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Abstract: This paper investigates the lateral pull-in effect of an in-plane overlap-varying transducer.
The instability is induced by the translational and rotational displacements. Based on the principle
of virtual work, the equilibrium conditions of force and moment in lateral directions are derived.
The analytical solutions of the critical voltage, at which the pull-in phenomenon occurs, are developed
when considering only the translational stiffness or only the rotational stiffness of the mechanical
spring. The critical voltage in a general case is numerically determined by using nonlinear
optimization techniques, taking into account the combined effect of translation and rotation.
The influences of possible translational offsets and angular deviations to the critical voltage are
modeled and numerically analyzed. The investigation is then expanded for the first time to anti-phase
operation mode and Bennet’s doubler configuration of the two transducers.

Keywords: lateral instability; MEMS electrostatic transducer; static pull-in

1. Introduction

The comb-drive electrostatic transduction is one of the most popular mechanisms used in
Microelectromechanical systems (MEMS) due to its many inherent advantages such as high efficiency
and low power consumption. Various comb-drive electrostatic transducers have been early
developed and utilized in a wide variety of application, including micro energy harvesting [1,2],
microresonators [3,4] and microactuators [5,6]. During operation, a voltage is applied to the device,
generating an electrostatic force between fixed and movable electrodes, both in stroke direction and its
perpendicular direction. In a critical condition, when the electrostatic force exceeds the mechanical
restoring force, a small disturbance could lead to collapsing of the movable fingers to the fixed ones.
This restriction is more critical when the MEMS transducer is electrically configured as Bennet’s
doubler or voltage multiplier [7,8]. Design of comb-drive devices, therefore, requires a comprehensive
analysis of a pull-in effect since the travel range and device performance are severely limited by the
inherent instability.

The pioneering investigation of pull-in phenomenon was presented in the late 1960s by
Nathanson et al. [9], in which the electrostatic deflection of a parallel-plate actuator is modeled by
use of a mass-spring system. The maximum possible deflection is derived as one-third of the initial
gap. Since then, the nature of pull-in instability has attracted more and more attention. Other than
that, instead of focusing on analysis, several researchers turned their interest towards designing of
mechanical spring structures to enlarge the maximum displacement, or devising an external control
scheme to ensure the device stabilization.

Legtenberg et al. presented an expression for the translational instability voltage and deflection [10].
The theoretical stiffness of various spring structures such as clamped-clamped, crab-led, and folded-beam
designs was determined. A similar issue with a tiled folded-beam suspension was investigated by
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Zhou et al. [11]. Both theoretical and experimental results show an enhancement of the stable travel
range. In these works, the rotational displacement has not been concerned yet.

Pull-in effects due to translational and rotational misalignments are individually analyzed by
Avdeev et al. utilizing three approaches: analytical, uncoupled 2D/3D finite element (FE) models and
coupled FE model [12]. A good agreement between analytical solutions and coupled FE simulation
results show that fringing fields have little effect on the translational pull-in voltage for the comb-drive
geometry. The critical voltage (i.e., beyond which the lateral instability occurs) considering both the
translational stiffness and the rotational stiffness has not been explored yet.

Huang et al. presented a development of this analysis, taking into account the case when effects
of the translational and rotational deflections are comparable [13]. Simplified analytical solutions
of the pull-in voltage are obtained based on a two-dimensional model of a single movable comb
finger. A simple example with a two-port actuator was analyzed, in which the mechanical stiffnesses
were calculated using ANSYS, and the critical voltage was explicitly determined. However, the cross
stiffness between the translation and the rotation is neglected.

With the same manner, in this work, we further develop a comprehensive theoretical model
to investigate the lateral side instability phenomena for both two-port and three-port transducers.
Analytic and numerical results can be adapted to any mechanical spring structure. An analysis
that takes into account the effect of a translational or rotational offset due to potential process
errors is presented. The general case when the cross stiffness between the two degrees of lateral
freedom is included, and the critical voltage for different transducer configurations are numerically
studied. Nonlinear optimization techniques with unequal constraints are used due to the complexity
of the problem, especially when the two transducers are electrically configured as a Bennet’s doubler.
A complete design is given as an example without compromising the generality of our study.

