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Abstract—Data driven networks applicable for shipping 

industrial applications to create decentralized system 

intelligence are considered in this study. Such system 

intelligence can facilitate to improve the respective operational 

efficiency in local (i.e. vessel operations) and global (i.e. 

logistics operations) scales in shipping as the main advantage. 

The main features of these data driven networks are 

summarized in the first part of this study. Two applications of 

digital models and blockchain technologies are discussed and 

compared with their features to illustrate their similarities and 

differences in the second part of this study. A digital model 

represents a vector based mathematical structure derived from 

ship performance and navigation data sets and has categorized 

as a low-level information model. It is also believed that the 

respective data sets from industrial IoT (internet of things) 

should go through such low-level models to improve their 

quality. These data driven networks can be used to quantify 

ship performance and navigation conditions, where the 

outcome can also be used to improve vessel energy efficiency 

and reduce engine emissions in a local scale. A blockchain 

represents a decentralized, distributed and digital ledger 

system in a public domain and can handle and record 

transactions executed by many users. That has categorized as a 

high-level information model due the high quality data sets 

from industrial processes that these networks are handling. 

Such data driven networks can be used to formulate various 

logistics operations in shipping and optimize their operational 

conditions in a global scale. The outcomes of these data driven 

networks can be used to improve operational efficiency and 

reduce the respective costs in the shipping industry.   

Keywords—Digital Models, Blockchain Technology, Data 

Driven Networks, System Intelligence, Shipping Industry.  

I. INTRODUCTION  

The shipping industry, with modern vessels and shore 
based operational centers, collects large scale data sets, so 
called big data, in which should be utilized to improve 
various sectors of its operations. However, the utilization of 
such data sets may not be an easy task due to the respective 
data handling challenges [1]: data volume, velocity, variety 
and veracity. The volume and velocity issues addressed 
under data management-based applications relate to the scale 
(i.e. the size) and speed (i.e. the processing speed) of data 
sets, respectively. The variety and veracity issues addressed 
under data analytics-based applications relate to the forms 
(i.e. the types of measured parameters and their formats) and 
uncertainty (i.e. the quality) of data sets, respectively.  

Since the shipping industry collects various forms of data 
sets from different sources (i.e. sensor data, industrial 

processes data, etc.), their quality can vary. The quality can 
be an issue for the data sets coming from industrial IoT 
(internet of things). However, the data sets coming from 
industrial processes may not have such data quality issues.  
However, the data quality can eventually effect on the 
outcome of the analysis, therefore appropriate tools and 
techniques to improve the same should be considered. The 
quality improved data sets can be used to support various 
industrial applications.  

Since conventional data handling approaches often fail to 
address data handling challenges that relate to variety and 
veracity issues, data drive networks are considered by 
various industrial applications. Machine learning (ML) and 
artificial intelligence (AI) based approaches can be 
accommodated into such networks consisting of various 
advanced analytics. It is also expected that such networks 
have the capabilities to improve the data quality by 
accommodating appropriate advanced analytics. This study 
also investigates analytics-based data driven networks 
developed to support massive data sets from the shipping 
industry. Hence, that can also provide appropriate solutions 
to the real-time data handling challenges.  However, these 
challenges and solutions can often relate to the respective 
industrial applications.  One should note that real-time data 
sets can assign the property of discreteness into these 
networks in these situations.  

Advanced data analytics can also introduce additional 
system intelligence, i.e. due to the respective information 
extracted from the data sets, into these networks. A given set 
of rules should be used to develop these data driven networks 
as well as advanced analytics. Hence, this can also be seen as 
a decentralized system intelligence approach. It is expected 
that decentralized system intelligence can provide flexible 
operational solutions, especially in a local level, to the 
respective industrial application. That can also be a better 
solution to highly complex distributed industrial applications 
depend on massive data sets.  Hence, this study illustrates 
such intelligent networks in shipping supported by various 
data sets from industrial sensors and processes. The main 
features of such data driven networks are discussed in the 
following section.  

II. DATA DRIVEN NETWORKS 

A. Network Architecture 

In general, a network can be defined as a group of nodes 
that are interconnected in a pre-defined distribution. Such 
network architecture can be series, parallel or a combination 



 

 

of both and relates to the respective system or application 
requirements.  Since this study is interested in data driven 
networks, these nodes can often be categorized as 
data/information clusters. One should note that the respective 
information in each note should be derived from the data 
sets. There are several steps that should be taken to transform 
data into information [2], where advanced analytics can be 
used. The information on each node can often be updated 
with real-time data from industrial sensors and processes. 
These information nodes introduce the respective 
discreteness in the data driven networks, therefore that can 
be categorized as digital networks. Furthermore, these nodes 
have the capability of extracting, updating, receiving or 
transmitting information over the network through incoming 
and outgoing data sets. That can also be a part of a larger 
data management framework. Such activities in the network 
nodes can create distributed system intelligence supported by 
decentralized information handling processes. Hence, these 
data driven networks can support to overcome modern 
industrial challenges in the shipping industry by utilizing the 
respective data sets. 

