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Preface

This thesis dissertation is delivered to fulfil the graduation requirements of the degree
philosophiae doctor (PhD) at the Faculty of Technology, Natural Sciences and Maritime
Studies at the University of South-Eastern Norway (USN). The thesis work is part of a
project initiated by USN, which received financial support from Norwegian Research
Fund (NRF) and Equinor to conduct the research and to build and develop a lab facility
to circulate model drilling fluid in an open channel with a Venturi constriction. The
project is named Semi-Kidd (Sensors and models for improved kick/loss detection in

drilling) and involves several faculty members as well as MSc and four Ph.D. students.

This doctoral thesis consists of a collection of scientific papers written during the PhD-
work at USN. Therefore, this thesis is presented in two parts. Part | will state the research
problem followed by the literature review. Then the scientific papers are presented and
put in context to solve the research problem. In Part Il the mentioned papers are
presented in full text to support Part |. Paper 6 has since thesis evaluation been rejected
from the IOP MST journal. Due to the timing of the feedback, the paper is presented

herein as evaluated, but will be resubmitted to another journal.

| certify to the best of my knowledge that the work presented herein is my own original
work, other contributions are acknowledged and that the use of the intellectual content
of other researchers or contributors are made in good confidence according to scientific
standards and norms regarding citation. The content of this thesis has not been

submitted for any other degree or purpose.

| am grateful to have had this opportunity to expand my scientific knowledge field. The
combination of this scientific work, with my previous four years’ experience as a drilling
engineer and offshore drilling measurements engineer has been especially rewarding. |
have learnt a lot, and | am glad to add my small brick to the tower that is science. The

best | can hope for is that it will prove a stable support to many more bricks yet.

Porsgrunn, April 2020

Morten Hansen Jondahl
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Abstract

Pressure control during well drilling operations includes management of the well
pressure above the formation pore pressure and below the formation fracture pressure.
If these boundaries are not kept, an influx of formation fluids or an uncontrolled loss of
drilling fluid may occur. These incidents present serious risk to humans, assets and the
environment. To avoid serious risks and accidents, detection of the influx (kick) and loss
incidents is of vital importance in any drilling operation. The availability of sensor
technologies to discover kick/loss incidents vary greatly for different drilling operations.
Common for all is that dedicated measurements of the non-Newtonian drilling fluid can
help the early identification of the possible occurrence of measurements of such

incidents.

The inflow of drilling fluid is in most drilling operations well measured, either by pump
output or flow metering on the flowline, such as Coriolis meters. The return flow is
comparatively harsher for flow meters, as the return fluid flow contains formation
cuttings and formation fluids. The common industry practice is applying a paddle flow
meter, which gives a trend-based measurement that by human interpretation alongside
other measurements may indicate anomalies in the return fluid flow. Secondly, a fluid
level in the drilling fluid tank may be measured, as a level change can indicate a kick/loss
incident. The response of this method is slow and inaccurate. Development of cost
effective, fit-for purpose and in-line sensor technology for the return fluid flow will
increase the capability for automation and reduce the time delay to detect kick/loss

incidents.

This research work studies the applicability of a modified open channel for fluid return
with a Venturi constriction. The subsequent level changes in the open channel may be
measured and used to model the fluid flow rate. During this work, it was found that
precise knowledge of the fluid properties is a requirement to some models, and
beneficial to others. It is also vital in determining the volume of the kick/loss incident,

and the subsequent correct procedures in handling the situation safely and effectively.

Vil
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In this research ultrasonic characterizations of drilling fluids serve as inputs to models
estimating the fluid rheological properties during drilling operations. The common
industry practice of intermittent, offline and manual drilling fluid characterization is not
satisfactory for automated drilling operations and continuous measurement systems,

and improvements are needed.

Non-Newtonian drilling fluid flow is difficult to model precisely with mechanistic models.
Data driven models are selected as suitable methods to handle the non-linear
behaviours of these fluids when estimating fluid flow based on the level measurements.
The models are trained and verified by using experimental data from a test flow loop.
The data driven models are compared to other mechanistic models developed by

colleagues that were verified using the same experimental setup.

Ultrasonic wave propagation is affected by the acoustic properties of the medium it
propagates. By analysing this propagation in drilling fluids, the effect of the fluid
rheological properties on the ultrasonic waves is studied in the present study. The work
focuses on density and viscosity, as these are some of the drilling fluid rheological
properties essential in the pressure control during the drilling processes. The
relationship between ultrasonic properties and rheological properties are not fully
described in literature, and data-driven models were identified as potential solutions.
Three drilling fluid systems are diluted to yield in total 33 fluid samples that are
characterized in ultrasonic transmission experiments, and their rheology is analysed.
Data driven models are developed and verified using these data, to estimate the

rheological properties based on the ultrasonic measurements.

The data driven models to estimate the fluid flow rate performed to expectation in the
experimental setup. Several types of models were developed, but all had accuracies
better than the industry standard set by NORSOK, at 5 % accuracy of measured value.
Some of the mechanistic models outperformed the data-driven models, and the thesis

work discusses the results and the strength and limitation of the models.

Vil



Hansen Jondahl: Data Driven Models for Estimation of Drilling Fluid Rheological

Properties and Flow Rate

Data driven models proved to be an effective approach in estimation of fluid rheological
properties. The two selected properties were estimated within the NORSOK suggested
accuracy of 2%. The measurement principle with ultrasonic measurements and models
has potential to be developed to apply to flowing systems and improve fluid flow models

and improve availability of continuous drilling fluid properties measurements.
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1 Introduction

There is a great focus on increased safety, efficiency and process control in the oil & gas
drilling industry. The drilling process represents a substantial part of the financial costs
to the development of an oil field, and poses great risk both financially, and to human
life and the environment. Increasing the grade of automation in the drilling process has
been identified by the Norwegian Research Council [1] as an area to reduce these risks
and increase the safety. The 0G21, the Norwegian Government’s committee for
securing efficient and environmentally friendly oil & gas value creation through
education, research and development and commercialization, has also emphasized this
focus on drilling process automation [2]. They also identify non-productive time (NPT)
as a major cost in drilling operations. Decreasing this by early detection of kick/loss

situations is the main knowledge gap to be addressed by the Semi-kidd project.

The Semi-Kidd (Sensors and models for improved kick and loss detection in drilling)
research project has defined the research objectives of this thesis work. These are
explained in chapter 1.3. The background and motivation are defined by an overview of
the process of drilling, and the special challenge that non-Newtonian drilling fluids
presents, when fluid flow and rheology properties are considered. The following
subchapter will set the stage for the need of improved sensor and model technologies,
and the challenges to overcome to achieve this. Then the objectives of the thesis work

are described, and the thesis is outlined.

1.1 The drilling process

In the drilling operation of an oil & gas well there are many complex processes, and
important considerations for operational purposes. Some of the considerations are for
making the well a good producer, or making sure the target will be hit, i.e. the part of
the reservoir where the well is to be placed. In addition, other situations during planning
or execution phase may shift the focus of the drilling operation. However, the focus
during drilling is well control. Well control is controlling the pressure in the well so that

1



Hansen Jondahl: Data Driven Models for Estimation of Drilling Fluid Rheological

Properties and Flow Rate

fluids from formation does not enter the wellbore uncontrolled. This means the
formation pressure, or pore pressure (Pp), determines the lower limit for the wellbore
pressure (Pp). At the same time, the formation integrity, the strength of the rock,
determines the upper limit, referred to as fracture pressure (Pj). If Py is greater than Py,
the rock formation might fracture, or old fractures might be reopened. This will cause
the drilling fluid to flow into the formation. If this loss of drilling fluid is large enough,
the hydrostatic pressure in the well will decrease, and in worst case, it can fall below the
lower limit, causing the formation fluid to flow into the well. These two events are

known as kick and loss.

To ensure well control, monitoring and estimating the pressure in the well is an
integrated part of the drilling operation. Controlling the pressure in the well is during
operation generally done by controlling the pump rate of the drilling fluid pumps. The
added circulation pressure on top of the hydrostatic pressure will generally give the
flexibility for controlling the bottom hole pressure (BHP) in most cases. Otherwise, the
drilling fluid density can be adjusted, but this results in a longer response time. The
composition of the drilling fluid needs to be adjusted, before it is circulated into the well
to adjust the pressure. The former action, controlling the pumps, is represented by a
quick and fast responding time to adjust the BHP. The challenge is to know when to
adjust the BHP and by how much. This leads to the motivation for taking on this project.
To gain this knowledge good reliable measurements of the drilling fluid system are
needed. There is a need to know when a kick/loss is arising, and preferably quantify the

incident, to be able to adjust the pressure in a quick, safe and efficient manner.

One of the more important measurements providing feedback to the well control
system is the flow measurement of drilling fluid circulating in the drilling loop. Figure 1
displays an overview of the drilling system and the drilling fluid flow loop. The flow path
of the drilling fluid can generally be divided into two parts, the high-pressure side, and
the low-pressure side. The high-pressure side is where the drilling fluid is being pumped

from the storage tanks on the rig, pits, through the pumps and through hoses and pipes

N
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into the drill string. Through the drill string and down into the well and through the drill
bit. When the drilling fluid exits the bit, a lot of the high pressure supplied by the pumps
has been lost to friction in the piping system, the drill string, and especially in the drill
bit. Now the drilling fluid will return to the surface between the drill string and the
borehole wall or casing, this space is called the annulus. When the drilling fluid returns
to surface in conventional drilling, the fluid flows through an open channel, with no
additional pressure applied to the drilling fluid column of the annulus. The drilling fluid
picks up the cuttings of the rock generated by the drill bit operation. The rock cuttings
are carried by the fluid flow on its way up the annulus. The temperature of the drilling
fluid has increased throughout the system and reaches a typical average temperature
at surface at about 60°C. Furthermore, it may have had minor influxes of formation
fluids or gases, i.e. oil, gas or water or a mix of these. These effects make the drilling
fluid return flow to be a multiphase flow of abrasive nature. Thus, it is challenging to
measure the return flow correctly, and due to the abrasive nature of the drilling fluid,
these measurements should be done by non-intrusive methods. Measuring both the
drilling fluid flow in, and out of the well will yield better information about the pressures
in the well. This is because any loss or kick happening in the well will affect the drilling
fluid flow out of the well. If these two measurements can qualitatively be compared, we
will have a powerful tool in detecting kick\loss situations. This is just one step towards
more automation and control of the drilling process. This is closely related to one of the
focus areas the Norwegian government has set out for research in the oil and gas

industry [3].

w



Hansen Jondahl: Data Driven Models for Estimation of Drilling Fluid Rheological

Properties and Flow Rate

Crown wheel

°
Traveling block C‘J

Gooseneck
Top drive
Standpipe
Drill string
Drawworks
Deadline
Rotary table
Mud pump || Shaker
Blowout preventer (BOP)
Riser Mud pit

Wellhead

Annulus
Casing <
Open hole

Bit

Figure 1: Overview of drilling system and drilling fluid flow loop

1.2 Rheological properties of Non-Newtonian drilling fluid

As mentioned in chapter 1.1 the non-Newtonian drilling fluids present a special
challenge when considering the measurement of fluid flow and fluid rheological
properties. The fluid is non-Newtonian in behaviour, and may also be multiphase,

containing both the drilling fluid as designed, in addition to the well fluids and rock

4
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cuttings. Thus, it is abrasive in nature, in addition to having varying properties (viscosity
is shear dependant, and in some cases temperature dependant) and its behaviour is

difficult to express in exact mathematical models.

These challenges are encountered in all the research activities described in this thesis

and are included in this introduction.

1.2.1 Viscosity

Non-Newtonian fluids are characterized by the non-linear relationship between the
shear stress and shear ratio. Depending on the actual fluid, there are various models for
the relationship which are applicable as seen in Figure 2. In drilling fluids, it is often best
explained by either the Power Law or Herschel-Bulkley models. For reference, the
standards set by the American Petroleum Institute (API) for testing both oil based fluids
(OBFs) [4] and water based fluids (WBFs) [5] define the Bingham Plastic model as the
norm for all measurements of viscosity. Non-Newtonian fluids can be described as either
shear-thinning or shear-thickening [6], where the fluid is less or more viscous with
increased shear rate respectively. Thus, the properties of the fluid will be dependent on
the current state of the fluid, either stationary or flowing, and at what flow rate/velocity.
For drilling fluids this behaviour is desirable, as a shear thinning fluid will keep cuttings
suspended when it is still and thick [7].The models are further defined below, by their

mathematical expressions.

(S}
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To define the viscosity of a non-Newtonian fluid, more than a single point measurement
is required, as the viscosity is inferred by both the shear rate and shear stress. As
viscosity is defined as the slope of the curves in Figure 2, a single point measurement is
not enough. This is the reason for choosing a model (Power Law, Herschel-Bulkley or
Bingham Plastic), along with measurements at selected shear rates. Thus, a few
measurements can give the general shape of the curve, and viscosity at the relevant

shear rate range. The models are defined as follows:

o)}
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Newtonian fluid model,

T=uy (1.1)

where T is the shear stress and y' is the shear rate, with p as the slope of the curve, and

the viscosity of the fluid.

To include the non-linear behaviour of the non-Newtonian fluids, the Power Law

introduces an exponential such that the shear stress is defined as,
T=ky" (1.2)
Where k is the consistency index and n is the fluid behaviour index.

The Bingham plastic model keeps the linear relationship, but adds the yield point as a

bias, such that
T=Y,+ky (1.3)
where y, is the yield point.

For fluids with a linear relationship, the viscosity may be calculated by the slope of the

curve,

At (1.4)

”=A_)‘/

Combining the yield point and non-linearity, we have the Herschel-Bulkley model

defined as,

T =7y, + ky™ (1.5)

More refined models are described, that in some cases match true fluid behaviour more

closely, but the models presented here are what are typically used to describe drilling
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fluids. They will generally follow Herschel-Bulkley behaviour, but the mentioned API
standards assume the fit of the Bingham-Plastic when it considers the measurements of
the viscosity. This is referred to as plastic viscosity, and the curve is sampled at selected
shear rates to determine the plastic viscosity. For further details on non-Newtonian fluid

models, the reader are recommended to review Aadngy et al. [8] and Caenn et al. [6].

1.2.2 Density

The density of common drilling fluids is temperature dependent, and for a lot of the
drilling fluids also pressure dependent, as for oil-based fluids the oil-component is
compressible [6]. Furthermore, once the drilling fluid has passed the drill bit, and picked
up any debris from drilling equipment in the wellbore along with rock cuttings, it has
changed from the initial density, and the resulting fluid is more multiphase and abrasive
in nature. As such, there are challenges in measuring the density, and the sensor systems

used should be non-intrusive.

1.3 Objectives of the research project

The main objectives of this research project have been to develop methods and sensor
systems to estimate the flow in an open channel flow with a Venturi constriction. In-line
process measurement of the fluid rheological properties has also been identified as a
secondary aim. Both have the potential to improve an early kick/loss detection system.
And the secondary aim would also support the main objective, as several methods to
estimate the fluid flow requires detailed knowledge of the fluid properties relevant to

the models used.

1.4 Outline of the thesis

The thesis is structured after the objectives of this work. Chapter 2 includes the
literature study for the thesis work, outlining the knowledge gap the work seeks to close.
Chapter 3 will give an overview of the main objective of fluid flow measurement in the

open channel with Venturi constriction, and it will review the results in Paper 1 in this
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context. Chapter 4 will give an overview of the experiments with drilling fluids, where a
measurement principle to enable in-line measurement of the drilling fluid properties is
assessed. This chapter relates to the Papers 2-4. Chapter 5 reviews the efforts of this
thesis work and the results from the Semi-kidd research group. The results from the
Semi-kidd project together with limitations and possibilities for future implementation
in industrialized sensor technologies is discussed, supported on my own experience
from working in the drilling industry. Chapter 6 concludes the thesis and presents the

conclusions for this thesis work.
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2 Literature study on prevailing measurement

techniques

In this chapter the literature review the thesis work is based upon is presented. The
developments on measurements of return drilling fluid flow and rheological properties
are outlined back to the 1980s, and to the present ongoing developments as they are
published in scientific literature. Along with the overview of the Semi-Kidd findings as
they are presented in chapter 5, this literature review is submitted for publishing as

Paper 5.

2.1 Rheological properties of return drilling fluid

On the drilling fluid properties measurements, first to mention is the APl standards
detailing the procedures to measure the rheological properties in all drilling operations.
API RP 13-B1 [5] details the procedures to measure the drilling fluid properties of water-
based drilling fluids. API RP-13-B2 [4] details the same for oil-based drilling fluids. These
give the procedures for manually measuring the fluid rheological properties offline. The
density and viscosity are deemed most critical, and is generally measured every 6 hours,
whereas the complete set of measurements are performed every 24 hours. Thus, the
measurements are poorly suited for control and monitoring systems where continuous,
discretely reported measurements in an interactive system is needed. The need for
automation of the measurement of fluid properties, and especially density, viscosity and
other rheological properties have been discussed over the course of several years.
Godhavn et al. [9], Broussard et al. [10], Cayeux et al. [11] emphasize the need for these
measurements. The purpose of the measurements is twofold, as the rheological
properties are needed as input in hydraulic models for drilling process control. Next,
they are also needed in the efforts to keep the drilling fluid properties within
specifications. Similarly, there are two fields of research focused on the development of

this sensor technology. The first aims at modelling and controlling the drilling process.
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The other is the effort to automate the process of mixing the drilling fluid and controlling

its properties.

In 1990 Podio et al. [12] showed that there is a relationship between acoustic
attenuation, sound velocity and rheological properties of drilling fluids, as they sought
to understand the effect of drilling fluid on acoustic measurements downhole. They
indicated that this dependency can be used to determine fluid properties, although that
was not their focus. At the same time Crowo [13] explored the same relationships, but
aimed at determining the fluid density by using the measured sound velocity. In
addition, Pope et al. [14] in 1992 showed that the density could be estimated by

analysing the ultrasonic (US) resonant peaks in the frequency domain.

The pipe viscometers had already been outlined and discussed by Rogers et al. [15], and
were tested in field experiments by Maglione et al. [16] . In 2003, Lourenco et al. [17]
used the pipe viscometers to study the effect pressure and temperature had on the
drilling fluid properties. As the drilling fluid is non-Newtonian, these environmental
properties may change the fluid properties compared to the specifications and the

designed mud at the surface conditions.

Furthermore, a densimeter that applies acoustic impedance measurements as well as
sound velocity to give slurry fluid density has been described in literature by a group
around Bamberger and Greenwood [18]—[21], but it is not stated whether the slurries
are non-Newtonian or not, and the applicability to drilling fluids is therefore

guestionable.

Another approach was demonstrated in 2009 by Saasen et al. [22], where the
measurements as described by the APl standards mentioned above, where automated.
An automated measurement system was constructed which picked a sample and
measured the rheological properties by automatically sampling the fluid from the
suction pit (upstream of the pumps) and running it through a bypass line and the

measurement system. The system has been tested in field trials on the Norwegian
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Continental Shelf (NCS). Other approaches are made by Broussard et al. [10] and Miller
et al. [23]. Yet another approach has been discussed in several papers and reports [24],
[25] where differential pressure meters in the standpipe are utilized to characterize the
rheological properties of the drilling fluid. Yet, to the best of my knowledge none of
these have become prevailing and widely applied. Thus, there is a possibility to
introduce an alternative sensor technology, which will be detailed in Chapter 4, as a part

of this PhD work.

2.2 Return fluid flow rate

As stated above, the measurement of drilling fluid flow out of a well is an important
measurement. However, due to the challenges mentioned, the measurement has been
trend-based, and not an accurate measurement. This means that the prevailing industry
standard of using a flow paddle [26], does not measure flow rate accurate enough for
automatic control and early kick/loss detection methods. Figure 3 shows the
measurement principle of the paddle meter. The paddle deflection can be measured
using either a rotary encoder or strain gauges. The flow paddle was in 1992 described
as the industry standard by Schafer et al. [27] while Le Blay et al. [28] states it still is in
2012. To the best of my knowledge, this is still true. Due to the variation in the return
fluid flow, depending on both the fluid properties, and if the fluid flow is enough to fill
the pipe or not, the calibration of this flow meter is unpractical, and the measurement
cannot be used quantitatively. The measurement is used for trending, by interpreting
the trend against operations and other measurements on the drilling system, such as
the pump rate, drilling speed, the operator can decide if the drilling fluid flow out can
be an indication of any kick or loss situations [27]. In addition, the level in the drilling
fluid pit (see Figure 1) is monitored [29]. Since the drilling fluid system is a closed cycle,

differences in the drilling fluid flow in and drilling fluid flow out, will cause a change in
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the fluid level of the pit. This display a rather slow response, and the delay results in a

larger influx volume, increasing the risk of a harmful incident.