2. Analytical Model of a Single Transducer with Translational and Rotational Misalignments

2.1. Device Modeling

Figure 1 shows key features of the overlap-varying electrostatic transducers and addresses
potential issues of the general lateral instability. The three-degree-of-freedom (x, y, θ) device includes
two ordinary comb-drive structures with proof mass suspended by four linear springs. The rigid
end-stops are used to confine the maximum displacement. In an ideal case, the movable fingers are in
the center of the gap along the x axis, i.e., the stroke direction, and are in parallel with the fixed ones.
The comb-drive fingers are assumed to be rigid since their stiffness is typically designed to be much
higher than the spring stiffnesses.

We are now considering the simplest case when a single electrostatic transducer is used as an
actuator. Several prototypes were fabricated and evaluated, for instance, see among others [11,14–16].
An example of a circuit diagram for this device type is drawn in Figure 2. As both the translational
and rotational displacements are taken into account, i.e., y and θ in the close-up view of Figure 1,
capacitances of the transducer can be expressed

CA
(

x, y, θ
)
= C1

(
x, y, θ

)
+ C2

(
x, y, θ

)
+ Cp, (1)

where

C1
(

x, y, θ
)
= Nεε0t

∫ x0+x

0

1
g0 + y + (L− l) sin θ

dl, (2)

C2
(

x, y, θ
)
= Nεε0t

∫ x0+x

0

1
g0 − y− (L− l) sin θ

dl, (3)

Cp—the parasitic capacitance, N—a number of the movable fingers, ε0—the permittivity of free
space, ε—the relative permittivity of the dielectric material, t—the device thickness, x0—the initial
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overlap, x—the proof mass displacement, g0—the initial gap between fingers, L and dl—the length
and a differential segment of the movable finger respectively. As the length of the finger and the
thickness of the device (i.e., the electrode dimensions) are much larger than the gap between two
fingers, the fringing effect can be ignored. The capacitance created by the finger tips is negligible since
the finger thickness is usually much smaller than its length. These equations yield to

C1
(

x, y, θ
)
= C0

g0

2x0 sin θ
ln

g0 + y + L sin θ

g0 + y +
(

L−
(
x0 + x

))
sin θ

, (4)

C2
(

x, y, θ
)
= C0

g0

2x0 sin θ
ln

g0 − y−
(

L−
(
x0 + x

))
sin θ

g0 − y− L sin θ
, (5)

where C0 = 2Nεε0tx0/g0 is the nominal capacitance. Since the maximum displacement Xmax is chosen
to be smaller or equal to the initial overlap, we get x0 ± x ≥ 0, ∀x ∈ [−Xmax, Xmax].
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Figure 1. Key features of MEMS electrostatic transducers.
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Figure 2. Circuit diagram for a single variable capacitance device.



Sensors 2019, 19, 3770 4 of 16

In this paper, we chose to investigate the folded-beam flexure, as shown in Figure 1, which is one
of the most commonly used suspensions in comb-drive transducers/actuators. Adapting from a work
presented by Olfatnia et al. [16] which included theoretical analysis and its experimental verification,
the stiffness of a single spring are given

kx =
EtW3

1
L3

1
, (6)

ky =
EtW3

1
L1

140
140W2

1 + 51x2
, (7)

kθ =
EtW1

L1

350W2
1

700W2
1 + 3x2

4D2
1D2

2
D2

1 + D2
2

, (8)

where E is Young’s modulus. The spring length L1, the spring width W1, and the beam distances D1

and D2 are defined as Figure 1.
The total mechanical spring stiffnesses are Kx = 4kx, Ky = 4ky and Kθ = 4kθ . It is important

to observe that the translational and rotational stiffnesses ky and kθ respectively decrease with the
increase of the displacement x. In addition, kθ can be made large with respect to the dimensions D1

and D2. Figure 3 shows analytical results of Ky and Kθ in comparison with Kx. The drop in Ky and
Kθ from its nominal value (at x = 0) with increasing x is far more gradual. The detail parameters are
summarized in Table 1.
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Figure 3. The displacement-dependent spring stiffnesses of the folded-beam flexure design. Kx and Ky:
lateral stiffness, Kθ : rotational stiffness.

Table 1. Device structure parameters.

