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Abstract: One of the major issues in the operation of an islanded microgrid (G) is the frequency deviations caused by 
the variation of power production coming from non-dispatchable renewable energy sources (RES). Using an appropriate 
control system may allow the system to deal with the frequency deviation and allow the system frequency to be restored 
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to its rated value. A wide-area system frequency controller sends a control signal to each of the dispatchable generating 
sources to enforce the frequency control by using communication channels. However, the communication channels are 
susceptible to the time-delays which affect the performance of the frequency control system and potentially the system 
security. Also, the system parameters are uncertain due to the error in modelling, variation in network topology, 
generations, loads etc. This paper proposes a robust PI (proportional and integral) system frequency controller based on 
Kharitonov Theorem (KT) considering the time-delay of the communication system and the system parametric 
uncertainties. Simulation results demonstrate that the KT-based controller model has enhanced robustness compared to 
the conventional approaches of controller design. 
 

1. Introduction 

A G consists of renewable energy resources 

(RESs) like wind and PV. Along with RESs, other energy 

resources like DG, FC and BESS are present. The mismatch 

between the G power generation and the load leads to 

frequency instability [1]. The frequency stabilization in G 

is difficult due to the low inertia of micro sources connected 

[2] and intermittent nature of wind and PV. To minimize the 

frequency deviation, coordinated control and integration of 

all energy sources has been done [3]. To maintain the G 

frequency within the permissible limits, a suitable control 

strategy has to be adopted. The following paragraphs present 

a brief review of state of the art on the control strategies 

adopted for frequency regulation in Gs. 

An islanded G involving RESs, like wind power 

generation (WPG) and photovoltaic (PV) systems, 

experiences very complex frequency deviations because of 

the intermittent/highly-variable nature of the primary energy 

source (wind and sunlight, respectively) [4]. To avoid such 

frequency variations, it is a typical practice storing of energy 

from WPG and PV during peak generation to charge battery 

energy storage system (BESS). The BESS has an advantage 

of providing active power almost instantly. Moreover, it acts 

as a spinning reserve and an uninterruptible power supply 

(UPS). Because of these reimbursements, BESS is employed 

in the μG for the effective frequency control. As a μG 

comprises of WTG, PV, fuel cell (FC), diesel generator 

(DG), micro-turbine (MT) etc., BESS is capable of 

absorbing/delivering the power when wind power is 

more/less.  Since, MT, DG, FC and PV respond gradually to 

meet the load, BESS delivers the active power instantly and 

participates in the frequency  

 

control [2].  

The system frequency gets reduced from the nominal 

value due to a deficit in power generation concerning the 

system load. During extreme power imbalance conditions, it 

is a common practice to shed some part of the load to 

reinstate the frequency to the nominal value [1]. Also, the 

frequency is maintained within limits by the combination of 

smart load and BESS by absorbing/delivering the active 

power to the G which is supplied by the power of micro-

hydro and wind power plants [5]. Likewise, superconducting 

magnetic energy storage system (SMES) and BESS provide 

primary frequency control (PFC) in a G to reduce the 

frequency deviations which is caused by the renewable 

sources like WTG and PV [6]. Similar to BESS, FC can be 

used to improve frequency regulation. In this regard, a 

control strategy is developed in which FC acts as longtime 

energy storage, whereas flywheel (FW) acts as short time 

energy storage. During high wind speeds, FW stores the 

kinetic energy, whereas aqua electrolyser (AE) absorbs the 

wind power to produce hydrogen gas to feed FC. During 

low wind speeds, FW and FC release energy to meet the 

demand [7].  

Apart from the coordination of FC with FW,  FC 

combines with double layer ultra-capacitor to reduce the 

frequency deviations when power generated from WTG and 

PV systems are not adequate because of their discontinuous 

nature [8]. Even DG source can also be used to control the 

frequency deviations. The power from WTG and PV vary 

with time resulting in system frequency deviations [2]. 

When power from these generating sources are  inadequate, 

DG controlled by the conventional automatic generation 

control contributes additional power to restore the system 

frequency within few seconds with fewer overshoots [9].  A 

multi-agent-based control concept is developed for a G, 

where a central controller tracks the present status of the 

loads and the power generation from the sources. On the 

basis of these statuses, the central controller generates a 

signal such that whenever power from wind and solar are 

adequate to meet the loads, DG and FC should not generate 

any power. Meanwhile, DG and FC should generate excess 

power when power output from wind and solar is less to 

control the frequency deviations [10]. 

A type 2- fuzzy PI controller is adopted for the electric 

vehicle (EV) for the effective frequency control of the G 

[11]. For the effective frequency control, the WTGs and the 

BESS are integrated and works well by adopting droop 

characteristics for WTGs [12]. In load frequency control 

(LFC) of G, when the frequency change is detected, the 

controller transmits a signal to the generating sources to 

increase or decrease the power output using a 

communication channel. The communication channels are 

liable for time-delays [13]. While designing the controller, 

the impact of time delay should be considered. The 

frequency stabilization in the G with the presence of time 

delay is achieved by using a T-S fuzzy model.  [14]. 

To find the maximum permissible communication time 
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delay in a G, a small model based method is used [15]. For 

the G comprising of WTG, PV, DG, FC, FESS and BESS, 

the PI controller is adopted for the DG and FC system. IMC 

method is employed to find the PI parameters considering 

the time delay [16].   

A non-linear sliding mode control (SMC) is adopted for 

the time delayed G comprising of EV, PV, WTG, DG, 

BESS and FESS [17]. Time delay approaches have been 

done for the G consisting of PV and DG. Time delay 

margin has been found by Rekasius substitution and 

decomposition like sum of squares [18].   

Moreover, the frequency controller design should be 

accountable for the uncertainties due to an error in 

modelling, variations in loads and other dynamics. Because 

of the uncertainties, the parameters of the system are not 

fixed. While designing the load frequency controller, system 

parametric uncertainties have to be considered [19]. Usually, 

the parameters of distributed generation units are not 

constant. The parameters are uncertain due to errors in 

modeling and other factors. To overcome parameter 

uncertainty, a robust finite time control structure is adopted 

[20]. 

 H-infinity method is adopted to find the PI controller 

parameters considering the parameter uncertainties for the 

MT and aqua electrolyzer (AE) [21]. PI controller is 

designed and adopted for wind diesel system with 

uncertainties of the G to restore the frequency deviation 

[22]. An improvement method is applied to the multi 

distributed energy resources with the parameter 

uncertainties to improve the frequency stabilization [23].   

