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ABSTRACT Owing to a global effort towards reducing carbon emissions, electric vehicles (EVs) have
emerged to replace the petroleum-fueled vehicles. However, the battery is a bottleneck restricting EVs from
being utilized in the same way as petroleum-fueled vehicles. Lithium-ion batteries (LiBs) are commonly
used in EVs, but have an optimal temperature range, and operation outside this range causes accelerated
aging in the form of capacity fading and power fading, especially in cold climates. We propose that
both state parameter estimation and thermal management are interconnected problems and should be
addressed together: Battery health and performance depends on temperature, while temperature depends on
operational conditions, battery health, structural design and thermal management. Temperature dependent
decay accounting for heat generation in cells, temperature variation between cells and heat transfer with
surroundings, can allow more accurate state parameter estimation and guide thermal management strategies.
This review investigates how the dynamics of temperature dependence and heat generation are addressed
in the literature related to estimation of battery state parameters. Approaches involving temperature were
divided into three categories: 1) maintain constant ambient temperature and omit battery temperature,
2) verify at different ambient temperatures, and 3) use available data for cell and/or ambient temperature.
A valid solution to the problem in real applications, must satisfy three criteria: a) suitable for online
applications, b) scalable to battery packs, and c) applicable to dynamic battery cycling occurring during
normal use. Themost promisingmethods include coupled thermal and electricmodels with adaptive filtering,
and recurrent neural network methods.

INDEX TERMS Adaptive filters, battery management systems, equivalent circuits, machine learning, state
estimation.

I. INTRODUCTION
In a global effort towards climate consciousness in recent
years, many governments have defined goals for reducing
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carbon emissions in the 2025-2035 period [1], such as mov-
ing towards zero-emission transportation [2]. Electric vehi-
cles (EVs) have an important role in this process. Even though
EVs have a potential for low emission operation when using
a clean electricity source, batteries are responsible for a con-
siderable part of the manufacturing phase emissions [3], [4].
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TABLE 1. Battery state estimation reviews.

Despite technological progress, batteries still restrict EVs
from being utilized in the same way as petroleum-fueled
vehicles (PVs) and improvements to the management of bat-
tery health can facilitate improved performance and emission
reduction by less frequent battery replacement.

Lithium-ion battery (LiB) technology is one of the most
popular battery technologies for EVs [5], [6]. However, ther-
mal management challenges inhibit LiB performance, health
and safety. High temperature operation reduces lithium inven-
tory resulting in capacity fade, while low temperatures reduce
the amount of active anode material resulting in capacity
and power fade [7], both degrading the battery at acceler-
ated rates. Furthermore, operation at high temperatures can
initiate destructive processes causing permanent damage to
battery components or vehicle, such as swelling, fire and
explosion [5].

This review was motivated by work related to thermal
management in EV battery packs. To address effective and
economic battery thermal management solutions, it is neces-
sary to consider the thermodynamics within a battery pack
and temperature dependence on health and performance,
especially considering non-uniform accelerated aging of bat-
tery cells from temperature variation between cells. Recent
literature, covered in this review acknowledge the importance
of temperature, but tend to constrain the operating condi-
tions to a limited set of fixed ambient temperatures, within
the optimal temperature range for the battery [8]. In addi-
tion, the cell surface/core temperature changes dynamically
depending on health and charge/discharge rates and may vary
between cells [5]. A viable solution needs to take temper-
ature into consideration but must also possess the follow-
ing characteristics: 1) suitable for online battery monitoring,
2) scalable to battery packs, and 3) compatible with dynamic
cycling.

Several reviews in recent years have focused on methods
for estimating battery state parameters such as SoC (State
of Charge), SoH (State of Health), RUL (Remaining Useful

Life), State of Function (SoF), State of Available Power
(SoAP), see Table 1.