Parameters Value
Nominal capacitance, C0 12.27 pF
Device thickness, t 25 µm
Finger length, L 222 µm
Initial gap, g0 2 µm
Nominal overlap, x0 110 µm
Spring length, L1 1500 µm
Spring width, W1 16 µm
Beam distance, D1 (D2) 200 (90) µm
Maximum displacement, Xmax 110 µm
Young’s modulus, E 169 GPa
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2.2. Potential Energy

For the sake of simplicity, we only analyze the case |x| ≤ Xmax; the elastic energy of the end-stops
is therefore neglected. The total potential energy of the system can be written

W = Wm + We, (9)

where Wm is the elastic energy of the springs, We is the electrostatic energy of the transducers and
V is the voltage applied to the electrodes. With the proof mass displaced by x from the equilibrium
position, their expressions are

Wm =
1
2

Kxx2 +
1
2

Kyy2 +
1
2

Kθθ2, (10)

We = −1
2
(
C1 + C2 + Cp

)
V2. (11)

According to the principle of virtual work, the forces and moment associated with the three
coordinates x, y and θ can be calculated by

Fx = −∂W
∂x

= −Kxx +
1
2

V2 ∂
(
C1 + C2

)
∂x

, (12)

Fy = −∂W
∂y

= −Kyy +
1
2

V2 ∂
(
C1 + C2

)
∂y

, (13)

Mθ = −∂W
∂θ

= −Kθθ +
1
2

V2 ∂
(
C1 + C2

)
∂θ

. (14)

These forces and moment above characterize the equilibrium condition between the electrostatic
forces and the restoring forces produced by the mechanical springs. The transducers are in the state
of a static electromechanical equilibrium once all of them are equal to zero. For a constant voltage,
the transducers always seek out the orientation with the lowest potential energy. If the equilibrium
state corresponds to a local minimum of the potential W, then it is locally stable. A local maximum or
a saddle in potential energy corresponds to an equilibrium that is unstable.

Figure 4 shows the total potential energy of the transducers at x = Xmax and effect of the lateral
translational and rotational displacement on the instability. For instance, considering W as a function
of y only, i.e., Figure 4a, in the case of V = 30 V and θ = 0, the equilibrium state y = 0 is stable as
it is a local minimum of W. If θ = θmax/4, the equilibrium becomes unstable with the same voltage
V and any small perturbation of y leads to the pull-in effect. In Figure 4b, the same phenomenon
happens with V = 100 V and y = g0/4 as W is a function of θ alone. Figure 4c provides us a more
general evaluation of W when different values of the constant voltage are applied. There is one stable
equilibrium with V = 10 V while those that of V = 45 V are unstable. The transducer can exhibit
equilibria that are unstable along the y- or θ-direction only or along both the y- and θ-directions. In the
following sections, the analytical solution of the critical voltage when considering the rotational or
translational instability is developed. The numerical solution taking into account the combined effect
of rotation and translation is investigated.
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Figure 4. Total potential energy of the transducers as a function of (a) the translational displacement
y; (b) the rotational displacement θ; and (c) both y and θ, where θmax = tan−1(g0/L), x = Xmax and
Wref = Kxx2/2.

2.3. Rotational Instability

Assume that the translational stiffness Ky is extremely large and the translation y is negligible.
Since θ is small, sin θ ≈ θ, and the total capacitance is

CA =
1
2

C0g0

x0θ
ln

(
g0 + Lθ

)(
g0 −

(
L−

(
x0 + x

))
θ
)(

g0 − Lθ
)(

g0 +
(

L−
(
x0 + x

))
θ
) + Cp. (15)

The capacitance changes with the stroke direction displacement x and rotational angle θ. When the
moving fingers are parallel to the fixed ones (i.e., θ = 0), the capacitance simplifies to the well-known

parallel-plate calculation as expected lim
θ→0

CA = C0
(
1 +

x
x0

)
+ Cp. However, as will be shown later,

this does not indicate that the rotation effect can be neglected.
At equilibrium, the electrostatic moment is balanced by that of the mechanical spring,

which implies

∂2W
∂θ2 = −∂Mθ

∂θ

∣∣∣∣
θ→0

= Kθ −
1
3

V2 C0

x0

(
x0 + x

)(
3L2 − 3L

(
x0 + x

)
+
(
x0 + x

)2)
g2

0
= 0. (16)
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The requirement for stability is that the potential energy is concave up, or equivalently ∂2W
∂θ2 > 0.

The maximum voltage across the transducer, so-called critical (or pull-in) voltage, to avoid lateral
instability due to rotation is given as

Vθ − cr =

√√√√3
g2

0x0

C0

Kθ(
x0 + x

)(
3L2 − 3L

(
x0 + x

)
+
(

x0 + x
)2) . (17)

If the voltage is greater than Vθ−cr, the transducer cannot be in equilibrium, and, within a certain
amount of time, the moving electrode will snap against the fixed one.