KT provides the solution for the parametric uncertainties 

in which the parameters are varied between a lower bound 

to the upper bound. KT is implemented and tested with 

parameter uncertainties in load frequency control design for 

a conventional power system comprising of thermal plants 

without time-delay [24].  The literature reviews discussed 

above have considered either the communication time-

delays or the parameter uncertainties while designing the 

load frequency controller for the G. Hence, the main 

objective of this paper is to propose a robust PI controller 

based on KT which takes into an account of the parameter 

uncertainties and communication time-delay inherent in the 

G.  

This paper is organised as follows: Section 2 explains 

the main sources and the effects of communication time-

delay existing in the G. Section 3 explains the generalised 

KT. Section 4 explains the dynamic modelling of the G. 

Section 5 explains the computation of PI parameters for 

time-delay system. Section 6 explains the application of KT 

for DG and FC systems with and without time-delay.  

Section 7 presents the results of an illustrative numerical 

example where the proposed methodology is applied. 

Section 8 and 9 present the simulation results and 

conclusion. 

2. Communication Time-delay in Frequency 
Control Systems   

 The G has three levels of hierarchical control 

structure: Distribution network operator (DNO), G central 

controller (GCC) and local controllers (LCs). The GCC is 

responsible for the reliable operation of the distributed 

energy resources (DERs) in meeting the load. The DNO 

makes the G interact with the distribution network. The 

LCs control the DERs within the G. In a decentralised 

control, LC communicates with the GCC and also with 

other LCs with the intention of exchanging some 

information applicable to the operation of the G. The 

decentralised control needs for information about the 

frequencies and voltages measured by the other DERs [25]. 

Once the frequency change is detected, the controller 

transmits a control signal to the generating sources to 

increase or decrease the power output using a 

communication channel. The communication channels are 

liable for time-delays [13]. The time-delays in the 

communication channels can negatively affect the control 

system performance [26].  For instance, large time-delays 

cause instability of the systems, i.e. the frequency deviation 

will diverge extremely from the nominal value [27].  Several 

methods are available to calculate the maximum value of 

time-delay that promises the stability of the system in the 

literature. In [28], based on the frequency domain approach, 

a direct method is proposed. In [29], based on the gain and 

phase margin of the system, maximum time-delay is found. 

In [30], an indirect method based on linear matrix inequality 

(LMI) and Lyapunov theory are discussed. The focus of this 

paper is to find the stable PI controller values by applying 

KT for time-delay systems which are not applied in LFC of 

G yet.  

3. Generalised Kharitonov Theorem   

Routh-Hurwitz criterion can be used for the 

assessment of the stability of a dynamic system with fixed 

parameters. In real life, no practical system can be derived 

into its exact dynamic model because of the uncertainties 

existing in the system. For a system having significant 

parameter uncertainties, KT provides the solution for 

synthesising the controller parameters such that the 

coefficients of the characteristic polynomial are within a 

range (since the parameters are uncertain) [20] and referred 

to as interval plants. 

Consider an interval polynomial, p(s,C), defined as 

[20]: 

 

P ≜ {𝑝(𝑠, 𝐶) = 𝑐0 + 𝑐1𝑠 + ⋯ 𝑐𝑛𝑠𝑛: 𝑐𝑖 ⊂ 𝐶, 𝑐 ∈
 [𝑐𝑖

−, 𝑐𝑖
+]}                                                                                        (1) 

 
where 𝑐𝑖

− , 𝑐𝑖
+ ∈ ℝ with 𝑐𝑖

− ≤ 𝑐𝑖
+,⩝𝑖= 0,1,2, … . , 𝑛, and 

𝑐𝑖
− , 𝑐𝑖

+ ≠ 0 and  𝑐𝑖  =[𝑐𝑖
− , 𝑐𝑖

+], 𝑐𝑖
−and  𝑐𝑖

+ represents the 

lower and upper bound of the interval parameters. 

The four related Kharitonov polynomials defined for the 

interval polynomial p, (1) are: 

 
𝑄1(s) =  𝑐0

− + 𝑐1
−𝑠 + 𝑐2

+𝑠2 + 𝑐3
+𝑠3 + ⋯                  (2) 

 

𝑄2(s) =  𝑐0
− + 𝑐1

+𝑠 + 𝑐2
+𝑠2 + 𝑐3

−𝑠3 + ⋯                     (3) 

 

𝑄3(s) =  𝑐0
+ + 𝑐1

−𝑠 + 𝑐2
−𝑠2 + 𝑐3

+𝑠3 + ⋯                     (4) 

 

        𝑄4(s) =  𝑐0
+ + 𝑐1

+𝑠 + 𝑐2
−𝑠2 + 𝑐3

−𝑠3 +                         (5) 
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Fig. 1. Schematic diagram of the Hybrid G 

System. 

 

 

Fig. 1. Schematic diagram of the Hybrid G 

System. 

 

 

 

 

 

 

 

 

 

 

The above presented four polynomials {𝑄1, 𝑄2, 𝑄3,𝑄4} make 

a set of eight subsystems if the system model is in the form 

of a transfer function G(s): 𝐺(𝑠) =
(𝑏𝑖

− ,𝑏𝑖
+)

𝑃(𝑠,𝐶)
  

where 𝑏𝑖
− , 𝑏𝑖

+ ∈ ℝ   as 

 

 

 

 

           (6)

  

         

 

 

where 𝑏𝑖
+ and 𝑏𝑖

− are the upper bound and lower bound of 

the numerator polynomial.  

 

3.1. Computation of PI Parameters  
 

Consider an interval system defined by the transfer 

function, G(s):  

 

                                    𝐺(𝑠) =
𝑁(𝑠)

𝑀(𝑠)
                                     (7) 

and the transfer function of PI controller, Gc(s) is defined as: 

 

                       𝐺𝑐(𝑠) = (𝐾𝑝𝑠 + 𝐾𝑖)/𝑠                                     (8) 

 

where 𝐾𝑝  is proportional gain and 𝐾𝑖 is integral gain of the 

PI controller. Substitute 𝑠 = 𝑗𝜔 and split N(s) and D(s) of 

(7) into their real and imaginary parts we obtain 

 

         𝐺(𝑗𝜔) =
𝑁𝑟𝑒𝑎𝑙 + 𝑗𝜔𝑁𝑖𝑚𝑎𝑔

𝑀𝑟𝑒𝑎𝑙 + 𝑗𝜔𝑀𝑖𝑚𝑎𝑔

                             (9) 

 

       where 𝑁𝑖𝑚𝑎𝑔 , 𝑁𝑟𝑒𝑎𝑙 , 𝑀𝑖𝑚𝑎𝑔 and 𝑀𝑟𝑒𝑎𝑙  are real and 

imaginary parts of numerator and denominator respectively. 