Padd/e Metey

Figure 3. Flow paddle meter principle. The fluid flow will deflect the paddle differently
depending on the flow rate/speed. It will also work if the pipe is partially filled but will only
work as a trend-based measurement that needs human interpretation, as calibration is
unpractical.

Already in 1987 Orban et al. [29] identified some new developments in fluid flow
measurement, where they described a flow meter using ultrasonic level measurements
and an ultrasonic Doppler sensor to calculate the volumetric flow. In the same vyear,
Speers et al. [30] describes the delta flow method for kick/loss detection, as well as new
magnetic flow meters for both inflow and return-flow. The delta flow method can in

short be summarized as

AQ = Qmud,in - Qmud,out

AQ = 0 normal operation
AQ >0 loss
AQ <0 Kkick

Orban et al. [31] then set out to combine their based sensor with this delta flow method
and they report improved detection time of simulated kick incidents in a field test. In

1988, Johnsen et al. [32] developed and tested a flow meter based on measuring the
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forces due to fluid flow through a J-bend. They had good results for the flowmeter in
their original publication, reporting on further developments has been lacking since. To
the best of my knowledge, this J-meter, as it is referred to in industry, and is found on
some rigs, but remains unreliable and like paddle meter in reliability and accuracy. In
1992, Schafer et al.[27] conducted an independent evaluation of proven and emerging
technologies for flow metering during drilling a geothermal well. For the outflow, they
compared an acoustic level meter and a rolling wheel flowmeter to the common paddle
meter. These are both non-direct measurements, and as the paddle meter only indicates
relative changes in the fluid flow and are calibrated to the inflow meter. The next
apparent development is reported by Schubert et al [33] in 1998, describing a pulse-
echo system to detect the fluid level in a wellbore in case of total loss of return. This is
a case where the fluid losses are so great that no fluid is returned to surface, and the
fluid level in the annulus is the only indication of the severity of the loss situation. Thus,
it is only of use in a severe kick/loss incident, and not as a measurement of the return

fluid flow rate

Nayeem et al. [34] describes developments where downhole data is combined with
inflow measurements to give indications of kick, yet no measurement of the return fluid

flow rate.

Kotzé et al.[35] describes in 2016 a system capable of measuring the fluid flow rate and
rheological properties using a sensor system combining ultrasonic velocity profiling
(UVP) and differential pressure (DP) measurements. The UVP is furthermore a
combination of time of flight and ultrasonic Doppler measurements. The effort to
develop the system seems from the published papers to have been conducted since the
early 2000s. The company promoting this technology lists drilling fluid measurements

as a case study on their webpage [36] but no tests results are found in literature.

In [37], a modification of Lamb wave based non-intrusive and non-invasive flow sensors
are described meant for multiphase flow measurements, and determination of

gas/oil/water fractions. | have been involved in testing this sensor for the purpose of
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determining the flow rate of drilling fluid, and the publication is enclosed as Paper 6.
The sensor is a non-invasive ultrasonic sensor, applying novel combination of helically
oriented ultrasonic wave measurements with common straight-line reflection
measurements. In short, the technology is promising, but needs more development to
handle a wide range of drilling fluid flow rates, as well as testing for a variety of fluid
properties and inclusion of cuttings. It may be considered at the same stage of
development as described in [35], where the flow meter’s basic principle has been
demonstrated successful for a similar application but needs specific development to

achieve success for this application.

There are also some developments which are not reported in scientific papers. One
example is the Valcom flow meter, developed in cooperation with prof. Alimonti [38],
[39]. This technology appears as a commercial solution sold by Valcom, but without any
published papers proving the operation of the technology. Other technologies might be
developed behind closed doors, as the oil service industry is highly competitive, where
reporting during development of new technologies can be limited. | must limit my work
to consider the scientifically supported developments, and this thesis reflects that, and

any omissions due to this limitation must be excused.

2.3 Open channel Venturi with Ultrasonic level sensors

The Venturi test rig at University of South-Eastern Norway (USN) has been the focus of
several works done in this field of study the past years [40]—[46]. Applying the Venturi
effect to measure flow rate has been done effectively in different systems [47] and is
defined in ISO standard [48]. The hypothesis of the Semi-Kidd research group, which |
have been a part of, is that this principle can be applied to non-Newtonian fluids to
estimate the fluid flow rate. The Venturi rig at USN applies this principle in an open
channel, to be tested with model drilling fluids. Thus, the change in fluid level is the
effect of the Venturi, and not a pressure loss as seen in pipes with Venturi constrictions.
Ultrasonic or radar level meters are applied to measure changes in the fluid level, and

by using a soft sensor this has been shown by Chhantyal et al. to estimate the flow rate
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[45]. They applied several empirical models to estimate the flow rate and found that
there is a trade-off between the more accurate model being more computer intensive
than the second-best model. However, both had mean absolute percentage (MAPE)
values less than 2%. Some work has also been carried out for master theses, namely
Adeleye [43] and Ejimofor [44], where empirical approaches to estimating the flow rate
has been carried out. These works show good potential for an empirical approach. The
test rig has also been the focus of work where a mechanistic approach has been taken.
Agu et al. [41] found that a 1-D model based on numerical solution of the Saint-Venant
equations could estimate the flow rate. Two models were developed, one for steady

state and one for unsteady state.
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3 Flow measurements in open channels

As described in chapter 2.2, there is a need for developing measurement technology for
the measurement of return fluid flow. This will enable better methods to detect kick/loss
incidents, where analysis of the fluid flow into and out of the well and any discrepancies
between these are of importance. The main idea of the Semi-kidd project has been to
apply a Venturi constriction to an open fluid flow channel. The subsequent changes of
fluid levels in this channel can then be measured. Then the fluid flow rate may be
estimated using different models describing the relationship between the fluid levels at
different points in the channel and the fluid flow. Here the background for developing
these models are described, along with a short overview of them. The results are

presented and discussed. This part of the work has been published in Paper 1 [49].

3.1 Open channel flow measurement theory

Any fluid flowing with a free surface is considered an open channel flow. Thus, the flow
is gravity driven. One natural example of open channel flow is a river. The inclination of
the riverbed, the width of the river and the texture of the riverbed and the banks are all
affecting the river flow. The same applies in industrial applications, such as sewer
systems or drilling fluid flow channels. In these applications, the inclination is still a
governing factor, along with a friction factor related to the roughness of the channel
bottom and walls. Following are two models describing the open channel flow with
these, and other parameters. They are limited by assumptions of uniform channels and
fluids with Newtonian properties. These are the foundations for open channel models,
and the more developed models in chapter 3.1.2 and 3.1.3, where first non-Newtonian

fluids are considered, and then the Venturi constriction.

3.1.1 Newtonian fluid flow models

A model describing the average velocity as a function of the friction factor and
inclination angle of an open channel was developed in 1768 by Chézy [50, p. 699] The

model is referred to as the Chézy equation,
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V= CChezy,/Rhtan@ (31)

Where V is the average velocity of the fluid, Ccrezy is @ roughness coefficient for the
channel surfaces, Rpis the hydraulic radius, and @ is the channel inclination. In 1889
Robert Manning [50, p. 700] developed a similar model, using a different coefficient and

applying the hydraulic radius somewhat different.

V= ;(Rh)z/%/tan@ (3.2)

Manning

Where nwmanning is the roughness coefficient for the channel.

These are the basic models for open straight channel flow, with Newtonian fluids, which
also needs to be tuned for the roughness coefficients of the respective models. Thus,
more refined models are needed as non-Newtonian fluids are common in many industry

applications, and especially in drilling industry.

3.1.2 Non-Newtonian fluid flow models

More recent research has focused on developing models for open channel flow that
applies also to non-Newtonian fluids. The work of Burger, Haldenwang and Alderman
have been reported in several published papers [51]-[54]. This model takes the fluid
rheological properties into account and is expressed differently for average velocity in

laminar (3.3a) and turbulent (3.3b) flow.

V= R, [(16/K)1,, — 1) L/mn (3.3a)
2 k
~ 27, (3.3b)
pey (Ry)©
where Ry = 8pV* (3.4)

n
2V
‘L'y'l'K(a)
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K is a geometry constant (values for typical geometries are given by Burger et al. [51] ).
Twisaverage wall stress, tyis average yield stress, k is the consistency index, n is the flow
behaviour index, p is the fluid density, c; and ¢z are empirical geometry constants, also

given by Burger et al. [51]. Ry is Haldenwang’s Reynold’s number [53].

With this, the flow upstream of the Venturi constriction may be modelled. However, as
the geometry of the channel is easy to obtain and experiments like Burger et al. [51]
may be conducted to find these constants, the varying fluid properties need to be

determined by rheological measurements.

3.1.3 Fluid flow measurement in open channel with Venturi constriction

To relate the modelling of an open channel flow with the effect of a Venturi constriction,
ISO-4359 [55] defines one model based on a single upstream level measurement as

2 3/2

0 = CaCsC, (3)

g\ /2
3 <_> bohy'”

a;

Where Qy is volumetric flow rate, Cy is coefficient of discharge, C; is shape coefficient, C,
is coefficient of velocity, b is the bottom width of the channel, g is gravitational
acceleration, h is fluid level, « is kinetic energy correction factor or Coriolis coefficient.
Subscript 1 relates to the upstream section, and subscript 2 relates to the throat
(constriction) section. A sketch outlining some of the parameters of this model and their

relation to the channel is shown in Figure 4.

Upstream section © Throat : :
: . section : Downstream section
: : 4
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A

Converging section J T—:Divergingsection
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The Venturi principle for open channel flow measurement is defined by ISO 4359 [55].
The standard details the design of the channel, regarding the material selection and the
relationship between its various dimensions. The standard also states the measurement
calculations and presents tables of the coefficients related with common channel
designs. It does state that the models defined are only applicable if the flow upstream
of the throat is subcritical, and the flow in the throat is critical. Another limitation is that
the fluid flow should be slow changing, without the standard specifically stating what is
a slow and what is a fast change of flow rate. As the fluid flow measurement with the
aim of improving kick/loss detection, it is desirable to achieve as quick a response as
possible, to as small as possible changes in the fluid flow. This will enable the most
precise and flexible kick/loss detection algorithms. The standard does not take fluid
rheological properties into specific considerations. The models presented does include
calculation of Reynolds number, but the specifics of the fluids are not considered. Thus,

there is a need to develop alternate models for the application described in this work.

3.2 Venturi channel flow measurements at lab facility

The work on measuring the flow of model drilling fluids in an open channel has been
published in Paper 1 [49]. The lab facility at USN was constructed to explore the viability
of the Venturi constriction and applying different models and measurements on fluid
levels in the channel to estimate fluid flow. The focus of this thesis work was to develop
data driven models to estimate the volumetric fluid flow using ultrasonic level sensors

placed above the open channel in combination with other process measurements.

Figure 5 outlines the piping and instrumentation diagram (P&ID) of the rig with the
relevant sensors used. The level sensors in the open channel are movable along the
channel, and different configurations may be considered depending on the model used

for flow estimation.
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Open channel with Venturi constriction

ok

Fluid tank LT — Level transmitter

FT — Flow transmitter

DT — Density transmitter
Pump TT — Temperature transmitter

PT — Pressure transmitter

Figure 5. P&ID of the flow loop rig. The flow direction as indicated by the arrows and sensors
with tags as shown. The level transmitters used are ultrasonic, and the two flow transmitters are
two Coriolis meters. One is used for reference, and the other used for the control of the pump.

The setup consists of two fluid tanks, a pump, piping and an open channel with a Venturi
constriction. In addition, the flow loop has different sensors installed, as indicated by
the P&ID. The fluid is pumped from the tank up to the open channel, where gravitational
flow leads the fluid through the open channel and the Venturi constriction before
returning to the tank. This experimental setup has been the focus of many research
works on the flow of model drilling fluids and has resulted in several published papers
[37], [49], [56]-[62], [62]-[73]. Part of the experimental setup is shown in the photo in
Figure 6. The view is along the flow direction, toward the Venturi constriction. In this
specific photo, there is an ultrasonic level sensor as well as a radar level sensor in the

background, which was tested for some other experiments.
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Figure 6. Partial view of the open channel with Venturi constriction. The flow direction is away
from the viewer, with the Venturi constriction ahead, with two level sensors suspended above
the channel. Photo by A. Jinasena.

The channel is in total 3.7 m long and is trapezoidal in shape. The bottom width varies,
as the constriction is narrower. Figure 7 shows the dimensions for the channel used in
these experiments. The setup is capable of circulation of a mass flow rate ranging from
250 to 450 kg/min, which gives volumetric rates in the range 180-400 litres per minute
depending on the fluid in the system. The fluids are described in chapter 3.2.2. These
flowrates are in the low range when compared to drilling operations offshore. Typical
flowrates can range from 500 to 3000 litres per minute. In addition, the flow return
channel will be of different dimensions and design, and the experiments performed in
the lab at USN would still need to be verified by pilot or field scale tests to prove the

applicability of the concept to the industry.
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Figure 7 Dimensions of the open channel with Venturi constriction , all dimensions are in mm,
and the drawings are not to scale. (a) is the top view, with the width of the trapezoidal channel
indicated by the bottom width. (b) is the cross-sectional view, with b the varying width of the
different sections, and h the varying fluid level. Sketch and measurements from Glittum et al.
[40]

3.2.1 Sensors in the model drilling fluid circulation system

In the system, several sensors are installed, as can be seen by the above P&ID. Table 1
details the sensors, and their accuracies. The Coriolis mass flow meter with tag FT-2 is
used as a reference for the volumetric fluid flow estimations. FT-1 is used in the control

system for the rig, to adjust the pump output to the setpoint.
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TAG MODEL MEASURAND RANGE ACCURACY
LT-1, LT- Rosemount Ultrasonic 3107 Level 0.3-12m 0.025 m
2,LT-3
PT Smart Pressure Transmitter Pressure 0-7bar +0.1% of
PCE-28 measured
value
FT-1 Endress+Hauser Promass 83l Mass flow 0-1000 10.1% of
Coriolis meter Viscosity kg/min measured
Density value
T Endress+Hauser Temperature 0-100°C 10.19°C @
RTD Thermometer 20°C
omnigrad TST41N
FT-2 Endress+Hauser Mass flow 0-1000 10.1% of
Promass 63F Density kg/min measured
Coriolis meter value (mass
flow)
+0.01 g/cc
DT S-Tec DT-9300 Density Can Typically less
Density transmitter measure than £0.2% of
all liquids | highest
and density over
slurries. 20s

3.2.2 Model drilling fluids — their design and properties

In the lab facility the circulation system is not designed to handle particulates in the

drilling fluid, and it is also an open system in a lab that hosts other researchers and their

equipment. For that reason, fluids that models the behaviour and properties of the

drilling fluids used in drilling operations are used. The model drilling fluids consists of

three main parts, tap water, xanthan gum and potassium carbonate (K,COs). The
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xanthan gum is the viscosifier in the mix, and the potassium carbonate is the densifier.
The fluids used in the study are mixed in the lab, and the compositions are given in Table
2. The model drilling fluids are designed to emulate industrial drilling fluids with respect
to their densities and viscosities only. Drilling fluids used in industry might be designed
with focus on more properties, including but not limited to filtration properties,
alkalinity, lubricity and corrosivity [6]. Several considerations are taken for each drilling
operation to consider the design of the drilling fluids that is not considered for the model
drilling fluids used in this work. Normal range for density of drilling fluids is 1100 — 1800
kg/m3, and the normal range for plastic viscosity is 0.005-0.050 Pa-s. The rheological
characterizations of the fluids have been performed using professional fluid

measurement equipment (Anton Paar Modular Compact Rheometer MCR 502).

Table 2. Model drilling fluids composition. The additives to the water base are given as percent
weight, and density in kg/m>. Fluid 1 is tap water, but the circulation system is not cleaned up
between use of the different fluids, so the water will pick up some residuals from the last fluid
used. Flow index, n (dimensionless), and consistency index, k in Pa are the parameters used in
the rheological models Power Law and Herschel-Bulkley.

Fluid K>COs; Xanthan Density, p Flow Consistency index, k
%vol  gum kg/m?3 index, n Pa
% vol

1 = = 1015 0.97 0.01
2 18 0.07 1145 0.63 0.05
3 21 0.07 1190 0.64 0.04
4 29 0.21 1240 0.47 0.23
5 73 0.22 1340 0.82 0.03

3.3 Developing fluid flow models and their performance results

As the models described above for non-Newtonian drilling fluids are limited, the work
published in Paper 1 [49] focused on development of alternate models to estimate the
drilling fluid flow. The work has focused on machine learning (ML) models, using variable

inputs, based on fluid level. Experiments were performed to find the best suitable
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configuration of level meters in our lab setup, both regarding of the number of level

measurements, and the placement along the channel in the flow direction.

Considering the possibility of a non-linear relationship between the fluid levels in the
flow channel and the fluid flow rate, both linear and non-linear models were developed.
The linear models used were simple linear regression (SLR) and polynomial linear
regression (PLR). These are simple, but effective models and served as a good starting
point to consider the model development. For the non-linear models three types of ML
models were developed. These included artificial neural networks (ANNs), support
vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS). Paper 1
details the experiments made to collect both training data for the models, but more
importantly for their validation. As this study is part of a proof of concept for the
measurement principle applied to non-Newtonian drilling fluid, the validation results
are the most important. As the models are applied to measurements within their
training range, but not used for training the models, they can be validated. As Paper 1
shows, several model types and configurations are applied to the same data, to be

comparable.

The key findings from this work are twofold. First, the promising results from the
validation of the data driven models that are based upon our lab experiments. These
results are shown in Table 3, pointing out the results of the ANN with one single level
measurement and the PLR as the most successful models. Included in the table is also
the Norwegian requirements for the drilling parameter measurements [74] which is
5.0% accuracy of the measured return fluid flow. This standard does not specify accuracy
requirements for the fluid flow into the well, as this is often related to the measurement
on the pumps. This is specified by the counting of strokes and is hard to relate to the
accuracy of the computed pump output. However, the Coriolis meter is common as the
inflow measurement system, and typically these meters have accuracies below 0.5%. As
Table 2 shows, the results from the developed models are within the standard

requirement, but not comparable to a Coriolis meter. The common industry
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measurement of return fluid flow is based on the paddle meter, which does not have a
specific accuracy, as the measurement is trend based and relies on interpretation and
comparison to other measurements such as the drilling speed (rate of penetration), the
pump flow in and the position of the bit and if the drilling fluid properties are adjusted.
The main reason for this is that the paddle meter is only used to detect changes in flow,
to discover kick/loss incidents. As such, the results from using the Venturi constriction
in the open channel and ML models are promising in introducing quantified
measurements of the return fluid flow in the drilling process.

Table 3. Performance of different machine learning models estimating the volumetric flow rate.

The reported performance is MAPE in percent and root mean square error (RMSE) in litres per
second.

Machine learning models MAPE [%] RMSE [I/s]
Simple linear regression 4.76 0.24
Polynomial linear regression 2.09 0.16
Support vector regression 2.37 0.17
ANN (single level input) 2.05 0.16
ANN (three level inputs and density) 244 0.16
ANN (three level inputs) 2.25 0.16

The next important finding is from extrapolating the results from these models. This was
done to extend the range of the models to flowrates like the actual flowrates in field
applications. The extrapolated models were compared to the ISO standard upstream
level-based model as defined in 3.1.3 and eq. 3.5. In this regard, the results were less
consistent, as the graphs (Fig. 12) in Paper 1 shows. The important observation is that
considering this extrapolation, the best performing model was in fact simple linear

regression, as the other models failed to follow the trend of extrapolation.
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4 Estimating drilling fluid properties using ultrasonic

measurements

This section of the thesis will put the work of Papers 2-4 [63], [64], [72] into context and

outline the most important parts of the work. For full details, please review the papers.

The objective of this part of the work has been to explore a measurement principle for
estimation of rheological properties based on ultrasonic measurements. As shown in
Paper 1 [49] some models require knowledge about the fluid rheological properties. This
is also relevant to other parts of the Semi-kidd research group efforts, focusing on

mechanistic models that relies on specific knowledge of the fluid rheological properties.