B. Node Classification 

There are several main features that can be observed 
under the nodes of such data driven networks. A general 
representation of a data driven network with several nodes is 
considered to explain its features in this study. However, 
these features can vary with respect to the industrial 
application. Each network node should consist of a 
quantifiable information structure supported by the 
respective data sets. In general, these nodes can classify into 
two main categories:  honest and not-so-honest nodes.  It is 
expected that honest nodes, with higher computational power 
and information, create the main network (or the chain) and 
that network preserves its information integrity. The honesty 
in these nodes relate to the trust of the respective information 
derived from the real-time data sets.   Not-so-honest nodes 
can also play an important role in the respective data driven 
networks in some situations. That role may depend on the 
respective industrial application. However, such nodes 
should also be identified and either be accommodated or 
eliminated (i.e. isolated) from the main network to preserve 
its information integrity. The inclusion or exclusion of such 
nodes depends on the respective industrial application, as 
mentioned before.  

 Each honest node consists of a representative information 
structure, in a higher level, and supported by a data cluster, 
in a lower level. Since these clusters can be updated through 
real-time data, the respective information structure, in each 
node, can also be updated.  This information structure that 
relates to network intelligence in each node can have varying 
shapes throughout the network. One should note that the 
structural shape of each node relates to its respective 
information. The information structure in each node should 
be time-stamped, properly to preserve its integrity [3]. Since 
these networks update with real-time data, that can introduce 
possible structural changes. The structural changes with 
respective to the time line in data driven networks should be 
preserved to trace their evolutions. Hence, the network 
evolution can provide extensive information on the past and 
present conditions of the industrial application.  Furthermore, 
the same network information can also be used to predict 
future conditions of the industrial application in some 
situations.    

 These data driven networks can accommodate additional 
features of self-learning, self-cleaning, and self-compression 
& expansion.  In general, a given set of rules should be 
assigned into these networks to grow from its initial node, as 
mentioned before.  The network can add or remove honest 
nodes, in accordance with its rules, i.e. the self-learning 
feature. However, not-so-honest nodes can also be added or 
removed during this process. The network should have 
enough system intelligence to identify such nodes, and 
isolate or remove from the respective network, as required. 
That feature represents self-cleaning capabilities of such data 
driven network. If the network structure is well-defined, then 
that can be used to scale, i.e. compress and recover, the 
respective information in its nodes. That feature can 
introduce self-compression & expansion capabilities into 
these networks and improve the network operational 
efficiency. In general, any intelligent network should have 
these important features to interact with the respective data 
sets.   

A network with distributed system intelligence may not 
have a deterministic leader node to make all its decisions. 
However, there are some situations that these networks may 
require to have a leader to make the final decision. A leader 
node can be appointed under the respective network rules in 
such situations. Furthermore, these nodes can also 
communicate each other, i.e. exchange information, to 
formulate group decisions under various logical operations.  
Therefore, the network decisions represent its system 
intelligence and support the respective industrial 
applications. However, the domain knowledge from the 
respective industry should also be integrated into such data 
driven networks to make smarter decisions. This domain 
knowledge can be incorporated by either network rules or 
logical operations. Two types of data driven networks with 
possible shipping industrial applications are discussed in this 
study: digital models and blockchain technologies. 

III. DIGITAL MODELS 

A. Network Structure 

 Digital Models are another form of data driven networks  
developed to quantify ship performance and navigation 
conditions. Ship performance and navigation parameters 
collected by onboard IoT as data sets are considered to 
derive these networks [4]. A general representation of a 
digital model is presented in Figure 1. As presented in the 
figure, the network consists of several nodes as data clusters, 
i.e. C1, C2, C3, etc., that relate to localized vessel navigational 
and ship system operational conditions. Each data cluster can 
be represented by a vector that locates its mean value, i.e. µ1, 
µ2, µ3, etc.. Hence, the entire digital model can be 
represented by a group of mean vectors in a higher level.  
Furthermore, each data cluster can have several structural 
vectors, i.e. Z1,1, Z1,2, Z1,3, etc., in relation to its mean vector 
in a lower level.  These structural vectors have also been 
categorized as singular vectors and that can be the building 
blocks for digital models. It is expected that future 
mathematical models for electrical and mechanical systems 
can be presented by such digital models, i.e. data driven 
networks, derived by the system data sets. One should note 
that this concept is a slight deviation from the digital twin. 
These data driven networks are application oriented models, 
i.e. digital representative systems, and may not capture the 
total complexity in the system behavior.  