In case of x = Xmax ≈ x0 ≈ L
2 , Equation (17) yields

Vθ−cr

∣∣∣
x=Xmax

=

√
3
2

g2
0

C0

Kθ

L2 . (18)

It is obvious that the increase of the nominal gap g0 enhances the lateral stability. However, on the
other hand, some device functions (e.g., energy harvesters) may require large nominal capacitance
C0 = 2Nεε0tx0/g0. This requirement could perhaps lead to a decrease of g0 especially when the initial
overlap x0 is limited. Thus, the design of a mechanical suspension with large Kθ would seem to be the
more common point of view to increase the side stability.

As seen in Equation (1), the transducer capacitance is modeled by the ideal-capacitance plus the
constant, parallel parasitic capacitance Cp. Under voltage control, the derivatives of the capacitance
are functions of displacements, i.e., do not contain Cp anymore. The pull-in voltage is, therefore,
independent of Cp. The relationship between charge and displacement in equilibrium (which depends
on Cp) is out of the scope in this paper. In the following sections, Cp will be eliminated.

2.4. Translational Instability

As the rotational stiffness is large enough, the rotation can be neglected. Evaluating
lim
θ→0

(C1 + C2) yields

CA =
C0g2

0
(

x0 + x
)

x0

1
g2

0 − y2
. (19)

The static equilibrium condition is satisfied when

∂2W
∂y2 =

∂Fy

∂y

∣∣∣∣θ→0
y→0

= −Ky + V2 C0
(

x0 + x
)

x0g2
0

= 0, (20)

from which the displacement-dependent critical voltage can be extracted

Vy−cr =

√
x0g2

0

C0
(

x0 + x
)Ky =

√
g3

0

2Nεε0t
(
x0 + x

)Ky. (21)

Based on particular applications of the transducer, one should reasonably expect to make a
trade-off between the nominal capacitance C0 and the initial overlap x0. For an example, in the case of
maximizing the travel range while Vy−cr is kept the same, a design of the comb-drive device should
have x0 = 0 (or very small), however, yielding to C0 = 0.

Similarly, at the maximum displacement, Equation (21) is simplified as

Vy−cr

∣∣∣
x=Xmax

=

√
1
2

g2
0

C0
Ky. (22)
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Equations (18) and (22) show that the ratio of these two critical voltages is proportional to the root
square of the corresponding stiffnesses

Vr−cr =
Vθ−cr
Vy−cr

∝

√
Kθ

Ky
∝

√
4D2

1D2
2

D2
1 + D2

2
. (23)

The value of Vr−cr can be displacement—independently made large by appropriate choices of
the dimensions D1 and D2. Figure 5 depicts the variation of Vr−cr with respect to x, in which Vr−cr

increases along with the increases of the ratio D1
D2

. Effect of the lateral rotation on the device instability

is therefore markedly diminished if D1
D2

is large enough. For instance, Vθ−cr is about 3.8 times higher
than Vy−cr if D1 = 1

2 D2. In this case, the lateral translation is more critical.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

x/Xmax

V
θ
−
c
r/
V
y
−
c
r

 

 

D1

D2
= 1

10

D1

D2
= 9

10

Figure 5. The ratio of rotational and translational critical voltages versus proof mass displacement with
different values of D1
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.

2.5. Lateral Instability Due to a Combination of Translation and Rotation

In general, when both the translational and rotational displacement are comparable, a stiffness
matrix corresponding to the coordinates y and θ contains a cross-interaction terms, i.e., Kyθ and Kθy.
Thus far, however, all analyses of the lateral instability of the in-plane comb-drive MEMS transducers
have been limited to the neglect of the cross stiffness terms. In this paper, a further developed model
taking into account the effect of Kyθ and Kθy is explored. The moment and force equilibrium conditions
now are

[
F
M

]
=


∂Fy
∂y

∣∣∣
y→0

∂Fy
∂θ

∣∣∣
θ→0

∂Mθ
∂y

∣∣∣
y→0

∂Mθ
∂θ

∣∣∣
θ→0

 [y
θ

]
=

[
0
0

]
, (24)

where the stiffness coefficients are given by

∂Fy

∂y

∣∣∣
y→0

= −Ky +
1
4

V2 C0g0
x0

[
4g0L(

g0 + Lθ
)2(g0 − Lθ

)2

+
1

θ
(

g0 +
(

L− (x0 + x)
)
θ
)2 −

1

θ
(

g0 −
(

L− (x0 + x)
)
θ
)2

]
,

(25)

