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Abstract: In this paper, we investigate the accuracy of the approximated analytical model currently
utilized, by many researchers, to describe the depletion region width in planar junctionless transistors
(PJLT). The proposed analysis was supported by numerical simulations performed in COMSOL
Multiphysics software. By comparing the numerical results and the approximated analytical model
of the depletion region width, we calculated that the model introduces a maximum RMS error equal
to 90% of the donor concentration in the substrate. The maximum error is achieved when the gate
voltage approaches the threshold voltage (Vth) or when it approaches the flat band voltage (VFB) of the
transistor. From these results, we concluded that this model cannot be used to determine accurately
the flat-band and the threshold voltage of the transistor, although it represents a straightforward
method to estimate the depletion region width in PJLT. By using the approximated analytical model,
we extracted an analytical formula, which describes the electron concentration at the ideal boundary
of the depletion region. This formula approximates the numerical data extracted from COMSOL
with a relative error lower than 1%. The proposed formula is in our opinion, as useful as the formula
of the approximated analytical model because it allows for estimating the position of the depletion
region also when the drain and source terminals are not grounded. We concluded that the analytical
formula proposed at the end of this work could be useful to determine the position of the depletion
region boundary in numerical simulations and in graphical representations provided by COMSOL
Multiphysics software.
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1. Introduction

The concept of junctionless transistor (JLT) was introduced by Lilienfeld in 1925 [1]. The main
characteristic of the Lilienfeld device was the absence of any p-n junction in the physical structure
of the transistor. By controlling the voltage at the gate of this semiconductor device, Lilienfeld was
able to deplete the carriers in a localized region of the substrate, called depletion region. In this
manner, it was possible to control the resistivity of the device and the electrical current through
the transistor. Although the idea and the operation of this device were verified through analytical
formulas, the technology of that time did not allow him to realize a working device [2], which required
the fabrication of a nanometric substrate layer. Only in 2010 at the Tyndall National Institute was
the first junctionless transistor [2] successfully manufactured; J.P. Colinge et al. fabricated a 10 nm
thick and 1 µm long highly doped (1019 cm−3) junctionless nanowire transistor. The advantages of
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a junction-free structure are numerous such as the absence of doping concentration gradients [3],
which are difficult to be precisely controlled in the nanometric regime, the absence of junction leakages,
simple fabrication process, and lower fabrication cost (no implantation for source and drain) [4].
In addition, junctionless technology can provide greater performance with respect to conventional
transistors, such as reduced short-channel effects (effective channel length not reduced by p-n junctions)
[5] and less degradation of carrier mobility (current flows in the bulk of the substrate) [6]. Junctionless
transistors can be realized in different shapes and dimensions. Most often, they are characterized by
a three-dimensional (3D) structure (ex: nanowire, finFET (fin field effect transistor) [7], GAA (gate
all around) [8], etc.), which allows an improved control on the channel of the transistor. On the
other hand, the implementation of two-dimensional (2D) or planar solutions have been recently
investigated by numerous researchers because they are simple and easy to fabricate [9–12]. During
the last decade, numerous implementations of junctionless transistors were proposed such as single
gate [10,11], double gate [13], thin-film [12], tunnel-FET [14], just to mention a few. These structures
are characterized by different geometries; however, their operation is based on the same working
principle, which consists of varying the dimensions of the depletion region in order to control the
flow of the current through the transistor. Due to the significant role of the depletion region in the
operation of a JLT, numerous researchers have tried to extract an analytical formula, which relates the
width of this region to the applied gate voltage. Unfortunately, the Poisson equation, which has to be
solved to determine that such relation does not provide a closed form for an analytical solution [15].
In order to provide an analytical formula, which describes the operation of a JLT, some researchers
have proposed introducing a few simplistic assumptions. Among the others, the complete depletion
assumption is the most significant hypothesis that allows for extracting an approximated analytical
formula for the depletion region width [12,16–19]. Although this approximated model have been
mentioned and utilized in numerous scientific articles, its accuracy was never formally analyzed,
at least to the best knowledge of the authors. For this reason, we decided to investigate on this issue,
by analyzing and simulating a single gate PJLT using COMSOL Multiphysics software [20]. The paper
is organized as follows. Section 2 introduces the working principle of a planar junctionless transistor,
Section 3 describes the approximated model used to estimate the depletion region width of a PJLT,
and Section 4 reports a detailed analysis of the approximated analytical model performed by using
COMSOL Multiphysics software (version 5.4, COMSOL Inc). Finally, this paper ends with Section 5,
which summarizes the main points of this paper and future works.