4.1 Ultrasonic waves in non-Newtonian fluids

Measurements using ultrasonic waves are often used in various flow metering
techniques, e.g. for the fiscal flow metering in oil & gas industry. In this application,
accurate measurement of the oil, gas and water content in a multiphase fluid stream is
in focus. As Podio et al. [12], Crowo [13] and Pope et al. [14] has shown, the acoustic
characteristics of a fluid are related to the rheological properties density and viscosity
of non-Newtonian fluids. As Dukhin et al. [75] writes about the acoustic theory of
particulates (fluids with particles in suspension) “Despite 100 years of almost continuous
effort by many distinguished scientists, there is still no single theory that meets all of
these requirements”, referring to three central requirements about the particle size
distribution, particle-particle interactions, and numerous ultrasound interactions such a
theory should encompass. Together with the non-Newtonian behaviour of drilling fluids
this proves that defining such a theory is a great challenge. Considering the acoustic
attenuation and sound velocity it is possible to describe a relationship with the density
and viscosity of the non-Newtonian fluids, but no model has been found in literature.
Therefore, the ML techniques that rely on data to develop the models, rather than

explicit mechanistic models, are well suited for the task.
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Paper 2 [72] details the first experiments performed, measuring ultrasonic wave
propagation in a drilling fluid sample, and the exploration of the relationship between
acoustic properties and rheological properties. In this work, a relationship between the
attenuation and density and viscosity of the fluid sample was apparent. Its non-linear
behaviour made it suitable for use in ML models. Paper 3 [64] and 4 [63] follow this
development, with additional experiments on two new fluid samples and exploring
different ML model types. In the following sections, the experimental setup is explained
briefly, along with the main results from the last paper, where the developed ML models

were applied using the full set of fluid samples to evaluate the model performances.

4.2 Experimental setup for ultrasonic characterization

Ultrasonic through transmission modalities were used to record the transit time and
sound velocity of three drilling fluids systems. In collaboration with the drilling fluid
manufacturer, a scheme was detailed for diluting the fluids to increase the potential for
data collection. Each of the three samples were diluted in total 10 times, thus granting
33 fluid samples with different rheological properties. The amplitude and time of flight
of the ultrasonic pulse was carefully measured at different distances. Precise laboratory
measurements of the fluid rheological properties were used as the reference for the

developed models. The details of the fluids are given in the attached Paper 4, Table 1.

Some results based on ultrasonic transmission was reported by K. N. Mozie [60] using
the experimental setup for the measurements of ultrasonic wave propagation. The near-
field effect was quantified and established the measurement procedure for the further
experiments. M. Hafredal [59] applied this procedure to one of the drilling fluid systems,

which is also used in Paper 3 and 4.

The objective of the experiments was to explore a measurement principle that may be
applied to the drilling fluid storage systems. The future goal of developing a
measurement principle for the potential of a non-invasive system that can be installed

on the outside of the return flowline, which will present new challenges. The initial
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motivation for the ultrasonic measurements in the drilling fluids was to evaluate their
ultrasonic attenuation. In that way the feasibility of ultrasonic based fluid properties
sensors could be evaluated. As shown in chapter 2.2 there are several developments on
fluid flow sensors using ultrasonic waves. If these sensors also could apply the ultrasonic
measurements to the fluid rheological measurement, the potential for a change to the
industry common practice is increased. The clear change in the ultrasonic attenuation
with respect to both the distance and the fluid rheology, showed a promising potential

for rheological characterization

The setup featured a tank for holding the fluid, a frame for submerging an ultrasonic
transmitter (UT) and a receiver (UR) into the drilling fluid. Three transmitter/receiver
pairs with different frequencies (0.5, 1.0 and 2.25 MHz) were used, as well as the
transceiver for generating the ultrasonic pulse and measuring the received pulse. The

setup is shown in Figure 8.

_D:’J = Transmitfej

Receiver

Transciever

Figure 8. Experimental setup to measure ultrasonic wave propagation in drilling fluids. The signal
is transmitted and received along the x-axis, and this distance (x) is varied to increase the
database for training the machine learning models. The received amplitude (Ar) is measured in
addition to the transit time, and with the measured distance along the x-axis the sound of
velocity is calculated. The amplitude is expressed as a ratio of the reference amplitude at Ao,
recorded at x=3 cm.
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In all the drilling fluid systems the measurements were done with the three pairs of
UT/UR. The two first papers (Paper 2 and 3) used the data from all three pairs in
developing the rheological models, while in the latter work (Paper 4) the measurements
made with the 0.5 MHz UT/UR was chosen, as this work focused on several models, and

to effectively compare the model types, this most promising frequency was selected.

In addition to the varied fluid samples (33), the data collection was increased by varying
the distance between the transmitter and receiver. Calculations of the near-field effects
of the transmitter/receiver pairs by Mozie [60] established a procedure using x=3 cm as
the reference distance for the amplitude, as this avoids any near-field effects. It was
assumed that the scattering effect was occurring due to the particulates in the drilling
fluid. This effect is expected to increase in the field application, as rock cuttings also will
be present in the drilling fluid. This scattering will result in a great loss of transmitted
signal, as a lot of the signal is lost between transmitter and receiver due to misdirection
by the particulates. Depending on the volume fraction of the particulates, this scattering
could also result in multiple reflections reaching the receiver, resulting in a noisier signal.
Thus, a peak measurement that is both lower and noisier must be expected in such a
fluid. This effect is not quantified in the experiments, as focus is on the acoustic
measurements for training the ML models. Thus, any influence of scattering will also be
part of the models trained, to the degree that the scattering affects the transmitted

signal.

4.3 Description of models for the estimation of drilling fluid

rheological properties

In this chapter the models used to estimate the rheological properties of the drilling
fluids in the experiments are briefly described. In this work focus is on developing three
machine learning models based on the three experiments. Paper 2 [72] explores the
possibility of using regression models on the first fluid experiment, while Paper 3 [49]

explores applying ANN to two of the experiments. In the end, Paper 4 [63] reviews
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results from all three experiments, and considers three types of models, ANNs, SVR

models and an ANFIS models.

The models described are all ML models. This means they are data driven and are not
represented by mathematically expressed physical relationships between inputs and
outputs. The models are trained using datasets consisting of input and outputs. The
datasets are divided into training, validation and test subsets. A detailed overview of
the workflow in collecting data, dividing the dataset and performing training, validation
and testing of the ML models are given as a general overview applicable to all three

model types, in Paper 4, Figure 6.

The inputs of the models, and the two possible outputs are given in Table 4 and Table 5,
respectively. The inputs are measurements from the experimental setup as described
above, while the targets for the outputs are from the rheological characterization of the
lab analysis. The models were designed to give only one of the outputs, such that for
any model architecture, it was trained once with density as the target output, and in the

next model plastic viscosity was the target output.

Input Symbol Output Symbol
Time of flight ‘ t Density P
Distance X Plastic viscosity Up
Relative A(x)

amplitude

4.3.1 Artificial neural networks - a short review
For ANN, the models trained are simple compared to more common uses of ANNs. The

number of inputs used in this work is only three, while typical application of ANNs can
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be image analysis and categorization, where the inputs may be several thousands. As
the work in Paper 2 [72] on linear regression showed, there is a clear non-linear
relationship between the increasing distance between transmitter/receiver, and the
measured amplitude. The hypothesis was that this non-linearity would be modelled well

by ANN.

ANN is a ML model branch that features networks of interconnected nodes, to compute
output based on input. The nodes, and the connections between the input and output
are designed to each application, with varying number of hidden layers and number of
nodes in each layer. In addition, an activation function is chosen to calculate the output
from one layer into the next, or to calculate the output. The principle of such a network
is shown in Figure 9. Here a network with one hidden layer is shown similar to the ones
that were used in this work, although configurations with several hidden layers are
common, depending on the application. The input variables are connected to the hidden
layer, and the weights (w) decides the influence of each input node to each hidden layer
node. Next the product of each associated weight and preceding node is evaluated in
the hidden layer node, and the activations function propagates this to the next layer, in
this example the output node. The process, known as feedforward can be vectorised

and defined as [76]
y="1('wW-X+ 'B)
2y — Zf( 2y - 1Y)

where Yis the p by 1 vector of outputs, W is the n by m array of weights, X is the m by 1
vector of inputs, and B is the 1 by n vector of bias. n is the number of hidden neurons, p
the number of outputs and m is the number of inputs. f represents the activation

function used. Preceding superscript 1 and 2 refer to the layers.
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—X 1%

—X 2%

Input layer Hidden layer Output layer

Figure 9. Sketch of ANN with one hidden layer, m inputs and p outputs, with n hidden neurons in
the hidden layer. The connections between input nodes, hidden layer nodes, and the hidden layer
nodes and the output nodes are weights. Adapted from Haykin [77].

The artificial neural network models were applied in two steps. First for the use in Paper
3, where two fluids where characterized, both WBF. This would be a first test to evaluate
the use of ANN before the third fluid system had been characterized. The results were
good, and ANN was used in our last and final evaluation of the chosen ML on the full

dataset.

For descriptions of ANNs the reader is referred to Paper 4, and detailed description by
Haykin [77]. The ANNs were trained using MATLAB Neural Networks Toolbox 11.0 and
Statistics and Machine Learning Toolbox 11.2. The code generated by these toolboxes
was then reworked to perform meta-parameter training, i.e. optimizing the size and
structure of the ANN. This involved retraining the networks several times and finding
the optimum performing network, by searching for the number of hidden neurons. The

best performance was achieved when restrained between 3 to 50 hidden neurons.
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4.3.2 Support vector machines - a short review

Support vector machine (SVM) models were developed as an alternative to ANNs. SVMs
solve non-linear problems by mapping the dataset into a higher dimensional space, the
feature space. This is done by applying a kernel function, which can be of several designs.
In our application, it was decided to use a Gaussian kernel function after trial and error
with several kernel functions. In the feature space, the original dataset may be
estimated by a linear regression. This solution is then brought down to the original
space, and the model is described. The application of SVM as a regression model [78] is

referred to as SVR and is described by

Nsy (4.2)
V= (wi-9:00) +B
i=1

where ¢;(X) is the kernel function, i.e. the mapping function from the input space to
feature space. Bis the bias array, Xis the input array, Y the output array, wis the distance

of each point from the error margin and Nsy is the number of support vectors.

4.3.3 Adaptive neuro-fuzzy inference systems - a short review

ANFIS are systems combining fuzzy inference and neural networks. This hybrid system
is tuning the membership function parameters and fuzzy logic rules by a neural network.
The fuzzy inference system is initially designed by the user, and the neural network

performs parameter-optimization based on the training dataset given.

This model type was explored, as it is another common ML model, in addition to the two
other selected models. It combines the data-driven learning of the neural network with

user input of designing the fuzzy logic inference system.

The model was developed by using the MATLAB toolbox for Neuro-fuzzy design, and as
for the two other models, the dataset was the same, divided into training and test set.
The algorithm used by MATLAB selects cross validation data from the training set to

avoid overfitting. The details of the training algorithm are given in Paper 4.
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4.4 Results from models used in estimating drilling fluid

rheological properties

In presenting the results from the different ML models, focus is on the ANN results.
These showed the smallest MAPE, both for the two types of output (density or plastic
viscosity) and for the two types of input data drilling fluid type (WBF or OBF). The results
are summarized in Table 6. The models were compared using an independent test data
set from the experiments. Furthermore, the training time was evaluated in addition to
the processing time for the test dataset estimation. Since the number of inputs are
limited to three, and the datasets in general were small, approximately 1000 samples,
the elapsed time for training was not a problem, ranging from 1.7 to 2.5 sec. The time
to process the estimations for the test data ranged from 0.02 to 0.05 sec. These elapsed
times were recorded using a normal work-laptop with no significant hardware, and
other software running could have affected the times, so for the reported results, the

computational efficiency of both training and evaluation is negligible.

Full overview of the results is given in Paper 4, but the key finding is that the ANN was
the best performing model for both density and plastic viscosity. The two other types of
models were not too far off, which supports that the ANN model is valid, and that it is
not just coincidence that the model predicts the outputs with the reported error. As
repeated training was performed 1000 times to find the best performing model, this
could happen, a lucky combination of the parameters could give well performing
models, but as the results show, each of the model types perform with error values in

the same order of magnitude.
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Model type OBF WBF
MAPE, % MAPE, %
ANN Density, p 1.17 0.69
ANN Viscosity, Pp 4.66 4.07
SVM Density, p 2.87 1.27
SVM Viscosity, Jp 13.6 22.2
ANFIS Density, p 1.79 1.52
ANFIS Viscosity, Pp 10.60 19.5

The results are limited by the method used for collecting the training set. The decision
to dilute the three original fluid systems gave increased training dataset, but it can be
considered a dependent dataset, as the dilution would be dependent on the fluid it was
diluted from. There might also be some errors in the way the dilution was performed
compared to the practical methods applied in the field for these fluids. The facilities to
replicate exactly the drilling fluid mixing process was not available during this thesis

work.

The training data set range spans well for both density (1180 to 1750 kg/m?3) and
viscosity (0.0042 to 0.0397 Pas). This is within the range of expectation in field
applications, and thus the models are valid. However, the composition of the drilling
fluid has not been generalized, as in the field, the composition may be specific to one
section of a well. Despite these limitations, the dilution and the resulting range of
properties measured here shows the validity of the developed models when applied to
a limited number of fluids. It can not be concluded how well the developed models
generalize different drilling fluid systems, but once trained on a system, with good range
of training data, their performances are promising. In the field, the generalization to
various fluids may not be necessary, as common drilling process operations might allow
for collection of training data on the actual drilling fluid system used in the current

operation.
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5 Semi-kidd findings and their future

The literature review of recent developments along with some historical developments
regarding the two measurements: return fluid flow and in-line fluid rheology, are
published in Paper 5 (submitted and currently under review in Measurement Science
and Technology (MST), Institute of Physics (IOP) Publishing, December 2019.) This
review has been presented in general terms in chapter 2, and the following chapter will
take some of the main findings in Paper 5 and discuss the results, possibilities and
limitations of both this thesis work, and the other theses from the Semi-kidd research

project. It will end with conclusions and recommendations for future work

The main technological idea of the Semi-Kidd research group is to improve kick/loss
detection by developing sensors and models for estimation of the return fluid flow by
using an open channel with a Venturi constriction. The first research objective in this
thesis work was to explore the application of machine learning models, estimating the
fluid flow in the open channel based on the level measurements at different locations
in the channel. The second objective was to explore the estimation of the fluid
rheological properties, as measurements of these could further increase the quality of
kick/loss detection by improving quality of the flow rate estimation models. In addition,

it could also enable other automation and digitalisation efforts in the drilling process.

5.1 Results from estimations of flowrate and fluid rheological

properties

The main findings from Paper 1 is proof of concept for flowrate estimation with several
configurations both regarding sensor placement in the channel, and with different ML
model types. Based on this Chhantyal [79] presents the ANN model as the best
performing ML model to estimate the fluid volumetric flow in the open channel.
Furthermore, some additional challenges to be solved are identified, one of which is
estimation of fluid rheology. The results show that the best performance is achieved by

using a single level measurement, upstream of the Venturi constriction and an ANN
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model. When the model is extrapolated outside the range of the training dataset, it is
not comparable to the standard model of the upstream. In such a case, the SVR and PLR
models were more flexible, performing well outside their training range. As such, the
best model, when deployed in the field would be application dependent, considering
the expected range of flow, and opportunity to train the model using the full expected
range of the input variables. The models were reported with mean absolute percentage
error in the range 2.05-2.37% of the measured value for the test data set, which is good

compared to the NORSOK standard requirement of 5 % [74].

Based on the same experimental setup, and similar data from the flow channel, other
methods to estimate the fluid flow rate of the return flow have been developed, the
selected best methods and their performance are summarized in Table 7. A. Jinasena
[80] details work on the estimation of state parameters, and applying mechanistic
models to estimate the fluid flow rate. One important challenge to address was the
processing time of the mechanistic model. For the mechanistic models to be quick
enough, several approaches must be taken to make them effective enough for real-time
use, where the aim has been to develop models to provide estimations with 1 second
updates. In [80] several schemes to solve the hyperbolic PDEs in the models are
explored. The orthogonal collocation method is used along with a fit-for purpose friction
model to estimate the fluid flow rate in the open channel. This method outperforms the

ML models in Paper 1, with a reported 1.7% MAPE.

P. Welahettige [81] combines experimental findings and computational fluid dynamics
(CFD) simulations to evaluate estimations of the fluid flow rate using mathematical
mechanical models. A model based on 1D Saint Venant equations that gave an
estimation average error of 4.1% with optimal placement of the level sensor upstream
of the Venturi constriction. With the simplification to the 1D model the model is fast
enough to be used real-time, while the extensive 3D CFD modelling and other

experimental data validated the performance results.
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Method MAPE
NORSOK Standard requirement [74] 5.0%
ML model, ANN [49] 2.1%
State estimation model [67] 1.7%
1D Saint Venant model [57] 4.1%

For the ML models, a lot of the algorithm and training efforts goes into regularization
and to avoid overfitting the model. Although outperformed here, ML models may be
competitive against the mechanistic models presented in [80], if applied on an industrial
scale. There would be potential in building an algorithm to train the ML models during
certain operational tasks and make the models more flexible and quicker to adapt to
operational changes. This could also be done with the mechanistic models, where a
scheme was written to increase the states included in the model, to adapt to the
different operations, and allow the model to be updated during the operation without
specific changes by operators. This would resemble a grey-box machine learning
approach, where some parts of the model would be mechanistically described but tuned

by an algorithm based on machine learning techniques.

Reviewing these three approaches to the same problem, using the same experimental
setup and fluids, it has been shown that the application of an open channel with Venturi
constriction, and models using level measurements in the channel as inputs has
potential. These experiments and models developed in the lab have all different, but
promising performance results in the same order of magnitude. The selection of which
method would be best suited should be further researched at field scale and with field
conditions. The lab experiments performed at USN are scaled down in terms of the
volume and flow rate of the fluids. Furthermore, the fluids will also be different, as the
model drilling fluids used at USN are similar in some of the rheological properties, but

not all. The mechanical design of the lab channel will also be different from the various
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adjustments that needs to be done in any rig installation. As such, any model chosen will

still have to be tuned to the specific rig design.

For estimation of the fluid rheological properties of drilling fluids, the main findings are
presented in Chapter 4.4. Here the proof of concept of a measurement system
measuring the rheological properties of non-Newtonian drilling fluids by using ultrasonic
measurements in a tank is presented. This measurement principle should be developed
further to apply to inline flowing systems. Then the continuous measurement of density
and plastic viscosity may be used to enhance the proposed models to estimate the fluid
flow rate in the return channel. If this can be achieved, the differences between the
model approaches might change, and makes it challenging to evaluate which approach

would be best suited to field application.

Participating in the work with Xsens and their ultrasonic technology, gave insight into a
different approach than the open channel with Venturi principle. The work is enclosed
as Paper 6, where the testing of the ultrasonic sensor technology developed by Xsens is
described. This thesis work includes the participation in this testing, and in analysing the
results and reporting them in a conference paper. This collaboration is what lead to the
idea that applying the techniques explored in chapter 4 can be applied to ultrasonic flow
meters. Due to the time constraints in this thesis work, it was not possible to pursue this

idea in further collaboration.

5.2 Future developments

5.2.1 Implementation of the open channel sensor system

From my experience working in the drilling industry, the rig design will impact the
specific design of the sensor system when applied to any rig. In addition, it will also have
to adapt to different operational conditions when installed. During the drilling of an oil
well, the different sections of the well require differences in both the drilling fluid

design, the constraints on typical operational parameters. For instance, during drilling
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one section of the well, the inflow rate might be limited to 1500-2500 |/min for various
operational and geological purposes, and the drilling fluid will have densities in the range
1500-1550 kg/m?3 In the next section, it might be down to 1000-1100 I/min inflow rate
and 1300-1350 kg/m3. Within each section, the setpoint for the flowrate and densities
might be changed either gradually or stepwise. Any model to be used to measure the
return flowrate needs to be able to adapt to these changes in the process on the fly,
without downtime in the delivery of real time measurements. At the same time, they
still need to detect changes in fluid flow rate to alert any kick/loss incidents as soon as

possible.

The construction of the channel itself, and the Venturi constriction must be made fit for
purpose to any rig it should be implemented on. Principal sketches, showing the possible
implementation on a land rig is shown in Figure 10 and Figure 11 . Although the work
presented in this study focuses on offshore drilling operations, for the simplicity of the
illustrations a land rig is used, as an offshore rig would be too complicated to show

effectively in such illustrations.