∂Fy

∂θ

∣∣∣
θ→0

=
1
2

V2 C0g2
0

x0

(
g2

0 + 3y2)(x0 + x
)(

2L− (x0 + x)
)(

g0 − y
)3(g0 + y

)3 , (26)
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∂Mθ

∂y

∣∣∣
y→0

=
1
2

V2 C0g2
0(x0 + x)

x0


g4

0
(
2L− (x0 + x)

)
− 3L2θ4(2L− (x0 + x)

)(
L− (x0 + x)

)2

+ g2
0θ2
(
4L3 − 6L2(x0 + x) + 4L(x0 + x)2 − (x0 + x)3

)(
g0 − Lθ

)2(g0 + Lθ
)2

 , (27)

∂Mθ

∂θ

∣∣∣
θ→0

= −Kθ +
1
3

V2 C0g2
0

x0

(
g2

0 + 3y2)(x0 + x
)(

3L2 − 3L(x0 + x) + (x0 + x)2)(
g0 − y

)3(g0 + y
)3 . (28)

Let V be a set of the parameter V such that Equation (24) has solutions y ∈ Dy and θ ∈ Dθ ,
and the critical voltage at specific proof mass position is expressed as

Vy,θ−cr = max
{

V ∈ V
}

, (29)

where Dy : {|y| < g0} and Dθ :
{
|θ| < θmax = tan−1 g0

L
}

.
In order to solve such nonlinear optimization problem with the strict constrained conditions

of y and θ, the nonlinear Interior Point (IP) or Sequential Quadratic Programming (SQP) methods
are utilized [17]. The numerical result of Vy,θ−cr is compared to the analytical solutions of Vθ−cr and
Vy−cr obtained from Equations (17) and (21), respectively, in Figure 6. Obviously, the critical voltage
considering both the translational and rotational displacements is always less than those considering
one of them. For the folded beam suspension mechanism studied in this paper, Vy−cr dramatically
drops while Vθ−cr only slightly (and linearly) decreases when x approaches its maximum Xmax. In this
case, the effect of lateral translation should be more concerned since Vy−cr is much closer to Vy,θ−cr
than Vθ−cr at the extreme position of the proof mass.
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0

50

100

150

200

250

x/Xmax

V
cr
[V

]

 

 

Vy−cr

Vθ−cr
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Figure 6. Comparison of the critical voltages in three analyzed cases: rotational instability Vθ−cr or
translational instability Vy−cr, alone or in combination Vy,θ−cr.

2.6. Critical Voltage with Translational and Rotational Offsets

Typically, for the overlap-varying electrostatic transducers, the movable fingers are placed in
between the fixed ones. However, there is a possibility that translational and rotational offsets
exist, i.e., y0 and θ0, respectively, due to manufacturing tolerance or error in the fabrication process.
This unexpectedly can lead to further reduction of the critical voltage. The value of Vy,θ−cr at x = Xmax

is investigated since it is the maximum voltage that can be applied between the two electrodes while
still ensuring the transducer stability.
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When x = Xmax ≈ x0 ≈ L/2, the moment and force equilibrium conditions in Equation (24) become[
−Ky +

1
2 V2 A 1

2 V2B
1
2 V2C −Kθ +

1
2 V2D

] [
y0 + ∆y
θ0 + ∆θ

]
=

[
0
0

]
, (30)

where

A =
2C0g2

0L

x0
(

g0 + L(θ0 + ∆θ)
)2(g0 − L(θ0 + ∆θ)

)2 , (31)

B =
C0g2

0L2(g2
0 + 3(y0 + ∆y)2)(

g0 − (y0 + ∆y)
)3(g0 + (y0 + ∆y)

)3 , (32)

C =
C0L2(g2

0 + L2(θ0 + ∆θ)2)
x0
(

g0 − L(θ0 + ∆θ)
)2(g0 + L(θ0 + ∆θ)

)2 , (33)

D =
2
3

C0g2
0
(

g2
0 + 3(y0 + ∆y)2)L3

x0
(

g0 − (y0 + ∆y)
)3(g0 + (y0 + ∆y)

)3 . (34)

The critical voltage is the intersection of two surfaces determined by
V =

√
2Ky(y0 + ∆y)

A(y0 + ∆y) + B(θ0 + ∆θ)
,

V =

√
2Kθ(θ0 + ∆θ)

C(y0 + ∆y) + D(θ0 + ∆θ)
.