The closed-loop characteristic equation, (s) can be written 

as: 

 

                Δ(s) = 1 + 𝐺𝑐(𝑠)𝐺(𝑠)                                          (10) 

 

Substitute (8) and (9) in (10), then the closed-loop 

characteristic equation is transformed into: 

 

Δ( 𝑗𝜔) = [𝐾𝑖𝑁𝑟𝑒𝑎𝑙 − 𝜔2𝐾𝑝𝑁𝑖𝑚𝑎𝑔 − 𝜔2𝑀𝑖𝑚𝑎𝑔] +

 𝑗𝜔[𝜔(𝐾𝑖𝑁𝑖𝑚𝑎𝑔 +                   𝐾𝑝𝑁𝑟𝑒𝑎𝑙  + 𝑀𝑟𝑒𝑎𝑙)]              (11)                                       

 

The real part of (11) can be written as 

 

Re[(𝑗𝜔)]  = [𝐾𝑖𝑁𝑟𝑒𝑎𝑙 − 𝜔2𝐾𝑝𝑁𝑖𝑚𝑎𝑔 − 𝜔2𝑀𝑖𝑚𝑎𝑔]     (12) 

 

The imaginary part of (11) can be written as 

 

Im[(𝑗𝜔)]   =  [(𝐾𝑖𝑁𝑖𝑚𝑎𝑔 + 𝐾𝑝𝑁𝑟𝑒𝑎𝑙 + 𝑀𝑟𝑒𝑎𝑙)]           (13) 

 

The integral gain of the controller is obtained by equating 

(12) to zero 

      𝐾𝑖 =
𝜔2𝐾𝑝𝑁𝑖𝑚𝑎𝑔 + 𝜔2𝑀𝑖𝑚𝑎𝑔

𝑁𝑟𝑒𝑎𝑙

                                       (14) 

 

Substitute (14) in (13), finally the proportional gain of the 

controller is calculated as:    

 

        𝐾𝑝 =
−(𝑁𝑟𝑒𝑎𝑙𝑀𝑟𝑒𝑎𝑙 + 𝜔2𝑁𝑖𝑚𝑎𝑔𝑀𝑖𝑚𝑎𝑔)

(𝑁𝑟𝑒𝑎𝑙
2 + 𝜔2𝑁𝑟𝑒𝑎𝑙

2 )
              (15) 

 

The proportional gain is obtained by equating (13) to zero 

                   𝐾𝑝 = [
(−𝐾𝑖𝑁𝑖𝑚𝑎𝑔−𝑀𝑟𝑒𝑎𝑙)

𝑁𝑟𝑒𝑎𝑙

]                             (16) 

 

Substitute (16) in (12), finally the integral gain of the 

controller is calculated as: 

 

                   𝐾𝑖 =
𝜔2(𝑁𝑟𝑒𝑎𝑙𝑀𝑖𝑚𝑎𝑔 − 𝑀𝑟𝑒𝑎𝑙𝑁𝑖𝑚𝑎𝑔)

(𝑁𝑟𝑒𝑎𝑙
2 + 𝜔2𝑁𝑖𝑚𝑎𝑔

2 )
            (17) 

 

The equations (15) and (17) allow the calculation and 

plotting of the stability boundary locus (SBL)  

𝝋(𝑲𝒑, 𝑲𝒊 , 𝝎) as a function of the values of 𝝎. Describe the 

set 𝐉(𝐆(𝐬)𝐆𝐜(𝐬)) which contains all stable values of PI 

controller 𝐆𝐜(𝐬) which stabilizes 𝐆(𝐬). Then, the set of all 

stabilizing values of PI controller can be written as  

𝐉(𝐆(𝐬)𝐆𝐜(𝐬)) = 𝐉(𝐆𝟏(𝐬)𝐆𝐜(𝐬)) ∩

 𝐉(𝐆𝟐(𝐬)𝐆𝐜(𝐬)) … 𝐉(𝐆𝟖(𝐬)𝐆𝐜(𝐬)) (using (6)). The stable 

values of the PI controller parameters, 𝐊𝐩(proportional gain) 

and 𝐊𝐢 (integral gain), are taken from the region where 

maximum loci are intersected [33]. 

 

4. G Configuration and System Modelling  

  

 This section presents the configuration of the hybrid 

G considered in this paper, and the main details of the 

linearized model used to describe its frequency regulation. 

The arrangement of the hybrid G system comprising of 

WTG, DG, FC, and BESS is shown in Fig. 1.  

 

The total power, Ps supplied to the load in the lossless 

system is given by  

 

        𝑃𝑠 = 𝑃𝑊𝑇𝐺 + 𝑃𝐷𝐺 + 𝑃𝐹𝐶 ± 𝑃𝐵𝐸𝑆𝑆                                 (18) 

 

   𝐺1(𝑠) =
𝑏𝑖

−

𝑄1(𝑠)
 , 𝐺2(𝑠) =

𝑏𝑖
+

𝑄1(𝑠)
 , 𝐺3(𝑠) =

𝑏𝑖
−

𝑄2(𝑠)
 , 

   𝐺4(𝑠) =
𝑏𝑖

+

𝑄2(𝑠)
 , 𝐺5(𝑠) =

𝑏𝑖
−

𝑄3(𝑠)
 , 𝐺6(𝑠) =

𝑏𝑖
+

𝑄3(𝑠)
 , 

           𝐺7(𝑠) =
𝑏𝑖

+

𝑄4(𝑠)
, 𝐺8(𝑠) =

𝑏𝑖
−

𝑄4(𝑠)
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where PWTG, PDG, PFC, and PBESS are the active power 

outputs of the WTG, DG, FC and BESS, respectively.  