The rig specific design will dictate the upstream and downstream length from the
constriction. As these lengths change the flow regime in the channel, analyses similar to
those presented in [81] should be used to explore the possible design solutions to find
the best possible implementation. Once the modifications are done, the optimal model
should be chosen and tuned to the actual set up. Both are challenges not tested during
the lab experiments of the Semi-Kidd group. The next important step would therefore
be the first user step, and to see what changes must be done in implementing the

system, and if it works as well under field conditions as in the lab.
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Figure 10. Overview of land drilling rig common layout. The inset focuses on the return drilling
fluid flow line, where the open channel may be placed. In the lower right corner, the flow is
divided into the shakers, that start the drilling fluid treatment system. Illustrations by Stone
Graphic Design

Figure 11. The open channel is part of the fluid return line, that represents the equipment change
needed to apply the Semi-kidd technology for estimating the fluid return flow, by measuring the
fluid level in the open channel with the Venturi constriction. As has been discussed, several level
sensor placements have been suggested for various models. Here it is shown with two upstream
level sensors, and one in the constriction. lllustrations by Stone Graphic Design.
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5.2.2 In-line real time continuous monitoring of drilling fluid rheological

properties
The measurement principle for estimating drilling fluid rheological properties needs
further developments before implementation can be considered. The next development
step is application to a flowing system, using ultrasonic sensors located either outside a
pipe, or embedded in the pipe. There is an earlier effort where this was achieved by
Gurung et al. [82] on model drilling fluids. Furthermore, several flowmeters for other
purposes, for instance multiphase flow measurement, or gas measurement, have
overcome the challenge of placing the sensors on the pipe wall, so | am confident this
challenge can be overcome also for drilling fluid. Through the collaboration with XSens,
on testing their flowmeter at the drilling fluid circulation system at Equinor, Porsgrunn,
it seems that the measurement principle may be combined with development of sensor
systems for flowrate estimation. Cooperation with any company developing similar
solutions could therefore be a beneficial next step to further develop this measurement

principle.

Refining the measurement principle and increasing the collection of data for input in the
models is another step that should be considered. Sampling the frequency spectra of
the received signal would enable more complex data, and possibly better models. This
could also help in generalizing the models, increasing the accuracy to several fluid

systems and a greater range in the estimated rheological properties.

To combine this measurement principle with the open channel system for flow rate
estimation is a different task. The rheological properties measurement system should
be fitted to an open channel flow, with variable depth. As such, placement of the UT/UR
should be considered thoroughly. In open channel flow, with low inclination, the build-
up of cuttings and grime could be a problem, but CFD simulations by Welahettige et al.
[62] supports a claim that cuttings build up will only be a minor problem along the edges
in the channel, and otherwise not affecting the channel flow significantly. Figure 12

shows the top view of an open channel, where CFD simulations show the effect of an
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inlet volume fraction of 0.055 m cuttings on channel flow. The colour scale shows the

build-up of cuttings along the channel edges.

Volume fraction

Figure 12. CFD Simulation showing the effect of drill cuttings in open channel flow. The volume
fraction is indicated locally in the simulation by the color faded scale shown. The flow is steady
state, with inlet volume fraction of 0.05 cuttings, and the size is 5 mm. Flow direction as indicated
by the arrow. Adapted by the author from Welahettige et al. [62], published under the CC BY 4.0
[83] license.

In addition to implementation with the goal of performing inline measurements of the
properties of the returning fluid for kick/loss detection and handling, the system can be
applied elsewhere in the drilling process. On a drilling rig the drilling fluids are stored in
several tanks, or pits, and there can be several drilling fluid types present on the rig, in
storage but not in use in the current drilling operation. These are held in reserve, or for
emergency purposes, to quickly mix with the current fluid, or for future use. The process
of mixing these fluids, checking them against specifications and general control involves
a lot of testing. An automatic system as we propose can be of great value here,
increasing the quality of the mud mixing process, and enabling other automation

technologies.

Considering the application of the proposed systems to offshore drilling operations, one
major challenge related to floating rigs is in large part not addressed, i.e. the movement
of the rig and the open channel. The effect this movement has on fluid flow

characteristics, and the level measurements used to estimate the fluid flow has not been
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studied in detail. In [81] the effect of pitch motion, i.e. movement due to heave and
waves on the rig are studied with simulations. This pitch is considered as happening
along the flow direction axis in the channel, and thus the inclination of the gravity driven
flow channel is a function of time and angular frequency of the rig movement. It
concludes that this movement has severe effect on the flow regimes in the open channel
flow, and states that it might be challenging for the flow estimation models. There are
other measurement systems on a floating drilling rig that also has to account for the rig
movement, such as the depth tracking system [84]. However, the effect on this
measurement is limited compared to the effect rig movement has on the fluid flow in
the channel. It could be possible to envision a solution where the rig movement is
measured and coupled with simulations or models of the effect this has on the model,
and thus the fluid channel level measurements can be compensated for the rig

movement. This is a solution that would require additional studies.

6 Conclusions

The main contribution of my work has been to prove the potential of the measurement
principle combining ultrasonic characterization and data driven models by lab
experiments. This is the basis for developing a non-invasive in-line rheological fluid
property measurement system. Furthermore, | have contributed to show that data
driven models perform satisfactory in a lab scale for estimation of fluid flow rate in an
open channel with Venturi constriction. Both efforts have foundations in the literature
in their respective fields, but the experimentation on non-Newtonian fluids, and
especially the drilling fluid ultrasonic characterization is novel and represent scientific

progress.

By the combined efforts of the Semi-Kidd group a few steps towards improving methods
for effective and early detection of kicks/losses in the drilling fluid circulation have been
taken. Mechanistic models and data driven models to estimate fluid flow have
comparable results within industry standard accuracies. These models and their

experimental verified results along with CFD simulations prove the value of the Semi-
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kidd technology idea. This is an important contribution to a technology that will enable
automation and improved process control of the drilling process. If applied in the
industry, this technology will reduce risks and increase efficiency. The extension of their

influence on drilling process automation can also be significant.

As outlined above, when the next step is considered, there are some challenges to
handle for the open channel and sensor system proposed by the Semi-Kidd group, in
addition to the limitations of the models developed. Most important are the scale and
dimensions that are needed in the field. This will change the flow regimes, surface waves
and consequent noise in level measurements. In addition, the drilling fluid used in the
field can vary greatly over different wells and sections, compared to the model drilling
fluids used. This can be mitigated once the models can be trained and tuned to
experiments on field scale with drilling fluids used in the field. Then the models and
algorithms can be developed to adjust to the specific channel dimensions and the actual
fluid used. The misting and steaming of a hot return drilling fluid, as well as splashes and
dirt can further diminish the quality of the level measurements. These may be treated

by engineering cleaning or screening solutions to protect the sensors.

The effect of rig movement should be studied in suitable experimental setups. The
simulations in [81] indicate a challenge, but it should be studied in more detail. Then the
potential for the system to floating rigs may be found, and a possible limitation to fixed

platforms may be addressed.
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Abstract—Reliable flow measurements of drilling fluid
entering and returning from the wellbore can improve safety
of people and assets by avoiding kicks (blowouts) and
fluid loss. The return flow with cuttings and entrained
gas in the drilling fluid pose a big challenge to the rig
operators. An indirect way of measuring the volumetric flow
is by measuring the flow level in an already existing open
channel in the flow loop, as this level changes with changing
volumetric flow. In this paper, different mechanistic and
machine learning models, based on one to three fluid levels
at specific locations along the custom designed open Venturi
channel, are presented. The mechanistic models involve
tuning of different correction factors, related to fluid rheology.
As rheological properties vary with time, and real-time
rheological measurements are not available, these models are
valid only for fluids with known rheology. With real-time
density as an extra input, fluid specific machine learning
models for mass flow, can be applied to any fluids. In contrast,
the proposed machine learning models for volumetric flow
are robust and not dependent on the rheological properties
of the fluids. These models have mean absolute percentage
error between 2.05% and 4.76%. Soft sensing of volumetric
flow based on non-invasive level measurements presented
here has an additional advantage for applications in harsh
environments.

Index Terms—Drilling operations, Open channel, Venturi
constriction, Non-Newtonian fluids, Volumetric flow rates,
Machine learning.

I. Introduction
A. Background on Drilling Operations

HILE drilling an oil or gas well, pressure control

is important for several reasons, but primarily for
safety. The drilling system includes a drilling fluid (also
called drilling mud) circulation system, which ensures the
circulation of the drilling fluid down the wellbore through
the drill pipe and then back to the surface via the
annulus with minimal loss of drilling fluid under normal
operational conditions. At the surface, the drilling fluid
goes through a treatment system consisting of various
stages, where the fluid will be treated and made ready
to be pumped back into the well [1]. This treatment at

This is an extended version of the paper presented in the 2017
IEEE Sensors Conference, held at Glasgow, UK on Oct. 30 — Nov.
1 2017.

the topside of the drilling platform consists of removal of
rock cuttings, sand and wellbore fluids (oil and/or gas),
a check of the drilling fluid’s rheological properties and
adding additives if necessary. This circulation system
and the properties of the drilling fluid is crucial in
controlling the pressure in the well. For a well that
may be anywhere from 2000 [m] to 10 000 [m] long,
the task of measuring and controlling the pressure can
be a challenge. Typically, drilling operations in oil &
gas wells have real-time data of the pressure in the well
close to the drilling bit [2]. In addition, the pressure is
monitored in the drilling fluid circulation system on the
platform. However, the pressures of the formation being
drilled are challenging to estimate and harder still to
measure. Hence, good measurements of the volumetric
flow going into and coming out of a well can be a good
estimator for the pressure relationships in the wellbore.
The pore pressure (P,) is the pressure of the fluid in
the formation, fracture pressure (Py) is the pressure
integrity of the formation, i.e. the pressure the formation
can withstand before fracturing. The pressure of the
wellbore (P,) is limited by these for normal drilling
operations. Should P, fall below P, formation fluids will
flow into the well (influx). On the opposite side is Py
limiting the maximum P, as a fractured formation will
cause loss of drilling fluids into the well and a loss of
pressure control. By comparing the inflow to the return
flow kick/loss situations may be detected and treated,
this method is referred to as the delta flow method
first proposed by [3] and further discussed by [4]-[6].
There are also other kick and loss detection methods as
described in [7] requiring other measurements in addition
to return flow, other sensors are hence necessary. As
proposed in [8], a downhole sensor may be able to detect
changes in flow to indicate kick and loss situations.
This solution although elegant, faces challenges due to
high pressure, temperature and associated stresses in
downhole equipment. These problems are circumvented
by using delta flow method in open Venturi channels
located on the topside of the drilling platforms.

A flow loop system for drilling fluid comprising an open
channel with sieves for filtering out cuttings has been
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existing almost a century with very few modification in
the sensors for monitoring the in- and outflows of drilling
fluid from the drilling fluid tank after its flow downhole
and back to the tank.

There has been a dire need for a monitoring system
to supervise the in- and outflow of the drilling mud.
The drilling mud flowing downhole is processed and at
a lower temperature, whereas the drilling mud flowing
back to the topside of the drilling platform, is hot and
has cuttings and multiphase. Any intrusive and invasive
assembly of modules in the drilling mud will not last
long in such a hostile environment. Al-Naamany et al. [9]
describe a laboratory arrangement for measuring liquid
levels in the presence of emulsions and report some
success in their efforts. This system described in [9]
uses the measurement data in a feed forward neural
network with good estimates of the heights involved
in the laboratory scale bath used in the experiments.
Such an assembly will not be possible due to the
stipulations from the operators of drilling platforms and
firms handling drilling mud. Ultrasonic wave propagation
studies for drilling fluid characterization have been done
previously with limited success, [10]. Intrusive ultrasonic
instrumentation in the environment of drilling fluid is
prone to many problems due to the presence of cuttings,
vibration of the open channel, high temperatures etc.
During offshore boring operations, the drilling mud
returning to the open channel has temperatures in
the range of 30-92 [°C|. As there is no monitoring
system currently, the operators prefer a system capable
of functioning at least some of the time, giving
process information. The current non-invasive design
was designed to meet some of the specifications of the
operators due to ease of handling of the non-invasive
sensor system and the reduced maintenance costs. Any
housing or stand as proposed in Al-Naamany et al. [9]
will not survive the harsh and erosive flow in the drilling
fluid loop. The operators came with the requirements
of non-intrusive and non-invasive measurement system
for monitoring the flow and rheological parameters of
the drilling fluid. In addition, there are established
procedures to limit emulsion and foam formation by
using additives, commonly practised in the drilling
industries. The motivation for the current study is to
have a monitoring system able to provide reliable data
on the flow of drilling mud most of the time, even though
such a system may malfunction at times, but not always.
In fact, there have been efforts to use gamma radiation
to monitor drilling fluid flow and some studies are still
going on to test this modality, again in a non-intrusive
and non-invasive manner, [11].

A mechanistic volumetric flowrate model based on
the fundamental Bernoulli equation is limited by the
need for the tuning of correction factors, which among
others depend on the drilling fluid density. However,
experimental results show that the majority of these
models are hampered in their performance due to
changes in fluid density. Generalized models with

densitometers synchronized to other sensors are possible,
but in some applications as in the measurement of
drilling fluid flow in the petroleum industry, density
measurement is not a prevailing standard, due to costs
associated with their procurement and maintenance.

B. Background on Fluid Flow Measurement

Multiphase flowmeters (MFM) are frequently found
in the oil & gas industries involving different techniques
[12]. In the o0il & gas industries, three-phase flow of water,
oil and gas is frequently encountered. In multiphase flow
involving three phases, the fraction of each phase in
addition to its flow rate is also needed. As noted in
[12] MFM is a highly competitive area, where business
interests may overshadow scientific interests, as reflected
in the available literature. Nonetheless, there are several
types of MFMs. In [13] a multimodal approach using
capacitance and gamma-rays is presented. Capacitance
and acoustic sensors are used in [14] to measure the
three-phase flow of oil, gas and water with discussions on
their applicability to other industrial sectors. Additional
information for users of multiphase flowmeters can be
found in [15].

Measurement of the volumetric flow rate of the return
flow from an oil/gas well is especially challenging, as
the multiphase drilling fluid also contains large amounts
of abrasive rock cuttings, with very varying particle
size distribution. Contrary to the applications mentioned
above, a fractional determination of the different phases
is not needed in this case. Selected flowmeters used in the
oil and gas industries are described in detail in [4]-[6] and
these include pump stroke counter, rotary pump speed
counter, magnetic flow meter, ultrasonic Doppler flow
meter and Coriolis mass flow meter for inflow. For return
flow, the literature lists standard paddlemeter, ultrasonic
level meter, prototype rolling float meter, magnetic flow
meter and Venturi flow meter. Due to the challenges
with measuring the return flow, the paddlemeter is still
the industry standard [16]. As mentioned by Schafer in
[6], this sensor only gives a qualitative measurement,
and human interpretation is necessary. The delta flow
method needs precise inputs of both inflow and return
flow as discussed in [7]. Thus, there is a need for better
volumetric flow meters for measuring the return flow.

Artificial neural network (ANN) has earlier been used
in flow estimation, [17] to estimate and interpolate
velocity profiles. In another study related to multipath
ultrasonic flow metering, a three-layer ANN was used
with flow velocities on individual sound paths as inputs
and the averaged flow velocity over the cross-section
of the pipe as output. The estimated mean velocity
with ANN had a measurement uncertainty of +0.3%
within Reynolds numbers from 3.25 x 103 to 3.25 x 10°
without the use of any flow conditioner [18]. Another
approach of enhancing multipath ultrasonic flow meter
performance used genetic algorithm (GA) for optimizing
the performance of the ANN used. The GAs were used
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in determining the ANN architecture, weights and biases
in the ANN without getting stuck with local minimum
[19]. Both methods indicated the versatility of using
inferential soft sensing techniques to estimate volume
flow velocities using time of flight (ToF). Indirect, or
what is now known as soft sensing of volumetric flow
rate estimation has been described by Godley [20],
based on ToF Doppler and cross correlation of echo
signals from particles/bubbles in the flow. Yang et al.
[21] describe in detail a system using a Parshall-flume.
Furthermore, Lynnworth and Liu [22] describe different
types of ultrasonic flow meters developed over the last
50 years. The current technologies based on ultrasonic
flowmetering can yield accuracies close to 0.5% and
in fiscal metering applications even down to 0.25%.
The techniques based on ultrasonics are limited to
closed circulation systems. Based on these earlier works,
different methods of soft sensing of volumetric flow in
open channels are presented. Additional information for
users of ultrasonic flowmeters for oil, gas and oil with
water droplets can be found in [15].

The presented measurement strategies use transit
times from arrays of transducers as well as density
from Coriolis meters for estimating volume and mass
flow velocities. Using ISO 4359:2013, [23] as the basis
and their performances are compared starting from an
array consisting of three ultrasonic transducers, another
configuration using density from Coriolis meter as an
additional input and finally a single ultrasonic transducer
for estimating volume flow velocity in open channels.

Estimation of volumetric flow rate of the drilling
fluid using the Delta Flow method can facilitate early
detection of kick and loss in drilling operation. Through
this non-invasive approach, the problems associated with
the composition of the non-Newtonian drilling fluids and
the inclusions in them are circumvented. Furthermore,
the non-invasive approach will have no effect on the flow
or pressure in the circulation system.

This study focuses on the use of Venturi constriction
in an open channel to measure the return flow of
circulating drilling fluid. For the study, a test flow loop
is available at University College of Southeast Norway
(USN), Porsgrunn Campus.

II. Materials and methods
A. Test Flow Loop at USN

The test flow loop at USN consists of a fluid tank
(with a blender on the top), a pump, an open channel
with Venturi constriction, different types of sensors along
the pipelines. A schematic of the flow loop is shown in
Figure la, including some of the sensors. The fluid in
the tank is pumped through the pipelines along the open
channel and back to the tank. For the flow measurement
through the pipe, a Coriolis mass flow meter is used. For
the flow measurement through the open channel, there
is a Venturi constriction and three different ultrasonic
level sensors as shown in Figure 1b.

For the flow studies, different types of model-drilling
fluids are available. The fluids are prepared by mixing
water with potassium carbonate (as densifier) and
xanthan gum (as viscosifier). In this study, five different
fluids with varying densities and viscosities are used.
Table I shows details of the chemical composition of
the fluids. All the fluids are non-Newtonian and shear
thinning in nature as shown in Figure 2.

B. Flow Measurement Systems

Different flow measurement systems are introduced
and evaluated in this section.

1) Coriolis Mass Flow Meter: For this study,
a Coriolis mass flow meter (Vendor: Endress +
Hauser, Model: Promass 63F, Range: 0-1000 [l/min],
Uncertainty: £0.10%) is used. It is an accurate flow
meter for a pipe flow. However, the current study shows
that the Coriolis mass flow readings are not reliable for
the fluids flowing with excessive air bubbles. Figure 3
shows how the mass flow measurements of the Coriolis
meter are affected by the introduction of air bubbles.
Measurements performed with Fluid 2 are shown here,
but the effect is similar with all fluids used in this
study. The drilling fluid in the inflow section of the
circulation loop while drilling is a single phase fluid
flowing into the wellbore and Coriolis mass flow meter
can be preferably used. The scenario is completely
different in the return flow section of the circulation loop.
The fluid is contaminated with rock cuttings, formation
gasses, and formation fluids. To analyze the effect of
gas/air bubbles on Coriolis readings in our flow loop,
additional air bubbles are created by running a blender
at 235 rpm. The rotating blades of blender generate
extra air bubbles and turbulence in the circulating
fluid. The model-drilling fluids used in this work consist
of air bubbles due to the presence of xanthan gum.
Figure 3b shows that the Coriolis mass flow readings
in the presence of excessive air bubbles are not reliable.
Hence, it seems that Coriolis mass flow meter is not
appropriate to use in the return flow section of the
circulation loop while drilling. However, this has to be
verified using more extensive tests.

2) Mechanistic Flow Models using Uniform Geometry
Open Channel: In 1889, Robert Manning presented a
flow model for an uniform geometry open channel, which
is given in Eq. 1, [24].

V= _ (Rh)2/3 Vsin © (1)
N Manning
where V is average velocity of the fluid, nysanning is a
coefficient dependent on the roughness of the channel,
Ry, is the hydraulic radius, and © is the channel slope.
The applications of these models are limited as they need
proper tuning of the coefficients and are applicable only
for Newtonian fluids [25]. Other models for Newtonian
fluids are discussed in [25].
Haldenwang et al. have developed a model suitable
for flow of non-Newtonian fluids in open channels with
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Fig. 1: a) Simplified schematic of the measurement system with the array of ultrasonic level sensors. b) Open channel
with an array of Venturi constriction and three ultrasonic level sensors scanning the upper surface of drilling fluid

exposed to air.

TABLE I: Different fluids used in the study along with the corresponding chemical compositions. Fluid 1 is a mixture
of water with residual fluids in the tank during the process of changing drilling fluid in the flow loop.

Fluids Potassium Carbonate [%weight] Xanthan Gum [%weight] Density [kg/m?]
Fluid-1 0 0 1015
Fluid-2 18 0.07 1145
Fluid-3 21 0.07 1190
Fluid-4 29 0.21 1240
Fluid-5 73 0.22 1340
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Fig. 2: a) Shear stress vs. shear rate curves for all the types of non-Newtonian fluids used in the study. b) Viscosity
curves at different values of shear rates for the all the fluids. Rheological parameters measured using Anton Paar

Viscosmeter in STATOIL laboratory.

uniform cross-section, [26], [27]. Other different flow
models for non-Newtonian fluid flow through a uniform
geometry open channel are discussed in [25]. In [27],
open channel flow models applicable for all types of
non-Newtonian fluids (Bingham-plastic, power-law, or
Herschel-Bulkley fluid) are presented. Eq. 2 and Eq. 3
are the models used to estimate average velocity of the

fluid in laminar and turbulent flow respectively.

