ested in it. Before our final presentation, an Expo was supposed to hold at the
university but is now moved to a digital platform, where we make posters digi-
tally to show our project. We had a first presentation on the 12th of February
where we explained our task given by the company, what kind of company they
are, how we go about doing the task, and we showed our process model.

In the second presentation on the 24th of March we had to have more of a tech-
nical focus. We gave an insight into our work and the hardware and software
system, how they should work together. Basically a summary of our progress
so far. Then we talked about our road ahead and what we are going to do next.
In these two first presentations, we were given 20 minutes to present. That
means we talked for 4 minutes each. When we were done with the presentation
there were 10 minutes which was used for questions from the sensor and audience

The third presentation will be on the 11th of June and is the last opportunity
for the group to show how good we are and how good our technical solution is.
The time set aside for this presentation is an hour. 20 minutes where we try
to sell our product, 20 minutes where we explain our technical solution and 20
minutes in the end for sensors to ask questions. On May 25th, our final report
has to be delivered. Our final documentation is this report with appendixes,
which will account for fifty percent of our grade.

3.3.3 Work time

Our group is using an agile process model where one week is equivalent to one
sprint. Our working hours where 09:00 to 15:00 when we still were at the cam-
pus, but after the corona lock-down we have had a more open schedule where
people can work whenever they want during the day as long as they finish their
work. We have a total of 14 sprints. We were working 3 days a week before
the exams and the full 5 days after exams. Which means we worked at least 18
hours a week before the exam. After the exam we worked at least 30 hours per
week. We also used about 80 hours in January where we worked full weeks for
planning and finding an employer.

That means we have planned to work 250 hours before the exam and about
254 hours after the exam. That will be a total of about 504 hours for each
group member. That will add up to around 3000 working hours for our entire
group.

TRYE APP 29

3.4 Requirements

In this section we discuss how the group understands the two categories of the
requirements called project requirements and product requirements. Besides
this we will go through how product requirements used to understand the system
of interest and derive the stakeholders. In the end, an explanation will be
presented in how we made requirement analysis as a group.

3.4.1 Project Requirements

The source of project requirements is USN. The requirements are presented by
the university for students of the third year and those registered for taking the
bachelor project. The basic project requirements are presented as follows.

Group: The bachelor project should be performed by groups of 4-6 students.
Each student should finish 120 study points before the bachelor project starts.
The group has responsibility for finding a relevant project from a company and
submitting it to the university for approval. An approved project will have a
signed contract between the group and the company.

Grading: For grading the project group should have three presentations at
different stages in the process according to the university schedule and should
submit written documentation. The group members will be graded by internal
and external sensors in the scale of A to F at the end of the project.

Company: The company that fulfills the criteria for giving a project will sign
a contract with the group and the university based on the terms set by the
university.

For this project we are a group of five students, we all are from the department
of computer engineering. The company for this project is TRYE. A contract is
signed among the three parties the university, the group, and the company.

3.4.2 Product Requirements

As a group, we got a list of product requirements from the company. The com-
pany prepared a document that describes the product and its functionalities.
Most of the product functionalities are set by the company. Understanding
the product requirements from the company is the most important part of the
project which helps the group to understand the system we are going to build
and consider all possible stakeholders related to the system.

TRYE APP 30

3.4.3 Stakeholders

Stakeholders are any group of individuals or other existing systems that may in-
teract directly or indirectly with the system we are going to build. Considering
stakeholders and their concerns during system development will help us to cap-
ture more requirements besides the product requirements given by the company.

Stakeholders may have different concerns or concerns that may overlap with
one another. As a group, we sorted all possible stakeholders and their concerns.
From these concerns some requirements are derived and discussions were made
between the group and the company to expand the scope of the product re-
quirement given by the company. Some of the stakeholders for our product are
listed down below.

• Customers or end-users: are stakeholders that have a direct relation
with our system. They may have different concerns related to reliability,
performance, security, and how easy the system is to use.

• Maintenance crew: are stakeholders that are responsible for maintain-
ing the system in its life cycle. Their main concerns related to the system
are how difficult to maintain the system and system accuracy in localizing
the bikes remotely.

• Banks: are related to our system through their customers. It happens
when the end-user makes payment through our system. Their main con-
cerns are how the system processes users’ private data such as bank num-
ber in a confidential way during the payment process.

• Network Provider: This stakeholder is responsible for any communica-
tion related to message exchange and internet communication that may
happen between our system and other systems.

• Norwegian Law/Regulations: are responsible for making sure that the
laws and regulations of the country are kept. As a system the system we
build should meet the standards of the country and users should accept
the rules and regulations given when it comes to using the system.

• System Developer (our group): since we are responsible for devel-
oping the system, our main concerns are to build a system that satisfies
all the stakeholder’s needs and a system that is easy to upgrade.

• Electrical Mountain Bikes: These are systems that will be interfaced
with our system after it is finished. Their main concerns are the system
should be easy to interface with their existing sub systems and it should
not be big in size.

• TRYE: is a company that comes with the idea of building the system.
Their main concerns are if the system we build meets their requirements
and if the system built is in the standards of currently existing systems in
the market.

TRYE APP 31

Considering stakeholder’s concerns besides given requirements during the
system development life cycle will help to build a system that meets the stan-
dards and the stakeholders’ needs. As an example, if we take Norwegian law and
regulation, It is one of the stakeholders and their main concern is to make sure
that laws and regulations are obeyed. End-user which use the product should
be based on the rule and regulations, so as a group we need to make sure that
the product we design has a mechanism to inform the rules and regulation to
end-users and make them accept the terms of the agreement before using the
product. This feature is added in the user app, where users should accept the
terms before renting or booking a bike. This makes our system to meet the legal
issue that may be raised by this organization.

3.4.4 Requirement Analysis

The main goal of this analysis is to derive an organized list of requirements
from product and stakeholders requirements. Since requirements have to be
measurable, traceable, testable, and verifiable, The final derived requirements
should have a category, unique ID, verification ID, and verification method.
Requirements shall be used to derive user histories. All validation, tests, and
derived user histories should be related to their source of requirements. From
the given requirements we sorted out functional requirements. These are a list
of functionalities our product should have in order to satisfy TRYE as a cus-
tomer. Identifying functional requirements at an early stage helps the group
for understanding the systems and sub-systems needed to give the functionali-
ties mentioned in the requirement document. The following functionalities are
sorted from the requirement document.

• Function 1: The system should enable bike users to rent a bike using a
mobile app.

• Function 2: The system should enable bike users to make payments using
a mobile app.

• Function 3: The system should send a digital receipt to the user’s email
address.

• Function 4: The system should enable bike users to book a bike using a
mobile app.

• Function 5: The system should enable bike users to make failure reports
using the mobile app.

• Function 6: The system should enable paid users to unlock a bike using
a mobile app.

• Function 7: The system should provide users with a tour suggestion map
to their mobile app.

TRYE APP 32

Figure 3.3: Category of Requirements with their corresponding subsystems.

• Function 8: The system should help to localize the bike with the help of
a GPS tracking system.

The System should be able to interact with other systems such as GPS satel-
lites, Web Servers, Banks and electric Bikes to provide the functionalities listed
above. In addition, to accomplish one of the functions, the System should use
one or more sub-systems.

The system should have both software and hardware implementations. Cat-
egorizing the requirements based on these implementations, and identifying the
systems and subsystems needed to accomplish each functionality helped the
group to categorize the requirements accordingly. We categorized the require-
ments as Software requirements(SWR) and Hardware requirements (HWR) as
shown in Figure 3.2

These requirements further divided based on the subsystems under each cat-
egory and a unique name and number are given for identifying the requirements
in each subsystem. In Appendix A.7.1 organized list of requirements with a
unique ID, description, verification method, and Verification ID is attached
while the Product requirement Document from TRYE is attached in Appendix
A.13.1

Figure 3.3 summarizes How the group used requirements in different phases
of the system development life cycle. It starts where requirements gave us the
general system overview at the start phase. In later phases requirements were
used by the group to identify all possible system functionalities and further to
drive the subsystems with their components.

TRYE APP 33

Figure 3.4: Usage of requirements in different phases.

3.5 Verification and Validation

In this section, we discuss the importance of validation and verification, how
it should be done, and how the group managed to document the verification
prosses to ensure the requirements were satisfied

3.5.1 Validation

Validation is used to ensure that the product made is what the main stakeholder
TRYE was expecting. This can be done by talking and demonstrating the
product being made and ask for feedback. Our system was divided into two
parts software and hardware. The mobile app can be validated by sending
TRYE a link to the app, where they can see the progress. This way, TRYE can
see the development of the app, and say if this is what they want. To validate
hardware, we have to explain what we have done in a high-level language and
ask for feedback, as TRYE is not expected to understand the technical diagrams
that have been made.

3.5.2 Verification

Verification is used to prove a sub-system is working as intended specified in
the requirements. The sub-systems must be verified throughout the project and
not only in the end, this is to find faults as early as possible. If a faulty system

TRYE APP 34

is carried on being used, it can cause problems to other system build on top of
it. Correcting the faulty system might imply having to change large portions
of the system as they are dependent on a faulty system, therefore significantly
increasing the development time. As soon as a user story is done it should be
verified, to do so, we have used four different verification methods: test, analysis,
demonstration, and inspection.

1. Test: Here a series of predefined input data is given to the function/system
and the output is compared with the expected output, e.g:

• Software: To test a login form, try logging in with known existing
users, known non-existing users, correct password, wrong password,
and special characters.

• Hardware: To test if a battery reader reads the correct battery level.
It is possible to measure how long the bikes go in km until it’s at 50%
charge, after that the bike should go twice as long until reaching 0%.
This assumes we want to display the battery as a linear function of
how long the bike can travel.

2. Analysis: is verification based on models, simulations, or calculations, this
can be used when testing is not possible, e.g:

• Software: to check if the server can handle the expected number of
users, it can instead be calculated, this is done by adding a few users
and check how much resources one user uses, then multiply that by
the expected number of users.

• Hardware: to test if the correct battery level is displayed, the battery
can be measured, and with a known max and min battery voltage
the battery level in percentage can be calculated.

3. Demonstration: use the product as the end-user should be using it, and
see if it works as expected, e.g:

• Software: pen the app on different phones, and check to see if it’s
acting as it should be

• Hardware: when the bike receives an unlock bike signal, the motor
should turn on and be ready to use

4. Inspection: is a non-destructive way to verify using one or more of the
five senses, this can be things like comparing with diagrams, physical
manipulation, and so on e.g:

• Software: check to see if the bikes are where they should be on the
map, given a set of coordinates

• Hardware: given the wheel is spinning a certain speed, check to see
if the speed on the display is corresponding with our system

TRYE APP 35

3.5.3 Verification Documentation

To document the verification, there are two files to consider, the first one is the
spreadsheet which contains every verification done as seen in appendix A.7.1,
and the second one is the document belonging to each of the verification pro-
cesses as seen in appendix A.7. The spreadsheet is used to get an overview of
all the verification’s, to help see a quick summary, ID, status, who worked on it,
when it was done, and a link to more in-depth documentation. The document
that follows each of the verification processes, should contain why this need to
be verified or what the consequences of this sub-system not working are, the
process used to get the results used to verify, the results and a conclusion where
we tell if this is as expected or not.

TRYE APP 36

3.6 Project Risk Management

Risk management is the scale that we can use to cover all areas of our project’s
difficulties. It meant that the challenges due to technical risk, budget risk,
schedule risk, and quality risk. If these risks might occur, they could no doubt
limit the success of the project unless they managed. Therefore, after identifying
all these potential risks in every part of the project, we need to analyze them,
mitigate them, monitor, and follow them to stay the project in control. Since we
follow the scrum model’s approach for this project, we can benefit the model that
contribute to minimizing the threat itself. In the process of risk management,
we don’t have a standard risk tool to follow. But, the project team can define it
on its own and take the only insight to refer to different standards. To achieve
the goal of the project, we need to pursue the following risk management tools.
These are risk identification, probability-impact matrix, and risk register.

3.6.1 Project risk identification

Before we start to identify risk, we need to understand and know the risk iden-
tification techniques that provide the project team on how to detecting risk.
A risk is an uncertain event or condition that, if it occurs, affects at least one
project objective [19]. Therefore, risk identification techniques are an essential
tool used to start with identifying risk. Risk identification is the risk man-
agement tool that helps us to collect all information during the identification
process and to use them as a base for further risk analysis.
Brainstorming is one of the techniques that we have used in our project to iden-
tify the risk. In this case, we sit down and discuss all parts of the project where
a chance can probably occur. The group members come with any uncertainty
in mind, which relates to the role they are working on and take it for discus-
sion. Then we document these risks for further analysis. It is often our choice
or decision on some issues that arise a new threat that we didn’t’ t see in the
previous steps. We also need to register all these new risks. The other technique
is the SWOT analysis technique and used to analyze the group member so that
we understand and visualize everything early in the project. We can find the
SWOT analysis table and their description in Appendix A.8.4.

TRYE APP 37

Figure 3.5: Some of risk identification techniques.

3.6.2 Probability-impact matrix

The project uses a probability-impact matrix and a spreadsheet to calculate and
determine the relationship between the probability of the risk occurring and the
impact of risk identified. The value given for the probability when multiplied
by the value given for impact provides the risk with the product, we call it risk
product. Risks with the high-risk product have given high priority, while those
with a low-risk product have included on a follow list for the future. In this case,
we consider the following as the project’s weights when calculating the value for
risk products. These are project scope, quality, cost, velocity, and credibility.[2]

Figure 3.6: Five by four probability-impact matrix.

TRYE APP 38

The combination of probability and impact conduct the rating of the risks as
very low, low, medium, and high. The rating value for probability is given from
one to four, whereas the rating value for impact is from one to five. The reason
the rating values for impacts has given from one to five is that we consider the
impacts as an essential factor that affects the project’s objectives. Different
colors represent the value of risk products. As it goes from a light green color
to a red color, we know that the risk value goes from low to high. It means that
the light green color represents the very-low risk; the yellow color represents the
medium risk, whereas the red color represents a high risk.

TRYE APP 39

3.6.3 Project risk register

The risk register is a documented result of qualitative and quantitative risk anal-
ysis and risk response planning [20]. We used it for documenting, managing,
and tracking all risks that have already identified in the project. It also allowed
us to describe the risk consistently and follow these harmful risks readily in the
project. Moreover, we could use the risk register as a record for future use. We
could see different types of risks in the register. We divided them into project
risk and technical risk for the ease of clarity of these risks in the risk register.

Figure 3.7: Shows a table of some chosen risk register.

In the table, we can see the risk description, risk type, risk code (TR-
Technical risks, RP-Project risks), code number for risk, risk ID (TR & RP)
followed by a number, impact, probability, possible causes, mitigation action,
date of risk update, and the owner of the risk. We can find the entire project
risk register table with all information in appendix A.8.1.

TRYE APP 40

3.6.4 Project risks

The project risks are hazardous risks that affect the accomplishment of the
project when they occur. Therefore, we need to monitor and control them con-
tinually. Threats included in project risk are project scope risk, budget risk,
schedule risk, personal risk, and quality risk. We need to interpret these risks
and decide how to stop or reduce their effects upon the project.

Figure 3.8: Shows a table of some chosen project risks.

In the table, we can see risk ID starting with RP followed by a number,
descriptions of risk, causes of risk, impact, probability, risk product, and the
mitigation actions. All risks are in chronological order when they get identified.
We can find the entire project risk table with all information in appendix A.8.2.

TRYE APP 41

3.6.5 Technical risks

Technical risks mainly due to the incidents of technical difficulties, inappropri-
ate representation of requirements, the inadequacy of design, and insufficient
calculations. In general, the occurrence of technical risks in the project could
increase development time, decrease product quality, and lower the product’s
performance [4].

Figure 3.9: Shows a table of some chosen technical risks.

In the table, we can see risk ID starting with RT followed by a number,
descriptions of risk, causes of risk, impact, probability, risk product, and the
mitigation actions. All risks are in chronological order when they get identified.
We can find the entire technical risk table with all information in appendix
A.8.3.

TRYE APP 42

3.7 Finance Management

Having a deep understanding of the finances in the system is important when
it comes to deployment. In our case, we have only considered the parts needed
for our development as true costs. In a regular work environment, it is safe to
say that the work hours would of have been the greatest expense.

3.7.1 The cost of development

Figure 3.10: Shows a table containing all the parts bought during the project.

As seen in figure 3.10, the total price of the project ended up at 1 835NOK.
However, it is important to note that we bought twice the amount of parts
needed for development in case some parts didn’t work as expected. When it
comes to scaling, the cost of hardware per unit is a total of: 934NOK. If we
compare the price of the hardware with the costs of the bike of an approximated
40 000NOK, the hardware addition increases the total cost per bike up to: 40
934NOK. This increases the costs by 2,35% per fully equipped bicycle.

TRYE APP 43

Chapter 4

Technical Work Process
4.1 Versions in software

We decided to split the Applications into different versions to show that we are
working iteratively. This means that we might remove features from the previ-
ous version if we render them not useful or add new features that we feel are
missing. It is also a way for us to get feedback from different types of people
during our development. The user experience is an important bit of verifying
and validating the performance of our solution. Three versions were planned
but only 2 were confirmed finished. We used the two versions as prototypes
when testing distinct functionalities and validated that the user experience was
as intended. We were planning on 3 versions of the MA and 1 version of the
AS. The MA versions were planned as Alpha version 1, Alpha version 2, and
Beta version 1. For the ASR we planned one alpha version.

These test versions have been helpful in discussions for further development,
and have helped the group understand what features are needed in the applica-
tion to give users the best possible experience.

We planned to make three different versions of the user application. The three
different versions would be Alpha1 which is a fast developed shell for the app.
Then comes the Alpha 2 which is supposed to be the user application with all
features working. After the Alpha 2, we moved on to Beta 1 which was supposed
to be released on the Google Play and Apple Store. The Beta1 is more focused
on final debugging and implementing security features. This is our initial time
frames for the versions is shown below

Figure 4.1: Version Gantt chart

TRYE APP 44

4.2 Software concept

In the conceptual face of the software development we started by testing out
two different popular scooter rental applications called VOI and CIRC. You can
have a look at the test in appendix?. By looking at these apps and discussing
what we liked and disliked we started planning the shell and appearance of the
app in the first place.

In the draft phase we started with the main menu interface, and all of these
interfaces are quite similar in most of the applications we looked at. It is a
sidebar menu on the left and a map that shows the location of the rental sites.

But before the customers reach the main menu they have to go through a verifi-
cation process. The reason for this is that expensive bikes are being rented out
and to hold customers responsible we will have to identify them in some way.
The easiest way to do this is by SMS verification. The customer enters their
phone number and receives a one time password. When their phone number is
verified by the customer entering the code, we then can track the booking to
that specific phone, which gives TRYE extra safety. The customer also needs to

Figure 4.2: Initial visualization of the application

TRYE APP 45

accept the terms set by TRYE. These terms were sent to us by TRYE and are
visible in appendix A.13.2. After a user has registered and accepted the terms,
they don’t have to go through this process the next time they log in.

So in the concept face we made initial thoughts, and made a drawing for the
visual UI of the application. And after this drawing we made the app and func-
tionalities from that. We made no UML drawings in the concept face because
we wanted to start as soon as possible and learn as much as we could about the
development platform and start with a base app that we could use for further
planning.

We also looked at the requirements for the three different software systems
which are the MAR, ASR, and WSR. We look at which features TRYE consid-
ered the most important and prioritized our development from that.

4.2.1 Picking our development environment

In the Software concept, it was already decided that we were going to create an
app, the question was just how were we going to do it? A lot of different app
developer tools were drafted, and one of the promising development platforms
was a software named Planet9, developed by the Norwegian company Neptune
Software.

After a brief conversation by email, the entire group was invited for an in-
troduction to the platform in Neptune Software’s headquarters in Oslo. The
CTO Nj̊al Stabell welcomed us and had a presentation of the strengths and
opportunities given by developing in Planet9. As the platform seemed like it
had everything we would want to develop a modern application, we were given
10 free licenses for the platform.

The deciding factor that made us pick Planet9 as our development platform
was the fact that the platform needed to be hosted on a server, meaning it
would be reachable from anywhere in the world. What we didn’t know at that
moment was that the fact that the platform could be reached from anywhere
would be an important factor for us to be able to finish our work on the appli-
cation with the COVID-19 lock-down, enabling us to continue working as if we
were at the office.

4.2.2 How does Planet9 work as a development environ-
ment?

Planet9 is an ”all-in-one” platform containing both the database layer, API-
support (for both external and internal APIs), security layer, and an app devel-
opment section.

TRYE APP 46

Setting up Planet9 on a server

To use planet9 in a development project you need a host to execute the program.
You can run it locally or from a server. It will run in a browser. To be able to
cooperate you need license keys.

Choosing a suitable database for our platform

Even though Planet9 comes with a built-in standard-database, it was strongly
encouraged to pick another database when developing. The database we chose
was PostgreSQL. Then, after deciding to go for PostgreSQL as our database,
we had to first host the database somewhere. As we did when setting up the
development Platform, this was initially done in AWS, then moved to Google
Cloud Platform due to technical difficulties. When the database was up and
running, all we had to do was to create a Planet9 database schema in the Post-
greSQL console. Then, using the built-in database support, we had successfully
connected the database to our development platform, meaning we could start
creating the app itself.

The App Developer

One of the strongest features of Planet9 is the built-in App Developer. Planet9 is
built upon an open-source framework called OpenUI5, and has extensive support
for external API’s, meaning it is not limited to ”in-house” features. However,
OpenUI5 proved to be extremely useful when developing and it was not often
that we needed external data objects. OpenUI5 is a framework released by SAP,
which is one of the leading development environments for businesses worldwide,
meaning there was always a sufficient amount of documentation to help us in the
right direction. Another unique feature of the Planet9 App Developer is that
it makes use of the modern approach to app development, namely, Low-code.
Applications are built hierarchically, with objects within objects. When it came
to testing our application, we made use of the built-in ”runner”, where the app
would load up and act like it was on a mobile device.

4.2.3 The SMS Service

One of the goals of our group was to create a modern application made with the
help of modern tools. Therefore, it was an obvious choice to go for a registration
process needing One-time Passwords delivered to the user’s phone number. In
the beginning, this seemed like an incredibly difficult task, raising basic ques-
tions such as ”How do we send SMS’s in an App?” and ”How much is it going
to cost?”. However, we knew it was possible, as many large companies had SMS
support. The answer to our problem was a service named messageBird. With
Planet9’s extensive API support, and messageBird being API focused, it was a
timely journey filled with a large number of failures before we finally were able
to send our first SMS. After we cracked the SMS code, tweaking everything to
support our One-Time Password feature was a fairly simple task.

TRYE APP 47

4.3 Web server

4.3.1 Initial server setup

In the initial phase of the project we asked Hans Kristian about buying a
database for his company or renting a virtual database. He told us we will
have to find a solution that is free during the development phase. So to learn
Planet9 we set up the instance on a local server which was done by Tobias.

Planet9 was running fine and we were able to cooperate. The problem was
we could only use SQLite when we wanted to use PostgreSQL. And we also had
problems with the server not having a 24/7 up-time. Which meant that some
days we couldn’t develop since the server was down. So we found out we had
no other choice but to use a cloud platform to set up our work space.

4.3.2 AWS server setup

To get our Planet9 work space up and running on an external server, we started
to check for cloud web services that are free. We found AWS which has both
virtual machines to run our programs and you can also set up database instances
for free.

For this task Andreas was chosen and he started working on it since he has
a lot of experience with working in Linux. The important thing was to get the
right version of Planet9. That means the Linux version, and uploading and
running it in our virtual instance.

We faced some problems in the start connecting to the instance. What we
found out is that setting the firewall security rules is an important aspect of
running virtual machines. So for instance since Planet9 runs on port 8080 we
only want inbound traffic to our server on port 8080 which anyone can access
from any IP address, and the outbound traffic can go anywhere from port 8080
on the servers IP address. Once the security rules were set up we could connect
to our instance by typing in the public IP address of the server.

TRYE APP 48

Figure 4.3: AWS server setup visualized

Figure 4.4: Final server setup visualized

4.3.3 Final server setup

During the MA Alpha 2 version development the server setup changed a bit.
The reason for this is we had some technical problems with our database so
we changed the database to the Google platform. Doing this also made the
database more secure since Google will not allow you to have generic security
rules. You have to type in the exact IP addresses to the client who has access
to the database. This means only Andreas’s computer and the web server have
access to the database.
A Stripe back end server was also set up using node.js. This server also com-
municates with Stripe’s server. This node program was also running on AWS
together with Planet9.

4.4 Alpha 1 MA

Alpha 1 of the User App was worked on from the 14th of February to the 9th of
March. Our goal with the first Alpha was to create a working shell for further
development. Some of the key features we made a place for in the application
were:

TRYE APP 49

1. A Login System

2. A User Database

3. A Main Menu Shell

4. A Basic Map

Further information on each feature is given below.

4.4.1 The OTP login system

The idea of having a OTP Login System was one of the first features we wanted
to get to work. Unfortunately, it proved difficult to get working in time for the
deadline of our first Alpha. What we did get working was sending SMSs from
the API tester built into Planet9. From there we were able to send a ”test”
SMS to verify the API as well as fill the SMS API with a Phone number, text,
and sender. An example of an SMS we were able to send was ”This is a test
SMS”, to phone number x and sender: ”TRYE”.

Being able to have TRYE the sender of the SMS was of great use to us, making
our system more credible than having ”Unknown Sender”. To get a visually
appealing first Alpha we sent the test SMS with a hard-coded four-digit code
that was the ”correct” answer in the Verification tab of the app. However, this
limited us to only being able to send an SMS to one phone number at a time,
and that the verification code had to be the same every time.

4.4.2 The User database

The initial User Database was purely made up of a ”Phone number” and ”Email-
number”, with the phone number as the primary key. The reason we choose
the phone number as the primary key was because of the assumption that one
person is linked to one phone number, and every phone number is unique. With
this solution a person could also get a new phone number, but would have to
create a new account.

The User Database has since been worked on a lot, but we were creating an
initial OTP login system, we purely wanted a visually appealing first Alpha.

4.4.3 The Main Menu Shell

The Main Menu shell was made up of a typical hamburger-menu with different
sub-menus that were made visible when pressing the hamburger-menu. It con-
tained a tab for everything we thought was needed in the app such as ”Profile”,
”Payment”, ”History”, ”FAQ” etc.

The sub-menus were on the other hand not responsible, but more of a shell of

TRYE APP 50

what’s to come. The design of the menu has however stayed the same through-
out the entire development, with the addition of clickable sub-menus for easy
navigation throughout the app.

4.4.4 The Map

As shown in the diagrams of our proof of concept, the map, and the side-menu
takes up the entire main menu screen of the app. The map itself was built with
a free-to-use map API by ESRI Maps, and as the size was set to auto-adjust, it
automatically filled the available space on the screen.

When the main menu shell is opened, the map would shrink as the available
space shrank. In order to create a visually appealing first Alpha, the map was
also filled with TRYE icons to visually show the user where the bikes are located.

4.5 Alpha 2 MA

The Alpha 2 was done in time for the second bachelor presentation on the 24th
of March. Key features made/redone were:

1. Redefined Login System

2. User-friendly Map

3. A User Page

4. A Booking system

5. The Unlocking System

6. The History Page

7. The Help Page

8. PIN-code system

With the help of user tests, we were able to find weaknesses in our applica-
tion and resolve them. The test subjects had a varying degree of technical
background, and it was the mix that made it possible for us to create a better
product.

4.5.1 Planning for the Alpha 2

When planning our second version of the app, we took a different approach to
development where we started by planning the entire app through UML and
database diagrams. Also, user tests were done on the app to look at how we
could improve the app. We also looked at the requirements and had a talk with
TRYE about further development and features.

TRYE APP 51

In the second version of the app all the features were planned from the be-
ginning, but we still had to make some changes to deviate from the original
planning to make the app better. We still think the planning helped us with
getting started on the second version.

This part consists of the diagrams from our planning process. We also had
initial UML diagrams drawn which can be seen in appendix A.4.2 and an initial
database diagram in appendix A.4.7. Some of the changes we had to make dur-
ing the planning process were adding extra columns to some database tables and
changing the use case diagram for the main menu where we added the booking
and unlocking option and removed the payment and settings tab.

We also planned two of our most important features for the MA, which is the
booking sequence and the unlocking sequence during the development process.
We made sequence diagrams for these to processes to get a better overview. The
diagrams are added to the sections about the two features.

Figure 4.5: Use case diagram for registering process

TRYE APP 52

Figure 4.6: Use case diagram for the main menu

Figure 4.7: Sequence diagram for the registering process

TRYE APP 53

Here is the database diagram where the most noticeable changes from the
original diagram found in appendix A.4.7 are adding longitude, latitude, and a
global ID to the database. This is used when we communicate with the hard-
ware. We also added rangeStart and rangeEnd to the bookings database. These
two entries are used for calculating if bikes are booked in the same time frame.
Also, a PIN column is added to the user database to store the different user’s
PIN-codes.

The relations stays the same and is described in the diagram below, but we
have also added a fourth table that has no relations called ”rentalLocations”,
where we store the current rental locations that customers can travel to.

Figure 4.8: Diagram of database tables and relations

4.5.2 Redefined login system

After consulting with TRYE, we realized that the User Database needed to con-
tain more than just a phone number and an email. TRYE then gave us a list
of personal info they needed in case of fraud or needing to contact a customer.
This meant that changes needed to be done to the login system, and the rede-
fined login system worked out to the following:

As a User enters our app, the User is requested to enter a phone number. from
there the user will have to enter a OTP sent to his/her phone number. If the
phone number is successfully verified, the user is then guided over to a regis-
tration form asking for a Name, Address, E-mail, etc. If every field is properly
filled in, the user is registered as ”verified” and is given access to the main menu
of the app.

TRYE APP 54

4.5.3 The Map

The Map had no changes since the Alpha 1 with the exception of recreating the
icons on the map to be more visible.

We also made the decision of only showing rental locations on in the MA. After
a meeting with TRYE where we discusses about the rental locations where the
bikes would be stacked at one location in a shed at the ski resorts. This means
it would be hard for customers to select a certain bike, which means it is better
to visually show the rental locations for the customers on the map.

We also made this decision because of the customers privacy because then we
would not have to ask for their location or hide other bikes on the map that are
used by other customers. Adding these features would take more planning and
development and little effect on the user experience of the MA.

4.5.4 The User page

With the creation of a more complete user registration form, the need for a user
page arose. Inside the user page, a user can see the details saved to his/her ac-
count. The user page also supports editing user data in case faulty information
was put into the initial registration form, or if a user changes address.

We also implemented a delete function where customer can delete their account
if they don’t want to be customers anymore. But we will still save their old
bookings in the bookings database so TRYE can still view the booking history
for security reasons.

4.5.5 The Booking system

One of our main requirements for the app was to make a booking system. With
the creation of the booking system, the user is able to book a bike. The book-
ing system works as follows: First, the user has to select a start- and end date.
Then the user has to pick the preferred bike, and lastly the user has to press the
checkout button which says whether or not the bike is available for rent, and if
the bike is available the price will show up.

If the bike is available, the user can then proceed to pay for the bike. The
payment is done by using the Stripe[7] API. The process is described using a
UML sequence diagram below.

TRYE APP 55

Figure 4.9: Booking sequence

4.5.6 The Unlocking system

The Unlocking System works closely with the booking system. A user should
only be able to unlock a bike that is within his/her order period and paid for.
The Unlocking System, therefore, checks if today’s date is within a rental pe-
riod. If it is, the bike will pop up as unlock-able, and pressing this button sends
a signal to the server asking it to unlock.

The unlocking sequence is described in the diagram below.

TRYE APP 56

Figure 4.10: Unlocking sequence

4.5.7 The History page

In the History page, a user is able to look at his/her booking history. The
information listed in the booking history is as follows:

1. Bike ID (Number)

2. Date From

3. Date To

4. Whether or not the bike is insured

5. Price for that specific booking

4.5.8 The Help page

The Help page contains helpful information such as the phone numbers of TRYE
and frequently asked questions.

There was also some final feature fix to the help page before delivering the
report. The bike damage reporting system was made in right before delivering
the report to complete the MAR-04 requirement.

Since this was not part of any sprint the documentation for this work is put
in the report in this section. The work was done and verified by Andreas.

TRYE APP 57

The feature consist of a text area and a button where customers can report
any damages or error to bikes. The customer explains the error as good as they
can and click report damage.

Figure 4.11: Report button added to help page

Figure 4.12: The damage report form

When a user is done describing the damage discovered on a bike, they submit
the report, and an email is sent to TRYE’s email using an email API called
Postmail. The API call is done using an Ajax request as shown below.

TRYE APP 58

Figure 4.13: Calling the email API using Ajax request in javaScript

A test was performed by Andreas where the form was filled out and the
submit button was pressed. An email was then received that contained the
same text as entered in the report system.

4.5.9 PIN-code system

After spending a good amount of money on messageBird for sending an SMS
for each time we tested the application, we found out a personal PIN-code as a
second login method would solve the problem of sending out to many unneces-
sary SMS’s.

When customers register for the first time the OTP they received would then
become their personal PIN-code which they can use the next time they log in.
A tab to change the PIN-code on the user page was also created so that users
can change the PIN-code to something they remember. To do this they had to
enter their old PIN-code and the new pin 2 times for verification.

We also implemented a recovery system for the PIN-codes where users who
have forgotten their personal PIN-code can receive a new one by SMS and that
code would update in the database as their new code.

4.5.10 MA Alpha2 Overview and Visuals

To have an overview of the final product we made an extensive class diagram
which was started on in appendix A.4.2 which we built on as we developed.
Here is the final overview diagram

TRYE APP 59

Figure 4.14: Class diagram MA

We have also changed the visual user interface for the users during our
development, here you can see how the final MA looks from the registering
process to the main menu for a customer.

TRYE APP 60

Figure 4.15: The initial login page where customers enter their phone number

TRYE APP 61

Figure 4.16: On this page existing users can choose to log in with their PIN,
while new customers can choose to receive login-information on their phone

TRYE APP 62

Figure 4.17: In the verification tab users enter the code they received to verify
their phone number

TRYE APP 63

Figure 4.18: The registering form for new customers

TRYE APP 64

Figure 4.19: Users have to agree to the terms of service before being able to a
book bike.

TRYE APP 65

Figure 4.20: A user friendly main menu user interface with a sidebar and the
map with a overview of the rental locations

If interested, the visuals of the different functionalities in the main menu can
be found in the software user stories in appendix chapter A.4

4.6 Alpha 1 AS

The Admin App Alpha was one of the main requirements for the TRYE app
system. The idea of the AS is to give the TRYE admins an overview of the
bikes on a map, the current bookings, and manually unlock the bikes. These
features come from the sub-requirements TRYE gave us for the AS.

4.6.1 Planning for the AS

To plan the Admin Application we looked at the requirements and tried to start
with a simple use case to visualize the features needed in the application.

TRYE APP 66

Figure 4.21: Use case diagram of the admin application

This use case diagram was then split in to two sequence diagrams that would
explain how the main functionalities of retrieving the bookings and bikes, and
unlocking a bike.

TRYE APP 67

Figure 4.22: Unlocking sequence for admins

TRYE APP 68

Figure 4.23: Display bookings sequence for admins

Since we had already made the MA we had much of the code from it and the
database and server were already set up, which made the development process
rapid. Below we have described the systems.

4.6.2 The Unlocking system for admins

The unlocking system is a bit different from the MA. As admins can unlock any
bike at any time, it gives the admin freedom to give large groups the bikes they
need. This feature is very sought after as it enables a company or a large group
to rent the bikes, and TRYE admins can remotely unlock the bikes instead of
traveling to the location.

The unlocking system is quite simple, the full list of bikes is retrieved from
the database, and shown in a list of clickable buttons. An admin can then click
on the bike that they want to unlock, and it will send a signal to the hardware
of the bike.

4.6.3 The Booking viewing page

This page was made because TRYE needed to keep track of what bikes are
booked. Besides, they also get an overview of which customers have paid insur-
ance, and which customers have not delivered a bike in time.

TRYE APP 69

The bookings view page gets all the bookings from the booking database and
displays them in a table so the admin can scroll through the bookings. At the
moment no search function is present but it could be a thing for TRYE to im-
plement in the future. Searching for a customer by their phone number would
be a great extension to this page.

4.6.4 The Map

The map is where the admins can control where their bikes are at any time. This
is important since there are expensive bikes, there could be customers trying to
steal or keep the bikes past their rental period.

4.7 Beta 1 MA(Release postponed)

According to our schedule for the software development a beta should have been
released before delivering the final report. This has been postponed, and after
a talk with TRYE we concluded that the solution is not yet at a stage where it
can be released.

The reason TRYE gave us was that if the complete solution is not working
(hardware and software) there is no point in a release. Since the hardware is
close to finished, we don’t have anything other than a working mobile applica-
tion with a booking system. It has been decided by the Software department
that we don’t think it is safe to release our Alpha 2 version yet before some
security concerns have been tested, and before the app has been tested and
checked by a security expert. There are 4 known security concerns we know so
far that can be harmful. Some of the known security concerns are:

• Data sent between the app is not yet encrypted so credit card information
can be exposed. This is easily fixable with an SSH certificate, but must
be done parallel to the release of the native app.

• The Stripe API Key can be exposed since it is located in the app instead
of hidden on a protected server.

• As the price is being calculated on the front-end, malicious customers
might exploit it and change the price to what they want.

• PIN-codes are not encrypted/hidden in the database, so if an admin ac-
count is hacked, the hacker might be able to see the PIN-code of customers.

We estimate that it would take at least another month of development,
testing, and verifying before the release of the Beta feels safe and justifiable.
TRYE has said that they would want to keep our current software solution and
build on it, but they are not sure about the hardware. They said they will use
consultants to finish our work, so we hope all our work and efforts have given

TRYE APP 70

them a solid foundation to continue developing on. We think the platform is a
good solution to their problem and very straightforward.

4.7.1 Software system overview

To have a complete overview of the system and its user stories we made a dia-
gram to visualize the system. We made the diagram with the three components
which are the WS, the MA and the AS.

Figure 4.24: Software system

The technology stack for the systems are listed below:

• Web server: Linux shell, PostgreSQL and Node.js

• Mobile application: HTML5, CSS, javaScript, JSON, Ajax, Rest API,
and CRUD

• Admin system: HTML5, CSS, javaScript, and CRUD

4.8 Hardware Overview

In Figure 4.25 we can see an overview diagram of the hardware system. The
hardware system will consist of an Arduino as the microcontroller, which will
receive all the data from various sensors and GPS module and send it to a web
server, a voltage converter or power supply which will step down the voltage
so our system can handle the voltage, a relay which will be used to turn on
or off the bike when the system receives a signal from the web server, and a
built-inLTEmodule which will make us able to send data to and from the web
server. Our system will also interface with the existing system on the bike, this
includes the speed reader and the battery. The battery is then connected to a

TRYE APP 71

Figure 4.25: System overview of the hardware

battery voltage reader, and the current will be rerouted through a relay. The
battery voltage reader will make our system able to get the current bike battery
level, so it can be displayed to the end-user. The current will be rerouted to
a relay, so the web server can control if the bike is on or off. The lines going
between the blocks represent different user stories, except for theLTEmodule
which has multiple user stories attached to it and therefore a separate overview
diagram as seen in Figure 4.26

TRYE APP 72

Figure 4.26: Communication overview between the Arduino and the mobile app

In Figure 4.26 or in appendix A.10.2 we can see the communication from the
Arduino to the mobile app through the web server. For our system, we decided
to go with Google Cloud Platform (GCP) for the web server. Here each of
the yellow blocks indicates different GCP services and how they are connected,
except the top and bottom blocks. The left side shows the communication from
Arduino to the mobile app, and the right side shows the communication from
the mobile app to the Arduino. The bigger blocks surrounding multiple yellow
blocks show which user story describes the connection between the yellow blocks
and how they were configured.

TRYE APP 73

Figure 4.27: Every user story used to develop the hardware

In Figure 4.27 or in appendix A.10.1 we can get an overview of all the user
stories and how they are connected. It starts with USN-19, which help get an
overview of the entire project and where to start, after that it branches into 5
other user stories. The branches talk about how the system was connected to the
web server, how our system interfaces with the existing system, how our system
is powered, how the system gets GPS data, and how the system starts or stops
the motor based on a signal from the web server. After that, all the user stories
merge in USN-45 where everything was combined to fit on one Arduino. Blue
squares are user stories that have been done, verified and ready for production,
yellow squares are things that need extra attaching before production, and red
squares are things that did not work out either because it’s not required or not
feasible to do so.

4.9 Hardware Concept

During the development of the hardware, there were a few different concepts to
consider about how to interface with the bike, how to power our system, how
the bike and end-user should communicate.

TRYE APP 74

Interface with the bike: To connect with the bike to read e.g. battery
level and speed from the bike, there are a few ways to do so. The first is to
connect and listen to an already established connection between the bike con-
troller and the bike display. The problem with this is that the communication
between the devices can be encrypted or may not follow any official standards,
which will lead to a troublesome connection. Another way of connecting to the
existing system is with a Bluetooth module built into the bike. The problem
with this is the bike has to have Bluetooth to work, and the system will make
unnecessary wireless signals which will lead to an easier target for hackers. The
third way and the way our system uses is to connect to the battery and speed
reader directly. This is probably the easiest way of connecting to the existing
system, one problem with this is if we want to connect more modules from the
bike to our system will mean more wires and more time setting up each bike.
But it also means the system can be modified to any bike.

Power our system: To power our system, we have mainly two ways of doing
so. The first is to connect an external battery to the existing system, this will
help keep our system running even when the bike battery is out of charge, and
we can therefore still see the position of the bike. The problem with this is
it will add complexity, cost, and space on the bike. Therefore our system will
instead connect directly to the bike battery, without the external battery as our
system is used as a prototype to see what’s possible.

User to bike communication: As the end-user has to see the position of
the bikes we have to think about how our system communicates with the end-
user. There are mainly two ways of doing so, the first is to send the data directly
from the bike to the mobile app, with a smaller system this is an easy way of
sending the data, as the data don’t need to be stored or handled other the
end-user mobile app. The problem with this is it does not scale. If we have 4
bikes and 4 users each bike as to send one message to each user, giving a total
of 4∗4 = 16 messages, and this will be exponentially bigger, and will, therefore,
add more bandwidth required. If instead, we centralize all the communication
to a server we can store all the data, and we don’t need to send as many mes-
sages. To send 4 bike positions to 4 users we need 4 + 4 = 8 messages instead
of 16, and this will scale linearly and not exponentially

bike opening message: As there already exists systems to track assets with
GPS, our system could use one of these instead of communicating with a server
over LTE using the Arduino. This would require using the end-users phone to
unlock the bike by sending a unlock signal over e.g. Bluetooth. This could
be a faster way of developing the system, but it will also mean there exist in
total three separate systems on the bike: the existing system, GPS tracking
system, and the unlock system. And the GPS module could not be customized
to the same extent by using a third party GPS module. But this is still a viable
solution for the problem.

TRYE APP 75

4.10 Hardware Alpha 1

Since the implementation for both hardware and software undergo parallel in
this project, designing and interfacing the hardware system to the software
system and to the existing electrical Mountain bike is a fundamental task for
hardware engineers. In this design phase, the main tasks were understanding
the hardware system and decomposing it into its subsystems and components.
In addition to this understanding of the existing hardware systems of the eMTB
is also included.

4.10.1 Identifying the Subsystems

For having a fully complete system, we need to have different subsystems that
may communicate with each other or with other systems. The requirements
and system functionalities are used to identify the subsystems for the hardware
part of our system and the subsystems are shown in Figure 4.28

Figure 4.28: Hardware subsystems

GPS tracking system: will communicate with the satellite to fetch loca-
tion data. The system will be used to update the location of our system.

Power system: will provide an appropriate power supply to our system, sub-
systems, and components. It helps our system to function without any problem
remotely. Power systems should have a power source and voltage regulators to
regulate the power and supply to subsystems and components accordingly.

Control System: It is the brain of the system and is responsible for con-
trolling all the subsystems with their components. The control system should
enable our system to connect with the internet for communicating with other
systems and for exchanging data.

TRYE APP 76

4.10.2 Component selection for Hardware system

After identifying the subsystems as a group we need to select components for
the subsystems which will be used to build subsystems that will provide the
system functionalities that are mentioned in the product requirements.

Microcontroller: the microcontroller we need for this purpose should ac-
cept a SIM(Subscriber Identity Module) card for communication and it should
not be big in size for avoiding difficulties during mounting it on the bike. Our
group decided to use Arduino as a microcontroller. Arduino is designed with a
variety of microprocessors and controllers. It is popular among engineers and
hobbyists over the world for projects related to digital and embedded systems.
The board is designed with analog and digital pins, which helps to interface and
control other systems. Its microcontroller can be programmed in C or C++ on
its integrated development environment (IDE). We can find different types of
Arduino with different features. For our project we chose Arduino MKR NB
1500.

MKR NB 1500 is the perfect choice for devices in remote locations without an
Internet connection, or in situations in which power isn’t available like on-field
deployments, remote metering systems, solar-powered devices, or other extreme
scenarios. The board’s main processor is a low power Arm R© Cortex R©-M0 32-
bit SAMD21, like in the other boards within the Arduino MKR family. The
Narrowband connectivity is performed with a module from u-blox, the SARA-
R410M-02B, a low power chipset operating in the different bands of the IoT
LTE cellular range. On top of those, secure communication is ensured through
the Microchip R© ECC508 crypto chip. Besides that, the PCB includes a bat-
tery charger and a connector for an external antenna. This board is designed
for global use, providing connectivity on LTE’s Cat M1/NB1 bands 1, 2, 3, 4,
5, 8, 12, 13, 18, 19, 20, 25, 26, 28. Operators offering service in that part of
the spectrum include Vodafone, AT&T, T-Mobile USA, Telstra, and Verizon,
among others. Its USB port can be used to supply power (5 V) to the board.
It has a Li-Po charging circuit that allows the board to run on battery power or
an external 5-Volt source, charging the Li-Po battery while running on external
power. Switching from one source to the other is done automatically.[8]

4G IoT SIM card: This SIM card is a special SIM card that supports IoT
services and we chose 4G IoT from Telenor which is the biggest Telecom com-
pany that provides a good service in every part of Norway. 4G IoT SIM from
Telenor is designed for smart devices that need an internet connection with high
speed which uses low data and rely on long battery life. The SIM card works
like traditional 2G and 3G but it has better features. Its frequency bands are
built on global standards and 4G IoT has the same quality and security features
as all other 4G traffic.

GPS Module and Antenna: A GPS module has a tiny processor and antenna

TRYE APP 77

Figure 4.29: Arduino MKR NB 1500 and Its Antenna(source:arduino.cc)

which are used to receive data sent by satellites through RF(Radio Frequency).
GPS modules have an antenna that is either inbuilt in or externally attached to
it. The antenna needs to communicate with 4 or more satellites to accurately
calculate position and time. Things to consider for choosing our GPS module
for this project.

• Size: GPS module can be found in different size and for our project, we
need a Module which is small in size.

• Update Rate:The rate at which the module updates its data and update
rate is measured in Hertz (Hz).GPS modules mostly have a frequency of
1Hz and more update rate.

• Power consumption:Average power consumption for most modules is
30mA at 3.3 V.

• Accuracy: It is a measure of giving the correct location data and most
modules are able to locate a position within 30 seconds within 10 m radius
or below.

For our project, we chose the NEO-6M GPS module. The module is compat-
ible with all Arduino boards and other microcontrollers. The module has four
pins VCC, RX, TX, and GND. It communicates with Arduino through RX and
TX pins via serial communication. A NEO-6M GPS module with its antenna
is shown in Figure 4.30 and it has the following features.
Size: 23mm x 30mm
Update Rate: 1 Hz, 5Hz maximum
Power Supply Voltage:3 V – 5 V
Baud Rate: 9600
Number of Channels: 50 [18]

TRYE APP 78

Figure 4.30: NEO-6M GPS Module (source:core-electronics.com)

Relay: is an electrical component that can be used as a switch. It has a set
of input pins used to control output terminals. Its main advantage is to control
a high power system with an independent low power signal like an Arduino
without being damaged. For this project a single channel 5v relay which is
shown in Figure 4.31 will be used.

Figure 4.31: A single channel 5 V relay (source:embededstudio.com)

Buck Converter: is used to convert high DC voltage into low DC voltage
efficiently. Since many components used in the hardware subsystems use the
power of 3.3 - 5 V. Buck converter will be used to manage the power to the
components. DC-DC step-Down buck converter which is shown in Figure 4.32
will be used.

TRYE APP 79

Figure 4.32: DC-DC step down buck converter(source:embededstudio.com)

4.10.3 Existing System and its Hardware parts

When we are developing a system, we need to understand how it interfaces
with other systems. Doing this is a critical part of the development process,
and provides easy to design a system that can interact and mount without any
difficulty. The goal is to interface with electric Mountain bikes of type eMTB
(E-bike E-Track 27+).

This eMTB is an electric-assist mountain bike and it is powered by Shimano
E8000 motor and it has Shimano E8020 500Wh battery which can provide up
to 100 km range after fully charged. SM-DUE11-Shimano is used as a magnetic
reed switch for measuring the speed of the bike. The bike also has a Shimano
cycle computer where users can choose the different modes for the bike and they
can see, for example, the battery level and speed. The main subsystems of the
electric Bike are shown in Figure 4.33

Motor: The Shimano STEP E8000 250W motor is used in the existing system
of eMTB. The motor is designed to provide an assistant by sensing the pedaling.
It can provide a power of 250 W and it has 70 Nm of torque. The motor has
a connection with the cycle computer and users can choose their mode and the
motor adjusts and switches to users mode.

Battery: The eMTB uses Shimano E8020 500 Wh battery. The battery
has a capacity of 504 Wh(36v, 14Ah).

TRYE APP 80

Figure 4.33: eMBike subsystems (source:shimano)

Cycle Computer: The cycle computer used for this eMTB is SHIMANO
STEPS E8000-Cycle Computer. It has control buttons for powering ON/OFF
and changing modes for users. The cycle computer displays bike mode with
speed and battery level. The three different modes a user can choose are ECO,
BOOST, and TRIAL.

Speed-sensing unit: The eMTB uses SM-DUE 11-Shimano as a speed sens-
ing unit. The unit is a magnetic switch and used for calculating the speed of
the wheel and it is mounted on the bike of the back wheel.

4.11 Hardware Alpha 2

During this phase, the development was mostly focused on the bike and its
hardware parts, this includes, getting the battery level, getting the speed of the
bike, powering the system, and learn the technical limitation of the bike. this
will set the system up to be ready to connect to the software part in the beta
version

4.11.1 Read Data from Cable on the Bike

To get the speed and battery data from the existing system to our system,
listening to the communication between the bike controller and bike computer

TRYE APP 81

display was considered a plausible solution. The bike controller is located in the
motor housing near the bike pedals, and the bike computer display was located
at the handlebar for the end-user to see. As the bike controller display needs
data from the bike controller to get battery info, speed, mode, etc there is a
cable running between them. This meant it should be possible to connect to this
wire and read the signals and decode the battery info and speed from the com-
munication. But this proved to be difficult, and therefore not a viable solution
as the system should be easily modifiable to fit other bikes. The problem with
this solution was the communication between the units was either encrypted or
happening in a non-standard way. This problem can be solved by either talking
with Shimano and learn how the units communicate or try with another sys-
tem that uses a standard protocol to communicate, or it can be worked around
by gathering the data directly from the battery and the speed reader. As our
solution doesn’t require more than the battery level and the speed, the easiest
solution was to gather the data our self.

4.11.2 Bluetooth communication

The goal to test the Bluetooth communication of the existing bike system was
to extract data that go forth and back from the central controller to the bike
computer. These specific data are reading speed, reading the battery level, and
updating the firmware. These data are essential for our system.

We visualized that most of the Shimano bike controllers use the smartphone
over the Bluetooth to connect to itself to get the speed, battery level, and up-
date the firmware. It was this concept that led us to extract these data and
interface them with our system.

Wireshark is a tool used to extract these data, and its function is to capture
packets on the wireless channels, like Bluetooth. By using this tool, we can
immediately get the bike computer MAC-address and UUID.
However, the problem with the test was that as an indication of the Bluetooth
terminal, the bike computer model could not send the speed and battery level
via Bluetooth use. The implication was that it was impossible to extract the
data from the bike computer. The only thing the Bluetooth could do was that
it updates the firmware, customize the bike settings, and diagnosis the problems
by use of the E-tube app.

In conclusion, we can say that the bike computer system’s complexity steered
us to discard this test and lead to looking for another option.

4.11.3 Powering our System

To power our system the voltage first needs to be converted from the 36-Volt
from the bike battery to the 5-Volt the Arduino can handle. There are mainly
two ways to do so, and that’s with either a linear power supply or a buck

TRYE APP 82

convert. A linear power supply work by taking an input voltage and running
it through a resistor to reduce the output voltage. This makes it simple to use
and manufacture and therefore it’s cheap. The downside with a linear power
supply is the waste of energy, as we have 36-Volt input and the expected output
is 5-Volt, the voltage drop over the converter has to be 36 − 5 = 31 Volt. The
efficiency can be calculated using the following formula: η = Vout

Vin
∗ 100% which

gives a η = 5
36 ∗ 100% = 13.9% efficiency. The rest of the power will go as heat.

This can make the part hot, and therefore need extra cooling, but because of the
lack of space this is not a viable solution. instead, the system can use a buck
converter. A buck converter is a smaller version of a switching mode power
supply (SMPS), which works by turning the voltage on and off at a certain
percentage to achieve the desired voltage. If we have an input voltage of 36-
Volt and an output voltage of 5-Volt, we can turn the 36-Volt input on and off
with a 15% on time and an 85% off time to get the 5-Volt output the Arduino
needs, an example of PWM can be seen in figure 4.34. This is an extremely
efficient way of converting power. But the parts required are also more complex,
this will lead to a slight increase in cost.

Figure 4.34: figure showing how pulse width modulation works
(source:commons.wikimedia.org)

4.11.4 Retrieving speed from the existing system

The objective of retrieving the speed from the existing system is to retrieve the
speed and compare it with the speed of our system. The significance of doing
this is to control how often the data of GPS coordinate to send to the server
using the speed on the bike. It is because when the bike is stationary, it is
unnecessary to send the data as frequently as when the bike is moving.

But the problem with the existing bike was that it was laborious to distin-
guish the signal for speed from the signal for the battery reading since both the
cables for speed and battery originated from the central controller and ended

TRYE APP 83

to the bike’s computer. Moreover, it was complex to utter what kind of coding
and decoding protocols used in the existing bike system. We could not even
find it in their user manuals and websites.

Since reading speed is a vital task for our system, we must look for another
option. From our previous discovery of the existing bike system, we have fig-
ured out that the bike has a reed switch mounted on the rear wheel triangle,
and the magnet switch, which mounted on the rear wheel. When the magnet
gets aligned with the reed switch, we could read a logical value 1, which meant
high; otherwise, its logical value is 0, which meant low. By considering this,
we could find the difference in time between each passing and use it to find the
speed.

To support the achievement of reading the speed, we have used the follow-
ing components, and these are SM-DUE 11-Shimano, circuit, and Arduino. To
read the speed, we considered the magnet attached to the spake of the wheel
and the magnet sensor attached to the rear of the bike. As shown in figures
4.36and 4.37, the Arduino connected with the circuit to read the reed switch
signal. When the switch is off and on, the Arduino detects, and then count the
time between each consecutive 1’s. Since one revolution of the wheel meant the
two-consecutive 1’s in each interval of time, we could calculate the speed that
bike travels. The following formula used.

V = S
t , V= speed,S= distance traveled, t= time taken

ω = θ
t , ω = Rotational speed, θ = angle swept, t = time

wheel diameter of our bike 27.5 INCH = 0.7 m is given on the specification.

Lastly, based on the formula above, we made the Arduino code that reads the
number of 1‘s in the given interval for calculating the speed. We also calculated
the average speed for every five rotations that were made by the wheel. On top
of this, we calculated the momentary speed for the last rotation. If the Arduino
doesn‘t receive the signal within 5 seconds, the program gets a timeout. When
this takes place, we can deduce that it is because the bike is stationary, and the
speed sets to 0 km/h. The followings are the explanation for the program done.
Four different functions that take care of finding the speed of the bike:

• findDeltaTime()

• findAvgDeltaTime()

• CheckTimeout()

• calculateSpeed()

TRYE APP 84

Figure 4.35: Illustration for rotational motion of the
wheel.(source:SlidePlayer.com)

The following are the function explanations:

• findDeltaTime(): function, returns the difference in time between each
wheel rotation in ms and stores it in an array of an arbitrary length of
five. The array is to find the average time later in the program.

• findAvgDeltaTime(): function, returns the average time calculated by
summing the array from findDeltaTime() and then dividing it by five
which is the length of the array.

• CheckTimeout(): the timeout function checks to see if the wheel is
not rotating within five seconds. If the bike is stationary, the function
findDeltaTime() and findAvgDeltaTime(): will not work as they are
dependent on the wheel spinning. So if that is the case, the CheckTimeout
overwrites the value from the other functions and sets the change in time
to 5 seconds. Which will later return as 0 km/h later in the program

• calculateSpeed(): function takes the deltaTime and average deltaTime
and, and uses that to find the RPM of the wheel and using the circum-
stance to calculate the speed of the bike. If the speed is below a cutoff
speed which is currently set to 2km/h, the speed is set to 0km/h.