2. Single Gate Planar Junctionless Transistors

2.1. Physical Structure of PJLT

The physical structure of a planar junctionless transistor is shown in Figure 1a [11,21].
A PJLT is typically realized on a fully depleted silicon on insulator (FD-SOI) wafer [22], which is

characterized by three layers: a handle substrate (silicon), an insulating layer often referred to as
buried oxide or BOX since it is made of silicon dioxide and a thin silicon layer also known as device
layer (silicon). In order to realize PJLT on FD-SOI wafers, the device layer is usually highly doped
and characterized by a thickness in the range of tens to hundreds of nanometers. The device layer
can be uniformly doped with acceptor or donor atoms. For this reason, we have to distinguish two
categories of PJLT: p-type PJLT and n-type PJLT. The particular case of an n-type PJLT is represented in
Figure 1. The handle substrate does not require to be doped unless the designer decides to use it as
a second gate terminal or back gate. In this paper, we focus on a single gate PJLT; therefore, we will
neglect the back gate terminal. The physical structure of a single gate PJLT resembles a MOSFET (metal
oxide semiconductor field effect transistor); however, in PJLT, there are no p-n junctions. Although the
operation of a PJLT is possible with a uniformly doped device layer, better performance is achieved by
realizing highly doped drain and source wells. These minimize the parasitic resistances between the
channel of the transistor (conductive part of the device layer between the wells) and the actual source
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and drain metallizations. In particular, if the device layer is n-doped, then the source and drain wells
must be heavily doped with donors (n++). On the other hand, if the device layer is p-doped, then the
source and the drain wells must be heavily doped with acceptors (p++). These wells are represented
with black regions in Figure 1a. Finally, a very thin insulating layer separates the gate terminal of the
PJLT and the device layer beneath.
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tSiDevice Layer
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Figure 1. N-type PJLT physical structure; (a) complete structure on FDSOI wafer; (b) simplified model
of the JLT physical structure.

2.2. Working Principle of Single Gate PJLT

Current literature describes PJLT as gated resistors [2] in which the amount of electrical current
through the device is controlled by the gate voltage [3]. In order to clarify this definition, we will
consider a simplified model of the single gate PJLT shown in Figure 1b. An electrical current, typically
known as drain current, flows through the channel of the transistor, only when a voltage difference
is applied between the drain and the source terminals. For the case shown in Figure 1b, the channel
is fully enhanced (completely conductive), hence the amplitude of the drain current is only limited
by the electrical resistance of the device layer. This resistance depends on the device layer resistivity
ρSi and the geometrical dimensions of the channel such as channel width Wch, channel length Lch and
channel thickness tSi (Rch = ρSiLch/(WchtSi)). However, if we vary opportunely the gate voltage of
this transistor, we can affect the carrier distribution inside the device layer modifying the effective
dimensions of the channel, thus varying the resistance and the electrical current through the transistor.
In order to exploit the effects that the gate voltage provides on the channel of the transistor, we analyzed
an n-type PJLT in capacitor configuration as shown in Figure 2.
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Gate Insulator

VG
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Figure 2. N-type PJLT capacitor.
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In this scenario, the device layer acts as the second electrode of the PJLT capacitor and for this
reason has been grounded through the source and drain terminals. Next, by reducing the gate voltage
to negative values, the electrons under the gate insulator will be repelled and moved away from their
initial position. In this region, the atoms will be depleted of carriers; hence, a non-conductive region
known as a depletion region will start to be created as shown in Figure 3a.
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Figure 3. N-type PJLT working principle. (a) state of the PJLT for a generic value of gate voltage;
(b) depletion region for different values of gate voltage.

The presence of a depletion region in the device layer reduces the dimensions of the conductive
channel of the transistor, increasing the electrical resistance between drain and source terminals. We can
observe that, if the channel length is sufficiently long, the depletion region is uniform in the middle
of the substrate. However, as soon as we get closer to the drain and source terminals, the depletion
region starts to curve due to the electric potentials VD and VS. Figure 3b shows that, if the gate voltage
becomes sufficiently negative, then the channel of the transistor will be fully depleted of carriers and
there will not be any conductive path between the drain and the source terminals. When this event
occurs, the transistor is said to be turned off.

Finally, a detailed analysis conducted in Section 3 shows that the gate voltage at which the PJLT
can be considered fully conductive or turned on is equal to the flat band voltage of the transistor
VG,ON = VFB. On the other hand, the gate voltage value at which the transistor can be considered
turned off is usually referred to as threshold voltage VG,OFF = Vth.