(35)

Figure 7 presents the 3D curve of the critical voltage determined by the intersection of two surfaces
on the right-hand side of the equation system (35).
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Figure 7. The intersection of two surfaces versus variation of the translational and rotational
displacement, which determines the critical voltage.

The critical voltage is now expressed as

V∗y,θ−cr = max
{

V ∈ V∗
}

, (36)

where V∗ is a set of V such that Equation (30) has solutions ∆y ∈ D∗∆y and ∆θ ∈ D∗∆θ ,

with D∗∆y : {−g0 − y0 < ∆y < g0 − y0} and D∗∆θ :
{
−θmax − θ0 < ∆θ < θmax − θ0, θmax = tan−1 g0

L
}

.
As aforementioned, V∗y,θ−cr can be solved numerically by utilizing the nonlinear constrained
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optimization methods such as IP or SQP. To exhibit the effect of offsets on the critical voltage, there are
two special cases where (θ0 = 0, y0 6= 0) or (θ0 6= 0, y0 = 0) are separately considered.

Figure 8 depicts numerical solutions of the critical voltage when the translational and rotational
offsets are taken into account. In a general trend, the larger the lateral off-sets, the bigger the critical
voltage reduction. When θ0 = 0, the critical voltage V∗y,θ−cr is almost unchanged if the ratio y0/g0 ≤ 0.6
and dramatically reduces with further increase of y0/g0. In case of y0 = 0, V∗y,θ−cr gradually decreases
with rise of θ0/θmax.
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∗ y
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−
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(b)

Figure 8. The reduction of the critical voltage taking into account the effects of misalignment offsets.
(a) V∗y,θ−cr (y0 6= 0, θ0 = 0), (b) V∗y,θ−cr (y0 = 0, θ0 6= 0).

3. Analysis of a Comb-Drive Harvesters with Two Anti-Phase Capacitors

3.1. Differential Common Modes

For the versatility, the overlap-varying anti-phase transducers are used in many applications, such
as sensing and actuating [5,18–20]. Considering common configurations of such structure represented
in Figure 9, the electrostatic energy is

We = −1
2
(
CA + CB

)
V2, (37)

where CA = C1 + C2 and CB = C3 + C4. C1 and C2 are referred to (4) and (5), while C3 and C4 are
calculated as

C3
(

x, y, θ
)
= C0

g0

2x0 sin θ
ln

g0 + y + L sin θ

g0 + y +
(

L−
(
x0 − x

))
sin θ

, (38)

C4
(

x, y, θ
)
= C0

g0

2x0 sin θ
ln

g0 − y−
(

L−
(
x0 − x

))
sin θ

g0 − y− L sin θ
. (39)

The coefficients of the stiffness matrix in (24) can be found in Appendix A.
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V

(a)

CA(x)

V1

CB(x)

V2

+

– 

+

– 

V

CA(x) CB(x)

V

+

– 

V0

(b)

Figure 9. Circuit diagram for two common configurations of overlap-varying anti-phase transducers.

3.2. Bennet’s Doubler Configuration

We are now widening the problem of lateral instability for a more general circumstance where the
voltages Va and Vb across CA and CB respectively are not equal. To be specific, the overlap-varying
transducers configured as Bennet’s doubler represented in Figure 10 is investigated. An analytical
solution (utilizing mathematically-idealized diode model) developed in [21] shows that: Va and Vb
can be captured by Direct Current (DC) offset sinusoidal signals when the doubler circuit reaches
saturation. For the static pull-in instability analysis, the DC offset voltages on CA and CB are considered
and respectively expressed as

VA = Vs
1 +
√

5
4

, (40)

VB = Vs
3 +
√

5
4

, (41)

where Vs is the saturation DC voltage at output. The electrostatic energy is

We = −1
2

V2
s
(3 +

√
5

8
CA +

7 + 3
√

5
8

CB
)
. (42)

Similarly, the complete global stiffness matrix can be obtained by taking the derivative of the
moment and forces, see Appendix B for more details.

CA(x)

Va

CB(x)

Vb

+ – +– 

CS

VS

+

– 

Figure 10. Bennet’s doubler configuration of the overlap-varying anti-phase transducers.

3.3. Numerical Results

Using the same optimization procedure as presented in previous sections, the critical voltage
is numerically obtained in Figure 11. For the common configurations shown in Figure 9, there is
a significant reduction of Vy, θ−cr, i.e., more than 10 V, compared to the case in which the
single-capacitance transducer is investigated. Vy, θ−cr of the doubler circuit also decreases with the
increase of the proof mass displacement but is less sensitive than the two former circumstances.
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Figure 11. Comparison of the critical voltages for the single-capacitance transducer and different
configurations of the one with anti-phase capacitors. (a) Anti-phase operation mode, (b) Bennet’s
doubler configuration.