Ry

V:2

{(16/K)}€Tw — Ty

1/n
] for laminar flow  (2)
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Fig. 3: The performance of Coriolis mass flow meter (flow rate vs. time) in the presence of air bubbles. (a) The Coriolis
mass flow readings are stable and reliable in the absence of air bubbles. (b) The Coriolis mass flow readings with
numerous spikes are not reliable with excessive air bubbles and high turbulence.

2T,
V=, ——2— for turbulent flow 3
e ®

2
Ra=—2
K (%)
where K is a constant dependent on the geometry
of the open channel (for example: K is 17.6 for a
trapezoidal channel, which is experimentally found in
[28]). T is average wall shear stress, 7, is yield stress,
k is consistency index, n is flow index, p is density, ¢;
and ¢y are empirical constants based on the geometry of
the channel (for example: ¢; = 0.0851 and c; = —0.2655
for a trapezoidal channel, [28]), and Ry is Haldenwang’s
Reynolds number.

The flow models given in Eq. 2 and Eq. 3 depend
on the rheological properties of the fluid. In drilling
fluid circulations, the returning fluids have different
rheological properties in each circulation and it is a
challenge to perform real-time rheology measurements.
Hence, these models are not applicable for measuring the
return volume or mass flow rates of drilling fluids.

3) Mechanistic Flow Models using Open Channel
with Venturi Constriction: The volumetric flow of an
incompressible non-Newtonian fluid through an open
channel with a Venturi constriction can be estimated

using the fundamental Bernoulli equation defined by
Eq. 5.

where,

P n a V{ b= P V7
rg 29 rg 29
where P is fluid pressure, g is gravitational acceleration,
« is kinetic energy correction factor, z is the elevation
with respect to the datum, and the labels 1 and
2 represent the upstream and the throat sections
respectively.
Two standard forms of the energy equations are
used in the study. The first form is given in Eq. 6,

+ 22 (5)

which is derived by rearranging Eq. 5 and implementing
continuity equation, V3 x A; = V5 x As [29].

Qu = CaAiAs {29 { (hy — 1)+ (22 = 21) }}1/2 (6)

O{QA% — OélA%

where Q, is volumetric flow rate, A is cross-sectional
area, h is fluid level, and C}; is the coefficient of discharge.
This flow model estimates the volumetric flow based on
the upstream and throat level measurements, henceforth
referred to as upstream-throat based model.

The Bernoulli energy equation defined by Eq. 5 can
be modified to specific energy equation as in Eq. 7.

V2
E;,=h+ % (7)

where, FE, is a specific energy. Implementing the
concept of minimum specific energy at critical level (i.e.
dEs/dh = 0 for h = h,), the second standard form of
the flow model as given by Eq. 8 is obtained. Detailed
mathematical derivation is given in ISO-4359 [23].

92\ 3/2 p 1/2
Q, = C4CsC, (3) () byh/? (8)

aq

where C is the shape coefficient, C, is the coefficient
of velocity, and b is the bottom width of the channel.
This flow model estimates the volumetric flow based on
a single upstream level measurement, henceforth referred
to as upstream based model.

Figure 4 shows the estimations of these standard flow
models based on the level measurements of Fluid-2. The
estimations show that the problem of measuring the flow
rates in the presence of excessive air bubbles is solved.
Hence, these models are considered as standard flow
models for the open channel with Venturi constriction.
However, there are several limitations with these models.
One of the main issues is tuning the kinetic energy
correction factor («) for different types of fluids. The
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correction factor is dependent on the flow regime
(normally a = 1 for turbulent flow and o = 2 for laminar
flow) and the flow regime is dependent on fluid rheology.
Thus, the correction factor is different for different fluids
and for different flow rates of the same fluid. In Figure 4,
the kinetic energy correction factor is tuned to o = 1.3
for this particular fluid.

In Figure 5 the mechanistic models are used to
estimate flow rates of different fluids with «; = 1.3
and oy = 1. The estimates are accurate for fluids
with low density and viscosity (Fluid-1 and Fluid-2),
whereas the estimates are over-estimated for fluids with
higher density and viscosity (Fluid-3 and Fluid-5). It
is because the kinetic energy correction factor is tuned
based on low-density fluid (Fluid-2). The variations in
Mean Absolute Percentage Error (MAPE) for different
fluids show that there is a need for proper tuning of
kinetic energy correction factor. The turbulence in the
flow profile reduces with increased density and viscosity.
Hence, the correction factor should be chosen higher than
1.3 (closer to 2) for high density and high viscosity fluids.

4) Machine Learning based Flow Models: Due to
the limitations in Coriolis mass flow meter and flow
measurement systems and models presented above, this
study focuses on machine learning models. In our
previous study [30], [31], different machine learning
models are developed to estimate the mass flow rate
based on three ultrasonic level measurements in the open
channel. The selection of three ultrasonic level sensors as
inputs is based on loading weights plot in multivariate
data analysis [30]. Further study showed that these mass
flow models are limited to a single fluid, i.e. a data model
based on single fluid is not generalized to other fluids.
Figure 6 shows mass flow rates vs. upstream levels at
different flow rates for different fluids. The plot shows
that fluids with different densities flow with different
upstream levels to get the same mass flow rate. For
example, to get 300 [kg/min] flow, a low-density fluid
(Fluid-1) has around 80-85 [mm] upstream level and
a high-density fluid (Fluid-5) has around 65-70 [mm]
upstream level. A low density fluid needs high volumetric
flow and a high density fluid needs low volumetric flow
to have a same mass flow rate. Hence, the mass flow rate
model based on level measurements is not generalized to
different fluids.

One possible way to generalize mass flow rate model
is by including density as another input variable
along with three ultrasonic levels. Figure 7 shows the
estimations of artificial neural network based generalized
mass flow model with four different fluids (Fluid-1,
Fluid-2, Fluid-3, and Fluid-5). MAPE calculated for each
estimation show that the trained ANN mass flow model
is highly accurate and can generalize different fluids.

It is possible to implement such a generalized mass
flow model in the flow loop at USN, as the density of
the fluid is measured using Coriolis mass flow meter.
However, in current drilling operations most of the work
is performed manually, including density measurement

(done on samples taken from the flow loop). With the
increase of autonomous solutions/operations in drilling,
the need for real-time measurements will increase, but
they are not standard yet [32].

Hence, the focus of this study is on developing
new machine learning models (simple linear regression,
polynomial linear regression, support vector regression,
and artificial neural network) for estimating volumetric
flow rates using a single upstream level measurement.
The single upstream level is measured using LT-2 level
sensor and the position of the sensor is shown in
Figure 16a in Appendix C. Further details of all the
proposed models are given in Appendix B.

IIT. Results and discussions
A. Data Pre-processing

All the fluids are circulated in the test flow
loop at USN. The reference volumetric flow rate
and corresponding upstream level data are logged.
Figure 8a shows the logged raw data. The ultrasonic
level measurements have some random uncertainties in
measurements. Therefore averaged values of upstream
levels are computed for each volumetric flow rate.
Figure 8b shows the averaged volumetric flow rates
vs. averaged upstream levels for different fluids. This
averaged data is used to train the machine learning
models.

B. Performance Evaluation of Proposed Models

Four different types of machine learning models are
used to fit the averaged data. Figure 9 shows the
averaged data plot with fitted models using simple linear
regression (SLR), polynomial linear regression (PLR),
support vector regression (SVR), and artificial neural
network (ANN).

The polynomial linear regression is of second degree.
The SVR with radial basis function is used. The model
hyperparameters of the SVR model are tuned based
on the grid search method. The ANN model with
two hidden neurons in one single layer is used. For
comparison purposes, two different ANN models (one
with three inputs — three ultrasonic level sensors;
another with four inputs — three ultrasonic level sensors
+ density; for both ANN models output — mass flow
rates) are trained. For learning ANN models, Bayesian
regularization training algorithm available in MATLAB
Neural Network Toolbox is used. Further details on all
the proposed models are given in Appendix B.

Figure 10 shows the performance of the proposed
machine learning models used on the randomly varying
experimental data of Fluid-5. Table II shows the
comparison of the performance of different proposed
models based on MAPE and Root Mean Squared Error
(RMSE). All of the models are capable of estimating
randomly varying volumetric flow rates. The SLR model
has the largest error and the proposed ANN model has
the lowest error in the estimations.
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Fig. 4: The mechanistic flow models are capable of estimating reliable flow rates in the case of both less and excessive
presence of air bubbles. Flow rates vs. time shown with the kinetic energy correction factor tuned to a = 1.3.

TABLE II: The comparison of the performance of different machine learning models used for estimating the volumetric
flow rates based on Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE).

Machine Learning Models MAPE [%] RMSE [I/s]
Simple Linear Regression 4.76 0.24
Polynomial Linear Regression 2.09 0.16
Support Vector Regression 2.37 0.17
Proposed Artificial Neural Network (with Input = single ultrasonic level) 2.05 0.16
ANN (with Inputs = three ultrasonic levels and density) 2.44 0.16
ANN (with Inputs = three ultrasonic levels) 2.25 0.16

For Fluid-1, MAPE = 2.50%, MAPE =2.67% For Fluid-2, MAPE = 2.38%, MAPE,=3.31%
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Fig. 5: Results from mechanistic models using the
fluids (Fluid-1, Fluid-2, Fluid-3, and Fluid-5) shown
in all figures as flow rate vs time. The performance
of the models are evaluated based on Mean Absolute
Percentage Error (MAPE). MAPE; and MAPE, given
for estimates for upstream based and upstream-throat
bases respectively.

C. Extrapolating the Proposed Models to Higher Flow
Rates

The results show that the proposed models are reliable
to use for the considered flow range (3 — 7.5 [I/s]). But
the objective of the study is to develop a generalized

Mass Flow Rates vs. Upstream Levels for Different Fluids
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Fig. 6: The reference mass flow rates with the
corresponding upstream levels for fluids with different
densities (or rheological parameters).

volumetric flow model that is reliable over a wide range.
Based on an earlier paper [5], a suitable flow meter should
have the following features:

o an accuracy of 1.5 — 3 [I/s] for flow rates up to 75
[1/s] in normal drilling operational environment.

o reliability and accuracy of measurements over the
full range of flow.

o the accuracy should be maintained on any type of
drilling fluids (water and oil based) in the viscosity
range 1 —200 [¢P], and density range of 1000 — 2160
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Fig. 7: Artificial neural network (ANN) trained with the
three ultrasonic levels and density as inputs and mass
flow rate as output. ANN model is used to estimate
mass flow rates of four different fluids (Fluid-1, Fluid-2,
Fluid-3, and Fluid-5) with high accuracy. Mass flow rates
vs. time at varying setpoints, in all plots.

[kg/m?].

Therefore the proposed models should be tested by
extrapolating to 75 [1/s]. To compare the extrapolation
fittings of the proposed models, we need a standard
reference. In this study, the standard upstream based
model (defined by Eq. 8) is tuned for the averaged data
values and considered as a reference for extrapolation.
Figure 11 shows the tuning of kinetic energy correction
factor of the upstream based flow model to fit the
averaged data. Based on the RMSE calculation for each
correction factor, the upstream based flow model with
a = 1.4 fits the averaged data with minimum error.

Figure 12 shows the comparison of the standard
upstream based model with the proposed machine
learning models in the wide range of flow. The volumetric
flow estimates of the PLR model and the SVR model
are very close to the estimates of the standard model.
The volumetric flow estimates of the SLR model and the
ANN model are limited to data range used in the study.
Despite being the best model in the given data range,
the ANN model cannot generalize the wide range. The
calibration of a neural network with back propagation
learning algorithm needs scaled data, which depends on
the activation function used in the hidden neurons. In
this work, sigmoid activation function is used in the
hidden neurons. Therefore, for any upstream level below
or above the data range, the ANN model will estimate
minimum or maximum volumetric flow rates of the data
range as shown in Figure 12d.

IV. Conclusions

In this study, different machine learning models
are proposed to estimate volumetric flow rates using
upstream level measurements in an open channel with

Venturi constriction. These models are meant for the
volumetric flow estimations of non-Newtonian drilling
fluids while drilling an oil or gas well. In drilling
operations, pressure control is important for several
reasons, but primarily for safety. These models can be
used to estimate return flow of drilling muds, which
can be further used to monitor the pressure in the
wellbore. To develop machine learning models, a test
flow loop available at USN is used. Different types of
non-Newtonian model-drilling fluids are circulated in the
flow loop to generate data for training and validating
models.

The study shows that the flow measurements using
a standard Coriolis mass flow meter are not reliable
in the presence of excessive air bubbles. Two different
standard mechanistic flow models seem to overcome
the effect of excessive air bubbles. But the need of
tuning a kinetic energy correction factor for different flow
conditions limits the reliability of these models. Machine
learning models developed to estimate mass flow rates
in our previous study appear to be reliable in any flow
conditions but are limited to a single fluid. By using
density as an additional input to the existing mass flow
rate models, the models developed can be generalized
for different fluids. However, the current study focuses
on using generalized volumetric flow models based
on single upstream level measurements. The proposed
machine learning models (SLR, PLR, SVR, and ANN)
are accurate and reliable in any flow conditions and
for different types of fluids. The experimental study
shows that all the proposed models are capable of
tracking randomly varying setpoints. The ANN model
gives the best estimations with MAPE of 2.05% and SLR
model gives the worst estimations with MAPE of 4.76%.
However, all the estimations are within the acceptable
accuracy limits as needed for a new flow meter as given
in [5].

Based on the requirements given in [5], a new flow
meter should have a measuring range up to 75 [l/s].
Therefore, all the developed models are extended to cover
the whole range of flow. As a reference, the upstream
based mechanistic flow model with a tuned correction
factor is used. The extrapolation results show that PLR
and SVR models are capable of estimating wider range,
whereas SLR and ANN models are limited to the range
of training data.

As a possible way of further improvement of these
models, ultrasonic level sensors can be replaced by
radar level sensors for upstream level measurements.
Experimental data show that the ultrasonic level
measurements are affected by air bubbles present in
a fluid. By reducing the random uncertainties in the
level measurements, the accuracy in the flow estimations
can be improved. The uncertainty analysis of ultrasonic
level measurements and machine learning based flow
estimations is performed in Appendix B-E.
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Fig. 8: (a) The reference volumetric flow rates with the corresponding upstream levels for different fluids. (b) The
averaged volumetric flow rates with the corresponding averaged upstream levels for different fluids.
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Appendix A
Data used for Modelling

The averaged data are sorted based on the upstream
level. The averaged upstream level is input (in [mm]),
which is denoted by ‘x’ as,
x={0.0678, 0.0709, 0.0719, 0.0732, 0.0734, 0.0742,
0.0747, 0.0761, 0.0771, 0.0776, 0.0779, 0.0788, 0.0796,
0.0804, 0.0814, 0.0817, 0.0823, 0.0832, 0.0843, 0.0846,
0.0846, 0.0863, 0.0865, 0.0876, 0.0883, 0.0896, 0.0899,
0.0900, 0.0902, 0.0903, 0.0911, 0.0933, 0.0936, 0.0939,
0.0948, 0.0958, 0.0968, 0.0972, 0.1012, 0.1034 }

The averaged reference volumetric flow is output (in
[m3/s]), which is denoted by ‘y’ as,

y={0.0034, 0.0037, 0.0037, 0.0039, 0.004, 0.004, 0.004,
0.0042, 0.0044, 0.0045, 0.0044, 0.0043, 0.0046, 0.0047,
0.0047, 0.0046, 0.0049, 0.0049, 0.0051, 0.005, 0.0049,
0.0053, 0.0053, 0.0055, 0.0052, 0.0056, 0.0054, 0.0057,
0.0057, 0.0056, 0.0058, 0.006, 0.0062, 0.0062, 0.006,
0.0063, 0.0066, 0.0066, 0.007, 0.0074 }

Appendix B
Machine Learning Models

A. Simple Linear Regression Model

A simple linear regression model is of form given by
(Eq. 9), where wy = —0.0041 and w; = 0.1082 for the
data under the study.

f(z) = wo + wrz (9)

B. Polynomial Linear Regression Model

A polynomial linear regression model is of form given
by (Eq. 10), where wy = 0.001, wq = —0.0117 and wy =
0.7043 for the data under the study.

f(z) = wo + wiz + wox® (10)

C. Support Vector Regression Model

A support vector regression model is of form given by
(Eq. 11).

nsv
F@) =Y = ADk(XY @) + wo (11)

i=1
For the data under the study, number of support vectors
ngy = 37 and bias term wy = 0.2166. Support vectors
denoted by XV as,
XSV={0.0709, 0.0719, 0.0732, 0.0734, 0.0742, 0.0747,
0.0761, 0.0771, 0.0776, 0.0779, 0.0788, 0.0796, 0.0804,
0.0817, 0.0823, 0.0832, 0.0843, 0.0846, 0.0863, 0.0865,
0.0876, 0.0883, 0.0896, 0.0899, 0.09, 0.0902, 0.0903,
0.0911, 0.0933, 0.0936, 0.0939, 0.0948, 0.0958, 0.0968,
0.0972, 0.1012, 0.1034}
The difference in the Lagrange multipliers is denoted
by (A — A*) as,
A—=X* = {5.00e-05, -0.000174389, -5.49¢-05, 0.000957214,

0.000110989, -2.12e-05, 7.10e-05, 470.3760786,
499.9998988, 5.09e-05, -499.9994899, 5.29e-05,
499.9997232, -499.9999591,  499.999593, 1.45e-05,
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0.000220111, -499.9970822, 3.27e-05, 0.001997597,
0.000728455, -499.9999113, -1.45e-05, -499.9999324,
499.9983046, 4.26e-05, -499.9997141, 3.81e-05,

-0.000306798, 29.61633402, 0.003657766, -499.9999413,
-7.12e-05, 499.9993156, -1.06e-05, -8.43e-05,499.9994947}
k(X?PV,z) is a Mercer kernel and radial basis function
is used as the kernel in this study. The values of
hyperparamters (regularizing parameter (C) = 500,
spread (o) = 0.7, and error tolerance (¢) = 0.0001)
are selected based on grid search method. The value of
Lagrange multipliers depends on these hyperparameters.
The detail mathematics on support vector regression is
found in [33].

D. Artificial Neural Network Model

In this study, the proposed artificial neural network
consist of 2 hidden neurons as shown in Figure 13. A
sigmoid activation function is used in hidden neurons
and a linear activation function is used in the output
neuron. The neural network model is of form given by

(Eq. 12), where wgy = —1.28, wa; = 1.60, w3y = 0.51,
w31 = 084, Wy = —0.05, Wyy = 062, Wy3 = 098, and
¢(.) is hyperbolic tangent sigmoid function.

f(x) = ¢(wao + wa1) * waz + P(wzo + w312) * Wiz + wao

(12)
The architecture of two different mass flow rate ANN
models used in the study are shown in Figure 14. The
number of neurons in these networks are selected based
on the grid search method with an objective of lowest
mean squared error.

E. Uncertainty Analysis of Volume Flow Rate Estimates
based Fluid Height

For mathematical simplicity, the PLR model is chosen
for uncertainty analysis. The systematic uncertainty of
the ultrasonic level sensor used in this study is £0.0025
[m] for measured distance of less than one meter [34].
As the proposed models for flow rate are based on single
ultrasonic level measurement, the systematic uncertainty
of the level sensor is propagated to the proposed PLR
model based on Eq. 13 given in [29].

0
Uf(x) = gg) X Ug (13)

where u represents systematic uncertainty.

The differential term in Eq. 13 is computed by
differentiating Eq. 10 with respect to level (i.e. ‘x’) and
using an average value of level. Average level at 4 [I/s]
is considered in this calculation (i.e. Xaverage at 4 [I/s] is
0.0742 [m]). The systematic uncertainty estimate based
on the PLR model is +0.23 [I/s].

The random uncertainties are analysed based on
box plots. Figure 15 shows the box plots of upstream
ultrasonic level measurements and flow rate estimations
of the PLR model at different flow rates. The box plots
show that the uncertainty in the flow estimations is
directly dependent on uncertainty of level measurements.
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Fig. 12: All the proposed machine learning models are extrapolated to wider range and compared with the standard
upstream based flow model. The neural network model uses sigmoid activation function. Volumetric flow rate vs.

upstream level.