This review attempts to provide a critical overview on
how battery monitoring methods address dynamic tempera-
ture variation in battery packs, which can be important for:
challenges in cold climates [23], high temperature safety
issues [5] and general longevity and performance [7]. The
focus is on recent literature, published starting from 2016,
gathered primarily from Science Direct and IEEE Xplore,
with combinations of keywords, such as: battery, manage-
ment systems, state estimation, temperature dependence,
thermal management.

II. BATTERY STATE ESTIMATION METHODS
Battery state estimation methods are used to describe the
internal battery state, which is necessary to operate a bat-
tery powered system effectively, sustainably and safely,
given the nonlinear behavior of the electrochemical reac-
tions and dependence on operating conditions. Defined state
parameters generally describe three properties of the battery:
Amount of stored charge, decay of maximum capacity com-
pared to a new battery, and amount of power the battery
can deliver, most commonly described by SoC, SoH, SoF
respectively, or alternatives. A brief introduction to typical
methods has been arranged in three categories: experimental
methods, model-based methods and data-driven methods.

A. EXPERIMENTAL METHODS
Experimental methods as defined here are methods that
explore battery properties with non-destructive experimental
procedures.

Coulomb-counting estimates the amount of charge in the
battery by integrating the current transferred to or from the
battery over time, to determine the remaining charge rela-
tive to the maximum charge (SoC), or maximum capacity
relative to nominal capacity (SoH) i.e. fading of maximum
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TABLE 2. ECM recommendations.

capacity compared to a new battery [21]. This method is
appropriate for online applications, but suffers from inac-
curacies due to sensor error accumulation and initial value
error. However, Coulomb-counting is often used in combina-
tion with model-based methods due to its relatively simple
implementation [24].

Hybrid Pulse Power Characterisation (HHPC) tests and
Electrochemical Impedance Spectroscopy (EIS) are meth-
ods used for nondestructive characterization of electrical
response in a chemical system. HPPC tests are performed
by monitoring voltage changes during short high current
charge/discharge pulses with relaxation periods. The cell
voltage response is affected by electrochemical kinetics of
the battery, such as ohmic losses, double layer capacity and
lithium ion diffusion [25], [26]. EIS measures the current
and voltage relationship over a frequency range [25], and
can be used to model kinetic battery processes through the
impedance spectrum and estimate physical properties like
diffusion coefficients and reaction rates. EIS requires linear-
ity, stability and causality making it challenging to imple-
ment as an online method [27]. Since the battery impedance
is dependent on temperature; HPPC and EIS can be per-
formed at different ambient temperatures with very different
results [28], [29].

Incremental Capacity Analysis (ICA) and Differential
Voltage Analysis (DVA), measures the change in charge (Q)
and cell voltage (V ) in a cell at equilibrium during
charging/discharging as the gradients dQ/dV and dV/dQ
respectively, to determine changes in electrochemical prop-
erties [30]. Different degradation modes can be identified
by defining feature points (such as peaks or plateaus) from
IC and DV curves and observing the change during aging.
Challenges for ICA/DVA analysis in online applications
includes differentiation of discrete noisy data, the assump-
tion of equilibrium conditions, and establishing the IC-DV
curves when the driving conditions determines the discharge
process [30], [31].

The experimental methods alone are most suitable for
offline SoH determination due to the required experimental
conditions, such as full cycles, constant temperature and a
disconnected battery, although attempts have been made to
achieve online functionality such as online static charging
SoH identification with partial ICA charging data [32], or
online EIS for fuel cell EVs [33]. Experimental methods are
commonly used in combination with model-based methods
such as HPPC for model parameter determination [34].

B. MODEL-BASED METHODS
The model-based approach is based on using an approxi-
mate equivalent model to represent battery dynamics, with
adaptive filtering of available sensor data for estimation of
unobservable state parameters.