 

 

  A given set of rules can be deployed to create such digital 
models, i.e. network structures, from ship performance and 
navigation data sets. The rules should formulate the number 
of data clusters by the mean vectors and the structural 
vectors of each data cluster in relation to the same mean 
vectors. One should note that these structural vectors 
represent the respective correlations among ship performance 
and navigation parameters. Hence, the combination of mean 
and structural vectors represents the structure of the same 
data set. The data structure becomes the mathematical model 
for vessel navigational and ship system operational 
conditions. Since these models can be application oriented, 
the respective ship performance and navigation parameters 
should be selected in accordance with the application 
requirements.  

 This is a digital representation of vessel navigational and 
ship systems operational conditions. Hence, the 
representative vessel behavior can move from one data 
cluster (or node) to another due to navigational and 
operational changes.  Furthermore, the information stored in 
each node can vary due to the updates from real-time data 
sets.   These data clusters can be classified as honest and not-
so-honest nodes under the same data driven network. A no-
so-honest node is also presented in Figure 1 as a data 
anomaly cluster. Furthermore, some data pointes beyond the 
data clusters are also presented as outliers in the same figure 
and those outliers may relate to the data quality issues. The 
respective sensors data from industrial IoT can often 
introduce such data anomalies and outliers into the digital 
models.  

 

Fig. 1. Digital model formation 

B. Engine Data 

 The initial concepts of  digital models are developed by 
investigating ship performance and navigation data sets, 
where the respective data clusters, i.e. nodes, that relate to 

vessel navigational and ship system operational conditions 
are observed.  A data density map from a marine engine of a 
selected vessel is presented with respect to engine power, 
shaft speed and fuel consumption values in this section to 
illustrate the above claim.  An example of a data density map 
is presented in Figure 2 and that represents marine engine 
speed-power data for the same vessel. The respective data 
clusters are represented as kernel density estimation, i.e. data 
density maps, to improve the information visibility. One 
should note that this data set has three data clusters, i.e. three 
network nodes that relate to the respective engine operational 
modes. Hence, this engine has three operational modes 
represented by three data clusters.    

 

 

Fig. 2. Marine engine speed-power Data 

 

Fig. 3. Marine engine speed-fuel comsuption data 

 The respective engine speed-fuel consumption data for 
the same marine engine are presented in Figure 3. These data 
clusters also relate the engine modes in the previous figure 
(as denoted in both figures). Since these engine speed-power-
fuel consumption clusters relate to each other,  that create the 
respective digital model with three data clusters. e.g. this  
data driven network consists of three marine engine related 
network nodes. Hence, a digital model can exist in a high 
dimensional data space and the space dimensionality relates 
to the number of system parameters measured by industrial 
IoT. That can also introduce complex geometrical shapes 
into the digital models. 

 However, the visualization of such digital models can be 
a difficult task due to its space dimensionality. Hence, these 
data density maps can be used to visualize a projected view 
of such data driven networks to support the model 



 

 

development process. However, these digital models can 
further be expanded by considering other ship performance 
and navigation parameters. e.g. the respective trim and draft 
conditions can introduce additional data clusters (see Figure 
4 & 5). Therefore, other ship performance and navigation 
parameters can reorganize the digital models along the 
existing clusters or create additional clusters to support such 
data driven networks.   

C. Data Anomalies 

 There are several additional benefits that can be obtained 
through the structural shapes of digital models. Firstly, the 
respective data anomalies can be identified and isolated from 
the digital models. As discussed previously, these data driven 
networks can consist of not-so-honest nodes to represent data 
anomaly regions. Since ship performance and navigation 
data come from various IoT, the quality of such data sets 
may not be higher. Data anomalies can relate to system 
abnormal events and sensor faults of vessel navigational and 
ship system operational conditions. The respective data 
anomalies can be identified from the same data structure by 
observing its abnormal behavior. That can be done in two 
levels. Firstly, the domain knowledge can be used to identify 
data anomaly clusters that often relate to system abnormal 
events. Secondly, the outlier of the data structure can be used 
to identify possible data anomalies [5] that often relate to 
sensor faults.  Hence, the respective network structures can 
also be used to detect, isolate and recover various data 
anomalies, i.e. a good solution to the data veracity issue. 