Fig. 13: The artificial neural network architecture with
single upstream ultrasonic level measurement as input
and volumetric flow rate as output. The hidden layer
consists of a single layer with 2 hidden neurons.

Appendix C
Geometry of the Open Channel

The channel geometry of the open Venturi channel
used in the study is shown in Figure 16. The positions of
three ultrasonic level sensors used in this study are shown
in Figure 16a. For the standard flow models given in
Section I1-B3, h; is measured using LT-2 level sensor and
ho is measured using LT-3 level sensor. For the proposed
single level based machine learning models, the level is
measured using LT-2 in the position shown in Figure 16a.
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Abstract—The drilling process is generally costly and time
consuming and prone to serious hazards. Cost-efficiency and
enhanced safety measures are vital for any drilling operation. Recent
studies indicate that poor reliability in the drilling process resulted
in as much as 30% loss of production time. Improved sensor
technology with process automation can improve process
performance and safety. During drilling operations, along with the
drillstring, a drilling fluid, commonly very dense and viscous fluid,
is circulated in a closed flow-loop. The drilling fluid, non-Newtonian
in its rheological behavior, serves three main objectives: keeping the
bottom-hole pressure at an acceptable level, lubricating the drill bit
and facilitating the removal of cuttings and debris from downhole.
These three goals have to be kept in balance and are achieved by
adjusting the density (p), viscosity (1) and the flow-rate (qv) of the
drilling fluid. These three drilling process parameters need to be
continuously monitored for optimizing process performance and
securing safety. The cuttings in the drilling fluids make it especially
challenging when conventional in-line sensor systems are used due
to the unavoidable erosion and maintenance costs. Non-invasive
ultrasonic measurement techniques can be part of a robust and easily
implementable control and monitoring system. In this work
ultrasonic properties of different drilling fluids are studied.
Propagational properties of different samples of drilling fluids are
studied with focus on attenuation and frequency characteristics in
transmission mode. Experimental results using different sets of
ultrasonic transducers with different frequencies, confirm the high
attenuation of ultrasonic pulses. A model is proposed to estimate the
attenuation and viscosity of the drilling fluid based on ultrasonic and
rheological parameters. This study presents results from ultrasonic
interrogation of non-Newtonian fluids with focus on their
rheological properties.

Keywords— Ultrasonic attenuation; Drilling fluid; Drilling fluid
viscosity, Drilling fluid density, non-Newtonian fluid

I. INTRODUCTION

The process of drilling oil & gas wells either on land or
offshore, uses a special drilling fluid for several purposes. The
drilling fluid is circulated through a flow loop which extends
from the surface equipment down to the drill bit in the bore hole.
Some of the more important purposes of the drilling fluids are:
Controlling the bottomhole pressure (BHP); cool, lubricate and
clean the drill bit; and remove rock cuttings from the well [1],

[2].

These and other characteristics of drilling fluids require them
to possess conflicting chemical and physical properties. These

Economic support from The Research Council of Norway and Statoil
ASA through project no. 255348/E30 “Sensors and models for improved
kick/loss detection in drilling (Semi-kidd)” is gratefully acknowledged.

conflicting requirements lead to challenges to the engineers
involved in their production. The drilling fluid can be either
water based mud (WBM) or oil based mud (OBM), satisfying
environmental regulations and possessing specific rheological
properties. Several additives are used to tune the drilling fluid to
achieve the set of desired properties necessary for a particular
application. Drilling fluids with their high viscosities and high
densities are non-Newtonian in their rheological behavior and
help to carry the cuttings from the borehole to the surface.

Online access to the rheological parameters of the drilling
fluid and its behavior during its circulation in the flow loop is
useful for the optimal operation of the rig. The drilling fluid is
designed, mixed and checked before being fed into the
circulation. During the drilling operation, properties of the
drilling fluid changes continuously. The drilling engineer has to
rely on various measurements based on samples taken at specific
locations in the circulation system, including intermittent lab-
analysis. Hence, dedicated non-invasive online measurement
techniques would improve the monitoring of rheological
properties. Monitoring the drilling fluid properties is important
for safety reasons, but also for maintaining and improving the
drilling efficiency.

In this study, we have investigated the relationship between
ultrasonic and rheological properties of the drilling fluid. By
combining empirical models with ultrasonic measurements of
the mud returning from the wellbore, we can better understand
the behavior of the drilling fluid. This will ensure that the drilling
fluid keeps its properties as desired, and thus performs according
to expectations.

Ultrasonic measurements are one of the measurement
principles to be applied to the drilling fluid during its return flow.
This is a non-intrusive measurement of selected characteristics
on the drilling fluid, and measurements of ultrasonic properties
of drilling fluid have been shown to be correlated to fluid
properties such as density and viscosity[3]-[5].Ultrasonic
measurement techniques are already used in flow-metering of
various oil, gas and multiphase streams in the petroleum
industries. Flow meters using transit-time difference and
Doppler frequency-shift are already in use in the field [6]. We
wanted to explore further the possible uses of ultrasonic
measurement principles to determine the rheological properties
of drilling fluids. A similar study [7] in the food industries has
shown very good results in characterizing another complex
fluid, the well-known tomato ketchup, which is also non-



Newtonian. Similar attempts have been made in characterizing
slurries, another complex fluid found frequently in the process
industries [8]. The aim of the current study is to model the
rheological properties that are hard to measure online, by using
the ultrasonic properties.

II. EXPERIMENTAL METHODS

A. Ultrasonic measurements

Data for the developed models have been collected at
University College of Southeast Norway (USN). The setup was
developed and used as a part of a final year project at USN [9],
and further developed for collecting data for this study. The
measurements were taken in a tank, with capacity of 170 liters.
Transmission mode of ultrasonic wave propagation was used in
the tests with transmitter and receiver submerged in the drilling
fluid, both mounted on a rack and guided using a rail above the
tank, as shown in Fig. 1. This rack and rail arrangement is used
to adjust the linear spacing x between the transmitter and
receiver. The ultrasonic attenuation and transit-time were
recorded at each location, as the spacing was stepwise increased.

We used three transducer couples in through transmission
mode. All with the same dimensions, 2.54 cm (1 in) element
diameter, and three frequencies; 0.5, 1.0 and 2.25 MHz. The
attenuations measured at a 3 cm linear spacing were used as
references (0 dB) for the three different transducer couples. The
linear spacing was stepwise increased in 2 cm increments. The
measurements were repeated to add to the data available for
facilitating the development of a suitable model development.

B. Mud analysis

The drilling fluid used in these experiments was produced by
MI Swaco, and supplied by Statoil for the purpose of these
measurements. To relate the rheological and ultrasonic
properties, it was decided to gradually dilute the supplied
sample. We started out with the drilling fluid as it was supplied,
and in steps diluted it five volume percentage 10 times with
water. This gave us ultrasonic measurements on 11 different
fluids, which then had the same components, but with different
concentrations and therefore different rheological properties.
The fluids will be referred to as Fluid 1 through Fluid 11. For
Fluid 1 and 2, only two samples for mud analysis were collected,
for the remaining fluids the results of the mud analysis are from
4 samples. Extensive fluid analysis on the sample fluids, with
focus on rheological properties, was done at Statoil. The
methods used in this analysis are comparable to, but are not

[

Transciever

Fig. 1: Ultrasonic experimental setup with transmitter and receiver
submerged in a tank containing the drilling fluid. x is the linear spacing
between transmitter and receiver

exactly the same as those used in the field analysis of drilling
fluid. This limits the comparability of the results from our
analysis of the mud to the results from other drilling fluid
analysis. For our purpose, they serve very well, as they allow us
to compare the attenuation with the changes in specific
rheological properties. The rheological properties analyzed are
density, viscosity, gel strength and yield point. Since the sample
fluids are non-Newtonian, the viscosity is dependent on the
shear rate, and a single value will not describe the fluid. The
established practice in drilling is then to use a Bingham-Plastic
model to describe the viscosity, and the reference viscosity is
known as plastic viscosity (PV) [1]. The initial yield stress
needed to start the flow of fluid, known as the yield point, is one
of the main characteristics of non-Newtonian fluids. The
Bingham-Plastic model for non-Newtonian fluids are described
by the equation,

T= .up)./ t 7y (1)
where the parameters are: 7 — shear stress [Pa]; u, — the plastic
viscosity [Pas] ; ¥ — the shear rate [1/s]; 7, — yield point [Pa].

III. RESULTS AND DISCUSSION

A. Ultrasonic attenuation

For the ultrasonic data, we recorded the time of flight (ToF)
and the received amplitude [dB]. Using these measurements, we
calculated the relative amplitude. Fig. 2 shows the relative
amplitude, A(x) [dB] against the distance, x [cm] between the
transmitter and receiver for all 11 fluids used in this study, with
the three different frequencies. We can observe two important
characteristics for the fluids and the ultrasonic attenuation here.
First, we see that the attenuation in dB for each fluid appears
linearly dependent on the distance. Secondly, the order the
curves stack on each other is the same order the fluids were
diluted from fluid 1, as the slope of the curves is increasing with
decreasing density, which implies positive correlation between
density and attenuation coefficient. Furthermore, the spacing
between them indicate there is a close relationship between the
changing properties of the fluids, and the decreasing slope
(attenuation) of the curves.

With this, we could anticipate that the diluting process had
changed the fluid in such a way that the attenuation decreased as
well. We used a linear least squares method on measurements in
dB scale to determine a based on the model for reduced
amplitude [10]-[12], as in

A(x) = Age™ (2

where the parameters are: A — reduced amplitude [V]; Ao —
unattenuated amplitude [V] at x = 0; o — attenuation coefficient
[Np/m]; x — propagation distance as shown in Fig. 1 [m].

Now, with the data shown in Fig. 2 we can develop the
regression models as outlined in (2) for each fluid sample, for
each frequency. This gives an estimate of o, which we can
compare for all fluid samples, given the frequency.



B. Regression models

The ultrasonic measurements clearly indicated that there is
a close relationship with the decreasing density of the fluid
samples and the ultrasonic attenuation. With the rheological lab
measurements, we can relate this change in attenuation to
rheological properties. We used linear least squares methods on
the lab measurements for density and viscosity together with
the estimated attenuation coefficient. This gave some promising
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Fig. 2: Relative amplitude for 11 fluids plotted against linear spacing of
the transmitter and receiver. Signal frequency is 0.5 MHz (a), 1.0 MHz
(b) and 2.25 MHz (c). Where the curves end for shorter distances than 45
cm, attenuation resulted in an unrecognizable amplitude.

models for these rheological properties, based on the ultrasonic
properties. Regression plots of the models are shown in Fig. 3,
in total six models are presented. Table 1 shows the model
coefficients as in (3) as well as R? and RMSE (Root Mean
Square Error) for fit evaluation.
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Fig. 3: Regression models for density and plastic viscosity. (a) for 0.5
MHz, (b) for 1.0 MHz and (¢) for 2.25 MHz.



These results are varying in fit quality, and albeit showing
potential, we believe that non-linear models, and combing
more inputs will lead to improved models. One model may
describe all available data for the different fluids. Both the lab
measurements of the drilling fluid as well as the ultrasonic
measurements are extensive and include more data than we
could use for analysis in this paper. Preliminary studies
looking into the development of non-linear empirical models
with data fusion of measured sound velocity as well as
measured attenuation indicate that such models can give
reliable estimates of density or viscosity. A sketch for
realizing such a data fusion scenario is shown in Fig. 4.
Similar to the matrix equation (3) above, the model can fuse
the times of flight yielding velocity of sound in real time thus
enabling a continuation evaluation of the density and plastic
viscosity in the process. Such a real time estimate will help to
trace trends and alleviate extraordinary and dangerous process
scenarios such as blowouts.

IV. CONCLUSION

In this study we have made extensive and numerous
ultrasonic measurements on 11 samples of drilling fluid.
Equally extensive lab measurements were made on the same 11
samples. This has provided large amounts of ultrasonic data and
data on rheological properties to be analyzed for correlation.
The first analyses are presented in this publication. Applying
linear least squares method on the ultrasonic data yielded good
results in estimating the attenuation coefficients for the
different fluids, using three frequencies: 0.5 MHz, 1.0 MHz and
2.25 MHz. The linear trend was better with lower frequency.

TABLE 1: REGRESSION MODEL COEFFICIENTS AND FIT EVALUATION VALUES.

Density, p [g/cm’] Viscosity, u, [mPas]
Model 0.5 1.0 2.25 0.5 1.0 2.25
MHz MHz MHz MHz MHz MHz
a 1.08 1.03 0.96 223 213 206
b 1.10 1.07 1.1 -12 -18 -20
R? 0.77 0.78 0.69 0.87 0.89 0.85
RMSE 0.03 0.03 0.03 3.8 34 4.1

Sound velocity,
Vs

Density, p
or plastic
viscosity, i,

Artificial Neural
Network (ANN)

Attenuation

coefficient

Fig. 4: Sketch of future planned empirical model with data
fusion on input and rheological properties as output.

The experimental results show positive correlations between
both attenuation and density, and between attenuation and
plastic viscosity. However, the relationships are only fairly
described by linear models, with R? values between 0.69-0.89.
Further analyses will focus on more data fusion and non-linear
empirical models, e.g. artificial neural networks.
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Estimating Rheological Properties Of Non-
Newtonian Drilling Fluids Using Ultrasonic-
Through-Transmission Combined With Machine
Learning Methods

Morten Hansen Jondahl
Department of Electrical engineering, Information Technology
and Cybernetics
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Porsgrunn, Norway
morten.jondahl@usn.no

Abstract— During drilling an oil/gas well, situations where the
pressure integrity of the well is lost are great risks to assets,
humans, and the environment, and represent high costs to the
drilling operation. The non-Newtonian drilling fluid that is
circulated while drilling serves several purposes, and its properties
are essential to fulfil them. The density (p) enables the drilling
mud to maintain pressure integrity during drilling operations. The
plastic viscosity (up) enables the fluid to transport cuttings, while
the gel strength (S) keeps the cuttings suspended when circulation
is stopped. The industry standard is to perform manual drilling
fluid checks every six hours to measure these three important
rheological properties. To increase safety, efficiency and enable
more automated drilling operations, sensor technology to perform
these measurements in real-time is in high demand. Non-invasive
ultrasonic measurement techniques in combination with machine
learning represents one promising and easily implementable
solution to meet these demands. In the presented work acoustic
properties of different drilling fluids are studied. Three different
pairs of ultrasonic transducers were utilized to evaluate the
propagational properties of 22 different samples of water-based
drilling fluids. The parameters measured in the ultrasonic
experimental setup is received signal amplitude, time of flight and
the lateral distance between receiver and transmitter. The trained
machine learning models predicted density with a mean absolute
percentage error (MAPE) in the range of 0.84% to 0.95%, plastic
viscosity from 4.4% to 7%. The models for gel strength were not
nearly as accurate, with MAPE ranging from 15% to 19%. This
shows that the measurement principle has potential to develop a
sensor system capable of meeting the demands regarding safety,
efficiency and automation.

Keywords— Ultrasonic attenuation, Drilling fluid, non-
Newtonian fluid rheology, machine learning, neural network

I. INTRODUCTION

A. Drilling operations

In oil & gas drilling, pressure control of the well is of great
importance. For this purpose, among others, a drilling fluid is
continuously pumped through the drilling equipment, down
into the well through the drillstring and back to the surface via

Economic support from The Research Council of Norway and Equinor
ASA through project no. 255348/E30 “Sensors and models for improved
kick/loss detection in drilling (Semi-kidd)” is gratefully acknowledged.

Hakon Viumdal
Department of Electrical engineering, Information Technology
and Cybernetics
University of South-Eastern Norway
Porsgrunn, Norway
hakon.viumdal@usn.no

TABLE 1: DRILLING FLUID PURPOSES AND ASSOCIATED PROPERTIES

Drilling fluid purpose
Pressure control
Clean, lubricate
Transport cuttings

Relevant properties

Density, viscosity, gel strength
Lubricity (not in this study)
Viscosity, gel strength

the space between the drillstring and the borehole wall, i.e. the
annulus [1], [2]. The drilling fluid serves three main purposes:
control the pressure in the wellbore, clean and lubricate the
drillbit, and transport the cuttings to the surface [1], [3]. In
Table 1 these purposes are shown together with their related
fluid properties that are considered for real-time
measurements in this study.

B. Drilling fluid rheology

The properties, density (p), viscosity (u,) and gel strength
(S) are some of the properties defining a drilling fluid’s
rheology. Measuring them during drilling operations follows
an American Petroleum Institute (API) recommended practice
(RP) [4]. This is a very generic procedure, and meant to be
applicable to all drilling operations, either it is in a farm field,
or offshore in the arctic circle. As these two examples of
drilling locations are extremely different, many variances
exists in the equipment used in drilling the wells, but the main
principles behind the drilling remain the same. However, for
both operations the measurements of the rheological
properties are manually performed, typically four times a day
during normal operations. The equipment and methods
should be improved, to provide real-time, non-invasive
measurements. This would increase safety in the operation,
give more reliable measurements, and enable better system
automation and control in the drilling process. Podio and
Gregory [5] studied the ultrasonic properties related to drilling
fluid rheology, and found that attenuation and drilling fluid
density are highly correlated. Pope, Veirs and Claytor [6]
developed a technique to relate density as a function of
resonant peaks in a FFT spectrum. A densimeter operating on
ultrasonic Doppler methods is also described for slurries,
although it is not stated if these are non-Newtonian [7]. This
is discussed in further detail, also measuring viscosity by
Bamberger and Greenwood [8], [9]. Our study aims to
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investigate whether ultrasonic measurements may also be
used to estimate rheological properties of the non-Newtonian
drilling fluids, to lay the foundation for non-invasive non-
destructive and inexpensive real-time measurements.

II. METHODS

A. Ultrasonic measurements

The experimental setup for the ultrasonic through
transmission measurements were the same as in our previous
study [10] and is shown in Fig. 1. The system consists of a
tank, holding approximately 82 litres of the fluid under study.
Into the tank, transmitter and receiver were submerged,
attached to a rack and rail system that allowed for the linear
distance (x) between them to be varied. Three pairs of
receiver/transmitter were used, all with the same element
diameter (2.54 cm/1 in) but with different frequencies, 0.5, 1.0
and 2.25 MHz. From 3 cm to 45 cm the received signal
strength and transit-time was recorded at 2 cm increments.
The measurements were made in 11 different fluids, and for
each fluid, each distance was measured twice. The attenuation
was related to the 3 cm measurement as the reference.

B.  Fluid analysis

For the experiments two water based drilling fluids (Fluid
A and Fluid B) produced by MI Swaco and supplied by
Equinor were used. To increase the spread of data collected,
we diluted the original samples in 10 steps. For each step, the
fluids were diluted by adding five volume percentage of water.
The fluids referred to as Fluid B-1 through Fluid B-11,
constitutes the measurement samples for this study. Fluids A-
1 through Fluid A-11 were measured in the previous study,
but the data is used in the models presented here. For each of
the fluids, two samples were collected and used for fluid
analysis by Equinor. In this lab analysis the rheological
properties were measured using an Anton Paar Modular
Compact Rheometer MCR 502. These measurements will be
the reference to which the developed models will be
compared, and also used for the supervised learning of
machine learning models. The measurements are comparable,
but not exactly the same as in the API RP. In fact, the accuracy
is higher for these lab devices compared to prevailing
equipment used in the drilling industry following the API RP
[4]. The rheological properties in focus in our work are
density, viscosity and gel strength. As the drilling fluids are
non-Newtonian, the latter two are special cases. The viscosity

Transmitter

Receiver

=

Transciever

Fig. 1: Ultrasonic experimental setup with transmitter and receiver
submerged in a tank containing the drilling fluid. x is the linear spacing
between transmitter and receiver.

cannot easily be given as a single number, as it is shear-rate
dependent, and the gel strength refers to the fluid’s resistance
to flow [3], i.e. the pressure required to break (start)
circulation after a period of settling (10 seconds or 10 min).
For the viscosity, there are several models describing it for
non-Newtonian fluids. Most commonly used to describe
drilling fluids is the Bingham-Plastic model, and the related
plastic viscosity (u,). The yield point is related to the shear
stress at zero shear rate, and is thus just a model parameter,
not a physical property like the gel strength. The Bingham-
Plastic model is given as:

T =y + Ty €]

where the parameters are: 7 — shear stress [Pa]; u, — the
plastic viscosity [Pas] ; y — the shear rate [1/s]; 7, — yield point
[Pa].