In conclusion, the code calculates the speed as expected, but the verification
needs the result from the bike computer.

Figure 4.36: A switch with a pulldown resistor.

Figure 4.37: A more detailed view of Fig 4.11.

TRYE APP 86

4.11.5 Retrieving Battery Level from the Excising System

The purpose of reading the battery level is to read batter from the exiting bike
controller system and provide the readings to the end-users so that they know
how much power is left on the bike before they rent it for use.

But the problem with the existing bike controller system was that its controller
system was locked, and we could not interface our system with the existing bike
controller system. Therefore, the problem drove us to design our battery read-
ing system. We, as a hardware engineer, believe that reading the battery level
is a critical task and benefits both the end-users and the company itself. The
company benefited by frequently checking all the bikes if the bikes had enough
amount of battery. In case the bikes don‘t have enough batter, the maintenance
crew could charge it before the next user start. Therefore, the users could al-
ways be provided bikes with full of battery. However, when the battery level
probably gets lower and not enough battery is available for the users while they
are in the field, they could readily know and ride it to the charge station at once.

We designed our reading battery system in a way that we first designed the
circuit which used to connect the Arduino with the existing battery system.
Arduino is a power source for our reading battery level system and has a max-
imum of 5 V.

Since the maximum voltage of the existing bike system is 36 V, it is unsafe
and risky to connect it straight with Arduino as it only handles 5 V. To avoid
such an issue we used the voltage divider, and slimmed the voltage of the ex-
isting system down to the corresponding Arduino of 5 V as shown in figure 4.38.

As shown in figure 4.39 below, by using a connection a resistor of 10 Kohm
with 1,6 Kohm we found the output voltage of the existing system which cor-
responded with the voltage of Arduino, which ranges from 0-5 V. Since the
Arduino has a 10-bit ADC, the firmware reads the ADC signal that ranges from
0- 1023 bit and maps it 0- 36 V. Following the conversion, the Arduino used to
map 0 -36 V to 0- 100% battery level.

We could figure out how the Arduino knows 0% in Volt by discharging the
battery and measuring the voltage level using a voltmeter and changing the
parameters in the code to match the results. The battery level can then be con-
verted to an easy to understand battery indicator as seen in Figure 4.40. The
battery-level indicator in black represents a negative charge, whereas the white
color represents the full charge. It means that 0% battery is empty, whereas
100- 81% full charge.

TRYE APP 87

Figure 4.38: A voltage divider giving a 0-5 V on A0.

Figure 4.39: Calculation of R2 to find output voltage.

Figure 4.40: The battery level on existing system.(source:shimano)

TRYE APP 88

4.12 Hardware Beta 1

During the beta 1 phase, the development was mostly focused on setting things
together and communicating with the software system. This includes putting
all the code on one microcontroller, starting and stopping the motor, getting
GPS coordinates, and sending everything to a database in the cloud, ready to
be retrieved.

4.12.1 Retrieving GPS Coordinates

The objective of testing the current position and real-time by use of GPS coor-
dinate is to realize and check if the GPS coordinate code gives the same result
as expected. The main target is the end-users, and the maintenance crew must
be able to locate the eMTB. Therefore, the bike needs to get the GPS coordi-
nate, and store it, and send it to the server. More info given in appendix A.11.5.

However, at this stage, we don‘t mind getting data that we could store on
the bike. But, we stick around to search and check the approximate location for
the current address and real-time while the GPS module is receiving data from
satellites. The concern to do this is to get the latitude, longitude, and the time
that we reuse it in the class library and create a return function that is ready
to send to the server.

To achieve the objective, we have used the following essential materials. These
are laptop, USB serial communication port, NEO-6M GPS module, and its four
jumper wires and external antenna, and the Arduino Mega.

For the application, as shown in figure 4.41, we should connect the Arduino
with four jumper wires from the GPS module. The GND of the GPS module
to GND of Arduino, RX of GPS module to TX of Arduino, TX of GPS module
to RX of Arduino, VCC of GPS module to 5 V of Arduino. The USB port con-
nects the Arduino with the laptop to display data on the screen. The external
antenna uses to receive the signal from the satellites. We also downloaded two
important libraries for GPS to work in Arduino IDE. These are the SoftwareSe-
rial library and TinyGPS plus. These libraries provide most of the NMEA GPS
functionality and avoid any mandatory floating-point dependency and ignore all
except the few key GPS fields [1].

Following the connection, we download the GPS coordinate code into the Ar-
duino and see for results. When the GPS module receives data, the module
starts to blink the blue-light and the data displays. As shown in figure 4.42, the
data for the latitude, longitude, and time displayed on the screen of the com-
puter and these data, as shown in figure 4.43, converted into map information
and exhibited the current address and real-time as expected [3].

TRYE APP 89

Figure 4.41: The interface of Arduino with GPS NEO-6M Module.
(source:arduino project hub)

Figure 4.42: When latitude, longitude, and time is displayed.

TRYE APP 90

Figure 4.43: Location for current address.

TRYE APP 91

4.12.2 Controlling the motor with Arduino

Controlling the motor using a microcontroller is important for our project to
control the bikes. The controller should turn the motor ON only for authorized
users. For this project we need to find a mechanism to stop and start a motor
using the Arduino MKR NB 1500.

A relay will be used as an electrical switch between the motor and the bat-
tery. To control a high power system with an Arduino we need to isolate the
Arduino with the help of a relay. We control the relay state by using Arduino
and the relay state will be used to control the device state either in ON or OFF
modes.

Figure 4.44: Pins of a Relay

Relays are designed for handling and switching high-voltage or high power
circuits. They have an electromagnet that can be energized and results in a
switch to close or open. As shown in Figure 4.44, relays have 5 pins (COM,
Coil 1, Coil 2, NC, NO) and among these 3 pins (NC, COM, and NO) will be
connected to the device to be controlled. At the COM terminal electricity enters
the relay and NC and NO terminals are used to turn ON and OFF devices. Be-
tween pins of Coil 1 and Coil 2, there is an electromagnet coil, and whenever a
current passes through them the electromagnet charges and the internal switch
connects COM and NO pins as a result the device will be in ON state.

Our main goal is to control the motor of the Shimano eBike by using an Arduino
and a relay. As we can see on the wiring of the Shimano eBike in Figure 4.45, the
battery is connected directly to the motor by green wire. In normal operation
when we press the start button of the bike the motor will get power from the
battery directly. Our plan is to use an Arduino to send a control signal ‘0’ or ‘1’

TRYE APP 92

to the relay, as a result the motor will be either in ON or OFF state. Adding
the relay and Arduino at the middle of the existing wiring diagram will replace
the task of the start button, which means to start the motor we just need to
send logical value ‘1’ to the pin of an Arduino where the relay is connected and
the relay will act as a switch to turn ON the motor.

Figure 4.45: Shimano eBike wiring (source:shimano)

Controlling the motor using an Arduino will help to manage control of a bike
from our cloud platform by sending commands to the Arduino board to control
the state of the motor either ON or OFF. Having these functionality helps us
to control our bikes remotely based on the user status, for example users who
have completed the renting process on the user app should get the access to
turn ON/OFF the bike motors.

TRYE APP 93

Figure 4.46: Connection between Relay, Arduino, Battery, and Motor

Based on the connection in Figure 4.46 what we need is to send a digital
signal either ‘1’ or ‘0’ to digital pin number 2 on the Arduino to trigger the relay
to act as a switch and control the motor. Sending ‘0’ will make the circuit to
stay as it is where the COM pin and NC are connected and the motor will not
get power from the battery and it will be in OFF state. If ‘1’ is sent to the relay
the coil will be energized and the relay will switch by connecting the COM with
NO and the motor will get power from the battery and it will be in ON state.

4.12.3 Modelling the data

Before sending the data, it’s important to find a standard way of communicating.
This makes it a lot easier to send, receive, and process messages sent between
nodes. Probably the most used way of structuring the data is with JSON. But
to save bandwidth the data could also be sent without any header, so just the
raw data is transferred, this makes it harder to understand, process and debug
if something goes wrong, an example would be: (1,1.123456, 2.123456, 30), this
contains no information about what is what, and the same message in JSON
would look like:

[
”bike id”: 1
”lon”: 1.123456
”lat”: 2.123456
”bat”: 30
]

TRYE APP 94

In the JSON message it’s clear what the message content, this also makes it
easier to update the message in the further if more information is added. So, in
this case, JSON seems to be the best option, even with the higher bandwidth
cost.

4.12.4 Connecting the Arduino to the internet

For connecting the hardware with the internet, the antenna should be connected
to the MKR NB 1500 board and the 4G IoT sim card should be mounted to
the board. An Arduino code is used for connecting our board MKR NB 1500
to the network through the 4G network. We included a library called MKRNB.
Structure of the MKRNB library:- the library comprises different classes with
various functions that provide different functionalities.

• NB class- helps the board modem to connect to the network by using
the pin number of the sim card.

• NB-SMS class- it enables the board modem to send/receive SMS mes-
sages.

• GPRS class- it helps for connecting to the internet.

• NBClient- includes an implementation for a client. This class can create
a client that can connect to a server by using GPRS class functions to
send and receive data.

Our board operates in 4G and it has a self embedded modem that enables
the board to transfer data from serial port to the network. The library abstracts
the low level of communication between the modem and the Simcard.

4.12.5 Sending data from the device to the server

Sending speed data, battery level, and location data from the bike to the server
is very important for our project. Since the group decided to use the Google
Cloud Platform as our server, the data should be sent to this platform from our
IoT board. Different tasks and configurations are made on the Google Cloud
Platform and on the board to accomplish the task and those configuration tasks
are:-

1. Creating a project on the GCP.

2. Configuring and adding the board to a specific project on the platform.

3. Choosing an appropriate protocol for communication between the board
and the platform. Where we have the possibility to choose MQTT or
HTTP.

4. Generating a public key on the board by running an Arduino code (ECCX08JWSPublicKey).

TRYE APP 95

5. The public key is stored both on the board and on the cloud platform. The
key helps for securing communication between the board and the platform
and it should be kept secret.

Since MQTT messaging protocol is used for setting the communication be-
tween the board and the cloud platform, and Arduino code is loaded with the
MQTT library. The following things should be accomplished by the Arduino
code for sending the data from the device.

• Connecting the device with the internet.

• Establish MQTT connection between the board and the MQTT server of
the GCP which is ”mqtt.googleapis.com”.

• use mqttClient.subscribe(”/devices/” + deviceId + ”/states”) function to
subscribe to Sub/pub topic called state where the device can publish its
state data by using a function that can send sensor data in the format
explained in the section 4.12.3.

• For sending the data, using a self-made function publishMessage(), this
function should send the message which contains the bike-ID, longitude,
latitude, and battery level of the bike based on the chosen format. The
message part will be put into the MQTT packet as payload together with
other packet parameters.

The MQTT server for the Google Cloud Platform is ”mqtt.googleapis.com”
and the data that will be sent from the bike IoT board will be stored on this
broker at Sub/pub and any client that is subscribed for this message will re-
ceive the data automatically after the message is published. After the data is
published to the MQTT server for this project, what happens next is explained
in section 4.12.12.

4.12.6 Managing security during data exchange

While building an IoT application, thinking about security is very important at
all levels. The vulnerability at some point in your IoT infrastructure has a big
risk of affecting the stakeholders that are related to your IoT application.
As a group understanding the IoT device and Security technologies the device
supports will help to know the level of security that can be provided. This may
help to identify the possible threats that may happen due to the IoT device and
it will be the first step for adding security features to the system if necessary.
Most IoT devices have inbuilt crypto chips for managing and storing keys. These
crypto chips facilitate key-based authentication for communication and data ex-
change in IoT applications. As a group, we identified the crypto chip that is
embedded in our Hardware device and identified the features for the crypto chip
and we understand the cryptographic operation of the chip.

TRYE APP 96

The Arduino board we use for this project (MKR NB 1500) has an embed-
ded microchip ATECC508A which is used as a crypto chip. This chip is used
for generating and storing 256 bit ECC keys.

The ATECC508A implements a complete asymmetric (public/private) key
cryptographic signature solution based upon Elliptic Curve Cryptography and
the ECDSA signature protocol. The device is designed to securely store mul-
tiple private keys along with their associated public keys and certificates. The
signature verification command can use any stored or an external ECC public
key. Public keys stored within the device can be configured to require validation
via a certificate chain to speed up subsequent device authentications. Random
private key generation is supported internally within the device to ensure that
the private key can never be known outside of the device. The public key cor-
responding to a stored private key is always returned when the key is generated
and it may optionally be computed at a later time.[16]

Arduino has open-source libraries and codes that can be used for generating
random key pairs(private key and public keys). The Arduino codes that are
designed for crypto chips of ECC508 and ECC608 are the following.

• ECCX08CSR:- helps to generate a CSR(Certificate Signing Request) for
a private key generated in a crypto chip slot.

• ECCX08JWSPublickey:- helps to generate a public key for a private
key generated in a crypto chip slot.

• ECCX08SelfSignedCert:- helps to generate a self-signed certificate for
a private key generated in a crypto chip slot.

During connecting IoT devices to an IoT platform we need to generate
keys(private and public keys) and store them in our crypto chip. The private
key will be used for generating digital signatures whenever we send data from
our board and the public key will be used to authenticate the sender from its
digital signature sent with the data.

Besides keys generated, we need to use JSON Web tokens for authenticating
IoT devices to the cloud or to communicate with communication bridges such
as MQTT. Figure 4.47 shows how IoT devices establish communication with
MQTT bridges of GCP by using JSON Web Tokens.
JSON Web token is an open standard (RFC 7519) that is used to securely trans-
mit information. The information contains a digitally signed signature of the
sender and this makes the data to be trusted after verification is made at the
receiver side.

TRYE APP 97

Figure 4.47: Device connection with MQTT bridge using JWT
(source:cloud.google.com)

The data we send from our device are battery level, location information
with longitude, and latitude. These data are not sensitive data, as a group we
aren’t afraid of the third party can steal the data. What we worry is that if an
attacker can pretend as if it is one of the IoT devices and connects with the IoT
platform. This has a dangerous consequence in our entire system because the
IoT platform has a connection with the Database and web server for the Mobile
app. If the hackers manage to connect with our Cloud platform they can man-
age a DoS(Denial of Service) attack and this can affect the TRYE AS company
economically and they can lose users’ trust. Losing trust from customers due
to a lack of security can cause brand damage.

Since we are using the Google Cloud Platform, which has good security
features and it has many security protocols in different levels of their architec-
ture. The google cloud platform has strong authentication of IoT devices during
communication and sending data. The private key of our device is stored in the
crypto chip and is isolated from people and software, this makes the commu-
nication more secure and difficult for intruders. The group decided to use the
existing GCP security features without adding any self-made security measures
to the hardware part.

TRYE APP 98

4.12.7 Controlling the device from GCP

For controlling the IoT device from the GCP we need to send messages to tell
the device what to do. From GCP there are 2 types of messages that can be
sent to control IoT devices that are registered on the device manager. The cloud
platform sends the messages with the help of IoT core Admin SDK or Cloud
REST API. The message types are Configuration and command message.

Configuration message:this is a message sent by the cloud platform through
the cloud IoT core for configuring a device. It is a user-defined data. The data
can be structured and also can be formatted in any format such as arbitrary
binary data, text, JSON, or serialized protocol buffers. Configuration messages
can be used to update firmware, reboot a device, turn on a feature, or change
other properties. Devices using MQTT can subscribe to a special MQTT topic:
/device/device-id/config for configuration updates. Devices can receive the lat-
est configuration in a message payload. For example a configuration message
can be ”bike-id”: ”001”, “power” : ”ON” or ”bike-id” : ”001”, “power” :
”OFF” . To verify the configuration message is correctly applied and the de-
vices are in the correct state, each device can report its state whether it is ON
or OFF.

Command message: are commands that can be sent to the IoT devices
and they are one-time directive sent to those devices registered to the command
topic: /devices/device-Id/commands/”. Command messages are much faster
than configuration messages and can be sent more frequently. If the device is
not connected to the cloud when the command message is sent, the command
message will be lost.
There are different ways of sending these messages to IoT devices. For our
project since we need to send different commands based on different scenarios
or events, we will use Google cloud function to send the messages to our IoT
device(MKR NB 1500). Google cloud functions are serverless computing plat-
forms that can be used to execute code in the cloud. Related to cloud functions,
we have two concepts called Events and Triggers. When a change in the state
of something happens the Google infrastructure will raise an event and triggers
will be used to connect raised events with cloud functions.

In our project we have different events that may occur when users use the
TRYE app for renting or booking a bike. For renting a bike a user should reg-
ister on a user app and fill the necessary fields before sending it to the server.
The result of user authentication on the server-side may cause an event where
either a user is allowed to rent a bike or not. The events will trigger their own
google cloud function which is responsible to run a JSON code for sending a
configuration message to a bike for turning ON or OFF the motor. Since our
project has different events that may need to send command or configuration
messages to a bike. We need to use a function that triggers based on an event

TRYE APP 99

and such function is called background function.

We use background functions when we want to have our Cloud Function in-
voked indirectly in response to an event, such as a message on a Pub/Sub topic,
a change in a Cloud Storage bucket, or a Firebase event [14].

Using background function we can send configuration messages to the pub/sub-
topic based on an event and the device can receive the message. The config-
uration message received by the device can be used to control the device and
the subsystems that are interfaced with the device. For example, sending an
OFF/ON message to the device can be used to control a state of a relay that is
connected to the digital pin of our board and this can be used further to control
the Shimano motor which is explained in section 4.12.2.

4.12.8 Combining all the Arduino Code

During the development of the system, multiple developers have worked on the
code independently, when combining the code it’s therefore important to arrange
the code in the correct order. For our system, we will have to gather data then
send it, if it happens in the other direction it can mean the data being sent is
old, and therefore, less reliable. The exact order in which we run the different
programs can be seen in figure 4.48

TRYE APP 100

Figure 4.48: The order the code was arranged

4.12.9 Choosing IoT servers

There are many different IoT servers out on the market, some of the biggest
might be Microsoft Azure, Amazon Web Server (AWS) and Google Cloud Plat-
form (GCP) and there are smaller more specialized servers such as Thingspeak.
But as the platform was chosen to be able to receive IoT data, store the data,
and also store the data for the mobile application, the more specialized servers
were not an option. As the cost during development should be at a minimum,
AWS could not be used either, as both GCP and Microsoft Azure provide a free
sample time. (note: normally AWS also provide a free sample time but because

TRYE APP 101

of extra demand on the servers during the coronavirus, they had to cut the free
sample) That left Microsoft Azure and GCP, from which we choose GCP for
further development.

4.12.10 Setting up IoT Server

A common standard for communication with IoT devices is the MQTT proto-
col. The MQTT protocol is a lightweight, publish-subscribe network protocol
which is designed with a small footprint in mind[[17]]. This means we need
to use the GCP service IoT core to receive and transmit the MQTT messages
between the Arduino and the GCP platform. And because the MQTT protocol
is a publish-subscribe based network protocol the GCP pub/sub service also
needs to be used to handle the communication.

Setting up IoT core To connect the Arduino to the IoT core, the IoT core
first has to be configured, this requires a collection (or register) name, a device
name and a public key generated by the encryption chip built into the Arduino.
The configuration of the Arduino can be read about in section 4.12.5 and in
section 4.12.4

Setting up pub/sub To be able to send and receive messages to the right
device, the GCP server needs a pub/sub service. To configure this, each bike
will require a topic-id which works like the name for the bike, the topic-id is
used to make sure the IoT core sends the messages to the correct bike

4.12.11 Simulating MQTTdata with python

To reduce the cost of development by reducing the bandwidth used by the
Arduino, it is possible to use Python to simulate the functionality of the Arduino
by sending data with the MQTT protocol. This will have the added benefit of
being able to send a large amount of random data, which will simulate multiple
devices connected at once. This can in turn be used as a tool for debugging and
testing the capabilities of the server. The python script also helped to speed up
the development of the system, as testing the GCP server was indented of the
state of the Arduino

4.12.12 Sending IoT data to database

When the data has been uploaded to the GCP platform through the IoT core
and pub/sub service it needs to be stored in a database for easy retrieval for
the mobile application. GCP provides many different ways of storing data in a
database, some of which are the SQL service, BigQuery, and Firestore, where
we choose to use the Firestore service.

SQL service: might be the easiest way of storing the data in a normal SQL
database in GCP. To upload the IoT data to the SQL service, GCP first needs

TRYE APP 102

to pull the data from the pub/sub service, to do so it can use the cloud function
service. Cloud function works as a scripting environment that can use python,
node.js, or GO to control various parts of the GCP’s services. The cloud func-
tion has the functionality to trigger if there is an event in the pub/sub service,
by using this the script will run when new data is available. The problem with
using cloud function with the SQL service is it only recently got supported to
communicate between them, and therefore essential documentation is missing.

BigQuery: is a NoSQL database made to handle big data, with this service it
can be combined with dataflow to automatically upload data from the pub/sub
service to the BigQuery service with a job. A job is something that is pro-
grammed the same way as a normal SQL call, but instead of selecting from
a database it selects from a JSON file uploaded to the pub/sub service, this
makes it easy to configure. But as the services are made with a large amount
of data in mind is reflected in the price, this means to keep the service running
for one month would cost approx. 3000 NOK, this makes it not a viable solution

Firestore: is a NoSQL database made to store data for mobile applications
and is a sub-service of what used to be Firebase. Cloud function also used to
be part of the Firebase framework and therefore the interaction between these
services is well documented, which was the main problem with the SQL service.
How the interaction works between cloud function and pub/sub can be read
about in the SQL service. And the source code used to pull the data from the
pub/sub service and push it to the Firestore service can be seen in appendix
A.11.8. Firestore stores data in what’s called collection and documents, where
one collection can store multiple documents and one document can refer to mul-
tiple out collection, this makes a tree that will start with a collection followed by
a document followed by a new collection and so on. For our system, we need a
collection called ”TRYE-bike” with a document for each bike called ”bike-xx”.
Here the collection can be used as a location such as Kongsberg, Drammen,
Oslo if the system is expanded in the future. The way data is uploaded to the
Firestore database now is it overwrites the last position, this makes sure each
bike only uses one database entry which will save space in the database but the
historical data will be lost, an alternative is to append the data at the end of the
document. This will save the historical data at the cost of taking more space.

4.13 Summary of the Hardware

The hardware system is close to being done, so far the system can calculate the
speed, get GPS coordinates, get battery level, store the data in the cloud, send
data to the mobile app, and receive data from the mobile app. The only thing
missing is getting all the system to work together.

TRYE APP 103

Chapter 5

Conclusion of our work
5.0.1 Summary

Throughout the last semester, we have been through a project filled with chal-
lenges. Both the normal challenges a bachelor group meet, but also the COVID-
19 pandemic with its restrictions.

COVID-19 forced us to have to work from home. This happened right in front of
the second bachelors-presentation and caused us to continue working from home
throughout the rest of the project. To handle the challenges of COVID-19, we
had to make use of tools to ease our communication. Examples of tools we
used throughout the project to continue the development as usual was: Discord
for stand-up meetings, Zoom or Google Hangouts for communicating with our
supervisor (Or anyone else we needed to talk to), Google Drive for documenting
as a group, Skype For Business for having digital presentations, and WhatsApp
for keeping in touch with our employer and group members.

Our project was split into two main systems, the software- and the hardware-
system. Work was done in respect to the derived requirements given from Trye,
and the group made different User Stories from the requirements. The User
Stories themselves were stored in Trello, which is a Kanban-style list-making
application that proved to be useful in our agile development. Trello did also
enable us to visualize progress, with its ”To do”, ”In Progress” and ”Done” list.

To be able to measure progress we had to document every User Story, and
on every Friday evening we had a Sprint-review where we went through the
progress made that week as a group. To make it easier for us to visualize the
progress, a burndown-chart was created to show us as a group how many points
we achieved throughout the working week.

5.0.2 Reflection

In retrospect, we should have been more structured when it came to filling out
Sprint Reviews, and verify progress.

With not understanding the importance of documenting Sprint Reviews and
Verification documents, it became difficult to create genuine burndown-charts

TRYE APP 104

and conclude a User Story. This lead to us not knowing how effective the group
was. By not knowing exactly how much we were able to produce, planning
became less effective in periods. However, when we as a group understood the
importance of Sprint Reviews and Verification, planning a work week became
easier and estimations became more accurate.

In addition, the group faced a challenge with verifying technical work as we
no longer had access to the bike after the pandemic lockdown. Cooperation
between the group members went well throughout the project, regardless of the
situation we were put in.

The University, staff members and supervisors continued give us the necessary
support and guidance for the duration of the project. They also provided us
with the tools and necessary information to ensure us that everything would go
as planned.

5.0.3 Future Work

Before the system can be finished, some parts are required to complete the
system, these include a bike and a company Google account with billing enabled.
The bike is required to achieve the work of verification and solve any unexpected
faults associated with the connection of our system to the existing system. The
company Google account is needed to give the ownership of the entire developed
product to TRYE.

Code needs to be combined on the Arduino

Some of the Arduino code still needs to be combined, this includes the code
for retrieving the GPS coordinates, connecting the system to the internet, and
sending the data to GCP.

Preferably a configuration panel should also be included for a user-friendly con-
figuration for the different bikes. The configuration could include, bike wheel
diameter, units (metric/imperial), battery capacity, ID, name, and what data
should be sent to the server.

The hardware has to be connected to the bike

Since our sub-system only has been tested independently, unexpected situa-
tions could occur when the sub-systems are connected to the existing systems.
Therefore the system can not be considered done, before this is verified.

Arduino to GCP communication needs to be formated

The data sent from the Arduino to the GCP needs to be formatted as JSON
data as that is required by the GCP sub-service cloud function. This can be
done on the Arduino by editing the message sent.

TRYE APP 105

Develop security features in the mobile app

As the payment system demands a safe and secure way of communicating, secu-
rity methods need to be implemented to move from testing mode to production
mode.

Testing the usability of the app

Before launching the app to the user, we should perform a user study to ensure
a clear and easy to use interface. This can be done by letting people unfamiliar
with the interface try the app, and observing their interaction.

Make a guide to add functionality to the app for TRYE

As TRYE wants to add more bikes to the system at a later time, a good step
by step guide should be written to make this process as easy to understand as
possible.

TRYE APP 106

6 References
[1] ”Guide to NEO-6M GPS Module with Arduino (I only got inspiration)”.

url: https://randomnerdtutorials.com/guide- to- neo- 6m- gps-

module-with-arduino/. (accessed: 21.03.2020).

[2] ”How to analyze risk ?” url: https : / / www . projectmanager . com /

training/how- to- analyze- risks- project%20(I%20got%20only%

20inspiration). (accessed: 13.03.2020).

[3] ”How to interface GPS module with Arduino (I only got inspiration)”.
url: https://create.arduino.cc/projecthub/ruchir1674/how-to-
interface- gps- module- neo- 6m- with- arduino- 8f90ad. (accessed:
20.04.2020).

[4] ”Technical risk management (I only got inspiration)”. url: https://

ieeexplore.ieee.org/abstract/document/4349543. (accessed: 12.03.2020).

[5] About Lime e-scooters. url: https://www.crunchbase.com/organization/
limebike#section-overview. (accessed: 11.05.2020).

[6] About Universitetet i Sørøst-Norge. url: http://www.usn.no/om-usn.
(accessed: 07.05.2020).

[7] Accepting a card payment. url: https://stripe.com/docs/payments/
accept-a-payment. (accessed: 22.05.2020).

[8] Arduino MKR NB 1500. url: https://store.arduino.cc/arduino-
mkr-nb-1500-1413. (accessed: 05.02.2020).

[9] Business Insider projection for the rental market of electrical scooters and
bikes. url: https://markets.businessinsider.com/news/stocks/
the-bike-and- scooter- rental- market-is- projected- to- grow-

from-usd-2-5-billion-in-2019-to-reach-usd-10-1-billion-by-

2027-at-a-cagr-of-18-9-1028677949. (accessed: 22.05.2020).

[10] Business insider projection for the rental market of electrical scooters
and bikes. url: https://www.coruscatesolution.com/e- scooter-
hardware-solutions-for-rental-business/. (accessed: 22.05.2020).

[11] Discord. url: https://discord.com/. (accessed: 13.05.2020).

[12] E-Scooter hacks. url: https://mashable.com/article/e-scooter-
hacks-bird-lime/. (accessed: 11.05.2020).

[13] Electric scooters’ sudden invasion of American cities, explained. url:
https://www.vox.com/2018/8/27/17676670/electric- scooter-

rental-bird-lime-skip-spin-cities. (accessed: 22.05.2020).

[14] Google cloud function. url: https://cloud.google.com/functions/
docs/writing/background. (accessed: 05.02.2020).

TRYE APP 107

https://randomnerdtutorials.com/guide-to-neo-6m-gps-module-with-arduino/
https://randomnerdtutorials.com/guide-to-neo-6m-gps-module-with-arduino/
https://www.projectmanager.com/training/how-to-analyze-risks-project%20(I%20got%20only%20inspiration)
https://www.projectmanager.com/training/how-to-analyze-risks-project%20(I%20got%20only%20inspiration)
https://www.projectmanager.com/training/how-to-analyze-risks-project%20(I%20got%20only%20inspiration)
https://create.arduino.cc/projecthub/ruchir1674/how-to-interface-gps-module-neo-6m-with-arduino-8f90ad
https://create.arduino.cc/projecthub/ruchir1674/how-to-interface-gps-module-neo-6m-with-arduino-8f90ad
https://ieeexplore.ieee.org/abstract/document/4349543
https://ieeexplore.ieee.org/abstract/document/4349543
https://www.crunchbase.com/organization/limebike#section-overview
https://www.crunchbase.com/organization/limebike#section-overview
http://www.usn.no/om-usn
https://stripe.com/docs/payments/accept-a-payment
https://stripe.com/docs/payments/accept-a-payment
https://store.arduino.cc/arduino-mkr-nb-1500-1413
https://store.arduino.cc/arduino-mkr-nb-1500-1413
https://markets.businessinsider.com/news/stocks/the-bike-and-scooter-rental-market-is-projected-to-grow-from-usd-2-5-billion-in-2019-to-reach-usd-10-1-billion-by-2027-at-a-cagr-of-18-9-1028677949
https://markets.businessinsider.com/news/stocks/the-bike-and-scooter-rental-market-is-projected-to-grow-from-usd-2-5-billion-in-2019-to-reach-usd-10-1-billion-by-2027-at-a-cagr-of-18-9-1028677949
https://markets.businessinsider.com/news/stocks/the-bike-and-scooter-rental-market-is-projected-to-grow-from-usd-2-5-billion-in-2019-to-reach-usd-10-1-billion-by-2027-at-a-cagr-of-18-9-1028677949
https://markets.businessinsider.com/news/stocks/the-bike-and-scooter-rental-market-is-projected-to-grow-from-usd-2-5-billion-in-2019-to-reach-usd-10-1-billion-by-2027-at-a-cagr-of-18-9-1028677949
https://www.coruscatesolution.com/e-scooter-hardware-solutions-for-rental-business/
https://www.coruscatesolution.com/e-scooter-hardware-solutions-for-rental-business/
https://discord.com/
https://mashable.com/article/e-scooter-hacks-bird-lime/
https://mashable.com/article/e-scooter-hacks-bird-lime/
https://www.vox.com/2018/8/27/17676670/electric-scooter-rental-bird-lime-skip-spin-cities
https://www.vox.com/2018/8/27/17676670/electric-scooter-rental-bird-lime-skip-spin-cities
https://cloud.google.com/functions/docs/writing/background
https://cloud.google.com/functions/docs/writing/background

[15] How to do a SWOT Analysis for better strategic planning(I only got inspi-
ration). url: https://articles.bplans.com/how-to-perform-swot-
analysis/. (accessed: 2.02.2020).

[16] Microchip-ATECC508A. url: http://ww1.microchip.com/downloads/
en/DeviceDoc/20005928A.pdf. (accessed: 29.03.2020).

[17] MQTT Version 5.0 OASIS Standard Specification. url: https://docs.
oasis - open . org / mqtt / mqtt / v5 . 0 / mqtt - v5 . 0 . pdf. (accessed:
22.05.2020).

[18] Neo 6M GPS module. url: https://robu.in/product/ublox-neo-6m-
gps-module/. (accessed: 29.03.2020).

[19] Risk definition. url: https://pm4id.org/chapter/11-1-defining-
risk/. (accessed: 22.02.2020).

[20] Risk register definition. url: https://www.sciencedirect.com/topics/
engineering/risk-register. (accessed: 10.02.2020).

[21] VOI in oslo. url: https://www.elbil24.no/nyheter/slik-leier-du-
el-sparkesykkel-i-oslo/70869996. (accessed: 11.05.2020).

[22] What is a Product Owner? url: https://www.scrum.org/resources/
what-is-a-product-owner. (accessed: 13.05.2020).

TRYE APP 108

https://articles.bplans.com/how-to-perform-swot-analysis/
https://articles.bplans.com/how-to-perform-swot-analysis/
http://ww1.microchip.com/downloads/en/DeviceDoc/20005928A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20005928A.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://robu.in/product/ublox-neo-6m-gps-module/
https://robu.in/product/ublox-neo-6m-gps-module/
https://pm4id.org/chapter/11-1-defining-risk/
https://pm4id.org/chapter/11-1-defining-risk/
https://www.sciencedirect.com/topics/engineering/risk-register
https://www.sciencedirect.com/topics/engineering/risk-register
https://www.elbil24.no/nyheter/slik-leier-du-el-sparkesykkel-i-oslo/70869996
https://www.elbil24.no/nyheter/slik-leier-du-el-sparkesykkel-i-oslo/70869996
https://www.scrum.org/resources/what-is-a-product-owner
https://www.scrum.org/resources/what-is-a-product-owner

TRYE APP 109

Chapter A

Appendix
A.1 Sprint reports

A.1.1 Sprint 1

Trye app Sprint 1 Summary

Sprint Ending 24/1

Context

First Day of Sprint: January 20, 2020

Last Day of Sprint: January 24, 2020

Working Days in Sprint: 4

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 4 4

Andreas Røed Kjønnerud 4 4

Joachim Nordholmen 4 4

Eebbaa Dhugaasaa Bantii 3 3

Dawit Abamachu 3 3

TRYE APP 110

Contents and Assessment

Points Planned: 21

Points Earned: 4

Story Points Result

USN-13: I as a Risk manager need to document the
description of SWOT Analysis for the Project.

1 Finished

USN-12: I as the SCRUM Master need to find a
suitable Platform the Development

1 Finished

USN-11: I as a software engineer need to make UML
Diagrams for user app so that I can get a better
overview of the application

2 Not finished

USN-10: I as a software engineer need to research
the existing scooter apps to look at the user interface
and functionality

1 Finished

USN-9: I as the risk manager need to do risk
Identification for our project so we better know how
we can reduce risks

2 Waiting

USN-8: I as the requirement manager need to Identify
the stakeholders and their main concern to make a
better product

2 Verify

USN-7: I as the requirement manager need to list the
requirements given from the company so that they
are easy to read and sorted and numbered with
sub-requirements

2 Waiting

2

TRYE APP 111

USN-6: I as a verification manager need to find a way
to verify the requirements to make sure they can be
met

2 Waiting

USN-5: We as a group need to create an Initial Gantt
chart to show the sensor our progress plan

1 Waiting

USN-4: We as a group need to set a date for the first
presentation so we can plan it better

1 Done

USN-3: We as a group need to make the first
presentation documentation since it is required by the
sensors

2 Not finished

USN-2: We as a group need to make the first
presentation with slides so that we can show it to the
sensor

2 Not finished

USN-1: We as a group need a Project SWOT
Analysis to help analyze our group

2 Verify

Sprint Review

The sprint review was held on Friday 24/1-2020 and attended by all group members. Before

approving or rejecting product backlog items as noted above, key decisions from the review

were:

● Add all the user stories we needed and put what we had in progress for the sprint

without knowing how much we could do.

3

TRYE APP 112

Sprint Retrospective

The team held a sprint retrospective on 24/01-2020. It was attended by everyone on the list. Key

decisions were:

● Select fewer user stories for next sprint

● Forgot about the scoring system. Made a new scoring system for weekly sprints

ranging from 1-4 points dependent on how many days we think it will take to complete

● Need smaller user stories that can be done in 1 sprint.

● We finished mostly yellow user-stories, we need to prioritize the red and orange

user-stories

● We need a way to record out weekly progress and put it in a sprint burndown graph for

each sprint report

4

TRYE APP 113

A.1.2 Sprint 2

Trye app Sprint 2 Summary

Sprint Ending 31/1

Context

First Day of Sprint: January 29, 2020

Last Day of Sprint: January 31, 2020

Working Days in Sprint: 2

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 2 1

Andreas Røed Kjønnerud 2 2

Joachim Nordholmen 2 2

Eebbaa Dhugaasaa Bantii 2 2

Dawit Abamachu 2 2

TRYE APP 114

Burndown chart

Contents and Assessment

Points Planned: 18

Points Earned: 14

Story Points Result

2

TRYE APP 115

USN-9: I as the risk manager need to do risk
Identification for our project so we better know
how we can reduce risks

2 Finished

USN-8: I as the requirement manager need to
Identify the stakeholders and their main concern
to make a better product

2 Finished

USN-7: I as the requirement manager need to list
the requirements given from the company so that
they are easy to read and sorted and numbered
with sub-requirements

2 Finished

USN-6: I as a verification manager need to find a
way to verify the requirements to make sure they
can be met

2 Finished

USN-5: We as a group need to create an Initial
Gantt chart to show the sensor our progress plan

1 Waiting

USN-14: we as a group need to make a google
sheet to automate the creation of a spring
burnout chart for the weekly sprint review

1 Finished

USN-15: We as software engineers need to set up
our Neptune workspace for the application so we
can start building the app

3 Finished

USN-16: We as hardware engineers need to make
a list of components for the project to start
testing

3 Finished

USN-1: We as a group need a Project SWOT
Analysis to help analyze our group

2 Finished

3

TRYE APP 116

Sprint Review

The sprint review was held on Friday 24/1-2020 and attended by all but Tobias. Before

approving or rejecting product backlog items as noted above, key decisions from the review

were:

● With the knowledge on how the last sprint went, we added only items we thought we

could finish instead of adding all from the to-do backlog.

Sprint Retrospective

The team held a sprint retrospective on 31/01-2020. It was attended by everyone on the list. Key

decisions were:

● Make sure the tasks we are working on is actually in our Trello board

● Big improvement from the last sprint with a good result

4

TRYE APP 117

A.1.3 Sprint 3

Trye app Sprint 3 Summary

Sprint Ending 07/2

Context

First Day of Sprint: February 3, 2020

Last Day of Sprint: February 7, 2020

Working Days in Sprint: 3

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 3 3

Andreas Røed Kjønnerud 3 3

Joachim Nordholmen 3 3

Eebbaa Dhugaasaa Bantii 3 3

Dawit Abamachu 3 3

TRYE APP 118

Burndown chart

Contents and Assessment

Points Planned: 21

Points Earned: 21

Story Points Result

USN-5: We as a group need to create an Initial
Gantt chart to show the sensor our progress plan

1 Finished

2

TRYE APP 119

USN-2: We as a group need to make the first
presentation with slides so that we can show it to
the sensor

10 Finished

USN-3: We as a group need to make the first
presentation documentation since it is required
by the sensors

10 Finished

Sprint Review

● The sprint went as expected and we finished all tasks

Sprint Retrospective

● A workload of around 20 points is a good workload

● Our new point system is better

3

TRYE APP 120

A.1.4 Sprint 4

Trye app Sprint 4 Summary

Sprint Ending 14/2

Context

First Day of Sprint: February 14, 2020

Last Day of Sprint: February 14, 2020

Working Days in Sprint: 1

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 1 1

Andreas Røed Kjønnerud 1 1

Joachim Nordholmen 1 1

Eebbaa Dhugaasaa Bantii 1 1

Dawit Abamachu 1 1

TRYE APP 121

Burndown chart

Contents and Assessment

Points Planned: 5

Points Earned: 5

Story Points Result

USN-19: We as hardware engineers need to get
an overview of the eMTB learn about the power
system and existing hardware

3 Finished

2

TRYE APP 122

USN-17: We as software engineers need to learn
how to build a database with tables for the app to
store our data

2 Finished

Sprint Review

● Short sprint because of preparation to 1st presentation

● Sprint was successful

Sprint Retrospective

● 5 points was a good workload for 1 day which means we should achieve at least 15

points per week

● Need larger score for the next sprint, and set milestones in our overview Trello board

3

TRYE APP 123

A.1.5 Sprint 5

Trye app Sprint 5 Summary

Sprint Ending 21/2

Context

First Day of Sprint: February 17, 2020

Last Day of Sprint: February 21, 2020

Working Days in Sprint: 3

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 3 3

Andreas Røed Kjønnerud 3 3

Joachim Nordholmen 3 3

Eebbaa Dhugaasaa Bantii 3 3

Dawit Abamachu 3 3

TRYE APP 124

Burndown chart

Contents and Assessment

Points Planned: 15

Points Earned: 0

2

TRYE APP 125

Story Points Result

USN-18: We as software engineers need to make
a login system connected with a database so
users can register

6 Not finished

USN-20: We as hardware engineers need to
listen to the signal cable, to find the speed and
power data

6 Discarded

USN-22: We as hardware engineers need to find
a way to power our microcontroller using the
bike’s battery as a power source for our
hardware to function

3 Not finished

Sprint Review

● Sprint was not successful

● USN-18 Upgraded from 6 points to 15 due to complexity was higher than we initially

thought

● USN-20 Discarded due to a more efficient and precise way of reading data was

discovered

Sprint Retrospective

● Need to make smaller cards and divide into smaller tasks

3

TRYE APP 126

A.1.6 Sprint 6

Trye app Sprint 6 Summary

Sprint Ending 28/2

Context

First Day of Sprint: February 24, 2020

Last Day of Sprint: February 28, 2020

Working Days in Sprint: 3

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 3 3

Andreas Røed Kjønnerud 3 3

Joachim Nordholmen 3 3

Eebbaa Dhugaasaa Bantii 3 3

Dawit Abamachu 3 3

TRYE APP 127

Burndown chart

Contents and Assessment

Points Planned: 30

Points Earned: 0

Story Points Result

USN-18: We as software engineers need to make
a login system connected with a database so
users can register

15 Waiting

2

TRYE APP 128

USN-23: We as hardware engineers need to find
a way to get the speed from the bike

9 Not done

USN-24: We as hardware engineers need to find
a way to read the voltage level of the battery

6 Not done

Sprint Review

● We worked hard during the sprint but it’s not reflected so much in the points since we

are waiting for a part or we need to verify the work

● We who work with software made a forum post about our problem with automated text

messages which is the last missing piece in the login system. The task is 90%

complete. So we want to focus on other tasks next week.

● Hardware guys have made a lot of progress, should be done early next week

Sprint Retrospective

● We should put up cards for alternative work so we gain points no matter what to

motivate us more. Getting 0 points each sprint is demotivating.

3

TRYE APP 129

A.1.7 Sprint 7

Trye app Sprint 7 Summary

Sprint Ending 6/3

Context

First Day of Sprint: March 2, 2020

Last Day of Sprint: March 6, 2020

Working Days in Sprint: 3

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 3 3

Andreas Røed Kjønnerud 3 3

Joachim Nordholmen 3 3

Eebbaa Dhugaasaa Bantii 3 3

Dawit Abamachu 3 3

TRYE APP 130

Burndown chart

Contents and Assessment

Points Planned: 21

Points Earned: 6

2

TRYE APP 131

Story Points Result

USN-27: We as software engineers need to
implement a map API for the app so users can
see where the rentable bikes can be located

2 Done

USN-23: We as hardware engineers need to find
a way to get the speed from the bike

9 To be verified

USN-24: We as hardware engineers need to find
a way to read the voltage level of the battery

6 To be verified

USN-30: We as software engineers need to finish
the basic navigation and the main menu interface
so we can show a demo on the second
presentation

4 Done

Sprint Review

● We achieved a lot this week, and we feel we have made good technical progress for

the 2nd presentation. Now we will focus on the documentation

● Hardware stories need proper verifying. Will be done after presentation2

Sprint Retrospective

● Another low score, But will hopefully regain all the lost points next technical sprint

3

TRYE APP 132

A.1.8 Sprint 8

Trye app Sprint 8 Summary

Sprint Ending 13/3

Context

First Day of Sprint: March 09, 2020

Last Day of Sprint: March 13, 2020

Working Days in Sprint: 3

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 3 3

Andreas Røed Kjønnerud 3 3

Joachim Nordholmen 3 3

Eebbaa Dhugaasaa Bantii 3 3

Dawit Abamachu 3 3

TRYE APP 133

Burndown chart

Contents and Assessment

Points Planned: 20

Points Earned: 20

2

TRYE APP 134

Story Points Result

USN-18: We as software engineers need to make
a login system connected with a database so
users can register

15 Done

USN-21: We as software Engineers need to make
sure our database tables are in the 3rd normal
form using normalization to prevent undesirable
data dependencies

3 Done

USN-11: We as a software engineer need to make
UML Diagrams for user app so that i can get a
better overview of the application

2 Done

Sprint Review

● Caught up on some story points which is needed

● The hardware guys worked on their documentation, that’s why its no hardware stories

Sprint Retrospective

● A good sprint points wise since we finish some older stories

● We had a lot to think about since there was supposed to be an exam for us, but it got

cancelled so we can focus a bit more on the second presentation.

3

TRYE APP 135

A.1.9 Sprint 9

Trye app Sprint 9 Summary

Sprint Ending 20/3

Context

First Day of Sprint: March 16, 2020

Last Day of Sprint: March 20, 2020

Working Days in Sprint: 3

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 3 3

Andreas Røed Kjønnerud 3 3

Joachim Nordholmen 3 3

Eebbaa Dhugaasaa Bantii 3 3

Dawit Abamachu 3 3

TRYE APP 136

Burndown chart

Contents and Assessment

Points Planned: 14

Points Earned: 14

2

TRYE APP 137

Story Points Result

USN-31: We as hardware engineers need to
finish the documentation of the hardware for the
second presentation, so the sensor can see what
we have done

6 Done

USN-32: We as Software engineers need to finish
the documentation of the hardware for the
second presentation, so the sensor can see what
we have done

8 Done

Sprint Review

● Finished a website will all the documentation

● Finished both stories

Sprint Retrospective

● We are satisfied with our documentation progress and our website. We only had a pure

documentation sprint so the next sprint will be a technical one.

3

TRYE APP 138

A.1.10 Sprint 10

Trye app Sprint 10 Summary

Sprint Ending 27/3

Context

First Day of Sprint: March 23, 2020

Last Day of Sprint: March 27, 2020

Working Days in Sprint: 5

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 5 5

Andreas Røed Kjønnerud 5 5

Joachim Nordholmen 5 5

Eebbaa Dhugaasaa Bantii 5 5

Dawit Abamachu 5 5

TRYE APP 139

Burndown chart

Contents and Assessment

Points Planned: 34

Points Earned: 10

2

TRYE APP 140

Story Points Result

USN-33: I as a software engineer need to change
the registering system to the Alpha2 version, for
the app to work as intended

3 Done

USN-34: I as a software engineer need to fix the
one-time password system for the second demo
of our app for it to work as intended.

3 Done

USN-22: We as hardware engineers need to find
a way to power our microcontroller using the
bike’s battery as a power source for our
hardware to function

4 Done

USN-35: We as hardware engineers need to
model the data sent from the Arduino to the
webserver so we are able to send data in a safe,
reliable and efficient way

3 Started

USN-36: We as hardware engineers need to set a
test server(IoT platform) for testing our
connection with IoT modules(MKR NB 1500).

5 Started

USN-56: We as hardware engineers need to
simulate MQTT data using a computer program,
to limit the data usage on the SIM card

5 Started

USN-38: We as Hardware engineers need to
connect our IoT modules to the test server(IoT
platform) by following the right procedure.

6 Started

3

TRYE APP 141

USN-26: I, as a hardware engineer, need to get
the GPS coordinates for our system and so the
user knows where the bike is located.

5 Started

Sprint Review

● Andreas:

I finished my user story USN-33 successfully and made Tobias test it to make sure it worked

and that we were satisfied. The user story was finished on Wednesday, and I used the Thursday

and Friday on documentation.

● Joachim:

After the second presentation, we needed to figure out what we should do next. Finished

USN-22. started on USN-35, USN-36 and USN-56

● Tobias:

I finished my user story USN-34 successfully and together with Andreas we made sure that

everything worked as intended. As USN-33 and USN-34 are closely related we did quite some

testing together, to check whether or not what we did was compatible with each others work.

The last days of the week were done documenting our progress in the form of filling out the User

Story forms.

● Eebbaa

After the second presentation, we discussed the remaining tasks in the Hardware part, the

remaining main tasks were the Control part, GPS, and the Power part. I started working on the

control part which will be used for interfacing our HW with the software part. I started USN-38

which is connecting our Arduino board to the network and then with the server.

● Dawit

4

TRYE APP 142

After the second presentation, since we had left with the power system, IoT system, and

the GPS coordinating system, we as a hardware team divided the task to each other.

The part I worked with was the GPS coordinating system. Here the goal was to get the

GPS coordinates, and so the user knows where the bike locates. Therefore, I first started

to search for the GPS module that supports our system. Then selecting GPS module

NEO-6M, I used it for interfacing with the Arduino for my next step..

Sprint Retrospective

● Andreas:

I learned how to format the WHERE statement in the database API calls which will be very

useful for me in the next user story I will work on.

● Joachim:

I added too many user stories to sprint backlog at a time, meaning I will not be able to finish all

the user stories this week, therefore I should put back one of the user stories until next week.

● Tobias:

Together with Andreas, we finalized the registering system, meaning we are on track to a

working demo in May. I learned a lot about security when it comes to OTP (One-time password),

and implemented a solution that is fit for a native app.

● Eebbaa

I started to work on our IoT device(Arduino with Telenor 4G sim) I spent time in finding out how

Arduino IoT device connects to the internet. the are plenty of examples related to the topic so I

used my time to understand what is going during connecting your IoT device and what you

need.

● Dawit

5

TRYE APP 143

I learned a lot about which GPS module for a system is to be selected since there are

different types of modules. We can select the module directly based on the target of our

work.

6

TRYE APP 144

A.1.11 Sprint 11

Trye app Sprint 11 Summary

Sprint Ending 3/4

Context

First Day of Sprint: March 30, 2020

Last Day of Sprint: April 3, 2020

Working Days in Sprint: 5

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 5 5

Andreas Røed Kjønnerud 5 5

Joachim Nordholmen 5 5

Eebbaa Dhugaasaa Bantii 5 5

Dawit Abamachu 5 5

TRYE APP 145

Burndown chart

Contents and Assessment

Points Planned: 32

Points Earned: 17

2

TRYE APP 146

Story Points Result

USN-39 I as a software engineer need to make
users able to view and edit their user information
inside the app so they can update their data

3 Done

USN-41 I as a software engineer need to
experiment and find a date-picker for an
easy-to-use rent interface. (Date from- Date to
and calculate days/hours and cost to then input
into the Vipps/payment solution).

3 Done

USN-36: We as hardware engineers need to set a
test server(IoT platform) for testing our
connection with IoT modules(MKR NB 1500).

5 Started

USN-56: We as hardware engineers need to
simulate MQTT data using a computer program,
to limit the data usage on the SIM card

5 Started

USN-38: We as Hardware engineers need to
connect our IoT modules to the test server(IoT
platform) by following the right procedure.

6 Done

USN-44: We as Hardware Engineer need to send
our sensor data from the Arduino module to the
service based on the Modelled data.

5 Started

3

TRYE APP 147

USN-26: I, as a hardware engineer, need to get
the GPS coordinates and so the users know
where the bike is located.

5 Done

Sprint Review

● Andreas:

I finished the user story USN-39, but I had to use an excessive 2 days because of a problem

with planet9. This means that I had to create a new instance of the program and set up the

database again. This means the sprint finished on Friday instead of Wednesday as intended,

and I had to use 5 days on a 3-day story. That means I have to use the easter to catch up and

document my work

● Tobias

I did research on finding suitable research for a date-picker that is easy to use and fits our

application. The research I did made me find one suitable solution, and in the next week, I will

work together with Andreas to setup the booking-system and price calculation. (Price per day

multiplied by days picked). We’ve also been criticized for our lack of uniform documentation. I,

therefore, went over our entire website getting rid of typos and bad language. I also did changes

to the navigation on the website to make it more intuitive and got rid of the linked document to

the linked document. To make this happen I had to rewrite and reformat a lot of google

documents.

To ensure that the documentation is readable, I will plough my way through the original

documents and get rid of a large number of typos.

4

TRYE APP 148

● Joachim:

I worked on simulating MQTT data (USN-56) to speed up the development process as I don’t

need to wait for the Arduino to be ready to send data. Tested out different server platforms, such

as Microsoft Azure and Google Cloud Platform (GCP), to receive the data from the MQTT data

simulator which can be changed out with the data from the Arduino when that is ready. user

story USN-56 and USN-36 were mixed together in this week, as both are dependent on each

other.

● Eebbaa

In this sprint I was working on connecting the IoT module(Arduino + 4G) with the internet and

tried to follow Arduino IoT tutorials and other available resources to connect the MKR nb 1500

Arduino with the internet and then to the server.

● Dawit

In this sprint, I worked on the GPS coordinates to find the approximate location for the current

address and the real-time that matches with the Norwegian Time. I took some days to figure out

and do the right code that approves me to get the close location of the current address and the

real-time as expected. At last, I found the address and the Time. By the current address, I

meant that the location where the GPS module is receiving the data from the satellites.

Sprint Retrospective

● Andreas:

I learned how to display data in the app, and how to use the GET method of the database API

and also how to convert the data from the response to a javascript string.

5

TRYE APP 149

● Joachim:

Having to work on USN-36 and 56 at the same time was unexpected therefore these need a bit

more work. but I learn a lot about how the GCP environment works, and with this new

knowledge, I think we should be able to connect to the GCP environment soon with either the

python script or an actual Arduino

● Tobias:

During last week I got familiar with the different types of date pickers that OpenUI5 supports.

The one we went with is a DateRangePicker derived from a DatePicker object. Main differences

are that a DatePicker only picks one date, meanwhile, the DateRangePicker picks a range of

dates. Meaning a start and end date. This combined with me starting to tackle our non-uniform

documentation it has been a hectic and productive week.

● Eebbaa

for connecting the IoT board with the internet I followed the materials available on the Arduino

website where I found out to connect an IoT sim with the internet we need to have APN number

beside pin number, where I called to Telenor to get the APN number and I connected my board

to the internet. Then started working to connect to a server, where we need to set a server and I

discussed with Joachim and he came with an idea to set azure web server which is free of

charge and they have some tutorial how to connect IoT devices. in the beginning, Joachim set

the Azura webserver and he adds the IoT device I had in his server and we tried to connect the

server and the device. Me from the IoT device side and Joachim on the server-side. where I

sent him Hello message where he received the message on the server-side. for further work, I

also created my Azura webserver account using my student email for free.

● Dawit

6

TRYE APP 150

I got a big lesson on how to interface the GPS module with the Arduino and find the specific

data that I was looking after. I also perceived which environment is suitable for experimenting to

receive data from the satellites.

7

TRYE APP 151

A.1.12 Sprint 12

Trye app Sprint 12 Summary

Sprint Ending 24/4

Context

First Day of Sprint: April 20, 2020

Last Day of Sprint: April 24, 2020

Working Days in Sprint: 5

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work. This is the first real sprint after easter and exam

period

Name Planned Days Worked Days

Tobias Hylleseth 5 5

Andreas Røed Kjønnerud 5 5

Joachim Nordholmen 5 5

Eebbaa Dhugaasaa Bantii 5 5

Dawit Abamachu 5 5

TRYE APP 152

Burndown chart

Contents and Assessment

Points Planned: 33

Points Earned: 27

2

TRYE APP 153

Story Points Result

USN-42: I as a software engineer need to find a
suitable function to load the interactive
javaScript map “on-load”.

1 Discarded

USN-43: I as a software engineer need to clean
up the differences in the documentation on the
website. Also, clean documentation off of typos
and bad language.

3 Done

USN-46 I as a software engineer need to display
bikes in the bookings tab so they can be
selected and put in booking table so users can
book bikes.

3 Done

USN-48: I as a software engineer need to display
the booking history for the user so the user can
check their renting history.

1 Done

USN-36: We as hardware engineers need to set a
test server(IoT platform) for testing our
connection with IoT modules(MKR NB 1500).

5 Done

USN-56: We as hardware engineers need to
simulate MQTT data using a computer program,
to limit the data usage on the SIM card

5 Discarded

USN-51: We as hardware engineers need to send
the IoT data from the MQTT broker to the
database, so the data can be collected using a
simple call by the app

5 Started

USN-44: We as Hardware Engineers need to send
our sensor data from the Arduino module to the
service based on the Modelled data.

5 Not Done

3

TRYE APP 154

USN-59: I, as a hardware engineer, need to
convert the GPS coordinate code into a class
library so that we can send the return functions
to the server.