 

Fig. 4. Marine engine average draft-power data 

 

Fig. 5. Marine engine trim-power data 

 The information on system abnormal events is important 
to improve the operational efficiency of ocean going vessels. 
Such information can be used to arrange appropriate 
maintenance for the vessel and ship systems.  The 
information on sensor faults can also be used to identify the 
respective faulty sensors and replace or arrange maintenance 
for the same [6]. The sensor faults can be determined from 
not-so-honest nodes or outliers of the network, where these 
faults can be isolated or recovered by the same. That can be 
seen as a process, where the respective data sets from 
industrial IoT go through a low-level digital model to 
improve their quality.  

 Secondly, the structural shapes of digital models can be 
used to support various shipping industrial applications, e.g. 
ship energy efficiency, emission control and system 
reliability [4]. Since these models are derived from ship 
performance and navigation data sets, that can be a 
representative model for vessel and ship system behavior. 
Furthermore, such models can be a good solution to the data 
variety issue, since various forms of data sets can be 
combined through data driven networks. Such approaches 
have not been used by the shipping industry to the authors’ 
knowledge. Furthermore, these models can be placed 
onboard vessels and updated with real-time ship performance 
and navigation data sets to enhance the respective 
applications.     

IV. BLOCKCHAIN TECHNOLOGY 

A. Network Structure 

Blockchain technology is another form of data driven 
networks that consist of decentralized transactional processes  
with additional data management technologies [7]. That can 
be a higher level model with compared to the digital models. 
Since these networks can have enough system intelligence to 
execute the respective transactions by themselves, any third-
party institutions in the middle to support the same may not 
require. One should note that such third-party institutions 
often preserve the transactional integrity, security and 
privacy in such situations. That can be the main advantage of 
having blockchain technology in industrial applications, 
where the respective paper work can be eliminated. 
Furthermore, the transactional costs can be reduced, 
transparency can be improved, and speed can be increased 
due to the same reasons. This technology has been 
highlighted by the recent developments in Bitcoin 
cryptocurrency [8]. According to the world economic forum,   
about 10% of the global GDP will be stored in blockchain 
type technologies by 2027 [9]. 

A general overview of a blockchain formation is 
presented in Figure 6. The nodes of this data drive network 
represent the respective blocks. As presented in the figure, 
the main chain consists of  honest nodes of the network. It is 
expected that the main chain with adequate system 
intelligence controls the entire network. Furthermore, the 
identical blocks with the transactional information are shared 
and stored in the main chain. One should note that the 
information stored in every node is similar, due to the same 
reason. That feature is a deviation from digital models.  The 
genesis block represents the first block, i.e. the birth, of the 
blockchain (see Figure 6). The orphaned blocks can be 
categorized as  not-so-honest nodes that may not be a part of 
the main chain. However, those can be either valid blocks 



 

 

created due the time delay in the networks or invalid blocks 
created by cyber-attacks with enough computational power 
to interfere with the respective transactions.  

Since these networks may not be controlled by a single 
entity, i.e. distributed system intelligence, that can have 
extensive robustness, i.e. no single point failures. It is also 
noted that such networks are impossible to corrupt, i.e. 
introduce any data anomalies, by influencing any node, since 
the respective information has been shared among many 
nodes. Therefore, such networks can be smarter, and the 
computational power requirement to introduce data 
anomalies can be higher. On the other hand, these networks 
can detect, isolate and recover such data anomalies, faster. 
These anomalies represent not-so-honest nodes, i.e. 
erroneous nodes, and can be a part of the network.  That may 
also reduce the respective network integrity in some 
situations. 

 

Fig. 6. Blockchain formation 

To overcome such efforts, the honest nodes, i.e. the main 
chain, should be supported by adequate computational 
power. While these networks are getting expended, the 
integrity of the blockchain can grow due to the same reason. 
In general, the blockchain can have a higher number of 
honest nodes and a fewer number of not-so-honest nodes due 
to its maturity. Therefore, the age can improve the respective 
network integrity of blockchain technology. A shipping 
industrial application of managing a logistics network in 
relation to block technology is discussed in the following 
section to further elaborate these data driven networks.   