1) EQUIVALENT CIRCUIT MODELS
Equivalent circuit models (ECMs) for LiB cells are used
in battery state estimation to describe the Voltage-Current
characteristics of the battery. ECMs can be designed with
different objectives like accuracy, parameter estimation com-
putational load and reliability, where model parameters can
be determined by experimental procedures and optimiza-
tion methods. There is no definite answer for selecting the
most appropriate ECM given a battery technology, type
and application. Different studies recommend different mod-
els [35]–[38], see Table 2 and suggested ECMs in Fig-
ure 1 (Figure 1a generalized for different number of RC
parallels and optional Hysteresis voltage). The impact of
optimization method on computational load was only con-
sidered by Lai et al. [38]. This demonstrates that results
and recommendations from different studies that address
computational load are not directly comparable if they use
different optimization methods. However, considering the
application and trade-off between accuracy, performance and
reliability, the simple models are generally preferred. The
1RC [39]–[46], and 2RC [34], [47], [48] are commonly used
ECMs.

2) ADAPTIVE FILTERS
Adaptive filters such as variations of Kalman filters
(KF) [44], [49]–[51] and Particle filters (PF, also called
Sequential Monte Carlo) [44], [46], [49], [52] are commonly
used for battery state parameter estimation. Adaptive filter-
ing is based on a prediction step where the state estimate
and error is projected ahead according to the model, and a
correction/update step to correct the prediction by comparing
predictions to measurements. Adaptive filters can estimate
unobservable states in dynamic systems based on a dynamic
model and output measurements formulated as state-space
equations (1) and (2):

xk = f (xk−1, uk)+ wk (1)

zk = h (xk)+ vk (2)
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FIGURE 1. ECMs from Table 2: a) nth-order RC ECM with optional Hysteresis Voltage (UH) [37], [38], b) 1RCPE ECM, incorporating Constant Phase
Elements (CPE) [36].

xk is the unobserved state, zk is the output (measurement),
uk is control input, wk ,andvkare process and measurement
noise and f (.) and h(.) are state transition and observation
models.

Standard KF relies on f and hbeing linear functions
of the state, so modifications such as Extended-KF and
Unscented-KF was developed to handle nonlinear models.
If the model is inaccurate or not well known, PF is often
used, but PF is Monte Carlo based and more computation-
ally intensive and may be more challenging to implement
in online applications. Adaptive filters can take advantage
of both a dynamic model and sensor measurements, in the
presence of process and measurement noise, and obtain more
accurate results compared to either models or measurements
alone [53], [54].

The battery ECM can be formulated as differential equa-
tions and discretized [55] to (1) and (2) and is therefore
appropriate for adaptive filtering to estimate the unobservable
state variables of batteries. The introduction of temperature in
addition to e.g. current and voltage in the state-space model
requires an energy balance equation to couple the ECM with
the thermal domain.

A general battery energy balance was proposed by
Bernardi et al. [56], accounting for: Reactions, change in
system heat capacity, phase change, mixing, electrical work
and heat transfer with surroundings under the assumption of
uniform battery temperature. In the context of battery health
monitoring, an assumption of uniform battery temperature
may be unreasonable, depending on thermal management
strategy and battery type, since accelerated decay have been
demonstrated for surface cooling of cylindrical cells.Heat
generation occurs primarily in the core, and surface cooling
increases the temperature gradient in the battery cell causing
accelerated decay [57], [58]. In an isolated cell the contribu-
tions from irreversible heat (joule heating) and reversible heat
(entropy change) dominates the battery heat generation, but
additional terms can be included to increase accuracy at the
cost of increasedmodel complexity [56], [59]. For application
in a pack of cells with a thermal management strategy, it is
also necessary to consider heat transfer with surroundings,
such as coolant fluid, ambient air, battery casing and other

cells (3).

mcp
∂T
∂t︸ ︷︷ ︸

Internal rate

= IB (UOC − UB)︸ ︷︷ ︸
Irreversible

− IBT
∂UOC
∂T︸ ︷︷ ︸

Reversible

+ q︸︷︷︸
surroundings

(3)

Non-uniform cell temperature can be incorporated by
establishing a thermal resistance lumped model for cells with
surface/core/average temperature [48].