3. An Approximated Model for the Depletion Region

The relation between gate voltage and the dimension of the depletion region can be extracted by
solving the Poisson equation, shown in Equation (1) (for n-type PJLT), inside the device layer:
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d2φ(x)
d2x

= −ρ(x)
εSi

= −
q(pn(x)− nn(x) + N+

D )

εSi
, (1)

where φ(x), ρ(s), nn(x), N+
D and pn(x) are the distribution of the electric potential, the distribution

of the charge density, the distribution of the concentration of electrons, the distribution of the
concentration of the positive ions, and the distribution of the hole concentration, respectively,
all evaluated along the symmetric axis of the transistor. Furthermore, εSi is the dielectric constant of
the silicon substrate and q is the elementary charge ' +1.6× 10−19C . Unfortunately, this equation
cannot be solved analytically because nn(x) and pn(x) depend on the electric potential φ(x) as shown
in Equation (2) (Complete derivation in Appendix A):

d2φ(x)
d2x

= −
q( n2

i
ND

e−
φ(x)
Vt − NDe

φ(x)
Vt + N+

D )

εSi
. (2)

In order to find an analytic solution to this problem, we have to take advantage of a few
assumptions. First of all, we assume that the minority carrier concentration is negligible (pn(x) ' 0)
during the whole operation of the the PJLT. Next, we assume complete ionization (N+

D = ND). Finally,
we need to utilize the hypothesis of complete depletion (nn(x) ' 0 ∀x ∈ [0, Xdep], where x = 0 is
situated at the interface SiO2/substrate, and Xdep corresponds to the position of the depletion region
boundary). In this case, the equation simplifies as shown in Equation (3):

d2φ(x)
d2x

' − qND
εSi

, ∀x ∈ [0, Xdep]. (3)

From this approximated form of the Poisson equation, we can finally obtain the target formula,
shown in Equation (4):

Xdep = − εSi
Cox

+

√
(

εSi
Cox

)2 − 2εSi
qND

(VG −VFB). (4)

A similar formula can be found for a p-type PJLT as shown in Equation (5):

Xdep = − εSi
Cox

+

√
(

εSi
Cox

)2 +
2εSi
qNA

(VG −VFB), (5)

where Cox is the capacitance per unit area of the oxide used to implement the thin gate insulating
layer, ND is the donor concentration used to dope the device layer in n-type PJLT, NA is the acceptor
concentration used to dope the device layer in p-type PJLT, VG is the gate voltage, and VFB is the
flat band voltage. These analytical formulas provide numerous amounts of information about the
operation of the transistor. For the case of an n-type PJLT, the depletion region exists only for VG < VFB,
while, for the p-type PJLT, the depletion region exists only for VG > VFB. In both cases, at VG = VFB,
the depletion region is practically negligible, and the channel can be considered fully conductive.
This is the reason why VFB represents the voltage at which the transistor is considered turned on.
There is a third situation that can occur during the operation of PJLT when VG > VFB (for n-type PJLT);
however, in this paper, we restrict the analysis to the range [Vth,VFB], which simplifies the description
of the transistor operation. The formulas for threshold voltage Vth can be derived from Equation (4) or
Equation (5) by assuming Xdep = tSi. The on and off gate voltage values of an n-type PJLT are shown
in Equation (6): 

VG−ON = VFB

VG−OFF = Vth = VFB + qND
2εSi

[
ε2

Si
C2

OX
− (tSi +

εSi
COX

)2

]
.

(6)

Similar formulas are valid for the p-type PJLT, which are shown in Equation (7):
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VG−ON = VFB

VG−OFF = Vth = VFB − qNA
2εSi

[
ε2

Si
C2

OX
− (tSi +

εSi
COX

)2

]
.

(7)

More details about the difference between the operation of an n-type and a p-type PJLT can be
extracted by analyzing the plots of the formulas in Equations (4) and (5), shown in Figure 4.
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Figure 4. Analytical depletion width as a function of the gate voltage computed with the data in Table 1.
(a) N-type PJLT; (b) P-type PJLT.

These graphs were extracted by using the parameters shown in Table 1.

Table 1. Depletion PJLT parameters

n-Type PJLT p-Type PJLT

Parameter Value

Materials

Device layer Si/n-type Si/p-type

insulating gate layer SiO2

Gate electrode N-type Poly-Si P-type Poly-Si

Material proprieties

Device layer Doping concentration (atoms/cm3) ND = 1019 NA = 3.05× 1018

Intrinsic carrier concentration : ni (atoms/cm3) 5.4× 109 at 293.15 K

Dielectric constant device layer : εSi (F/cm) 11.7ε0

Dielectric constant insulator : εox (F/cm) 3.9ε0 (SiO2)

Dimensions

Channel length : Lch (nm) 500

Device layer thickness : tSi (nm) 10

Gate oxide thickness : tox (nm) 8

Derived Parameters

Electron affinity: qχ (eV) 4.05

Energy band gap: Eg (eV) 1.13

Bulk potential : qΦn,p = kBT ln(ND,A/ni) (eV) 0.539 0.509

Oxide capacitance per unit area : Cox = εox/tox (F/cm2) 4.32× 10−7

Gate work function: qΦM (eV) 4.05 (PolySi/n-type) 5.15 (PolySi/p-type)