5 Started

Sprint Review

● Andreas:

I worked on two user stories related to the booking system since it is one of the most important

features of the app. I finished both my user stories and Tobias verified that they worked so I

could confirm it done by the end of the sprint.

● Joachim:

where able to finish USN-36 and USN-56 and therefore started worked on the Google Cloud

platform to get the data from the pub/sub service to a database with the end goal of the data

being accessible by the mobile app. The database is now updating according to the events

happening in pub/sub (messages from Arduino), but there is some problem retrieving the data

from the mobile app, as that is a service outside the Google ecosystem, and therefore needs

some extra attention to get the API keys to work.

● Tobias:

At the start of the week, I started at USN-43, which was cleaning up the documentation website

for spelling errors and lack of uniform fonts etc. Also did a lot of work on USN-42 which I had to

discard at the end due to technical difficulties and lack of priority, and increased pressure of

making the website ready for the submission deadline. A lot of work was also put into finalizing

and documenting User Stories done in the past. As we had focused on pure technical work for a

couple of hours we had quite a backlog of documenting that needed to be done.

4

TRYE APP 155

● Eebbaa

After connecting the device with the internet, the device should send data to the server and I

was working on USN-44 which is related to this topic.

● Dawit

I started to work on USN-59, for the users need to know the bike's position when it is in need.

This user story directly reused code from USN-26. I tried to figure out the class library where I

was looking for and convert the USN-26 code into a class. I did it, but when the code was

uploading into Arduino, the error was displayed repeatedly.

Sprint Retrospective

● Andreas:

I used a lot of my past knowledge of my work so far in OpenUI5 and javascript which made it

easy for me to finish my user stories. But I still learned some new things about displaying data

from the databases.

● Tobias:

I started my mission of trying to get rid of typos and spelling errors, and after consulting with

Jose, I am confident that I at least took a step in the right direction when it comes to readability

and language. When it comes to the USN-42, I could not find the function I ideally would use for

loading the map, but as the deadline for submission comes closer I found it reasonable to

Discard the User Story and focus on the documentation as that was our main working point

earlier in the project. Realized that having the perfect solution without showing it properly makes

no sense.

5

TRYE APP 156

The User Story “backlog” is slowly getting dealt with, and the number of undocumented User

Stories is getting close to none. As a group, we are trying very hard to document properly so

that everything is as it should for the last presentation.

● Joachim

Where finally able to finish USN-36 and USN-56 and started on USN-51. starting to get a good

grip at the GCP environment, and development using the platform starts speeding up.

● Eebbaa

I was working on how to send data to our server. In the beginning, I was working on the azure

webserver where I create my free account, I get familiar with the platform of IoT hub for the

Azure platform. Since the software group decided to use google server for their back end, we

decided also to use google cloud platform for the hardware part also. so I started to learn about

the Google cloud platform. I have to set the communication between my Arduino and google

platform, which has different procedure from the azure web server. In this sprint I learned the

IoT devices communication protocol called MQTT and used it when sending data to server both

for azure and google servers. and I managed to send sensor data in a format we wanted to the

Google cloud platform and we managed to finish the USN-44.

● Dawit

This USN-59 looks simple because it is a version of USN-26, but I didn`t grip why there was an

error when the code was running. I tried to ask the team of hardware, and they helped me, but it

didn`t upload well.

6

TRYE APP 157

A.1.13 Sprint 13

Trye app Sprint 13 Summary

Sprint Ending 1/5

Context

First Day of Sprint: April 27, 2020

Last Day of Sprint: May 1, 2020

Working Days in Sprint: 5

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 5 5

Andreas Røed Kjønnerud 5 5

Joachim Nordholmen 5 5

Eebbaa Dhugaasaa Bantii 5 5

Dawit Abamachu 5 5

TRYE APP 158

Burndown chart

Contents and Assessment

Points Planned: 36

Points Earned: 24

2

TRYE APP 159

Story Points Result

USN-47: I as a software engineer need to go
through the original google documents and
spellcheck with Grammarly.

3 Done

USN-49: I as a software engineer need to fix the
calendar in the booking system so it can
calculate the availability for users and stop users
from booking a date back in time

2 Done

USN-50: We as software engineers need to fix a
pin code system so we don't spend that much
money on sending out SMS to the customers

2 Done

USN-51: We as hardware engineers need to send
the IoT data from the MQTT broker to the
database, so the data can be collected using a
simple call by the app

5 Done

USN-35: We as hardware engineers need to
model the data sent from the Arduino to the
webserver so we are able to send data in a safe,
reliable and efficient way

3 Done

USN-37: We as hardware engineers need to learn
about encryption so the connection between
bike and server is secure.

3 Done

USN-58: We as hardware engineers need to send
a command from the Google cloud platform to
turn ON/OFF the motor.

6 Started

3

TRYE APP 160

USN-29: We as hardware engineers need a way
to stop the motor using the microcontroller, so
the user can't use the bike without paying.

3 Started

USN-60: I, as a risk manager, need to select the
proper risk identification techniques that help us
to identify risks for each part of the project.

3 Done

USN-61: I, as a risk manager, need to list all risks
in the risk register for better management of the
project.

3 done

USN-59: I, as a hardware engineer, need to
convert the GPS coordinate code into a class
library and so we can send the return function to
the server.

3 Inprogress

Sprint Review

● Tobias

I finished the User Story USN-47 together with verifying that the work Andreas did in USN-49

was sufficient. After I looked at all the different original Google Documents, I started working on

the verification-documentation that needs to be done. As the Verification Manager came up with

4

TRYE APP 161

a template to easily verify User Stories, there is a lot of work that’s needed to be done for us to

be done with everything documentation-related for the deadline.

● Andreas:

I finished the user story USN-49 and did a lot of work on USN-50. We finished both the user

stories in time and we verified that they worked.

● Joachim

Where able to upload the data to the database and therefore finished USN-51. I started working

on figuring out how to pull data from the database using a REST API so the mobile app can

receive the data about the bike location. stared putting more focus on the user story, and put in

the final touch. Also were able to finish USN-35 of modelling the data that should be sent.

● Eebbaa

This week I worked on finding out how the Arduino board manages encryption during sending

data. I also started USN-58 to find out some way to send a command to the Arduino for taking

some action.

● Dawit

In this sprint, I worked on these two User stories, USN-60 and USN-61. Since managing the risk

is vital for our project's success, we need to understand and find these techniques that support

us in identifying risk. We also need the risk register for ease of managing the risk. I took the time

and finished both USN-60 and USN-61.At last, about USN-59, I talked with Joachim to fix it

together whenever we get time.

Sprint Retrospective

● Andreas:

I learned how to use UTC times in javascript and calculate time using milliseconds. Also learned

about booking overlaps and what algorithms that can be used for checking it.

5

TRYE APP 162

● Tobias:

I learnt how to be efficient with spell-checking with Grammarly as well as getting a good grasp of

how to fill out the verification documents in an efficient manner, while still being able to have

good quality. Even though I regret not starting to polish and build the documentation needed for

my part of the project earlier, some weeks with long working hours will be sufficient enough to

write proper documentation for all the work I have done.

● Joachim

I started working on figuring out how to pull the data from the database, but as I am not the one

working on the app, it was not required, and therefore focused on finding the information

required to pull the data out by the app. I have worked on the user story USN-35 for some time

now for a few weeks when I have had some time to spare and have been an iterative process.

● Eebbaa

Since security is a vast topic, I tried to be specific on how security is applied during

communication between our IoT device and the server and how the board manages to use its

inbuilt crypto chip to encrypt data before sending it. I learned how the google cloud platform

manages to check the data is actually coming from a registered IoT device. for this project, we

decided to use already existing security methods, but it is possible to secure your IoT

application by user self by building everything from scratch which requires talented security

experts and it needs time.

● Dawit

I discovered different types of risk identification techniques, their use, and their difference in an

understandable manner. I went through how to create and use the risk register in the project.

The lesson I learned endowed me with self-confidence in managing the risk in a project.

6

TRYE APP 163

A.1.14 Sprint 14

Trye app Sprint 14 Summary

Sprint Ending 8/5

Context

First Day of Sprint: May 4, 2020

Last Day of Sprint: May 8, 2020

Working Days in Sprint: 5

Team Members

The following people participated in the sprint. Also listed are the days they were expected to

work and the number of days they did work.

Name Planned Days Worked Days

Tobias Hylleseth 5 5

Andreas Røed Kjønnerud 5 5

Joachim Nordholmen 5 5

Eebbaa Dhugaasaa Bantii 5 5

Dawit Abamachu 5 5

TRYE APP 164

Burndown chart

Contents and Assessment

Points Planned: 23

Points Earned: 17

2

TRYE APP 165

Story Points Result

USN-53: I as a software engineer need to test out
the stripe card payment solution, and set up a
test server and make a test payment.

2 Done

USN-54: I as a software engineer need to set up
an algorithm for checking if bikes are available
for unlocking and that they are clickable so we
can send a signal to the bike

2 Done

USN-55: I as a software engineer need to make
user be able to delete their account if they no
longer want to be customers

2 Done

USN-57: I as a software engineer need to set up a
simple Admin app that we can build on

1 Done

USN-29: We as hardware engineers need a way
to stop the motor using the microcontroller, so
the user can't use the bike without paying.

3 Done

USN-58: We as hardware engineers need to send
a command from the Google cloud platform to
turn ON/OFF the motor.

6 Done

USN-9: I, as a risk manager, need to analyze risk
for the project so that we can better understand
how to reduce and avoid the risk.

3 Done

3

TRYE APP 166

USN-1: I, as a risk manager, need a project
SWOT analysis technique that helps to analyze
our group.

4 Done

Sprint Review

● Andreas:

I finished the final user stories and verified them so we can start working on the report

● Joachim

Worked on finishing the last documentation for the user stories, and did some verifications for

the user stories worked on over the last few weeks.

● Tobias:

This week was spent finishing all User Stories, and getting done with the Verification of all

software User Stories. This was done in combination with Andreas, where I did the Verification

of most the Software User Stories where Andreas started working on the report. At the end of

the Verification Process (Last 5 of ~25) Andreas helped me out to get every User Story properly

documented.

● Eebbaa

I was working on USN-58 and USN-29 and on documentation for user histories, that I hadn’t

documented.

● Dawit

In this sprint, I worked on these two user stories, USN-1 and USN-9. Since analyzing the team

of the project and the risk in the project was essential, I had worked on analyzing the risk by use

4

TRYE APP 167

of probability-impact matrix, and analyzing the team by the technique of SWOT analysis. Both of

them are done well. Andreas approved the USN-1.

Sprint Retrospective

● Andreas:

I learned a lot about the stripe payment API and what kind of security issues that can be faced

when implementing it.

● Joachim:

I think I should have documented the verification more often then I have, and not most in just

one week. almost all the user stories were verified but some verification documents were

missing. but as I already had the data, it was easily done.

● Tobias:

The final User Stories have been documented, with a complementary Verification document.

This means that our entire documentation stack is up to date and ready to put as an appendix in

the Bachelor Report. From next week and out I will purely focus on writing my parts of the

Bachelor Report with minor double checks of earlier documentation.

● Eebbaa

I used more time to find out the different way of sending commands and configuration messages

from the cloud to the IoT devices, I have been trying different options which we can use for our

project, and things are not going as expected I am not getting the result I expected. Then I

started documenting some of my user histories. when I test my user histories I save the results

but I waited too long to write the verification documents which is not good. Focusing on getting

results on technical work and postponing the documentation is not a good habit, I should

improve this problem. I finished USN-29 which started last before. I managed to send a

command message from the Google cloud console to the device and based on the command

message received the Arduino can take an action like for OFF message the device will OFF the

inbuilt led.

5

TRYE APP 168

● Dawit

I learned a lot while analyzing the risk. Following the work of risk analysis, I fully understood

these risks, which needed close attention and less attention. I also learned the mitigation actions

to respond to the risk. Without the management of the risk in the project, the project is at risk.

6

TRYE APP 169

A.2 Version reports

A.2.1 User Alpha Version 1

User app Alpha 1 Summary

Development deadline 9/3

Context

First Day of development: February 14, 2020

Last Day of development: March 9, 2020

Working Days in development: 13

Progress chart

TRYE APP 170

Contents and Assessment

Points Planned: 26

Points Earned: 26

Story Points Result

USN-18: We as software engineers need to make
a login system connected with a database so
users can register

15 Done

USN-30: We as software engineers need to finish
the basic navigation and the main menu interface
so we can show a demo on the second
presentation

4 Done

USN-27: We as software engineers need to
implement a map API for the app so users can
see where the rentable bikes can be located

2 Done

USN-17: We as software engineers need to learn
how to build a database with tables for the app to
store our data

2 Done

USN-15: We as software engineers need to set
up our Neptune workspace for the application so
we can start building the app

3 Done

2

TRYE APP 171

Alpha 1 Review

● The Alpha version works as intended and we and our employers from TRYE both like

the prototype and how far we have come in such a short amount of time

● This Alpha version was developed quick without any planning so that we could develop

faster. We made this Alpha because the guys from TRYE wanted to see progress. But

for the next Alpha, we will do more of the required planning including UML and

database planning

Alpha 1 Retrospective

● We have learned a lot about using planet9 and its tools with the app studio, APIs and

the database. We will put this to good use when we start developing the next alpha

which we want to finish in April.

● We have learned about the syntax of javascript language which will help us with faster

development later.

3

TRYE APP 172

A.2.2 User Alpha Version 2

User app Alpha 2 Summary

Development deadline 1/5

Context

First Day of development: March 9 , 2020

Last Day of development: May 5, 2020

Working Days in development: 35

Progress chart

TRYE APP 173

Contents and Assessment

Points Planned: 24

Points Earned: 24

Story Points Result

USN-33: I as a software engineer need to change
the registering system to the Alpha2 version, for
the app to work as intended.

3 Done

USN-34: I as a software engineer need to fix the
one-time password system to the Alpha2
version, for the app to work as intended.

4 Done

USN-39: I as a software engineer need to make
users able to view and edit their user information
inside the app so they can update their data.

3 Done

USN-41: I as a software engineer need to
experiment and find a date-picker for an
easy-to-use rent interface. (Date from- Date to
and calculate days/hours and cost to then input
into the payment solution).

3 Done

USN-46: I as a software engineer need to display
bikes in the bookings tab so they can be
selected and put in booking table so users can
book bikes.

3 Done

USN-48: I as a software engineer need to display
the booking history for the user so the user can
check their renting history

1 Done

USN-49: I as a software engineer need to fix the
calendar in the booking system so it can
calculate the availability for users and stop users
from booking a date back in time

2 Done

2

TRYE APP 174

USN-50: We as software engineers need to
create a pin code system so that we don't send
out an unnecessary amount of SMSs

2 Done

USN-53: I as a software engineer need to test out
the stripe card payment solution, and set up a
test server and make a test payment.

2 Done

USN-54: I as a software engineer need to set up
an algorithm for checking if bikes are available
for unlocking and that they are clickable so we
can send a signal to the bike

2 Done

USN-55: I as a software engineer need to make
user be able to delete their account if they no
longer want to be customers

2 Done

Alpha 2 Review

New features:

● Booking system

● Unlocking system

● Pin code system

● History view

● Edit pin and delete profile

● Payment system

● Help page

● Information pages completed

3

TRYE APP 175

 Removed features:

● The settings tab as it had no function

● The button that appears when you click on the symbols on the map as it has no function

Alpha 2 Retrospective

● We have implemented all the features we wanted and everything is working as

intended.

● All that is needed for the user app to be released as a beta are these security features:

- Run the app in HTTPS

- Encrypted pin codes in database

- Find a way to hide the stripe secret key

- Find a way to calculate price on the server side so customer won't be able to

change the price on the client side

- Setting up an mail server to send receipts for the customers safety

4

TRYE APP 176

A.2.3 Admin Alpha Version 1

Admin alpha 1 Summary

Development deadline 1/5

Context

First Day of development: May 4 , 2020

Last Day of development: May 5, 2020

Working Days in development: 2

The development included only one user story so it is no point in a graph.

TRYE APP 177

Contents and Assessment

Points Planned: 1

Points Earned: 1

Story Points Result

USN-57: I as a software engineer need to set up a
simple Admin app that we can build on

1 Done

Alpha 1 Review

New features:

● View bookings

● Unlocking program

2

TRYE APP 178

Planned features for next alpha:

● Delete/ban users

● View users

● View bikes on map

Alpha 2 Retrospective

● The most important features are added so Trye can have an overview of the bookings

and unlock bikes for larger groups.

3

TRYE APP 179

A.3 Epic reports

A.3.1 MA epic

Mobile application epic summary

Development deadline 25/5

Context

First Day of development: February 14, 2020

Last Day of development: May 25, 2020

Contents and Assessment

Points Planned: 52

Points Earned: 50

Story Points Result

USN-10: I as a software engineer need to
research the existing scooter apps to look at the
user interface and functionality

1 Done

USN-11: I as a software engineer need to make
UML Diagrams for user app so that I can get a
better overview of the application

2 Done

USN-12: I as the SCRUM Master need to find a
suitable Platform the Development

1 Done

TRYE APP 180

USN-18: We as software engineers need to make
a login system connected with a database so
users can register

15 Done

USN-27: We as software engineers need to
implement a map API for the app so users can
see where the rentable bikes can be located

2 Done

USN-28: We as software engineers need to
implement a payment solution for the app so
users can pay for the bikes they want to rent.

2 Not finished

USN-30: We as software engineers need to finish
the basic navigation and the main menu interface
so we can show a demo on the second
presentation

4 Done

USN-33: I as a software engineer need to change
the registering system to the Alpha2 version, for
the app to work as intended.

3 Done

USN-34: I as a software engineer need to fix the
one-time password system to the Alpha2
version, for the app to work as intended.

4 Done

USN-39: I as a software engineer need to make
users able to view and edit their user information
inside the app so they can update their data.

3 Done

USN-41: I as a software engineer need to
experiment and find a date-picker for an
easy-to-use rent interface. (Date from- Date to
and calculate days/hours and cost to then input
into the payment solution).

3 Done

USN-46: I as a software engineer need to display
bikes in the bookings tab so they can be
selected and put in a booking table so users can
book bikes.

3 Done

USN-48: I as a software engineer need to display
the booking history for the user so the user can
check their renting history

1 Done

2

TRYE APP 181

USN-49: I as a software engineer need to fix the
calendar in the booking system so it can
calculate the availability for users and stop users
from booking a date back in time

2 Done

USN-50: We as software engineers need to
create a pin code system so that we don't send
out an unnecessary amount of SMSs

2 Done

USN-54: I as a software engineer need to set up
an algorithm for checking if bikes are available
for unlocking and that they are clickable so we
can send a signal to the bike

2 Done

USN-55: I as a software engineer need to make
the user be able to delete their account if they no
longer want to be customers

2 Done

Epic Review

MAR-02: The mobile app should have a booking system.

The booking system is working according to plan and it is visually appealing for the users which

was confirmed by user tests.

MAR-03: The mobile app should have a payment system.

The payment system is currently in test version. It will not not be put in live version before

security features are implemented.

3

TRYE APP 182

MAR-04: The app should have a reporting system.

The reporting system is finished and working as intended.

MAR-05: The app should have a map.

The map has a visually appealing interface which show all the rental locations. We consider this

part to be complete.

MAR-06: The app should store user data and other significant data securely in a database.

The data storage works as intended and we are satisfied with the result of this part. We consider

this part finished.

Epic Retrospective

The development of the application has been smooth at times, but have had some technical

difficulties that has halted our progress during the development. The main difficulty we had was

writing the correct API calls within Planet9. When had learned how to do the API calls the

development went much faster.

4

TRYE APP 183

A.3.2 AS epic

Admin app epic summary

Epic development deadline 25/5

Context

First Day of development: February 14, 2020

Last Day of development: May 25, 2020

Contents and Assessment

Points Planned: 1

Points Earned: 1

Story Points Result

USN-33: I as a software engineer need to set up a
simple Admin app that we can build on

1 Done

TRYE APP 184

Epic Review

ASR-01: The admin system should be able to control the lock on the bike.

This epic is considered done for the software part. The hardware guys are close to the solution

for us to send the unlock signal, so we are certain that we will have it working by the final

presentation.

ASR-02: The admin system should be able to manage user data.

This epic is considered to be ⅓ complete with the functionalities of viewing users and removing

users missing. This is the least important epic, so if we have time we will implement it before the

third presentation.

ASR-03: The admin system should be able to see who is using the bikes.

This epic is considered done from the software perspective. We have been able to receive

dummy data from the web server and put it on the map, so when we get the actual data from the

hardware it should work. We are certain that we will have this feature working with the hardware

before the third presentation.

2

TRYE APP 185

Epic Retrospective

This epic has only 1 point but has been worked on for a total of 4 days since we worked on

communication with the hardware system the last days before delivering the final report. This

means the real workload is about 4 points.

 The epic was not as hard to complete as we had initially thought but that is since we learned

much from our mobile application development.

3

TRYE APP 186

A.3.3 WS epic

Web server epic summary

Development deadline 25/5

Context

First Day of development: February 14, 2020

Last Day of development: May 25, 2020

Contents and Assessment

Points Planned: 39

Points Earned: 29

Story Points Result

USN-15: We as software engineers need to set
up our Neptune workspace for the application so
that we can start making our application.

3 Done

USN-17: We as software engineers need to learn
how to build a database with tables for the app to
store our data

2 Done

USN-21: We as software Engineers need to make
sure our database tables are in the 3rd normal
form using normalization to prevent undesirable
data dependencies

3 Done

USN-53: I as a software engineer need to test out
the stripe card payment solution, and set up a
test server and make a test payment.

2 Done

TRYE APP 187

USN-51: We as hardware engineers need to send
the IoT data from the MQTT broker to the
database, so the data can be collected using a
simple call by the app

5 Done

USN-35: We as hardware engineers need to
model the data sent from the Arduino to the
webserver so we are able to send data in a safe,
reliable and efficient way

3 Done

USN-36: We as Hardware engineers need to set a
test server(IoT platform) for testing our
connection with IoT modules(MKR NB 1500).

5 Done

USN-38: We as Hardware Engineers need to
connect our IoT modules to the test server(IoT
platform) by following the right procedure.

6 Done

USN-44: We as Hardware Engineers need to send
our sensor data from the Arduino module to the
server based on the Modelled data.

5 Not done

USN-56: We as hardware engineers need to
simulate MQTT data using a computer program,
to limit the data usage on the SIM card

5 Discarded

Epic Review

WSR-01: The web server should be able to communicate with the bike.

There are still some formatting issues with the JSON data being sent, this can be solved by

tweaking the message until it's in the right format

2

TRYE APP 188

WSR-02: The web server should be able to communicate with the app

We consider this part of the epic to be done as all communication between the server and the

app is working as intended and we have verified all of the functionalities needed.

Epic Retrospective

Software:

We have spent considerable more time on this epic from a software perspective than we

planned. There might not be a score of more than 10 points for the software user stories, but we

have had a lot of crashes to the database and security issues with the server. A lot of this work

has been unnecessary for the project in itself, but we as software engineers have learned much.

If we had more experience in this area before the project the workload for us of 10 points would

probably be more realistic.

Hardware:

Setting up the IoT server was not as easy as we first thought, during development, we got stuck

in multiple places and had to redo a lot of the work to make it work. The web server might have

been the epic with the most work involved, where most of the work that was done did not end up

in the final product. This meant we learned a lot, and can, therefore, set up a similar solution

much faster in the further.

3

TRYE APP 189

A.3.4 CS epic

Control System epic summary

Epic development deadline 25/5

Context

First Day of development: February 14, 2020

Last Day of development: May 25, 2020

Contents and Assessment

Points Planned: 38

Points Earned: 24

Story Points Result

USN-23: We as hardware engineers need to find
a way to get the speed from the bike

9 To be verified

USN-24: We as hardware engineers need to find
a way to read the voltage level of the battery

6 To be verified

USN-38: We as Hardware engineers need to
connect our IoT modules to the test server(IoT
platform) by following the right procedure.

6 Done

TRYE APP 190

USN-44: We as Hardware Engineer need to send
our sensor data from the Arduino module to the
service based on the Modelled data.

5 Not Done

USN-20: We as hardware engineers need to
listen to the signal cable, to find the speed and
power data

6 Discarded

USN-19: We as hardware engineers need to get
an overview of the eMTB learn about the power
system and existing hardware

3 Done

USN-25: we as hardware engineers need to test
Bluetooth communication and find it’s limitations
connected to our project.

3 Discarded

USN-36: We as hardware engineers need to set a
test server(IoT platform) for testing our
connection with IoT modules(MKR NB 1500).

5 Done

USN-29: We as hardware engineers need a way
to stop the motor using the microcontroller, so
the user can't use the bike without paying.

3 To be verified

2

TRYE APP 191

Epic Review

CSR-01: The controller should interface with the existing bike controller to read the battery level

and speed.

we have learned how the microcontroller should interface with the existing system, and the only

thing left if combine everything

CSR-02: The controller should send all relevant data to the webserver.

As there are some problems with the JSON format the data is not being sent correctly. this can

be read about in further detail in the webserver epic report.

CSR-03: The controller needs to be able to cut the power flow between the battery and the

motor.

here we used a relay to cut the power flow between the battery and the motor, this has not been

tested, as we don’t have a bike to test it on.

Epic Retrospective

We learned a lot about how an Arduino works and how we can interface with other systems, in

the start we tried some things that did not work, like interfacing with a communication cable or

Bluetooth signal, this did not work because of encryption and non-standard signals. What ended

3

TRYE APP 192

up working was picking up the signals directly from the source, f.g. battery level form the battery

and speed from the speed sensor.

4

TRYE APP 193

A.3.5 PS epic

Power system epic summary

Development deadline 25/5

Context

First Day of development: February 14, 2020

Last Day of development: May 25, 2020

Contents and Assessment

Points Planned: 3

Points Earned: 3

Story Points Result

USN-22: We as hardware engineers need to find
a way to power our microcontroller using the
bike's battery as a power source for our
hardware to function.

3 Done

TRYE APP 194

Epic Review

PSR-01 The power supply should connect to the bike battery.

As we have not have had access to a bike, we have not been able to test the power system

PSR-02 The power supply should power all of our systems.

The system has not been tested but should work as the parts used are very simple. the system

is not tested as that needs a bike to test it on.

Epic Retrospective

Most of the work done here was research about what existing parts is used to power other

systems. This means we learned a lot about how power flowers in a microcontroller, heat and

efficiency.

2

TRYE APP 195

A.3.6 TS epic

Tracking system epic summary

Development deadline 25/5

Context

First Day of development: February 14, 2020

Last Day of development: May 25, 2020

Contents and Assessment

Points Planned: 20

Points Earned: 10

Story Points Result

USN-26: We, as a hardware engineer, need to get
the GPS coordinates to test if the location of the
current position and the real-time is
approximately accurate.

5 Done

USN-36: We as Hardware engineers need to set a
test server(IoT platform) for testing our
connection with IoT modules(MKR NB 1500).

5 Done

USN-44: We as Hardware Engineers need to send
our sensor data from the Arduino module to the
server based on the Modelled data.

5 Not Done

USN-59: I as a hardware engineer, need to
convert the GPS coordinate code into a class
library so that we can send the return function to
the server

5 Not Done

TRYE APP 196

Epic Review

TSR-01 The TRYE bike system should be able to get GPS position.

The Arduino is now receiving GPS coordinates and are ready to be sent, the only thing left is to

implement this in the main code, so the code is able to run on one Arduino

TSR-02 The TRYE bike system should be able to send GPS position to the web server.

As there are some JSON formatting problems with USN-44 the data can not be uploaded until

this is fixed, as described in the web server epic report

Epic Retrospective

The GPS system is working as expected, but as other systems are not working as it should, we

are not able to send the data. there have been some problems with USN-59 to make code that’s

easy to implement in the rest of the product, but this can be discarded if it ends up taking to

much time

2

TRYE APP 197

A.4 Software User Stories

A.4.1 USN-10 Researching existing scooter apps

User story
ID: USN-10 I as a software engineer need to research the existing scooter

apps to look at the user interface and functionality

Who Worked Andreas

Who Verified Simon from TRYE

Status DONE

Requirement
MAR-02 The mobile app should have a booking system.

Verification

Ver-method Inspection Ver-priority HIGH

Introduction:

We wanted to look at the user interfaces and flow of 2 of the most popular scooter renting apps.

We wanted to look at the positives and negatives and learn from it when building our app

Inspection of the apps:

VOI:

1 Step: Phone verification(Automated text message server)

2 Step: Enter email address

3 Step: Make user accept the terms

4 Step: Make user accept to use location services

5 Step: Tutorial for the user

TRYE APP 198

App core

Help and Faq

Damaged bike? (Report case)

Bike not working? (FAQ or talk with support)

Issues with the app(Phone died, can’t find location)

Sustainability(How environmentally friendly is our bikes)

Self-insurance (If the user gets injured)

Data handling and user information(Follow GDPR)

Terms of use(FAQ list)

Payments(FAQ list)

Riding and parking(How to contact support and FAQ)

Payment and ride history

General rules

Profile page

Map page(main UI)

Scan to ride

Add payment

Menu

TRYE APP 199

TRYE APP 200

TRYE APP 201

TRYE APP 202

TRYE APP 203

TRYE APP 204

TRYE APP 205

TRYE APP 206

CIRC:

1 Step: Accept the use of location services

2 Step: Continue with Facebook or verify a phone number

3 Step: Enter email and name+surname

4 step: Accept term of use and privacy declaration for data

5 step: Choose and add method of payments

App core

Map page(main UI)

Scan to ride

How to ride

Menu

Find your current location

Help and faq

wallet

history

settings page with account information

invite your friend

redeem code/campaigns

TRYE APP 207

TRYE APP 208

TRYE APP 209

TRYE APP 210

TRYE APP 211

TRYE APP 212

TRYE APP 213

TRYE APP 214

Conclusion:

The VOI app has by far the best login interface since it is very simple to use and has

fewer steps then the CIRC app. And we as users did not appreciate the way the CIRC

app had 5 steps to go through before getting to the user interface where they force

payment methods on you and wants to know your location right away instead of in the

main menu. We think the VOI way is better here you just verify your phone number,

enter an email then you are in the user interface right away, then the user can add

payment options and turn on location services after to make it as simple and user

friendly as possible. The circ app has a better sidebar menu which is easier to use and

understand. The map interface is the same on both apps. Therefore we will model the

app in a way that is close to the VOI app login interface. But model the sidebar menu

from the CIRC app since we thought theirs is more similar to what we need for our app.

It also much better to use because it was easier to understand the menu. The CIRC app

had another perk that VOI didn't have, which was app credits. The app credits make it

possible for the user to add credits to their account which they then can use for rent,

similar to a gift card. This is also something we might want to implement if we are to

make a hybrid payment solution with both booking and minute rent. I asked Simon from

TRYE about my decision and he agreed with me in a meeting in Holmenkollen 27/1.

Links:
https://apps.apple.com/us/app/circ-electric-scooters/id1446543957

https://apps.apple.com/us/app/voi-scooters-get-magic-wheels/id1395921017

TRYE APP 215

A.4.2 USN-11 Creating UML diagrams to get a better
overview of the application

User story
ID: USN-11 I as a software engineer need to make initial UML Diagrams for

the user app so that I can get a better overview of the
application

Who Worked Andreas

Who Verified Tobias

Status Done

Requirement
MAR-02 The mobile app should have a booking system.

Verification
IV-04 Inspect our initial UML diagram to check whether or not they fit

with our requirement/development plan.

Ver-method Inspection Ver-priority High

Introduction:

Here are the initial UML diagrams for planning the app. It will be extended with more

sequence diagrams once we understand the flow of the menu items.

TRYE APP 216

Figures:

Use case register

TRYE APP 217

Main menu use case

TRYE APP 218

Register sequence

TRYE APP 219

User info sequence

TRYE APP 220

Trye app class diagram

TRYE APP 221

A.4.3 USN-12 Choosing a suitable development platform

User story
ID: USN-12 I as the SCRUM Master need to find a suitable development

platform

Who Worked Tobias

Who Verified All

Status Done

Requirement
MAR-02
ASR-01

ASR-03

The mobile app should have a booking system.
The admin system should be able to control the lock on the
bike.
The admin system should be able to see who is using the bikes.

Verification
ID: IV-02 Inspect Planet9 to check whether or not it is suitable to develop

in.

Ver-method Inspection Ver-priority HIGH

Introduction:
As we started thinking of our project given by Trye AS, I immediately thought to myself

that we needed a development environment that is available 24/7 and can be hosted

remotely on a server/accessed remotely.

After doing some research, we found out that a Norwegian software-company named

Neptune-Software had just released a software named Planet9 that could fill all the

requirements above. I started testing the software, and after some while, I told my group

that it looked very promising, however, we needed some license keys for developing. I

set up a meeting with the company’s CTO and we all went to Oslo and had a short

TRYE APP 222

meeting with Njål (the CTO). He gave us 10 free development licenses so that we could

build our app alongside some tips and tricks.

Planet9 can be described as a “new generation” of software development as it’s main

focus is on being Low-code. This means that the solution and the complexity of the

problems are in focus, without having to rely on a syntax-perfect program. Low-code

does not imply no-code, and to get the functionality you would want as a developer you

need to code small scripts.

Method Used:
Planet9 is built upon many open-source standards such as OpenUI5 which was

released the summer of 2019 and is an open-source framework for developing

javaScript applications for any phone, any device, and computer. It also makes use of

RESTAPI’s, which enables us to connect with all the data sources we need, simple.

Combining this with built-in support for remote databases and it is accessible from

everywhere, even on mobile, it has been a smart choice.

Conclusion:

After using the software development environment for nearly two months I have grown

very fond of it. Especially how easy it is to release apps is very useful. Planet9 is also

very focused on different user roles and their accessibility. A role can be customized,

and there will only be given access to whatever part of the environment the role has

given access to. Enables us to do safe beta-tests without having to be afraid of the

security aspects of our platform.

Literature:

https://community.neptune-software.com/documentation/planet9

TRYE APP 223

TRYE APP 224

A.4.4 USN-15 Setting up our Neptune work space (Planet9)

User story
ID: USN-15 We as software engineers need to set up our Neptune

workspace for the application so that we can start making our
application.

Who Worked Tobias and Andreas

Who Verified Tobias and Andreas

Status Done

Requirement
MAR-02
WSR-02

The mobile app should have a booking system.
The web server should be able to communicate with the app.

Verification
TV-04 Test whether or not our Neptune workspace is running as

planned.

Ver-method Test Ver-priority High

TRYE APP 225

Setting up Planet9 to run on Amazon
Web Services

Running an instance of Planet9 in EC2 Linux Server

Author: Andreas
Additions: Tobias

Our first step in the right direction for getting Planet9 to run on an Amazon EC2 server was to
create an AWS account (Amazon Web Services) and launch a EC2 instance.

When the instance was done initializing, a KP (Key Pair) was created and we downloaded it
locally. The KP is essential for connecting to the server/instance with e.g. Putty with an SSH
connection.

TRYE APP 226

The KP was downloaded in a PEM-file and then converted to a PPK file(Putty Private Key file).

Next step was to download putty and find the public IP address of our instance:

TRYE APP 227

Then, we went ahead and entered the IP address of the instance in the Host Name field,

specified Port 22, and enabled SSH.

Then, as we had already downloaded the correct KP and converted it to a PPK, all we had to do

was to browse our way to the location of our PPK. To find the SSH settings, we had to navigate

from Connection -> SSH -> Authentication Parameters -> Private key file for authentication.

TRYE APP 228

Here we are logged in to our server using the root user ec2-user. The next step is to make the

Planet9 software run on the server. I (Andreas) had the documents needed on my dropbox, and

here is the list of commands used to install Planet9 and make it run using Linux shell commands

1. $ wget dropbox link 1 (The Planet9 software)

2. $ wget dropbox link 2 (The SQLite node)

3. $ chmod +x planet9-linux (Make program executable)

4. $ sudo yum -y install tmux (Install tmux to keep the program running after disconnecting)

5. $ tmux new -s planet9 (Create new tmux session to keep Planet9 alive 24/7)

6. $./planet9-linux (Execute planet9, it will run by default on port 8080)

TRYE APP 229

As we got Planet9 to run on our server, we needed to make changes to the firewall so that it

could be reached remotely/make the server public. First of all, we started by making the server

public for all IP-addresses both inbound and outbound, as well as making it communicate on all

ports and with any protocol.

Note: We might change the firewall settings later in the development due to security reasons.

Now that Planet9 is up and running and the server is public, we simply just enter the IP-address

of our server followed with a colon 8080 to specify port 8080 and we are in! Planet9 is now

accessible with any device/any browser. Below is a picture showing off the homepage of

Planet9 in chrome.

TRYE APP 230

Connecting to an amazon database instance
Here we do the same as we did with the server instance, just that we launch a database
instance instead. We also make it public and add firewall rules.

In this screenshot, you can see the public IP endpoint and the port 5432 which is standard for

PostgreSQL.

TRYE APP 231

We’ve also created a root user with a password for authentication when connecting to the DB,

for then to connect to it using SQL Workbench.

TRYE APP 232

Here we put in the IP, the port and the password we created.

Then we had to run these commands according to the Planet9 installation manual:

1. CREATE DATABASE planet9;

2. CREATE SCHEMA planet9;

Then we log in to Planet9 and go to the database tab where we fill in all the needed information

and click save. After that is done, the database is successfully connected.

TRYE APP 233

Conclusion:

Even though the setup might look easy, we struggled a lot and spent many hours to make it
work. Both the server and the database crashed several times, which meant we had to do all
our work all over again. Besides, setting up the security and firewall for the server is something
we have never done before, so it took some time to figure that out. However, we can now
conclude that the server and database are both running securely on the Amazon Cloud and that
they are successfully connected. Both Andreas and Tobias have tested and we can confirm that
it is working as intended.

Literature:
https://community.neptune-software.com/documentation/instructions

TRYE APP 234

A.4.5 USN-17 Building databases in Planet9

User story
ID: USN-17 We as software engineers need to learn how to build a

database with tables for the app to store our data.

Who Worked Andreas, Tobias

Who Verified Andreas and Tobias

Status Done

Requirement
MAR-06

WSR-02

The app should store user data and other significant data
securely in a database.
The web server should be able to communicate with the app.

Verification
TV-05 Test whether or not the database works as intended.

Ver-method Test Ver-priority High

Introduction:

We had to learn how to create, edit and use databases in Planet9. We wanted to learn

how the software uses the databases and add tables with attributes. We basically

wanted to learn as much as possible. All we knew before is that Planet9 makes it so we

don't have to manually code all the SQL calls to the database, but instead, use a

database API.

TRYE APP 235

The first thing to be done is to define a new table, give it a name and a description.

Then add the database to our package so it is easier to find when we create API for the

database and add use it en the app editor.

TRYE APP 236

Then it is possible to start adding properties to our database, including the name of the

columns and adding the data type and whether or not it is unique.

Now it is possible to display the table and see that planet9 will automatically add an id to

each entry and the dates and time the record was made and updated.

Here are some entries where you can see the unique IDs Planet9 has created to

reference the different users.

TRYE APP 237

Now it is possible to connect the database to the API. To do this we need to create a

new database API

Here, you can see the four different Operations available for the user’s table. If you

press on each operation individually, you can customize what it executes based on

what’s needed in our app. When done, you can run the Operations with a built-in API in

the App Designer.

TRYE APP 238

The 4 standard Operations for our database API is GET (Read data), PUT (Add data),

POST (Update table) and DELETE (Delete data). As probably noticed, this is a slight

change to the regular 4 SQL operations (SELECT, UPDATE, INSERT, DELETE).

Conclusion:

The database and the API have now successfully been set up and are ready to be used
in the app designer.

TRYE APP 239

A.4.6 USN-18 Creating a login system for our application

User story
ID: USN-18 We as software engineers need to make a login system

connected with a database so that users can register to our
application.

Who Worked Tobias and Andreas

Who Verified Tobias and Andreas

Status Done

Requirement
MAR-06 The app should store user data and other significant data

securely in a database.

Verification
IV-05 Inspecting whether or not the login system works as intended.

Ver-method Inspection Ver-priority High

TRYE APP 240

Introduction:

One of the most important features of an app is in our mind a well thought of

login-system. After looking at our competitors and how they do login’s we decided to

keep it simple and only ask for phone number and e-mail in our first alpha version. This

way we keep user input to a minimum, with still getting important information. As we are

building a mobile app that is selling quite expensive services (500NOK to several

thousand if a user rents a bike for weeks) we took the decision together with the guys at

Trye to send the user a one-time-password to the phone number given in the login-form.

With the use of OTP (One-time-password), we skip the process of having to remember

a password that is long forgotten in exchange for the SMS fee.

TRYE APP 241

Method Used:

The idea is simple. If a user has put in his/her credentials (email and phone number)

and successfully put in the correct OTP sent to his/her phone the user will be added to

the database. However, due to technical difficulties, we decided to record user data

when they press register and as the OTP gets sent, but have a “Verified” Boolean that

says whether or not a user is verified.

TRYE APP 242

The javaScript code for the submit form with comments.

TRYE APP 243

The javaScript code for the verification with comments

TRYE APP 244

Conclusion:

As of now, it is a working easy to use login-system that records user info and whether

the user has come through the verification-page of the app. This is a shell that we will

continue to work on for our next alpha.

TRYE APP 245

A.4.7 USN-21 Finalizing our initial databases

User story
ID: USN-21 We as software engineers need to make sure our initial

database tables are in the 3rd normal form using normalization
to prevent undesirable data dependencies.

Who Worked Andreas

Who Verified Tobias

Status Done

Requirement
MAR-06

WSR-02

The app should store user data and other significant data
securely in a database
The web server should be able to communicate with the app.

Verification
IV-06 Inspect whether or not data is saved an unnecessary amount of

times meaning it does not fulfill the requirements of a 3rd
normal form database.

Ver-method Inspection Ver-priority Medium

Introduction:

Here we will add the current databases and their relations

TRYE APP 246

These tables are in 3rd normal form since for the users all the data rely on the primary

key and is unique to each id. Same with the bike table. In the renting table, there is also

no dependencies since all the data will depend on the rent ID and will be unique for

each rent. You can also see the relations between the tables where 1 user can rent

many bikes, but a bike can only have one user. There is a one to many relationship with

the bike table also since there can be several bookings in the bookings table with the

same bike on different days.

Conclusion:

Tables are in 3rd normal form confirmed by the formal method of intuition.

TRYE APP 247

A.4.8 USN-27 Setting up an interactive map in the appli-
cation

User story
ID: USN-27 I as a software engineer need to implement a map API for the

app so users can see where the rentable bikes can be located.

Who Worked Tobias

Who Verified

Status Done

Requirement
MAR-05 The app should have a map

Verification
Ver-xx Ensure everything is as it should by visually looking at the map.

Ver-method Demonstration Ver-priority Medium

TRYE APP 248

Introduction:

The easiest way to visualize where the rentable bicycles are is with a map. The map

solution we have chosen for our first prototype is ESRI maps, which is open-source and

free to use.

TRYE APP 249

Method Used:

The map is created with javaScript, and it initialized when the user clicks “Verify
One-Time Password”. We had difficulties with creating an “on-load” function, meaning
that the map should be initialized when a user is navigating to the main screen. Our
solution to this was to have the entire map script put on to the button referring to the
main menu.

We have used an API to get ESRI Maps implemented in our app and used symbols and

pop-up templates to create clickable bicycles that says where it is located with a link to

rent it. The payment solutions and renting-part of the program are not yet created but

will be done in time for the third presentation.

Conclusion:

We have a working map in our app that visualizes the position of the rentable bicycles,

the localization of the bikes are implemented so that when the actual bikes send their

location, the map will update the location of the bikes. They bike icons are clickable and

TRYE APP 250

when clicked, they give the user their location as well as a “zoom to” button that zooms

in at that location. In addition, we added a link to Trye’s webpage and their ordinary way

of renting the bicycle.

Literature:
https://www.esri.com/en-us/home

https://www.arcgis.com/index.html

TRYE APP 251

A.4.9 USN-28 Implementing a payment solution

User story
ID: USN-28 We as software engineers need to implement a payment

solution for the app so users can pay for the bikes they want to
rent.

Who Worked Andreas, Tobias

Who Verified Tobias

Status Continued in USN- 53

Requirement
MAR-03 The mobile app should have a payment system.

Verification
IV-07 Inspect whether or not the payment solution works.

Ver-method Inspection Ver-priority High

TRYE APP 252

Introduction:

Having a payment solution is crucial to the useability of our application. The entire point

of the application is to make it easy for a customer/user to rent a bike and without a

payment solution, Trye would not be profitable.

Conclusion:

This User Story documentation is written quite a while after it was originally started, and

due to other functionalities having higher priority this User Story was disbanded.

However, after cooperating with Trye we found out that they are already using a

payment solution we can integrate into our app (Booqable).

This user story is continued in USN-53.

TRYE APP 253

A.4.10 USN-30 Creating a user friendly main menu nav-
igation bar

User story
ID: USN-30 We as software engineers need to finish the basic navigation

bar, and the main menu interface so that we can show a demo
on the second presentation.

Who Worked Andreas, Tobias

Who Verified Tobias and Hans Kristian (Trye)

Status Done

Requirement
MAR-01
MAR-02
MAR-03

The mobile app should have a renting system.
The mobile app should have booking system.
The mobile app should have a payment system.

Verification
IV-08 Inspect whether or not the basic navigation bar is finished.

Ver-method Inspection Ver-priority HIGH

Introduction

We split our app core into two parts. The map and the main menu, which is a sidebar

menu that can be hidden or visible by clicking on the navigation buttons in the upper left

corner. The point of having a split app is that we don’t have to load the map more than

once per session. This means that the user uses less mobile data, creates less loading

time and simplifies the difficult process of initializing the map “on-load”. We also mean

that a split app simplifies navigation. To support our decision, CIRC and VOI (our

competitors) have made use of a similar solution.

TRYE APP 254

Sidebar menu

There are 6 different tabs to click. They are:

1) The Profile page where users can view and change their personal information.

2) The Booking tab where a user can book a bike.

3) The Unlock bike tab is where users can unlock a bike they have successfully

rented/paid for.

4) The History tab where the user can look at their renting history.

5) The Help tab where the user gets shown how to get help if needed.

6) The Settings tab where the user can change general app settings.

TRYE APP 255

The image above shows how the menu is built with OpenUI5. As you can see, this way

of developing apps makes use of objects that you can drag/drop and sort/rename as

one would like. The app development is hierarchical, and the “higher” an object is, the

sooner the object will be loaded. For example, our start page is the “top” object.

Developing low-code saves us a lot of time that normally would be spent coding HTML.

The sidebar is located inside a SAP.M HBox, which means it will always fill the entire

sidebar page. The HBox enables the objects to “auto adjust” vertically, and inside the

list, we have the sidebar objects.

TRYE APP 256

The picture above is in the properties section of the Profile object. In our navigation bar,

we started by naming the first sidebar menu object “Profile”, set it as an active object

and made it clickable. For each of the six sidebar menu objects, we had to embed one

line of javaScript code to open their respective dialogue box.

Note: The sidebar menu object can be looked upon as buttons referring to the

respective page.

The javaScript needed to open our oDialog objects were:

oDialog”tabname”.open();

For our Profile tab, we embeded: oDialogProfile.open();

To hide and show the content of our sidebar-menu, we made the use of these two

javaScript lines.

oSplitContainer.setShowSecondaryContent(true); //Show sidebar button

oSplitContainer.setShowSecondaryContent(false); //Hide sidebar button

Conclusion:

We have now successfully created the pages needed in our app. The feature has been
tested on several mobile phones/different browsers and is user friendly and easy to use.
The next step in our development is working on each of the six submenus.

TRYE APP 257

A.4.11 USN-33 Changing the registering system to the
Alpha2 version

User story
ID: USN-33 I as a software engineer need to change the registering system

to the Alpha2 version, for the app to work as intended.

Who Worked Andreas

Who Verified Tobias

Status Done

Requirement
MAR-02 The mobile app should have a booking system.

Verification
IV-09 Inspect whether or not the changes done to the registering

system are working as expected.

Ver-method Inspection Ver-priority HIGH

Introduction

According to the sequence diagram we made in planning of the application, a form had

to be implemented. They guys from Trye told us that they wanted users to register their

name and address when they rent the bikes. To do this a new step in the login process

had to be implemented. This is step is form where user fill in their email, address,

postcode, city and region so that Trye can send bills to users who don't deliver the bikes

in time.

TRYE APP 258

The form page:

The buildup of the form page is quite similar to the first registration page. It has a

header and footer with buttons, and an information dialogue to help customers. It also

has flexboxes to hold the image, the information text, the form and the accept button.

Visually the form looks like this in the app:

TRYE APP 259

TRYE APP 260

Now for the backend code to make be able to put the form data into the database.

When the users register they get added directly into the database with only their phone

number added as their primary key. This key we use to know which use to find the user

we should update. When the user login we use a global javaScript variable which holds

the current user’s phone number. This key we use for our POST method. The POST

method is a CRUD endpoint method that updates data in the database based on a

WHERE parameter. So the code when the submit button is clicked looks like this:

First, we collect the data from the form and check if all the fields have been filled our, or

we give the customer a message that they need to fill in all the data. If all the data has

been filled in, we use the global variable currentUser in the WHERE sentence for the

update method to know for which user the data should be updated. Then we send the

customer to the next page which is the terms page.

TRYE APP 261

Now to demonstrate the process, I will register myself as a user and fill out the form to

verify that is works.

1. Step: the phone registration page

Now our database only contains one user which is Tobias. So I have the database

browser open and the app window open:

Now my phone number is filled in the input field, and submit is clicked.

TRYE APP 262

Then I fill in the one time password. Now I should appear in the database with my

phone number and default values:

The global javaScript variable is set to the current phone number

TRYE APP 263

We can see that the user has been created for the phone number I entered.

Now for the form:

TRYE APP 264

The form is filled out and submit is pressed. This means the user in the database should

be updated with the info that was filled in.

I update the browser and see that the data has been successfully updated.

But according to the sequence diagram for the second alpha version, the users should

skip this step the next time they go into the app. So to add this functionality some

coding is required.

Setting the registered boolean in the database to true in the terms page and check it in

the verification page:

Terms page

‘

TRYE APP 265

Verification page

So if the user is registered it should be directed now to the main menu and skip the form

and terms pages.

To do a small test I will log in again with the same phone number and see if I am

skipping the form this time:

TRYE APP 266

It works as intended. It went straight from the verification tab to the main menu.

Conclusion:

The updated login system is now working as it should according to the Alpha2 planning.

TRYE APP 267

A.4.12 USN-34 Setting up a one-time password feature

User story
ID: USN-34 USN-34: I as a software engineer need to fix the one-time

password system to the Alpha2 version, for the app to work as
intended.

Who Worked Tobias

Who Verified Tobias

Status Done

Requirement
MAR-06 The app should store user data and other significant data

securely in a database.

Verification
IV-10 Inspect whether or not the one-time password feature works as

expected.

Ver-method Inspection Ver-priority HIGH

Introduction

When it comes to registration, we have decided that the phone number of the user is

sufficient enough to get started. We do have a longer registration form later on in the

app, but to access it you will have to verify that you have a valid phone number.

Below, you can see the different steps needed for registering in our app. We start off

with asking the users for his/her phone number. This number is then saved locally on

the user’s device as “userphone”.

TRYE APP 268

Then the user is navigated to a page asking if the user is an existing customer or a new

customer.

TRYE APP 269

If you press “Verify with SMS”, a randomly generated four-digit is generated and also

stored locally on the user’s device. This is done with this line of javaScript.

Then, we set the OTP variable to the value of seq (four random digit generator).

After that, we need to build the SMS body with the correct OTP to be received in an

SMS.

TRYE APP 270

To send the user an SMS with the proper body we needed to do some work.

This was done by concatenating the SMS body with the OTP. To send the user an SMS

containing the four-digit code, we made use of an SMS sending software that supported

API’s named messageBird. In the API-call to messageBird we made use of the SMS

body we built earlier, as well as the userphone variable. Combined, this ensured that

the correct user receives the correct one-time password. The one-time password then

gets set as the user’s personal PIN-code to avoid having to send one SMS per login. It

also makes the login process significantly faster.

TRYE APP 271

Conclusion:

A One-Time Password is generated locally on each individual device upon registration.
When going through the registration sequence, an SMS with the respective OTP is sent
to the entered phone number and saved as that user’s personal PIN-code.

TRYE APP 272

A.4.13 USN-39 Make users be able to view and edit their
user information

User story
ID: USN-39 I as a software engineer need to make users able to view and

edit their user information inside the app so they can update
their data.

Who Worked Andreas

Who Verified Tobias

Status Done

Requirement
MAR-02 The mobile app should have a booking system.

Verification
IV-11 Inspect whether or not users are able to view and edit their user

information inside the app.

Ver-method Inspection Ver-priority HIGH

Introduction

In this user story, the user tab in the sidebar menu of the app is meant to build. It has

two core components, displaying the user data for the user and a form tab where the

user can edit their data.

TRYE APP 273

When the user clicks on the user button it will display a pop up which has two tabs. The

display data tab, and the edit data tab. In the app it looks like this:

TRYE APP 274

TRYE APP 275

Now for the backend stuff.

The profile button click event:

Here we use the GET API call to the database to retrieve the data. It will be called 3

times because the data will be split into 3 tables. This is to display the data in a more

organized way.

The dialogue window:

An icon tab bar has been added to the dialogue to switch between showing and editing

the data in a smooth way in the same dialogue.

TRYE APP 276

The edit submit button with comments

TRYE APP 277

To display the fields we use a Planet9 wizard which will create the table with the info we

need:

TRYE APP 278

And 3 APIS are added where the 200 success message with the data needs to be

linked to each table in this way:

Conclusion:

The Profile page is working as intended which was confirmed by both me Andreas and Tobias

testing it.

TRYE APP 279

A.4.14 USN-40 Finding a map made for mobile

User story
ID: USN-40 I as a software engineer need to find a map API that is made for

mobile users as the current API is made for desktop. Then I will
have to recreate the interactive map with its intended
functionalities.

Who Worked Tobias

Who Verified

Status Discarded

Requirement
MAR-05 The app should have a map

Verification
IV-12 Check whether the new map API works as expected.

Ver-method Inspection Ver-priority Medium

TRYE APP 280

Introduction:

The map we started using was provided by ESRI, and was and is free to use. However,

due to the API being free to use, it did not work as good on mobile phones as it did in a

PC browser. The only limitation we met with ESRI’s “old” and “free” solution was that if

you pressed an icon, a text box would appear that was too large for a mobile display.

As you can see, the pop-up window is fairly large compared to the fixed-size Trye bike

logo. On small screens, there are issues with the pop-up not showing at all/only

showing the title.

TRYE APP 281

Method:

To start off, I did extensive research on how to change the “popupTemplate”. A
“popupTemplate” is the pop-up ESRI makes use of when clicking on icons. After a
while, I noticed something weird, and that was that when clicking links I thought would
lead to ESRI I would in fact be redirected to a service named ArcGIS. This halted my
progress until I figured out that ArcGIS was ERSI’s “new premium brand” with full
support for mobile devices, at a pricy cost.

Eventually, I had to give up on the idea of recreating the already made map and making
it more “mobile” friendly.

The solution we came up with instead was to simplify our already made map. As we are
not aiming for the same functionalities as the scooter renting apps where you press the
nearest scooter and rent it, we want to show the customer at what cabins you are able
to rent a bike. The renting part of our application will be made in the respective
sub-menu, and when clicking on the Trye logo the popup will only print the name of the
cabin.

Conclusion:

As ESRI’s free service has limited support for mobile popups, we have decided to not

make use of the full range of the popup properties. This means that we only keep the

title, not the “description” part of the popup. With only printing the title, we avoid having

the inconsistent UI we had earlier.

If Trye decides to put time and effort into making the interactive map even “nicer”,

investing in ArcGIS’s service might be a good investment. As of now, we see no

substantial improvement with switching to the pay-per-use service that supports mobile

popups by default.

TRYE APP 282

A.4.15 USN-41 Finding a suitable date picker for an easy-
to-use rent interface

User story
ID: USN-41 I as a software engineer need to experiment and find a

date-picker for an easy-to-use rent interface. (Date from- Date
to and calculate days/hours and cost to then input into the
payment solution).

Who Worked Tobias

Who Verified Andreas

Status Done

Requirement
MAR-02 The app should have a booking system.

Verification
IV-13 Check whether or not the chosen date-picker works with our

desired functions.

Ver-method Inspection Ver-priority High

TRYE APP 283

Introduction:

Our employer’s focus (Trye) when it came to how the renting of the bicycles would be

done was to focus on entire days of renting. In addition, the guys at Trye wanted a one

day break between each lease, to ensure that the bikes are well looked after (quality

checks will be done in the start) and that the battery is fully charged. The entire

experience Trye is providing will dramatically fall in value if the battery is just 20%

charged when a customer unlocks the bike.

As of many of the functionalities we’ve already implemented in the application, I found

an already created OpenUI5 object named DatePicker. This object fulfilled half of my

requirements for a suitable date-picker, namely the Date from-. After some research, I

found an object derived from the original DatePicker named DateRangeSelection.

DateRangeSelection fulfilled all my requirements for a date-picker, and I was ready to

develop.