C. DATA-DRIVEN METHODS
Data-driven methods are generally model-free black-box
methods that can give rapid and accurate results given suf-
ficient training data. In a practical commercial application,
comprehensive failure data for training is challenging to
obtain before new products or battery technologies enter the
market. The difference in battery dynamics among battery
types makes direct reuse of trained models difficult. Genera-
tion of sufficient training data is important, but challenging if
changes to battery pack configuration, design, cell chemistry
etc. can make existing training data nonrepresentative, war-
ranting collection of new representative training data. There
may also be challenges with over- or underfitting: Is the
training data representative of all relevant scenarios, or are
there situations that will produce complete failure of the
model? However, as pointed out by You et al. [60] the model-
based methods and experimental methods for SoH often rely
on constrained assumptions such as full cycling with constant
current, which is not representative of partial and dynamic
cycling that can be expected during real life operation.

III. CRITERIA FOR TEMPERATURE-DEPENDENT METHODS
The reviewed battery monitoring methods address tempera-
ture according to the following 3 categories:

1) Maintain a fixed ambient temperature, omit tempera-
ture dependence or heat generation in the battery.

2) Assume temperature dependence of model parameters,
update model parameters periodically. An extension
of 1) by either validating for a range of temperatures,
or update the model parameters when battery tempera-
ture drifts too far.
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FIGURE 2. Conceptual figure. a) Visualization of temperature distribution in a battery pack, b) distribution of cell temperature T at time t (shaded blue
histogram), rate of degradation (dSoH/dt) with respect to time for different temperatures, and the product of the two (shaded red) showing effective
accelerated ageing at different temperatures.

3) Use available sensor data as it becomes available
(e.g. temperature, voltage, current). Update model for
real-time temperature data, and/or temperature data for
the present cycle or historical charge/discharge cycle
data

The following criteria (A-C) were defined as constraints
for a method to serve as a viable solution to the problem at
hand.

A. ONLINE PREDICTION
Themethodmust be suitable for integrationwith batteryman-
agement systems, with functionality for real-time or near real-
time predictions of SoC/SoH or other state parameters while
driving. The method therefore needs to be non-destructive,
rapid, accurate and with manageable computational inten-
siveness.

Compromises are possible during the stationary charging
process. More intensive diagnostic procedures suitable for
offline use can be applied for a stationary shut-down vehicle
compared to during normal operation, such as measurements
over a full/partial charge cycle for a disconnected battery.

B. BATTERY PACK
Extending from a single cell to battery pack complicates the
issue, as it requires scaling to an application-dependent num-
ber of cells, with design dependent interaction between cells.
It is possible to connect one ECM per cell, but depending on
the number of cells, the complexity of the model can involve
optimization of a large number of parameters, which can
be computationally intensive depending on the optimization
method, and require more measurements/training data. On
the other hand, if the set of connected cells is considered
as a single equivalent model, the number of parameters is
manageable, but it will not be able to capture inter-cell vari-
ation. New cells with the same chemistry exhibit similar
behavior [37]. However, variations in fabrication processes,

design of battery pack, thermal management may apply a
different set of conditions to different cells causing subsets of
cells to be cycled at more extreme temperatures than others,
leading to a temperature-induced non-uniform accelerated
aging (see Figure 2). Rate of decay depends on temperature
and aged batteries produce more heat (see Figure 3d), which
can be transferred to adjacent cells and further accelerate
decay. The heat generation within cells, heat transfer between
cells and with surroundings, and how this relates to SoH
should be taken into account when considering strategies for
thermal management and equalization of cells with different
SoH and SoC.

C. DYNAMIC PROFILES
The electrochemical processes in the battery cells depend on
temperature, and the temperature of the battery cells will vary
according to energy conservation (3) [56] even with constant
ambient temperature. Furthermore, cell temperature has been
successfully demonstrated as predictors for SoC, SoH and
SoP [48], [60], [61]. In real applications the conditions are not
ideal andmostly unknown ahead of time, e.g. varying ambient
temperature and partial discharge of battery pack based on
trip distance, traffic and road conditions.