Flat Band Voltage : VFB (V) −0.026 0.026
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The n-type PJLT associated with the plot shown in Figure 4a is characterized by a device layer
made of n-doped silicon, a gate insulating layer made of silicon dioxide, and a gate electrode made of
n-type poly-silicon. On the other hand, the p-type PJLT associated with the plot shown in Figure 4b is
characterized by a device layer made of p-doped silicon, a gate insulating layer made of silicon dioxide
and a gate electrode made of p-type poly-silicon.

The doping concentration and the thickness of the device layer in the n-type PJLT are similar
to the one used by Colinge in [2], and they ensured that the channel of the transistor can be fully
depleted by applying a precise value of gate voltage Vth. A different criterion was used to decide the
doping concentration and the thickness of the device layer for the p-type PJLT. In this case, we set
these two parameters in order to obtain a unipolar gate voltage range characterized by a flatband
voltage of approximately 0 V. This choice allows for using both transistors in analog and digital circuits
characterized by single power supply. The channel length of the transistor was chosen to be sufficiently
long so that the drain and source electric potentials would not affect the carrier distribution in the
middle of the channel. In this way, we can study the dependency of the depletion region width due to
the only effect of the gate electric potential. Next, the dielectric constants in Table 1 were found in [23].
The thickness of the gate insulating layer tox was set in order to provide a sufficiently high dielectric
strength. In fact, this insulator layer has to withstand the electric field created by the gate electrode
when its potential sweeps within the range [VFB, Vth].

By using the parameters listed in Table 1, we calculated the threshold voltage for both the n-type
(Vth = −4.51 V ) and p-type (Vth = 1.39 V) PJLT. This means that, in order to turn on and turn off these
transistors, the gate voltage has to vary within the range [−0.026 V, −4.51 V] and [0.026 V, 1.39 V] for
the n-type and p-type PJLT, respectively. In the n-type PJLT, the depletion region increases if the gate
voltage becomes more negative than the electrical potential of the device layer, while, in the p-type
PJLT, the depletion region width increases when the gate voltage becomes more positive than the
electrical potential of the device layer. This is due to the fact that the depletion region in n-type PJLT
expands if negative electrical charges accumulate at the gate electrode, so that the free electrons beneath
the insulating gate layer are repelled. On the other hand, in p-type PJLT, the depletion region expands
only if positive electrical charges accumulate at the gate electrode. This ensures that the holes beneath
the gate insulating layer are repelled. Figure 4 shows that the operating range of the p-type PJLT is
smaller than the one for the n-type. This situation occurs because these two ranges are proportional to
the doping concentration in the substrate of these two devices, as shown in Equations (6) and (7).

4. Analysis and Simulations of the Approximated Model

The design and the analysis of the PJLT performed until this point are based on the
main assumption of complete depletion. This assumption is often utilized in many scientific
articles [17,24–32] to provide a simple analytical formula for the depletion region width in PJLT.
This formula represents an approximated model of the depletion region width. Therefore, we decided
to investigate about the accuracy and the source of errors of this model. A qualitative representation of
the main parameters characterizing an n-type PJLT is shown in Figure 5

First of all, we observe that although the holes are attracted by the negative electric potential
applied at the gate electrode, their concentration is assumed to be negligible during the whole operation
of the PJLT (pn(x) ' 0). Once reached the equilibrium state shown in Figure 5a, the depletion region is
ideally emptied of electrons (nn(x) ' 0), but filled by positive ions of impurities (complete ionization
N+