Method Used:

The functionalities needed to be done were:

1) Calculate how many days the user-selected period is.

2) Calculate the price based on Trye’s price table and the already calculated

user-selected period.

To achieve the first function, I needed to save the start-date and the end-date in two

variables. Retrieving the value from the date-picker was harder than originally thought,

but luckily Andreas helped me out and got it to work in a quick fifteen minutes.

TRYE APP 284

I also defined a “Difference In Time”.

I was unsure of how the “DateValue” was formatted, so to calculate the time difference,

I used a built-in javaScript function called .getTime(); This would format the time

difference how I wanted it, making it easier to calculate the number of days in a

rent-period.

The logic is simple, the “end” date minus the “start” date gave me the millisecond

difference in time. By first dividing it with 1000 (1 second), then 3600s (1 hour), then 24h

(1 day), we got the number of days in the selected period. However, I encountered a

tiny bug when calculating the difference in time, and I always ended up with 0,999997

days or so. This made it hard to calculate the price for the selected period, so I used a

Math.round function to round the number to the nearest integer (whole number).

TRYE APP 285

Then, for the second function (price-calculation), we just need to use the

“Difference_In_Days” variable and multiply it with the price per day. Trye’s price table

was: One day = 650 NOK/Day, Two Days = 500NOK/Day, Seven Days=350NOK/Day

and Insurance Per Period = 120NOK. To be able to get the correct price for the period, I

made a simple if, else if-logic that checked whether or not the rent period was: 1 Day,

2-6 Days, 7 Or More Days and multiplied the price per day with the Difference In Days.

Conclusion:

The date-picker and price-calculation functions are now done and work as intended. A

customer/user can select the days he/she want to rent a specific bicycle and can check

availability and price. Checking availability is done by Andreas in User Story 49

(USN-49). Below you can see the full booking interface and the calculated price from

4th of May to the 8th of May with insurance.

TRYE APP 286

TRYE APP 287

A.4.16 USN-42 Initializing map when loading the main
menu

User story
ID: USN-42 I as a software engineer need to find a suitable function to load

the map javaScript “on-load”.

Who Worked Tobias

Who Verified

Status Discarded

Requirement
MAR-05 The app should have a map.

Verification
IV-13 Inspect whether or not the “on-load” function works.

Ver-method Inspection Ver-priority Medium

Introduction:

Our interactive map is now being initialized on the press of a button on a prior page.

E.g. when a user has verified his/her phone number and wants to “enter” the

application, the javaScript needed to create our interactive map is run. As we now have

several ways of entering the “main menu” where the map is located, I wanted to

initialize the map “on-load”. This is because we now have two-three ways of entering

the main menu based on what way of logging in the user chooses. Each individual way

of entering the main menu contains the javaScript needed to initialize the map. When

updating the map javaScript, we need to make sure we update all three of the copies

(Not ideal).

TRYE APP 288

Method Used:

As simple as it sounds, this problem sits deeper than it would seem. OpenUI5 supports

javaScript, but as the map javaScript is defined within a function (The javaScript within

OpenUI5 doesn’t need a declared function.) it becomes harder to execute the function

“on-load”.

A possible fix for not needing to declare a function, making it easier to make the

javaScript run “on-load” would be to create a map API that returns the javaScript

needed.

Conclusion:

After a week or two of on- and off- research, I decided that it would not benefit the
progress of our project to redo the entire structure of our app for cleaner code. If Trye
continues the development after our project is done, a restructuring of how the map
works might be good. Combined with USN-40 (Finding a map made for mobile), this
would be a positive addition to the app.

TRYE APP 289

A.4.17 USN-46 Displaying bikes in the bookings tab so
they can be selected

User story
ID: USN-46 I as a software engineer need to display bikes in the bookings

tab so they can be selected and put in booking table so users
can book bikes.

Who Worked Andreas

Who Verified Tobias

Status Done

Requirement
MAR-02 The system should enable bike users to book a bike using the

mobile app

Verification
IV-14 Check whether or not the bookings tab work as expected.

Ver-method Inspection Ver-priority HIGH

Introduction:

We need a way for users to be able to pick a bike and see what bike they have selected

for the booking system. Also, get its bookings to check it in the date-picker later.

TRYE APP 290

To do this an object list is created which retrieves all bikes from our database automatically
when the user clicks on the bookings tab.

So here we have a list which should autofill by getting the data from the database and filling up
the list.

Here is how the list is retrieved in the start when users enter their pin and click submit:

This data is now sent to the list with the 200 success response:

Now that we have the data we can display it by giving its data to the selected field in the object:

TRYE APP 291

We also set the object to type active so it can be clicked.

Now for the code when the object is clicked. All the code is commented with its function:

TRYE APP 292

TRYE APP 293

So here is the final result in the user interface:

Conclusion:

The list is working as intended and we have debugged and tested that it is successful.

TRYE APP 294

A.4.18 USN-48 Displaying the booking history for the
user

User story
ID: USN-48 I as a software engineer need to display the booking history for

the user so the user can check their renting history

Who Worked Andreas

Who Verified Andreas

Status Done

Requirement
MAR-02 The mobile app should have booking system.

Verification
IV-16 Check whether or not the history tab work as expected.

Ver-method Inspection Ver-priority HIGH

Introduction:

We want users to able to view their renting history in the app so that they can reference

it for later. We want the booking to be added to the booking database only when the

booking is complete.

TRYE APP 295

The history tab

We want to show the renting history by showing a table with columns. This was done by making
a history page with a table:

Now we need to call the Bookings api with data from the current user. This is done when
pressing the submit button in the pin page.

TRYE APP 296

Then give the success response to historytable:

This is how the table looks with a refresh button:

Now when the refresh button is pressed the table is refreshed

Conclusion:

They history tab is working as intended and we have run several tests to confirm this.

TRYE APP 297

A.4.19 USN-49 Calculate the availability for users

User story
ID: USN-49 I as a software engineer need to fix the calendar in the booking

system so it can calculate the availability for users and stop
users from booking a date back in time

Who Worked Andreas

Who Verified Tobias

Status Done

Requirement
MAR-02 The mobile app should have booking system.

Verification
IV-17 Check whether or not the bookings tab work as expected.

Ver-method Inspection Ver-priority HIGH

Introduction:

When users book bikes we need to make sure users have selected a bike, valid dates and

check if the dates selected available for the selected bike.

The availability button:

When users book bikes they can select dates and a bike for renting. But before they can

checkout and pay we need to make sure bookings don’t overlap. First thing is getting the dates

from the calendar

TRYE APP 298

Now we need to make 4 parameters. The dates in a format for humans to read and ranges in

milliseconds for calculations, the process is described here with comments:

TRYE APP 299

Then we need some if sentences to check first if a bike and dates are selected. Also if a date
selected is not older than today's date.

If the initial checks are okay then we come to the hard part. Get bookings from a specific bike
and check all possible cases of overlap. It will be a long if sentence and so this this diagram
here shows all possible cases:

TRYE APP 300

The if sentence to cover all this will be formatted like this for each entry in the bookings table:

if((x1 >= y1 && x1 <= y2) || (x2 >= y1 && x2 <= y2) ||(y1 >= x1 && y1 <= x2) || (y2 >= x1 && y2

<= x2))

Now for the loop, it is a string loop which gets dates from the string, checks them and the

shortens the string until it is empty:

TRYE APP 301

If all the checks are successful we then put the data in a variable ready for putting it in the

database:

Now the customer can click the checkout button and that the payment process.

Conclusion:

The booking system works as intended which is proven by several tests by Andreas and Tobias.

Period Relations Source:
https://www.codeproject.com//KB/datetime/TimePeriod/PeriodRelations.png

TRYE APP 302

A.4.20 USN-50 Fixing a PIN-code system

User story
ID: USN-50 We as software engineers need to create a pin code system so

that we don't send out an unnecessary amount of SMSs

Who Worked Andreas and Tobias

Who Verified Andreas and Tobias

Status Done

Requirement
MAR-02 The system should Enable bike users to book a bike using

mobile app.

Verification
ID: IV-18 Check whether or not the PIN-code system works as it should.

Ver-method Inspection Ver-priority HIGH

Introduction:

We wanted a way to reduce costs for Trye by adding a personal pin code instead of only using

one-time passwords on SMS.

Making the extra pages:

Two extra pages were added, one that was similar to the one-time password verification with a
form and another page where you can select login form:

TRYE APP 303

Password select page:

The pin password page with password recovery option:

TRYE APP 304

When customers registers they will be assigned the same code as the one time password:

After they have been through the registration process they can change the personal PIN to any
4 digit code they like. The pin changing page looks like this:

TRYE APP 305

Now for customers to change their pin we need to check if they know the old pin code and also
type in the new one 2 times for verification. This is done through first retrieving the old pin from
the database and then a series of if statements. Code described with comments:

TRYE APP 306

TRYE APP 307

Now code for the recovery option if the pin is forgotten by a customer with comments:

Conclusion:

The change pin tab is working as intended after testing and debugging done by Andreas and
Tobias.

TRYE APP 308

A.4.21 USN-53 Make a test payment with Stripe

User story
ID: USN-53 I as a software engineer need to test out the stripe card

payment solution, and set up a test server and make a test
payment.

Who Worked Andreas

Who Verified Andreas

Status Done

Requirement
MAR-03
WSR-02

The mobile app should have a payment system.
The web server should be able to communicate with the app.

Verification
ID: IV-19 Check whether or not the Stripe payment system works as it

should.

Ver-method Inspection Ver-priority High

Introduction:

Since there is problems with implementing Vipps because of the time waiting to get the api key
from them and Paypal has technical difficulties with merchants in norway, stripe came up as an
alternative solution. In the first place this user story was created to get familiar with the API in a
test environment and make one successful payment to confirm that its working and is ready to
be implemented in the app with a live key.

Stripe and the test payment:

To start with a Stripe account was created with Trye’s company credentials. To get the license
to use their keys a form was submitted and Stripe accepted it within 24 hours. Here is the
dashboard with confirmation:

TRYE APP 309

Now that we have the key i found a default stock HTML code for a store online. The only thing
needed to be changed in this code is one line and that is the inclusion of the Stripe javascript
file. This equals to one line of code in the header of the HTML file:
 <script src="https://checkout.stripe.com/checkout.js"></script>.

Now the idea is that we use the publishable key to start the payment, and when the details is
entered and the purchase is confirmed for the user, what actually happens is that the “false”
payment creates a token, which is sent with the secret key to the stripe server, and then the
“real” charging of the credit card happens. That is why it is important to keep the secret key
hidden or else anyone can charge Trye’s customers what they want. The server is setup using
node.js. The script is run on the same server as the planet9 application only from port 3000.

TRYE APP 310

Now for the server script we are using node.js with express which means we can parse the

entire store script code from one folder inside the linux server. This means we have the server.js

script in the root of the amazon server:

Now a folder called public is created that will be referenced to express later to run the default

store. Using first mkdir then wget from my dropbox i can fetch the entire folder into the linux

server. This is how the content of the folder looks:

Now we can make the server script. It will first run the HTML code and then do the test payment

when users add items to the cart and click pay. Then it will create a token for the actual charge.

Here is the code for the server with comments:

TRYE APP 311

The secret key here is no problem to show as it is not the live key, but only the test key, so the

customer will not actually be charged on their credit cards.

TRYE APP 312

Now the payment server is ready to run on port 3000.

To start the program we run: node server.js inside the amazon web server.

Now to test the store, it is opened in the browser by typing the ip address and the port:

http://3.19.14.3:3000/

Now i will add a item of the value 9.99 dollars and make a test payment with the test cars

424242424242 and see if it works:

TRYE APP 313

Now we can see that the payment went through.

TRYE APP 314

To confirm we check the Stripe dashboard:

Now 101.11kr is added to our test account, that means we can confirm that the payment went

through.

Conclusion:

We now know how to use stripe and are ready to implement it in our app with live keys.

Literature:
https://stripe.com/docs/payments/accept-a-payment

TRYE APP 315

A.4.22 USN-54 Checking if bikes are available for unlock-
ing

User story
ID: USN-54 I as a software engineer need to set up an algorithm for

checking if bikes are available for unlocking and that they are
clickable so we can send a signal to the bike

Who Worked Andreas

Who Verified Tobias

Status Done

Requirement
MAR-02

The mobile app should have a booking system.

Verification
IV-20 Check if a booked bike on today's date shows up in the

unlocking tab.

Ver-method Inspection Ver-priority HIGH

Introduction:

The app needs a tab for users to unlock their booked bikes. But to achieve this we first need a

algorithm to check if the user have any bikes that are unlockable. The idea is that the user clicks

a button then bikes will show and user can click on them to unlock them.

TRYE APP 316

Check if bikes are available when clicking the button:

A new button is created for the user when they enter the app main menu:

TRYE APP 317

It will open a dialogue with a button that will look like this:

When button is pressed the algorithm will find any bikes that are within the range of today's
date, so that users can unlock it several times during their rent, and also unlock multiple bikes
up to 4 bikes. The reason for this is usually a customer won't need to rent more than 4 bikes
which is a normal family or group size. For bigger group they will have to book manually or
make more accounts. Now 2 bikes are booked for today, so when the button is pressed the two
booked bikes will show:

TRYE APP 318

Now for the backend code:

What is used is the same type of loop which was used in the check for booking algorithm. We
get all the renting data from the current user and find all ranges of the bookings, and if we have
a match we add a bikeID in a variable which we will use to retrieve the bikes in the end.

TRYE APP 319

TRYE APP 320

Now we can make the get calls. Since the has been no solution to make GET requests in the
planet9 app designer, and the example code dont work it has been coded manually for each of
the scenarios:

TRYE APP 321

TRYE APP 322

TRYE APP 323

TRYE APP 324

And in the end if no bikes are found the user is notified:

Conclusion:
The algorithm works as intended and Andreas and Tobias have verified it by inspection. This
means we are ready to integrate the unlocking function with the hardware.

TRYE APP 325

A.4.23 USN-55 Making user be able to delete their ac-
count

User story
ID: USN-55 I as a software engineer need to make user be able to delete

their account if they no longer want to be customers

Who Worked Andreas

Who Verified Andreas

Status Done

Requirement
MAR-02 The mobile app should have a booking system.

Verification
IV-21 Check whether or not the account deletion works as it should

Ver-method Inspection Ver-priority HIGH

Introduction:

This is a function where users enter their pin code to delete their data and be sent back

to the registering page of the app after deletion.

This is to make users that don't want their data stored in our database anymore can delete their
account and register again later if they regret deleting it.

The user interface is quite simple with a form that user fill in their personal pin code:

TRYE APP 326

When users press the button the code entered in the form will be compared with the pin code in

the database related to the user and they will receive a success or error message. And if it is a

success they will be redirected to the first page. Here is the code:

TRYE APP 327

Conclusion:

The delete function works as intended which was verified by Andreas deleting his account and
checking it in the database.

TRYE APP 328

A.4.24 USN-57 Setting up a simple Admin app

User story
ID: USN-57 I as a software engineer need to set up a simple Admin app that

we can build on

Who Worked Andreas

Who Verified Andreas

Status Done

Requirement
ASR-01

ASR-03

The Admin System should be able to control the lock on the
bike
The Admin System should be able to see who is using the bikes

Verification
IV-22 Check whether or not the Admin app works as intended

Ver-method Inspection Ver-priority HIGH

Introduction:

A simple admin add for desktop is needed so that the guys in Trye can unlock bikes for larger
groups and have an overview of the bookings.

TRYE APP 329

The admin app is build in a split-app template which is pretty similar to the mobile app. There
will be put in 2 components in the first place which is the bike unlock page and the view
bookings page. These buttons to redirect to those pages are in the main side menu:

When unlock bikes is clicked we need to call the bike api and list all current bikes, and put it into
a list of clickable bikes:

TRYE APP 330

When the button is clicked the list will look like this:

When the bookings tab is clicked it will also make an database api call with all current bookings
and show it in a table:

TRYE APP 331

Conclusion:

The first Alpha of the admin app is finished and is working as intended. Future features that
might be added are: map with tracking, view customer list and ban/delete a user.

TRYE APP 332

A.5 Hardware User Stories

A.5.1 USN-19 - Getting an overview of our electric moun-
tainbike, includes the power system and hardware

User Story
ID: USN-19 We as hardware engineers need to get an overview of the

eMTB to learn about the power system and existing
hardware

Who Worked Dawit, Eebbaa, Joachim

Who Verified N/A

Status Done

Requirement
Req-ID: N/A We need to get an overview of the bike, before starting on

the other requirements

Verification
Ver-ID: N/A N/A

Ver-method N/A Ver-priority N/A

Introduction:

As a system developer, understanding the system that our system will interface with

will be the most important part of the system development process. This will help us

to design a system that can interact and can be mounted without a problem. Our

system will be mounted on the eMTB(E-bike E-Track 27+).

Facts about E-bike E-Track 27+

It is an electric-assist mountain bike and it is powered by Shimano E8000 motor and

it has Shimano E8020 500Wh battery which can provide up to 120 km range after

fully charged. The bike also has a Shimano cycle computer where users can choose

the different modes for the bike and they can see, for example, the battery level and

speed.

TRYE APP 333

Method Used:

To understand more about E-bike E-Track 27+ we read the user manual for getting

detailed information about the system and we identified the main subsystems that

are important for our system. Fig-1 shows the E-bike we will use for this project and

Fig-2 shows the names of the components on the system and Fig-3 shows the

subsystems we need most for our system.

Bike subsystems that are necessary for building our system and their specifications

are discussed below.

1 Battery (Shimano E8020 500wh)
● Battery life: *1,000 cycles * after 1,000 cycles full charging still more than

300Wh=60% (reference)

● Weight: 3,050 g

● Capacity: 504Wh (36V, 14Ah) [2]

2. Motor (Shimano e8000 MTB drive, 250 W)
The Shimano STEPS E8000 250W motor without frame has a short rear centre to

increase slack for the suspension and large tires.

It provides stable assist power and a sense of direct pedalling, with both assistance

on and off. It has 70 Nm of torque and a power of 250 W and a 24 mm axle bottom

bracket. [3]

Features:

- Power output with stability assistance

- Greater separation (suspension / cover)

- 70 Nm (max.), 250 W

- Lighter than the DU-E 6002

- Improves the handling of the bicycle

- Feeling of direct pedalling when switching on and off the power-assisted

- Compact transmission unit

- Power output

TRYE APP 334

- Lightweight

- Transmission unit characteristics

3. Cycle Computer (SHIMANO STEPS E8000 - Cycle Computer)
This bike computer has a control button which is used for powering on/off the bike

computer and changing the different modes of the bike assistant system. the

different modes can be chosen are. [4]

● Eco

● Boost

● Trial

4. SM-DUE 11-Shimano:
It is a magnetic switch and used for calculating the speed of the wheel and it is

mounted on the bike of the back wheel.

Figures:

Fig-1 eMTB for the project

TRYE APP 335

Fig-2 Names of components

Fig-3 Subsystems we need for our systems

TRYE APP 336

Literature:
1. https://si.shimano.com/pdfs/dm/DM-E8000-09-ENG.pdf
2. https://bike.shimano.com/en-EU/product/component/mtb-ebike-e8

000/BT-E8020.html
3. https://www.deporvillage.net/shimano-steps-e8000-250w-250w-mo

tor-without-frame?country=NO&gclid=Cj0KCQiA7aPyBRChARIsA
JfWCgJcmlCFm0mDbVi5LJr-L-5nN2ceApXDe2irea5oAV1IA7JIAnN
eK5QaAljWEALw_wcB

4. https://bike.shimano.com/en-EU/product/component/mtb-ebike-e8
000/SC-E8000.html

5. https://www.sykkelpikene.no/shimano/110352/shimano-speed-sen
sor-340-mm-e8000-sm-due10?gclid=Cj0KCQiAnL7yBRD3ARIsAJp
_oLbU2VCUFOCQmOsGSndmR4vW9iL62ppsXvuwe_xAMagFEwu
BTlxeicYaAmdCEALw_wcB

6. https://www.youtube.com/watch?v=F2CJaIM9Uzc
7. https://www.shimano-steps.com/e-bikes/europe/en/product-inform

ation/mtb/e8000

TRYE APP 337

A.5.2 USN-20 - Locating read data off of the signal cable
to retrieve speed and power data

User story
ID: USN-20 We as hardware engineers need to read the signal cable, to find

the speed and power data.

Who Worked Dawit, Eebbaa, Joachim

Who Verified

Status Discarded

Requirement
CSR-01 The controller should interface with the existing bike controller

to read battery level and speed.

Verification
AV-02 analyze the signal and see if we are able to decrypt the signal

and see if this is what we expect

Ver-method analysis Ver-priority MEDIUM

Introduction:

For our mobile application, we want the user to be able to see how much power is left

on the bike before he orders it, therefore we need to read the battery level of the bike.

We also want to control how often we send the GPS coordinates to the server using the

speed on the bike, if the bike is stationary we don’t need to send data as frequently as

when it’s moving. This will help us to limit the data usage on the cellular network.

TRYE APP 338

Methods Used:

On the bike, there is a bike computer/display mounted on the handlebar and this

displays the battery level, speed, mode etc. The bike computer needs to get the data

from the main controller mounted inside the Shimano motor.

So we disassembled the bike for a better look for the cables that come out from the

main controller. We found three cables coming out of the main controller, one

connected to the battery, another connected to a reed switch (magnet switch) to read

the speed of the wheel and the third is going to the bike computer. To get the data

(speed and battery level) we tried to read the signal going to the bike computer. But the

reading we got was difficult to conclude which signal is for speed and which one is for

battery reading. It is difficult to say what kind of coding and decoding protocols are used

in their systems, nothing is explained in their user manuals and websites.

Conclusion:

Because of the difficulty of reading the signal, we decided to find another way of getting

the speed and battery reading to our system, which is documented as USN-23 (for

reading speed) and USN-24 (for reading battery level) and therefore, USN-20 will be

discarded.

TRYE APP 339

Figures:

Fig1: A oscilloscope connected to signal cable
between the main controller and bike computer

TRYE APP 340

Fig 2: Some of the signal we got from the main controller

TRYE APP 341

A.5.3 USN-22 - Researching ways of powering our micro-
contoller

User story
ID: USN-22 We as hardware engineers need to find a way to power our

microcontroller using the bike's battery as a power source for
our hardware to function.

Who Worked Joachim

Who Verified

Status Done

Requirement
PSR-02 The power supply should power our system

Verification
 Need bike to verify

Ver-method test Ver-priority High

Introduction:

Our system needs to get power from the battery, as that is the only source of power

available. To be able to do this, the voltage needs to be converted from 36V to 5V which

most of the electronics require. There are mainly two ways of converting DC voltage,

which is Linear voltage regulator, and Switching regulator, in this use case, we will

figure out which is the best for our system, and how to connect it to our system.

TRYE APP 342

Components Used:

- SM-DUE 11-Shimano(with magnetic switch and magnet)
- Microcontroller(Arduino)

Methods Used:

Since reading the speed is essential for our project, we need to figure out another

option. For reading the speed we have considered the magnet that is attached to the

wheel spake and magnet sensor that is attached on the bike near to it. To read the

signals from the reed switch we used an Arduino connected as seen in figure Fig1 and

Fig2. The Arduino will detect when the switch is on and off, and count the time between

each consecutive 1’s. Two consecutive 1’s in a given interval of time shows one

revolution of the wheel. From this, we can calculate the speed at which the bike is

travelling using the following formula.

Speed = (distance traveled / time taken) ……………....for linear motion

Rotational speed = (angle swept/ time taken)…………...for rotational motion

1 Revolution = 360 degree = 2*pi Radians.

Wheel diameter of our bike 27.5 INCH = 0.7 m is given on the specification.

TRYE APP 343

 Fig-3 illustration for rotational motion of the wheel

so based on this concept we tried to make an Arduino code that reads the number of 1’s

in the given interval for calculating the speed. In this case, we tried to calculate the

average speed for every five rotations made by the wheel. and also we tried to calculate

the momentary speed for the last rotation. If the Arduino does not receive a signal within

5 seconds then the program gets a timeout, when this happens it is because the bike is

stationary, and the speed is set to 0 km/h.

Explanation of the Program:

there are 4 different functions that takes care of finding the speed of the bike:

- findDeltaTime()

- findAvgDeltaTime()

- CheckTimeout()

- calculateSpeed()

TRYE APP 344

findDeltaTime() function, returns the difference in time between each wheel rotation in

ms and stores it in an array of an arbitrary length of five. The array is to find the average

time later in the program.

findAvgDeltaTime() function, returns the average time calculated by summing the array

from findDeltaTime() and then dividing it by five which is the length of the array.

CheckTimeout(): the timeout function checks to see if the wheel is not rotating within

five seconds. If the bike is stationary, the function findDeltaTime() and

findAvgDeltaTime() will not work as they are dependent on the wheel spinning. So if that

is the case, the CheckTimeout overwrites the value from the other functions and sets

the change in time to 5 seconds. Which will later return as 0 km/h later in the program

calculateSpeed() function takes the deltaTime and average deltaTime and, and uses

that to find the RPM of the wheel and using the circumstance to calculate the speed of

the bike. If the speed is below a cutoff speed which is currently set to 2km/h, the speed

is set to 0km/h.

Conclusion

The code calculates the speed as we expected but we need to verify the result with the bike
computer result which is mounted on the existing system.

Arduino-code:

https://drive.google.com/drive/folders/1mZtdGGWajH00zXwDTy55GxgRBbEkVkdx

TRYE APP 345

Fig1: A switch with a pulldown resistor

TRYE APP 346

Fig2: A more detailed view of Fig1

TRYE APP 347

A.5.4 USN-23 - Finding out how to retrieve the speed of
the bike

User story
ID: USN-23 We as hardware engineers need to find a way to get the speed

from the bike.

Who Worked Dawit, Eebbaa, Joachim

Who Verified

Status To be verified

Requirement
CSR-01 The controller should interface with the existing bike controller

to read the battery level and speed

Verification
TV-01 Connect our system to the existing system and compare

the speed on both systems
Need bike to verify

Ver-method Test Ver-priority MEDIUM

Introduction:

From USN-20 we discovered that the bike has a reed switch (magnet switch) mounted

on the rear wheel triangle, and a magnet mounted on the rear wheel. when the magnet

is aligned with the reed switch, we can read a logical value 1(high) otherwise it's logical

value is 0(low). With this, we can find the difference in time between each passing and

use this to find the speed.

TRYE APP 348

Components Used:

- SM-DUE 11-Shimano(with magnetic switch and magnet)
- Microcontroller(Arduino)

Methods Used:

Since reading the speed is essential for our project, we need to figure out another

option. For reading the speed we have considered the magnet that is attached to the

wheel spake and magnet sensor that is attached on the bike near to it. To read the

signals from the reed switch we used an Arduino connected as seen in figure Fig1 and

Fig2. The Arduino will detect when the switch is on and off, and count the time between

each consecutive 1’s. Two consecutive 1’s in a given interval of time shows one

revolution of the wheel. From this, we can calculate the speed at which the bike is

travelling using the following formula.

Speed = (distance traveled / time taken) ……………....for linear motion

Rotational speed = (angle swept/ time taken)…………...for rotational motion

1 Revolution = 360 degree = 2*pi Radians.

Wheel diameter of our bike 27.5 INCH = 0.7 m is given on the specification.

TRYE APP 349

 Fig-3 illustration for rotational motion of the wheel

so based on this concept we tried to make an Arduino code that reads the number of 1’s

in the given interval for calculating the speed. In this case, we tried to calculate the

average speed for every five rotations made by the wheel. and also we tried to calculate

the momentary speed for the last rotation. If the Arduino does not receive a signal within

5 seconds then the program gets a timeout, when this happens it is because the bike is

stationary, and the speed is set to 0 km/h.

Explanation of the Program:

there are 4 different functions that takes care of finding the speed of the bike:

- findDeltaTime()

- findAvgDeltaTime()

- CheckTimeout()

- calculateSpeed()

TRYE APP 350

findDeltaTime() function, returns the difference in time between each wheel rotation in

ms and stores it in an array of an arbitrary length of five. The array is to find the average

time later in the program.

findAvgDeltaTime() function, returns the average time calculated by summing the array

from findDeltaTime() and then dividing it by five which is the length of the array.

CheckTimeout(): the timeout function checks to see if the wheel is not rotating within

five seconds. If the bike is stationary, the function findDeltaTime() and

findAvgDeltaTime() will not work as they are dependent on the wheel spinning. So if that

is the case, the CheckTimeout overwrites the value from the other functions and sets

the change in time to 5 seconds. Which will later return as 0 km/h later in the program

calculateSpeed() function takes the deltaTime and average deltaTime and, and uses

that to find the RPM of the wheel and using the circumstance to calculate the speed of

the bike. If the speed is below a cutoff speed which is currently set to 2km/h, the speed

is set to 0km/h.

Conclusion

The code calculates the speed as we expected but we need to verify the result with the bike
computer result which is mounted on the existing system.

Arduino-code:

https://drive.google.com/drive/folders/1mZtdGGWajH00zXwDTy55GxgRBbEkVkdx

TRYE APP 351

Fig1: A switch with a pulldown resistor

TRYE APP 352

Fig2: A more detailed view of Fig1

TRYE APP 353

A.5.5 USN-24 - Finding out how to retrieve the voltage
level of the battery

User story
ID: USN-24 We as hardware engineers need to find a way to read the

voltage level of the battery.

Who Worked Dawit, Eebbaa, Joachim

Who Verified n/a

Status To verify

Requirement
CSR-01 The controller should interface with the existing bike controller

to read the battery level and speed

Verification
TV-02
AV-01

-Connect our system to the existing system and compare
the battery level on both systems
-Connect our system to the existing system, measure the power
level and compare it with our system

Need bike to verify

Ver-method Test and analysis Ver-priority MEDIUM

Introduction:

The mobile application should have the power level of the bike and our system needs to

report the current battery level to the main server. The data that should be sent is the

current battery level, and the estimated range the bike can drive.

Note: This user story is only to measure the battery level, but not sending the data to

the server.

TRYE APP 354

Methods Used:

Hardware: the expected maximum voltage level on the battery is 36 Volt and as the

Arduino only can handle 0-5V on its analogue pin, because of this the voltage has to be

stepped down by using a voltage divider. By using a resistor of 10k Ohms and 1,6k

Ohms connected as seen in Fig1, this way the output voltage to the Arduino ranges

from 0-5 Volt. the Arduino has a 10 bit ADC (Analog Digital Converter) that means every

reading will range from 0-1023

Firmware: the firmware reads the digital conversion of the analogue signal ranging from

0-1023 and maps it to 0-36 Volt. The. Arduino then needs to map the 0-36 Volt to a

0-100% battery level. To do this the Arduino needs to know what 0% is in Volt, this can

be figured out by discharging the battery and measuring the voltage level using a

voltmeter and changing the parameters in the code to match the results.ch

The battery level can then be converted to an easy to understand battery indicator as

seen in Fig2. The battery level indicator that is shown from black color to white is the

battery level with the empty charge to full charge. 0% means that the battery is empty,

whereas 100-81% is fully charged.

TRYE APP 355

Figures

Fig1: A voltage divider giving 0-5 volt on A0.

Fig2: The battery level indicator, on the existing system.

TRYE APP 356

Therefore, we select an R2 = 1.6Kohm.

Fig3: Calculating the R2 shown in Fig1

TRYE APP 357

A.5.6 USN-25 - Finding the limitations associated with
Bluetooth communication

User story
ID: USN-25 We as hardware engineers need to test Bluetooth

communication and find it's limitations connected to our project.

Who Worked Joachim, Eebbaa, Dawid

Who Verified n/a

Status Discarded

Requirement
CSR-01 The controller should interface with the existing bike controller

to read the battery level and speed

Verification
Ver-id: AV-04 Connect a phone to the bike computer and analyze the data

using the computer program Wireshark, to see if the data is as
required

Ver-method analysis Ver-priority MEDIUM

Introduction:

For most of the Shimano bike controllers, there is the ability to connect to it using a

smartphone over Bluetooth, to get the speed, battery level and update the firmware.

The plan was to use this Bluetooth interface to extract speed data and battery level to

our system

TRYE APP 358

Method Used:

To find out what data is sent back and forth between the bike computer and a

smartphone it’s possible to use a tool called Wireshark. What Wireshark does is

“capturing” packets on wireless channels, like Bluetooth. This is an easy and fast way to

get the bike computers MAC-address and UUID (Universally Unique IDentifier).

By using this information it’s feasible to connect to the bike computer using a Bluetooth

terminal. In such a way, while the bike computer and phone are communicating, the

terminal shows all the data that is sent and received in between. When we got that data,

we figured out the bike computer of the model (Insert model number) does not send

speed and battery level over Bluetooth, and was therefore not possible to extract the

data. The only thing that you can do over Bluetooth is update firmware, customize bike

setting, and diagnose problems using the E-Tube app on this exact model. There are

two E-Tube apps, the one used for our model is the E-Tube project, which is the one

used to update firmware and change settings, and then there is E-Tube Ride which

shows speed and battery level. E-Tube Ride is not supported by our bike computer as it

does not send out speed and battery level over Bluetooth.

Conclusion:

Because the bike computer does not send out speed and battery level over Bluetooth

we decided to discard this user story and continue with USN-23 and USN-24 instead.

Literature:
E-Tube Ride: https://e-tuberide.shimano.com/?lang=en
E-Tube Project: https://e-tubeproject.shimano.com/about/

TRYE APP 359

A.5.7 USN-26 - Finding out how to retrieve the GPS co-
ordinates

User story
ID: USN-26 We, as a hardware engineer, need to get the GPS coordinates

to test if the location of the current position and the real-time is
approximately accurate.

Who Worked Dawit

Who Verified Dawit

Status Done

Requirement
TSR-01 The Trye app system should have a GPS tracking system.

Verification
TV-10 Test whether the GPS code gives the approximate location of

the current address and time as expected

Ver-method Test Ver-priority HIGH

Introduction:

For the mobile application, both the end-user and maintenance crew have to be able to

locate the eMTB. Therefore the bike needs to get the GPS coordinate, and store it, and

send it to the server. However, In this the first step, we need to get the GPS coordinates

to check if we can find the approximate location for the current address and the

real-time. We use this result as a base to find the return functions, and later we use it to

send to the server as in USN-59.

TRYE APP 360

Method Used:

In the beginning, we have planned to use the NEO-7M GPS module. Eventually, we

have changed our minds to use the NEO-6M GPS module. It is because when we

compare NEO-7M with the NEO-6M module for the same conditions, its sensor receives

the data slower than the NEO-6M module. The NEO-7M module is also blinking the light

as if it were collecting the data from the satellites. However, in the case of the NEO-6M

module, the sensor receives the data faster and blinks blue-light whenever it receives

data from the satellites. This module is also comparatively cheap and straightforward to

use. These are the main reasons that we have selected the NEO-6M module for GPS

tracking.

To apply the NEO-6M module, as shown in figure 1 below, we have connected it with its

four jumper wires to the Arduino. Then the Arduino is also connecting with the computer

by using the USB serial communication. The GPS module to Arduino, use a +5V from

the power side of the Arduino and any ground pin. The two pins work for serial

communication. By doing this, we are on the right track to get the GPS coordinates that

use for positioning the bike in real-time. The data that we are looking for are Latitude,

Longitude, and Time.

To accomplish this task, we have done the code and loaded it into the Arduino. The

code loaded into the Arduino used by the use of two important libraries, such as

TinyGPS ++ and SoftwareSerial. They are used to provide most of the NMEA GPS

functionality, avoid any mandatory floating point dependency, and ignore all except the

few key GPS fields.We can find the code in figure 2 below.

Conclusion:

TRYE APP 361

Using the code for GPS coordinate, we have found that the latitude, longitude, and time

where latitude and longitude are the locations of the current place, and the time is the

same as the Norwegian time. However, the code we have used in this user story needs

to convert to the class library so that we can send it to the server to locate the position

of the bike and find the real-time. We can do this in USN-59.

Figures:

Fig1. The interface of Arduino with GPS Module(NEO-6M)

Fig 2. GPS coordinates code

1.Link_code

TRYE APP 362

Literature:
[1]https://randomnerdtutorials.com/guide-to-neo-6m-gps-module-with-arduino/

[2]https://create.arduino.cc/projecthub/ruchir1674/how-to-interface-gps-module-neo-6m-

with-arduino-8f90ad

[3]https://www.arduino.cc/en/Guide/ArduinoUn

TRYE APP 363

A.5.8 USN-29 Finding a way to stop the motor using a
microcontroller

User story
ID: USN-29 We as hardware engineers need a way to stop the motor using

the microcontroller, so the user can't use the bike without
paying.

Who Worked Eebbaa

Who Verified Eebbaa

Status Done, but not verified as the bike is required to test the
sub-system

Requirement
CSR-03 The controller needs to be able to cut the power flow between

the battery and the motor.

Verification
TV-13 Controlling the bike motor with relay and an Arduino.

Ver-method Test Ver-priority Medium

Introduction:

Controlling the motor using a microcontroller is very important for our project to control
the bikes. The controller should turn the motor ON only for authorized users. For this
project we need to find a mechanism to stop and start a motor using the Arduino we
have (MKR NB 1500).

TRYE APP 364

Method Used:

A relay will be used as an electrical switch between the motor and the battery. Relay is
a programmable switch that can be controlled by microcontrollers and can be used to
control devices. To control a high power system with an Arduino we need to isolate the
Arduino with the help of a relay. We control the relay state by using Arduino and the
relay state will be used to control the device state either in ON or OFF modes.

Relays are designed for handling and switching high-voltage or high power circuits.
They have an electromagnet that can be energized and results in a switch to close or
open. Relays have 5 pins (COM, Coil 1, Coil 2, NC, NO) and among these 3 pins(NC,
COM, and NO) will be connected to the device to be controlled. At the COM terminal
electricity enters the relay and NC and NO terminals are used to turn ON and OFF
devices. Between pins of Coil 1 and Coil 2 there is an electromagnet coil, and
whenever a current passes through them the electromagnet charges and the internal
switch connects COM and NO pins as a result the device will be in ON state.

Our main goal is to control the motor of the Shimano eBike by using an Arduino and a
relay. As we can see on the wiring of the Shimano eBike in Figure-2, the battery is
connected directly to the motor by green wire. In normal operation when we press the
start button of the bike the motor will get power from the battery directly. Our plan is to
use an Arduino to send a control signal ‘0’ or ‘1’ to the relay, as a result the motor will be
either in ON or OFF state. Adding the relay and Arduino at the middle of the existing
wiring diagram will replace the task of the start button, which means to start the motor
we just need to send logical value ‘1’ to the pin of an Arduino where the relay is
connected and the relay will act as a switch to turn ON the motor. How the battery,
relay, and the Arduino board should be connected as shown in Figure-3.

Controlling the motor using an Arduino will help us to manage control of a bike from our
cloud platform by sending commands to the Arduino board to control the state of the
motor either ON or OFF. Having these functionality helps us to control our bikes
remotely based on the user status, for example users who have completed the renting
process on the user app should get the access to turn ON/OFF the bike motors.

How the cloud platform sends commands to the Arduino board based on the status of
users will be discussed on USN-58.

TRYE APP 365

Contribution:

Joachim:
- Helped brainstorm with using a relay to control a motor
- Showed the basic usage of a relay, and how it worked in the Arduino

environment

Conclusion:

Based on the connection in Figure-3 what we need is to send a digital signal(‘1’ or ‘0’)
from Arduino to trigger the relay to act as a switch to control the motor. Using Relay
makes the motor control easy as controlling LED light using an Arduino by sending ‘0’ or
‘1’.

Arduino-code:

https://drive.google.com/drive/folders/1OFulkHalwmcBEO-SRi6yuWyUCd81gVvX

Figures:

Figure-1 Pins of a Relay

TRYE APP 366

Figure-2 Wiring of Shimano eBike

Figure-3 Connection between Battery, Arduino, Relay, and Motor

TRYE APP 367

Literature:
1. https://si.shimano.com/pdfs/sm/SM-SHIMANO_STEPS_US-000.pdf

2. https://www.circuitbasics.com/setting-up-a-5v-relay-on-the-arduino/

3. https://lastminuteengineers.com/one-channel-relay-module-arduino-tutorial/

TRYE APP 368

A.5.9 USN-35 Model data sent from Arduino to the web
server

User story
ID: USN-35 We as hardware engineers need to model the data sent from

the Arduino to the webserver so we are able to send data in a
safe, reliable and efficient way

Who Worked Joachim

Who Verified Joachim

Status Done

Requirement
WSR-01 The web server should be able to communicate with the bike

Verification
TV-08 check if data is formatted as it should on server-side, and

device-side

Ver-method Test Ver-priority Medium

Introduction:

When communicating with other computers it’s important to agree on how the

messages send and received should look like. This is to avoid miss-communication,

loss of data, and make the communication generally easier for the developers.

TRYE APP 369

Method Used:

There are many ways we can format our data. The example data used in this user story

is as followed:

Bike id = 5

longitude = 1.123456

Latitude = 2.234567

Battery level = 65%

The first way we can do this is to only send the data:

{5, 1.123456, 2.234567, 65}

This will save a lot of overhead, but it is harder to know what is what when receiving this

data, which makes it harder to program on the server-side.

Another option is to send the type of data and data on the same line and shorten the

text, so it’s still understandable and not so much overhead, this can be seen here:

id: 5

lon: 1.123456

lat: 2.234567

bat : 65%

This is very close to a JSON format, which is a widely used standard to communicate

between computers. With JSON format the data will look like this:

[

‘id’: 5

‘lon’: 1.123456

‘lat’: 2.234567

‘bat’: 65%

]

TRYE APP 370

This will make it easier to find the data on the server-side, as there exists JSON parser

for also any programing language that is used today. Image of the message on the

server can be viewed in FIG-1

Conclusion:

We ended up formating the messages as JSON format, to make it easier to read on the

server-side.

Figures:

FIG-1

TRYE APP 371

A.5.10 USN-36 Finding a web server for communication

User story
ID: USN-36 We as Hardware engineers need to set a test server(IoT

platform) for testing our connection with IoT modules(MKR NB
1500).

Who Worked Joachim

Who Verified Joachim

Status Done

Requirement
TSR-02
WSR-01
CSR-02

-The Trye bike system should be able to send GPS position to
the webserver
-The web server should be able to communicate with the bike
-The controller should send all relevant data to the webserver

Verification
DV-02 Check if we get a connection and the correct data is received

Ver-method Demonstration Ver-priority LOW

Introduction:

To check to see if the Arduino IoT module workes, we want to set up a test server

where we are able to look at the data, this will help us set up the data package correctly,

so the data is sent in the right order and right format. We also want to check out

different IoT brokers (IoT servers), so we pick the server that is the best for our system.

TRYE APP 372

Method Used:

Platform selection:

There are many IoT brokers on the market, some of which is built into Microsoft Azure,

Amazon Web Server (AWS) and Google Cloud Platform (GCP), and has a wide

selection of other services that work with them out of the box, and there are also some

smaller providers which focus more only on the IoT communication and therefore don’t

have the wide selection of services that the previously mentioned providers have. These

smaller services can be easier to set up, as they don’t need to be as customizable as

the other services, one of these platforms is Thingspeak. Thingspeak provides the

option to process the data with Matlab and could be useful to find the speed of the bike

using the GPS.

As our system needed to store the data systematically and send it securely to the

mobile app, we chose to go with one of the bigger platforms. AWS, GCP, and Microsoft

Azure usually give out a free sample period, but because of extra demand for servers

when setting up this system, AWS chose to limit their free samples. The platform we

decided to use was GCP as this provides an easy-to-use interface, has the services we

need and the mobile app database can easily be set up in this environment, so we get

all the data on the same platform. Microsoft Azure should also work.

Background:

Most IoT devices communicate with a protocol called MQTT, which is a lightweight and

fast communication protocol. Because we decided to use MQTT, the services in GCP

have to support it as well. Services that support MQTT usually also support devices to

server communication using HTTP as well, although it requires more bandwidth. With

support for HTTP and MQTT protocol, it is possible to use an IoT broker (IoT server) as

TRYE APP 373

a relay, going from the Arduino to the mobile app, unless we want to store the data in a

more systematic way, like in a database.

Getting an encryption key from the Arduino:

GCP requires a known public key, to allow a device to connect to it, because of this we

need to generate an encryption key (or token). The Arduino MKR NB 1500 has a

build-in encryption chip which makes it easy to generate and use an encryption key.

This is done using the Arduino IDE by first installing the “Arduino SAMD” board and

“ArduinoECCX08” library, then upload the example code “ECCX08JWSPublicKey” to

the Arduino which helps you generate and store the key. This key is required to set up

communication between Arduino and GCP.

Setting up GCP (Google Cloud Platform):

GCP provides a number of different services, the one required to set up a

communication between an IoT (Arduino) device and GCP is called IoT Core. But

before we can set up an IoT Core, we first need to create a project, which we named

“trye-bike-rental”. When a project is created we can set up an IoT core, here we need to

set up a register and a device. A Register can be seen as a folder containing multiple

devices. We named the register “trye-register” and the device “trye-bike” which will be

changed to “trye-bikeID01” in the final production. Once this is set up, we can use an

Arduino to update the state of the “trye-bike” and therefore see the data packet sent,

which can be seen in Fig1. The modeling of the data packets can be read about in

USN-35 and the programming of the Arduino to work with this example can be read

about in USN-44

TRYE APP 374

Contribution:

Eebbaa:

- Eebbaa has the Arduino, therefore he configured and sent the messages from

the Arduino once GCP was ready.

- Helped to brainstorm and select which platform to use.

Conclusion:

It is now possible to communicate between the Arduino and the GCP server, but it is not

possible to relay the data any further. This is because we store the data as a device

state and not an event in GCP, this is easily fixable by using another GCP service called

pub/sub (publish/subscribe), this can be read about in USN-51

TRYE APP 375

Figures:

Fig1: Here we can see the device “trye-bike” with the state sent from the Arduino

Literature:

Appendix:

TRYE APP 376

A.5.11 USN-37 Encryption method on our IoT device

User story
ID: USN-37 USN-37: we as hardware engineers need to learn about

encryption so the connection between bike and server is
secure.

Who Worked Eebbaa

Who Verified Eebbaa

Status Done

Requirement
CSR-02 The controller should send all relevant data to the webserver.

Verification
 The group decided to use the existing security protocol so no

need of verification method.

Ver-method NA Ver-priority NA

TRYE APP 377

Introduction:

While building an IoT application, thinking about security is very important at all levels.

The vulnerability at some point in your IoT infrastructure has a big risk of affecting the

stakeholders that are related to your IoT application.

As a system developer understanding your IoT devices and Security technologies your

IoT device supports will help to know the level of security you can provide. This may

help to identify the possible threats that may happen due to your IoT device and it will

be the first step in adding some security features to your system if necessary.

Here we will discuss how our IoT device manages security during data exchange with

other components of our system.

Method Used:

IoT devices have inbuilt crypto chips for managing and storing keys. These crypto chips

facilitate key-based authentication for communication and data exchange in IoT

applications. As a group we identified the crypto chip that is embedded in our Hardware

device and identified the features for the crypto chip and we understand the

cryptographic operation of the chip.

The Arduino board we use for this project (MKR NB 1500) has an embedded

microchip ATECC508A which is used as a crypto chip. This chip is used for generating

and storing 256 bit ECC keys.

TRYE APP 378

The ATECC508A implements a complete asymmetric (public/private) key cryptographic

signature solution based upon Elliptic Curve Cryptography and the ECDSA signature

protocol. The device is designed to securely store multiple private keys along with their

associated public keys and certificates. The signature verification command can use

any stored or an external ECC public key. Public keys stored within the device can be

configured to require validation via a certificate chain to speed up subsequent device

authentications. Random private key generation is supported internally within the device

to ensure that the private key can never be known outside of the device. The public key

corresponding to a stored private key is always returned when the key is generated and

it may optionally be computed at a later time.[1]

Arduino has open-source libraries and codes that can be used for generating random

key pairs(private key and public keys). The Arduino codes that are designed for crypto

chips of ECC508/ECC608 are the following.

- ECCX08CSR:- helps to generate a CSR(Certificate Signing Request) for a

private key generated in a crypto chip slot.

- ECCX08JWSPublickey:- helps to generate a public key for a private key

generated in a crypto chip slot.

- ECCX08SelfSignedCert:- helps to generate a self-signed certificate

 for a private key generated in a crypto chip slot.

When we connect our IoT device to an IoT platform we need to generate keys(private

and public keys) and store them in our crypto chip. Figure-1 shows where to store the

generated keys. The private key will be used for generating digital signatures whenever

TRYE APP 379

we send data from our board and the public key will be used to authenticate the sender

from its digital signature sent with the data.

Besides keys generated, we need to use JSON Web tokens for authenticating IoT

devices to the cloud or to communicate with communication bridges such as MQTT.

Figure-2 shows how IoT devices establish communication with MQTT bridges by using

JSON Web Tokens.

JSON Web token is an open standard(RFC 7519) that is used to securely transmit

information. The information contains a digitally signed signature of the sender and this

makes the data to be trusted after verification is made at the receiver side.

JSON web token has a format of [axxxx . bxxxxx. cxxxxx]. The first is the header part

which includes the information about the algorithm name and type of JWT used in base

64 URL encoded format. The second part is the payload which contains the claim of the

user details or additional metadata in the base 64 URL encoded format. The third part is

a digital signature, When we say digital signature it is analogous with handwritten

signature on a post which is used to identify the sender.

In a digital signature, we need to generate a unique signature from the data to be sent

and the private key by using cryptographic algorithms called ECC(Elliptical Curve

Cryptography). This crypto algorithm will take the data in the JSON web token format for

the first two parts(Header and payload) and the private key for generating unique digital

signatures. The process of creating a Digital signature is shown at number 2 and 3 in

Figure-3. Where the crypto chip takes the Hashed value of JSON web token for the

header and payload and combines with the private key for generating ECDSA

signature. This signature will attach to the JSON web token as the last part in the JSON

Web token format. At this stage the data is ready to be sent to the IoT platform. The IoT

TRYE APP 380

platform at the receiver will verify the device by using the public key as shown at

number 6 in Figure-3.

Conclusion:

Our IoT device uses the internet through the Telenor sim card and for using the internet

the device uses its pin number and APN number for authenticating the sim card. After

the IoT sim card is authenticated by Telenor, the IoT device can be added to the IoT

platform using its Device_ID and public key generated on the device. IoT platforms are

designed with security protocols in different layers of their platform. Once our device is

added to the platform using the procedures given by the IoT platform company. Our

device can use different protocols for sending and receiving data in secure

communication channels. The data we send from our device are battery level, location

information with longitude, and latitude. These data are not sensitive, as a group we

aren't afraid of the third party can see the data. What we worry is that if an attacker can

pretend as if it is one of the IoT devices and connects with the IoT platform. This has a

dangerous consequence in our entire system because the IoT platform has a

connection with Database and web server for the User app. If the hackers manage to

connect with our Cloud platform they can manage a DoS(Denial of Service) attack and

this can affect the TRYE AS company economically and they can lose users' trust.

Losing trust from customers due to a lack of security can cause brand damage.

We are using the Google Cloud platform, which has good security features and they

have many security protocols in different levels of their architecture. The google cloud

platform has strong authentication of IoT devices during communication and sending

TRYE APP 381

data. The private key of our device is stored in the crypto chip and is isolated from

people and software, this makes the communication more secure and difficult for

hackers.

In Addition our user app has no direct connection with our IoT device. The device sends

data to the platform and the webserver gets device data from the platform and the

device gets configuration commands from the cloud based on the user's status for

example paid users(authenticated user) will get the service through the cloud to start

the motor of the bike.

Google has the following recommendation for keeping the IoT applications secure.

The following security recommendations are not enforced by Cloud IoT Core but will

help you secure your devices and connections.

● Keep the private key secret.

● Use TLS 1.2 when communicating with mqtt.googleapis.com or

mqtt.2030.ltsapis.goog on ports 8883 and 443. To maintain TLS connections:

○ Verify that the server certificate is valid using a Google root CA certificate.

○ Perform regular security-related firmware updates to keep server

certificates up-to-date.

○ Read this security note for detailed TLS requirements and future

compatibility.

● Each device should have a unique public/private key pair. If multiple devices

share a single key and one of those devices is compromised, an attacker could

impersonate all of the devices that have been configured with that one key.

● Keep the public key secure when registering it with Cloud IoT Core. If an attacker

can tamper with the public key and trick the provisioner into swapping the public

key and registering the wrong public key, the attacker will subsequently be able

to authenticate on behalf of the device.

TRYE APP 382

● The key pair used to authenticate the device to Cloud IoT Core should not be

used for other purposes or protocols.

● Depending on the device's ability to store keys securely, key pairs should be

rotated periodically. When practical, all keys should be discarded when the

device is reset.

● If your device runs an operating system, make sure you have a way to securely

update it. Android Things provides a service for secure updates. For devices that

don't have an operating system, ensure that you can securely update the

device's software if security vulnerabilities are discovered after deployment.

● Ensure that you have a way to update root certificates. For more details, see the

Google Internet Authority site.

● Ensure that the clock on the device is not tampered with. If the device clock is

compromised, a powerful attacker can trick the device into issuing tokens that will

be valid in the future, circumventing the expiration time of the token. For best

results, use the Google Public NTP Server. [4]

TRYE APP 383

Figures:

Figure-1 creation and storage of private and public keys.

Figure-2 How IoT device establishes a connection with MQTT Bridge using JSON web
token.

TRYE APP 384

Figure-3 steps for sending data from IoT device with Digital signature to IoT platform

Literature:
1. http://ww1.microchip.com/downloads/en/DeviceDoc/20005928A.pdf

2. https://cloud.google.com/iot/docs/how-tos/credentials/jwts

3. https://www.youtube.com/watch?v=TmA2QWSLSPg&t=190s

4. https://cloud.google.com/iot/docs/concepts/device-security

TRYE APP 385

Appendix:

ECC……………………………………………………………... Elliptic Curve Cryptography
ECDSA…………………………………………...Elliptic Curve Digital Signature Algorithm
CSR……………………………………………………………...Certificate Signing Request
MQTT………………………………………………….Message Query Telemetry Transport

TRYE APP 386

A.5.12 USN-38 Connecting our IoT Module to a IoT Plat-
form

User story
ID: USN-38 We as Hardware Engineers need to connect our IoT modules to

the test server(IoT platform) by following the right procedure.

Who Worked Eebbaa

Who Verified Eebbaa

Status Done

Requirement
CSR-02

WSR-01

CSR-02

The controller should send all relevant data to the webserver.

-The Trye bike system should be able to send GPS positions to
the webserver.

-The web server should be able to communicate with the bike.

Verification
TV-06 Testing whether the IoT device is connected to the server or

not.

Ver-method Test Ver-priority High

Introduction:

Our IoT module(MKR NB 1500) has a Telenor sim card which enables the module to

connect to the internet. This feature will help our hardware subsystem to interface with

the software subsystem. This use case is about connecting the IoT module with the

internet and also connecting to the Azure IoT platform (server) which was discussed in

USN-36.

TRYE APP 387

Method Used:

For connecting the hardware with the internet, the antenna should be connected to the

MKR NB 1500 board and the 4G IoT sim card should be mounted to the board. An

Arduino code is made to check if the board can connect to the network. The Arduino

code(NB_scanner) will print out the IMEI number and scans for nearby networks and

gives us the signal strength of the network between 0 and 31 where 0 is minimum signal

strength while 31 is maximum and prints the result on the serial monitor, the result we

got is shown in figure 1.

For connecting our board(MKR NB 1500 + 4G/LTE) to the network and internet through

the 4G network we included a library called MKRNB.

Our board operates in 4G and it has a self embedded modem that enables the board to

transfer data from serial port to the network. The library abstracts the low level of

communication between the modem and the Simcard.

Structure of the MKRNB library:- the library comprises different classes with various

functions that provide different functionalities.

1. NB class- helps the board modem to connect to the network by using the pin

number of the sim card.

2. NB-SMS class- it enables the board modem to send/receive SMS messages.

3. GPRS class- it helps for connecting to the internet.

4. NBClient - includes an implementation for a client. This class can create a client

that can connect to a server by using GPRS class functions to send and receive

data.

After the connection with the network is succeeded, the IoT module should be added to

the IoT platform(test server). To do that the IoT module needs to have an SHA-key. To

get the SHA key an Arduino code(ECCX08SelfSignedCert) is loaded to the board for

generating a self-signed certificate for a private key to the crypto chip and the result is

shown in Figure-2. This key will be used for securing communication between the

TRYE APP 388

module and the IoT platform. The security feature of the crypto chip is discussed on the

USN-37.

After adding our IoT board(MKR NB 1500 + 4G/LTE) to the Azure IoT hub. We can

connect our device to the Azure IoT hub by using the MQTT protocol.

MQTT is a Client-Server publish/subscribe messaging transport protocol. It is

lightweight, open, simple, and designed to be easy to implement. These characteristics

make it ideal for use in many situations, including constrained environments such as for

communication in Machine to Machine (M2M) and Internet of Things (IoT) contexts

where a small code footprint is required and/or network bandwidth is at a premium. The

protocol runs over TCP/IP, or over other network protocols that provide ordered,

lossless, bidirectional connections.[4]

Contribution:

Joachim:
- Helped find the code for connection to the GCP platform
- Provided necessary certificate to connect to GCP

Conclusion:

Connecting the MKR NB 1500 board to the internet is accomplished and the board

connects to the Telenor network through IoT Telenor 4G sim card. Connecting the

board to the IoT hub (test server) is also accomplished and checked by sending a Hello

message to the server and the server received the message and the message was

seen in the log file of the server.