 

4.1   Wind Turbine Generator 

 

The wind speed is the main variable that determines 

the output power of the WTG. The mechanical power output 

of a wind turbine depends on the power coefficient (𝐶𝑝) 

which is the ratio of the tip speed ratio and blade pitch angle 

(𝛽). The tip speed ratio (λ) is the ratio between the tangential 

speed of the tip of a blade to the wind speed (Vw) and can be 

expressed as  

 

             𝜆 = 𝑅 ∗ 𝜔/𝑉𝑤       (19) 

  

where R is the radius of the wind turbine rotor, ω is the 

blade angular speed, and Vw is the wind speed. The wind 

turbine mechanical power output (PW) is expressed as 

 

              𝑃𝑊 = 0.5 𝜌 𝐴𝑟𝐶𝑝𝑉𝑤
3                                             (20)   

 

where ρ is the air density, and Ar is the area swept by the 

wind turbine rotor [31]. With the gain and time constants 

(𝐾𝑊𝑇𝐺  and 𝑇𝑊𝑇𝐺  ), the transfer function (𝐺𝑊𝑇𝐺) representing 

the changes in frequency dynamic of the WTG [31] is:

  

 

                      𝐺𝑊𝑇𝐺(𝑠)  =
𝐾𝑊𝑇𝐺

1 + s𝑇𝑊𝑇𝐺

                                    (21) 

 

 

4.2 Diesel Generator 
 

DG is a dispatchable power source; as a consequence, 

the output power can be used to compensate changes its 

output power with the varying wind power in a shorter 

period.  The transfer function (𝐺𝐷𝐺) representing the 

frequency dynamic of the DG, including the droop 

regulation R [34], is:  

 

                𝐺𝐷𝐺(𝑠) =
1

1 + 𝑠𝑇𝐺

∗
1

1 + 𝑠𝑇𝑇

                               (22) 

 

where 𝑇𝐺  and 𝑇𝑇  are the time constants of the speed 

governing system and the diesel power generation system, 

respectively. 

 

4.3  Fuel Cell Generator   
 

FC consists of anode, cathode and an electrolyte. As 

the hydrogen gas (H2) passed to the anode, it is divided into 

hydrogen ions (H+) and electrons (e-). These electrons pass 

through the anode to the external circuit and the cathode. 

Meanwhile, oxygen (O2) is sent to the cathode and hydrogen 

ions (H+) pass through the electrolyte and reach the cathode 

where they are converted to water (H2O). The FC power 

output is connected to the G through an inverter and the 

interconnection device. The transfer function describing the 

frequency dynamic of the FC (𝐺𝐹𝐶), inverter and 

interconnection device [34] is given as:  

 

   𝐺𝐹𝐶(𝑠) =
1

1 + 𝑠𝑇𝐹𝐶

∗
1

1 + 𝑠𝑇𝐼𝑁

∗
1

1 + 𝑠𝑇𝐼𝐶

                     (23) 

 

where 𝑇𝐹𝐶 , 𝑇𝐼𝑁, and 𝑇𝐼𝐶  are the time constants of the FC, 

inverter and interconnection respectively.          

 

4.4 Battery Energy Storage System  
 

The BESS is capable of quickly delivering active power 

following load changes. When the power deficit occurs, 

BESS discharges power into the network and charges when 

power generation is high. With the gain and time constants 

(𝐾𝐵𝐸𝑆𝑆 and 𝑇𝐵𝐸𝑆𝑆), the BESS transfer function defining the 

frequency dynamic [31] (GBESS) is: 

 

 

        (24) 

  

 

4.5 Power and Frequency Deviations   
 

The power difference (∆𝑃𝑒) between the power 

generation 𝑃𝑠 and the load demand 𝑃𝑠
∗  is given by 

 

                  Δ𝑃𝑒 = 𝑃𝑠 − 𝑃𝑠
∗                                            (25) 

 

The system frequency ∆f is represented as the ratio between 

the power difference (∆𝑃𝑒) and the system frequency 

characteristic constant (𝐾𝑠𝑦𝑠) 

 

                Δ𝑓 =  Δ𝑃𝑒 𝐾𝑠𝑦𝑠     ⁄                                       (26) 

 

with the inertia (M) and damping (D) constant, the transfer 

function of the G (𝐺𝑠𝑦𝑠) is expressed as [31] 

 

 𝐺𝑠𝑦𝑠(𝑠)

=  𝛥𝑓 𝛥𝑃𝑒 = 1 𝐾𝑠𝑦𝑠(1 + 𝑠𝑇𝑠𝑦𝑠) =  1 𝑀𝑠 + 𝐷            (27)⁄⁄⁄  

 

The dynamic model of LFC of hybrid G system with 

time-delay is shown in Fig. 2. The communication delay is 

given in the exponential form as 𝑒−𝐿𝑠. L denotes the time-

delay. K1 and K2 are called frequency bias factors which are 

obtained using Zieglers-Nichols tuning method [32]. The 

rated power, gain and time constants [34] of the sources are 

given in Table I, and Table II. 

 

5. Computation of PI Parameters for  Time-
delayed Systems 

 

Consider a plant with time-delay [35]; it is 

represented by the following transfer function, G(s):

 
                              𝐺(𝑠) =

𝑁(𝑠)

𝑀(𝑠)
𝑒−𝐿𝑠                                     (28) 

and the transfer function of the PI controller Gc(s) is given 

as:  

                            𝐺𝑐(𝑠) = (𝐾𝑝𝑠 + 𝐾𝑖)/𝑠   (29)   

Substituting 𝑠 = 𝑗𝜔 and splitting N(s) and M(s) of (28) into 

their real and imaginary parts, the plant transfer function is 

rewritten as: 

   𝐺𝐵𝐸𝑆𝑆(𝑠) =
𝐾𝐵𝐸𝑆𝑆

1 + 𝑠𝑇𝐵𝐸𝑆𝑆
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Fig. 2. Block diagram showing the dynamic 

frequency model of LFC of hybrid G 

considering time-delay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

b 

Fig. 2.  Sample graph with blue (dotted), 

green (solid) and red (dashed) lines 

(a) Subfigure 1, (b) Subfigure 2 

 

 

         Table I. Rated power of the generation            

demand of the hybrid G system [34]. 

Rated Power (kW) 

WTG 100 

FC 70 

DG 160 

BESS 45 

Load 350 

 

 

Table II. Parameters of the dynamic 

models used in the hybrid G system [34]. 