4. Discussion

In principle, the pull-in phenomenon is the loss of the equilibrium stability, from which one
should distinguish the difference between the static and dynamic pull-in aspects. The static conditions
based on potential energy are for local stability; they are only applicable for small displacement
near the equilibrium point. Younis [22] presented a universal definition of dynamic pull-in, which
is the collapse of the movable electrode into the stationary one due to the combined action of the
kinetic and potential energies. For the considered transducers, a source of kinetic energy is from
the Alternating Current (AC) harmonic voltages. The dynamic pull-in generally occurs at lower DC
voltage compared to that of static pull-in, see [23] for an example. Dynamic pull-in instability, therefore,
can be considered as a key source of failure in MEMS electrostatic devices. It is more of interest for
sophisticated configurations that have been studied and is an open issue for further investigations.

When the overlap-varying transducers are configured as Bennet’s doubler, the max/min ratio of
capacitance variation needs to be larger than 2 to allow operation of the circuit [24]. The travel range of
the proof mass is now more important, which is fundamentally dictated by inherent pull-in instability.
In attempts to enlarge the stable displacement for MEMS electrostatic devices, several improvements
of the suspension beam designs have been developed. Zhou et al. proposed a tilted folded-beam
suspension to shift the maximum of the lateral spring constant curve and thus prevent the pull-in
limited travel range of the comb-drives [11]. For more recent work, Olfatnia et al. presented a novel
clamped paired double parallelogram flexure mechanism. This structure offers high stroke direction
stiffness Kx while maintaining low translational and rotational stiffnesses Ky and Kθ over a large range
of proof mass displacement [16]. These advanced methods can be extremely useful to overcome the
challenges in enhancing the stable range.

5. Conclusions

This paper presents a further development of a 2D model utilization to analyze the lateral pull-in
instability of an in-plane overlap-varying transducer. Analytical solutions of the critical voltage are
derived when the translational and rotational displacements are separately considered. The ratio of
rotational and translational critical voltages in these two cases can be made large by appropriate choice
of the dimensions D1 and D2 of the folded-beam spring. The numerical result for the general case is
determined, taking into account the combination of both lateral translation and rotation. The effects of
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translational and rotational offsets to the critical voltage are explored numerically. All analysis results
are adaptable and applicable to different types of the mechanical spring, and therefore can be used as
a guideline for MEMS transducer design.

Author Contributions: B.D.T., C.P.L. and E.H. designed the project. B.D.T carried out theoretical analysis. C.P.L.
and E.H.supervised the work. All authors reviewed the manuscript.
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Appendix A. Anti-Phase Operation Mode

With sin θ ≈ θ, the coefficients of the stiffness matrix in (24) would take the forms

∂Fy

∂y

∣∣∣
y→0

= −Ky +
1
4

V2 C0g0
x0

[
x0 + x

(g0 + Lθ)
(

g0 +
(

L− (x0 + x)
)
θ
)2 +

x0 + x
(g0 + Lθ)2

(
g0 +

(
L− (x0 + x)

)
θ
)

+
x0 + x

(g0 − Lθ)
(

g0 −
(

L− (x0 + x)
)
θ
)2 +

x0 + x
(g0 − Lθ)2

(
g0 −

(
L− (x0 + x)

)
θ
)

+
x0 − x

(g0 + Lθ)
(

g0 +
(

L− (x0 − x)
)
θ
)2 +

x0 − x
(g0 + Lθ)2

(
g0 +

(
L− (x0 − x)

)
θ
)

+
x0 − x

(g0 − Lθ)
(

g0 −
(

L− (x0 − x)
)
θ
)2 +

x0 − x
(g0 − Lθ)2

(
g0 −

(
L− (x0 − x)

)
θ
) ] ,

(A1)

∂Fy

∂θ

∣∣∣
θ→0

= −V2 C0g2
0

x0

(
g2

0 + 3y2)(x2
0 + x2 − 2Lx0

)(
g0 − y

)3(g0 + y
)3 , (A2)

∂Mθ

∂y

∣∣∣
y→0

=
1
4

V2 C0g0
θx0

[
− x0 + x
(g0 − Lθ)