Arduino-code:

1. NB_scanner

https://drive.google.com/drive/folders/1Qd-Z840bCUuJrs0ObDkwxYfx0r_iEniy

2. ECCX08SelfSignedCert

TRYE APP 389

https://drive.google.com/drive/folders/1_h3lOEOZSPKfhApzBck_eY9DTggwe21t

3. Azure_IoT_Hub_NB

https://drive.google.com/drive/folders/1GgG-_XZtXSTbwa60ttNaXqPwTh9BgxPX

Figures:

Figure-1: Serial Monitor result by running Arduino code NB_scanner

TRYE APP 390

Figure-2: Serial monitor result while running ECCX08SelfSignedCert code.

Literature:
1. https://www.arduino.cc/en/Tutorial

2. https://create.arduino.cc/projecthub

3. https://create.arduino.cc/projecthub/Arduino_Genuino/securely-connecting-an-arduino-n

b-1500-to-azure-iot-hub-af6470?ref=part&ref_id=64346&offset=0&fbclid=IwAR1j9mooS

XGVDGkK-80zGilNxtgTyha9OKRH4jycS3gTgyJuH_i0ZvCbXm0

4. “MQTT Version 5.0 OASIS Standard Specification” pdf-file

Link = https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

5. https://platformio.org/lib/show/5570/ArduinoECCX08/examples?file=ECCX08CSR.ino

TRYE APP 391

Appendix:

- SHA ………...………………...Secure Hash Algorithm.

- IMEI number ……….. International Mobile Station Equipment Identity.

- GPRS………………….General Packet Radio Service.

- MQTT protocol………. Message Query Telemetry Transport protocol.

TRYE APP 392

A.5.13 USN-44 Sending bike data to the server

User story
ID: USN-44 We as Hardware Engineers need to send our sensor data from

the Arduino module to the server based on the Modelled data.

Who Worked Eebbaa

Who Verified Eebbaa

Status Done

Requirement
CSR-02

WSR-01

CSR-02

- The controller should send all relevant data to the webserver.

-The Trye bike system should be able to send GPS positions to
the webserver.

-The web server should be able to communicate with the bike.

Verification
TV-13 Testing if the device sends the GPS location data and battery

level in the format we need.

Ver-method Test Ver-priority High

Introduction:

Sending speed data, battery level, and location data from the bike to the server is very

important for our project. Since the group finally decided to use the Google cloud

platform as our server-side, the data should be sent to this platform from our IoT board.

TRYE APP 393

Method Used:

Different tasks and configuration is made on the google cloud platform and on the

board, and those tasks are:-

1. Configuring and adding the board to a specific project on the platform.

2. Choosing an appropriate protocol for communication between the board and the

platform. Where we have the possibility to choose MQTT or HTTP.

3. Generating a public key on the board by running an Arduino code

(ECCX08JWSPublicKey).

4. The public key is stored both on the board and on the cloud platform. The key

helps for securing communication between the board and the platform and it

should be kept secret. The public key generated on the board for this user history

is shown in Figure.1.

An Arduino code is loaded with the MQTT library. This library enables the module to

publish an event message or state message and subscribe to different sub/pub topics to

receive messages on those topics. The message will be published to the MQTT server

and any IoT client that subscribed for this topic will receive the message from the MQTT

server.

The MQTT server for the Google cloud platform is "mqtt.googleapis.com" and the data

that will be sent from the bike IoT board will be stored on this broker at Sub/pub and any

client that is subscribed for this message will receive the data automatically after the

message is published. In our case the bike data will be published for the cloud storage

to access it and the cloud storage should subscribe to this respective topic.

Figure-2 shows the state message and configuration message exchange through

sub/pub between the bike and other GCP components. The black line on the figure

shows the message that will be published to the pub/sub and it has all the bike

TRYE APP 394

information such as Bike-Id, bike location information with longitude and latitude, and

battery level. Cloud storage is subscribed to this message and it can access the data.

The pub/sub application helps to exchange a message between the IoT device and the

server and also among IoT devices. After the message is sent from the bike to the cloud

storage, the data will be handled further accordingly and it is discussed in the USN-51.

The Arduino code (GCP_IoT_core_NB) is loaded on the MKR NB 1500 board for

sending the data to the server. The code will help the board to

1. Connect to the network with a pin number and APN number.

2. Make an MQTT connection between the board and the MQTT server of the GCP

which is "mqtt.googleapis.com". In this step the IoT board will subscribe to

Sub/pub configuration command messages and publish to Sub/Pub event

messages. The Arduino code has two important functions.

● void publishMessage(int bikeID, String lon, String lat, int batteryLevel):

this function will send the message which contains the bike-ID, longitude,

latitude, and battery level of the bike. The message part will be put into the

MQTT packet as payload together with other packet parameters. The

message sent to the MQTT server has a JSON format and can be viewed

on device configuration and state on the IoT core and can be viewed both

in text format or base-64 format.

● void onMessageReceived(int messageSize): this function will retrieve the

message sent to the device as command and displays to the serial

monitor. This function will be modified and can be used to receive a

command that can change the configuration of the Arduino, for example,

we can send a logical value ‘1’ or ‘0’ to a certain pin of the Arduino board,

TRYE APP 395

and this can be used for controlling bike motor by changing the digital pin

value the motor is connected. It is discussed in USN-58.

Conclusion:

Sending the data from the bike to The GCP is accomplished and the message we sent

can be viewed by other IoT devices that are subscribed to the message. If we have

many bikes, all the bikes can send their data to one Sub/pub topic, and with their

(specific ID + location_data + Battery_level) and cloud storage can subscribe to this

topic and the cloud storage can receive data sent by all bikes. Having all data from the

bikes in one storage makes things easy for extracting and using the data we need for

further storage in databases or displaying in real-time on a user app.

Arduino-code:
1. GCP_IoT_Core_NB

https://drive.google.com/drive/folders/1kHnc5LB7wuhquW9LOMd-XPQ7TeYaA3Um

2. ECCX08JWSPublicKey

https://drive.google.com/drive/folders/1qlNN14RljvTH59bf0vVGIPj7qpD2qRhB

TRYE APP 396

Figures:

Figure 1: public key generated for securing communication.

Figure 2:Pub/Sub data exchange illustration between Bike and other GCP components.

TRYE APP 397

Literature:
1. https://create.arduino.cc/projecthub/Arduino_Genuino/securely-connecting-a-mkr-gsm-1

400-to-google-cloud-iot-core-b8b628?fbclid=IwAR2dHUGnYhRPtCzlTWDNDAA-m66k6s

m-HV018Z-dtlLd9rrYP0Xo7oul0dg

 2. https://create.arduino.cc/projecthub

Appendix:

GCP ---Google Cloud Platform

TRYE APP 398

A.5.14 USN-45 Combining all our hardware code

User story
ID: USN-45 We as hardware engineers need to put all the code together, so

it can run on one Arduino

Who Worked Joachim

Who Verified

Status Started

Requirement
Function-08
Function-06

-The system should help to localize the bike with the help of a
GPS tracking system.
-The system should Enable paid users to unlock a bike using a
mobile app.

Verification
Ver-xx (ver - description)

Ver-method Ver-priority

Introduction:

As we have limited space on the bike, we want all the programs we write to be able to

run on just one Arduino, as the different programs are written by a different developer,

we need to put all the code into classes and libraries, so the programs can easily be

called from the main loop.

TRYE APP 399

Method Used:

To put the code together, it’s important the code comes in the right order. we can divide

the program into two parts; gather data and send data, where the gathering of the data

happens before the sending of the data. In what order the data is gathered is not

important, but the flow chart in Fig1 was followed.

As each program has global variables it used, the program was enclosed in a class,

where we can make the global variables local for the class, and therefore there will be

no variables that overlap when stitching together the program.

To make the main program easier to read, the individual programs will be put inside a

library, so it becomes hidden in the main program, and therefore less to look at

Conclusion:

The get speed and battery functions are already implemented, but because of lack of

time, we were not able to implement the get GPS and send data function, as they are

not complete yet. But all the groundwork is ready, so once the sub-programs are ready,

it should be easy to implement.

TRYE APP 400

Figures:

Fig1: shows the order of the execution of the program

TRYE APP 401

A.5.15 USN-51 Sending data to database

User story
ID: USN-51 We as hardware engineers need to send the IoT data from the

MQTT broker to the database, so the data can be collected
using a simple call by the app

Who Worked

Joachim

Who Verified Joachim

Status Done

Requirement
WSR-01
TSR-02
CSR-02

-The web server should be able to communicate with the bike
-The Trye bike system should be able to send GPS position the
web server
-The controller should send all relevant data to the web server

Verification
TV-09 Test and see if data from the bike is updating the correct

database entry

Ver-method Test Ver-priority HIGH

Introduction:

In USN-36 the Arduino uploaded the position data to an MQTT broker (server) to the

GCP (Google Cloud Platform) IoT core service. In this user story, we will talk about

getting the data from the MQTT broker to a database that can be accessed by the

mobile app. We will also talk about things that did not work and why.

TRYE APP 402

Method Used:

GCP provides a number of different database storage solution and ways to access

them, during the development of the data transfer and storage solution, we tested out

most of the different data storage services GCP provides, this includes SQL, BigQuery,

and Firestore, where Firestore was the one that worked best for our system.

The problem with the SQL service:

The first service we tested was the SQL database service. To use the SQL service, we

require a way to upload the data from the pub/sub (publish/subscribe) service to the

SQL service. to do this, it seems the best solution would be the cloud function service,

which is a way to program/script what should happen in the cloud with python/node.js or

GO. The cloud function service is able to set a trigger in the pub/sub service, which

means the program/script will run whenever an event is happening in the pub/sub

service. Therefore the function service will receive a data event from the pub/sub,

containing the longitude and latitude of the bike, and store it in the SQL database. The

problem using SQL in combination with cloud function to upload the data is, it only

recently became supported to communicate between them, and therefore lack the

required documentation to be able to upload the data.

The problem with BigQuery service:

BigQuery is a NoSQL database in which you are able to run normal SQL commands,

because of this, it is able to use another type of google service called dataflow to upload

the data from the pub/sub service to BigQuery service. The way this works is the data is

uploaded to pub/sub in a JSON format as seen in FIG1, then with the dataflow service

you are able to select what information you want to upload from the JSON data to

BigQuery with a simple SQL call, (eg: “SELECT bike_id, lat, lon FROM

‘pubSub.tryeBike.json’” and there will automatically be made a table for the information

gotten from the JSON data uploaded to the pub/sub service. With this approach we

TRYE APP 403

have two problems. The first is the data collected from the pub/sub service is appended

to the end of a SQL database and not overwritten existing data. This is a problem

because of storage size. During one year each bike will upload 150MB of data which is

cumulative, and we will, therefore, waste a lot of storage space. This could be solved by

manually deleting the data eg. once a year. The other problem is the cost of these

services, after only 3 days of running the price was already at 300 NOK, which gives

approximately 3000 NOK/MND. This means with the small dataset we are working on,

this is not a viable solution until the TRYE company acquires a lot more bikes.

Solving the problem with Firestore

Firestore is a sub-service of the firebase service which is usually used for mobile

developers to use Google’s services, like google translate, image recognition, data

processing, AI, and so on. Firestore is a NoSQL database usually used for lightweight

data storage which can be used to store e.g. user data on mobile devices. This is

perfect for us, as the data stored is overwritten when new data comes in, which

BigQuery did not. This means we store the data only once per bike, instead of having

multiple entries for each bike at different times. The only downside with this is it’s more

difficult to implement a historical view of the bike's location if that is a feature that’s

desired in the future.

The way Firestore stores data is in collection and document, where a collection can

store multiple documents. To get a deeper tree with sub-collection, you need to start

with a collection containing a document, where the document links to one or more

collections which contains one or more documents again. In our system, we only need

one collection with multiple documents, one for each bike. The hierarchy will then look

like:

“trye-bike”

|- “bike-01”

|- “bike-02”

TRYE APP 404

|- “bike-03”

|- “bike-04”

|- ...

Here each bike stores longitude, latitude, bike id, and battery level. Because it’s NoSQL

we can easily add more data on the go without changing the structure of the database,

or even add special data to only some of the bikes. This can be useful if we want to e.g.

add a video stream to bikes with a camera later on and need to store something in the

database to get access to the stream.

To send data from the pub/sub service to firebase, we can use the cloud function

service. The reason we can use this with firebase and not SQL as previously described,

is cloud function has better documentation to connect with firebase then with SQL, as

this is something it could do for a longer time. The way cloud function works in this

configuration is when an event happens in pub/sub the cloud function triggers a function

that was programmed/scripted using python. The python script finds the bike_id,

longitude, latitude, and battery level from a JSON file received from the pub/sub event,

and using a JSON parser we get the data in an array. When the data is in a simple

array, the data can be uploaded to a Firestore database using the python script found in

APPX-01.

It’s also possible to use other programming languages for the cloud function service

such as GO and Node.js.

Getting the data from Firestore:

The Firestore has a REST API, that can be used with Planet9. To use them we first

need to set up a service account in GCP to have access to it outside of the GCP

environment. When a service account is configured you get the option to generate a

private json OAuth2 key, that can retrieve a temporary token that can be used to access

the database. The credentials needed to read the Firestore database is found under

“datastore->cloud datastore viewer”

TRYE APP 405

Conclusion:

We are now using the Firestore database, which can be accessed with a REST API call

with the credentials from a service account. During this user story, we have also looked

at different services that ended up not working, like the SQL and BigQuery database.

Appendix:

Code for uploading JSON data from pub/sub to the Firestore database
APPX-01:

import base64

import json

import firebase_admin

from firebase_admin import credentials

from firebase_admin import firestore

debug = False

if(debug):

 print("Initilizing global variables")

project_id = "trye-bike-rental"

collection = "trye-bike"

document = "bike-" #add the bikeID to the end before sending

#credentials and establishing connection to the firebase database

cred = credentials.ApplicationDefault()

firebase_admin.initialize_app(cred, {

'projectId': project_id,

})

#the database instance

db = firestore.client()

def WriteToDatabase(bikeID, lon, lat, bat):

TRYE APP 406

 #writing message to the collection and document

 doc_ref = db.collection(collection).document(document+str(bikeID))

 doc_ref.set({

 u'bikeid': bikeID,

 u'lon': lon,

 u'lat': lat,

 u'bat': bat,

 })

 #print debug message

 if(debug):

 print("to collection {} Wrote bikeid:{}, lon:{}, lat:{}, bat:{}

to the database".format(collection, bikeID, lon, lat, bat))

def main(event, context):

 """Triggered from a message on a Cloud Pub/Sub topic.

 Args:

 event (dict): Event payload.

 context (google.cloud.functions.Context): Metadata for the event.

 """

 pubsub_message = base64.b64decode(event['data']).decode('utf-8')

 eventDict = json.loads(pubsub_message)

 if(debug):

 print("event data: {}".format(eventDict))

 if(debug):

 print("debug: writing to database")

 WriteToDatabase(eventDict["bike_id"], eventDict["lon"],

eventDict["lat"], eventDict["bat"])

TRYE APP 407

A.5.16 USN-56 Simulate MQTT data to limit data usage

User story
ID: USN-56 We as hardware engineers need to simulate MQTT data using

a computer program, to limit the data usage on the SIM card

Who Worked Joachim

Who Verified Joachim

Status Done

Requirement
WSR-01 The web server should be able to communicate with the bike

Verification
 This user story was only used to speed up the development

process, and the code will therefore not be used in the final
product, therefore verification is not required

Ver-method Ver-priority

Introduction:

To speed up the development of our system, we thought it would be a good idea to set

up an MQTT simulator using python or other programming languages. What the

program will do, is send MQTT packages from a computer instead of an IoT device.

This will limit the resources used by the Arduino on the SIM card, and we can start

testing MQTT brokers (servers) much earlier, as we don’t need to wait until the Arduino

is programmed.

TRYE APP 408

Method Used:

Both Microsoft Azure, and Google Cloud Platform (GCP) has already programmed

script which communicates with their services using MQTT. The only thing that has to

be done is configured their MQTT services on the platform and then find the endpoint in

which the scripts connect to.

Microsoft Azure

To set up the Microsoft Azure IoT service is simple, we first need to create an IoT hub

and add a device to that hub. When that is done you can create a shared access key.

With the shared access key and the IoT hub name we can make the hostname with the

following format:

HostName={YourIoTHubName}.azure-devices.net;DeviceId=MyPythonDev

ice;SharedAccessKey={YourSharedAccessKey}

This will later be used to access the server from the MQTT python simulator.

To use the python programs we first need to download the library azure-iot-device using

pip install, when that is done we can download SimulateDevice.py and configure it by

pasting in the HostName into the file as the connection string. This program will send

random temperature and humidity data to the server using MQTT by default. In the

Microsoft Azure console, we can see the incoming temperature and humidity data sent

from the python script. This can easily be modified to send the data we want to, but we

decided to use GCP instead, so we did not modify the program any further. A more

in-depth tutorial can be read here [1]

Google Cloud Platform
To connect a simulated MQTT device to GPC, we first need to configure GCP. In GCP

there is a service called IoT core. Here we can create a register, which can contain

TRYE APP 409

multiple devices, for the simulation we only need one device. Whene a regiseter an a

device is made, we can make a hostname with the following format:

Hostname=projects/PROJECT_ID/locations/REGION/registries/REGISTR

Y_ID/devices/DEVICE_ID

When GCP is configured we can configure google example python script to send to our

server using the hostname, the same as with Microsoft azure. With GCP you can

choose where the messages will go to, by ether publishing the messages to:

/devices/DEVICE_ID/event

Which is what we are going to use in final production, as this sends the message to the

service pub/sub. Or we can send it to:

/devices/DEVICE_ID/state

Which is easier to debug with as it is not dependent on other services google provides,

and we can see the messages directly in the IoT service. The full tutorial about

configuring an MQTT simulator using GCP can be read [2]

Conclusion:

We now have an MQTT data simulator for both Microsoft Azure, and GCP which helped

us understand how the MQTT data message protocol workes. This helped us to set up

the GCP platform which we are going to use later on in the development with the

Arduino

Literature:
[1] https://docs.microsoft.com/en-us/azure/iot-hub/quickstart-send-telemetry-python
[2] https://cloud.google.com/iot/docs/how-tos/mqtt-bridge#iot-core-mqtt-auth-run-python

TRYE APP 410

A.5.17 USN-58 Finding a way to stop the motor using a
microcontroller

User story
ID: USN-58 We as hardware engineers need to send a command from the

Google cloud platform to turn ON/OFF the motor.

Who Worked Eebbaa

Who Verified Eebbaa

Status Done, but only partially tested, require the bike for a full
verification.

Requirement
CSR-03 The controller needs to be able to cut the power flow between

the battery and the motor.

Verification
TV-12 Controlling the bike power from the user app through the google

cloud platform.

Ver-method Test Ver-priority Medium

Introduction:

Controlling a bike from the Google cloud platform is important for our project because It
enables us to control the bikes remotely. In this User history we will go through how the
Google cloud platform manages to send command or configuration messages to IoT
devices and how the IoT device receives the message and take some action based on
the received message.

TRYE APP 411

Method Used:

From Google cloud there are 2 types of messages that can be sent to IoT devices

registered on the device manager. The cloud platform sends the messages with the

help of IoT core Admin SDK or Cloud REST API. The message types are Configuration

and command message.

Configuration message:- this is a message sent by the cloud platform through the

cloud IoT core for configuring a device. It is user-defined data. The data can be

structured and also can be formatted in any format such as arbitrary binary data, text,

JSON, or serialized protocol buffers. Configuration messages can be used to update

firmware, reboot a device, turn on a feature, or change other properties. Devices using

MQTT can subscribe to a special MQTT topic: /device/{device-id}/config for

configuration updates. Devices can receive the latest configuration in a message

payload. For example a configuration message can be { "bike-id": "001", “power” : "ON''

} or { "bike-id" : "001", “power” : "OFF" }. To verify the configuration message is correctly

applied and the devices are in the correct state, each device can report its state whether

it is ON or OFF.

Command message:- are commands that can be sent to the IoT devices and they are

one-time directive sent to those devices registered to the command topic:

/devices/{device-Id}/commands/#". Command messages are much faster than

configuration messages and can be sent more frequently. If the device is not connected

to the cloud when the command message is sent, the command message will be lost.

There are different ways of sending these messages to the IoT devices. For our project,

we will use Google cloud function to send the messages to our IoT device(MKR NB

1500).

TRYE APP 412

Google cloud functions are serverless computing platforms that can be used to execute

code in the cloud. Related to cloud functions, we have two concepts called Events and

Triggers. When a change in the state of something happens the Google infrastructure

will raise an event and triggers will be used to connect raised events with cloud

functions. As shown in Figure-1 functions can be invoked either by an HTTP request or

indirect event triggers.

● HTTP Functions

Your function is passed the ExpressJS parameters (request, response).

● Background Functions

Your function is passed the parameters (data, context, callback). [4]

In our project we have different events that may occur when users use the TRYE app

for renting or booking a bike. For renting a bike a user should register on a user app and

fill the necessary fields before sending it to the server. The result of user authentication

on the server-side may cause an event where either a user is allowed to rent a bike or

not. The events will trigger their own google cloud function which is responsible to run a

JSON code for sending a configuration message to a bike for turning ON or OFF the

motor.

Since our project has different events that may need to send command or configuration

messages to a bike. We need to use a function that triggers based on an event and

such function is called background function.

TRYE APP 413

We use background functions when we want to have our Cloud Function invoked

indirectly in response to an event, such as a message on a Pub/Sub topic, a change in a

Cloud Storage bucket, or a Firebase event. [5]

In this project, Google cloud functions are created and given an appropriate name such

as turn_on_motor and turn_off_motor. The function trigger method will be set to pub/sub

and an event that publishes a message to pub/sub triggers its corresponding cloud

function. Once a cloud function has triggered it can publish a message by using HTTP

publish function. For example, if turn_on_power function is triggered based on a

message published on pub/sub topic called user_authenticated as a result the function

can publish a message {“power”: “ON”, “Bike-1”} on a specific topic related to it and the

message can be sent to specific bike “Bike-1” if the bike is subscribed for the message

on the topic. The IoT board(MKR NB 1500) will be able to get the message. The

message can be read and based on the message we can manage to write an Arduino

code that can change states on its digital pins, for example, digitalWrite(pin, 0) if the

message is “OFF” or digitalWrite(pin, 1) if the message is “ON” considered as a

command and the Arduino will take an action based on the message.

Conclusion:

Sending a Configuration message to an Arduino will help us to control devices

connected to the digital pins of an Arduino. This approach will help us for example to

control the power of a bike which is explained in USN-29, where Arduino sends either

‘0’ or ‘1’ for switching ON and OFF a relay which can turn on or off a bike motor.

TRYE APP 414

Arduino-code:

https://drive.google.com/drive/folders/1I-CeTli1naAQrlLD3CqNlskFulXEoFnk

Figures:

Figure-1: Categories of Cloud Functions based on how they invoked.

TRYE APP 415

 Figure-2: Cloud function created for sending message/command through a pub/sub
topic.

Literature:
1. https://cloud.google.com/iot/docs/how-tos/config/configuring-devices
2. https://cloud.google.com/iot/docs/concepts/devices
3. https://cloud.google.com/functions/docs/tutorials/pubsub
4. https://cloud.google.com/functions/docs/concepts/events-triggers
5. https://cloud.google.com/functions/docs/writing/background

TRYE APP 416

A.5.18 USN-59 Changing the GPS coordinate code into
a class library

User story
ID: USN-59 I as a hardware engineer, need to convert the GPS

coordinate code into a class library so that we can send the
return function to the server

Who Worked Dawit

Who Verified Dawit

Status In progress,small error in coding & we hardware team could
check for it.

Requirement
TSR-01 The Trye app system should have a GPS tracking system.

Verification
TV-11 Test whether the converted code into class returns

latitude,longitude, and the time as expected

Ver-method Test Ver-priority MEDIUM

Introduction:

We, based on the USN-26, need to change the GPS coordinate code into the class

library so that we can easily send it to the server. It is because the previous code in

USN-26 is written in serial print and only used for checking if the running code

displays the approximate location of the current address. In this user story, we call

the functions that return latitude, longitude, and time. The goal is to achieve the

end-users know where the bike is located.

TRYE APP 417

Method Used:

The need to change the GPS coordinate code into the class is for better code

structure and reuse the code for USN-26. Since the code in USN-26 is not large, we

have only created the header file and put it in the library. The libraries included in the

header file are TinyGPS++, SoftwareSerial, and the Arduino library. The TinyGPS++

and SoftwareSerial provides most of the NMEA GPS functionality and avoids any

mandatory floating point dependency and ignores all except the few key GPS fields.

But the Arduino library helps us to make it connect to the sensor and module. In the

header, we have three functions, such as String get.gps.time(); String

get((gps.location.lng(),6)); and String get((gps.location.lat(),6)) where the last two

consecutive functions return latitude and longitude, respectively.

Contribution:

Joachim:

- Helped construct the class, so it was easier to understand and could easily

copy past existing code into the class

Conclusion:

Even though the objective is to reuse the GPS coordinate code in USN-26 and send

it to the server, the code is repeatedly showing an error when running. I have tried it

many times, but the same thing is happening. So, I hope we, a hardware team, can

fix it together.

TRYE APP 418

Figures:

Fig 1. The header file

TRYE APP 419

 Fig 2. The class code when loading

Literature:

[1]https://create.arduino.cc/projecthub/ruchir1674/how-to-interface-gps-module-neo-

6m-with-arduino-8f90ad

[2]https://www.arduino.cc/en/Guide/ArduinoUn

TRYE APP 420

A.6 Non technical User Stories

A.6.1 USN-1 I as the risk manager need to perform a
project SWOT analysis to help analyze our group

User story

ID: USN-1 I, as a risk manager, need a project SWOT analysis
technique that helps to analyze our group.

Who Worked Dawit

Who Verified Dawit

Status Done

Requirement

Documentation
We need to understand and visualize the risk early in the
project

Verification

IV-22
Inspect the team of the project by use of the SWOT analysis
technique, and so we can rewrite the information contents
into risk.

Ver-method Inspection Ver-priority HIGH

Introduction:

For we are a team of the project, we need to participate and work actively in the

project and so to complete the tasks every time according to the weekly sprints. To

achieve this goal, we need to understand and visualize any weak and strength side

of ours as a group and avoid and reduce the adverse impacts that might hinder the

TRYE APP 421

success of our project. We also need to visualize the impacts of external factors that

affect the objectives of our project.

Method Used:

We, as a group, sit down and discuss the SWOT analysis. SWOT stands for

Strengths, Weakness, Threats, and Opportunities. We try to identify all potential

uncertainties that might happen due to internal and external factors that go inside

and outside of the project. The internal factors refer to the Weakness and Strengths,

and which are the merit and demerit side of the group that affects the objectives. The

external factors refer to the Threats and Opportunities that occur outside the project

and also affects the objectives. After identified all potential uncertainties, we

individually decided which of these uncertainties are to accept or reject. These Items

we have mostly accepted are their contents rewritten as a risk and taken for further

analysis.

Conclusion:

SWOT-analysis helps us to get information that we have already realized early in the

project and then rewrite their contents as a risk. In general, it provides us to

maximize the opportunities by taking advantage of real risks and reduce and avoid

the adverse risk by making a better decision.

Literature:

[1]https://www.investopedia.com/terms/s/swot.asp

[2]https://articles.bplans.com/how-to-perform-swot-analysis/

[3]https://www.smartdraw.com/swot-analysis/

TRYE APP 422

A.6.2 USN-9 Analyze the risk for our project for a better
understanding of how to reduce the risk

User story

ID: USN-9 I, as a risk manager, need to analyze risk for the project so
that we can better understand how to reduce and avoid the
risk

Who Worked Dawit

Who Verified Dawit

Status Done

Requirement

Documentation We need to evaluate the importance of each risk, and hence

priority for attention can be done by the probability-impact

matrix.

Verification

IV-23 Demonstrating the probability-impact matrix, we come up with

these risks need close attention and find solutions to stop or

reduce their impact

Ver-method Demonstration Ver-priority HIGH

Introduction:

Delivering the quality product and the likelihood of delivering the project on time

frame is an essential task for the team of the project. To achieve this goal, we need

to assess and identify all the potential risks that become an obstacle to the success

of our project, then after we analyze the risk and focus on avoiding and reducing the

higher impact risks than these lower. It is because the effects of the higher impact

TRYE APP 423

risk on the objectives of the project are serious. The process of checking for risk by

the team members takes place every week, depending on the sprints.

Method Used:

We, as the members of the team, sit down and develop a risk management plan

together and identifies all potential risks for all parts of the project. These identified

risks can make wrong in the project in terms of scope, schedule, budget, and quality.

We give each risk an ID number and put them all in the risk register for ease of

controlling and monitoring them weekly based on the scrum model we follow. We

use the probability-impact matrix to assign the likelihood and impacts of each risk.

We make the spreadsheet for calculating the weight for the risk product. We find the

risk product by multiplying the assigned value for likelihood times the assigned value

for impacts. The members of the team assign value for each risk based on the risk

impact affecting the project. The lower the value assigned, the lower the risk impact,

whereas the higher the value assigned, the higher the impact it has on the project.

We give different colors for each risk product based on the size of the impact. The

red color represents the size of the highest impact of the risk, whereas the light

green color represents the lower impact of the risk. The color varies between light

green and red color and represents the size of the medium impact of the risk. Once

we finish with the risk matrix, we need to find the cause for each risk and develop the

mitigation techniques to avoid and reduce any adverse of the risk. Since our project

is small, we don't need to evaluate the risk in term quantitatively. We sit down as a

group every week and look at the new risk coming from each of us. We can also

remove these risks that have little effect on the objective of the project. In this

approach, we can control and monitor the risk.

 Conclusion:

Risk analysis helps us to trace any problem whenever it happens in each part of the

project following the ID number for the risk. By using risk analysis, we can manage to

TRYE APP 424

avoid any potential risk and reduce the exposure of our project to any risk. Moreover,

we can minimize the impact of the risk and increase the success of our project.

Literature:

[1]https://www.pmi.org/learning/library/risk-analysis-project-management-7070

[2]https://www.sciencedirect.com/topics/earth-and-planetary-sciences/risk-analysis

[3]https://searchsecurity.techtarget.com/definition/risk-analysis

TRYE APP 425

A.6.3 USN-43 Cleaning up differences in the documenta-
tion on the website

User story
ID: USN-43 I as a software engineer need to clean up the differences in the

documentation in our documentation website. This includes
removing typos and bad language.

Who Worked Tobias

Who Verified Tobias

Status Done

Requirement
Documentation The documentation we deliver should be representable. Getting

rid of typos and bad language is a step in the right direction.

Verification
Documentation-01 Check whether or not most of the typos and bad language has

been removed.

Ver-method Inspection Ver-priority Medium

Introduction:

When it comes to our documentation, we have received criticism on 1) a lack of

documentation and 2) poor representation of the documentation presented. As I am

very focused on proper representation, I took on the enormous task of making the

documentation uniform for both the “Hardware” and “Software” as we call our two major

parts of the project.

This included:
1) Removing embedded documents with links to new documents.

a) Had to write out a lot of documents
2) Spell-check every sentence that is written on the website.

TRYE APP 426

3) When listing User Stories, I made them look exactly the same under the
“Hardware” and “Software” tab.

TRYE APP 427

Method Used:

I started from the left and worked my way through all the different sub-menus.

Under the -

● “Requirements” tab I wrote out a handful of embedded documents that lead to
new documents with links to new documents. To start off, I wrote out the entire
requirement document given to us by Trye in Norwegian, then English, followed
by a “Requirement Analysis”, “List of System Requirements and Verification” and
“Component Selection of the Hardware Subsystem”.

● “User Stories” tab I wrote out all 43 User Stories we had worked on in a readable
fashion, and with a link to the original User Story if one would be interested in the
title.

Above is a snippet of the 43 User Stories. In addition, I renamed all User Story
documents to contain a short description of what the User Story was about as a
title. Previously the entire name of a User Story was USN-43, now User Story is
named: “USN-43 Cleaning up differences in the documentation on the website”.

● “Risk” tab I wrote out as much as I could of documents leading to documents.

● “Software” tab I copied the way of listing User Stories from the Hardware tab
(minor changes) with, 1) User Story number, 2) User Story summary, 3) The
entire User Story description, 4) Link to the original document.

● “Hardware” tab I did the least amount of change, barely changing how the User
Stories were listed so that they were uniform with the “Software” tab.

TRYE APP 428

Conclusion:

I am certain that the changes done to the presentation of our documentation is positive.
Having embedded Google Documents with links to new Google Documents made it
easy to get lost and forget what document one was initially reading.

On the other hand, I am aware of user interface being very subjective, so to verify the
improvement of readability I asked Jose for his feedback. His opinion was that the
change was a positive addition and a step in the right direction, but that we still had
work to do. Further work will be done to the website when we are closing in on the
deadline for submission.

TRYE APP 429

A.6.4 USN-47 Spellchecking our entire documentation stack
with Grammarly

User story
ID: USN-9 I as a software engineer need to go through the original google

documents/documents in general and spellcheck with the help
of Grammarly.

Who Worked Tobias

Who Verified Tobias

Status Done

Requirement
Documentation The documentation we deliver should be representable. Getting

rid of typos and bad language is a step in the right direction.

Verification
Documentation-01 Check whether or not most of the typos and bad language has

been removed.

Ver-method Inspection Ver-priority Medium

TRYE APP 430

Introduction:

As we decided to write our bachelor thesis in English, I expected the language and

amount of typos to be quite bad. This combined with the deadline for submission closing

in, I found it reasonable to visit every document created since January and get rid of

obvious typos. To help me achieve this I bought a subscription for Grammarly that

automatically detects typos and bad language in Google Documents. This included

document titles, not only it’s content.

Note: It is not my intention to bring shame upon any of my group members but as it

appears that Google Docs don’t automatically spell-check our documentation stack was

full of typos and bad language. It was especially a tough challenge to spell-check the

Google Sheet (Google’s own Excel) documents as Grammarly didn’t recognize the text

within cells. The only reason I emphasize that a proper round of spell-checking was

needed is to make it understandable that it took quite some time to go through every

document created since January.

Method Used:

The method used was fairly simple, I opened one Google Document, and scanned it

thoroughly from top to bottom. When it came to the Google Sheet documents, I had to

reformat entire documents to make them visually appealing. When saying visually

appealing I mean making the documents uniform as this was not the case before I

started working. After a couple of days and sore eyes, I had finally ploughed my way

through every digital document.

Conclusion:

In USN-43 I spell-checked and made the website uniform without touching the “original”

documents, here I tackled the challenge of getting rid of typos and obvious bad

TRYE APP 431

language in the “original” documents. A challenge I met throughout the work was that

some sentences did not make sense at all. I suspect that a mix of Google Translate,

fancy words and guessing created impossible to understand sentences. Where obvious,

I rewrote sentences to say what I thought they were supposed to say, but as I am not an

expert in what the other group members are working on this was difficult.

Because of this, I believe some documents might be rid of “typos” and have the correct

“article”, but no obvious meaning. I have reached out to the group and asked them to go

over the documents I’ve corrected so they can take a look at the sentences.

TRYE APP 432

A.6.5 USN-60 Need to select the proper risk identification
technique to our project

User story

ID: USN-60 I,as a risk manager, need to select the proper risk identification
techniques that help us to identify risks for each part of the
project.

Who Worked Dawit

Who Verified Dawit

Status Done

Requirement

Documentation We need to visualize some risks early in the project by use of
proper risk identification techniques.

Verification

IV-24 Inspecting the risk identification, we come up with some
techniques that meet the objectives of the project and use it for
visualizing risk early on.

Ver-method Inspection Ver-priority Medium

 Introduction:

So long the risk related to the project from internal and external can hinder the

objectives of the project, we need to understand and find a technique to identify

these risks and minimize their impacts that impedes us from delivering our product

on the timeframe. Risk identification refers to a risk management tool that helps us to

gather all information during the identification of risk and use them as a base for

further risk analysis.The user story for risk analysis has already done on USN-9.

TRYE APP 433

Method Used:

The first thing we do in risk identification is that we try to understand the area where

the risk occurs in the project. The risk occurs and gradually affects the scope,

budget, schedule, and quality of the project. Moreover, the risk may affect the

expectation of our customers. We sit down and discuss the risk identification in a

group to understand which techniques are relevant for our project and help us

identify risk effectively. Brainstorming is one of the risk identification techniques that

we use in identifying risk. It is because it helps us to create a method to look for risk

now and in the future in the project. As we are working on the software and hardware

part, everybody comes with risk in mind that related to the parts. Then we document

these risks that we can see for a while. It is often our choice or decision on some

issues that arise a new risk which we didn`t see in the previous steps. We also use

the SWOT analysis technique because we need to analyze ourselves as a group to

understand and visualize everything early in the project. We have already done the

user story on group analysis in USN-1 in detail

Conclusion:

By using risk identification techniques, we can do the risk analysis in detail and

address the most potential risks in the project. It also helps us to understand the

scopes of the project early.

Literature:

[1]https://www.pmi.org/learning/library/risk-identification-life-cycle-tools-7784

[2]https://www.mitre.org/publications/systems-engineering-guide/acquisition-systems

-engineering/risk-management/risk-identification

[3]https://www.greycampus.com/opencampus/certified-associate-in-project-manage

ment/risk-identification-tools-and-techniques-in-capm

TRYE APP 434

A.6.6 USN-61 We need to list all risks in the risk register
for better management of the project

User story

ID: USN-61
I, as a risk manager, need to list all risks in the risk register for
better management of the project.

Who Worked Dawit

Who Verified Dawit

Status Done

Requirement

Documentation The risks we document into the risk register serve as to take
action to respond to the risk.

Verification

IV-25
Inspecting the risk register, we can better manage the risk in

the project.

Ver-method Inspection Ver-priority HIGH

Introduction:

For the better management of risk, we need to register all risks in the risk register. If

in case we do not list all potential risks in the risk register, we can quickly fail to

manage our project. Therefore, the risk register is an essential tool in the risk

management process and refer to the document to the result of qualitative and

TRYE APP 435

quantitative risk analysis and risk response planning. We focus on the qualitative

part, which, based on prioritizing the risk and determines the probability and impact

of the project. The risk register comprises much information in which each related to

individual risk. It contains the Id number of the risk, the description of each risk, the

date when the risk identified, the owner of the risk, the causes of the risk, the

likelihood of the risk, the impact of the risk, the risk product, the mitigation actions,

and response planning. We need the risk register because it helps us describing the

risk consistently, enables us to analyze the risk, and it uses as a record for future

use.

Method Used:

The first thing, we, as a team of the project, need to identify all potential risks that

negatively affect the project. We sit down and write the description for each risk

identified. We need to understand and write the causes for each risk. Each risk has

given an ID which uses to trace and apply for the future. The responsible person,

who keep managing the risk, and the date when the risk identified document the risk

register. Then we assess the probability of the risk happening and the impact of the

risk if it occurs. We need to use a spreadsheet to calculate the risk product by

multiplying probability with the impact of the risk. The higher the risk product, the

higher the impact of the risk affecting our project. We need to represent different

colors for each risk products. The red color is a representation of a higher risk,

whereas the light green color is a representation of lower risk. The color from light

yellow to yellow is a representation of medium risk.

We mainly focus on the higher risk product because its effect on the project is

tremendously huge. So, we need to find the mitigation actions for each recorded risk

products. Then we come up with the response plan and monitor the risk throughout

the project. Since we follow the scrum model, we need to evaluate the risk every

week with the team of the project. We can reject some of the risks because of its

effect on the project is minimum. Some of them we can continue to control and

monitor till the lifetime of the project.

TRYE APP 436

Conclusion:

By using a risk register, we can easily manage the risk and increase the likelihood of

the success of our project. In general, risk register allow us to analyze the contents

of risk and timing. It also creates the opportunity to learn by reviewing the recorded

what happened. It provides us to make sure that every risk described at the same

level detail.

Literature:

[1]https://www.projectmanager.com/blog/guide-using-risk-register

[2]https://www.sciencedirect.com/topics/engineering/risk-register

[3]https://pmdprostarter.org/risk-register/

TRYE APP 437

T
R

Y
E

A
P

P
438

A.7 Verification documents

A.7.1 Verification spreadsheet

Verification of Trye System
Test-method V-ID User Story ID Requirement Description of verification method Priority Responsible for

verification Status Test report
available Test Report Done by

and date Comment
Test TV-01 USN-23 CSR-01 Connect our system to exsisting system and compare the speed on both systems MEDIUM Not Tested
Test TV-02 USN-24 CSR-01 Connect our system to exsisting system and compare the battery level on both systems MEDIUM Not Tested
Analysis AV-01 USN-24 CSR-01 Connect our system to existing system, measure the power level and compare it with our system MEDIUM Not Tested
Inspection IV-01 USN-10 MAR-02 Inspection off the apps and discussing with Simon HIGH Simon Pass Available USN-10
Analysis AV-02 USN-20 CSR-01 Analyse the signal and see if we are able to decrypt the signal and see if this is what we expect MEDIUM Joachim Failed Available USN-20

Analysis AV-03 USN-22 PSR-02
Measure the output voltage of the voltage regulator and compairing it the required 5V
output HIGH Joachim Not Tested

Test TV-03 USN-22 PSR-02
Connecting all the devices to the voltage regulator and see if it can supply the required
current HIGH Joachim Not Tested

Analysis AV-04 USN-25 CSR-01
Connect a phone to the bike computer and analyse the data using the computer program wire shark, to
see if the data is as required MEDIUM Joachim Failed Available USN-25

Analysis AV-05 USN-26 TSR-01 Check to see if the coordinates received from our system, matches our real position. MEDIUM Not Tested
Test TV-04 USN-26 TSR-01 Take the GPS on a field test, and see if we get GPS data MEDIUM Not Tested
Demonstration DV-01 USN-27 MAR-05 Ensure everything is as it should by visually looking at the map. MEDIUM Tobias Pass Available USN-27 Tobias 05.05.2020
Inspection IV-02 USN-12 MAR-02/ASR-01/ASR-03 Inspect Planet9 to check whether or not it is suitable to develop in. HIGH Tobias Pass Available USN-12 Tobias 05.05.2020
Inspection IV-03 USN-10 MAR-02 Inspect current technology and come up with a requirement/development plan. HIGH Tobias Pass Available USN-10 Tobias 06.05.2020
Inspection IV-04 USN-11 MAR-02 Inspect our initial UML diagram to check whether or not they fit with our requirement/development plan. HIGH Tobias Pass Available USN-11 Tobias 06.05.2020
Test TV-04 USN-15 MAR-02 Test whether or not our Neptune workspace is running as planned. HIGH Tobias Pass Available USN-15 Tobias 06.05.2020
Test TV-05 USN-17 MAR-06 Test whether or not the database works as intended. HIGH Tobias Pass Available USN-17 Tobias 06.05.2020
Inspection IV-05 USN-18 MAR-06 Inspecting whether or not the login system works as intended. HIGH Tobias Pass Available USN-18 Tobias 06.05.2020

Inspection IV-06 USN-21 MAR-06
Inspect whether or not data is saved unnecessary amount of times meaning it does not fulfill the
requirements of a 3rd normal form database. MEDIUM Tobias Pass Available USN-21 Tobias 06.05.2020

Inspection IV-07 USN-28 MAR-03 Inspect whether or not the payment solution works. HIGH Tobias Failed Available USN-28 Tobias 06.05.2020
Inspection IV-08 USN-30 MAR-01/MAR-02/MAR-03 Inspect whether or not the basic navigation bar is finished. HIGH Tobias Pass Available USN-30 Tobias 06.05.2020
Inspection IV-09 USN-33 MAR-02 Inspect whether or not the changes done to the registration system are working as expected. HIGH Tobias Pass Available USN-33 Tobias 06.05.2020
Inspection IV-10 USN-34 MAR-06 Inspect whether or not the one-time password feature works as expected. HIGH Tobias Pass Available USN-34 Tobias 06.05.2020
Inspection IV-11 USN-39 MAR-02 Inspect whether or not users are able to view and edit their user information inside the app. HIGH Tobias Pass Available USN-39 Tobias 06.05.2020

Test TV-06 USN-38 CSR-02/WSR-01/CSR-02 Testing whether the IoT device is connected to the server or not. HIGH Eebbaa Pass Available USN-38 Eebbaa 03.04.2020
Test TV-07 USN-44 CSR-02/WSR-01/CSR-02 Testing if the IoT device sends the GPS location data and battery level in the format we need. HIGH Eebbaa Pass Available USN-44 Eebbaa 20.04.2020
Demonstration DV-02 USN-36 TSR-02/WSR-01/CSR-02 Check if we get a connection and the correct data is recived LOW Joachim Pass Available USN-36
Test TV-08 USN-35 WSR-01 Check if data is formatted as it should on server-side, and device-side MEDIUM Joachim Pass Available USN-35
Test TV-09 USN-51 WSR-01/TSR-02/CSR-02 Test and see if data from the bike is updating the correct database entry HIGH Joachim Not Tested Not available USN-51
Inspection IV-12 USN-40 MAR-05 Inspect whether the new map API works as expected. MEDIUM Tobias Not Tested Available USN-40 Tobias 08.05.2020
Inspection IV-13 USN-41 MAR-02 Inspect whether or not the chosen date-picker works with our desired functions. HIGH Tobias Pass Available USN-41 Tobias 08.05.2020
Inspection IV-14 USN-42 MAR-05 Inspect whether or not the "on-load" function works. MEDIUM Tobias Not Tested Available USN-42 Tobias 08.05.2020
Inspection DC-01 USN-43 Documentation Check whether or not most of the typos and bad language has been removed on the website. MEDIUM Tobias Pass Available USN-43 Tobias 08.05.2020
Inspection IV-15 USN-46 MAR-02 Check whether or not the bookings tab works as expected. HIGH Tobias Pass Available USN-46 Tobias 09.05.2020
Test TV-10 USN-26 TSR-01 Test whether the GPS code gives the approximate location of the current address and time as expected HIGH Dawit Pass Available USN-26 Dawit 09.05.2020
Inspection DC-02 USN-47 Documentation Check whether or not most of the typos and bad language has been removed on the original documents. MEDIUM Tobias Pass Available Tobias 11.05.2020
Test TV-11 USN-59 TSR-01 Test whether the converted code into class returns latitude, longitude, and time as expected and so we can send it to the server.HIGH Dawit Not Tested Available USN-59 Dawit 09.05.2020
Inspection IV-16 USN-48 MAR-02 Inspect whether or not the bookings tab work as expected. HIGH Andreas Pass Available USN-48 Tobias 11.05.2020

Inspection IV-17 USN-49 MAR-02 Check whether or not the bookings tab work as expected. HIGH Andreas Pass Available USN-49 Tobias 11.05.2020
Inspection IV-18 USN-50 MAR-02 Check whether or not the PIN-code system works as it should. HIGH Andreas & Tobias Pass Available USN-50 Tobias 11.05.2020
Inspection IV-19 USN-53 MAR-03 Check whether or not the Stripe payment system works as it should. HIGH Andreas Pass Available Tobias 11.05.2020
Inspection IV-20 USN-54 MAR-02 Check if a booked bike on today's date shows up in the unlocking tab. HIGH Tobias Pass Available Tobias 11.05.2020
Inspection IV-21 USN-55 MAR-02 Check whether or not the account deletion works as it should. HIGH Andreas Pass Available Tobias 11.05.2020
Inspection IV-22 USN-57 ASR-01/ASR-03 Check whether or not the Admin app works as intended. HIGH Andreas Pass Available Tobias 11.05.2020
Inspection IV-23 USN-1 Documentation Inspect the team of the project by use of the SWOT analysis technique, and so we can rewrite the information contents into risk.HIGH Dawit Pass Available USN-1 Dawit 11.05.2020
Demonstration IV-24 USN-9 Documentation Demonstrating the probability-impact matrix, we come up with these risk need close attention and find solutions to stop or reduce their impactsHIGH Dawit Pass Available USN-9 Dawit 12.05.2020
Inspection IV-25 USN-60 Documentation Inspecting the risk identification, we come up with some techniques that meet the objectives of the project and use it for visualizing risk early on.MEDIUM Dawit Pass Available USN-60 Dawit 12.05.2020
Inspection IV-26 USN-61 Documentation Inspecting the risk register, we better manage the risk in the project. HIGH Dawit Pass Available USN-61 Dawit 12.05.2020

Test TV-12 USN-58 CSR-03
Controlling the Arduino in built led by sending command messages from the google cloud platform.

MEDIUM Eebbaa Pass
Available

USN-58 Eebbaa
Test TV-13 USN-29 CSR-03 Controlling the bike motor with relay and an arduino. MEDIUM Eebbaa Not Tested Not available USN-29

T
R

Y
E

A
P

P
439

A.7.2 DC-01 Verifying USN-43

Verification
ID: DC-01 Check whether or not most of the typos and bad language has

been removed.

Status: Pass Priority: Medium

Method: Inspection

Who Verified Tobias

User Story
USN-43 I as a software engineer need to clean up the differences in the

documentation in our documentation website. This includes
removing typos and bad language.

Requirement
Documentation The documentation we deliver should be representable. Getting

rid of typos and bad language is a step in the right direction.

Why this need to be tested:
Taking a look at the language of what we deliver as documentation is extremely important when
it comes to our credibility as academics.

How the test is performed:
The test is performed with the help of Grammarly as a “second” pair of eyes. Together we found
and corrected many typos and especially lack of articles (The, a, etc.).

Results:
Several hundred if not thousand words were corrected in our huge stack of documentation.

TRYE APP 440

Conclusion:
As of the date of USN-43, most of the documentation is typo-free. The reason I say most is that
it’s impossible to be a hundred per cent certain that everything is well written.

TRYE APP 441

A.7.3 DC-02 Verifying USN-47

Verification
ID: DC-02 Check whether or not most of the typos and bad language has

been removed on the original documents.

Status: Pass Priority: Medium

Method: Inspection

Who Verified Tobias

User Story
USN-47 I as a software engineer need to go through the original google

documents/documents in general and spellcheck with the help
of Grammarly.

Requirement
Documentation The documentation we deliver should be representable. Getting

rid of typos and bad language is a step in the right direction.

Why this need to be tested:
As we are writing an academic bachelor thesis, it’s important to make sure the language is well
written in the original documents. Going through and spell-checking every document is
important to be confident with our work.

How the test is performed:
The user story is verified with the help of inspection, where I went through and checked every
original document for typos with Grammarly.

Results:
The results were that the major spelling errors and bad language were fixed.

TRYE APP 442

Conclusion:
As the major spelling errors and bad language was fixed in the entire stack of original
documentation, this gives a pass in the verification.

TRYE APP 443

A.7.4 DV-01 Verifying USN-27

Verification
ID: DV-01 Ensure everything is as it should by visually looking at the map.

Status: Pass Priority: Medium

Method: Demonstration

Who Verified Tobias

User Story
USN-27 I as a software engineer need to implement a map API for the

app so users can see where the rentable bikes can be located.

Requirement
MAR-01
MAR-02
MAR-03

The mobile app should have a renting system.
The mobile app should have a booking system.
The mobile app should have a payment app.

Why this need to be tested:
As our app is made to be as user friendly as possible, having clickable bikes that lead you to the
renting/payment solution is an important feature. Trye’s mission is first of all to ensure that the
users of the app/their service gets the best possible service, but also make money as a
company.

How the test is performed:
The test will be done with the help of demonstration. The app will be opened on different mobile
phones/pc browsers to ensure that the experience meets our criteria.

Results:
The bikes are successfully being displayed on the map. The visibility is also very good as a
white background with a black bike logo is easy to see.

TRYE APP 444

Conclusion:
As everything works as expected and it’s easy to spot the bikes this means that the User Story
gets to pass the verification.

TRYE APP 445

A.7.5 DV-02 Verifying USN-36

Verification
ID: DV-02 Check if we get a connection and the correct data is received

Status: Pass Priority: Low

Method: Demonstration

Who Verified Joachim

User Story
USN-36 We as Hardware engineers need to set a test server(IoT

platform) for testing our connection with IoT modules(MKR NB
1500).

Requirement
TSR-02
WSR-01
CSR-02

-The Trye bike system should be able to send GPS position to
the web server
-The web server should be able to communicate with the bike
-The controller should send all relevant data to the web server

Why this need to be tested:
The Arduino code and platform made/found in this user story will be the foundation for the rest
of the system, if this does not work as it should be, the rest of the system will be build on
something that does not work, and we might have to do everything twice.

How the test is performed:
We will use an Arduino MKR NB 1500 which has an LTE module build in to communicate with a
platform of our choosing, we went with Google Cloud Platform (GCP) for our development,
therefor we will concentrate the testing on that specific platform. In the GCP environment there
is a functionality to update the state of a IoT device, this is an easy way demonstrate the
functionality of our system, as we can easily see the messages coming from the Arduino in plain
text. By modifying the Arduino example code “GCP_IoT_Core_NB” to work with our system, we
can modify the messages sent between the device and server.

TRYE APP 446

Results:
The message written in the Arduino code ended up as a state in the GCP environment, under
the correct device. The message can be viewed in FIG1.

Conclusion:
The sub-system works as it should be, we can now work with relaying the messages to a
database for storage, and requested the latest message by the mobile app.

Figure:

FIG1: we can see the result we got from the Arduino

TRYE APP 447

A.7.6 IV-02 Verifying USN-12

Verification
ID: IV-02 Inspect Planet9 to check whether or not it is suitable to develop

in.

Status: Pass Priority: High

Method: Inspection

Who Verified All

User Story
USN-12 I as the SCRUM Master need to find a suitable development

platform

Requirement
MAR-02 The mobile app should have a booking system.

Why this need to be tested:
Finding a development platform that is suitable for our bachelor's thesis is extremely important.
Having all team members agree on the platform is a must, as we will spend hundreds of hours
using it.

How the test is performed:
The test will be done with the help of inspection. The platform to be examined is Planet9 which
is built on open-source development frameworks like OpenUI5. If everything looks and feels fine
after a week or two of using the software we are in a position to properly examine whether or
not it is the platform for us.

TRYE APP 448

Results:
After a couple of weeks of developing and going through a Planet9 tutorial we are very happy
with Planet9 and strongly believe it will become a powerful tool to help us develop a user
friendly application.

Conclusion:
Decided on Planet9 to be our go-to development platform.

TRYE APP 449

A.7.7 IV-03 Verifying USN-10

Verification
ID: IV-03 Inspect current technology and come up with a list of refined

requirement.

Status: Pass Priority: High

Method: Inspection

Who Verified All

User Story
USN-10 I as a software engineer need to research the existing scooter

apps to look at the user interface and functionality.

Requirement
MAR-02 The mobile app should have a booking system.

Why this need to be tested:
To figure out what we need in our application, we need to take a look at the current technology
and see what features we need to implement in our app to create a user friendly and
competitive application.

How the test is performed:
The test was performed by talking to Simon (Trye) and coming up with a refined list of
requirements.

Results:
Our conversation with Trye was with the entire team at Voksenåsen hotell. There we went
through the entire requirement list given from Trye, and finding additions/remove unnecessary
requirements.

TRYE APP 450

Conclusion:
The talk went as we hoped, and a new refined list of requirements were created. This
requirement stack was what we worked with throughout the entire development cycle.

TRYE APP 451

A.7.8 IV-04 Verifying USN-11

Verification
ID: IV-04 Inspect our initial UML diagram to check whether or not they fit

with our requirement/development plan.

Status: Pass Priority: High

Method: Inspection

Who Verified Tobias

User Story
USN-11 I as a software engineer need to make initial UML Diagrams for

the user app so that I can get a better overview of the
application

Requirement
MAR-02 The mobile app should have a booking system.

Why this need to be tested:
As our UML diagrams show the entirety of our system, it is important that the system we build is
the system we have modelled. This is especially important as we are writing an academic
bachelor thesis.

How the test is performed:
The test is performed by ensuring that the initial UML diagrams fit with our
research/development plan. On the other hand, as we are only verifying our initial UML
diagrams to get us started, it is not necessary that they fit with our end result. New UML
diagrams will be made when the final product is done.

TRYE APP 452

Results:
Our initial diagrams fit with the requirement/development plan made in USN-10, with
corresponding verification document IV-03 where we went over the requirement/development
plan with Simon.

Conclusion:
As there is a clear correspondence between the initial UML diagrams produced and the
requirements/development plan this gives a pass.

TRYE APP 453

A.7.9 IV-05 Verifying USN-18

Verification
ID: IV-05 Inspecting whether or not the login system works as intended.

Status: Pass Priority: High

Method: Inspection

Who Verified Tobias

User Story
USN-18 We as software engineers need to make a login system

connected with a database so that users can register to our
application.

Requirement
MAR-06 The app should store user data and other significant data

securely in a database.

Why this need to be tested:
As our application is supposed to give the opportunity to customers to rent bicycles, we have to
have a working login system, as a failure here would make our entire application less safe/not
usable.

How the test is performed:
The test is performed with the help of inspection, and going through the login-form multiple
times to check for bugs/lack of functionality.