Parameter Value Parameter Value 

D 0.0150 TFC 0.2600 

M 0.1667 TIC 0.0040 

TG 0.0800 TIN 0.0400 

TT 0.4000 R 3.0000 

K1 10.0000 K2 10.0000 

TBESS 0.1000 KWTG 1.0000 

 KBESS 1.0000 TWTG 1.5000 

 

               𝐺(𝑗𝜔) =
𝑁𝑟𝑒𝑎𝑙 + 𝑗𝜔𝑁𝑖𝑚𝑎𝑔

𝑀𝑟𝑒𝑎𝑙 + 𝑗𝜔𝑀𝑖𝑚𝑎𝑔

                             (30) 

 

Take (10), substitute (29) and (30) and separating into real 

and imaginary parts, the closed-loop characteristic equation 

(s) is: 
 

Δ(𝑠) = [(𝐾𝑖𝑁𝑟𝑒𝑎𝑙 − 𝐾𝑝𝜔2𝑁𝑖𝑚𝑎𝑔)𝑐𝑜𝑠(𝜔𝐿) + 𝜔(𝐾𝑖𝑁𝑖𝑚𝑎𝑔 +

                   𝐾𝑝𝑁𝑟𝑒𝑎𝑙)𝑠𝑖𝑛(𝜔𝐿) − 𝜔2𝑀𝑖𝑚𝑎𝑔] +

                   𝑗[𝜔(𝐾𝑖𝑁𝑖𝑚𝑎𝑔 + 𝑁𝑟𝑒𝑎𝑙)𝑐𝑜𝑠(𝜔𝐿) − (𝐾𝑖𝑁𝑟𝑒𝑎𝑙 −

                   𝜔2𝐾𝑝𝑁𝑖𝑚𝑎𝑔)𝑠𝑖𝑛(𝜔𝐿) + 𝜔𝑀𝑟𝑒𝑎𝑙]                   (31)    

 

Equating the real and imaginary parts of (31), we obtain  
 

𝐾𝑝[−𝜔2𝑁𝑖𝑚𝑎𝑔𝑐𝑜𝑠(𝜔𝐿) + 𝜔𝑁𝑟𝑒𝑎𝑙𝑠𝑖𝑛(𝜔𝐿)] +

𝐾𝑖[𝑁𝑟𝑒𝑎𝑙𝑐𝑜𝑠(𝜔𝐿) −  𝜔𝑁𝑖𝑚𝑎𝑔𝑠𝑖𝑛(𝜔𝐿)] =

                         𝜔2𝑀𝑖𝑚𝑎𝑔                                                  (32) 

 

and 

 

𝐾𝑝[𝜔𝑁𝑟𝑒𝑎𝑙𝑐𝑜𝑠(𝜔𝐿) + 𝜔2𝑁𝑖𝑚𝑎𝑔𝑠𝑖𝑛(𝜔𝐿)] +

𝐾𝑖[𝜔𝑁𝑖𝑚𝑎𝑔𝑐𝑜𝑠(𝜔𝐿) −              𝑁𝑟𝑒𝑎𝑙𝑠𝑖𝑛(𝜔𝐿)]  =

−𝜔𝑀𝑟𝑒𝑎𝑙                                                (33)   

 

The equation (32) and (33) can be rewritten in terms of the 

following components: 

 

𝐴(𝜔) = 𝜔𝑁𝑟𝑒𝑎𝑙𝑠𝑖𝑛(𝜔𝐿) − 𝜔2𝑁𝑖𝑚𝑎𝑔𝑐𝑜𝑠(𝜔𝐿),
 

                   𝐵(𝜔) = 𝑁𝑟𝑒𝑎𝑙𝑐𝑜𝑠(𝜔𝐿) + 𝜔𝑁𝑖𝑚𝑎𝑔𝑠𝑖𝑛(𝜔𝐿),
 

                   𝑋(𝜔) = 𝜔2𝑀𝑖𝑚𝑎𝑔   

                                                                          (34) 

 

𝐻(𝜔) = 𝜔𝑁𝑟𝑒𝑎𝑙𝑐𝑜𝑠(𝜔𝐿) + 𝜔2𝑁𝑖𝑚𝑎𝑔𝑠𝑖𝑛(𝜔𝐿), 

                  𝐼(𝜔) = 𝜔𝑁𝑖𝑚𝑎𝑔𝑐𝑜𝑠(𝜔𝐿) + 𝑁𝑟𝑒𝑎𝑙𝑠𝑖𝑛(𝜔𝐿), 

                  𝑌(𝜔) = −𝜔𝑀𝑟𝑒𝑎𝑙                             

                                                                                        (35) 

 

Substituting (34) and (35) in (32) and (33), then;  

 

               𝐾𝑝𝐴(𝜔) + 𝐾𝑖𝐵(𝜔) = 𝑋(𝜔)                                   (36)

  

 

             𝐾𝑝𝐻(𝜔) + 𝐾𝑖𝐼(𝜔) = 𝑌(𝜔)                                   (37) 

 

Multiplying (36) by I(ω), (37) by B(ω) and solving, the 

proportional gain is obtained as a function of A, B, H, I, X 

and Y: 

 

                𝐾𝑝 =
𝑋(𝜔)I(𝜔) − 𝑌(𝜔)𝐵(𝜔)

𝐴(𝜔)𝐼(𝜔) − 𝐵(𝜔)𝐻(𝜔)
                            (38) 

 

Multiplying (36) by H(ω) and (37) by A(ω); the proportional 

gain is obtained as a function of A, B, H, I ,X and Y: 

 

                𝐾𝑖 =
𝑌(𝜔)𝐴(𝜔) − 𝑋(𝜔)𝐻(𝜔)

𝐴(𝜔)𝐼(𝜔) − 𝐵(𝜔)𝐻(𝜔)
                           (39)

 
 

Substituting (34) and (35) into (38) and (39), the explicit 

equation of the proportional gain is obtained as: 

 

            (40) 

  

            

Finally, the explicit equation of the integral gain is obtained 

as:           
 

 

          (41) 

 

 

where  𝛾1 = 𝜔2𝑁𝑖𝑚𝑎𝑔𝑀𝑖𝑚𝑎𝑔 + 𝑁𝑟𝑒𝑎𝑙𝑀𝑟𝑒𝑎𝑙, 𝛾2 =

𝑁𝑖𝑚𝑎𝑔𝑀𝑟𝑒𝑎𝑙 − 𝑁𝑟𝑒𝑎𝑙𝑀𝑖𝑚𝑎𝑔, 𝛾3 = 𝑁𝑖𝑚𝑎𝑔𝑀𝑟𝑒𝑎𝑙 − 𝑁𝑟𝑒𝑎𝑙𝑀𝑖𝑚𝑎𝑔,  

𝛾4 = 𝑁𝑟𝑒𝑎𝑙𝑀𝑟𝑒𝑎𝑙 − 𝜔2𝑁𝑖𝑚𝑎𝑔𝑀𝑖𝑚𝑎𝑔 

                

       Thus, for any system with the time-delay (𝐿), the PI 

controller parameters can be found using (40) and (41). This 

section explained the finding of PI for fixed system 

parameters. As the system parameters are in the interval 

form, the following Section 6 explains the implementation 

of KT for time-delay systems. 