D ' ND). The distribution of carriers, ions and charge density characterizing this ideal situation
are shown in Figure 5b–d. These plots show that the assumption of complete depletion impose
a step profile (red lines) for the electron distribution inside the device layer. Figure 5d shows a
localized positive charge distribution inside the depletion region generated by the uncovered ions
of impurities. From a physical point of view, a step profile such as the one represented by red lines
in Figure 5c,d is not possible because these physical quantities lack of continuity. A more realistic
profile for the charge and electron distributions are represented by the green profiles (smooth profile).
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Unfortunately, the real profiles of these two quantities do not allow for define a precise boundary for
the depletion region, which to be identified must be approximated by using a simple model. In order
to verify our previous qualitative analysis, we performed a few simulations of a 2D n-type PJLT by
using COMSOL Multiphysics software. The geometrical dimensions of the simulated structure are
shown in Figure 6.
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Figure 5. Profiles of the main parameters characterizing the depletion region in an n-type PJLT. (a) PJLT
in capacitor configuration with source and drain sufficiently far from each other to consider the
depletion region boundary uniform in the middle of the device layer; (b) impurity ions distribution
inside the device layer (complete ionization); (c) carrier distribution inside the device layer (blue
line = hole distribution, green line = real electron distribution, red line = ideal electron distribution);
(d) charge density inside the device layer ( green line = real charge density distribution, red line = ideal
charge density distribution).
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Figure 6. Geometrical dimensions of the simulated n-type PJLT.
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The first simulation aimed to extract the "real" distribution of the electron concentration inside
and outside the depletion region of the PJLT. By using the simulation results, we compared the real
and the ideal electron concentration profile. Simulation results are shown in Figure 7.
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Figure 7. Comparison between the ideal and the simulated electron concentration inside the device
layer, for different values of gate voltage. The parameter of the simulated structure are shown in
Table 1. The PJLT was electrically connected as shown in Figure 3. x = 0 is placed at the interface
SiO2/substrate. (a) Profiles for VG = −0.25 V. (b) Profiles for VG = −0.75 V. (c) Profiles for VG = −2 V.
(d) Profiles for VG = −3 V. (e) Profiles for VG = −4 V. (f) Profiles for VG = −4.5 V.

Simulation results show an evident difference between the ideal electron concentration profiles
representing the approximated analytical model and the simulated profiles. The main result from the
analysis of these plots is that the electron concentration, inside the depletion region, is not zero and
it can also reach significant values. This means that the formulas of the electric field and the electric
potential distribution derived by using the hypothesis of complete depletion are affected by a certain
amount of error, which may not be negligible. A qualitative analysis of the previous plots suggests
that the greatest error of the analytical model occurs when the voltage approaches to VFB and Vth.
In fact, if we analyze Figure 7a, we observe that the electron concentration in what is supposed to be
the ideal depletion region is actually almost equal to the maximum value ND. Therefore, it is quite
far from being completely depleted as the approximated analytical model claims. On the other hand,
we observe in Figure 7e that the profile of the electron concentration inside the depletion region is
similar to the ideal profile for values of VG, but they are not equal yet. In this case (VG ' Vth) the
main source of error is due to the fact that the electron concentration outside the depletion region
becomes so small that this region cannot be considered a good conductor as assumed by the analytical
model. This was an important assumption, which allowed us to set zero electric field and zero electric
potential at the boundary of the depletion region (see Appendix A). In conclusion, the main source
of error of the approximated model consists in considering the term nn(x) = 0 ∀x ∈ [0, Xdep] and
nn(x) = ND ∀x ∈ [Xdep, tSi].

Similar observations could be extracted by analyzing the charge distribution inside the device
layer, shown in Figure 8.
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Figure 8. Comparison between the ideal and the simulated charge density inside the device layer,
for different values of gate voltage. The parameters of the simulated structure are shown in Table 1.
The PJLT was electrically connected as shown in Figure 3. x = 0 is place at the interface SiO2/substrate.
(a) Profiles for VG = −0.25 V. (b) Profiles for VG = −0.75 V. (c) Profiles for VG = −2 V. (d) Profiles for
VG = −3 V. (e) Profiles for VG = −4 V. (f) Profiles for VG = −4.5 V.

In order to quantify the error of the analytical model, we calculated the RMS error normalized with
respect to ND for the concentration of the electrons inside (εRMSi) and outside (εRMSo) the depletion
region by using the formulas in Equations (8) and (9).

εRMSi =
1

ND

√
1

Xdep

∫ Xdep

0
n2

n(x)dx x ∈ [0, Xdep] (8)

εRMSo =
1

ND

√
1

tSi − Xdep

∫ tSi

Xdep

[ND − nn(x)]2dx x ∈ [Xdep, tSi] (9)

These RMS errors are plotted for different values of gate voltage and shown in Figure 9.
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Figure 9. RMS error between the ideal and the simulated electron concentration profile inside (εRMSi)
and outside (εRMSo) the depletion region, normalized in respect to ND.
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The previous plot shows that the error due to the approximation of complete depletion (εRMSi)
and the error due to the approximation of conductive device layer (εRMSo) increase as soon as the gate
voltage approaches to VFB and Vth, respectively. The maximum RMS error is approximately 90% of
ND, when the gate voltage approaches the threshold and the flat band voltage of the transistor.

Once the error introduced by the approximated model is quantified, we continued our analysis
trying to extract a physical interpretation of this model. Figure 7 shows that the simulated charge
density and electron concentration at the ideal boundary of the depletion region vary depending on
the gate voltage applied. This trend is summarized in Figure 10.
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Figure 10. (a) electron concentration profiles for different values of gate voltage; (b) charge density
profiles for different values of gate voltage. The circles represents the value of electron concentration
and charge density at the ideal boundary of the depletion region. The gate voltage was swept in the
range [−0.25V,−4.5V] with a step of 0.25V.