Results:
When it comes to the end-product everything works as expected and users are able to register.
However, additional work to the login-system has been made later in the development in user
story: USN-33 and USN-34.

TRYE APP 454

Conclusion:
The final result is a working login system that saves user data the way we wanted, and that
gives this a pass in the verification.

TRYE APP 455

A.7.10 IV-06 Verifying USN-21

Verification
ID: IV-06 Inspect whether or not data is saved unnecessary amount of

times meaning it does not fulfill the requirements of a 3rd
normal form database.

Status: Pass Priority: High

Method: Inspection

Who Verified Tobias

User Story
USN-21 We as software engineers need to make sure our initial

database tables are in the 3rd normal form using normalization
to prevent undesirable data dependencies.

Requirement
MAR-06

WSR-02

The app should store user data and other significant data
securely in a database.
The web server should be able to communicate with the app.

Why this need to be tested:
Having a database that fulfills the requirements of 3rd normal form is important to avoid
undesirable data dependencies, as well as not using an excessive amount of storage space.
The latter is especially important when working with data that is expected to grow rapidly.

How the test is performed:
As the database was built with aided intuition (we have had courses in how to build proper
database structures) we were fairly confident in the database structure being well-made. After
adding some dummy-data we took a detailed look on what the data dependencies were and if
they met the criteria for 3rd normal form.

TRYE APP 456

Results:
When examining the database and its data we saw that there were no data dependencies that
were not made purposely, meanwhile the database was still usable for all our uses in the
application.

Conclusion:
From our examination we concluded with the database structure being properly made and this
gives a pass in this verification.

TRYE APP 457

A.7.11 IV-07 Verifying USN-28

Verification
ID: IV-07 Inspect whether or not the payment solution works.

Status: Failed Priority: High

Method: Inspection

Who Verified Tobias

User Story
USN-28 We as software engineers need to implement a payment

solution for the app so users can pay for the bikes they want to
rent.

Requirement
MAR-03 The mobile app should have a payment system.

Why this need to be tested:
Having a payment solution that works is essential in having a useable application. However, the
user story was delayed and was continued in USN-53.

How the test is performed:
As this user story was disbanded and continued in a later user story, no test was performed.

Results:
There was no result from the verification as the user story was disbanded and continued in a
later user story.

TRYE APP 458

Conclusion:
Continued in a later user story.

TRYE APP 459

A.7.12 IV-08 Verifying USN-30

Verification
ID: IV-08 Inspect whether or not the basic navigation bar is finished.

Status: Pass Priority: High

Method: Inspection

Who Verified Tobias and Hans Kristian (Trye)

User Story
USN-39 We as software engineers need to finish the basic navigation

bar, and the main menu interface so that we can show a demo
on the second presentation.

Requirement
MAR-01
MAR-02
MAR-03

The mobile app should have a renting system.
The mobile app should have booking system.
The mobile app should have a payment system.

Why this need to be tested:
Having a basic navigation bar is important to have a successful and user friendly app.

How the test is performed:
The test is made by inspecting the navigation bar with the help of Hans Kristian from Trye,
where we test out pressing the different navigation sub-menus and making sure everything
works as expected.

Results:
The result from the inspection is that everything works as expected and that it is look upon as
user friendly from both me (Tobias) and Hans Kristian (Trye).

TRYE APP 460

Conclusion:
As everything worked in the inspection we can conclude with the basic navigation bar being
done and that gives the verification a pass.

TRYE APP 461

A.7.13 IV-09 Verifying USN-33

Verification
ID: IV-09 Inspect whether or not the changes done to the registration

system are working as expected.

Status: Pass Priority: High

Method: Inspection

Who Verified Tobias

User Story
USN-33 I as a software engineer need to change the registration system

to the Alpha2 version, for the app to work as intended.

Requirement
MAR-02 The mobile app should have a booking system.

Why this need to be tested:
Having a registration system that is working as expected is crucial for our app in entirety to
work.

How the test is performed:
The test was made with the help of inspection, where we went over the registration system and
checked if everything still worked with the improvements we made.

Results:
The results were that everything worked as expected, including the new and improved features
to our registration system.

TRYE APP 462

Conclusion:
As everything worked as expected, this gives a pass in the verification.

TRYE APP 463

A.7.14 IV-10 Verifying USN-34

Verification
ID: IV-10 Inspect whether or not the one-time password feature works as

expected.

Status: Pass Priority: High

Method: Inspection

Who Verified Tobias

User Story
USN-34 USN-34: I as a software engineer need to fix the one-time

password system to the Alpha2 version, for the app to work as
intended

Requirement
MAR-06 The app should store user data and other significant data

securely in a database.

Why this need to be tested:
Having a one-time password feature that works as expected in crucial in the registration
process. If it does not work as expected, hostile users are able to register using a fake phone
number and possibly exploit our renting system.

How the test is performed:
The test is done with the help of inspection, checking whether or not the one-time password
reaches the users/customers phone number enabling them successfully login/register.

Results:
The one-time password feature works as expecting, delivering a randomly generated four digit
code to his/her phone number. Entering any number but the exact one-time password results in

TRYE APP 464

a “wrong code” prompt, meanwhile entering the delivered one-time password lets the user
register as planned.

Conclusion:
As the one-time password feature works as intended, this gives a pass in the verification.

TRYE APP 465

A.7.15 IV-11 Verifying USN-39

Verification
ID: IV-11 Inspect whether or not users are able to view and edit their user

information inside the app.

Status: Pass Priority: High

Method: Inspection

Who Verified Tobias

User Story
USN-39 I as a software engineer need to make users able to view and

edit their user information inside the app so they can update
their data.

Requirement
MAR-02 The mobile app should have a booking system.

Why this need to be tested:
Having correct user info is a must, and therefore we decided to add the option of being able to
update/view your own personal information. The idea is simple, if you’ve made a typo in the
registration process you are able to fix it in the profile tab.

How the test is performed:
The test is done with the help of inspection, where we will go through the view and edit form of
user data, and check if everything works as expected when e.g. editing info.

TRYE APP 466

Results:
The results from the test were that everything worked smoothly, and that a user could view and
update their information as expected.

Conclusion:
As the user is able to view and edit their personal info, this gives a pass in the verification.

TRYE APP 467

A.7.16 IV-12 Verifying USN-40

Verification
ID: IV-12 Check whether the new map API works as expected.

Status: Not tested Priority: Medium

Method: Inspection

Who Verified Tobias

User Story
USN-40 I as a software engineer need to find a map API that is made for

mobile users as the current API is made for desktop. Then I will
have to recreate the interactive map with its intended
functionalities.

Requirement
MAR-05 The app should have a map.

Why this need to be tested:
A new map API needs to be tested in order to be an improvement from the old map API.

How the test is performed:
The user story concluded with a new map API being possible to implement, but as there is no
significant gain from rewriting the entire logic of the map the new map API was not implemented
and therefore there is nothing to test.

Results:
No result.

TRYE APP 468

Conclusion:
No conclusion.

TRYE APP 469

A.7.17 IV-13 Verifying USN-41

Verification
ID: IV-13 Check whether or not the chosen date-picker works for our

desired functions.

Status: Pass Priority: High

Method: Inspection

Who Verified Tobias

User Story
USN-41 I as a software engineer need to experiment and find a

date-picker for an easy-to-use rent interface. (Date from- Date
to and calculate days/hours and cost to then input into the
payment solution).

Requirement
MAR-02 The app should have a booking system.

Why this need to be tested:
A working date-picker is crucial other highly important app functions such as renting and
booking functions. Testing that it works is, therefore, a high priority.

How the test is performed:
The test is performed with the help of inspection, where we simply test out the date-picker and
check the outputs given. With “test out the date-picker” I mean pressing a start date and an end
date.

Results:
The results from the inspection are that everything seems to work as expected. We had a small
rounding bug when it came to the javaScript function .getTime() but this is a known issue as
computers can be “bad at counting”. Fixed this with a .Math.round() function.

TRYE APP 470

Conclusion:
As everything works as expected, this gives a pass in the verification.

TRYE APP 471

A.7.18 IV-14 Verifying USN-42

Verification
ID: IV-14 Inspect whether or not the “on-load” function works.

Status: Not tested Priority: Medium

Method: Inspection

Who Verified Tobias

User Story
USN-42 I as a software engineer need to find a suitable function to load

the map javaScript “on-load”.

Requirement
MAR-05 The app should have a map.

Why this need to be tested:
Testing whether or not the “on-load” function works is crucial to the loading of the map. In our
case, we chose not to implement it as it would require major restructuring in the application as a
whole.

How the test is performed:
Not tested.

Results:
Not tested.

TRYE APP 472

Conclusion:
Not tested.

TRYE APP 473

A.7.19 IV-15 Verifying USN-46

Verification
ID: IV-15 Check whether or not the bookings tab work as expected.

Status: Pass Priority: High

Method: Inspection

Who Verified Tobias

User Story
USN-46 I as a software engineer need to display bikes in the bookings

tab so they can be selected and put in booking table so users
can book bikes.

Requirement
Function-04 The system should Enable bike users to book a bike using

mobile app.

Why this need to be tested:
If no bikes are shown in the bookings tab, it is impossible for a user to “select” a bike. This
makes it impossible for bookings to be done in the app, so therefore it is extremely important
that the bikes are shown.

How the test is performed:
The test will be done with the help of inspection, where we will enter the bookings tab of the
application and check if everything works as expected, and the bikes are shown and can be
selected.

Results:
The bikes are shown and can be selected. When selected a new “your selected bike” pops up,
making it easy for a user to see what bike he/she selected.

TRYE APP 474

Conclusion:
As the wanted functionality is fulfilled and the bikes are shown and can be selected this gives a
pass in the verification.

TRYE APP 475

A.7.20 IV-16 Verifying USN-48

Verification
ID: IV-16 Check whether or not the history tab work as expected.

Status: Pass Priority: High

Method: Inspection

Who Verified Andreas

User Story
USN-48 I as a software engineer need to display the booking history for

the user so the user can check their renting history

Requirement
Function-04 The system should Enable bike users to book a bike using

mobile app.

Why this need to be tested:
If no bookings are shown in the History tab, users cant view their booking history. This makes it
hard for the customer to remember when they have booked their bikes, and also have a booking
to refer to if they have any complaints or questions.

How the test is performed:
The test will be done with the help of inspection, where we will enter the history tab of the
application and check if everything works as expected, and the bookings are shown and can be
viewed.

TRYE APP 476

Results:
The bookings are shown with a booking id and all the needed information related to that user:

Conclusion:
As the wanted functionality is fulfilled and the bookings are shown with all needed information
which gives a pass in the verification.

TRYE APP 477

A.7.21 IV-17 Verifying USN-49

Verification
ID: IV-17 Check whether or not the bookings tab work as expected.

Status: Pass Priority: High

Method: Inspection

Who Verified Andreas

User Story
USN-49 I as a software engineer need to display the booking history for

the user so the user can check their renting history

Requirement
Function-04 The system should Enable bike users to book a bike using

mobile app.

Why this need to be tested:
When users book bikes we want to test two main criteria, no overlap and no booking back in
time.

How the test is performed:
The test is done by trying to overlap bookings and bookings back in time.

We make a booking long ahead in time and try to book in the same range.

TRYE APP 478

Results:
 Book the same dates:

Success as trying to book only on the 12th or the 13th gives an error.

Overlapping bookings:

Success as trying to book 11-12th and 13-14th both fails.

Booking the same timeframe:

Success is trying to book the same timeframe 12-13th fails.

TRYE APP 479

Making a booking back in time:

Success as trying to book on 1 April 2020 gives an error message since it is date back time.

Conclusion:
As the wanted functionality is fulfilled and no customer can overlap each other’s bookings which
gives a pass in the verification.

TRYE APP 480

A.7.22 IV-18 Verifying USN-50

Verification
ID: IV-18 Check whether or not the PIN-code system works as it should.

Status: Pass Priority: High

Method: Inspection

Who Verified Andreas and Tobias

User Story
USN-50 We as software engineers need to create a pin code system so

that we don't send out an unnecessary amount of SMSs.

Requirement
MAR-02 The mobile app should have a booking system.

Why this need to be tested:
We want to test if users pin codes are stored in the database when they receive their one time
password, check if it is possible to change pin code, and if you can recover the pin code.

How the test is performed:
This test is performed by inspecting the database and trying the different features.

TRYE APP 481

Results:
Testing updating the pin to the one time password:
We start by inspecting the database:

We can see that the pin is the default. When we register and enter the one time password we
want it to change to that. The code we got 9305. Now ve verify the code and check the
database:

We can now see that the value has changed to the one time password which means this test is
passed.

Testing if we can change it inside the app:

TRYE APP 482

We change the pin code to “1234” to check if it updates in the database:

We can see now that the pin code has changed to “1234” in the database which means the test
is passed.

Now we try to recover an account if a user has forgotten their password:

“1568” is the code I received. Now to check the database:

The code has been updated so the recovery is successful.

Conclusion:
The pin code system works as intended which is confirmed by inspection so the test is passed.

TRYE APP 483

A.7.23 IV-19 Verifying USN-53

Verification
ID: IV-19 Check whether or not the Stripe payment system works as it

should.

Status: Pass Priority: High

Method: Inspection

Who Verified Andreas

User Story
USN-53 I as a software engineer need to test out the stripe card

payment solution, and set up a test server and make a test
payment.

Requirement
MAR-03
WSR-02

The mobile app should have a payment system.
The web server should be able to communicate with the app.

Why this need to be tested:
We need to make sure the Stripe API works before we implement it into our app.

How the test is performed:
The user story was made with test payment on a stock HTML store webpage. Now we copy the
javaScript code and test from inside the trye app to verify that that the stripe test payments work
inside the app as well.

TRYE APP 484

Results:
Testing the integration with a test payment:

Now one bike is selected with insurance and we press checkout to pay:

TRYE APP 485

The booking was successful.

Conclusion:
The implementation worked and the inspection test is passed.

TRYE APP 486

A.7.24 IV-20 Verifying USN-54

Verification
ID: IV-20 Check if a booked bike on today's date shows up in the

unlocking tab.

Status: Pass Priority: High

Method: Inspection

Who Verified Tobias

User Story
USN-54 I as a software engineer need to set up an algorithm for

checking if bikes are available for unlocking and that they are
clickable so we can send a signal to the bike

Requirement
MAR-02 The mobile app should have a booking system.

Why this need to be tested:
We need to verify that we can find the unlocked bike for the customers and show the clickable
unlock button.

How the test is performed:
By making a test and inspecting if it works as intended

Results:

To test if a bike booked today can be unlocked, we first book 2 bikes on today's date. Then we
open the unlocking tab:

TRYE APP 487

Now we click the button the 2 bikes should show up:

TRYE APP 488

Conclusion:
The check for unlockable bikes function works and the test is passed.

TRYE APP 489

A.7.25 IV-21 Verifying USN-55

Verification
ID: IV-21 Check whether or not the account deletion works as it should

Status: Pass Priority: High

Method: Inspection

Who Verified Andreas

User Story
USN-55 I as a software engineer need to make the user be able to

delete their account if they no longer want to be customers

Requirement
MAR-02 The mobile app should have a booking system.

Why this need to be tested:
We need to test if the user can delete their user info from our database if they no longer want to
be customers.

How the test is performed:
We register a user, check the user in the database, click on the delete button and see if the user
is removed from the database.

TRYE APP 490

Results:

Opening the user tab and entering the pin code and clicking delete:

Now the database browser is opened and “update” is pressed to see if the user has been
removed:

TRYE APP 491

We can see the user is gone.

Conclusion:
The test was successful and we can conclude the test with a pass.

TRYE APP 492

A.7.26 IV-22 Verifying USN-57

Verification
ID: IV-22 Check whether or not the Admin app works as intended

Status: Pass Priority: High

Method: Inspection

Who Verified Andreas

User Story
USN-57 I as a software engineer need to make user be able to delete

their account if they no longer want to be customers

Requirement
ASR-01

ASR-03

The Admin System should be able to control the lock on the
bike
The Admin System should be able to see who is using the bikes

Why this need to be tested:
We need to verify that the features in the admin as is working.

How the test is performed:
We inspect the different buttons and see if they work as intended.

Results:

Testing the unlocking button:

TRYE APP 493

When we click unlock all the bikes should be listed with a unlock button:

The bikes are listed with the unlock button which means the test was a success.

Testing the bookings button:

TRYE APP 494

When we click a list of all bikes should show:

The list shows so test is passed.

Conclusion:
All tests passed so we can conclude the test as passed.

TRYE APP 495

A.7.27 TV-04 Verifying USN-15

Verification
ID: TV-04 Test whether or not our Neptune workspace is running as

planned.

Status: Pass Priority: High

Method: Test

Who Verified Tobias

User Story
USN-15 We as software engineers need to set up our Neptune

workspace for the application so that we can start making our
application.

Requirement
MAR-02
WSR-02

The mobile app should have a booking system.
The web server should be able to communicate with the app.

Why this need to be tested:
As the Neptune workspace (Planet9) is essential for our application development. Therefore,
the verification of USN-15 is done with the help of testing the service over a couple of weeks.

How the test is performed:
The test is performed by actual development and checking whether or not the Neptune
workspace (Planet9) fulfill our requirements for a development environment.

Results:
At the start, it seemed as Planet9 was flawless and only gave us unlimited of opportunities. In
reality, Planet9 is a fairly new software that still had deep technical difficulties with bugs that
halted our development early in the project. We even had to do a full reinstallation of Planet9
on a new web server due to a server-crash connected to a bug with the PostgreSQL database

TRYE APP 496

that caused the entire platform to not work. Luckily, an update of Planet9 came with a more
functional way of connecting to databases which resolves the issues we encountered.

Conclusion:
In the end, we were able to set up Planet9 as we wanted and connect it to our PostgreSQL
making it possible to store information as well as develop our application. This gives this user
story a pass in the verification.

TRYE APP 497

A.7.28 TV-05 Verifying USN-17

Verification
ID: TV-05 Test whether or not the database works as intended.

Status: Pass Priority: High

Method: Test

Who Verified Tobias

User Story
USN-17 We as software engineers need to learn how to build a

database with tables for the app to store our data.

Requirement
MAR-06

WSR-02

The app should store user data and other significant data
securely in a database.
The web server should be able to communicate with the app.

Why this need to be tested:
Having a functional database is crucial to a successful application development. This is because
it is an absolute must to be able to store user data as well as bike- and cabin-locations.

How the test is performed:
The test is performed with actual testing, and checking whether or not the database acts as it is
supposed in the application when retrieving/posting information from and to the database.

Results:
The result of the test is that the database works as intended, and everything from retrieving to
posting data works successfully. However, it is important emphasize that the journey to a
successful database connection was not as straightforward as we hoped, but after hours and
hours of debugging finally paid off and gave us the solution we sought after.

TRYE APP 498

Conclusion:
The status of the verification is a pass as everything database-related works.

TRYE APP 499

A.7.29 TV-06 Verifying USN-38

Verification
ID: TV-06 Testing whether the IoT device is connected to the server or

not.

Status: Tested Priority: High

Method: Test

Who Verified Eebbaa

User Story
USN-38 We as Hardware Engineers need to connect our IoT modules to

the test server(IoT platform) by following the right procedure.

Requirement
CSR-02

WSR-01

CSR-02

-The controller should send all relevant data to the webserver.

-The Trye bike system should be able to send GPS positions to
the webserver.

-The web server should be able to communicate with the bike.

Why this need to be tested:
Since connecting our IoT device to the server is important for interfacing the Hardware
part with the software part. We need to test or check the IoT device is connected

How the test is performed:
First, our device is connected to the internet and checked if the connection is established by
loading an Arduino code(NB_Scanner). The Arduino code(NB_scanner) will print out the

TRYE APP 500

IMEI number and scans for nearby networks and gives us the signal strength of the
network between 0 and 31 where 0 is minimum signal strength while 31 is maximum.

To test the connection between Arduino and the test server, the Arduino code
(Azure_IoT_Hub_NB) is loaded to send some data and at the server-side, we check the
log file using azure cloud shell to see the message sent from the Arduino board.

Results:
1. The device is connected to the internet and the NB_Scanner runs successfully and

prints the result on the serial monitor, the result we got is shown in figure 1.
2. The message is received at the server-side and can be viewed as a log file on

the Azure web server. The result for this test is shown in Figure-2

Conclusion:
The device is connected with the internet through the Telenor network and the
connection between the IoT device and Server is accomplished.

Code used
NB_Scanner

1. https://drive.google.com/drive/folders/1Qd-Z840bCUuJrs0ObDkwxYfx0r_iEniy

Azure_IoT_Hub_NB

2. https://drive.google.com/drive/folders/1GgG-_XZtXSTbwa60ttNaXqPwTh9BgxPX

TRYE APP 501

Figure:

Figure-1: Serial Monitor result by running Arduino code NB_scanner

TRYE APP 502

Figure 2: Log file on the Azure cloud server which shows a message sent from an IoT
device.

TRYE APP 503

A.7.30 TV-07 Verifying USN-44

Verification
ID: TV-07 Testing if the IoT device sends the GPS location data and

battery level in the format we need.

Status: Tested Priority: High

Method: Test

Who Verified Eebbaa

User Story
USN-44 We as Hardware Engineers need to send our sensor data from

the Arduino module to the server based on the Modelled data.

Requirement
CSR-02

WSR-01

CSR-02

-The controller should send all relevant data to the webserver.

-The Trye bike system should be able to send GPS positions to
the webserver.

-The web server should be able to communicate with the bike.

Why this need to be tested:
Since our IoT device needs to update GPS location data and battery level to the server
frequently, we need to send the data in the JSON format and we need to test if the data
sent is received on the server-side as we expected.

TRYE APP 504

How the test is performed:
By sending the data in the format we need and observe the data received at the
server-side in the log file. The function void publishMessage(int bikeID, String lon,
String lat, int batteryLevel) will be used to send the data in the format we need.

Results:
The message is received at the server-side and can be viewed as a log file on the
Azure web server. The result of this test is shown in Figure-1.

Conclusion:
The data sent from the device in the JSON format will be sent to the MQTT server on
the cloud. The JSON format makes the data easier to categorize later in the Database
table with their message title.

Code used

1. https://drive.google.com/drive/folders/1kHnc5LB7wuhquW9LOMd-XPQ7TeYaA3Um

TRYE APP 505

Figures:

Figure-1 Serial Monitor showing the IoT device is publishing Message to the server after
connecting to the network.

TRYE APP 506

Figure-2: Message sent from an IoT device is received at the Google cloud platform
server.

Figure-3: Message sent from an IoT device is received at the Azure cloud platform.

TRYE APP 507

A.7.31 TV-08 Verifying USN-35

Verification
ID: TV-08 Check if data is formatted as it should on server-side, and

device-side

Status: Pass Priority: Medium

Method: Test

Who Verified Joachim

User Story
USN-35 We as hardware engineers need to model the data sent from

the Arduino to the webserver so we are able to send data in a
safe, reliable and efficient way

Requirement
WSR-01 The web server should be able to communicate with the bike

Why this need to be tested:
As we decided to use JSON as a standard format for our communication, it’s important to check
to see if it’s formated as it should be when the server receives the message. This is to avoid
miscommunication or loss of data

How the test is performed:
To test the data transferred we used the Arduino to send data to the server, this data was then
processed with cloud function, which means we can use python to test the data. Python has a
library which parses the JSON data to an array, and if this is done successfully, the data is in
the correct format.

Results:
The result can be seen in FIG-01. here we can see print lines “if you see the following message
in the correct format, the JSON parser works as it should” followed by the correctly formated

TRYE APP 508

message “bike id: 39 / battery 10: / lon: 1.4 / lat: 2.1”. Which is formated as
expected, whict means we are able to extract the information from the JSON parser and store it
as a dictionary (array)

Conclusion:
We are able to send the data as it should be sent, using JSON as the format

Figure:

FIG-01: shows the result from the test

Literatur:

Appendix:
APPX-01: shows the code in GCP, used to perform the test
import base64

import json

def JSONParser(event, context):

 """Triggered from a message on a Cloud Pub/Sub topic.

 Args:

 event (dict): Event payload.

 context (google.cloud.functions.Context): Metadata for the event.

 """

TRYE APP 509

 pubsub_message = base64.b64decode(event['data']).decode('utf-8')

 print(pubsub_message)

 eventDict = json.loads(pubsub_message)

 print(eventDict)

 print("if you see the following message in the correct format, the

JSON parser workes as it should")

 print("bike id: {} / battery {}: / lon: {} / lat:

{}".format(eventDict['bike_id'], eventDict['bat'], eventDict['lon'],

eventDict['lat']))

TRYE APP 510

A.7.32 TV-09 Verifying USN-51

Verification
ID: TV-09 Test and see if data from the bike is updating the correct

database entry

Status: Pass Priority: High

Method: Test

Who Verified Joachim

User Story
USN-51 We as hardware engineers need to send the IoT data from the

MQTT broker to the database, so the data can be collected
using a simple call by the app

Requirement
WSR-01
TSR-02
CSR-02

-The web server should be able to communicate with the bike
-The Trye bike system should be able to send GPS position the
the webserver
-The controller should send all relevant data to the webserver

Why this need to be tested:
To check to see if the correct bike id updates the correct entry in the database is essential to be
able to keep track of the correct bikes at all times. If a bike updates the wrong database entry
means we can lose the location of one of the bikes.

How the test is performed:
To test the database we made a python script that will inject test data to the pub/sub service,
which will lead to the data going from pub/sub then to cloud function and then end up at the
Firestore database. The Python script can be seen in APPX-01. The code selects a random
bike-id, longitude, latitude, and battery level and sends that as a message to the pub/sub
service and then waits between 1 and 5 seconds before looping. The code will select a random
bike between bike-id 1 and 50. When the data is uploaded to the pub/sub we can both see the
message in the pub/sub service or in the cloud function service before being uploaded to the

TRYE APP 511

database. By comparing the log file from both the python script, the cloud function service and
the result in the database we can conclude if the database updates the correct entry or not.

Results:
If FIG-01 we can see the data being sent from the python script. In FIG-02 we can see the log
file from cloud function. In FIG-03 we can see the Firestore database. By comparing the data
from the python log with the database entry we can see if the python scripts update the correct
database entry. There is about a 10-20 seconds latency before the data is updated from the
data is sent, this can be accounted for by looking at the log file from the cloud function, as there
is a much lower latency between the cloud function and the Firestore database

Conclusion:
By comparing the result we concluded with there was no loss of data when the program was up
and running as it should be, the only thing to keep in mind is the 10-20 seconds delay before the
data is updated, and there is a chance the data is lost when the services have just started, but
this should not be a problem in this systems use case.

Figure:
FIG-01: the python log

TRYE APP 512

FIG-02: The cloud function log

FIG-03: The Firestore database

TRYE APP 513

Appendix:
APPX-01: the python script used to inject random data into the database

#!/usr/bin/env python
import datetime, json, os, random, time
Set the `project` variable to a Google Cloud project ID.
project = 'trye-bike-rental'
topic = 'trye-bike-events'
BIKE_ID = [1,2,3,4,5,6,7,8,9,]
LON = [1.1,1.2,1.3,1.4,1.5,]
LAT = [2.1,2.2,2.3,2.4,2.5,]
BAT = [10,30,20,50,60,81]
while True:
 data = {
 'bike_id': random.randint(1,50),
 'lon': random.choice(LON),
 'lat': random.choice(LAT),
 'bat': random.choice(BAT),
 }
 # For a more complete example on how to publish messages in Pub/Sub.
 # https://cloud.google.com/pubsub/docs/publisher
 message = json.dumps(data)
 command = "gcloud --project={} pubsub topics publish {} --message='{}'".format(project,topic,
message)
 print(command)
 os.system(command)
 time.sleep(random.randrange(1, 5))

TRYE APP 514

A.7.33 TV-10 Verifying USN-26

Verification

ID: TV-10 Test whether the GPS code gives the approximate location of

the current address and time as expected

Status: Tested Priority: High

Method: Test

Who Verified Dawit

User Story

USN-26 We, as a hardware engineer, need to get the GPS

coordinates for our system and so the user knows where the

bike is located.

Requirement

TSR-01

-The Trye bike system should be able to get GPS position

TRYE APP 515

Why this need to be tested:

We need to test because by receiving the data from the satellites such as latitude,

longitude, and time and then converting it to the Google Maps, we need to check if

we approximately find the position of the current address and the time which

matches Norwegian time.

How the test is performed:

By uploading the GPS coordinate code into the Arduino and interfacing it with the

GPS module, we can receive the data from the satellites. The received data such as

longitude, latitude, and time converted to Google Maps, and then we approximately

find the position of the current address and the current time matches with the

Norwegian time.

Results:

By converting the data that we got from satellites into Google Maps, we

approximately found the exact position of the current address and the time. The

result shows in Figures 1 and 2 below.

Conclusion:

The result we found in this user story helps us to use it later in USN-?. It means that

by changing the GPS coordinate code into the class library, we can easily send it to

the server, and so the user quickly knows the location of the bike and also use the

real-time. The approximate distance that the GPS displays is about ten to twenty

meters away from the targeted address.

TRYE APP 516

Code Used:

1.https://docs.google.com/document/d/1y4OdLxxhsekS3CXoF1z02NFUavV8pxOMH

K_kycgQCNU/

Figure:

Fig 1. The location of the current address using the data received from Satellites

TRYE APP 517

 Fig 2. Using GPS coordinate code displays latitude, longitude, and time.

TRYE APP 518

A.7.34 TV-11 Verifying USN-59

Verification

ID: TV-11 Test whether the converted code into class returns latitude,

longitude, and time as expected and so we can send it to the server.

Status: Tested Priority: High

Method: Test

Who

Verified

Dawit

User Story

USN-58 We, as a hardware engineer, need to convert the GPS coordinate

code into a class library so that we can send it to the server

Requirement

TSR-01 -The Trye bike system should be able to get GPS position

TRYE APP 519

Why this need to be tested:

The test needed because we need to check whether the reused GPS coordinate

code into class returns the variable we are looking for or not.

 How the test is performed:

We create the header file and put it into the Arduino library so that it connects with

the GPS module. Since the header file is a class, we need to include different

libraries such as TinyGPS++, SoftwareSerial, and Arduino where their use explained

in USN-?.Then after we call functions such as String get.gps.time(); String

get((gps.location.lng(),6)); and String get((gps.location.lat(),6)), and so to if they

return the variables as expected.

Result and conclusion:

The header file code shows an error when it is loading. I don`t understand well

where the problem is. We, as a hardware team, can hopefully fix it together soon.

The result shows in Figure 1 below.

TRYE APP 520

Code Used:

1.

https://docs.google.com/document/d/1x_QesjmqZjEYHke9Ac44JpN6L7Qq

5X0sLInUp8aBjo/

 Figure:

Fig 1. The class code when loading

TRYE APP 521

A.7.35 TV-12 Verifying USN-58

Verification
ID: TV-12 Controlling the Arduino inbuilt led by sending command

messages from the google cloud platform.

Status: Tested Priority: High

Method: Test

Who Verified Eebbaa

User Story
USN-58 We as hardware engineers need to send a command from the

Google cloud platform to turn ON/OFF the motor.

Requirement
CSR-03 The controller needs to be able to cut the power flow between

the battery and the motor.

Why this need to be tested:

Since controlling our IoT device from the cloud enables us to control our bikes remotely.
We need to test if we can send a command/configuration message to the IoT device
and the device will take the message and take some action such as sending ‘1’ or ‘0’ to
a digital pin on the device based on the message received.

TRYE APP 522

How the test is performed:
An Arduino code used for sending data to the server and receiving data from the server

on USN-44 is modified on its function that accepts the messages void

onMessageReceived (int messageSize). In the previous code this function is made just

to display the size of the message. We modified the function as it can take the

command /configuration message character by character and stores it in a variable and

if the content of the message is “ON”, it will turn on the inbuilt led and displays to the

serial monitor a text “turn ON the motor”. If the message is OFF will turn off the inbuilt

led light and displays to the serial monitor a text “turn OFF the motor”.

Results:
Since our device is registered for both command/configuration topics, any message and

commands from the cloud platform will be received. The command message is sent

from the Google cloud platform from the project where the device is registered and the

device receives the result and takes some action and the result is shown on the serial

monitor as shown in Figure-1 and Figure-2.

Conclusion:
The device receives The ON/OFF message as a command and based on the command
the device turns ON or OFF the inbuilt led on the Arduino for 5 seconds. The main
purpose of the test is to control the digital pin by sending either ‘1’ or ‘0’ from the cloud
platform which is accomplished in this test. For the final prototype, we need to able to
control the device by using the mobile app through the google cloud platform.

Code used

1. https://drive.google.com/drive/folders/1kr5Zj_DHEp9VVgxI-dTMZDsZgemnoEkm

TRYE APP 523

Figure:

Figure-1 ON message sent from the cloud platform and received by Arduino.

Figure-2: OFF message sent from the cloud platform and received by Arduino.

TRYE APP 524

A.8 Requirements

A.8.1 Full list of requirements

Trye
Requierments from Trye

Req-ID Description Priority Source
TryeReq-01 You can open a physical lock via the app that locks the bike inside the "Trye garage" after you rent on the app. HIGH Trye AS

TryeReq-02
We should have a booking and a payment system. Customers should be able to use the app to book a bike
either a day or a half-day. HIGH Trye AS

TryeReq-03 The customer pays via the app and the payment system should send digital receipt to customer. HIGH Trye AS

TryeReq-04
Before a customer is allowed to book, the customer must confirm that they have read TRYE AS's terms
 of the agreement. HIGH Trye AS

TryeReq-05
If a customer does not deliver the bike within the definition of a day rent, they will receive an hourly
punishment charge. HIGH Trye AS

TryeReq-06
The bikes that are out with customers will automatically be made unavailable in the booking system
as long as they are not locked in the storage room. HIGH Trye AS

TryeReq-07

If the payment system over is quickly implemented. We want to look at solutions for hourly rent with in
the payment system. That is, the customer picks up a bike with the app. The app records how many hours
the product was in use before it was returned and the customer pays hourly usage and If this exceeds 8 hours,
the customer will receive a fixed daily price (same as day rental). HIGH Trye AS

TryeReq-08 The app overrides the motor so that you have to pay to start the electric motor on the bicycle. HIGH Trye AS

TryeReq-09

The app should also include a reporting system. So that bicycle users can report defective cleaning,
defects / damage, and bike preparation to the previous user. If the bicycles are not adequately cleaned,
the user will have to pay a cleaning fee and / or damage fee. HIGH Trye AS

TryeReq-10
The app also includes tour suggestions that you can follow with GPS in the area the bikes can be
retrieved and give an opportunity for the users to share the route they rode on social media HIGH Trye AS

TryeReq-11 GPS tracking system should be implemented in the system. HIGH Trye AS

Functions
Function from requierment given by Trye
Req-ID Description Priority Source
Function-01 The system should enable bike users to rent a bike using the mobile app. HIGH TryeReq-01
Function-02 The system should enable bike users to make payments using the mobile app. HIGH TryeReq-03
Function-03 The system should send digital receipts to the user’s email addresses. HIGH TryeReq-03
Function-04 The system should enable bike users to book a bike using the mobile app. HIGH TryeReq-04
Function-05 The system should enable bike users to make failure reports using the mobile app. HIGH TryeReq-09
Function-06 The system should enable paid users to unlock a bike using the mobile app. HIGH TryeReq-01
Function-07 The system should provide users a tour suggestion map to their mobile app. HIGH TryeReq-10

TRYE APP 525

Function-08 The system should help to localize the bike with the help of a GPS tracking system. HIGH TryeReq-11

Mobile App Requierments (MAR)
Req-ID Description Priority Source Userstory ID Verification ID

MAR-01 The mobile app should have a renting system. DISCARDED DISCARDED DISCARDED DISCARDED

MAR-02 The mobile app should have a booking system. MEDIUM Function-04

USN-10
USN-11
USN-12
USN-15
USN-30
USN-33
USN-41
USN-46
USN-48
USN-49
USN-50
USN-54
USN-55

IV-01
IV-04
IV-02
TV-04
IV-08
IV-09
IV-13
IV-15
IV-16
IV-17
IV-18
IV-20
IV-21

MAR-03 The mobile app should have a payment system. HIGH Function-02

USN-28
USN-30
USN-53

IV-07
IV-08
IV-19

MAR-04 The app should have a reporting system. MEDIUM Function-05

MAR-05 The app should have a map. HIGH
Function-07
Function-08

USN-40
USN-42

IV-12
IV-14

MAR-06 The app should store user data and other significant data securely in a database. HIGH

Significant for
nearly all
functions

USN-17
USN-18
USN-21
USN-34

TV-05
IV-05
IV-06
IV-10

Admin System Requerments (ASR)

TRYE APP 526

Admin System Requerments (ASR)
Req-ID Description Priority Source Userstory ID Verification ID
ASR-01 The admin system should be able to control the lock on the bike. MEDIUM Function-all USN-57 IV-22
ASR-02 The admin system should be able to manage userdata. LOW Function-all
ASR-03 The admin system should be able to see who is using the bikes. MEDIUM Function-all USN-57 IV-22

Web Server Requierments (WSR)
Req-ID Description Priority Source Userstory ID Verification ID

WSR-01 The web server should be able to communicate with the bike. HIGH Function-all

USN-51
USN-36
USN-35

TV-09
DV-02
TV-08

WSR-02 The web server should be able to communicate with the app. HIGH Function-all

USN-53
USN-21
USN-15
USN-17

TV-09
IV-06
TV-04
TV-05

Tracking System Requierments (TSR)
Req-ID Description Priority Source Userstory ID Verification ID

TSR-01 The TRYE bike system should be able to get GPS posision. HIGH Function-08
USN-26
USN-59

TV-10
TV-11

TSR-02 The TRYE bike system should be able to send GPS posison to the web server. HIGH
Function-08
CSR-02

USN-51
USN-36
USN-44

TV-09
DV-02
TV-07

TRYE APP 527

Control System Requierments (CSR)
Req-ID Description Priority Source Userstory ID Verification ID

CSR-01 The controller should interface with the existing bike controller to read battery level and speed. MEDIUM Function-08

USN-20
USN-23
USN-24
USN-25

AV-02
TV-01
TV-02/AV-01
AV-04

CSR-02 The controller should send all relevant data to the web server. HIGH Function-08
USN-51
USN-36

TV-09
DV-02

CSR-03 The controller need to be able to cut the powerflow between battery and motor. MEDIUM Function-06
USN-54
USN-29

IV-20
TV-13

CSR-04 The controller should have a feature of controlling mechanical lock of the bike. DISCARDED DISCARDED DISCARDED DISCARDED

Power System Requiermts (PSR)
Req-ID Description Priority Source Userstory ID Verification ID

PSR-01 The power supply should connect to the bike battery. HIGH
Function-06
Function-08

PSR-02 The power supply should power all of our system. HIGH Function-all USN-22 AV-03

TRYE APP 528

A.9 Risk tables

A.9.1 Table 1 Risk register

A.9.2 Table 2 Project risk

A.9.3 Table 3 Technical risk

The Descriptions of risk tables document

This documentation includes the project risk register table, project risks table,
and technical risks table. The first table is the risk register table and consists
of the following items.: The risk description, risk type, risk code (TR-Technical
risks, RP-Project risks), code number for risk, risk ID (TR & RP) followed by
a number, impact, probability, possible causes, mitigation action, date of risk
update, and the owner of the risk. We have registered all types of risks together
with the result of risk analysis and the mitigation action. The risk product is
the result we found by multiplying the value given for the probability of a risk
occurring and the value given for the impact of risk when it happens. We could
see different colors specifically on the column of the risk product. The red color
represents the higher the impact of the risk on the project, whereas the yellow
color represents the medium impact on the risk. The light green color represents
the risks with very low impact, whereas the green color is the risk with a low
impact.

Each risk in the register has an ID followed by a number. The ID uses to
track the risk in the project. The owner of the risk is the person who monitors,
follows,and controls the uncertainty in the project. The owner is also updating
the risk every time. We can also look at different types of risk in the register.
Mainly these risks divided into two: project risk and technical risk. The project
risks include personal risk, schedule risk, budget risk, scope risk, and quality
risk. The technical risks include only these things connected with technical
challenges in the project.

The second and third tables are the project risks table and the technical risks
table. These two tables look the same in structure, but the difference is only
types of risk. Project risks are a kind of general risk, whereas technical risks are
technical kinds of risks. Each risk in both tables has given an ID. The project
scope, quality, cost, velocity, and credibility are areas that could be affected
by the impact of the risk. The scale of weight is from one to ten, and explain
how much each risk affects the objective of the project. The results under the
column of total impacts are the sum of weight for each risk, and we call it the
sum of products for each risk. The values under the normalized impacts are
values that correspond with the probability-impact matrix. The cause for each
risk and the mitigation actions to respond to each threat also mentioned in both

TRYE APP 529

tables.

TRYE APP 530

Risk Register: Risk Manager: Dawit Abamachu Date: 10/05-2020

Risk description Risk type Risk code Code-
number Risk ID Impact Probability Risk

product
Possible cause Mitigation

Prototype is not yet finished on time. Technical TR 1 TR-1 3 3 9 Short timeframe. Use Planet9 and make sure the group members
always have a task.

Some improtant components are
not available on the expected time. Schedule PR 1 PR-1 4 5 20 Late ordering things

needed. Order components as soon as possible.

One member spends less time on
the give work than the expected time. Personal PR 2 PR-2 3 2 6 Illness or lack of motivation. Help each other, be transparent to each other.

One member may quit the group. Personal PR 3 PR-3 4 2 8
Illness, personal issues or
group conflicts Help each other, work friendly together and

appreciate each other.

Lack of responsibility, Personal PR 4 PR-4 4 1 4
Lack of interest, less
motivation. Encourage each other and take a talk with the

internal supervisor.

Misinterpretation of the requirements
by the member of the group. Personal PR 5 PR-5 4 1 4

Lack of experience, lack of
knowledge Discuss the requirements and figure it out well.

Misinterpretation of the requirements
by the member of the group. Personal PR 5 PR-5 4 1 4

Lack of experience, lack of
knowledge Discuss the requirements and figure it out well.

Several members may loss interest to
do the project. Schedule PR 6 PR-6 5 2 10 Technical difficulties. Encourage each other, take advice from

the internal supervisor.

Several members does less
work than the minimum amount
of work expected.

Scope PR 7 PR-7 5 2 10 Lack of motivation,
illness, group conflicts.

Encourage each other, take advice from the
internal supervisor.

The system failure. Budget PR 8 PR-8 4 2 8

Lack of functionalties,
technical defects, incorrect
assumptions of the system
requirements.

Design and test the hardware and software well,
take time with technical difficulties.

The project takes longer time
than it is scheduled. Budget PR 9 PR-9 3 2 6

The members of the team
work less than time
expected,
not following the plan of the
project.

Discuss with the company manager and find a
solution.

The requirements doesn’t match
the product expected. Schedule PR 10 PR-10 3 3 9 Not understanding the

requirements.
Discuss with the company manager
and find a solution

The hardware box doesn’t fit
on bike. Technical TR 2 TR-2 4 1 4 Parts are too big/in the

wrong shape.
Making sure the parts are small enough to fit the
bike.

Difficulty of implementation.
Schedule PR 11 PR-11 4 4 16 Complex technology. Reading, discussing and understanding

on implemetation of the relevant technlogy.

Signals between software and
hardware fail during integration
phase.

Technical TR 3 TR-3 4 3 12
The enviorment makes it
difficult to send and receive
data/Server downtime.

Making sure we have a strong enough antenna,
and retrieve error messages if the server is
down.

Security incident delays access
to the system. Schedule PR 12 PR-12 2 2 4

Disruption of normal
operation because of
hardware or software
failure.

Prevent a threat actor from gaining access to the
system.

Loss of user interface consistency
across the application.

Technical TR 4 TR-4 3 1 3
Multiple developers on
same system, lack of
agreement on UI.

Making sure to agree on the looks and feel of the
system before creating it.

Some components break during
implementation phase. Technical TR 5 TR-5 3 3 9

Parts are fragile and
breaks easily, misuse
of parts.

Making sure to order extra parts if available, and
read the proper documentation for each part.

Operational activities might hamper.
Schedule PR 13 PR-13 3 3 9 Improper implementation

or conflicting priorities.

Choosing the right protocol for the hardware and
software, and discuss and work intimately in the
implementation phase.

Disagreement between the member
of the group. Personal PR 14 PR-14 3 2 6 Too demanding workload

or lack of flexilibity.
Working efficiently when supposed to and being
flexible.

One-member loss interest to do
the project. Personal PR 15 PR-15 3 1 3 Illness or lack of motivation. Help each other, be transparent to each other.

The product delivery due
unanticipated technical hurdles. Personal PR 16 PR-16 4 2 8 The software bugs or loss

of connection. Test and verify each requirment in each phase.

Lack of good guidelines. PR 17 PR-17 2 2 4 Fewer workhours on
the project. Discuss together and work together.

Dependencies on other tasks. Schedule PR 18 PR-18 1 1 1 Late errors in the system. Make sure everyone are aware of potential
bottlenecks, and work as a team.

Requirements conflict during
integration and coding. Technical TR 6 TR-6 2 2 4

Massive quantity of
requirments or change
in requiments during
system development
phase.

Talk with the company, and avoid changes to the
requirments in the development phase.

Some electrical connections
fail when a bicycle get damaged. Technical TR 7 TR-7 2 3 6

Loose connection,
exposed wire,
not enough slack
on wire.

Making sure every cable is properly fitted, (not
too tight) and is covered from the environment.

Internet coverage may fail because
the targeted area is
mountainous/highland. Technical TR 8 TR-8 2 4 8 Antenna is not big

enough.
Make use of analysis to figure out how big of an
antenna we need for our environment.

Unavailability of some technical
equipments. Schedule PR 19 PR-19 2 2 4

Ordering parts late,
poor planning on
what is important.

Plan together as a team on important equipment.

Hardware doesn't work as expected
during operation. Technical TR 9 TR-9 5 2 10

Hardware does not
communicate as told
or loose wires.

Make sure to properly test the system before
deployment and TR-07.

Lack of documentation. Personal PR 20 PR-20 3 2 6 Neglectance or lack
of time. Document as early as possible.

Project schedule is not clearly
defined. Schedule PR 21 PR-21 4 3 12

Lack of a good plan,
lack of experience in
long term projects.

Discuss the schedule with the team members, so
that everyone has a common understanding of
the plan.

Software doesn't work during
production. Technical TR 10 TR-10 5 2 10

Error in coding, faulty
integration with
hardware.

Make sure to properly test the system before
deployment and debug the system.

Change of requirements. Schedule PR 22 PR-22 3 2 6 The company comes up
with new requirements.

During our meeting with the company, we will
ask them if any requirements has changed from
their side.

COVID-19 pandemic Schedule PR 23 PR-23 4 5 20

The project team is not able
to meet and work together;
as usual, we cannot meet
and work on technical tasks
together.

We must accept the problem concerning
pandemic. Therefore, we must think about
alternatives and use different technologies to
continue working on our project. Use discord for
standup meeting; use Zoom to talk with a
supervisor, sensors, and others.

Weights that affect the objectivesProject scope Project Quality Project cost Project velocity Project credibility Total
Impact

Normalized
 Impact
(1-5)

Possible cause
Probability
(1-4) Risk product Mitigation action

Weight(1-10) 8 5 1 7 6

Risk ID Project Risk

RP-01

Some important
components are not
available in the expected
amount of time.

6 48 7 35 0 0 6 42 5 30 155 5

Late oredring things needed.

4 20 Order components as soon as possible.

RP-02
One member spends
less time on the given
work than expected.

5 40 5 25 0 0 7 49 6 36 150 3 Illness or lack of motivation. 2 6 Help each other, be transparent to each
other.

RP-03 One member might quit
the group. 6 48 8 40 0 0 7 49 7 42 179 2 Ordering the required

hardware too late. 4 8 Help each other, work friendly together
and appreciate each other.

RP-04 Lack of responsibility. 7 56 8 40 0 0 8 56 8 48 200 4
Lack of interest, less
motivation. 1 4 Encourage each other and take a talk

with the internal supervisor.

RP-05

Misinterpretation of the
requirements
by the member of the
group.

4 32 3 15 5 5 4 28 5 30 110 4 Lack of experience, lack of
knowledge. 4 16

Discuss the requirements and figure it
out well.

RP-06 Several members loses
interest in the project. 10 80 10 50 0 0 10 70 8 48 248 5 Technical difficulties. 2 10 Encourage each other, take advice from

the internal supervisor.

RP-07

Several members works
less than the minimum
amount of work
expected.

9 72 9 45 0 0 9 63 7 42 222 5 Lack of motivation, illness,
group conflicts. 2 10 Encourage each other, take advice from

the internal supervisor.

RP-08 The system fails. 7 56 7 35 0 0 7 49 6 36 176 4

Lack of functionalties,
technical defects, incorrect
assumptions of the system
requirements.

2 8
Design and test the hardware and
software well, take time with technical
difficulties.

RP-09 The project takes more
time than scheduled. 5 40 6 30 0 0 5 35 4 24 129 3

The members of the team
work less than time expected,
not following the plan of the
project.

2 6
Discuss with the company manager and
find a solution.

RP-10

The original
requirements doesn’t
match the product
produced.

4 32 3 15 3 3 4 28 4 24 102 3 Not understanding the
requirements. 3 9

Discuss with the company manager and
find a solution.

RP-11 Difficulties with the
implementation. 7 56 8 40 0 0 0 0 6 36 132 4 Complex technology. 4 16 Read and discuss relevant technlogy.

RP-12
Security incidents
prevents access to the
system.

3 24 4 20 0 0 3 21 4 24 89 2
Disruption of normal operation
because of hardware or
software failure.

2 4 Prevent a threat actor from gaining
access to the system.

RP-13
Operational activities
might get hampered. 4 32 5 25 0 0 6 42 5 30 129 3 Improper implementation or

conflicting priorities. 3 9

Choosing the right protocol for the
hardware and software, and discuss and
work intimately in the implementation
phase.

RP-14
Disagreement between
the members of the
group.

2 16 3 15 0 0 0 4 24 55 3 Too demanding workload or
lack of flexilibity. 2 6 Working efficiently when supposed to

and being flexible.

RP-15 One member loses
interest in the project. 5 40 6 30 0 0 7 49 6 36 155 3 Illness or lack of motivation. 1 3 Help each other, be transparent to each

other.

RP-16
The product is delayed
due to unanticipated
technical hurdles.

6 48 5 25 0 0 6 42 4 24 139 4 The software bugs or loss of
connection. 2 8 Test and verify each requirment in each

phase.

RP-17 Lack of good guidelines. 1 8 1 5 0 0 2 14 1 6 33 2 Fewer workhours on the
project. 2 4 Discuss together and work together.

RP-18
Dependencies on other
tasks. 1 8 1 5 0 0 2 14 1 6 33 1 Late errors in the system. 1 1

Make sure everyone are aware of
potential bottlenecks, and work as a
team.

RP-19 Not having the required
technical equipment. 1 8 2 10 0 0 2 14 2 12 44 2 Ordering parts late, poor

planning on what is important. 2 4 Plan together as a team on important
equipment.

RP-20 Lack of documentation. 2 16 3 15 0 0 3 21 2 12 64 3 Neglectance or lack of time. 2 6
Documentation is archived in Google
Drive, LaTex or on team members
personal computer.

RP-21 The project schedule is
not clearly defined. 5 40 4 20 0 0 4 28 2 12 100 4

Lack of a good plan, lack of
experience in long term
projects.

3 12
Discuss the schedule with the team
members, so that everyone has a
common understanding of the plan.

RP-22 Change of requirements. 2 2 10 0 0 3 21 2 12 43 3 The company comes up with
new requirements. 2 6

During our meeting with the company,
we will ask them if any requirements has
changed from their side.

RP-23 COVID-19 pandemic 8 64 6 30 3 3 7 49 5 30 176 5

The project team is not able to
meet and work together; as
usual, we cannot meet and
work on technical tasks
together. 4 20

 We must accept the problem concerning
pandemic. Therefore, we must think
about alternatives and use different
technologies to continue working on
our project. Use discord for standup
meeting; use Zoom to talk with a
supervisor, sensors, and others.

Weight affect
the objectives Project scope Project

Quality Project cost Project velocity Project
credibility

Total
Impact

Normalized
Impact(1-5) Possible cause

Pro-
bability
(1-4)

Risk
Product Mitigation action

Weight (1-10) 8 5 1 7 6

Risk ID Technical Risk

TR-01
Prototype is not yet finished
on time. 2 16 1 5 0 0 2 14 4 24 59 3 Short timeframe. 3 9 Use Planet9 and make sure the group

members always have a task.

TR-02
The hardware box doesn’t
fit on bike. 3 24 7 35 1 1 1 7 3 18 85 4 Parts are too big/in the

wrong shape. 1 4 Making sure the parts are small
enough to fit the bike.

TR-03

Signals between software
and hardware fail during
integration phase.

6 12 6 30 0 0 2 14 6 36 92 4
The enviorment makes it
difficult to send and receive
data/Server downtime.

3 12
Making sure we have a strong enough
antenna, and retrieve error messages
if the server is down.

TR-04

Signals between software
and hardware fail during
integration phase.

4 12 5 25 0 0 1 7 5 30 74 3
The enviorment makes it
difficult to send and receive
data/Server downtime.

1 3
Making sure we have a strong enough
antenna, and retrieve error messages
if the server is down.

TR-05

Some components break
during implementation
phase.

1 6 4 20 8 8 3 21 4 24 79 3
Parts are fragile and breaks
easily, misuse of parts. 3 9

Making sure to order extra parts if
available, and read the proper
documentation for each part.

TR-06

Requirements conflict
during integration and
coding.

1 4 5 25 0 0 2 14 2 12 55 2

Massive quantity of
requirments or change in
requiments during system
development phase.

2 4
Talk with the company, and avoid
changes to the requirments in the
development phase.

TR-07

Some electrical
connections fail when a
bicycle get damaged. 3 3 4 20 0 0 1 7 2 12 42 2

Loose connection, exposed
wire, not enough slack on
wire.

3 6 Making sure every cable is properly
fitted, (not too tight) and is covered
from the environment.

TR-08

Internet coverage may fail
because the targeted area
is mountainous/highland. 4 4 4 20 0 0 1 7 3 18 49 2 Antenna is not big enough. 4 8

Make use of analysis to figure out how
big of an antenna we need for our
environment.

TR-09

Hardware doesn't work
as expected during
operation

6 18 4 20 0 0 5 35 8 48 121 5
Hardware does not
comunicate as told,
Lose wires

2 10

make sure to properly test the system
before deployment
and TR-07

TR-10

Hardware doesn't work as
expected during operation. 6 24 8 40 0 0 6 42 8 48 154 5

Hardware does not
communicate as told or
loose wires.

2 10 Make sure to properly test the system
before deployment and TR-07.

A.9.4 Description of SWOT Analysis for the project

SWOT Analysis is a robust and straightforward technique used for developing
Strategic planning and as a risk identification tool. It helps us to understand the
surrounding environment from the internal and external perspectives. SWOT
stands for Strengths, Weaknesses, Opportunities, and Threats. Strengths and
Weaknesses represent the inner qualities of the team members in the project.
Those qualities can be positive and negative and have effects on the objective
of the project. Opportunities and Threats are external factors that have also
impact on the project.

The primary reason to select the SWOT Analysis is, it is a simple, easy, and
effective tool to perform the strategic activities. As the risk generally harms the
project, the Weaknesses, and the Threats can be considered the critical cate-
gories of the SWOT analysis. In contrast, Opportunities and Strengths provide
us the advantage to create a strategy that increases the success of the project.

All the information that we have collected, their contents can be rewritten in
terms of the risk. Finally, based on the result of risk analysis, we can reduce
and avoid the risk impact and increase the chance of project success.[15]

In the SWOT analysis table, the following abbreviations used. These are
”NITH” means neither, ”AGR” means agree, ”DIS” means to disagree. These
suggest that items which we have accepted, their contents can be rewritten as
a risk and taken for further analysis.