 

6 Application of KT for DG and FC Systems With 
and Without Time-delay 

 
6.1 KT for Finding PI parameters for DG with time-

delay  
The transfer function of the diesel generator considering 

time delay in (42) is obtained by multiplying equation (22) 

with  𝑒−𝐿𝑠 ∗
𝑘𝑝

1+𝑠𝑇𝑝
 .(In (42), Kp and Tp can be calculated 

from, (1/Ms+D)=((1/D)/(M/Ds+1))=(Kp/Tps+1)).  

 

 

                   𝐺𝐷𝐺(𝑠) =
𝐾𝑝 ∗ 𝑒−𝐿𝑠

𝛼1𝑠3 + 𝛼2𝑠2 + 𝛼3𝑠 + 𝛼4

                (42) 

 

where 𝛼1 = 𝑇𝐺𝑇𝑇𝑇𝑃, 𝛼2 = 𝑇𝐺𝑇𝑇 + 𝑇𝑇𝑇𝑃 + 𝑇𝐺𝑇𝑃, 𝛼3 = 𝑇𝐺 +

𝑇𝑇 + 𝑇𝑃, 𝛼4 = 1 +
𝐾𝑃

𝑅⁄  

 

For the DG dynamic model with droop characteristics (42), 

the closed droop characteristics (10) with PI controller of the 

 𝐾𝑝 =
𝛾1𝑐𝑜𝑠(𝜔𝐿) + 𝜔𝛾2𝑠𝑖𝑛(𝜔𝐿)

−(𝑁𝑟𝑒𝑎𝑙
2 + 𝜔2𝑁𝑖𝑚𝑎𝑔

2 )
 

𝐾𝑖 =
𝜔2𝛾3𝑐𝑜𝑠(𝜔𝐿) − 𝜔𝛾4𝑠𝑖𝑛(𝜔𝐿)

−(𝑁𝑟𝑒𝑎𝑙
2 + 𝜔2𝑁𝑖𝑚𝑎𝑔

2 )
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         a 

 
                                         b 

                    

Fig.3 Stability boundary locus 

a  Diesel Generator locus with time-delay                                                                                                                                                                          

b  Fuel Cell locus with time-delay 

 

form (8) are given by the closed-loop characteristic equation 

(s): 

 

  𝛥(𝑠) = 1 + (𝐾𝑝 +
𝐾𝑖

𝑠⁄ )
𝐾𝑝 ∗ 𝑒−𝐿𝑠

𝛼1𝑠3 + 𝛼2𝑠2 + 𝛼3𝑠 + 𝛼4

      (43) 

 

Substitute 𝑠 = 𝑗𝜔 in (43) and separate into real and 

imaginary parts. By equating real and imaginary parts to 

zero, we can obtain 𝐾𝑝 and 𝐾𝑖 equations as like in (40) and 

(41). The denominator polynomial of (42) can be expressed 

as Kharitonov polynomials using (2) to (5). Using (6), we 

can obtain eight sets of equations.  As necessary terms of 

numerator and denominator of each equation are 

substituted in (40) and (41), we can obtain 𝐾𝑝 and 𝐾𝑖 

equations. By drawing the SBL for various values of 𝜔, the 

stabilising values of  𝐾𝑝 and 𝐾𝑖are obtained from the region 

where maximum loci are intersected. 

6.2 KT for finding  PI parameters for FC with 

time-delay 
 

Consider a fuel cell plant 𝐺𝐹𝐶(𝑠) with a time-delay 

(𝐿). The open loop transfer function of FC by considering 

(23) is given as  

               𝐺𝐹𝐶(𝑠) =
𝐾𝑝 ∗ 𝑒−𝐿𝑠

𝛽1𝑠4 + 𝛽2𝑠3 + 𝛽3𝑠2 + 𝛽4 + 1
         (44) 

 

where  𝛽1=𝑇𝑃𝑇𝐹𝐶𝑇𝐼𝑁𝑇𝐼𝐶 ,  𝛽2 = 𝑇𝑃𝑇𝐹𝐶𝑇𝐼𝑁 + 𝑇𝐹𝐶𝑇𝐼𝑁𝑇𝐼𝐶 +
 𝑇𝐼𝑁𝑇𝐼𝐶𝑇𝑃 + 𝑇𝐼𝐶𝑇𝑃𝑇𝐹𝐶 , 𝛽3 = 𝑇𝑃𝑇𝐹𝐶 + 𝑇𝐹𝐶 𝑇𝐼𝑁 + 𝑇𝐼𝑁𝑇𝐼𝐶 +
   𝑇𝐼𝐶𝑇𝑃 + 𝑇𝑃𝑇𝐼𝑁 + 𝑇𝐹𝐶 𝑇𝐼𝐶 , 𝛽4 = 𝑇𝑃 + 𝑇𝐹𝐶 + 𝑇𝐼𝑁 + 𝑇𝐼𝐶 

 

The closed loop characteristics (10) with PI controller of the 

form (8) is given by 

 

𝛥(𝑠)

= 1 + (𝐾𝑝 +
𝐾𝑖

𝑠⁄ ) [
𝐾𝑝 ∗ 𝑒−𝐿𝑠

𝛽1𝑠4 + 𝛽2𝑠3 + 𝛽3𝑠2 + 𝛽4 + 1
]    (45) 

 

The procedure followed in Section 6.1 is used to obtain the 

stabilising values of 𝐾𝑝 and 𝐾𝑖 for FC. 

 

6.3    Finding PI parameters for DG and FC    

   without time-delay 
 

Consider (42) and (44) without time-delay. Using (2) 

to (5), four Kharitonov polynomials are to be formed. 