B.  Logistics Operations in Shipping 

Shipping logistics is a complex network of peers that 
raises and transacts vast amounts of data at very different 
levels, being most of these data sets not tracked or used for 
any relevant purpose. Within the operational layers, there are 
several possible gates for data collection, which can be used 
to raise events to trigger sequential actions. The smart 
contract functionality in blockchain technology can add an 
appropriate logic into the network, allowing event and data-
driven triggers to optimize shipping operations. i.e. a simple 
“if-then-else” logic can be triggered by a GPS signal when a 
vessel is at a certain port distance to share needed 
documentation to the nodes in the network, allowing the 
vessel berthing and unloading through a simpler process.  At 
the same time, the structure of the blockchain, i.e. 

decentralized information storing and sharing, can track, 
maintain and distribute the events raised by the respective 
data in the network, allowing sequential triggers to be started 
from each event in one or more nodes. The main blockchain 
protocols also allow setting channels and similar privacy 
handling in the respective information, which can contribute 
as an intelligent network. Channels, private data collection 
and private smart contracts are “sub-blockchain” networks 
within pre-defined parties inside the main blockchain 
network [11, 12, 13]. They allow routing data from the right 
source to the right parties with security, without the need for 
additional activities or institutes.   

An in-depth case study of a real blockchain application is 
currently in a development phase at Aker BP, a Norwegian 
Oil and Gas operator in the Norwegian Continental Shelf. 
The respective experiences gained through the same 
development phase are summarized in this section. The 
company’s project called exChain is developing a modular 
software that applies blockchain for data sharing by creating 
a protected while efficient environment for information 
handling in a multiple parties’ network. A general 
framework of exChain is presented in Figure 7. The exChain 
project aims to optimize the business processes in offshore 
logistics and supply chain by developing  digital solutions 
and environments to enable autonomous operations through 
trusted data exchanges.   

The project is developing a blockchain consortium to 
securely share data from the operator and its outside 
stakeholders involved in a logistics and supply chain, such as 
inland and offshore transporters, suppliers, terminal 
bases/warehouses and etc. The blockchain network was 
tested in a prototype completed in the first quarter of 2019. It 
was built on Hyperledger Fabric, i.e. a blockchain 
framework implementation, with channels to give the 
privacy needed. After testing some scenarios, the project 
decided to test Ethereum Quorum, which will lead to a 
ledger comparison to define the best protocol for the 
company’s and industrial goals. An important note is that the 
system design in the development phase allows blockchain 
technology to work as a sharing network and give a sense to 
the shared data.  

The blockchain network is not the central figure in the 
project, as it relies on the blocks for data sharing with  simple 
logic, leaving the business logic to be handled and 
orchestrated through an interoperability framework that is the 
responsible for orchestrating data for consumption as needed. 
This framework sets the rules for the data flow, security and 
software integration through APIs (Application 
programming interfaces) to allow seamless direct and 
indirect integration between exChain, the company’s 
different business units, blockchain and the network 
participants’ own software. The software structure consists 
of focused modules and with REST (Representational state 
transfer) based APIs for communication between client and 
server, constituting in a typical three tier application 
structure. A SQL/no-SQL database is used for the data 
storage and web API constitutes in the middle tiers 
processing. This connects to a gateway for integrating the 
blockchain, data lakes and/or IoT platforms, chosen for 
security purposes [14]. The preliminary results from testing 
the technology applications include increased data visibility, 
traceability and lower barrier to technological innovation 
[11].  



 

 

 

Fig. 7. exChain general system architecture 

V. CONCLUSIONS 

An introduction of decentralized data driven networks 
towards system intelligence in shipping industrial 
applications is presented in this study. Furthermore, the 
representative networks of digital models and blockchain 
technologies are also discussed. Digital models represent a 
network structure that can be derived from ship performance 
and navigation data sets. The outcome of digital models can 
be used to quantity ship performance and navigation 
conditions, i.e. to improve energy efficiency and reduce 
engine emissions from ocean going vessels [14, 15].  
Blockchain represents a decentralized, distributed and digital 
ledger in a public domain and the network can handle and 
record transactions based on operational data from various 
sources. One should note that the blockchain is a high-level 
cleaner data driven network than the digital model due to the 
quality of the data sets.  

These networks are governed by a given set of rules and 
that introduce the respective distributed system intelligence. 
However, there are several challenges have been observed 
with respect to these networks. The network structure can be 
highly complex, therefore the required computational power 
to update such networks can be higher. That can also 
compromise the network integrity, where not-so-honest 
nodes, i.e. data anomalies or cyber-attacks, with higher 
computational power may succeed to challenge the 
respective operations. Since these networks can be updated 
in real-time data, that can further increate the required 
computational resources. However, the scaling of the 
networks or having enough computational power and speed 
can be two possible solutions to overcome such situations. 
These data driven network technologies can be used in 
various ship operations to optimize and improve operational 

efficiency and reduce the respective costs both on local and 
global scales.  
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