(
g0 −

(
L− (x0 + x)

)
θ
) − x0 − x

(g0 − Lθ)
(

g0 −
(

L− (x0 − x)
)
θ
)

+
x0 − x

(g0 + Lθ)
(

g0 +
(

L− (x0 − x)
)
θ
) + x0 + x

(g0 + Lθ)
(

g0 +
(

L− (x0 + x)
)
θ
)

+
(x0 + x)g0

(g0 − Lθ)2
(

g0 −
(

L− (x0 − x)
)
θ
) + (x0 − x)g0

(g0 − Lθ)2
(

g0 −
(

L− (x0 − x)
)
θ
)

+
Lθ(x0 − x)

(g0 + Lθ)2
(

g0 +
(

L− (x0 − x)
)
θ
) + Lθ(x0 + x)

(g0 + Lθ)2
(

g0 +
(

L− (x0 + x)
)
θ
)

+
θ(x0 + x)

(
L− (x + x0)

)
(g0 − Lθ)

(
g0 −

(
L− (x0 + x)

)
θ
)2 +

θ(x0 − x)
(

L− (x0 − x)
)

(g0 − Lθ)
(

g0 −
(

L− (x0 − x)
)
θ
)2

− g0(x0 − x)

(g0 + Lθ)
(

g0 +
(

L− (x0 − x)
)
θ
)2 −

g0(x0 + x)

(g0 + Lθ)
(

g0 +
(

L− (x0 + x)
)
θ
)2

]
,

(A3)

∂Mθ

∂θ

∣∣∣
θ→0

= −Kθ +
2
3

V2 C0g2
0

x0

(
g2

0 + 3y2)(3L2x0 − 3L2x2 − 3Lx2
0 + 3x2x0 + x3

0
)(

g0 − y
)3(g0 + y

)3 . (A4)
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Appendix B. Bennet’s Doubler Configuration

For the doubler configuration, the coefficients of the stiffness matrix in (24) are

∂Fy

∂y

∣∣∣
y→0

= −Ky + V2 C0g2
0

x0
(

g2
0 − L2θ2

)2 p(x0 − x)
(

g4
0 + 2g2

0Lθ2(L− (x0 − x))− Lθ4 (3L3 − 6L2(x0 − x) + 4L(x0 − x)2 − (x0 − x)3))(
g2

0 − θ2 (L− (x0 − x))2
)2

+
q(x0 + x)

(
g4

0 + 2g2
0Lθ2(L− (x0 + x)) + Lθ4 (−3L3 + 6L2(x0 + x)− 4L(x0 + x)2 + (x0 + x)3))(

g2
0 − θ2 (L− (x + x0))

2
)2

 ,

(A5)

∂Fy

∂θ

∣∣∣
θ→0

= −1
2

V2 C0g2
0
(

g2
0 + 3y2) (−2L(p(x0 − x) + q(x0 + x)) + p(x0 − x)2 + q(x0 + x)2)

x0
(

g2
0 − y2

)3 , (A6)

∂Mθ

∂y

∣∣∣
y→0

=
1
2

V2 C0g2
0

x0

2p(x0 − x)
(
2L− (x0 − x)

) (
g4

0 − L2θ4(L− (x0 − x)
)2
)

(
g2

0 − L2θ2
)2
(

g2
0 − θ2

(
L− (x0 − x)

)2
)2

+
2q(x0 + x)

(
2L− (x0 + x)

) (
g4

0 − L2θ4(L− (x0 + x)
)2
)

(
g2

0 − L2θ2
)2
(

g2
0 − θ2

(
L− (x0 + x)

)2
)2

−
p(x0 − x)

(
2L− (x0 − x)

)(
g2

0 − L2θ2
) (

g2
0 − θ2

(
L− (x0 − x)

)2
) − q(x0 + x)

(
2L− (x0 + x)

)(
g2

0 − L2θ2
) (

g2
0 − θ2

(
L− (x0 + x)

)2
)
 ,

(A7)

∂Mθ

∂θ

∣∣∣
θ→0

= −Kθ +
1
3

V2 C0g2
0
(

g2
0 + 3y2)

x0
(

g2
0 − y2

)3

[
3L2(p(x0 − x) + q(x0 + x))

−3L
(

p(x0 − x)2 + q(x0 + x)2
)
+ p(x0 − x)3 + q(x0 + x)3

]
,

(A8)

where

p =
1 +
√

5
4

, (A9)

q =
3 +
√

5
4

. (A10)
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