C. Artificial neural network

Artificial neural networks (ANN) are machine learning
models that are inspired by the connections between nodes, or
neurons in the human brain. These neurons act as computation
points in a larger network. Modelling such a network may
enable efficient modelling of non-linear systems without
complex and time-consuming computation. The neurons are
organized in layers, typically three; one input layer, a hidden
layer, and an output layer. In Fig. 2 this basic structure is
shown, with the three layers and the hidden layer with more
neurons than in both the input and output layers. The
connections between the neurons in the different layers are
called weights. Together with a non-linear activation function
in each neuron in the hidden layer(s) these make up the
computations effectively connecting the input data to the
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ensure the network will not just memorize the training data,

-60 Knowledge of the system to be modelled may speed up this
process, especially if there are some known relations
between inputs and outputs. The main concern is however
data, preferably large amounts of high precision data,

spanning the known or expected range of both input and
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output. Developing the network involves three phases: PLLOEE network output
Training, validation and testing. In the training phase the

network is shown input data with the correct output data. The
output of the model is compared against this target output, and Fig. 2: ANN structure. The circles are the neurons, connected forward by the

. 1i d. Thi . 1i d di purple weights, and backwards with the red error signal adjustments to the
an error signal 1s generated. This error signal 1s used to adjust weights. The training data is used to train the weights according to the error

the values of the weights to improve the performance. To signal, where the model output is compared to the known output of the
training set.
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TABLE 2: ANN ARCHITECTURE( NUMBER OF HIDDEN NEURONS) AND
PERFORMANCE (MAPE) RESULTS

Frequency | Network output Architecture MAPE
0.5 MHz Density, p 17 0.94%
Plastic Viscosity, i, 17 6.4%
Gel strength, S 17 15%
1.0 MHz Density, p 16 0.95%
Plastic Viscosity, L, 15 7%
Gel strength, S 18 19%
2.25 MHz | Density, p 11 0.84%
Plastic viscosity, W, 18 4.4%
Gel strength, S 9 16%

frequencies. The density of the fluids are ranging from 1.41 to
1.75 g/cm3 for Fluid B and from 1.17 to 1.33 g/cm3 for Fluid
A. The plastic viscosity ranged from 4.23 to 11.13 cP and from
10.1 to 40.5 cP, for B and A, respectively. Thus, we have
covered a wide range of values in our dataset. From a data
analysis point of view, it is worth to notice that the dilution of
the fluids results in correlation of changes in the fluid
properties, i.e. the density, viscosity changes more or less
equally. This is however close to the real application for the
drilling fluids, and normal under drilling operations. The
number of samples available for training/validation/testing
during the network development was around 700-800
samples, depending on the frequency. As we concluded in our
previous paper, the relationship between attenuation and
density/plastic viscosity could only be fairly described using a
linear regression model. Thus non-linear models, including
additional inputs are considered here.

B. ANN models

ANNs were trained and tuned with various number of
hidden neurons. The inputs to the networks were the distance,
x, decay of received signal relative to 3 cm received
amplitude, 44, and time of flight, 7. One model was created
for each of the outputs, density (p), viscosity (u,) and gel
strength (S). In these models we have chosen a simple
structure with only three layers as described above. Training
and tuning showed us that the optimal number of neurons in
the hidden layer would usually be between 10 and 20. As the
training regime used was Levenberg-Marquard [8] a
randomness in the data selected, and also the starting points
for the weights results in slightly different models each time
they are trained, and each time a model was trained, the
number of hidden neurons will differ slightly. Our networks
were trained on datasets separate for each frequency couple
set, and of each 70% were used for training, 15% for
validation, and 15% for testing. The results from the models
developed on the 1.0 MHz data (Both Fluid A and B) are
presented in Fig. 4 and Table 2 and show that the three
different networks perform very differently. It is clear that the
performance of the density network is by far the better, while
the network with gel strength as output is not very successful.
The samples and mean absolute percentage error (MAPE)
presented are samples that are from the test data set.

IV. CONCLUSION

The measurements show that the ultrasonic attenuation
correlates non-linear with changes in the rheological
properties. The non-linear effect is not entirely understood,
but has now been observed in two separate fluid systems, and

is assumed to be related to the non-Newtonian behavior of the
fluids. The results shown in Table 2 show that the potential for
using ANN is good for density, challenging for plastic
viscosity, but unlikely for gel strength. We see this as a
promising measurement principle, and a first step in
developing a sensor system for non-invasive and realtime
measurement of drilling fluid rheological properties. The
results show that there is no significance in the different
frequencies concerning the overall model performance.
However, there is an uncertainty in that the inputs to the model
have not been independently investigated, as the change has
been correlated as the fluids were diluted. The next steps for
this development is to continue collecting data from different
drilling fluid systems, as well as developing a setup for use on
a flowing system. Furthermore other machine learning
models, e.g. support vector machines will be explored.

ACKNOWLEDGMENT

The authors appreciate Equinor and M. Tande’s lab
analysis work as well as MSc students K. Mozie’s and M.
Hafredal’s experiment planning and execution.

REFERENCES

[1] A.T.Bourgoyne, K. K. Millheim, M. E. Chenevert, and F.S. Young, Jr.,
Applied Drilling Engineering, 1st ed., vol. 2. Richardson, TX, USA:
Society of Petroleum Engineers, 1985.

[2] M. D. Dunn, P. J. Archey, E. A. Opstad, M. E. Miller, and T. Otake,
“Design, Specification, and Construction of a Light, Automated Drilling
System (LADS),” in IADC/SPE Drilling Conference, Dallas, Texas,
2002.

[3] R. Caenn, H. C. H. Darley, and G. R. Gray, Composition and Properties
of Drilling and Completion Fluids. Saint Louis, UNITED STATES:
Elsevier Science & Technology, 2011.

[4] API, “API RP 13B-2 Recommended Practice for Field Testing of Oil-
based Drilling Fluids.” API, 2014.

[5] A. L. Podio and R. L. Gregory, “Ultrasonic Velocity and Attenuation
Measurements in Water-Based Drilling Muds,” in Drilling Technology
Symposium 1990: presented at the Thirteenth Annual Energy-Sources
Technology Conference and Exhibition, New Orleans, Louisiana,
January 14-18, 1990, vol. 27, New York, N.Y: American Society of
Mechanical Engineers, 1990.

[6] N.G.Pope, D. K. Veirs, T. N. Claytor, and M. B. Histand, “Fluid density
and concentration measurement using noninvasive in situ ultrasonic
resonance interferometry,” in [EEE 1992 Ultrasonics Symposium
Proceedings, 1992, pp. 855-858 vol.2.

[7]1 R. A. Pappas, J. A. Bamberger, L. J. Bond, M. S. Greenwood, P. D.
Panetta, and D. M. Pfund, “Ultrasonic methods for characterization of
liquids and slurries,” in 2001 I[EEE Ultrasonics Symposium.
Proceedings. An International Symposium (Cat. No.01CH37263),
2001, vol. 1, pp. 563-566 vol.1.

[8] M. S. Greenwood and J. A. Bamberger, “Ultrasonic sensor to measure
the density of a liquid or slurry during pipeline transport,” Ultrasonics,
vol. 40, no. 1, pp. 413-417, May 2002.

[91 M. S. Greenwood and J. A. Bamberger, “Measurement of viscosity and
shear wave velocity of a liquid or slurry for on-line process control,”
Ultrasonics, vol. 39, no. 9, pp. 623-630, Aug. 2002.



© 2018 IEEE.Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material or advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

[I0]M. H. Jondahl, H. Viumdal, K. N. Mozie, and S. Mylvaganam, non-invasive ultrasonic interrogation,” in 2017 IEEE International
“Rheological characterization of non-Newtonian drilling fluids with Ultrasonics Symposium (IUS), 2017, pp. 1-4.
1.9 T T T T T
1.8 1
1.7

N
(=2

%ﬁ |
= |
T

Density, p (g/cma)
iN o

131 1
1.2 Fluid B 1
11 . . . ‘ ‘
0 20 40 60 80 100 120
Sample
(a)

45 - - - - -

40 1
= 351 9
8 Fluid B ‘ Fluid A
€ 30 \

5251 ‘ %ﬂ 1
2
c 20+ ‘ 1
=
21571 1
[72]
(_B |
& 10 T ]
5 |
0 . . .
0 20 40 60 80 100 120
Sample
(b)
20 T T T : .
15+ 9
Fluid B | Fluid A
10+ 1

Gel Strength, S (Pa)

5, oo

0 20 40 60 80 100 120
Sample

©

Fig. 4: Results from ANNs used on test data set containing 116 samples
(15% of entire dataset). The ANNSs are presented as three separate
networks, with one output each: (a) density, p; (b) plastic viscosity (i)
and (c) gel strength, S. The bars indicate the error relative of the ANN
prediction to the target value determined by lab analysis. The data was
sampled from the 1.0 MHz measurements. The line and text box indicates
from which of the fluids the samples are retrieved.
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Abstract: Surveillance of the rheological properties of
drilling fluids is crucial when drilling oil wells. The pre-
vailing standard is lab analysis. The need for automated
real-time measurements is, however, clear.

Ultrasonic measurements in non-Newtonian fluids
have been shown to exhibit a non-linear relationship be-
tween the acoustic attenuation and rheological proper-
ties of the fluids. In this paper, three different fluid sys-
tems are examined. They are diluted to give a total of
33 fluid sets and their ultrasonic and rheological proper-
ties are measured. Machine learning models are applied
to develop soft sensors that are capable of estimating the
rheological properties based on the ultrasonic measure-
ments. This study explores three different machine learn-
ing model types and, extensive training and tuning of the
models is carried out. The best model types that show good
results and the potential to develop a real-time sensor sys-
tem suitable for use in oil & gas drilling process automa-
tion are selected.

Keywords: Ultrasonic measurement, non-Newtonian flu-
ids, rheology, machine learning, artificialneural network,
drilling.

Zusammenfassung: Die Uberwachung der rheologischen
Eigenschaften von Bohrfliissigkeiten ist bei der Erdolex-
ploration von entscheidender Bedeutung. Der derzeit vor-
herrschende Standard ist die chemische Laboranalyse. Es
besteht aber der Bedarf nach einer automatisierter Echt-
zeitmessung. In nicht-Newtonschen Fliissigkeiten besteht
eine nicht-lineare Beziehung zwischen der Schallabsorpti-
on und den rheologischen Eigenschaften der Fliissigkeit.
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In dieser Arbeit werden drei verschiedene Systeme von
Bohrfliissigkeiten, aus denen 33 unterschiedlich zusam-
mengesetzte Mischungen hergestellt wurden, hinsichtlich
ihre Ultraschall- und rheologischen Eigenschaften unter-
sucht. Mithilfe von Modellen fiir maschinelles Lernen wer-
den virtuelle Sensoren entwickelt, mit denen die rheo-
logischen Eigenschaften auf der Grundlage von Ultra-
schallmessungen abgeschitzt werden kdnnen. Diese Stu-
die vergleicht drei verschiedene Methoden des maschinel-
len Lernens hinsichtlich ihrer Eignung in einem Echtzeit-
Sensorsystem bei der Automatisierung von Ol- und Gas-
bohrprozessen eingesetzt zu werden.

Schlagworter: Ultraschallmessung, nicht-Newtonsche
Fliissigkeiten, Rheologie, maschinelles Lernen, kiinstli-
ches neuronales Netz, Bohrtechnik.

1 Introduction

When drilling an oil well, the drilling fluid is circulated
in a closed loop. Figure 1 shows a typical drilling opera-
tion, the focus of the illustration being on the drilling fluid
circulation system. Drilling fluid is continuously pumped
down the wellbore through the drill pipe and is circulated
through the annulus back to the surface. The returning
fluid also contains drill cuttings, formation fluids and pos-
sibly gas from the formation. The drilling fluid then en-
ters the treatment system, which handles the gas and re-
moves drill cuttings, the drilling fluid running through a
storage tank (active pit) before being pumped back into
the well. This completes one circulation of the system. The
returning fluid is pumped back into the well. It is there-
fore important to monitor the rheological properties and
ensure they remain within certain specifications. Intermit-
tent manual lab analysis of the drilling fluid is the mea-
suring method used today. The focus of our work has,
however, been on the automation of this process by de-
veloping methods and sensor technology to measure in-
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Figure 1: Overview of drilling operation, with emphasis on the sys-
tem for drilling fluid circulation. The fluid is pumped along the cir-
culation system as shown by the red arrows, down into the well
through the drillpipe, returning through the annulus. It then enters
a gravity drained return channel which leads to the shaker and pits,
where it is treated before being pumped back into the well.

line rheological properties of the drilling fluid based on
time of flight measurements, using ultrasonic through-
transmission measurement principles, measuring attenu-
ation and sound of speed [1].

Drilling fluid design uses additives to achieve the
properties required by the particular drilling operation.
Three main drilling fluid objectives are: (1) bottom hole
pressure control, (2) the cooling, lubrication and clean-
ing of the drill bit and (3) removal of rock cuttings from
the well [2]. In this work, the main focus is on pressure
control. A safe and stable drilling operation requires bot-
tomhole pressure (Pb) to be controlled very closely. The
upper bound is the formation fracture pressure (Py), the
point at which the formation will break down. If the well-
bore pressure exceeds this limit, severe loss of drilling
fluid and subsequent loss of pressure in the wellbore may
result. The lower bound is the formation pore pressure
(P,) which is the pressure of the formation fluids. If Ph
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Figure 2: Drilling window. Pore pressure, Pp, represents the lower
bound for the wellbore pressure, Pb. The fracture pressure, Pf rep-
resents the upper bound. If Pb exceeds either of these, a kick/loss
situation will most likely occur, as indicated in the figure.

falls below P, then an influx of formation fluids into the
wellbore will occur. This influx, called kick, is a com-
mon scenario when drilling oil & gas wells. Detected in
a timely manner, at a moderate volume, the kick can be
handled using normal procedures. It does, however, rep-
resent a severe risk if not detected at an early stage, or
if the influx volume is too great, the Deepwater Horizon
incident [3] being an extreme case. It furthermore results
in non-productive time in an already costly drilling op-
eration. The pressure span between P, and Py is com-
monly named the drilling window and is illustrated in
Fig. 2.

Early detection of these two events, kick and loss, is
therefore essential for safe and efficient drilling opera-
tions. A crucial role of the equipment and systems used to
log data during drilling, both downhole and topside (the
drilling system at the surface), is therefore the early de-
tection of kick and loss. The varied environments, equip-
ment and companies involved in drilling operations world-
wide, however, mean that common practices for detect-
ing kick and loss are not well developed. Pit level moni-
toring, and trendbased measurements of the flow out of
the well, through the use of a paddle meter, are the stan-
dard indications of kick and loss [4]. A proposed method
for more precise detection of kick/loss situations during
drilling is monitoring the difference between fluid flow
into and out of the well. This is referred to as the delta flow
method [5].

The delta flow kick and loss detection method pro-
posed by Speers and Gherig [5] relies on an accurately
measured return flow and comparison to an equally (but
more commonly) accurately measured inflow. The prevail-
ing standard instrument for measuring volumetric flow in
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the return flow is the paddle meter, which has poor accu-
racy and reliability. This instrument is therefore not good
enough to facilitate this method. The fluid level in the ac-
tive pit (the fluid pit that is part of the circulation system)
is also monitored. Any difference between the inflow rate
and the return flow rate will result in a level change in
the pit. Any drilling progress will result in a loss of pit
level, as the well is drilled ahead and the effective vol-
ume of the well and circulation system is increased. Pit
level response may, however, be slow and incremental,
depending on the total volume of the wellbore, surface
pipes and pit volume. Furthermore, the effect of drilling
progress and the consequent loss of pit level may mask
kick/loss effects. The response times and accuracies cur-
rently available show that there is a need for improved
sensor technology. One approach that could be applied is
improvements in the measurement of return flow, which
would allow the delta flow method to be used. Although,
as pointed out by Schafer etal. [6], several flowmeters
were in development as early as in 1992, but the indus-
try standard instrument is still the flow paddle to the best
of our knowledge. Other flowmeters maybe be available,
but are used only as redundancy [7]. Improving return flow
measurements in some instances, however, requires good
knowledge of fluid rheological properties, as pointed out
by Chhantyal etal. [8]. Improved sensor technology for
early kick and loss detection may furthermore increase the
degree of automation in drilling operations. In-line sen-
sor technology in such applications is an important pre-
requisite, as the rheological measurements made today
are manual, intermittent, offline measurements performed
around 4 times every 24 hours. For these reasons, we chose
to focus on developing an automated measurement prin-
ciple capable of non-invasive and non-intrusive measure-
ment of fluid rheological properties. The variation of the
acoustic properties of fluids with rheological properties
makes ultrasonic through-transmission measurements a
very interesting measurement principle to explore. Podio
and Gregory [9] found a non-linear relationship between
attenuation and frequency for any fluid density, and found
that the non-linear effect is increasing with density. Pope,
Veirs and Claytor [10] developed technology that estimates
drilling fluid density using a function of resonant peaks
in a FFT spectrum. These developments were made in the
early 90’s, but do not seem to have been further developed
in later years, or resulted in applied sensor technology.
Pappas, Bamberger, etal. [11] and Greenwood and Bam-
berger [12], [13] have described a densimeter that is op-
erating by measuring ultrasonic impedance, and velocity
of sound, which is also able to estimate viscosity in slur-
ries based on shear wave velocity. The published works do
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not specify whether these slurries are non-Newtonian, or
show us whether the technique is relevant to our applica-
tion. Non-Newtonian fluids behave very differently from
Newtonian fluids, the viscosity of non-Newtonian fluids
being shear-rate dependent. This means that viscosity will
change with flow or any other agitation of the fluid. This
property is a vital part of the design of any drilling fluid.
In practice this means that the drilling fluid is designed to
behave like shear-thinning, such that it can keep pressure
integrity when stationary, but is still able to be pumped at
high flow rates. Thus, the rheological properties of these
fluids are challenging to measure, and so is further defin-
ing good models that can relate rheological properties to
propagation of ultrasonic longitudinal waves in the fluid.
Shear waves are not considered as they do not propagate
well in fluids. Scattering effects are known to be apparent
in drilling fluids, as they are made up from particulates in
base fluid [14], [15]. In addition, cuttings from the drilling
process will further add to this effect in field applications.
We have chosen not to quantify this effect, as we focus on
the acoustic measurements and the mathematical models
which will be affected by this.It was therefore decided that
the first step of the development process would explore
the relationship between ultrasonic waves and fluid rhe-
ological properties. This began as a MSc project [16], ex-
ploring Newtonian fluids (tap water), and later also non-
Newtonian drilling fluids, a water based fluid (WBF) [17].
The latest development of this work reported here includes
a new type of non-Newtonian drilling fluid system, an oil-
based fluid (OBF) and the further development of machine
learning (ML) models, support vector machines (SVM) and
fuzzy-neural systems.

2 Methods

2.1 Ultrasonic measurements

The setup used to perform the measurements consists of
a fluid tank, a transmitter a receiver, and a supporting
frame to submerge and move the transmitter/receiver, see
Fig. 3. An ultrasonic through-transmission principle was
utilized by including one transmitter and one receiver,
which measured the received signal amplitude and time of
flight (ToF). The tank held around 82 litres of the fluid un-
der study. Three pairs of transducers, Olympus Videoscan
Large Diameter [18], were used, all with the element diam-
eter of 25.4 mm but using different frequencies: 0.5, 1.0 and
2.25MHz. The linear distance (x) between transmitter and
receiver was adjusted during the experiments from 3 cm
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Transmitter
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Figure 3: Ultrasonic measurements setup. x is the linear distance
between transmitter and receiver. A(x) is the amplitude as a func-
tion of the linear distance, relative to the reference amplitude A,
measured atx =3 cm.

up to 45 cm. Investigation in our preceding work [16], [17]
showed that the submersion of the transmitter/receiver re-
sulted in negligible noise, and that near-field effects were
negligible from a linear distance of 3 cm between transmit-
ter and receiver for the chosen frequencies. The measure-
ment at 3 cm has been used as the reference for all exper-
iments to calculate attenuation, and a stepwise increase
in linear distance of 2cm has been used in all measure-
ment series. The Olympus Epoch 1000i instrument [19] was
used to transmit and receive the ultrasonic square waves.
Pulse voltage was set to 300 V and the gain was adjusted
during measurements to ensure detection at the receiver
end.

Three different drilling fluids were used, two WBFs
(fluids A and B) and one OBF (fluid C). The range of the
fluid rheology properties are representative for fluids in
normal offshore operations. We, after consulting with the
manufacturer, designed a process in which we diluted
each of the three samples, this resulting in 33 fluids. Each
fluid was diluted by its base (water or oil-premix) stepwise
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by adding 5 volume-percentage of base fluid of the initial
volume, until each had been diluted 10 times. We could
therefore collect ultrasonic measurements in fluids with a
very wide range of rheological properties. Table 1 shows an
overview of the fluids, the numbers indicating the diluted
samples (1 designates the original fluid).