The circles on each curve represent the electron concentration or the charge density at the ideal
boundary of the depletion region, which was calculated by using Equation (4). Figure 10a shows that
the electron concentration at the ideal boundary of the depletion region is not constant or equal to half
of its maximum value, as common sense would suggest. Instead, the electron concentration at the
boundary of the depletion region increases as the gate voltage approaches to VFB and decreases as the
gate voltage approaches Vth. Between these two values, there is a voltage range in which the electron
concentration at the ideal boundary of the depletion region is almost constant and approximately
equal to 0.58× 1019 cm−3. A similar observation can be made in Figure 10b for the charge density at
the ideal boundary of the depletion region. Finally, we can conclude that the approximated analytical
model describes the boundary of the depletion region, as a locus of points characterized by an electron
concentration, which depends on the applied gate voltage. This dependency is a consequence of the
fact that the profiles of the electron concentration and charge density diverge from the ideal profiles,
when the voltage approaches to VFB and Vth.

During our analysis, we observed that a definition of the depletion region boundary in terms of
electron concentration has one major advantage with respect to the definition based on spatial position
described by Equation (4). The definition based on electron concentration can be used to determine
the boundary of the depletion region also for the cases where the drain and source terminals are not
grounded. In fact, in this case, the boundary of the depletion region is bent due to the variation of
electric potential along the channel and this phenomenon is not taken into account by Equation (4).
For this reason, we tried to extract an analytical formula, which describes the dependency of the
electron concentration (and charge density) at the boundary of the depletion region with respect to
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the applied gate voltage. First of all, we joined the circles in Figure 10 with straight lines as shown in
Figure 11a,b. Then, we approximated these curves with polynomial functions. We observed that the
relative error between the curves in Figure 11a,b and their polynomial approximation drop to a few
percentage points when the order of the polynomial function approaches the eighth order as shown in
Figure 11c,d.
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Figure 11. (a) electron concentration at the boundary of the ideal depletion region for different values
of gate voltage; (b) charge density at the boundary of the ideal depletion region for different values of
gate voltage; (c) relative error between the data in (a) and polynomial approximations of fourth, sixth,
and eighth order; (d) relative error between the data in (b) and polynomial approximations of fourth,
sixth, and eighth order. The gate voltage was swept in the range [−0.25V,−4.5V] with a step of 0.25V.

The analysis of the plots in Figure 11c,d shows that a good approximation of the data in
Figure 11a,b is obtained by using a polynomial function of the eighth order, which provides a relative
error of less than 1%. The eighth order polynomial formulas for nn(Xdep) and ρ(Xdep) are shown in
Equations (10) and (11):

nn(Xdep)8th =[1.1127 + 2.0256VG + 3.5541VG
2 + 3.5545VG

3 + 2.1561VG
4+

+ 0.8023VG
5 + 0.1782VG

6 + 0.0216VG
7 + 0.0011VG

8]× 1019,
(10)

ρ(Xdep)8th =− 0.1806− 3.2454VG − 5.6943VG
2 − 5.6949VG

3 − 3.4544VG
4−

− 1.2855VG
5 − 0.2854VG

6 − 0.0346VG
7 − 0.0017VG

8.
(11)

We can use these two equations for detecting the boundary of the depletion region for any
value of gate voltage. Furthermore, these formulas can be used to provide a graphical representation
of the depletion region boundary from the numerical results obtained in COMSOL Multiphysics.
This includes also the cases where the drain is not grounded as shown in Figure 12.
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nn(Xdep)nn(Xdep)

electron concentration (m
-3)

(a)

(b)

VS = 0V VD = 3V

VG = -2V

Figure 12. Electron concentration generated by COMSOL Multiphysics. VG = −2 V and VD = 3 V.
The black line represents the boundary of the depletion region. (a) whole PJLT; (b) zoom on a specific
area of the PJLT.

Finally, we wanted to compare the approximated analytical model with another one derived
by our own “common sense”. The “common sense” model is based on the assumption that the
electron concentration at the boundary of the depletion region can be assumed to be half of the donor
concentration inside the device layer. This represents the most intuitive model of the depletion region
width. The electron concentrations at the depletion region boundary defined by the common sense
threshold are circled and shown in Figure 13a.
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Figure 13. Comparison between the “common sense” model and the approximated analytic model.
(a) detection of the electron concentration at the boundary of the depletion region defined by the
“common sense” model for different values of gate voltage; (b) comparison between the depletion
region estimated by the “common sense” model and the depletion region estimated by using the
approximated analytic model described in Equation (4). The gate voltage was swept in the range
[−0.25,−4.5] with a step of 0.25V.