The literature has been summarized in Table 3, cate-
gorized according to the temperature approach (1-3) and
constraints (A, B, C).

IV. DISCUSSION
In online applications and real scenarios, temperature
approach 1 and 2 suffer from the implicit assumption that
ambient temperature is a proxy for battery temperature, and
that the battery can be operated in equilibrium under fixed
conditions. The battery dataset from the NASA Ames Prog-
nostics Center of Excellence is often used to test developed
battery state estimation methods (see Table 3) with such
conditions [72]. The NASA data set contains data from fairly
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TABLE 3. Recent literature on battery state estimation.

ideal charge, discharge and EIS operational profiles on Li-ion
18650 sized batteries, cycled until the battery faded 30% from
the rated capacity. Figure 3 displays the charge and discharge
temperature of battery B0005 from the dataset, which was
cycled at 24oC ambient temperature, charging in constant cur-
rent mode at 1.5A until the battery voltage reached 4.2V and
then constant voltage mode until the charge current dropped
to 20mA. Discharge carried out at constant load of 2A until
the battery voltage fell to 2.7V. The charge and discharge tem-
peratures in Figure 3, demonstrates the obvious relationship
between temperature generation and battery aging, and the
constant ambient temperature during discharge acts mostly
as an initial condition.

In the reviewed literature, the four main methods
of addressing temperature dependence are described in
section A-D:

A. BATTERY SURFACE TEMPERATURE
It has been proposed that battery surface temperature
is correlated with battery capacity [61], as demonstrated
in Figure 3d), through the Joule effect and the relationship
between internal resistance and capacity [15]. Determining
SoH and RUL by surface temperature alone falls in the

category of experimental methods. Yang et al. [61] proposed
estimation of RUL based on the temperature difference over
a full cycle, making it inappropriate for online applications
and dynamic cycling. In theory it is scalable to a set of
thermally isolated connected cells, however for cells in a pack
under real conditions, the flow of heat between cells and the
surroundings as well as temperature variation due to thermal
management, makes the method impractical.

B. STANDARD ECM, WITH TEMPERATURE CORRECTION
A strategy based on following the general model-based
approach of establishing an ECM and incorporating tem-
perature dependence by modelling temperature influence
on affected parameters instead of a coupled ECM with a
thermal model. El Mejdoubi et al. [24] modelled tempera-
ture dependence on battery voltage and internal resistance,
Dong et al. [44] used an open-circuit voltage function of
SoE with 6 parameters, where each parameter is a function
of temperature. Wang et al. [45] used a similar approach
by establishing a nonlinear function for open-circuit voltage
dependent on SoE and temperature.

This approach can incorporate the effects of dynamic bat-
tery temperature but gives an impression that the method
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FIGURE 3. NASA battery #5 cycling in constant ambient temperature (24o C): a) discharge temperature, b) maximum discharge temperature over all
discharge cycles, c) charge temperature, d) discharge temperature range and capacity during cycling. Nasa battery data #5 Red and blue plotted
lines are the initial and end cycles respectively.

is developed without consideration of battery temperature,
and then inserting a model temperature dependence in
retrospect.