2.2 Fluid analysis

The fluids used in the study were sampled and then were
analysed at Equinor’s lab facilities, where the rheological
properties were determined. These were used as the ref-
erence for our developed models. The properties of great-
est interest in this study are given in Table 1. The measure-
ments were performed with an Anton Paar Modular Com-
pact Rheometer MCR 502, which gives highly reliable and
accurate data. The values given as references are based on
the analysis of two, or in some cases four, samples of the
actual fluid.

In this study we have chosen to focus on drilling fluid
density, p, and plastic viscosity, u,,. The term plastic viscos-
ity refers to the commonly used rheological model to de-
scribe a non-Newtonian drilling fluid, the Bingham-Plastic
model [20]. Non-Newtonian fluids have shear-dependent
viscosity. Plastic viscosity can therefore be used to charac-
terize and distinguish different fluids with shear thinning
non-Newtonian behaviour. This is therefore not the exact
viscosity, as this can not be quantified for non-Newtonian
fluids. The fluids were also analysed for gel strength (S).
This property is the shear strength, force required to ini-
tate flow of the fluid after a period of time without any stir-
ring or flow, for 10 seconds or 10 minutes. This must not
be confused with the yield point of the Bingham-Plastic
model, which has a similar physical interpretation. This

Table 1: Measured fluid properties. Density in kg/m> and plastic viscosity in Pa-s.

Fluid Density Viscosity Fluid Density Viscosity Fluid Density Viscosity
Al 1350 0.0397 B1 1750 0.0111 c1 1510 0.0208
A2 1320 0.0371 B2 1680 0.01 C2 1450 0.0177
A3 1320 0.0345 B3 1680 0.0089 c3 1440 0.0153
A4 1300 0.0316 B4 1630 0.0081 C4 1390 0.0134
A5 1300 0.027 B5 1600 0.0072 c5 1360 0.0119
A6 1290 0.0236 B6 1550 0.0066 ceé 1330 0.0106
A7 1270 0.021 B7 1530 0.006 c7 1280 0.0094
A8 1240 0.0185 B8 1510 0.0055 c8 1240 0.0086
A9 1250 0.0156 B9 1480 0.005 c9 1230 0.0077

A10 1200 0.0129 B10 1460 0.0046 C10 1200 0.0069

Al1 1180 0.0101 B11 1410 0.0042 C11 1180 0.0062
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Figure 4: Sketch of rheological models for non-Newtonian fluids.
Emphasis on Bingham plastic model and the plastic viscosity given
as the slope of the line. The idea of the API standard is that the
Bingham Plastic model may satisfactorily describe the approxi-
mately linear portion of the curve for typical drilling mud shown.

yield point is, however, a model parameter, and not a mea-
sured value. The Bingham-plastic model is defined as

T=WY+T,

the parameters being: 7 — shear stress in Pa; p, — plas-
tic viscosity in Pa-s; y — shear rate in s™; 7, — yield point
in Pa. The model is shown in Fig. 4, where it is compared
to a Newtonian model for viscosity, and Power Law. The
Power Law closely describes the whole curve of viscos-
ity, but according to the API [21] standard, the Bingham-
Plastic model is chosen as it represents the fluid properties
well enough for the typical shear rates that applies during
drilling.

Models

Input layer

Time of flight, t

Distance, x

Relative amplitude, Ag

Figure 5: General model overview of inputs and outputs.

Machine learning

model
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Models for estimating gel strength were developed in
earlier studies, but with poor results. We include these
measurements in this project, for parameter analysis, to
see whether this could provide answers to the poor perfor-
mance of the models that estimate this property. No new
models to estimate gel strength are developed.

2.3 Machine learning models

The different ML models used in this study are defined and
described in this section. Our previous work [16], [17], [22],
[23] has explored simple regression methods, and artificial
neural networks (ANNs). Here, however, we present two
more advanced ML models to further accommodate non-
linearity in the relationship between inputs and outputs
of the models, and to relate more than two variables. Com-
mon to all of the models analysed here, and to previous
models, are the inputs and outputs, see Fig. 5: The division
into training data and validation data in the algorithms for
training the models differs somewhat, i.e. the dataset is
the same, but the subsets used for training and validation
are randomly selected each time. All models use valida-
tion to counter the problem of overfitting. The randomly
selected validation data was used in the supervised train-
ing algorithm, so training is ended before overfitting oc-
curs. Furthermore, 20 % of the total dataset was set aside
in a test dataset before running the training algorithms,
such that the performance of all models can be compara-
ble through using an identical dataset. This test data set
has not been used during training, and is presented as new
measurements to the models. An overview of the phases
included in collecting data, training models and a com-
parison of them are shown in Fig. 6. The training and se-
lecting model process is carried out separately for density
and viscosity measurements. All models are trained using
MATLAB, Neural Networks Toolbox 11.0 and Statistics and

Output layer

Density,
p or Plastic Viscosity, p,
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Figure 6: Machine learning model training and selection flowchart. In the first phase, the ultrasonic data is collected and organized in the
training phase. The three models are trained repeatedly to find the best meta parameters for each model type. The models are compared
against each other using mean square error (MSE), as this is the default performance value for the training algorithms used. The best model
of each type is then used in the last phase, these being compared. This is carried out using the test data set extracted in the data collection
phase, which has not been used for any of the models during training. The output from the models using this data set is compared to the lab
measurements of the rheological properties. This is, in turn, used to calculate the model performances and finally select the best perform-

ing model, these two phases being carried out separately using density or vi

scosity as model output and target.
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Machine Learning Toolbox 11.2. The training data and val-
idation data are presented to the training algorithm as one
set. The validation procedure in the algorithm handles the
separation of the set into training and validation samples.

In search of a best possible model, the machine learn-
ing models were trained in a number of steps. Some learn-
ing points were taken from the exploratory analysis work,
the choice being to focus on the 0.5 MHz data as input for
all the models developed. Two classes of models, one for
water based drilling fluids, and one for oil based were de-
veloped. This choice was made to reflect the ultimate ap-
plication of the models in a drilling environment. The fluid
in a drilling process is either oil based or water based.
The fluid base is not changed during the drilling process
and there is therefore no need for models that generalize
this parameter. Then models were developed for these two
fluid types that predict drilling fluid density, p, or plastic
viscosity, u,. This resulted in four models for each of the
three types of machine learning models described above,
in total 12 models to be evaluated.

Extensive and repetitive training was carried out in the
development and search for the optimal machine learning
model for each of the twelve cases. The model types were
trained in total 1000 times for each type, using the same
training data. The best model for each type in each case,
based on model performance with the validation data set.
The best of each type were compared with each other in
each case, so allowing the ultimate best model to be cho-
sen.

The mean square error (MSE) of the training process
was used to choose the best model of each type from the
trained models. This is the default performance output
from the training algorithms, and well suited to a compazr-
ison of the models. The test data was then used to eval-
uate the model types against each other. The mean abso-
lute percentage error (MAPE) was used to choose the best
model type in each case. MAPE was chosen as it gives clear
and easily interpreted performance information while still
being comparable to industry specifications [24].

1¢ .
MSE,q =~ (Yi-Y;)
q95
) 3
MAPE 5, = "2y _(Yi; i)
1

b

Il
[N

Where g denotes the number of elements in the validation
set. Y is the observed value of either p or p, as measured
in the lab analysis. Y is the model predicted value of Y.
pis the number of elements in the subset for testing, where
the different model types are compared according to their
MAPE values.
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2.3.1 Artificial neural networks

Artificial neural networks (ANN) are models that imitate
the structure of parts of the human brain [25], [26]. The
neurons are represented as computation points organized
in layers. The neurons in the different layers are connected
by weights representing the synapses of the human brain.
These weights are adjusted during training of the network.
Figure 7 shows such a general network with three input
neurons and one output neuron. This represents the gen-
eral structure of the network used in this study. As de-
scribed above, three inputs are used in developing our
models, and one output is selected. These are in the in-
put and output layers, as shown. The inputs and outputs
are normalized and the default in the fitnet function in
MATLAB ANN is to normalize the data such that the mean
is 0 and the range is [-1,1] using the mapminmax func-
tion [27].

The number of neurons in the hidden layer varies, the
number being dependent on the results of meta-parameter
tuning. The architecture of the network is decided in this
process. The number of hidden layers and the number of
neurons in these layers are selected manually to maximize
model performance.

The problem we want to solve, with just three in-
puts and one output, is relatively simple. Previous stud-
ies have furthermore shown that the relationship be-
tween inputs and output can to a certain degree be
described by linear regression. We therefore chose a
simple network architecture. Choosing only one hidden
layer, we trained the network repeatedly with hidden
neurons ranging from 3 to 50. This process showed us
that the networks could be trained with 3 to 20 hid-
den neurons, this securing both performance and com-
putational efficiency. Neural networks with larger num-
bers of neurons may result in overfitted models, and
should be avoided. Based on the experiments, the low-
est number of neurons that did not result in any signif-
icant reduction of performance was 15. Hence, this be-
came the selected number of hidden neurons in our mod-
els.

The training was performed using the Levenberg-
Marquardt backpropagation algorithm. This algorithm
was chosen as it is a fast backpropagation algorithm that
converges well. It does, however, require more memory
than some of the other training algorithms implemented
in the MATLAB fitnet function. We chose not to take into
consideration the memory requirement, as the time avail-
able for training the models would not be an issue in this
project, due to the relatively small dataset and a quite sim-
ple artificial neural network [28].
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Figure 7: ANN general overview. ANN with one hidden layer, three input neurons and one output neuron. The circles represent the neurons,
the purple arrows show the forward connection between the neurons. The error signals (red arrows) are generated by comparing the desired
output (if known) to the network output. This error can then be used to adjust the weights between the neurons, to train the network and
increase performance. The distribution of the error signal to the weights depends on the training scheme.

2.3.2 Support vector machines

Support vector machines (SVMs) is a branch of ML mod-
els that is capable of solving both regression problems
and classification problems. The basic principle of a SVM
is to solve a non-linear problem, either a non-linear clas-
sification problem, or a non-linear curve fitting problem,
by mapping the original dataset into a new space of
higher dimensionality. In this higher dimensional space,
the dataset may be linearly separable by a hyperplane in
case of a classification problem, or in case of a curve fit-
ting problem linear regression may be used. This is ex-
plained concisely and to the point by Noble [29], using
classification as the case. For further details and full de-
tails of mathematical descriptions, the reader is recom-
mended to review Haykin [25]. The practical approach for a
SVMis to find as few data points as possible to support are-
gression function that describes the data in a satisfactory
manner. This involves choosing an acceptable error range
for the function, and to train the function and find these
data points that typically are referred to as support vec-
tors. SVMs, which use the data points to describe the func-
tion, may therefore be more efficient than an ANN model,
which uses a large network of weights and layers. The SVM
algorithm we used is part of the MATLAB toolbox Statis-
tics and Machine Learning Toolbox™ and is described in
detail in the documentation [30]. We also used the Regres-

sion Learner App, which is part of this toolbox. The tool-
box can be used to explore several regression models with
the same dataset, and to give an overview of the models
and methods best suited to our needs. We chose, based
on analysing the different models in this app, to develop
a SVM regression model with a Gaussian kernel function,
as this gave the best results based on the models tested.
The kernel scale gives the three differently named Gaus-
sian SVM (fine, medium and coarse). The adjective refers
to the value of the kernel scale that all inputs are divided
by, fine scale being a value closer to 0, effectively influenc-
ing the Gram matrix and the kernel functions [31].

The Gaussian kernel function means the model is ca-
pable of treating non-linearity in the mapping of input
data to output data, something earlier works shows exists
in our dataset. The SVM was trained using the same train-
ing dataset as the ANN models. The MATLAB fitrsvm func-
tion for training SVM calls normalization standardization
and uses an algorithm in which the values are standard-
ized using the weighted means and weighted standard de-
viations [31].

2.3.3 Adaptive neuro-fuzzy inference system

An adaptive neuro-fuzzy inference system (ANFIS) is a
type of machine learning model that combines the ap-
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proach of two different systems into a hybrid. A neural
network approach is taken to adjust membership func-
tions, parameters and rules of a fuzzy logic inference sys-
tem [32]. A fuzzy logic system may therefore be used with-
out analysing the input data. It furthermore constructs the
fuzzy logic system using user-defined membership func-
tions. In this work, the fuzzy logic parameters are adjusted
according to the training data set, which means the system
learns from data, i. e. machine learning.

The ANFIS of this study was created using the MATLAB
toolbox Neuro-fuzzy designer. The same training set as
used by the other models was used here. Cost function op-
timization for training the model was a hybrid method and
used both back propagation and the least squares method
[33]. The data was grid-portioned to create a fuzzy system
structure with Gaussian membership functions. The hy-
brid learning algorithm, as described by Jang etal. [32],
was chosen. Least squares estimate ensures the backprop-
agation algorithm is not stuck in local minima, and in-
creases the chance of convergence to a well performing
model.

3 Results

3.1 Machine learning model results

We also investigated how the attenuation of the ultrasonic
signals was affected by frequency in the three drilling fluid
systems. This is shown in Figs 8-10, attenuation being rep-
resented as relative amplitude Ay in dB as a function of
the distance, x [cm]. Attenuation is shown for the water

Amplitude dependency on frequency for Fluid A1
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Figure 8: Attenuation dependency on frequency, fluid system A.
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Amplitude dependency on frequency for Fluid B1
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Figure 9: Attenuation dependency on frequency, fluid system B.

Amplitude dependency on frequency for Fluid C1
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Figure 10: Attenuation dependency on frequency, fluid system C.

based fluid systems (A and B) and for the oil based fluid
system (C). These show that the 0.5 MHz data sets yield the
largest range of distances, as attenuation is in general less
at this frequency. We, for this reason, chose 0.5 MHz as the
most optimal frequency for our purposes. Our findings fur-
thermore agree well with Podio and Gregory’s findings, in
which we see that the attenuation/frequency relationship
is non-linear, and increases with density.

The model performances for oil based fluids (OBF)
and for water based fluids (WBF) are shown in Table 2.
This shows that when applied to the test data sets, the
ANN models outperform the other model types in all four
cases. Although only marginal for the water based fluid
density case. The performance of the selected models used
on the test data sets are shown in Fig. 11. The plots show
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Figure 11: Results from the chosen models on test data sets. a) shows ANN predicted plastic viscosity for the OBF test data set (C4,C8, from
left to right). Pink circles are the predictions, and blue are the known values from the lab analysis. b) shows ANN predicted density on the
same test data set. c) the ANN predicted plastic viscosity for the WBF test data set (B4, B8, A4,A8 (from left to right)). d) shows the ANN

predicted density for the same test data set.

Table 2: Model performances. Mean absolute percentage error
(MAPE) in %, for all best models of each type for two fluid systems.

Model OBF WBF
ANN Density, p 1.17 0.69
ANN Viscosity, yp, 4.66 4.07
SVM Density, p 2.87 1.27
SVM Viscosity, yp 13.6 22.2
ANFIS Density, p 1.79 1.52
ANFIS Viscosity, pip 10.60 19.5

the model performance compared to measurements from
the rheological lab analysis. The estimated plastic vis-
cosity (pink dots) is compared on the left side with the lab
measurements (blue dots). The industry standard for mea-
suring drilling fluid density using a mud balance, as spec-
ified by API [21], gives a typical uncertainty of 10 kg/m>,
which would be 0.01SG, and 0.6—0.8 % for the fluids used
in this study. However, the Norwegian standard NORSOK
D-001 [24] requirement for an online drilling fluid den-
sity meter is a maximum uncertainty of 2.0 %. The plastic
viscosity of drilling fluid is not specified, and neither is
the offline manual measurement. According to Table 2
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Figure 12: Errorbars showing the mean calculated output for each of the test fluids. The number of measurements for each fluid varies, as
they were picked at random from the whole set. The red bars and points represent the lab measurement of density and viscosity, with + 2%
as per the specifications mentioned above. The blue bars and points represent the mean of the model outputs and the 95 % confidence

interval.

the WBF-models provide the best statistical results. The
viscosity range for the WBF is larger than for the OBF, as
the WBF is based on two different original drill fluids. The
reason for the impaired WBF might therefore be related
to the two different WBFs included in the dataset that are
used to train the ML models. When estimating values in
the upper end of the viscosity range, larger errors are there-
fore introduced. On the other side, the WBF-model is likely
to be a more generalized model compared to the OBF-
model. To further address the uncertainties of the models,
we looked at the confidence interval of the model outputs.
The results shown were averaged, and the standard devi-
ation within each test fluid set was calculated. These are
shown in Fig. 12 which also indicates the 95 % confidence

intervals compared to the measurements specification of
maximum 2 % uncertainty. No specification for maximum
uncertainity in viscosity was given in the references. We
therefore also show this with the 2 % intervals. The overall
MAPE values for the models were good. Figure 12 however
shows that model performance varies, being within the
specification for some of the test fluid densities, but out-
side the specification for most of the viscosity outputs. It
should, however, be pointed out that confidence interval
calculation success varied, as test samples for each of the
test fluids were drawn at random from the complete fluid
type set, and the number therefore is varying.

The results show that developing a sensor system
based on these principles is possible. The application of
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Figure 13: Model application overview. Inputs to the left, the soft sensor discussed in the paper outputting either density or plastic viscos-
ity. This may then be used either directly as measurements in the general drilling process control, or as inputs into soft sensors for flow
estimation, which again can be used in either drilling process control or kick/loss detection.

the measurements is twofold: to improve measurements
of the rheological properties compared to 6 hour interval
manual measurements and to enable soft sensor systems
for flow estimation using reliable rheological inputs. Fig-
ure 13 shows the principle for such an application. The
output of the sensor system that we aim to develop will
be used as a measurement in the general drilling process
control to monitor the rheological properties of the drilling
fluid used. It may also be used to enable soft sensor sys-
tems to estimate the drilling fluid return flow. As pointed
out by Chhantyal et al. [5], knowledge of fluid rheology is
essential for many flow estimators. The placement of the
sensor would be along the fluid return flowline, indicated
as between the blowout preventer (BOP) and the shaker
indicated in Fig.1. An important point is that the sensor
should be placed as close to the well as possible, but still
on the surface, as this will give the shortest time delay to
downhole conditions, which is particularly important for
kick/loss detection. This placement will, however, present
two challenges that we have not had the opportunity to
evaluate so far in our study. The sensor system needs to
function also in a partially filled pipe, as the flow here
is gravity-driven, and full pipe conditions can not be en-
sured. It furthermore needs to measure correctly for con-
taminated fluid, as the placement before the shaker will
mean the fluid is not treated in any way. A natural next
step would then be to build a suitable measurement sys-
tem to test these two challenges, flowing fluid and con-
taminated fluid. One option is to add a by-pass-pipe with
sieves, which can be opened and closed with valves, so en-
suring steady conditions and the filtering out of contami-
nations in the fluid. The drawback is a semi-in-line sen-
sor system, with potential interruptions due to mechanical
failures.

4 Conclusions

It is apparent from reviewing the results shown in Fig. 13
and the performance values given in Tables 2 that machine
learning models have great potential in the estimation of
fluid density using ultrasonic measurements. The perfor-
mance of the ANN models are furthermore slightly worse
than previous models, as presented in earlier work [22].
The MAPE performance for the density models is partic-
ularly promising, and the measurement principle should
apply to this application. This is also supported by the av-
eraged errors for the test fluids, as shown in Fig.12. The
presented results are based on a large number of data
points. The range in rheological properties is quite large,
indicating that this should apply to a large range of differ-
ent fluids, and also to the two types, OBF and WBF. The
findings are also supported by a parameter analysis and
PCA that show that the measurements made are precise,
and that there is a relationship between the measurements
and the rheological properties of the fluids.

Our proposed measurement principle has therefore
been studied for stationary conditions, which can be used
in storage tanks in current operations. Further research
may result in a system that is applicable to flowing con-
ditions. The measurement principle and models may re-
sult in an improvement in the monitoring and control of
drilling operations, and increased safety. We can also con-
clude that there is room for improvement and fine tun-
ing, as we see that the performance values vary between
the different models, but are generally in the same range.
The data used in this study was limited to the data from
one frequency pair. The experiment setup did not allow
for recording the waveforms or frequency spectra of the
received signals. The frequency is therefore not applica-
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ble as an input to the models used, as it would be a con-
stant for a whole dataset of ultrasonic measurements from
each transmitter/receiver pair. Capturing the waveforms
and frequency spectra in future experiments might re-
sult in measurements that can help improve the proposed
models. Of the models used, it seems that the ANN models
have greatest promise. The other models are also promis-
ing, but are outperformed by ANN marginally in some of
the cases. It is in general easy to conclude that with the cur-
rent experimental setup, the principles applied look to be
promising as a measurement principle. However, to evalu-
ate this, the design of a setup which would work on a flow-
ing system would be a crucial next step.
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