Using (6), eight sets of equations can be framed. As 

necessary terms of numerator and denominator of each 

equation are substituted in (15) and (17), we can obtain 𝐾𝑝 

and 𝐾𝑖 equations. By drawing SBL for these equations for 

various values of 𝜔, the stable values of 𝐾𝑝 and 𝐾𝑖are 

obtained from the region where the maximum loci are 

intersected. 

 

7. Numerical Example 
 

7.1 PI parameters for DG with time-delay 
 

Considering the uncertainty of the plant, the 

parameters of DG are varied ±20% from the nominal value 

and is given as Kp= [40,60], TG= [0.064, 0.096], TT = [0.32, 

0.48], TP = [8,12], R = [2.4, 3.6], L=1.0 s. (For eg, the 

nominal value of TT =0.4 (from Table II) is varied ±20%. 

For +20%, TT =0.48. For -20%, TT=0.32) 

Substituting the above values in (42), the DG transfer 

function, GDG(s), results: 

 

 

 

         (46) 

 

 

 

Now, the Kharitonov polynomials for the denominator of 

(46) are rewritten using (2)-(5) as     
𝑄1(𝑠) = 3.22 + 8.38𝑠 + 6.96𝑠2 + 0.553𝑠3 

𝑄2(𝑠) = 3.22 + 12.57𝑠 + 6.96𝑠2 + 0.164𝑠3 

𝑄3(𝑠) = 5.16 + 8.38𝑠 + 3.1𝑠2 + 0.553𝑠3 

𝑄4(𝑠) = 5.16 + 12.57𝑠 + 3.1𝑠2 + 0.164𝑠3                  (47) 
Using (6), the framed eight equations are defined as: 

 

 

               
 

 

 

                       (48)

  

 

 

 

 

 

 

Substituting for  Q1(s) from (47)  in (48) we get  

𝐺1(𝑠) = 40/3.22 + 8.38𝑠 + 6.96𝑠2 + 0.553𝑠3            (49) 

 

 𝐺1(𝑠) =
40

𝑄1(𝑠)
 , 𝐺2(𝑠) =

60

𝑄1(𝑠)
 , 

 

𝐺3(𝑠) =
40

𝑄2(𝑠)
 ,   𝐺4(𝑠) =

60

𝑄2(𝑠)
, 

                                                                                       

𝐺5(𝑠) =
40

𝑄3(𝑠)
 , 𝐺6(𝑠) =

60

𝑄3(𝑠)
 , 

 

𝐺7(𝑠) =
40

𝑄4(𝑠)
 , 𝐺8(𝑠) =

60

𝑄4(𝑠)
 

 

𝐺𝐷𝐺(𝑠)  =
[40, 60] ∗ 𝑒−𝑠 

[0.164, 0.533]𝑠3 + [3.1, 6.96]𝑠2 +

 [8.38, 12.57]𝑠

+[3.22, 5.16]
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                       a 

                 
b 

   Fig.4 Stability boundary locus 

a  Diesel Generator locus without time-delay                                                                                                                                                                          

b  Fuel Cell locus without time-delay 

 

 

From (49) obtain the numerator real ( 𝑁𝑟𝑒𝑎𝑙) and imaginary 

(𝑁𝑖𝑚𝑎𝑔) terms. For denominator obtain the real (𝐷𝑟𝑒𝑎𝑙) and 

imaginary (𝐷𝑖𝑚𝑎𝑔) terms .We get  

 

𝑁𝑖𝑚𝑎𝑔 = 0;    𝑁𝑟𝑒𝑎𝑙 = 40;    𝑫𝒊𝒎𝒂𝒈 = −0.553 ∗ 𝜔2 + 8.38;  

                     𝐷𝑟𝑒𝑎𝑙 = −6.94 ∗ 𝜔2 + 3.22                           (50)   

                                         

Likewise, substitute each terms of (47) in (48) and separate 

the numerator and denominator terms of each equation of 

(48) into real and imaginary terms. Now, substituting the 

necessary terms of numerator and denominator of each 

equation of (48) in (40) and (41), we can obtain eight sets 

of 𝐾𝑝 and 𝐾𝑖 equations. By drawing the SBL for various 

values of 𝜔, the stabilising values of 𝐾𝑝 and 𝐾𝑖are 

obtained. Fig. 3a shows the SBL drawn for the DG. The 

dark region in the figure shows the stable values of  𝐾𝑝 [-

0.2 to 0.27] and 𝐾𝑖 [0 to 0.145].The dark region contains 

all the stable of the PI controller parameters. In this work, 

maximum values of 𝐾𝑝 and 𝐾𝑖 are selected from the dark 

region. 

 

7.2 Finding PI parameters for FC with time-delay     
 

Considering the uncertainty of the plant, the 

parameters of FC are varied ±20% from the nominal value, 

and the values are  

 

Kp= [40,60], TP=[8,12], TFC=[0.208, 0.312], TIN =[0.032, 

0.048], TIC =[0.0032, 0.0048], L=1 s                                                                                                               

                                                                                                     

Substituting the above values in (44), the FC transfer 

function, GFC(s), results: 

     𝐺𝐹𝐶(𝑠)

=
[40, 60] ∗ 𝑒−𝑠

[0.00017, 0.000862]𝑠4 + [0.059, 0.2]𝑠3 +
[1.95, 4.52]𝑠2 + [8.24, 12.36]𝑠 + 1

                 (51) 

 

Now, the Kharitonov polynomials for the denominator of 

(51), are written using (2)-(5) as 

 

𝑄1(𝑠) = 1 + 8.24𝑠 + 4.52𝑠2 + 0.2𝑠3 + 0.00017𝑠4 

𝑄2(𝑠) = 1 + 12.36𝑠 + 4.52𝑠2 + 0.059𝑠3 + 0.00017𝑠4 

𝑄3(𝑠) = 1 + 8.24𝑠 + 1.95𝑠2 + 0.2𝑠3 + 0.000862𝑠4 

𝑄4(𝑠) = 1 + 12.36𝑠 + 1.95𝑠2 + 0.059𝑠3 

                               +  0.000862𝑠4                                                   (52) 

 

Using (52), the framed eight equations are written as in (48). 

The remaining procedure is same as in section 7.1. Fig. 3b 

shows the SBL for FC. The dark area where maximum loci 

covered is the stability region. It is found that stable values 

of 𝐾𝑝 [-0.02 to 0.27] and 𝐾𝑖 [0 to 0.065].  