TRYE APP 537

A.10 Hardware Images

A.10.1 hardware development process

T
R

Y
E

A
P

P
539

A.10.2 hardware development process

TRYE APP 540

A.11 Hardware Code

A.11.1 Pseudo code Battery Reader

File: /home/joachim/School/Trye/Ard…code/pseudoBatteryIndicator.py Page 1 of 1

#define MAX_VOLT 33.5
#define MIN_VOLT 26.0

def Main_loop():
 digitalValue = getAnalogData()
 #convert the 0-1023 digitalValue to a volt ranging from 0V to 33.5V
 batteryVolt = map(digitalValue, 0, 1023, 0, MAX_VOLT)
 #Map the voltage ranging from 26.0V to 33.5V to a percentage ranging from 0%
to 100%
 batteryPercentage = map(battertVolt, MIN_VOLT, MAX_VOLT, 0, 100)

TRYE APP 541

A.11.2 Pseudo code Speed Reader

File: /home/joachim/School/Trye/Ard…_code/pseudoSpeedCalculator.pyPage 1 of 1

#CASE:
a wheel is spining with a magnet attached to it.
every rotation the magnet passes a magent sensor.
when the magnet overlaps with the magnet sensor, the senor returns a digital
'1'.
by findig the time this takes, and with the diameter of the wheel
we can find the speed of the bike.

let chageInTime[5] = 0

Main_loop():
 FindTimeBetweenPress(chageInTime)
 let avarageChangeInTime = FindAvarageTimeBetweenPress(chageInTime)
 CheckIfTimeout()
 let momentarySpeed = CalculateSpeed(chageInTime)
 let avarageSpeed = CalculateSpeed(avarageChangeInTime)

def FindTimeBetweenPress(chageInTime):

 if(buttonPress == True && buttonPressLastCycle == False):
 #button was pressed for the first time in a cycle
 #find change in time
 newTime = Time()
 chageInTime[i] = newTime - lastTime
 lastTime = newTime
 if(i >= 5) i = 0
 else i++ #move to next pos in changeInTime array

def FindAvarageTimeBetweenPress(chageInTime):
 #sum all entries in changeInTime toggether
 for time in chageInTime:
 let sum = sum + time
 return sum / 5 #sum/n = avarage

def CheckIfTimeout():
 if((Time() - lastTime) < 2 Secondes)
 #the wheel is spining very slow so the speed is aprx 0 m/s
 chageInTime = [inf,inf,inf,inf,inf] #set speed to inf to get 0 m/s whene
converting from time to speed
 avarageChangeInTime = inf

def CalculateSpeed():
 speed = ((PI*WheelDiameter) changeInTime) * 3.6 #speed in km/s
 #if the wheel spines very slowly, set speed to 0 km/h
 if (speed <= cutOfSpeed):
 speed = 0
 return speed

TRYE APP 542

A.11.3 Battery Reader Arduino Code

#define BATTERY_LEVEL A0

#define MAX_VOLT 335

#define MIN_VOLT 260

int val = 0;

float volt = 0;

int percentage = 0;

byte batteryIndicator = 0;

void setup() {

 Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

 val = analogRead(BATTERY_LEVEL);

 volt = map(val, 0, 1023, 0, MAX_VOLT);

 percentage = map(volt, MIN_VOLT, MAX_VOLT , 0,

100);

 if(percentage <= 0) percentage = 0;

 batteryIndicator =

mapBatteryIndicator(percentage);

 volt = volt/10;

 Serial.print("value: ");

 Serial.print(val);

 Serial.print(" volt: ");

 Serial.print(volt);

 Serial.print(" percentage: ");

 Serial.print(percentage);

 Serial.print("%");

 Serial.print(" battery indicator: ");

 Serial.println(batteryIndicator);

}

int mapBatteryIndicator(int perc){

TRYE APP 543

 int level = 0;

 if(perc >= 81) level = 5;

 else if(perc >= 61 && perc <= 80) level = 4;

 else if(perc >= 41 && perc <= 60) level = 3;

 else if(perc >= 21 && perc <= 40) level = 2;

 else if(perc >= 2 && perc <= 20) level = 1;

 else if(perc >= 0 && perc <= 1) level = 0;

 else level = −1;

 return level;

}

TRYE APP 544

A.11.4 Speed Reader Arduino Code

//−−−−−−−−−SETTINGS−−−−−−−−−−−

#define SWITCH 3 //the pin the magnet switch is

connected to

#define D_TIME_ARR_SIZE 5 //to calculate the

average speed, how many rotation should be

calculated with?

#define WHEEL_DIAMETER 27.5 //the Wheel diameter

on the bike in inches

#define INCH_TO_M 0.0254 //convert wheel diameter

inch to meter

#define SPEED_CUTOF 2 //when you go slower then

this, the micro controller setts the speed to 0

km/h

#define TIMEOUT_TIME 5000 //if the microcontroller

does not recive a signal within this time, it sets

the speed to 0 km/h

//−−−−−−−−−VARIABLES−−−−−−−−−−−

float Speed = 0;

float momentarySpeed = 0;

unsigned long previousMillis = 0;

unsigned long currentMillis = 0;

unsigned long deltaMillis = 0;

unsigned long avgDeltaMillis = 100000;

//set the array to 100000 to get a speed of 0km/h

to start with

unsigned long deltaMillisArr[D_TIME_ARR_SIZE] =

{100000,100000,100000,100000,100000};

byte deltaMillisArrIndex = 0;

bool previousSwitchState = LOW;

bool currentSwitchState = LOW;

//temp

TRYE APP 545

unsigned long tempSum = 0;

//−−−−−−−−−SETUP−−−−−−−−−−−

void setup() {

 //starting serial communication

 Serial.begin(9600);

 //setting port mode

 pinMode(SWITCH, INPUT);

 previousMillis = millis();

 currentMillis = millis();

}

//−−−−−−−−−MAIN−−−−−−−−−−−

void loop() {

 findDeltaTime();

 findAvgDeltaTime();

 CheckTimeout();

 Speed = calculateSpeed(avgDeltaMillis);

 momentarySpeed = calculateSpeed(deltaMillis);

 printStatus();

 delay(300);

}

//−−−−−−−−−FUNCTUIOS−−−−−−−−−−−

/*

 * CheckTimeout()

 * if the wheel does not sping in a period of

TIMEOUT_TIME (eg. 5000 ms) we will asume the wheel

TRYE APP 546

is not rotating at all.

 * which means a speed of 0 km/h

 */

void CheckTimeout(){

 if ((millis() − currentMillis) >= TIMEOUT_TIME){

 Serial.print("TIMEOUT after: ");

 Serial.println(millis() − currentMillis);

 for (int i = 0; i < D_TIME_ARR_SIZE; i++){

 deltaMillisArr[i] = TIMEOUT_TIME;

 }

 deltaMillis = TIMEOUT_TIME;

 }

}

float calculateSpeed(unsigned long changeInTime){

 float speedCalc = ((PI *

WHEEL_DIAMETER*INCH_TO_M * 1000)/changeInTime)*3.6;

 if (speedCalc <= SPEED_CUTOF) speedCalc = 0;

 return speedCalc;

}

/*

 * findDeltaTime()

 * find the time it takes form one button press to

the next press, which is an analogy to the wheel

spinning once

 * also stores the D_TIME_ARR_SIZE (eg. 5) last

results to be able to calculate the average time

 */

void findDeltaTime(){

 //reading the switch

 currentSwitchState = digitalRead(SWITCH);

 if(currentSwitchState == HIGH){

 //SWICH IS PRESED

 //to stope debouncing

TRYE APP 547

 if(currentSwitchState != previousSwitchState){

 //to get the change in time between each

wheel rotation

 previousMillis = currentMillis;

 currentMillis = millis();

 deltaMillis = currentMillis − previousMillis;

 //to stope debouncing with the above if

statement

 previousSwitchState = currentSwitchState;

 //store delta time in array

 if (deltaMillisArrIndex <= D_TIME_ARR_SIZE){

 deltaMillisArr[deltaMillisArrIndex] =

deltaMillis;

 deltaMillisArrIndex = deltaMillisArrIndex

+ 1;

 }

 else{

 deltaMillisArrIndex = 0;

 deltaMillisArr[deltaMillisArrIndex] =

deltaMillis;

 }

 }

 }

 else{

 //SWITCH IS NOT PRESED

 previousSwitchState = currentSwitchState;

 }

}

/*

 * findAvgDeltaTime()

 * find the average time it takes for the wheel to

spin D_TIME_ARR_SIZE (eg. 5) times

TRYE APP 548

 */

void findAvgDeltaTime(){

 //find avarage Delta time

 tempSum = 0;

 for (int i = 0; i < D_TIME_ARR_SIZE; i++){

 tempSum = tempSum + deltaMillisArr[i];

 }

 avgDeltaMillis = tempSum/D_TIME_ARR_SIZE;

}

/*

 * printStatus()

 * Print out to Serial port, used for debugging

and testing

 */

void printStatus(){

 Serial.print("Switch: ");

 Serial.println(digitalRead(SWITCH));

 Serial.print("delta time (ms): ");

 Serial.print(deltaMillis);

 Serial.print(" momentary Speed (km/h): ");

 Serial.println(momentarySpeed);

 Serial.print("avg delta time (ms): ");

 Serial.print(avgDeltaMillis);

 Serial.print(" Speed (km/h): ");

 Serial.println(Speed);

}

TRYE APP 549

A.11.5 GPS Reader Arduino Code

#include "TinyGPS++.h"

#include "SoftwareSerial.h"

/*

 −This is the final GPS cordinates which include

valuable data such as

 latitude, longtiude, altitude in feet, time and

date

 −It shows the position and real−time for our bike

 */

#include "TinyGPS++.h"

#include "SoftwareSerial.h"

SoftwareSerial pins(10, 11); //RX=pin 10, TX=pin 11

TinyGPSPlus gps;//This is the GPS object that will

pretty much do all the grunt work with the NMEA

data

byte last_second;

char Time[] = "TIME:00:00:00";

//char Date[] = "DATE:00/00/2000";

int addTime = 2;

void setup()

{

 Serial.begin(9600); //This opens up

communications to the Serial monitor in the

Arduino IDE

 pins.begin(9600); //This opens up

communications to the GPS

 Serial.println("GPS Start"); //Just show to

the monitor that the sketch has started

}

TRYE APP 550

void loop()

 {

 while(pins.available() > 0) //While there

are characters to come from the GPS

 {

 if(gps.encode(pins.read())){ //, //This

feeds the serial NMEA data into the library one

char at a time

 if(gps.location.isUpdated()) //This will

pretty much be fired all the time anyway but will

at least reduce it to only after a package of NMEA

data comes in

 {

 if (gps.time.isValid()) {

 Time[5] = (gps.time.hour()+ addTime) /

10 + 48;//10

 Time[6] = (gps.time.hour() + addTime) %

10 + 48;//10

 Time[8] = gps.time.minute() / 10 + 48;

 Time[9] = gps.time.minute() % 10 + 48;//10

 Time[11] = gps.time.second() / 10 + 48;

 Time[12] = gps.time.second() % 10 + 48;

 }

 /*

 if (gps.date.isValid()) {

 Date[5] = gps.date.day() / 10 + 48;

 Date[6] = gps.date.day() % 10 + 48;

 Date[8] = gps.date.month() / 10 + 48;

 Date[9] = gps.date.month() % 10 + 48;

 Date[13] =(gps.date.year() / 10) % 10 +

48;

 Date[14] = gps.date.year() % 10 + 48;

TRYE APP 551

 }

 */

 if(last_second != gps.time.second()) {

 last_second = gps.time.second();

 // Serial.print(0,0);

 Serial.print("LAT:");

//Display latitude

 Serial.println(gps.location.lat(), 6);

 Serial.print("LON:");

//Display langitude

 Serial.println(gps.location.lng(), 6);

 //Serial.print("ALT Ft:");

 //Serial.println(gps.altitude.feet());

 Serial.println(Time);

//Display time

 //Serial.print(0,1);

 //Serial.

println(Date); // Display

calendar

 Serial.

println("=========================");

 }

 }

 }

 }

}

TRYE APP 552

A.11.6 Arduino to GCP communication

/*

 GCP (Google Cloud Platform) IoT Core NB

 This sketch securely connects to GCP IoT Core

using MQTT over NB IoT/LTE Cat M1.

 It uses a private key stored in the ATECC508A

and a JSON Web Token (JWT) with

 a JSON Web Signature (JWS).

 It publishes a message every 5 seconds to

"/devices/{deviceId}/state" topic

 and subscribes to messages on the

"/devices/{deviceId}/config" and

 "/devices/{deviceId}/commands/#" topics.

 The circuit:

 − MKR NB 1500 board

 − Antenna

 − SIM card with a data plan

 − LiPo battery

 This example code is in the public domain.

*/

#include <ArduinoECCX08.h>

#include <utility/ECCX08JWS.h>

#include <ArduinoMqttClient.h>

#include <Arduino_JSON.h>

#include <MKRNB.h>

#include "arduino_secrets.h"

/////// Enter your sensitive data in

arduino_secrets.h

const char pinnumber[] = SECRET_PINNUMBER;

TRYE APP 553

const char projectId[] = SECRET_PROJECT_ID;

const char cloudRegion[] = SECRET_CLOUD_REGION;

const char registryId[] = SECRET_REGISTRY_ID;

const String deviceId = SECRET_DEVICE_ID;

const char broker[] = "mqtt.googleapis.com";

NB nbAccess;

GPRS gprs;

NBSSLClient nbSslClient;

MqttClient mqttClient(nbSslClient);

unsigned long lastMillis = 0;

void setup() {

 Serial.begin(9600);

 while (!Serial);

 if (!ECCX08.begin()) {

 Serial.println("No ECCX08 present!");

 while (1);

 }

 // Calculate and set the client id used for MQTT

 String clientId = calculateClientId();

 mqttClient.setId(clientId);

 // Set the message callback, this function is

 // called when the MQTTClient receives a message

 mqttClient.onMessage(onMessageReceived);

}

void loop() {

 if (nbAccess.status() != NB_READY || gprs.

TRYE APP 554

status() != GPRS_READY) {

 connectNB();

 }

 if (!mqttClient.connected()) {

 // MQTT client is disconnected, connect

 connectMQTT();

 }

 // poll for new MQTT messages and send keep

alives

 mqttClient.poll();

 // publish a message roughly every 5 seconds.

 if (millis() − lastMillis > 5000) {

 lastMillis = millis();

 publishMessage("1","1.123123","2.123123","60");

 }

}

unsigned long getTime() {

 // get the current time from the cellular module

 return nbAccess.getTime();

}

void connectNB() {

 Serial.println("Attempting to connect to the

cellular network");

 while ((nbAccess.begin(pinnumber) != NB_READY) ||

 (gprs.attachGPRS() != GPRS_READY)) {

 // failed, retry

 Serial.print(".");

 delay(1000);

 }

TRYE APP 555

 Serial.println("You’re connected to the cellular

network");

 Serial.println();

}

void connectMQTT() {

 Serial.print("Attempting to connect to MQTT

broker: ");

 Serial.print(broker);

 Serial.println(" ");

 while (!mqttClient.connected()) {

 // Calculate the JWT and assign it as the

password

 String jwt = calculateJWT();

 mqttClient.setUsernamePassword("", jwt);

 if (!mqttClient.connect(broker, 8883)) {

 // failed, retry

 Serial.print(".");

 delay(5000);

 }

 }

 Serial.println();

 Serial.println("You’re connected to the MQTT

broker");

 Serial.println();

 // subscribe to topics

 //mqttClient.subscribe("/devices/" + deviceId +

"/config", 1);

 //mqttClient.subscribe("/devices/" + deviceId +

"/commands/#");

TRYE APP 556

 mqttClient.subscribe("/devices/" + deviceId +

"/topics/trye−bike−events");

 //mqttClient.

subscribe("projects/trye−bike−rental/subscriptions/

trye−sub", 1);

}

String calculateClientId() {

 String clientId;

 // Format:

 //

 //

projects/{project−id}/locations/{cloud−region}/regi

stries/{registry−id}/devices/{device−id}

 //

 clientId += "projects/";

 clientId += projectId;

 clientId += "/locations/";

 clientId += cloudRegion;

 clientId += "/registries/";

 clientId += registryId;

 clientId += "/devices/";

 clientId += deviceId;

 return clientId;

}

String calculateJWT() {

 unsigned long now = getTime();

 // calculate the JWT, based on:

 // https://cloud.google.

com/iot/docs/how−tos/credentials/jwts

TRYE APP 557

 JSONVar jwtHeader;

 JSONVar jwtClaim;

 jwtHeader["alg"] = "ES256";

 jwtHeader["typ"] = "JWT";

 jwtClaim["aud"] = projectId;

 jwtClaim["iat"] = now;

 jwtClaim["exp"] = now + (24L * 60L * 60L); //

expires in 24 hours

 return ECCX08JWS.sign(0, JSON.

stringify(jwtHeader), JSON.stringify(jwtClaim));

}

void publishMessage(String bikeId = "1", String

lon = "1.1235", String lat = "1.1235", String bat

= "30") {

 Serial.println("Publishing message");

 String message = "{’bikeid’:" + bikeId + ",";

 message = message + "’lon’:" + lon + ",";

 message = message + "’lat’:" + lat + ",";

 message = message + "’bat’:" + bat + ",}";

 // send message, the Print interface can be used

to set the message contents

 mqttClient.beginMessage("/devices/" + deviceId +

"/events");

 mqttClient.print(message);

 mqttClient.endMessage();

}

void onMessageReceived(int messageSize) {

 // we received a message, print out the topic

TRYE APP 558

and contents

 Serial.print("Received a message with topic ’");

 Serial.print(mqttClient.messageTopic());

 Serial.print("’, length ");

 Serial.print(messageSize);

 Serial.println(" bytes:");

 // use the Stream interface to print the contents

 while (mqttClient.available()) {

 Serial.print((char)mqttClient.read());

 }

 Serial.println();

 Serial.println();

}

TRYE APP 559

A.11.7 Motor control with GCP communication

#include <ArduinoECCX08.h>
#include <utility/ECCX08JWS.h>
#include <ArduinoMqttClient.h>
#include <Arduino_JSON.h>
#include <MKRNB.h>
#include <PubSubClient.h>

#include "arduino_secrets.h"

/////// Enter your sensitive data in
arduino_secrets.h
const char pinnumber[] = SECRET_PINNUMBER;

const char projectId[] = SECRET_PROJECT_ID;
const char cloudRegion[] = SECRET_CLOUD_REGION;
const char registryId[] = SECRET_REGISTRY_ID;
const String deviceId = SECRET_DEVICE_ID;

const char broker[] = "mqtt.googleapis.com";

char topic[]= "motor_power";

//void respondToMsg(String msg);
NB nbAccess;
GPRS gprs;
//PubSubClient mqttClient(ethClient);
//EthernetClient ethClient;
//PubSubClient mqttClient(ethClient);
NBSSLClient nbSslClient;
//PubSubClient mqttClient(nbSslClient);
MqttClient mqttClient(nbSslClient);

unsigned long lastMillis = 0;
int LED = 6;

TRYE APP 560

void setup() {
 Serial.begin(9600);
 pinMode(LED,OUTPUT);
 while (!Serial);

 if (!ECCX08.begin()) {
 Serial.println("No ECCX08 present!");
 while (1);
 }

 // Calculate and set the client id used for MQTT
 String clientId = calculateClientId();

 mqttClient.setId(clientId);

 // Set the message callback, this function is
 // called when the MQTTClient receives a message
 //callback(char* topic, byte* payload, unsigned
int length)
 //mqttclient.onmessage(callback)
 mqttClient.onMessage(onMessageReceived);
 //mqttClient.setCallback(callback);
 //mqttClient.onMessage(respondToMsg);
}

void loop() {
 if (nbAccess.status() != NB_READY || gprs.
status() != GPRS_READY) {
 connectNB();
 }

 if (!mqttClient.connected()) {
 // MQTT client is disconnected, connect
 connectMQTT();
 }

TRYE APP 561

 // poll for new MQTT messages and send keep
alives
 mqttClient.poll();

 // publish a message roughly every 5 seconds.
 if (millis() − lastMillis > 10000) {
 lastMillis = millis();
 Serial.println("updating gps location and
battery status");
 //publishMessage();
 }
}

unsigned long getTime() {
 // get the current time from the cellular module
 return nbAccess.getTime();
}

void connectNB() {
 Serial.println("Attempting to connect to the
cellular network");

 while ((nbAccess.begin(pinnumber) != NB_READY) ||
 (gprs.attachGPRS() != GPRS_READY)) {
 // failed, retry
 Serial.print(".");
 delay(1000);
 }

 Serial.println("You’re connected to the cellular
network");
 Serial.println();
}

void connectMQTT() {

TRYE APP 562

 Serial.print("Attempting to connect to MQTT
broker: ");
 Serial.print(broker);
 Serial.println(" ");

 while (!mqttClient.connected()) {
 // Calculate the JWT and assign it as the
password
 String jwt = calculateJWT();

 mqttClient.setUsernamePassword("", jwt);

 if (!mqttClient.connect(broker, 8883)) {
 // failed, retry
 Serial.print(".");
 delay(5000);
 }
 }
 Serial.println();

 Serial.println("You’re connected to the MQTT
broker");
 Serial.println();

 // subscribe to topics
 mqttClient.subscribe("/devices/" + deviceId +
"/config", 1);
 mqttClient.subscribe("/devices/" + deviceId +
"/commands/#");
 //mqttClient.subscribe("projects/" + projectId +
"/topics" + "/motor_power");
 mqttClient.subscribe(topic,1);
}

String calculateClientId() {
 String clientId;

TRYE APP 563

 // Format:
 //
 //
projects/{project−id}/locations/{cloud−region}/regi
stries/{registry−id}/devices/{device−id}
 //

 clientId += "projects/";
 clientId += projectId;
 clientId += "/locations/";
 clientId += cloudRegion;
 clientId += "/registries/";
 clientId += registryId;
 clientId += "/devices/";
 clientId += deviceId;

 return clientId;
}

String calculateJWT() {
 unsigned long now = getTime();

 // calculate the JWT, based on:
 // https://cloud.google.
com/iot/docs/how−tos/credentials/jwts
 JSONVar jwtHeader;
 JSONVar jwtClaim;

 jwtHeader["alg"] = "ES256";
 jwtHeader["typ"] = "JWT";

 jwtClaim["aud"] = projectId;
 jwtClaim["iat"] = now;
 jwtClaim["exp"] = now + (24L * 60L * 60L); //
expires in 24 hours

TRYE APP 564

 return ECCX08JWS.sign(0, JSON.
stringify(jwtHeader), JSON.stringify(jwtClaim));
}

void publishMessage() {
 Serial.println("Publishing message");

 // send message, the Print interface can be used
to set the message contents
 mqttClient.beginMessage("/devices/" + deviceId +
"/state");
 mqttClient.print("these are your sensor datas ");
 mqttClient.print(millis());
 mqttClient.endMessage();
}

void onMessageReceived(int messageSize) {
 // we received a message, print out the topic
and contents
 Serial.print("Received a message with topic ’");
 Serial.print(mqttClient.messageTopic());
 Serial.print("’, length ");
 Serial.print(messageSize);
 Serial.println(" bytes:");
 Serial.println("power configuration message is
received");
// Serial.println(String(payload));
 String payload ="";
 // use the Stream interface to print the contents
 for(int i=0; i< messageSize; i++)
 while (mqttClient.available()) {
 //Serial.print((char)mqttClient.read());
 payload += ((char)mqttClient.read());
 }

TRYE APP 565

 Serial.println();
 if(payload == "ON"){
 Serial.println("Turn ON the motor");
 digitalWrite(LED,1);
 delay(5000)

 }
 else if(payload=="OFF"){
 Serial.println("Turn OFF the motor");
 digitalWrite(LED,0);
 delay(5000);
 }
 else{
 Serial.println("Invalid motor state");
 }
}

TRYE APP 566

A.11.8 Pub/Sub to Firestore database

File: Untitled Document 1 Page 1 of 1

import base64
import json
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore

debug = False

if(debug):
 print("Initilizing global variables")
project_id = "trye-bike-rental"
collection = "trye-bike"
document = "bike-" #add the bikeID to the end before sending

#credentials and establishing connection to the firebase database
cred = credentials.ApplicationDefault()
firebase_admin.initialize_app(cred, {
'projectId': project_id,
})

#the database instance
db = firestore.client()

def WriteToDatabase(bikeID, lon, lat, bat):

 #writing message to the collection and document
 doc_ref = db.collection(collection).document(document+str(bikeID))
 doc_ref.set({
 u'bikeid': bikeID,
 u'lon': lon,
 u'lat': lat,
 u'bat': bat,
 })
 #print debug message
 if(debug):
 print("to collection {} Wrote bikeid:{}, lon:{}, lat:{}, bat:{} to the
database".format(collection, bikeID, lon, lat, bat))

def main(event, context):
 """Triggered from a message on a Cloud Pub/Sub topic.
 Args:
 event (dict): Event payload.
 context (google.cloud.functions.Context): Metadata for the event.
 """
 pubsub_message = base64.b64decode(event['data']).decode('utf-8')

 eventDict = json.loads(pubsub_message)

 if(debug):
 print("event data: {}".format(eventDict))

 if(debug):
 print("debug: writing to database")
 WriteToDatabase(eventDict["bike_id"], eventDict["lon"], eventDict["lat"],
eventDict["bat"])

TRYE APP 567

A.12 Agendas

A.12.1 24th of January Agenda for Jose

© 2019 by Vertex42.com

Meeting Agenda

Date: Feb 22, 2020 Time: 9:00 am Location: Room 2265

Topic 1: Requirements, Risk and Verification
● How to make an ID template to make our Requirements/Risks/Verifications traceable
● Is there a standard way of giving ID to differentiate between software and hardware

tasks

Topic 2: Planet 9 as a development platform
1. Is it a good idea to use such a state of the art platform
2. How will this impact our grade, as it will be less technical work but we can create a

better product

TRYE APP 568

A.12.2 27th of January Agenda for Simon

© 2019 by Vertex42.com

Meeting Agenda

Date: 27.jan. 2020 Time: 11:30 Location: Holmenkollen

Topic 1: What have we done
● Mostly documentation preparation, Project model selection and preparation for it.
● Done some research, regarding planet 9, GPS, cellular technology.
● And came up with some ideas about how the hardware might look like.

Topic 2: What we will do
1. Need to do some more research about the software
2. Need some hardware before we can continue in that area

Topic 3: What we need
A. We have made a to-buy list for the hardware on the bike
B. Do you know when we get the bike?
C. Terms of use for the customer’s app
D. Do you have a webserver we can use?

Topic 4: Requirements
A. Payment (Vipps, Visa, MasterCard, invoice)
B. Do we need an administration app?

TRYE APP 569

A.12.3 7th of February Agenda for Jose

© 2019 by Vertex42.com

Meeting Agenda

Date: 07.02, 2020 Time: 09:00 am Location: Room 2265

Topic 1: Presentation review
● Show our presentation in our bachelor room for Jose
● Get Jose’s feedback on our presentation and review it with Jose

TRYE APP 570

A.12.4 14th of February Agenda for Jose

Meeting Agenda

Date: 14.02, 2020 Time: 10:00 am Location: Room 2265

Topic 1: Presentation and documentation review
● Discuss with Jose on documentation of 1st presentation & get a suggestion

for better documentation in future.
● Get Jose’s comments on our first presentation in general.
● Get Jose’s suggestion on how to start with Hardware since we have got Bike

with us.

TRYE APP 571

A.12.5 21th of February Agenda for Jose

Meeting Agenda

Date: 21.02, 2020 Time: 10:00 am Location: Room 2265

Topic 1: presenting our progress in this week
● Discuss with Jose on our progress in technical aspects both in software and

hardware.
● Get Jose’s comment in our work progress.

TRYE APP 572

A.12.6 28th of February Agenda for Jose

© 2019 by Vertex42.com

Meeting Agenda

Date: Feb 28, 2020 Time: 11:00 am Location: Room 2265/Hangout

Topic 1: Hardware
● Why Bluetooth failed
● How we plan to get the speed and battery level from the bike
● Arduino is not shipped
● How we document the progress

Topic 2: Software
1. General update on our progress with the application
2. How to ask a question?

TRYE APP 573

A.12.7 13th of March Agenda for Jose

© 2019 by Vertex42.com

Meeting Agenda

Date: 03.13, 2020 Time: 11:00 am Location:Hangout

Topic 1: Presentation2
● Digital presentation, how?
● Digital documentation
● Pre and after Meetings
● How we document the progress?

Topic 2: Trye
1. Discuss our next meeting with TRYE
2. How are we gonna punish late delivery of the bikes

TRYE APP 574

A.12.8 18th of March Agenda for Jose

Meeting Agenda

Date: 20.03.2020 Time: 10:00 am Location: Hangout

Topic 1: Presentation 2 review
● Show our video recorded on presentation 2 to Jose in Hangout

● Get Jose’s feedback on presentation 2 and review it with Jose

● Show our website and the documentation to Jose in Hangout

● Get Jose’s feedback both on website and documentation and review it with

him

TRYE APP 575

A.12.9 26th of March Agenda for Jose

Meeting Agenda

Date: 26.03.2020 Time: 10:00 am Location: Hangouts

Topic 1: Discussion about documentation
● How will be our last documentation with the third presentation?

● Does the final submission document can be considered as third

documentation.

Topic 2: Discussion about working on user histories

individually
● If a group member is stuck in doing technical work in his own user

history, is that allowed for him to ask for help from other group

members?

● If a group member got some idea from another group member

while working on technical work, does he need to mention in the

documentation about the help he got?

TRYE APP 576

A.12.10 3rd of April Agenda for Jose

Meeting Agenda

Date: 03.04.2020 Time: 10:00 am Location: Hangouts

Topic 1: Talk about the Easter holiday
● Planning on having a vacation. Thoughts?

Topic 2: Update on the Arduino
● Got Arduino connected to the LTE network

● Made an Arduino program to get GPS data

● working on sending data to a web server with Arduino

TRYE APP 577

A.12.11 24th of April Agenda for Jose

Meeting Agenda

Date: 24.04.2020 Time: 10:00 am Location: Hangouts

Topic 1:Talk about the opening school and start to work on project there

Topic 2: Update on technical work progress

● Progress in software part and feedback from Jose
● Progress in hardware part and feedback from Jose

TRYE APP 578

A.12.12 1st of May Agenda for Jose

Meeting Agenda

Date: 01.05.2020 Time: 10:00 am Location: Hangouts

Topic 1: Update on our work progress

Topic 2: Discussing TRYE AS

● The company is not collaborating as expected, do we need to inform the
situation to the external sensor?

TRYE APP 579

A.12.13 7th of May Agenda for Jose

Meeting Agenda

Date: 07.05.2020 Time: 10:00 am Location: Hangouts

Topic 1: Report

- Sending the report to you on Sunday for review
- Any tips we should consider?

Topic 2: Digital USN Expo

- How will it work this year?

Topic 3: The 3. presentation

- Any tips we should consider?

Topic 4: Problems with Trye

- They will not deliver the bikes to us, therefore we can’t verify parts of the product
- They will not create a billable google account for our development

TRYE APP 580

A.13 Meeting notes

A.13.1 6th of January Group Meeting

Meeting Report 06.Jan. 2020
- Agree and send mail to some companies

Kongsberg:
- technipFMC
- Kongsberg Maritime
- Kongsberg automotive
- Kongsberg norspace
- GKN aerospace
- KDA
- Semcon

Oslo:
- Statkraft
- Equinor
- CISCO
- SIEMENS Norge
- Microsoft Norge

- Selected contact person and sent mail
1) Tobias Rivedal Hylleseth
2) Eebbaa Dhugaasaa Bantii
3) Joachim H. Nordholmen

- Agree on language(English) and file structure
- Found some contact info to some of the companies

Attendees:

- Dawit Abamachu
- Eebbaa Dhugaasaa Bantii
- Tobias Rivedal Hylleseth
- Joachim H. Nordholmen

TRYE APP 581

A.13.2 7th of January Group Meeting

Meeting Report 07.01.2020
- Found contact info to the businesses
- Wrote a bachelor assignment email template and send it to Karoline to be reviewed
- Made Group Poster with an image of everyone in the group
- Made a Trello thing

Attendees:

- Dawit Abamachu
- Eebbaa Dhugaasaa Bantii
- Tobias Rivedal Hylleseth
- Joachim H. Nordholmen
- Andreas Røed Kjønnerud

TRYE APP 582

A.13.3 8th of January Group Meeting

Meeting report 08.01.2020
- Sendt mail to TechnipFMC, Kongsberg Maritime and KDA.
- Called semcon and Statkraft Oslo.
- Send mail to Richard to get computer screens

TRYE APP 583

A.13.4 9th of January Group Meeting

Meeting Report 09.01.2020
-Had a meeting with Jose where we agreed that we are going to have our regular meeting
every Friday at 10:00 am.
-Got a reply from Semcon that they will look through our subjects and maybe give us an
assignment.Will most likely get a reply next week(within 17/1).
-Got generic answers from different companies.
-Watched a SCRUM course.

Attendees:

- Dawit Abamachu
- Eebbaa Dhugaasaa Bantii
- Tobias Rivedal Hylleseth
- Joachim H. Nordholmen
- Andreas Røed Kjønnerud

TRYE APP 584

A.13.5 10th of January Group Meeting

Meeting Report 10.01.2020

We started with discussing and taking roles for the project and started with some
documentation work.

Attendees:

- Dawit Abamachu
- Eebbaa Dhugaasaa Bantii
- Tobias Rivedal Hylleseth
- Joachim H. Nordholmen
- Andreas Røed Kjønnerud

TRYE APP 585

A.13.6 13th of January Group Meeting

Meeting Report 13.01.2020
Meeting with Hans Kristian Nilsen from TRYE AS

- They have not yet received support from Innovation Norway.
- Not yet found a partner for cabin rentals.
- They have a deal to get eMTB cheaper.
- They will receive about 20-30 bikes in April.
- They will get bikes from Rossignol.
- They don't have an external sensor for now.
- They said they could be references after the project.
- They don’t have a lot of expenses in the company at the moment.

Called ATEA

Attendees:

- Dawit Abamachu
- Eebbaa Dhugaasaa Bantii
- Tobias Rivedal Hylleseth
- Joachim H. Nordholmen
- Andreas Røed Kjønnerud

TRYE APP 586

A.13.7 24th of January Meeting with Jose

Trye App

MEETING With Jose 24/01

24 Januar 2020 / 09:00 / ROOM 2265

ATTENDEES Andreas, Tobias, Eebbaa, Dawid, Joachim,Jose

AGENDA

Last Meeting Follow-up

1. Jose advised us to find a bachelor assignment as soon as possible. We

have agreed on an assignment from TRYE AS.

2. Jose advised us to give dedicated roles for the project. We have agreed

on roles both project roles and technical roles.

New Business

● We asked Jose about grading since we are using a development platform

which means we don't have to hard code the entire app but code the most

important functionalities.

● We asked Jose about our external supervisor chatting with us on

WhatsApp, giving us time pressure and wanting access to all our files.

NOTES

● Jose told not to worry about the grading or not having enough technical

challenges, he told us the project will give us more than enough

challenges.

● Jose told us to talk with our external supervisor about the issues we

stated and try to have a little disturbance from him as possible to make

a better project.

● ACTION ITEMS
1. Have a meeting with Hans and agree on set meeting times where he can ask

us about the project, limit the chatting on WhatsApp and limit access to

our documents.

TRYE APP 587

A.13.8 27th of January Meeting with TRYE

Trye App

MEETING With Simon 27/01

27 January 2020 / 11:30 / Holmenkollen

ATTENDEES
Andreas, Tobias, Eebbaa, Dawid, Joachim

AGENDA

New Business

● We asked Simon about terms of agreement and insurance policies

● We Asked about how we are paying for our expenses

● We tried to get a better picture of the requirements for the system

● Asked about communication in WhatsApp and meetings

NOTES
● A mechanical lock, Simon will send us their ToS (Terms of Service),

customer needs to be able to pay for insurance, Whole or part-day rent

are some of the requirements we discussed. Simon agreed to send us a

full requirement document.

● Pay with the firm card for our expenses.

ACTION ITEMS
1. Look at the requirement document we will get from Simon and try to plan

out our technical solution from them.

TRYE APP 588

A.13.9 7th of February Meeting with advisor

Trye App

MEETING With Advisor 07/02

 07 February 2020 / 10:00 / ROOM 2265

ATTENDEES

Andreas, Tobias, Eebbaa, Dawit, Joachim

AGENDA

1. The advisor will visit us and give us advise on how to work well together.

NOTES

● Advisor asked us if we are working as a group cooperatively
● Advisor asked us if there is a good thing among us while working together
● Advisor tried to ask us if we mention some positive and negative things among us
● Advisor asked us if we have a rule and regulation as a group in documentation form
● Advisor asked us if we have regular meeting time as a group
● Advisor asked us the way how we can solve a conflict if it may happen
● Advisor asked us if we have a contract document as a group

ACTION ITEMS
● Advisor appreciated our teamwork and advised us to make the environment among us better.
● Advisor advised us if we will have a group contract in a document form

TRYE APP 589

A.13.10 7th of February Meeting with Hans Kristian

Trye App

MEETING With Trye 07/02
 07 February 2020 / 13:30 / ROOM 2265

ATTENDEES

Andreas, Tobias, Eebbaa, Dawit, Joachim,Hans Kristian,Simon

AGENDA

New Business

1. Simon and Hans want a summary of our software research and how we plan to use it
to progress.

2. When we are getting the bike and who is gonna pick it up.
3. Show us a more detailed list of components we need and why we need them

NOTES

● Hans says he wants to see more progress in the future. We have only been working mostly with
documentation so far.

● Hans and Simon had a small argument with us since there was a misunderstanding about the cost
of some components.

● Hans and Simon finally agreed to order some components for the project.
● Hans and Simon will give us a phone number to a person that works at Rossignol to give us the

bike.

ACTION ITEMS
● Order components while talking to Simon over the phone.
● Tobias gets the bike on Monday and drives it to Kongsberg.
● We will show Hans and Simon more of our technical progress in our next meeting to convince

them that we are working hard.

TRYE APP 590

A.13.11 7th of February Meeting with Jose

Trye App

MEETING With Jose 07/02

7 February 2020 / 10:00 / ROOM 2265

ATTENDEES Andreas, Tobias, Eebbaa, Dawit, Joachim, Jose

AGENDA

New Business
● Jose look at our presentation
● Jose review our presentation & give us feedback

NOTES
● Jose told us photos and fonts on the slides must be bigger.
● Jose told us we must manage our time during the presentation

accurate.
● Jose told us if we use numbers on the slide to differentiate ones’

slide from the other easily.
● Jose told us when we talk about our assignment we need to say “to

develop A solution to the problem”.
● Jose told us that we should use a readable text font and uniform size

in each slide.
● Jose told us that we should use a keyword for presentation instead of

using a sentence.
● Jose told us if we fix the background of the slide so that it will

match with figures, text and so on.
● Jose told us if we use the uppercase for the first letters in the

title in all slides it will look better.
● Jose told us we need to take extra attention to spelling.
● Jose said the probability-impact matrix should be 3x3 so it is easier

to manage

ACTION ITEMS
● Jose told us if we take some time to improve all things that were

commented on and get the presentation good for the next time.

TRYE APP 591

A.13.12 14th of February Meeting with Jose

Trye App

MEETING With Jose 14/02

14 February 2020 / 10:00 / ROOM 2265

ATTENDEES
Andreas, Tobias, Eebbaa, Dawid, Joachim

AGENDA

New Business

● Discuss with Jose on documentation of 1st presentation & get a

suggestion for better documentation in future

● Get Jose’s comments on our first presentation in general.

● Get Jose’s suggestion on how to start with Hardware since we have got

Bike with us.

NOTES

● Jose told us the presentation was good, and he told us we made a good

improvement in managing time and having good visual on the slides of

power points.

● Jose told us the comments we have got after our presentation is very

constructive, which need to be improved in the future.

● Jose told us if we improve our documentation for the next presentation

and make it in an organized way for the next time, and Jose suggested us

to have a Readme File on the google drive where all the documents can be

found, and we need to have contents with the page number for having a

good navigation system for readers, which may help the reader to go

through the files easily.

TRYE APP 592

● Jose told us before we deliver the documentation, he can review it and

give us comments for improvement, so he wants to send him first before

we deliver our documentation.

● Jose told us Regarding the Hardware part(Bike) to find out more about

the bike system and how the bike computer works.

● Jose told us we need to find out how we can extract the data we need

from the bike computer system, he told us we need to work more on this

part.

● Jose told us, we need to think to build a system that can be used for

different electric mountain bike brands, not only for one Bike brand

this is because as system developer we need to build a system that is

modular, instead of designing for only one specific bike.

● Jose told us to have a meeting with us at 10:00 on next Friday through

google hangout.

ACTION ITEMS
1. We need to work on the bike for understanding more about the bike

system.

2. We need to borrow oscilloscope from the Electro lab for working on the

Bike electric system.

3. We have decided to contact a company called Shimano which delivers

Electric bike components and it is located in Asker. The company has all

the different parts for sell, and we can have a visit to see each

component of the bike system and talk with them for getting some

technical explanation.

TRYE APP 593

A.13.13 28th of February Meeting with Jose

Trye App

MEETING With Jose 28/02

28 February 2020 / 11:00 / ROOM 2265

ATTENDEES
Andreas, Tobias, Eebbaa, Dawid, Joachim, Jose

AGENDA

New Business

● Discuss with Jose why Bluetooth failed.

● Get comments on how we plan to retrieve speed & battery levels from the

bike.

● What does Jose think of our progress so far?

NOTES
● Jose finds our development satisfactory and underlines the importance of

proper documentation. Even though our technical solutions are changing

rapidly, we need to focus on documenting the basic functions of what we

are working on to avoid a backlog.

● Jose told Dawit to discuss with Emil how he would like the risk analysis

to be further developed. A solution can be creating User Stories to

emphasize the importance of the risk.

● The hardware documentation seems to be good, and Jose told us to look at

earlier bachelor-assignments to see how successful groups did their

documentation.

ACTION ITEMS
1. Continue to work on our solution.

2. Be more active with our documentation.

TRYE APP 594

3. Do not hesitate to ask the guys at Neptune-Software for help when we

struggle with their software.

4. Try to find out why our Arduino IoT is in quarantine (possibly because

of lack of spare parts from China/Coronavirus?).

TRYE APP 595

A.13.14 13th of March Meeting with Jose

Trye App

MEETING With Jose 13/03

13 March 2020 / 11:00 / Through Google Hangouts at home

ATTENDEES

Andreas, Tobias, Eebbaa, Dawit, Joachim

AGENDA

New Business

Topic 1: Presentation2
● Digital presentation, how?

● Digital documentation

● Pre and after Meetings

● How we document the progress

Topic 2: Trye
1. Discuss our next meeting with TRYE

2. How are we gonna punish late delivery of the bikes

TRYE APP 596

NOTES :

● Jose advised us to make a video for the 2nd presentation

which will be held on 24th March 2020

● Jose advised us to organize the online meetings by the

help of skype for business

● Jose told us if we send him the 2 nd presentation video of

the 1st version before our next meetings on Friday so

that he will give us feedback or comments

● Jose recommended us to make a website for digital

documentation. This is because it helps to navigate and

understand the document easily

● Jose recommended us to use WordPress for making a

website

● Jose advised and showed us how to organize the meetings

using skype for business

● Jose emphasized us to make good documentation, and avoid

the spelling errors.

ACTION ITEMS

1. Keep working hard on the technical part and concentrate

on documentation

2. Look at different options on a punishing system for those

who may be delivering the bike late as a customer

TRYE APP 597

A.13.15 20th of March Meeting with Jose

Trye App

MEETING With Jose 20/03

20 march 2020 / 10:00 / Through Google Hangouts at home

ATTENDEES
Andreas, Tobias, Eebbaa, Dawid, Joachim, Jose

AGENDA

New Business
● Show our video recorded on presentation 2 to Jose in

Hangout

● Get Jose’s feedback on presentation 2 and review it with

Jose

● Show our website and the documentation to Jose in Hangout

● Get Jose’s feedback both on website and documentation and

review it with him

NOTES
● Jose gave us feedback on our presentation both as a group

and individually.

● Jose gave us suggestions on how to make our presentation

better by considering font size, brightness and image size.

● Jose explained to us about how the online presentation will

be as a group and individual and told us to ask either him

or Karoline if we have any questions regarding the online

presentation.

TRYE APP 598

● Jose gave us feedback about our documentation website and

how to have better navigation and he showed us an example.

ACTION ITEMS

1. The group decided to make a new video based on the feedback

from Jose.

2. The group decides to work on the documentation based on the

feedback from Jose.

TRYE APP 599

A.13.16 23th of March Meeting with Simon

Trye App

MEETING With Simon 23/03

23 March 2020 / 10:00 / Through phone

ATTENDEES
Andreas, Simon

AGENDA

New Business
● Are we making a hybrid solution with instant rent and

booking or a pure booking system?

NOTES
● I and Simon agreed that there would be no point in instant

rent since bikes have to be checked between each rent

● Usually, customers want to book the bikes far ahead in time

to be sure they are available instead of taking the risk of

instant rent.

● We also agreed that it would be easier to implement one

time payments

● We also agreed that since a punishment system would take a

lot of time to make it legally justifiable, it was better

if we made a booking system and just notified Trye of a

bike is not delivered in time. So that we have anything to

do with punishing those customers.

TRYE APP 600

ACTION ITEMS

1) Make a pure booking system

2) Make one time payments

3) Change the map to only show rental places

TRYE APP 601

A.13.17 27th of March Meeting with Jose

Trye App

MEETING With Jose 27/03

27 March 2020 / 10:00 / Through Zoom

ATTENDEES
Andreas, Tobias, Eebbaa, Dawid, Joachim, Jose

AGENDA

New Business
● Topic 1: Discussion about documentation

○ How will be our last documentation with the third

presentation?

○ Does the final submission document can be considered

as third documentation.

● Topic 2: Discussion about working on user histories

individual

○ Can we help each other and how to document it

○ Should we document the origin of an idea, if it’s from

a group member

NOTES
● Agreed using more time with documentation

● We miss some text on our website, eg. a short description

of each item, and should remove embedded windows

● Update some documentation, eg. data on the risk register

● Went over how we should document the individual work

TRYE APP 602

● We should keep the existing website for the final

presentation, just edit it and add more content

● We will make one document in overleaf, that we will share

with Jose but also use the website and google drive to show

the sensors the final documentation

● In the documentation, the main contributor should be

listed, but also tell what you needed help with if needed

● The documentation is already divided into hardware and

software

● Little to no advantage in doing the presentation live.

ACTION ITEMS

1) Share the overleaf document

2) Make the work traceable to the individual

3) Make the website more readable

4) Make sure all documentation is up to date

TRYE APP 603

A.13.18 4th of April Meeting with Jose

Trye App

MEETING With Jose 04/03

04 April 2020 / 10:00 / through zoom

ATTENDEES
Andreas, Tobias, Eebbaa, Dawid, Joachim, Jose

AGENDA

New Business
● Topic 1: Talk about the Easter holiday

● Topic 2: Update on the Arduino

● Got Arduino connected to the LTE network

● Made an Arduino program to get GPS data

● working on sending data to a web server with Arduino

NOTES
● Technical Issues, cannot display database entries.

● Easter vacation, if our technical issues are not fixed

before easter, we will work with that throughout the

vacation.

● Successfully connected to the LTE Network (1 out of 2). The

one connected is now connected to the Azure network. Soon

ready to send GPS coordinates.

● For the LTE module that is not working, it might be because

of a bad signal inside the brick house Joachim tested in.

TRYE APP 604

● Lab:

○ The hardware guys don't need to have access to the lab

before late of April. USN might open the lab to some

of the students (small possibility). Reply needs to be

given by 03.04.2020.

○ They might need some equipment from the Dronesone and

the Elektrolab.

● Arduino:

○ Dawit has made an Arduino program to get GPS data.

○ "It's going very good, and I've also already managed

to compile it. Already found the correct position of

his own apartment.

○ Might add date/time in addition to the already

achieved latitude and longitude. (Code is uploaded).

Needs to be verified.

○ The GPS program has been tried on an Arduino Mega, not

the Arduino LTE. Tested with a GPS module.

○ The GPS module is not a very known module, might have

to buy/test a more common one. The Neo6M should be the

preferred GPS module.

○ We have ordered a Neo8, which has not come yet. Dawit

claims there is not a big difference between the two.

● Testing:

○ Dawit tests it himself. Found his position. The

position given by the Arduino was the same as Google

gave.

TRYE APP 605

● "Sending GPS data to a web server"

○ Eebbaa is working with that, as noted above he already

connected to Azure.

○ "I think it's going well, we've connected the IoT

Module to the internet. Successfully connected the

Module to the webserver.

○ "Followed the procedures to connect to the Azure IoT

platform. The messages are arriving at the server.

● Next step hardware-vice:

○ Need to send the sensor data to the platform, and

agree on the protocol for how to send data. (Atm:

Date/Time and Lat Long.)

● Grading:

○ Important to be graded individually, but still, work

together as a group. Important to not isolate

yourself.

● Overleaf:

○ Important to gradually fill the Overleaf document. By

gradually filling the Overleaf it is easier to get an

overview of the development process.

○ The Overleaf document can and should evolve over time.

Important to fill in content progressively. Important

to device the structure of the document.

○ Restructuring a document after writing a lot is a long

process. Important to agree on a table of contents of

the structure of the document.

TRYE APP 606

● Tips for the technical issue:

○ Try fixing the problem meanwhile working parallel on a

substitute to avoid a deadlock.

● Dawit: I have fixed my Risk documentation, do you think it

is sufficient?

○ Jose: I have not been able to see the progress made as

I've not gotten an alert. No longer links to other

documents. Looks nicer!

● Documentation work:

○ Make the Software documentation the same as the

Hardware documentation.

● Easter vacation:

○ We decided to have an easter vacation.

ACTION ITEMS

1) Resolve technical issues with Planet9 and databases.

2) Verify the GPS sending data program.

3) Gradually fill out the Overleaf document. This process

gives us an overview of the project as a whole.

4) Get together as a group and decide on the structure for the

Overleaf document. Restructuring because of a lack of

communication for the table of content is time-consuming.

TRYE APP 607

A.13.19 17th of April Meeting with Jose

Trye App

MEETING With Jose 17/04

17 April 2020 / 10:00 / Through Zoom

ATTENDEES

Andreas, Tobias, Eebbaa, Dawid, Joachim

AGENDA

New Business
● Discuss on documentation work and technical work

progress.
● Discuss on the next plan of project work.

NOTES
● Jose asked us our progression in technical parts of our

project both in software and hardware and advised us to

use the rest of the project time efficiently.

● Jose advised us if we may start with the work of

finalizing the documents otherwise at the end of time we

may face a shortage of time.

● Jose recommended us if we have a draft plan for the next

activities so that we should manage and achieve what we

have planned at the end of project time.

● Jose advised us to set a date for different activities in

advance such as technical works, 3rd presentation, and

documentation work, etc

TRYE APP 608

● Jose highly recommended us to focus on planning so that

we may not face scarcity of time in the end.

● For the question is asked by Tobias, “Due to coronavirus

case, the server that we have provided for free now

requested payment, and so we are planned to use Google

internet”. Jose advised us if the solution expected from

google is the same as from Microsoft internet, then you

can go ahead!

● Jose lastly recommended us if we may use Grammarly

software for correcting some fails in our English

writing, and write better quality documents.

ACTION ITEMS
1. Get together as a group to work on the interface of

software and hardware as a final solution.

2. Divide to each of us the parts of the documents and write

it for final documentation.

TRYE APP 609

A.13.20 24th of April Meeting with Jose

Trye App

MEETING With Jose 24/04

24 April 2020 / 10:00 / Through Zoom

ATTENDEES

Andreas, Tobias, Eebbaa, Dawid, Joachim

AGENDA

New Business

● Talk about opening school, and start to work on project

there

● Progress in software part and feedback from Jose

● Progress in hardware part and feedback from Jose

NOTES
● Jose told us school will not open in the near future and

he said our last presentation will most likely be online,
but in case if it will be on campus, most probably it
will be without an audience.

● Jose appreciates our progression in technical parts of

our project both in software and hardware.

● Jose reminds us to work on documentation and he gave us

some tips.

TRYE APP 610

ACTION ITEMS
1. Working on the documentation part in parallel with

technical work to use our time efficiently.

TRYE APP 611

A.13.21 1st of May Meeting with Jose

Trye App

MEETING With Jose 01/05

01 May 2020 / 10:00 / Through Zoom

ATTENDEES

Andreas, Tobias, Eebbaa, Dawid, Joachim, Jose

AGENDA

New Business

● Topic 1: Update on our work progress.
● Topic 2: Discussing TRYE AS.

NOTES
● We talked about our progress on the technical solution

and the documentation.

● Trye has been difficult to work with, and we ask Jose if

we should talk to the sensor about the limitations this

will give us. he said if it’s only minor issues that can

be fixed in a week, we don’t need to speak with the

sensor, but if the problems are major and cause issues

with the progress of or work we should talk with the

sensors after we have talked with trye first.

● Talked about some technical issues we have, like

retrieving information from a database and the payment

system.

TRYE APP 612

ACTION ITEMS

1. Talk with trye, and make sure they understand the

limitation they put on us by not providing the

information we need.

TRYE APP 613

A.13.22 5th of May Meeting with TRYE

Trye App

MEETING With Trye 05/05

05 May 2020 / 10:00 / At Trye’s office in Mjøndalen

ATTENDEES

Andreas, Hans Kristian, Simon

AGENDA

New Business

● Talk about receiving the bikes.
● Talk about the app release.
● Talk about the road ahead.

NOTES
● Hans Kristian told me he doesn’t see the point in use

getting the bikes since we can test the prototype without

the bike. And Trye also needs bikes for rental.

● Hans Kristian and Simon said we were welcomed to come to

their office to test with the bikes anytime.

● Hans Kristian and Simon said we would come and borrow a

bike for the sales presentation.

● Hans Kristian said he don’t see the point in releasing

the app now since the communication between the hardware

and software are still not working as intended. Another

TRYE APP 614

reason is that there are some security features that need

to implement.

● Hans Kristian told me that Trye might use consultants to

finish our work. They also said they were unhappy that we

made our own hardware solution instead of being able to

use Shimano’s existing system.

● Hans Kristian told me that they want two different

systems so we don't have to interface with each other.

That means we are free to make our own payment solution

and booking system since our system is only used for

mountain lodge rental.

● They might contact us later if they need help with the

system we deliver to them.

ACTION ITEMS
1. Get the bike for the presentation
2. Postpone the Beta release
3. Make a prototype without the bike
4. Since Trye wants two different systems we don't have to

interface with their system and we can make our own

payment system.

TRYE APP 615

A.13.23 8th of May Meeting with Jose

Trye App

MEETING With Jose 08/05

08.05 April 2020 / 10:00 / Through Zoom

ATTENDEES

Andreas, Tobias, Eebbaa, Dawid, Joachim, Jose

AGENDA

New Business

● Talk about the final report.
● Talk about USN Expo.
● Talk about finishing the work.

NOTES
● The bachelor deadline is either the 25th or 26th of May.

● Jose asks us how we are planning to do the final part of

our bachelor, and whether or not we are happy with our

result.

● We are planning on writing a report, then put all our

documentation last as appendixes.

● Jose’s comment to our overleaf shell: Should be prepared

to answer why don’t we have a state of the art section in

the report. Important to do a proper analysis of the

state of the art so that you are able to develop

something new.

TRYE APP 616

● Don’t like some of the words we use. “Preparation”, Use

“Technical work” instead of “Technical work process”.

Would not use the words process.

● Should not use the words “final” in “final beta”. Can say

prototype instead.

● Avoid having an unnecessary amount of work.

● Satlites report: Background, state of the art, Intro to

start with, Project, Technical work, Result for final

prototype and conclusion.

● There’s a difference between conclusion and conclusions.

Use conclusion plus a discussion of the report. Not

conclusions.

● Might add a part in front of conclusion to discuss what

we have done. This includes what could’ve been better,

what are we happy with etc. The only reason discussion is

drawn out from the conclusion part is if the parts

combined gets too large.

● Pay attention to the following: My experience with

working with Overleaf is that, Grammarly does not

highlight recommendations for typos and improvements. Pay

attention to the text, might copy from Overleaf to Google

Docs to spell check.

● One frequent problem is that students have excellent

technical skills, and excellent technical work, but the

report is not up to the same quality. Very irritating if

the report is not well written. Mismatches of different

sorts.

● “There’s no second opportunity of making a first

impression”.

● Don’t just send it to Jose immediately, go through it

once again as this will greatly improve the final

quality. Have only time to revise it once.

TRYE APP 617

● Karoline just posted the earlier posters of USN Expo.

Jose thinks it will be a digital event, better clarify

with Karoline. As we will have a virtual Expo we need to

create a poster as well. Nice to show all our hard work

to the community, so, therefore, it might be a good idea

to postpone it to the fall.

● Is the presentation and report delivered the same day?

Jose - I don’t think that has been decided.

● We will have the presentation Thursday 11th of June

12:30. “I will need your documents latest a day before

the presentation starts”. This gives us two weeks from

delivering the report to making the presentation.

● Would use this as an opportunity to make the presentation

richer than a normal presentation.

● Jose likes the idea of travelling to Mjøndalen and

showing the app/bicycle would be a great addition.

● Andreas made a user for the billing software Stripe. This

enables us to make a working prototype.

● Since you don’t have the bike anymore, this gives you the

freedom of not being bound to using what’s in the bike.

● When testing the unlocking feature, we can simply light

an LED when the bike is “unlocked”.

● When asked to interface an existing system, but you don’t

have complete access to it you may or may not do it

entirely. Must prove that we have a coherent solution

overall and if we have the freedom to install it to a

specific bike with the features needed (Could use a

normal bike if possible).

● Keep focused on the final task! Keep in mind that your

main focus at this moment is to write a proper final

report.

TRYE APP 618

A.13.24 15th of May Meeting with Jose

Trye App

MEETING With Jose 15/05

15 May 2020 / 10:00 / Through Zoom

ATTENDEES

Andreas, Tobias, Eebbaa, Dawid, Joachim,Jose

AGENDA

New Business

● Talk about the feedback from Jose on chapter 2 and 3 in

the final report.

● Discuss generally writing the report.

NOTES
Andreas part:

● Jose told us to talk about the market situation. Market
studies. General Studies about scooters. Or remove the
background title.