By using the x-coordinates of the "circles" drawn in Figure 13a and the voltages associated with
the curves over which each circle lay, we can draw the red continuous line shown in Figure 13b.
This curve represents the depletion region width model derived by using common sense. In the
same plot, we drew a dashed line, which represents the analytic model that we investigated in this
paper. First of all, we notice that the analytic model and the “common sense” model estimate two
different values of depletion region width, when the same gate voltage is applied to the transistor.
The two curves seem to follow a similar trend in the middle range of the gate voltage, although they
are separated by an offset value. The “common sense” model predicts that the transistor should turn
off when VG = −4.05 V, and it should turn on when VG = −0.39 V. These values are quite different
than the OFF and ON voltage predicted by the approximated analytic model (Vth ' −4.5 V and
VFB = −0.026 V). Finally, by comparing the electron concentration profiles at the on and off voltages
of these two models (Figure 13a and Figure 10a), we find out that the approximated analytic model
is the one that provides an electron concentration profile, which resembles better the ideal profile.
In fact, if we compare the electron concentration profiles extracted at the off voltage of these two
models, then we can observe that the electron concentration profile predicted by the "common sense
model" (curve in Figure 13a for VG ' −4 V) is much larger than the one predicted by the approximated
analytical model (curve in Figure 10a for VG ' −4.5 V). This means that the substrate of the transistor
is more conductive at the off voltage predicted by the “common sense” model, thus the off state of the
transistor is better approximated if we estimate the depletion region width by using the approximated
analytical model. A similar consideration can be done when we analyze the electron concentration
profiles at the on voltages associated with the two models. We conclude that the “common sense”
model is less accurate than the analytic model, when the transistor approaches the on and off state.
However, the “common sense” model still represents a good approximation when the gate voltage is
far from the on and off voltage values.
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5. Conclusions

In this paper, we analyzed and quantified the error introduced by the approximated model, which
is widely used to describe the depletion region width of junctionless transistors. The analysis was
supported by numerical simulations performed in COMSOL Multiphysics software. Simulation results
of an N-type PJLT showed that the analytical model is affected by a significant error when the
gate voltage approaches the threshold voltage or when it approaches the flat-band voltage of the
transistor. In these two extreme cases, the RMS error of the electron concentration profile inside and
outside the depletion region was calculated to be approximately 90% of the donor concentration
inside the substrate of the transistor. This proves that the approximated analytical model does not
provide an accurate formula to calculate the values of the flat-band and threshold voltages of the
transistor. Furthermore, we found out that the approximated analytical model of the depletion region
width defines the depletion region boundary characterized by a value of electron concentration,
which depends on the applied gate voltage. This dependency was analytically extracted by using an
eighth order polynomial function. Finally, we proved that this polynomial formula is as useful as the
initial analytical model because it can be utilized to determine the position of the depletion region
boundary in numerical simulations, when the drain and source terminals are not grounded.
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Appendix A. Depletion Region Width Analytical Formula

The purpose of this appendix is to clarify the procedure utilized to derive the analytical model of
the depletion region width in a PJLT. The structure analyzed in this paper is an n-type PJLT connected
in capacitor configuration as shown in Figure A1.

VG

x
0

t
S

i

x
dep

d = ∞d = ∞

Figure A1. N-type PJLT ideal physical structure.

In this analysis, we assume that the PJLT device layer has been uniformly doped, which means that
ND(x) = constant = ND. In addition, we assume that the drain and source terminals are sufficiently
far from each other that the depletion region in the middle of the device layer can be considered flat or
uniform. By using the previous assumptions, we can extract an analytical formula for the depletion
region width by solving the Poisson equation, shown in Equation (A1):

d2φ(x)
d2x

= −ρ(x)
εSi

= −
q(pn(x)− nn(x) + N+

D (x))
εSi

∀x ∈ [0, XXdep], (A1)
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where: φ(x), ρ(s), nn(x), N+
D (x) and pn(x) are the distribution of the electric potential, the distribution

of the charge density, the distribution of the concentration of electrons, the distribution of the positive
ion concentration due to the impurities in the substrate, and the distribution of the hole concentration,
respectively, all evaluated along the symmetric axis of the transistor inside its depletion region.
Furthermore, εSi is the dielectric constant of the silicon substrate and q is the elementary charge '
+1.6× 10−19C. The concentrations nn(x) and pn(x) can be rewritten by using the Shockley Equations
as shown in Equations (A2) and (A3):

nn(x) = nie
EF−EFi+qφ(x)

kBT = NDe
+qφ(x)

kBT = NDe
+φ(x)