  

7.3 Finding PI parameters for DG and FC 
systems without time-delay            

 
The procedure given in section 6.3 is followed to find 

the PI parameters for DG and FC system without time-

delay.  Substitute each term of (47) in (48) and separate the 

numerator and denominator terms of each equation of (48) 

into imaginary and real terms. Now, substitute in in (15) and 

(17), we can obtain eight sets of 𝐾𝑝 and 𝐾𝑖 equations. By 

drawing the SBL for various values of 𝜔, the stabilising 

values of 𝐾𝑝 and 𝐾𝑖are obtained. 

The following figures 4a and 4b show the SBL for 

DG and FC systems without time-delay. The PI parameters 

are found using KT. It is found that stable values of 𝐾𝑝 

[0.1 to 0.6] and 𝐾𝑖[0.3 to 0.6] for DG. For FC, stable 

values of  𝐾𝑝 ɛ [0.1 to 1.3] and 𝐾𝑖 ɛ [0.2 to 1.15].   

 

8. Simulation results 
 

 In this section, the simulation results for the stable 

values of 𝐾𝑝 and 𝐾𝑖 obtained using KT, considering DG and  

FC with and without time-delay is presented. The G  

system is simulated for the interval system parameters in 

which they are varied ±20% from the nominal value. The 

variation of wind speed [36] is shown in Fig. 4a(i). For the 

given wind speed (Vw), the mechanical power output (𝑃𝑤) of 

WTG is calculated using (20), which is displayed in Fig. 

5a(ii).  

 The total load demand (𝑃𝑠
∗) is 1.0 pu and the time-

delay (𝐿) considered is 1.0 s. In [27], a time-delay of 3.0 s is  

assumed for the LFC of the single area power system. Fig. 

5b shows the DG power output. Whenever wind power 

fluctuates, DG generates the power in order to compensate 

for the frequency deviations. Initially, DG raises its 

generation up to 0.48 pu, and 0.38 pu for the PI controllers 

found by KT for the system with and without time-delay at 

5.0 s and then follows with the rise and fall of WTG power 

output. The DG considered without time-delay responds 

immediately. At the same time, the DG takes 0.4 s to 

respond when the time-delay is considered.                                 

 Fig. 5c shows the FC power output. Whenever WTG 

wer output reduces, FC raises its power output to meet the 

demand and maintains the frequency deviation within the 

limit. FC raises its generation up to 0.52 pu and 1.3 pu for 

the PI controllers found by KT for the system with time-
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Fig. 5 Responses of the sources 

a (i) Wind velocity (ii) WTG output power 

b  DG output power 

c FC output power 

d BESS output power 
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Fig. 6 Frequency responses for different system loads 

a Frequency deviation for the system  load of 1.0 pu 

b Frequency deviation for the system load of 0.9 pu 

c Frequency deviation for the system load of 1.1 pu 

 

 

delay and without time-delay and then follows with WTG 

power output.  

 Fig. 5d shows the BESS power output. BESS is 

capable of supplying instant power for the power deficit. 

When the WTG power output is more, BESS stores and 

releases the power when power deficit occurs. To meet the 

load demand, BESS raises its power output up to 0.58 pu 

and 0.4 pu for with and without  time-delay systems for the 

PI controllers found by KT. The positive sign indicates the 

charging of BESS. 

 Fig. 6a shows the frequency deviations of the μG. 

From the fig.6a, it is evident that the system with time-delay 

has an impact on the system response. The peak overshoot 

of the   frequency deviations for the system with and without 

time-delay is -0.43 Hz and -0.27 Hz. Also, the system takes  

6 s to restore to its original state when the time-delay is 

considered. Whereas PI controllers tuned using ZN method 

with time-delay has peak overshoot of -0.62 Hz and the 

system settles after 20 s. 

 The robustness of the PI controller found using KT is 

shown for the frequency deviation for the load of 0.9 pu and 

1.1 pu in fig. 6b and 6c. In fig. 6b, as the load is decreased 

from 1.0 pu to 0.9 pu, the peak overshoot of the frequency 

deviation is reduced to -0.39 Hz and the system takes 7 s to 

settle for the system with time-delay.  In fig.6c, when the 

load is increased from 1.0 pu to 1.1 pu, the peak overshoot is 

raised to -0.47 Hz and the system takes 7 s to settle for the 

system with time-delay. The simulation results show that the 

frequency deviations are within the prescribed limit for the 

PI controllers found by KT. 

                                            

 In fig. 6b and 6c, the peak overshoot is -0.56 Hz for the 

load of 0.9 pu and -0.7 Hz for the load of 1.1 pu for the ZN 

tuned PI controllers.  The peak overshoot of the frequency 

deviation is more for ZN tuned PI controllers when 

compared with KT based PI controllers. 

 Fig. 7a shows the frequency deviation for the time-

delay of 0.1 s. From the response it can be observed that the 

peak overshoot for a time-delay of 0.1s is -0.41Hz which is 

less when compared with the peak overshoot for the time-

delay of 1 s. Fig. 7b shows the frequency deviation for the 

time-delay of 3 s. The peak overshoot of the frequency 
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Fig. 7 Frequency responses for different time-delays  

a Frequency deviation of the system with 0.1 s time-delay 

b Frequency deviation of the system with 3.0 s time-delay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

deviation is -0.48 Hz and the system takes 8.0 s to settle 

which is more when compared to the time-delay of 1 s.  As 

time-delay increases, the time taken for the frequency 

stabilization also increases. 

 

9. Conclusion 
Existing scientific literature in the area of LFC design 

has not taken communication time-delay effects or 

parameter uncertainties of the G sources into 

consideration. The major contribution of this paper is it has 

proposed and demonstrated the suitability of a viable simple 

method using KT for calculating the PI controller 

parameters of G sources with persisting communication  

 

time-delays and system parametric uncertainties. Increase in 

time delays often has a deteriorating effect on the frequency 

stability of the system. With the adoption of KT based 

model, it would be easier to overcome the instabilities 

introduced because of communication time-delay. 

Robustness check is done for a load change of ±10% from 

the nominal value; the system frequency is within the 

tolerance limits for the PI controllers found using KT. In 

addition, the frequency deviations of the system for increase 

and decrease in communication time-delays have been 

examined with the obtained controller parameters. The 

frequency deviation is maintained well within the stable 

limits by the PI controllers so found by KT. 
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