C. ELECTROCHEMICAL AND THERMODYNAMIC COUPLED
ECM
A coupled ECM combines the battery model with the energy
balance model (3), so that measured temperature can be a
part of the state space formulation (1) and (2), see Table 4.
Zou et al. [48] coupled a 2RC electric model with a thermal
cell model for surface, core, average and coolant temper-
ature using a heat generation equation for reversible and
irreversible heat, but also used temperature correction of
parameters. Wang et al. [68] coupled a 1RC model with an
energy balance equation including reversible and irreversible
heat generation and heat exchange with surroundings. Wang
et al. in contrast to Zou et al. considered the temperature
to be uniform throughout the cell. Altaf et al. [69] used a
simple cell model approachwith open-circuit voltage in series
with a resistance, and a thermal model for surface tempera-
ture dynamics of cells including heat generation within cells

and convective heat transfer between cells. Farag et al. [59]
specified a coupled model with an electrochemical model,
a heat generation model and a thermal model. Farag et al.
similarly to Wang et al. [68] included reversible losses,
irreversible losses and heat of mixing. The battery thermal
model addressed battery core, housing, bottom and terminal
temperature.

The publications in Table 4 are the most comprehensive
approaches to solving the problem at hand, and they have
different advantages and disadvantages. E.g. Altaf et al. is the
only solution designed for an actual battery pack and is the
only one that takes variation between cells and heat transfer
between cells into account. Farag et al. provides the most
comprehensive model for pouch cells, but estimation of elec-
trochemical model parameters and extending the model to
packed cells may be challenging. Wang et al. explores the
reversible and irreversible heat more thoroughly than Zou et
al., but at the same time does not take temperature distribution
within cells into account. This may not have a large impact on
estimates, but it can have an impact on employing the battery
state estimation method in thermal management strategies,
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TABLE 4. Coupled ECMs.

as described in section II.B.2 regarding potentially harmful
effects from surface cooling of cylinder batteries.

D. DATA-DRIVEN
As previously mentioned, the availability of comprehensive
failure data is a challenge for the data driven methods.
You et al. [60] used a neural network (black-box) method
with voltage, current and temperature as inputs, and provided
a framework for training data collection. Data was collected
from different ambient temperatures for dynamic cycling
based on dynamometer driving profiles. This approach did
not address a way to reduce the amount of necessary data
but proposed a way to emulate it, and potentially extend to
additional variables. Chemali et al. [70] used a Long Short-
TermMemory type recurrent neural network, which encoded
time dependencies and behavior at different ambient temper-
atures, and claiming that the need for training data is lower
compared to traditional approaches. The trained network was
able to generalize to intermediate conditions it was not trained
on.

Data-driven methods appear to be a powerful approach
for battery state estimation, and with rapid development
of machine learning algorithms, hardware and Internet of
Things, new opportunities arise which can solve the problems
of data scarcity, such as:
• Transfer learning [74], [75]: Adapting trained machine
learning algorithms to different but related/similar tasks.
For EV applications, the data scarcity problem of batter-
ies is more of a practical problem in terms of collection:
The EVs in normal use can generate large amounts of
training data, but this is too late in the development
cycle, since data must be available prior to product
launch. If vast amounts of past similar data can be
adapted to new systems with less training data, this can
provide a way around the data scarcity problem.

• Recurrent networks: Deep Recurrent Neural Networks
(DRNN) [76] and LSTM-RNNs [70] have the ability to
encode time dependence and nonlinearities well. This
could be used in place of or in combination with existing
approaches, such as: model-aided learning [77], [78],
or DRNN modelling of intricate nonlinear circuits [76],
to replace the standard ECMmodel in the prediction step
of adaptive filtering and to reduce the need for online
re-optimization of parameters as aging occurs.

E. SUMMARY OF METHODS
Among the published work from 2016 and onward some
approaches are only useful for offline diagnostic work; with

fixed conditions, full charge and discharge cycles, omitting
the influence of battery temperature. The two approaches that
appear to be the most promising for satisfying criteria A-C
are:

• Thermodynamic/electrochemical coupled ECM in
combination with adaptive filtering and estimation of
unobservable parameters: Scalability to battery packs
(criteria B) is not clear. Altaf et al. [69], see Table 4,
was most practical in their address of the necessary
environment for cells in a battery pack, in that they
included heat convection and thermal coupling between
cells. They addressed cell to battery pack scaling in a
pragmatic way by using the simplest equivalent model
(1R) only accounting for irreversible ohmic losses. This
demonstrates the major challenge of generalization,
that can be approached from two directions:

a) Connect n individual (k-parameter) cell models to
form a nk-parameter battery pack model

b) Approximate the battery pack model as a single
k-parameter collective battery model.