● The current state need more paragraphs.
● Look on the internet for articles about e-scooter

solutions.
● Look at the cost and risk headline.
● Talk about project costs. Cheap to manufacture parts.

Cost of bike and work.

TRYE APP 619

● Not so many risks of money since there are not expensive
parts.

● Make clear what parts you want to be graded for, which
means we should write a paragraph about our main
technical responsibilities.

● Change the rent manually rent part.

Tobias part:

● Jose said we don't have to write that we changed stand up

a meeting time. But only write about the tools

● Write about Covid-19 in the risk manager in the process

part.

Eebbaas part:

● Add some information about the requirements in the start

instead of just link to an appendix

● Added some phrases about why stakeholders are there.

Explain why they are stakeholders for the project

● Might wish to elaborate further on giving an example of

how functions are measurable, traceable, testable and

verifiable.

Joachim’s part:

● Jose said the phrase about battery level should be
written to show that we are assuming a linear decrease in
battery level.

Dawits part:

● Find some more info on the internet related to the
project risks.

TRYE APP 620

ACTION ITEMS

1. Fix writing error and grammar.

2. Look into the comments of Jose and maybe rewrite some

parts.

TRYE APP 621

A.14 Work hours

A.14.1 Work hours Joachim

A.14.2 Work hours Andreas

A.14.3 Work hours Tobias

A.14.4 Work hours Eebbaa

A.14.5 Work hours Dawid

TRYE APP 622

Joachim TRYE App
January
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Wednesday 1 0
Thursday 2 0
Friday 3 0
Saturday 4 0
Sunday 5 0
Monday 6 4 Finding an employer 4
Tuesday 7 3 Finding an employer 3
Wednesday 8 6 Finding an employer. Contacting trye 6
Thursday 9 0
Friday 10 4 Did some reseach about the technology 2 2
Saturday 11 0
Sunday 12 0
Monday 13 5 Did some reseach about the technology 3 2
Tuesday 14 0
Wednesday 15 5 started setting up drive and documents 3 2
Thursday 16 0
Friday 17 5 Did some reseach about the technology 3 2
Saturday 18 0 Attempting to be free during the weekends.
Sunday 19 0 Attempting to be free during the weekends.
Monday 20 Week 4 6 6
Tuesday 21 Week 4 0 Simulating and modeling
Wednesday 22 Week 4 6 3 3
Thursday 23 Week 4 5 Simulating and modeling 4 1
Friday 24 Week 4 5 Made this time table 3 1 1
Saturday 25 Week 4 0 Attempting to be free during the weekends.
Sunday 26 Week 4 0 Attempting to be free during the weekends.
Monday 27 Week 5 6 Meeting in Oslo 6
Tuesday 28 Week 5 0 Simulating and modeling
Wednesday 29 Week 5 6 Scrum Burndown chart, To buy list, other groups pressentation, worked on arduino 3 2 1
Thursday 30 Week 5 0 Simulating and modeling
Friday 31 Week 5 6 meeting with Josh and Hans, fixed verification, worked on GPS module 2 2 2

Total in january 72 26 17 0 29

TRYE APP 623

February
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Saturday 1 Week 5 0 Attempting to be free during the weekends.
Sunday 2 Week 5 0 Attempting to be free during the weekends.
Monday 3 Week 6 6 Prep for presentation 3 2 1
Tuesday 4 Week 6 0 Simulating and modeling
Wednesday 5 Week 6 5 Prep for presentation 2 2 1
Thursday 6 Week 6 2 Simulating and modeling 2
Friday 7 Week 6 6 Prep for Presentation, meeting with Jose, worked on documentation 3 2 1
Saturday 8 Week 6 0 Attempting to be free during the weekends.
Sunday 9 Week 6 0 Attempting to be free during the weekends.
Monday 10 Week 7 5 Documetation 5
Tuesday 11 Week 7 0 Simulating and modeling
Wednesday 12 Week 7 7 Documentation 5 2
Thursday 13 Week 7 6 Presentation 1 2 3
Friday 14 Week 7 6 Find the way forware, do some research 2 3 1
Saturday 15 Week 7 0 Attempting to be free during the weekends.
Sunday 16 Week 7 0 Attempting to be free during the weekends.
Monday 17 Week 8 6 Opened the bike to see how the motor works 6
Tuesday 18 Week 8 0 Simulating and modeling
Wednesday 19 Week 8 6 Learned how the wires work on bike and how we can tap in to them, programed arduino 6
Thursday 20 Week 8 0 Simulating and modeling
Friday 21 Week 8 6 Started programing arduino to find the speed on the bike 6
Saturday 22 Week 8 0 Attempting to be free during the weekends.
Sunday 23 Week 8 0 Attempting to be free during the weekends.
Monday 24 Week 9 6 Debuged the speed calc, started reading battery level, documented USN-20 2 4
Tuesday 25 Week 9 0 Simulating and modeling
Wednesday 26 Week 9 6 Looked at some GPS and look more at battery level 1 5
Thursday 27 Week 9 0 Simulating and modeling
Friday 28 Week 9 6 Worked on the GPS module to recive data over serial 1 5
Saturday 29 Week 9 0 Attempting to be free during the weekends.

Total in February 79 25 37 10 7

March
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Sunday 1 Week 9 0 Attempting to be free during the weekends.

TRYE APP 624

Monday 2 Week 10 6 Worked on connection Bluetooth to the bike 2 4
Tuesday 3 Week 10 0 Simulating and modeling
Wednesday 4 Week 10 6 Worked on connection Bluetooth to the bike 2 4
Thursday 5 Week 10 0 Simulating and modeling
Friday 6 Week 10 6 Documented the things we done 5 1
Saturday 7 Week 10 0 Attempting to be free during the weekends.
Sunday 8 Week 10 0 Attempting to be free during the weekends.
Monday 9 Week 11 6 Documentation and presentation 4 2
Tuesday 10 Week 11 0 Worked on presentation
Wednesday 11 Week 11 6 Worked on requierment and verification 3 3
Thursday 12 Week 11 3 Worked on requierment and verification 3
Friday 13 Week 11 6 Worked on requierment and verification 3 3
Saturday 14 Week 11 5 Planed what we should present 5
Sunday 15 Week 11 3 Made risk sheet visualy appealing 3
Monday 16 Week 12 7 Finished the documentation before presentation 4 3
Tuesday 17 Week 12 3 Presentation 3
Wednesday 18 Week 12 4 Got an overview of what we should continu working on 2 2
Thursday 19 Week 12 4 Got an overview of what we should continu working on 2 2
Friday 20 Week 12 4 Got an overview of what we should continu working on 2 2
Saturday 21 Week 12 0 Attempting to be free during the weekends.
Sunday 22 Week 12 0 Attempting to be free during the weekends.
Monday 23 Week 13 4 Started working of the arduino to connect it to the web 4
Tuesday 24 Week 13 4 Continued with Arduino 4
Wednesday 25 Week 13 4 Continued with Arduino 4
Thursday 26 Week 13 6 Continued with Arduino 2 4
Friday 27 Week 13 7 Continued with Arduino and documented what was done durring the week with user stories 4 3
Saturday 28 Week 13 0 Attempting to be free during the weekends.
Sunday 29 Week 13 0 Attempting to be free during the weekends.
Monday 30 Week 14 6 Started working with a python script to send MQTT data to a web server 1 5
Tuesday 31 Week 14 6 Python script 1 5

Total in March 106 43 44 19 0

April
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Wednesday 1 Week 14 4 Python script 4
Thursday 2 Week 14 4 Python script and looking on the Microsoft Azure web server, to recive the MQTT data 4
Friday 3 Week 14 4 Python script + Microsoft Azure 4
Saturday 4 Week 14 0 Attempting to be free during the weekends.
Sunday 5 Week 14 0 Attempting to be free during the weekends.

TRYE APP 625

Monday 6 Week 15 0 Easter holiday
Tuesday 7 Week 15 0 Easter holiday
Wednesday 8 Week 15 0 Easter holiday
Thursday 9 Week 15 0 Easter holiday
Friday 10 Week 15 0 Easter holiday
Saturday 11 Week 15 0 Easter holiday
Sunday 12 Week 15 0 Easter holiday
Monday 13 Week 16 6 Python script + Microsoft Azure 2 4
Tuesday 14 Week 16 6 Python script + Microsoft Azure 3 3
Wednesday 15 Week 16 6 Switched to using Google Cloud Platform (GCP) to recive MQTT data 2 4
Thursday 16 Week 16 6 GCP, where able to recive MQTT data from the arduino 1 5
Friday 17 Week 16 5 GCP, started working on getting the MQTT data in the right place 5
Saturday 18 Week 16 6 GCP, trying the get the MQTT data to the pub/sub service in GCP 6
Sunday 19 Week 16 7 GCP/ pubsub 7
Monday 20 Week 17 8 GCP/ pubsub 8
Tuesday 21 Week 17 6 GCP trying to get the data to a database with sql and cloud function 6
Wednesday 22 Week 17 6 GCP trying to get the data to a database with sql and cloud function 6
Thursday 23 Week 17 5 GCP trying to get the data to a database with sql and cloud function 5
Friday 24 Week 17 5 GCP trying to get the data to a database with big query 5
Saturday 25 Week 17 9 GCP trying to get the data to a database with big query 9
Sunday 26 Week 17 8 GCP trying to get the data to a database with big query 8
Monday 27 Week 18 9 GCP trying to get the data to a database with firestore 9
Tuesday 28 Week 18 9 GCP trying to get the data to a database with firestore 9
Wednesday 29 Week 18 4 GCP trying to get the data to a database with firestore 4
Thursday 30 Week 18 5 Tryed to retrive the data with a REST call 5

Total in April 128 8 120 0 0

May
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Friday 1 Week 18 6 Started working on documenting the user stories 6
Saturday 2 Week 18 0 Attempting to be free during the weekends.
Sunday 3 Week 18 0 Attempting to be free during the weekends.
Monday 4 Week 19 6 Started working on documenting the user stories 6
Tuesday 5 Week 19 6 Started working on documenting the user stories 6
Wednesday 6 Week 19 6 Started working on documenting the user stories 6
Thursday 7 Week 19 6 Started working on documenting the user stories and verification 6
Friday 8 Week 19 6 Started working on documenting the user stories and verification 6
Saturday 9 Week 19 0 Attempting to be free during the weekends.

TRYE APP 626

Sunday 10 Week 19 0 Attempting to be free during the weekends.
Monday 11 Week 20 6 Started working on documenting the user stories and verification 6
Tuesday 12 Week 20 6 Started working on documenting the user stories and verification 6
Wednesday 13 Week 20 6 Started working on documenting the user stories, verification and report 6
Thursday 14 Week 20 6 Started working on documenting the user stories, verification and report 6
Friday 15 Week 20 6 Working on report 6
Saturday 16 Week 20 3 Working on report 3
Sunday 17 Week 20 0 17. may
Monday 18 Week 21 5 Working on report 5
Tuesday 19 Week 21 6 Working on report 6
Wednesday 20 Week 21 7 Working on report 7
Thursday 21 Week 21 7 Working on report 7
Friday 22 Week 21 7 Working on report 7
Saturday 23 Week 21 8 Did some technical work 8
Sunday 24 Week 21 12 Working on report 12
Monday 25 Week 22 0 DEADLINE FOR DELIVERING THE BACHELOR THESIS
Tuesday 26 Week 22 0
Wednesday 27 Week 22 0
Thursday 28 Week 22 0
Friday 29 Week 22 0
Saturday 30 Week 22 0
Sunday 31 Week 22 0

Total in May 121 113 8 0 0
Total for the entire project 506 215 226 29 36

TRYE APP 627

Andreas TRYE App
January
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Wednesday 1 0
Thursday 2 0
Friday 3 0
Saturday 4 0
Sunday 5 0
Monday 6 0
Tuesday 7 0
Wednesday 8 4 Finding an employer 4
Thursday 9 3 Finding an employer 3
Friday 10 6 Finding an employer. Contacting trye 6
Saturday 11 0
Sunday 12 0
Monday 13 5 Working in overleaf and google slides 3 2
Tuesday 14 0
Wednesday 15 7 Working in overleaf, finding templates and google slides 5 1 1
Thursday 16 6 Working in overleaf and google slides 4 2
Friday 17 0
Saturday 18 0
Sunday 19 0
Monday 20 Week 4 6 Overleaf and researching scrum 3 3
Tuesday 21 Week 4 6 Testing scooter apps and writing report 2 4
Wednesday 22 Week 4 6 UML drawing and neptune research 2 4
Thursday 23 Week 4 0
Friday 24 Week 4 6 Overleaf starting to make report shell 6
Saturday 25 Week 4 0
Sunday 26 Week 4 0
Monday 27 Week 5 6 Secretary work and meetings 2 4
Tuesday 28 Week 5 0
Wednesday 29 Week 5 6 Setting up a planet9 workspace and try to install it on the oracle cloud 6
Thursday 30 Week 5 0
Friday 31 Week 5 7 Planet9 setup on remote server 7

Total in january 74 27 21 3 23

TRYE APP 628

February
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Saturday 1 Week 5
Sunday 2 Week 5
Monday 3 Week 6 6 Presentation slides 6
Tuesday 4 Week 6
Wednesday 5 Week 6 6 Presentation rehersal 6
Thursday 6 Week 6
Friday 7 Week 6 6 Presentation Review 6
Saturday 8 Week 6
Sunday 9 Week 6
Monday 10 Week 7 6 Working on the bike and stories 2 4
Tuesday 11 Week 7
Wednesday 12 Week 7 6 Database planning and Bike 3 3
Thursday 13 Week 7
Friday 14 Week 7 6 Meeting and planet9 course 2 3 1
Saturday 15 Week 7
Sunday 16 Week 7
Monday 17 Week 8 6 working on report 6
Tuesday 18 Week 8 working on report
Wednesday 19 Week 8 6 Making a Trye Demo app by following a tutorial 6
Thursday 20 Week 8
Friday 21 Week 8 6 Making the rockstar app from scratch and meeting 5 1
Saturday 22 Week 8
Sunday 23 Week 8
Monday 24 Week 9 6 Working in planet9 6
Tuesday 25 Week 9
Wednesday 26 Week 9 6 Working in planet9
Thursday 27 Week 9
Friday 28 Week 9 5 Working in planet9 and meeting 1
Saturday 29 Week 9

Total in February 71 7 33 18 3

March
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Sunday 1 Week 9
Monday 2 Week 10 6 Working in planet9 6
Tuesday 3 Week 10

TRYE APP 629

Wednesday 4 Week 10 6 Working in planet9 6
Thursday 5 Week 10
Friday 6 Week 10 6 Working in planet9 6
Saturday 7 Week 10
Sunday 8 Week 10
Monday 9 Week 11 6 Working in planet9 6
Tuesday 10 Week 11
Wednesday 11 Week 11 6 Working in planet9 6
Thursday 12 Week 11
Friday 13 Week 11 6 Documentation 6
Saturday 14 Week 11
Sunday 15 Week 11
Monday 16 Week 12 6 User story documentattion 6
Tuesday 17 Week 12
Wednesday 18 Week 12 6 Documentation 6
Thursday 19 Week 12 6 Documentation and presentation 3 3
Friday 20 Week 12 6 Documentation and presentation 4 2
Saturday 21 Week 12
Sunday 22 Week 12
Monday 23 Week 13 6 Working on USN-33 6
Tuesday 24 Week 13 6 Working on USN-33 6
Wednesday 25 Week 13 6 Working on USN-33 6
Thursday 26 Week 13 6 Documenting USN-33 6
Friday 27 Week 13 6 Sprint report and documentation 6
Saturday 28 Week 13
Sunday 29 Week 13
Monday 30 Week 14 6 Working on USN-39 6
Tuesday 31 Week 14 6 Working on USN-39 6

Total in March 102 37 60 5 0

April
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Wednesday 1 Week 14 6 Working on USN-39 6
Thursday 2 Week 14 6 Fixing Planet9 bug 6
Friday 3 Week 14 6 Fixing Planet9 bug 6
Saturday 4 Week 14
Sunday 5 Week 14
Monday 6 Week 15 6 Documenting USN-39 and making sprint report 6
Tuesday 7 Week 15 6 Working in overleaf 6

TRYE APP 630

Wednesday 8 Week 15 6 Working in Planet9 with visuals for the app 6
Thursday 9 Week 15 6 Working on visuals in the app 6
Friday 10 Week 15
Saturday 11 Week 15
Sunday 12 Week 15
Monday 13 Week 16
Tuesday 14 Week 16
Wednesday 15 Week 16
Thursday 16 Week 16
Friday 17 Week 16
Saturday 18 Week 16
Sunday 19 Week 16
Monday 20 Week 17 8 Working in planet9 with user stories 8
Tuesday 21 Week 17 8 Working in planet9 with user stories 8
Wednesday 22 Week 17 8 Working in planet9 with user stories 8
Thursday 23 Week 17 8 Working in planet9 with user stories 8
Friday 24 Week 17 8 Working in planet9 with user stories 8
Saturday 25 Week 17
Sunday 26 Week 17
Monday 27 Week 18 6 Working on the final report 6
Tuesday 28 Week 18 6 Final report and stripe 3 3
Wednesday 29 Week 18 6 Final report and planet9 3 3
Thursday 30 Week 18 6 Documentation of user stories 6

Total in April 106 36 70 0 0

May
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Friday 1 Week 18 6 Verifying and documents 6
Saturday 2 Week 18 8 Finalizing the payment solution 8
Sunday 3 Week 18 6 Documents and fixing bugs and visuals in the apps 3 3
Monday 4 Week 19 6 Working on implementing stripe and documenting verifications 3 3
Tuesday 5 Week 19 6 Working on final user stories and documenting verifications 4 2
Wednesday 6 Week 19 8 Making a Admin application 8
Thursday 7 Week 19 6 Finishing user stories and verification 2 4
Friday 8 Week 19 6 Verification documents 6
Saturday 9 Week 19 6 Verification documents 6
Sunday 10 Week 19 6 Overleaf making a shell fotr the report 6
Monday 11 Week 20 6 Writing about the project in the report 6
Tuesday 12 Week 20 6 Writing about the project in the report 6

TRYE APP 631

Wednesday 13 Week 20 6 Writing on the final report 6
Thursday 14 Week 20 6 Writing on the final report 6
Friday 15 Week 20 6 Writing on the final report 6
Saturday 16 Week 20 8 Writing on the final report 8
Sunday 17 Week 20 17th of May
Monday 18 Week 21 6 Writing on the final report 6
Tuesday 19 Week 21 6 Writing on the final report 6
Wednesday 20 Week 21 6 Writing on the final report 6
Thursday 21 Week 21 2 Writing on the final report 2
Friday 22 Week 21 8 Writing on the final report 8
Saturday 23 Week 21 8 Fixing a reporting system and finalizing the admin app 8
Sunday 24 Week 21 10 Finishing the report. 10
Monday 25 Week 21 4 DEADLINE FOR DELIVERING THE BACHELOR THESIS 4
Tuesday 26
Wednesday 27
Thursday 28
Friday 29
Saturday 30
Sunday 31

Total in May 152 116 36 0 0
Total for the entire project 505 223 220 26 26

TRYE APP 632

Tobias TRYE App
January
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Wednesday 1
Thursday 2
Friday 3
Saturday 4
Sunday 5
Monday 6
Tuesday 7
Wednesday 8 4 Finding an employer 4
Thursday 9 3 Finding an employer 3
Friday 10 6 Finding an employer. Contacting trye 6
Saturday 11
Sunday 12
Monday 13 5 Working in Overleaf and Google Slides 3 2
Tuesday 14
Wednesday 15 7 Preparing a presentation template with Andreas. 5 1 1
Thursday 16 6 Finding a process model. 4 2
Friday 17 6 Reviewing SCRUM as a process model. 6
Saturday 18 4 Watching SCRUM tutorials. 4
Sunday 19 3 Preparing SCRUM-like roles and getting inspiration from earlier bachelors projects. 3
Monday 20 Week 4 6 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 6
Tuesday 21 Week 4 6 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 6
Wednesday 22 Week 4 6 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 6
Thursday 23 Week 4 5 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 5
Friday 24 Week 4 6 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 6
Saturday 25 Week 4 6 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 6
Sunday 26 Week 4 6 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 6
Monday 27 Week 5 6 Meeting in Oslo 6
Tuesday 28 Week 5 6 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 6
Wednesday 29 Week 5 6 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 6
Thursday 30 Week 5 6 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 6
Friday 31 Week 5 6 Starting to understand Planet9 (P9), and finishing a P9 tutorial. 6
Total in january 115 12 65 3 35

TRYE APP 633

February
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Saturday 1 Week 5 Attempting to be free during the weekends.
Sunday 2 Week 5 Attempting to be free during the weekends.
Monday 3 Week 6 6 Preparing for the first presentation. 6
Tuesday 4 Week 6 Preparing for the first presentation.
Wednesday 5 Week 6 6 Preparing for the first presentation. 6
Thursday 6 Week 6 1 Preparing for the first presentation.
Friday 7 Week 6 6 Preparing for the first presentation. 6
Saturday 8 Week 6 Attempting to be free during the weekends.
Sunday 9 Week 6 Attempting to be free during the weekends.
Monday 10 Week 7 6 Polishing the presentation and some minor documentation work. 2 4
Tuesday 11 Week 7 2 Simulering og Modellering
Wednesday 12 Week 7 6 First presentation. 3 3
Thursday 13 Week 7 Simulering og Modellering
Friday 14 Week 7 3 Mix of Technical Work, Documentation. 2 4
Saturday 15 Week 7 Attempting to be free during the weekends.
Sunday 16 Week 7 Attempting to be free during the weekends.
Monday 17 Week 8 6 Developing our App in Planet9 6
Tuesday 18 Week 8 Simulering og Modellering
Wednesday 19 Week 8 6 Developing our App in Planet9 6
Thursday 20 Week 8 Simulering og Modellering
Friday 21 Week 8 6 Developing our App in Planet9 6
Saturday 22 Week 8 Attempting to be free during the weekends.
Sunday 23 Week 8 Attempting to be free during the weekends.
Monday 24 Week 9 6 Developing our App in Planet9 6
Tuesday 25 Week 9 Simulering og Modellering
Wednesday 26 Week 9 6 Developing our App in Planet9 6
Thursday 27 Week 9 Simulering og Modellering
Friday 28 Week 9 6 Developing our App in Planet9
Saturday 29 Week 9 Attempting to be free during the weekends. 6

Total in February 72 7 47 18

March
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Sunday 1 Week 9 Attempting to be free during the weekends.

TRYE APP 634

Monday 2 Week 10 6 Developing our App in Planet9 6
Tuesday 3 Week 10 Simulering og Modellering
Wednesday 4 Week 10 6 Developing our App in Planet9 6
Thursday 5 Week 10 Simulering og Modellering
Friday 6 Week 10 6 Developing our App in Planet9 6
Saturday 7 Week 10 Attempting to be free during the weekends.
Sunday 8 Week 10 Attempting to be free during the weekends.
Monday 9 Week 11 6 Developing our App in Planet9 6
Tuesday 10 Week 11 Simulering og Modellering
Wednesday 11 Week 11 6 Developing our App in Planet9 6
Thursday 12 Week 11 Simulering og Modellering
Friday 13 Week 11 6 Documentation 6
Saturday 14 Week 11 Attempting to be free during the weekends.
Sunday 15 Week 11 Attempting to be free during the weekends.
Monday 16 Week 12 6 User story Documentattion 6
Tuesday 17 Week 12 Simulering og Modellering
Wednesday 18 Week 12 6 Documentation 6
Thursday 19 Week 12 6 Documentation and presentation 3 3
Friday 20 Week 12 6 Documentation and presentation 4 2
Saturday 21 Week 12 Attempting to be free during the weekends.
Sunday 22 Week 12 Attempting to be free during the weekends.
Monday 23 Week 13 6 Working on polishing the One-time Password. 6
Tuesday 24 Week 13 6 Second presentation. 6
Wednesday 25 Week 13 6 Working on polishing the Map. 6
Thursday 26 Week 13 6 Documenting the One-time Password and Map user Stories. 6
Friday 27 Week 13 6 Filling in our Sprint reports and other documentation. 6
Saturday 28 Week 13 Attempting to be free during the weekends.
Sunday 29 Week 13 Attempting to be free during the weekends.
Monday 30 Week 14 6 Working on finding a suitable date-picker. 6
Tuesday 31 Week 14 6 Calculating price when using the date-picker. 6

Total in March 102 37 60 5 0

April
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Wednesday 1 Week 14 6 Finishing the technical work in P9. 6
Thursday 2 Week 14 6 Finishing the technical work in P9. 6
Friday 3 Week 14 6 Finishing the technical work in P9 with documenation. 4 2
Saturday 4 Week 14 Attempting to be free during the weekends.
Sunday 5 Week 14 Attempting to be free during the weekends.

TRYE APP 635

Monday 6 Week 15 6 Finishing the technical work in P9 with documenation. 4 2
Tuesday 7 Week 15 6 Finishing the technical work in P9 with documenation. 4 2
Wednesday 8 Week 15 6 Finishing the technical work in P9 with documenation. 4 2
Thursday 9 Week 15 6 Finishing the technical work in P9 with documenation. 4 2
Friday 10 Week 15 Easter Vacation
Saturday 11 Week 15 Easter Vacation
Sunday 12 Week 15 Easter Vacation
Monday 13 Week 16 Easter Vacation
Tuesday 14 Week 16 Easter Vacation
Wednesday 15 Week 16 Easter Vacation
Thursday 16 Week 16 Exam in Simulering and Modellering.
Friday 17 Week 16 One day break after the exam.
Saturday 18 Week 16 Attempting to be free during the weekends.
Sunday 19 Week 16 Attempting to be free during the weekends.
Monday 20 Week 17 6 Finishing User Stories And Verification documents. 6
Tuesday 21 Week 17 6 Finishing User Stories And Verification documents. 6
Wednesday 22 Week 17 6 Finishing User Stories And Verification documents. 6
Thursday 23 Week 17 6 Finishing User Stories And Verification documents. 6
Friday 24 Week 17 6 Finishing User Stories And Verification documents. 6
Saturday 25 Week 17 Attempting to be free during the weekends.
Sunday 26 Week 17 Attempting to be free during the weekends.
Monday 27 Week 18 6 Finishing User Stories And Verification documents. 6
Tuesday 28 Week 18 6 Finishing User Stories And Verification documents. 6
Wednesday 29 Week 18 6 Finishing User Stories And Verification documents. 6
Thursday 30 Week 18 6 Finishing User Stories And Verification documents. 6

Total in April 96 74 22 0 0

May
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Friday 1 Week 18 6 Finishing User Stories And Verification documents. 6
Saturday 2 Week 18 Attempting to be free during the weekends.
Sunday 3 Week 18 6 Mainly writing on the report and polishing documents. 6
Monday 4 Week 19 6 Mainly writing on the report and polishing documents. 6
Tuesday 5 Week 19 6 Mainly writing on the report and polishing documents. 6
Wednesday 6 Week 19 6 Mainly writing on the report and polishing documents. 6
Thursday 7 Week 19 6 Mainly writing on the report and polishing documents. 6
Friday 8 Week 19 6 Mainly writing on the report and polishing documents. 6
Saturday 9 Week 19 2 Minor documentation work. 2

TRYE APP 636

Sunday 10 Week 19 Attempting to be free during the weekends.
Monday 11 Week 20 6 Mainly writing on the report and polishing documents. 6
Tuesday 12 Week 20 6 Mainly writing on the report and polishing documents. 6
Wednesday 13 Week 20 6 Mainly writing on the report and polishing documents. 6
Thursday 14 Week 20 6 Mainly writing on the report and polishing documents. 6
Friday 15 Week 20 6 Mainly writing on the report and polishing documents. 6
Saturday 16 Week 20 2 Reviewing the documentation to ensure everything is as it should. 2
Sunday 17 Week 20 17th of May
Monday 18 Week 21 6 Writing on the report. 6
Tuesday 19 Week 21 6 Going through Meeting Agenda's and Meeting Report's to get rid of typos. Writing on the report. 6
Wednesday 20 Week 21 6 Getting close to finishing the report. 6
Thursday 21 Week 21 2 Having a short day to try and get some clarity before doing the final revision of the report. 2
Friday 22 Week 21 8 Finishing the report. 8
Saturday 23 Week 21 8 Finishing the report. 8
Sunday 24 Week 21 10 Finishing the report. 10
Monday 25 Week 21 DEADLINE FOR DELIVERING THE BACHELOR THESIS
Tuesday 26
Wednesday 27
Thursday 28
Friday 29
Saturday 30
Sunday 31

Total in May 122 122 0 0 0
Total for the entire project 507 252 194 26 35

TRYE APP 637

Eebbaa TRYE App
January
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Wednesday 1 0
Thursday 2 0
Friday 3 0
Saturday 4 0
Sunday 5 0
Monday 6 0
Tuesday 7 0
Wednesday 8 4 Finding company for our project 4
Thursday 9 5 Finding company for our project 5
Friday 10 4 Finding company for our project 4
Saturday 11 0
Sunday 12 0
Monday 13 6 learn on project model from tutorials 6
Tuesday 14
Wednesday 15 6 learn on project model from tutorials 6
Thursday 16
Friday 17 6 learn on project model from tutorials 6
Saturday 18 0
Sunday 19 4 research on requirements based on system engineering. 4
Monday 20 Week 4 6 Research , requirement analysis and discussion with members. 6
Tuesday 21 Week 4 0
Wednesday 22 Week 4 6 Ordered GPS module on ebay, research, Making user histyory from the user requirement. 2 4
Thursday 23 Week 4 0
Friday 24 Week 4 7 system, sub sytem decomposition, requirement analysis for mobile app, 3 2 2
Saturday 25 Week 4 3 research on how the GPS module works 3
Sunday 26 Week 4 0
Monday 27 Week 5 6 Neptune9 meeting with CEO and meeting with Company concerning requirements 6
Tuesday 28 Week 5 0
Wednesday 29 Week 5 7 catagorizing requirements and giving ID , Neptuno tutorial, presentation 4 2 1
Thursday 30 Week 5 0
Friday 31 Week 5 7 Meeting with Jose and working on GPS tracking and arduino 7

Total in january 77 9 28 3 37

TRYE APP 638

February
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Saturday 1 Week 5
Sunday 2 Week 5
Monday 3 Week 6 6 requirement list, stakeholder and power point for presentation. 2 4
Tuesday 4 Week 6
Wednesday 5 Week 6 6 Presentation 1 5
Thursday 6 Week 6
Friday 7 Week 6 6 Meeting with Jose, Working with presentation. 1 5
Saturday 8 Week 6 4 preparing for presentation 4
Sunday 9 Week 6
Monday 10 Week 7 6 preparing for 1 presentation 6
Tuesday 11 Week 7 2 preparing for 1 presentation 2
Wednesday 12 Week 7 6 presentation day 6
Thursday 13 Week 7
Friday 14 Week 7 6 started working on the Bike 3 3
Saturday 15 Week 7
Sunday 16 Week 7 4 made some research on hardware of the bike and made hardware documentation 1 3
Monday 17 Week8 6 working on the subsystem of the bike by disassembling the bike to know more about the motor. 6
Tuesday 18 Week8
Wednesday 19 Week8 6 Identifying the connection between motor to bike computer and checked for bluetooth of the bike. 6
Thursday 20 Week8
Friday 21 Week8 6 Working on finding the speed of the bike by using the magnet sensor and arduino code. 6
Saturday 22 Week 8 4 Updating the requirement document based on the feedback from the presentation 1. 4
Sunday 23 Week 8 2 Updating the requirement document based on the feedback from the presentation 1. 2
Monday 24 Week9 6 fixing bugs on the arduino code for speed reading and reading the battery level and documentation. 6
Tuesday 25 Week9
Wednesday 26 Week 9 6 Working on GPS subsystems, some research and done some practical work on GPS. 2 4
Thursday 27 Week 9
Friday 28 Week 9 6 Working on subsystems of power part and working on relay to understand how it works. 6
Saturday 29 Week9

Total in February 88 22 34 32 7

March
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Sunday 1 Week9
Monday 2 Week 10 6 Documenting user stories USN-19, 6
Tuesday 3 Week 10

TRYE APP 639

Wednesday 4 Week 10 6 Documenting user stories USN-23, USN-24, USN-25 with other group members 6
Thursday 5 Week 10
Friday 6 Week 10 6 Documenting user stories USN-23, USN-24, USN-25 with other group members 6
Saturday 7 Week 10
Sunday 8 Week 10
Monday 9 Week 11 6 documentation on component selection for the hardware part. 6
Tuesday 10 Week 11
Wednesday 11 Week 11 6 Documentation user histories and preparing documents for presentation 4 2
Thursday 12 Week 11
Friday 13 Week 11 6 presentation and documentation for presentation 3 3
Saturday 14 Week 11
Sunday 15 Week 11
Monday 16 Week 12 6 working on presentation and documentation for the website 6
Tuesday 17 Week 12
Wednesday 18 Week 12 6 working on presentation and documentation for the website 4 2
Thursday 19 Week 12
Friday 20 Week 12 6 working on presentation and documentation for the website 3 3
Saturday 21 Week 12
Sunday 22 Week 12
Monday 23 Week 13 6 working on presentation 6
Tuesday 24 Week 13 6 presentation
Wednesday 25 Week 13 6 working on USN-38, to connect the device with network. 6
Thursday 26 Week 13 6 working on USN-38, to connect the device with network. 6
Friday 27 Week 13 6 working on USN-38, to connect the device with network. 6
Saturday 28 Week 13
Sunday 29 Week 13
Monday 30 Week 14 6 working on USN-38, to connect the device with Azure webserver 6
Tuesday 31 Week 14 6 working on USN-38, to connect the device with Azure webserver 6

Total in March 96 44 30 16 0

April
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Wednesday 1 Week 14 6 Working on USN-38, to connect the device with Azure webserver 6
Thursday 2 Week 14 6 Working on USN-38 , to connect the device with Azure webserver 3 3
Friday 3 Week 14 6 Working on USN-38, to connect the device with Azure webserver 6
Saturday 4 Week 14
Sunday 5 Week 14 4 working with GCP google cloud platform, since we are changing from azure webserver to it. 4
Monday 6 Week 15 6 working with GCP google cloud platform to connect my IoT device 3 3
Tuesday 7 Week 15 6 Working on understanding MQTT protocol 3 3

TRYE APP 640

Wednesday 8 Week 15 6 connecting the device with GCP and send some data. 6
Thursday 9 Week 15 6 working on Google cloud Pub/sub functionality. 6
Friday 10 Week 15 Exam preparation
Saturday 11 Week 15 Exam preparation
Sunday 12 Week 15 Exam preparation
Monday 13 Week 16 Exam preparation
Tuesday 14 Week 16 Exam fn Digital Systems.
Wednesday 15 Week 16 break after exam
Thursday 16 Week 16 6 Working on Documentation for user story 38 6
Friday 17 Week 16 6 Working on USN-44, sending data to the server. 6
Saturday 18 Week 16 4 Working on USN-44, sending data to the server. 4
Sunday 19 Week 16
Monday 20 Week 17 6 Working on USN-44, sending data to the server. 6
Tuesday 21 Week 17 6 Working on USN-44, sending data to the server. 6
Wednesday 22 Week 17 6 Working on USN-44, sending data to the server. 6
Thursday 23 Week 17 6 Working on USN-44, sending data to the server. 6
Friday 24 Week 17 6 Working on USN-44, sending data to the server. 6
Saturday 25 Week 17
Sunday 26 Week 17
Monday 27 Week 18 6 working on USN-37, encryption methode 6
Tuesday 28 Week 18 6 working on USN-37, encryption methode 6
Wednesday 29 Week 18 6 working on USN-37, encryption methode 6
Thursday 30 Week 18 6 Documenting USN-37,encryption methode 6

Total in April 116 21 95 0 0

May
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Friday 1 Week 18 6 working on USN-58
Saturday 2 Week 18
Sunday 3 Week 18
Monday 4 Week 19 6 Working on USN-29 and USN-58 6
Tuesday 5 Week 19 6 Working on USN-29 and USN-58 6
Wednesday 6 Week 19 6 Working on USN-29 and verification documentation 6
Thursday 7 Week 19 6 Documenting user stories and verification document 6
Friday 8 Week 19 6 Documenting user stories and verification document 6
Saturday 9 Week 19 6 Documenting user stories and verification document 6
Sunday 10 Week 19 6 Documenting user stories and verification document 6
Monday 11 Week 20 6 Documenting User stories 6
Tuesday 12 Week 20 7 Working on the finalreport 7

TRYE APP 641

Wednesday 13 Week 20 8 Working on the finalreport 8
Thursday 14 Week 20 8 Working on the finalreport 8
Friday 15 Week 20 8 Working on the finalreport 8
Saturday 16 Week 20
Sunday 17 Week 20 17th MAY free day
Monday 18 Week 21 7 Working on the finalreport 7
Tuesday 19 Week 21 7 Working on the finalreport 7
Wednesday 20 Week 21 7 Working on the finalreport 7
Thursday 21 Week 21 6 Working on the finalreport 6
Friday 22 Week 21 6 Working on the finalreport 12
Saturday 23 Week 21 12 Working on the finalreport 12
Sunday 24 Week 21 12 Working on the finalreport
Monday 25 Week 22 DEADLINE FOR DELIVERING THE BACHELOR THESIS
Tuesday 26
Wednesday 27
Thursday 28
Friday 29
Saturday 30
Sunday 31

Total in May 142 118 12 0 0
Total for the entire project 519 214 199 51 44

TRYE APP 642

Dawid TRYE App
January
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Wednesday 1 0
Thursday 2 0
Friday 3 0
Saturday 4 0
Sunday 5 0
Monday 6 4 Looking for a company that provide us project 4
Tuesday 7 5 Looking for a company that provide us project 5
Wednesday 8 4 Looking for a company that provide us project 4
Thursday 9 0
Friday 10 0
Saturday 11 0
Sunday 12 0
Monday 13 6 learn on project model from tutorials 6
Tuesday 14 0
Wednesday 15 6 learn on project model from tutorials 6
Thursday 16 0
Friday 17 6 learn on project model from tutorials 6
Saturday 18 0
Sunday 19 0
Monday 20 Week 4 0
Tuesday 21 Week 4 0
Wednesday 22 Week 4 6 Working on Identify both project and technical risks and discussing about them with group members 6

Thursday 23 Week 4 6 Documenting risk discussed by group 6
Friday 24 Week 4 6 Documenting SWOT analysis description, work on SWOT analysis 4 2

Saturday 25 Week 4 0
Sunday 26 Week 4 0
Monday 27 Week 5 6 Meeting with CEO about Neptun planet 9 (SPF) on use & regulation, meeting with TRYE AS 6
Tuesday 28 Week 5 6 Documenting SWOT analysis description, work on SWOT analysis 2 4
Wednesday 29 Week 5 7 Researching and work on hardware part, neptun planet 9 tutorial 7
Thursday 30 Week 5 5 Assessement and evaluation on risk 5

Friday 31 Week5 6 Documenting risk project and SWOT analysis discused with Group members 5 1 2
Total in january 79 28 14 39 0

TRYE APP 643

February
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Saturday 1 Week 5 0
Sunday 2 Week 5 0
Monday 3 Week 6 6 Working on power point preparartion 4 2
Tuesday 4 Week 6 0
Wednesday 5 Week 6 6 Working on presentation 6
Thursday 6 Week 6 0
Friday 7 Week 6 6 Meeting with Jose on presentation and other work on documentation 6
Saturday 8 Week 6 0
Sunday 9 Week 6 0
Monday 10 Week 7 6 Preparation for first presentation 4 2
Tuesday 11 Week 7 0
Wednesday 12 Week 7 6 Documenting th 1st part of risk 3 3
Thursday 13 Week 7 6 1st presentation day 2 3 1
Friday 14 Week 7 6 Understanding the system of bike we are planning to work with 4 2

Saturday 15 Week 7 0

Sunday 16 Week 7 0
Monday 17 Week 8 6 Searching the bike system and visualize how to deal with ours
Tuesday 18 Week 8 0
Wednesday 19 Week 8 6 Learned how the wires work on bike and how we can tap in to them, programed arduino
Thursday 20 Week 8 6 Googling to understand how to code for speed
Friday 21 Week 8 6 Googling to understand how to code for speed 3 3
Saturday 22 Week 8 0
Sunday 23 Week 8 0
Monday 24 Week 9 6 Looking at bluetooth of bike system to visualize how it woks 3 3
Tuesday 25 Week 9 0
Wednesday 26 Week 9 6 Work on GPS and look more battery level 4 2
Thursday 27 Week 9 4 Searching more on GPS system how it works
Friday 28 Week 9 6 Searching more on GPS system how it works 3 3
Saturday 29 Week 9 0

Total in February 88 42 23 1 7

March
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Sunday 1 Week 9 0
Monday 2 Week 10 6 Worked on connection Bluetooth to the bike 6
Tuesday 3 Week 10 0

TRYE APP 644

Wednesday 4 Week 10 6 Working on diod how it works in circuit 1 5
Thursday 5 Week 10 0
Friday 6 Week 10 6 Documenting the bluetooth with group and other documents 5 1

Saturday 7 Week 10 0

Sunday 8 Week 10 0
Monday 9 Week 11 6 Documentation and presentation 3 3

Tuesday 10 Week 11 0
Wednesday 11 Week 11 6 Worked on documenting risks 4 2
Thursday 12 Week 11 0
Friday 13 Week 11 6 Work on documenting risks 5 1
Saturday 14 Week 11 0
Sunday 15 Week 11 0
Monday 16 Week 12 6 Planed what we should present 4 2
Tuesday 17 Week 12 0
Wednesday 18 Week 12 6 Preparation for 2nd presentaion 3 3
Thursday 19 Week 12 6 Works on analyzing risk
Friday 20 Week 12 6 Works on analyzing risk 2 4
Saturday 21 Week 12 0

Sunday 22 Week 12 0
Monday 23 Week 13 6 Working on mitigation action for risk 3 3
Tuesday 24 Week 13 6 2nd presentation day 4
Wednesday 25 Week 13 6 Fixing all risk tables 2 4
Thursday 26 Week 13 0
Friday 27 Week 13 6 Documenting risks 5 1
Saturday 28 Week 13 0
Sunday 29 Week 13 0
Monday 30 Week 14 6 Cheking and arranging all documents of risk 6
Tuesday 31 Week 14 6 Cheking and arranging all documents of risk

Total in March 96 43 39 0 0

April
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Wednesday 1 Week 14 6 Searching and learning on the gps tracking system
Thursday 2 Week 14 6 Searching on different gps modules
Friday 3 Week 14 6 Documenting gps module that fits for our system 2 4
Saturday 4 Week 14 6 Interfacing arduino with gps module 1 5
Sunday 5 Week 14 0

TRYE APP 645

Monday 6 Week 15 6 Coding gps coordinate on the 1st part 6
Tuesday 7 Week 15 6 Fixing gps code errors and other document 6
Wednesday 8 Week 15 6 Interface arduino with gps modle 2 4
Thursday 9 Week 15 2 Interface arduino with gps modle 4 2
Friday 10 Week 15 Preparation to exam
Saturday 11 Week 15 Preparation to exam
Sunday 12 Week 15 Preparation to exam
Monday 13 Week 16 Preparation to exam
Tuesday 14 Week 16 Exam day
Wednesday 15 Week 16 6 Working on gps class library 2 4
Thursday 16 Week 16 6 Working on gps class library 2 4
Friday 17 Week 16 2 Coding gps functions 6
Saturday 18 Week 16 0
Sunday 19 Week 16 0
Monday 20 Week 17 6 Coding on gps functions 6
Tuesday 21 Week 17 6 Working on class library 2 4
Wednesday 22 Week 17 6 Working on USN-59 and coding 2 4
Thursday 23 Week 17 6 Working on USN-59 and coding 2 4
Friday 24 Week 17 6 Working on USN-26 3
Saturday 25 Week 17 0
Sunday 26 Week 17 0
Monday 27 Week 18 6 Working on USN-1 and USN-9 3 3
Tuesday 28 Week 18 6 Working on USN-60 and USN-61 3 3
Wednesday 29 Week 18 6 Working on USN-26 working on finalizing USN-26 4 2
Thursday 30 Week 18 6 Working on USN-59 and other documents 4 2

Total in April 112 36 69 0 0

May
Weekday Day Sprint Num Hours Comment Documentation Technical work Presentation Administrative Work
Friday 1 Week 18 6 Working on verification for user stories 6
Saturday 2 Week 18 0
Sunday 3 Week 18 0
Monday 4 Week 19 6 Working on verification for user stories 4 2
Tuesday 5 Week 19 7 Correcting some documents 4 3
Wednesday 6 Week 19 6 Working on verification for user stories 4 2
Thursday 7 Week 19 7 Working on verification for user stories 4 3
Friday 8 Week 19 7 Report writing and polishing the document 4 3
Saturday 9 Week 19 6 Report writing and polishing the document 6
Sunday 10 Week 19 6 Report writing and polishing the document 6

TRYE APP 646

Monday 11 Week 20 6 Report writing and polishing the document 6

Tuesday 12 Week 20 6 Report writing and polishing for the final document 7

Wednesday 13 Week 20 7 Report writing and polishing for the final document 7

Thursday 14 Week 20 7 Report writing and polishing for the final document 6

Friday 15 Week 20 6 Report writing and polishing for the final document
Saturday 16 Week 20 0

Sunday 17 Week 20 17th May National Day

Monday 18 Week 21 7 Report writing and polishing for the final document 7

Tuesday 19 Week 21 7 Report writing and polishing for the final document 7
Wednesday 20 Week 21 7 Report writing and polishing for the final document 7
Thursday 21 Week 21 6 Working on the finalreport 6
Friday 22 Week 21 7 Working on the finalreport 7
Saturday 23 Week 21 12 Working on the finalreport 12
Sunday 24 Week 21 12 Working on the finalreport 12

Monday 25
Deadline for delivering the project thesis

Tuesday 26
Wednesday 27
Thursday 28
Friday 29
Saturday 30
Sunday 31

Total in May 141 116 19 0 0
Total for the entire project 516 265 164 40 7

TRYE APP 647

A.15 Project assignment and terms

A.15.1 Assignment from TRYE

OPPGAVE FOR TRYE AS

Oppgaven er for bachelorstudenter ved Universitetet i Sørøst-Norge

Det skal utvikles et digitalt utleiesystem via en app som er tilpasset utleie av terrengsykler.
Terrengsyklene står inne i et lokale ved en fjellseter og er tilkoblet strøm og internett.

Prosjektet inneholder også hardware da det må integreres in IoT enhet i sykkelen som
kommuniserer med applikasjonen.

Funksjonene til applikasjonen er som følgene:

- Låse opp sykkelen man har bestilt, fysisk lås - Appen har et booking og betalingssystem.
- Skru på strømmen til motoren. Appen overstyrer motoren slik at man må betale for å

få startet den elektriske motoren på sykkelen - Appen skal også inneholde et
rapporteringssystem. Slik at brukere av sykkel kan

rapportere mangelfull rengjøring, defekter/skader og klargjøring av sykkelen til forrige
bruker. Dersom syklene ikke blir tilstrekkelig rengjort vil brukeren måtte betale
rengjøringsgebyr og / eller gebyr for skade. - Appen inneholder også turforslag man kan
følge med gps i området syklene kan

hentes ut - GPS tracking på
sykkelen

Studentene vil få utlevert en elektrisk stisykkel fra Rossignol som skal brukes til prosjektet.
Forventningen er at integrasjon av hardware og utvikling av software/app er på ferdigstilt
minimum en måned før bacheloroppgaven skal leveres inn.

TRYE APP 648

A.15.2 Rental terms from TRYE

TRYE AS rental terms

1.0 I understand that trail biking can be dangerous and lead to injuries. I am
using the bike provided by TRYE on my own responsibility during the rental
period.

2.0 TRYE will do a pre-check on the equipment before handing it over to
client. However the equipment can fail during rental period. This will not be
under TRYE's responsibility if a failure on equipment leads to accidents and/or
injuries to client or any third party.

3.0 I am responsible for wearing the protective equipment according to the
activity I am performing with the products rented from TRYE.

4.0 If I choose to not buy TRYE's insurance and damages occur to the rented
equipment, I have to cover the eventual repair cost.

5.0 All normal wear and tear is covered by TRYE. And is not defined as
damage.

6.0 If you book a bike from TRYE and decide to cancel your booking. You will
be refunded according to the system below:
6.1 21 days before the activity: Full Refund
6.2 10-20 days before the activity: 30%
6.3 2-9 days before the activity: 50%
6.4 1 day before the activity or non-appearance: 100%

TRYE APP 649

	Introduction
	State Of The Art
	Background
	Current state
	Cost and risks

	Project Overview
	Our team, employer and key persons
	Our team of computer scientists
	Our university
	Our employer

	Process Model
	Project Workflow
	User Stories
	User Stories workload explained
	Epics
	Process tools
	Roles and Responsibilities

	Project Planning
	Visual representation
	Presenting and delivering our work
	Work time

	Requirements
	Project Requirements
	Product Requirements
	Stakeholders
	Requirement Analysis

	Verification and Validation
	Validation
	Verification
	Verification Documentation

	Project Risk Management
	Project risk identification
	Probability-impact matrix
	Project risk register
	Project risks
	Technical risks

	Finance Management
	The cost of development

	Technical Work Process
	Versions in software
	Software concept
	Picking our development environment
	How does Planet9 work as a development environment?
	The SMS Service

	Web server
	Initial server setup
	AWS server setup
	Final server setup

	Alpha 1 MA
	The OTP login system
	The User database
	The Main Menu Shell
	The Map

	Alpha 2 MA
	Planning for the Alpha 2
	Redefined login system
	The Map
	The User page
	The Booking system
	The Unlocking system
	The History page
	The Help page
	PIN-code system
	MA Alpha2 Overview and Visuals

	Alpha 1 AS
	Planning for the AS
	The Unlocking system for admins
	The Booking viewing page
	The Map

	Beta 1 MA(Release postponed)
	Software system overview

	Hardware Overview
	Hardware Concept
	Hardware Alpha 1
	Identifying the Subsystems
	Component selection for Hardware system
	Existing System and its Hardware parts

	Hardware Alpha 2
	Read Data from Cable on the Bike
	Bluetooth communication
	Powering our System
	Retrieving speed from the existing system
	Retrieving Battery Level from the Excising System

	Hardware Beta 1
	Retrieving GPS Coordinates
	Controlling the motor with Arduino
	Modelling the data
	Connecting the Arduino to the internet
	Sending data from the device to the server
	Managing security during data exchange
	Controlling the device from GCP
	Combining all the Arduino Code
	Choosing IoT servers
	Setting up IoT Server
	Simulating MQTTdata with python
	Sending IoT data to database

	Summary of the Hardware

	Conclusion of our work
	Summary
	Reflection
	Future Work

	6 2mm References
	Appendix
	Sprint reports
	Sprint 1
	Sprint 2
	Sprint 3
	Sprint 4
	Sprint 5
	Sprint 6
	Sprint 7
	Sprint 8
	Sprint 9
	Sprint 10
	Sprint 11
	Sprint 12
	Sprint 13
	Sprint 14

	Version reports
	User Alpha Version 1
	User Alpha Version 2
	Admin Alpha Version 1

	Epic reports
	MA epic
	AS epic
	WS epic
	CS epic
	PS epic
	TS epic

	Software User Stories
	USN-10 Researching existing scooter apps
	USN-11 Creating UML diagrams to get a better overview of the application
	USN-12 Choosing a suitable development platform
	USN-15 Setting up our Neptune work space (Planet9)
	USN-17 Building databases in Planet9
	USN-18 Creating a login system for our application
	USN-21 Finalizing our initial databases
	USN-27 Setting up an interactive map in the application
	USN-28 Implementing a payment solution
	USN-30 Creating a user friendly main menu navigation bar
	USN-33 Changing the registering system to the Alpha2 version
	USN-34 Setting up a one-time password feature
	USN-39 Make users be able to view and edit their user information
	USN-40 Finding a map made for mobile
	USN-41 Finding a suitable date picker for an easy-to-use rent interface
	USN-42 Initializing map when loading the main menu
	USN-46 Displaying bikes in the bookings tab so they can be selected
	USN-48 Displaying the booking history for the user
	USN-49 Calculate the availability for users
	USN-50 Fixing a PIN-code system
	USN-53 Make a test payment with Stripe
	USN-54 Checking if bikes are available for unlocking
	USN-55 Making user be able to delete their account
	USN-57 Setting up a simple Admin app

	Hardware User Stories
	USN-19 - Getting an overview of our electric mountainbike, includes the power system and hardware
	USN-20 - Locating read data off of the signal cable to retrieve speed and power data
	USN-22 - Researching ways of powering our microcontoller
	USN-23 - Finding out how to retrieve the speed of the bike
	USN-24 - Finding out how to retrieve the voltage level of the battery
	USN-25 - Finding the limitations associated with Bluetooth communication
	USN-26 - Finding out how to retrieve the GPS coordinates
	USN-29 Finding a way to stop the motor using a microcontroller
	USN-35 Model data sent from Arduino to the web server
	USN-36 Finding a web server for communication
	USN-37 Encryption method on our IoT device
	USN-38 Connecting our IoT Module to a IoT Platform
	USN-44 Sending bike data to the server
	USN-45 Combining all our hardware code
	USN-51 Sending data to database
	USN-56 Simulate MQTT data to limit data usage
	USN-58 Finding a way to stop the motor using a microcontroller
	USN-59 Changing the GPS coordinate code into a class library

	Non technical User Stories
	USN-1 I as the risk manager need to perform a project SWOT analysis to help analyze our group
	USN-9 Analyze the risk for our project for a better understanding of how to reduce the risk
	USN-43 Cleaning up differences in the documentation on the website
	USN-47 Spellchecking our entire documentation stack with Grammarly
	USN-60 Need to select the proper risk identification technique to our project
	USN-61 We need to list all risks in the risk register for better management of the project

	Verification documents
	Verification spreadsheet
	DC-01 Verifying USN-43
	DC-02 Verifying USN-47
	DV-01 Verifying USN-27
	DV-02 Verifying USN-36
	IV-02 Verifying USN-12
	IV-03 Verifying USN-10
	IV-04 Verifying USN-11
	IV-05 Verifying USN-18
	IV-06 Verifying USN-21
	IV-07 Verifying USN-28
	IV-08 Verifying USN-30
	IV-09 Verifying USN-33
	IV-10 Verifying USN-34
	IV-11 Verifying USN-39
	IV-12 Verifying USN-40
	IV-13 Verifying USN-41
	IV-14 Verifying USN-42
	IV-15 Verifying USN-46
	IV-16 Verifying USN-48
	IV-17 Verifying USN-49
	IV-18 Verifying USN-50
	IV-19 Verifying USN-53
	IV-20 Verifying USN-54
	IV-21 Verifying USN-55
	IV-22 Verifying USN-57
	TV-04 Verifying USN-15
	TV-05 Verifying USN-17
	TV-06 Verifying USN-38
	TV-07 Verifying USN-44
	TV-08 Verifying USN-35
	TV-09 Verifying USN-51
	TV-10 Verifying USN-26
	TV-11 Verifying USN-59
	TV-12 Verifying USN-58

	Requirements
	Full list of requirements

	Risk tables
	Table 1 Risk register
	Table 2 Project risk
	Table 3 Technical risk
	Description of SWOT Analysis for the project

	Hardware Images
	hardware development process
	hardware development process

	Hardware Code
	Pseudo code Battery Reader
	Pseudo code Speed Reader
	Battery Reader Arduino Code
	Speed Reader Arduino Code
	GPS Reader Arduino Code
	Arduino to GCP communication
	Motor control with GCP communication
	Pub/Sub to Firestore database

	Agendas
	24th of January Agenda for Jose
	27th of January Agenda for Simon
	7th of February Agenda for Jose
	14th of February Agenda for Jose
	21th of February Agenda for Jose
	28th of February Agenda for Jose
	13th of March Agenda for Jose
	18th of March Agenda for Jose
	26th of March Agenda for Jose
	 3rd of April Agenda for Jose
	 24th of April Agenda for Jose
	 1st of May Agenda for Jose
	7th of May Agenda for Jose

	Meeting notes
	6th of January Group Meeting
	7th of January Group Meeting
	8th of January Group Meeting
	9th of January Group Meeting
	10th of January Group Meeting
	13th of January Group Meeting
	24th of January Meeting with Jose
	27th of January Meeting with TRYE
	7th of February Meeting with advisor
	 7th of February Meeting with Hans Kristian
	 7th of February Meeting with Jose
	 14th of February Meeting with Jose
	 28th of February Meeting with Jose
	 13th of March Meeting with Jose
	 20th of March Meeting with Jose
	 23th of March Meeting with Simon
	 27th of March Meeting with Jose
	 4th of April Meeting with Jose
	 17th of April Meeting with Jose
	 24th of April Meeting with Jose
	 1st of May Meeting with Jose
	 5th of May Meeting with TRYE
	 8th of May Meeting with Jose
	 15th of May Meeting with Jose

	Work hours
	Work hours Joachim
	Work hours Andreas
	Work hours Tobias
	Work hours Eebbaa
	Work hours Dawid

	Project assignment and terms
	Assignment from TRYE
	Rental terms from TRYE