Vt , (A2)

pn(x) =
n2

i
nn(x)

=
n2

i
ND

e−
φ(x)
Vt , (A3)

where : EF is the Fermi level of the doped semiconductor, EFi is the intrinsic Fermi level, ni is
the intrinsic concentration of electrons, and Vt = kBT/q is the thermal voltage. Unfortunately,
by substituting Equation (A2) and (A3) in Equation (A1), we find that the Poisson equation cannot
provide an analytical solution. Nevertheless, a common method to overcome this problem consists of
using the hypothesis of complete depletion (nn(x) ' 0 if x ∈ [0, Xdep] and nn(x) ' ND if x ∈ [Xdep, tSi]),
along with the hypothesis of complete ionization (N+

D = ND) and negligible concentration of the
minority carriers (pn(x) = 0) during the whole operation of the transistor. In this case, the equation
simplifies as shown in Equation (A4):

d2φ(x)
d2x

' − qND
εSi

, ∀x ∈ [0, Xdep]. (A4)

Finally, this approximated form of the Poisson equation can be analytically solved. From the
Poisson Equation, we can extract Equation (A5), by using the known relation −∇Φ(x) = ~E:

dEx(x)
dx

=
qND
εSi

. (A5)

Next, by integrating Equation (A5) once, we can find the general solution for the electric field
inside the device layer shown in Equation (A6):

Ex(x) =
qND
εSi

x + c1. (A6)

By integrating Equation (A6) once more, we obtain the general solution for the electrical potential
inside the device layer as shown in Equation (A7):

φ(x) = − qND
2εSi

x2 − c1x + c2, (A7)

where: c1 and c2 are arbitrary constants. To find the value of these two arbitrary constants, we need to
define two boundary conditions. The first one can be found by evaluating the electric potential at the
interface between the device layer and the thin gate insulating layer. This interface corresponds to
the potential at x = 0. The electrical potential in this point is usually known as surface potential φs,
which can be expressed as shown in Equation (A8):

φs = VG −VFB −VOX , (A8)
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where: VG is the electric potential at the gate terminal and VOX is the drop voltage across the thin gate
insulating layer. A useful formula of VOX is shown in Equation (A9). This one can be calculated by
integrating the electric field across the oxide, which separates the metal from the device layer:

VOX = − qND
Cox

Xdep. (A9)

On the other hand, the flat band voltage can be calculated by using the formula in Equation (A10)
for an n-type PJLT and the formula in Equation (A11) for a p-type PJLT:

VFB,n = qΦM − qΦsn = qΦM − (qχ + Eg/2− qΦn), (A10)

VFB,p = qΦM − qΦsp = qΦM − (qχ + Eg/2 + qΦp), (A11)

where: qΦM is the gate work function, qχ is the electron affinity, Eg is the energy band gap, and qΦn,p

is the bulk potential that is defined as kBT ln(ND,A/ni), kB is the Boltzmann constant, and T is
the temperature.

A second boundary condition can be found by introducing an additional approximation,
which consists of assuming that the device layer behaves like an ideal conductor. If we consider
the doping of the device layer sufficiently high to mimic the behavior of an ideal conductor, then we
can assume that the electric field created by the gate electrode becomes zero (Ex(Xdep) = 0) at the
boundary of the depletion region. In addition, the electric potential at the boundary of the depletion
region is also zero because the device layer has been electrically grounded through the drain and the
source terminal (φ(Xdep) = 0). By using φ(x = 0) = φs and E(x = Xdep) = 0, we can solve the system
of equations shown in Equation (A12) [12]:

Ex(x) = qND
εSi

x + c1,

φ(x) = − qND
2εSi

x2 − c1x + c2,
E(Xdep) = 0,
φ(0) = φs.

(A12)

The particular solutions of the system are shown in Equation (A13):{
Ex(x) = qND

εSi
(x− Xdep),

φ(x) = φs +
qND
εSi

Xdep x− qND
2εSi

x2,
(A13)

where the arbitrary constants were found to be : c1 = − qND
εSi

Xdep and c2 = φs. Finally, by evaluating
the electric potential in x = Xdep at which φ(Xdep) = 0 and by using Equations (A8) and (A9) in
Equation (A13), we can find the formula of the depletion region width shown in Equation (A14):

Xdep = − εSi
COX

+

√
(

εSi
COX

)2 − 2εSi
qND

(VG −VFB). (A14)

A similar procedure can be used to derive the formula of the depletion region for a p-type PJLT.
The formula for this case is shown in Equation (A15):

Xdep = − εSi
COX

+

√
(

εSi
COX

)2 +
2εSi
qNA

(VG −VFB). (A15)
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