There is a trade-off between cell level detail and com-
putation load, but in both cases the computational load
is likely going to be the limiting factor. However, cell
level detail is desirable in the context of non-uniform
aging.

• Data-driven Neural network-based method: Given that
data-driven solutions can accurately encode battery
aging dynamics, can be trained offline and deployed
online, the trade-off is not between accuracy and compu-
tational load, but between accuracy and available data.
but the method requires more comprehensive training
data, and needs to be designed with consideration of
the data scarcity challenge. From the reviewed literature,
You et al. [60] proposed a method of data collection by
emulation, whereas Chemali et al. [70] suggested that
LSTM-networks can encode time dependence behavior
and requires less data than other data-driven methods.

The thermal management challenge can be addressed by
improved monitoring strategies at the cell level and mod-
ule (pack) level [19]:

• Cell level – modelling of heat generation [56] and tem-
perature distribution within cells with lumped thermal
cell models 48], [59] in combination with appropriate
cooling strategies, considering that high temperature
gradient in a cell can accelerate aging [57], [58].

142210 VOLUME 7, 2019



H. Karlsen et al.: Temperature-Dependence in Battery Management Systems for EVs: Challenges, Criteria, and Solutions

• Module level – Heat transfer between cells [69] and
how it relates to localized accelerated aging and overall
aging.

Accurate modelling and rapid estimation of the impact
temperature has on battery health under the operating condi-
tions has a potential for improving state estimation in battery
management systems, but in the context of thermal manage-
ment it is more appropriate to consider it as an optimal control
problem where the cell and module level models control
the cooling strategy, e.g. intense localized cooling to pre-
empt the development of cell clusters aging at an accelerated
rate, and prevent the subsequent spread of accelerated aging.
However, in practice there is still a major constraint regard-
ing computational complexity from the number of equations
(in the case of model-based methods) added by accounting
for interactions within and between individual cells without
sacrificing dynamic accuracy. Although if accelerated aging
occurs among clusters of cells localized in space it may be
possible to make lumped models of clusters of cells as a
midpoint between modelling individual cells and modeling
the battery pack as a whole.

V. CONCLUSION AND PROSPECTS
This review has covered recent literature in the topic of elec-
tric vehicle battery state parameter estimation and incorporat-
ing the effect of varying temperature as this has a significant
impact on the life and performance of batteries, especially in
cold climates.

As visualized in Figure 2, battery cells may have a tempera-
ture distribution in the pack generated by issues like structural
and thermal design of the battery pack as well as process
inaccuracies in the battery cell fabrication. Temperatures out-
side the optimal working range accelerates the aging of cells,
and as cells age, the internal resistance increases leading to
increased irreversible heat losses. If imbalances develop in
a subset of cells, the resulting local accelerated aging may
propagate through heat transfer and accelerate the aging of
otherwise healthy cells and lead to premature battery failure.
Thus, early detection of changes in temperature distribution
with an associated temperature dependent battery pack aging
model can serve as input to an active thermal management
system. However, in any system implementation, change in
power consumption and cost of implementation would have
to be addressed with respect to the change in performance
and battery life to determine the economic viability of the
implementation.

ABBREVIATIONS
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CPE – Constant Phase Elements
DVA – Differential voltage analysis
ECM – Equivalent circuit model
EIS – Electrochemical Impedance Spectroscopy
EVs – Electric vehicles
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LiB – Lithium-ion batteries
LSTM – Long Short-Term Memory
PF – Particle filters
PVs – Petroleum-fueled vehicles
RNN – Recurrent Neural Networks
RLS – Recursive least square
RUL – Remaining Useful Life
SoAP – State of Available Power
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SoH – State of Health
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