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Abstract: In this study, we employed various machine learning-based techniques in predicting
factor of safety against slope failures. Different regression methods namely, multi-layer perceptron
(MLP), Gaussian process regression (GPR), multiple linear regression (MLR), simple linear regression
(SLR), support vector regression (SVR) were used. Traditional methods of slope analysis (e.g.,
first established in the first half of the twentieth century) used widely as engineering design tools.
Offering more progressive design tools, such as machine learning-based predictive algorithms,
they draw the attention of many researchers. The main objective of the current study is to evaluate
and optimize various machine learning-based and multilinear regression models predicting the safety
factor. To prepare training and testing datasets for the predictive models, 630 finite limit equilibrium
analysis modelling (i.e., a database including 504 training datasets and 126 testing datasets) were
employed on a single-layered cohesive soil layer. The estimated results for the presented database
from GPR, MLR, MLP, SLR, and SVR were assessed by various methods. Firstly, the efficiency of
applied models was calculated employing various statistical indices. As a result, obtained total
scores 20, 35, 50, 10, and 35, respectively for GPR, MLR, MLP, SLR, and SVR, revealed that the MLP
outperformed other machine learning-based models. In addition, SVR and MLR presented an almost
equal accuracy in estimation, for both training and testing phases. Note that, an acceptable degree of
efficiency was obtained for GPR and SLR models. However, GPR showed more precision. Following
this, the equation of applied MLP and MLR models (i.e., in their optimal condition) was derived,
due to the reliability of their results, to be used in similar slope stability problems.

Keywords: machine learning; slope failure; finite element analysis; weka

1. Introduction

The stability of natural slopes has a significant impact on civil engineering infrastructures (e.g.,
earth dams, and transmission roads) that rest near them. This issue can be considered for different
types of slopes, such as artificial and natural slopes. Hence, having a good approximation from the
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stability of such slopes is a vital task. Note that the purposed approaches must have enough reliability,
as well as the least computational time for engineering utilization [1,2]. Up to now, many scholars
have developed different techniques for slope stability assessment, like limit equilibrium methods
(LEM) and numerical solutions [3,4]. In a general view, there are some defects for the mentioned
methods (difficultness to determine the rational mechanical parameters, for instance) that make them
cumbersome to implement [5]. Another important disadvantage of traditional slope stability solution
is related to the time and cost constraints for implementing such models. So, many researchers
have focused on generating the design charts to be used toward slope analysis [6]. This is while the
appearance of the computational solutions has made most diagrammatic methods antiquated [7,8].
Zhou, et al. [9] proposed novel prediction technique that employ the gradient boosting machine
(GBM) technique to analyze the stability of slopes. It is found that the GBM proposed model has high
reliability for the estimating stability of slopes. Over the last decade, the application of soft computing
predictive tools has increased, due to their capability of establishing nonlinear equations between a set
of input-output data. In this field, various types of artificial neural network (ANN) [10] and support
vector machines (SVM) [11] have been successfully employed for simulating geotechnical problems.
The notable advantage of ANNs is that they can perform by any defined number of neurons, as in
their hidden layer [12–15]. In addition, no former knowledge of data processing is needed. On the
other hand, overfitting of the network as well as being trapped in local minima can be mentioned
as essential drawbacks of ANNs. A regression-based method such as Gaussian processes regression
(GPR) and simple linear regression (SLR) have attracted far attention in many research fields such
as traffic forecasting [16], tourism demand approximation [17] and signal processing [18]. Similarly,
plenty of complex geotechnical problems have been modelled with this approach [19–21]. Zhang et
al. [22] developed a GPR-based solution for the slope stability problem. According to their results,
this model is useful and simply-used, which can act as the superior approach compared to the ANN
and SVM methods published in prior studies. In another research, Jagan et al., [7] developed four
common models namely, GPR, adaptive neuro-fuzzy inference system (ANFIS), relevance vector
machine (RVM), and extreme learning machine (ELM) to appraise the stability number of layered
slopes. Their results revealed the advantage of the ELM in comparison with other developed machine
learning-based tools. In a work by Chakraborty and Goswami [23,24] for estimating the factor of
safety of a slope, the results obtained by the ANN and MLR models were compared to a finite element
method (FEM). They found that both applied tools (i.e., ANN and MLR) are accurate enough to
be used in this field. Also, a higher degree of precision was acquired for ANN compared to MLR.
Mosavi, et al. [25] stated the machine learning-based techniques as cost-effective solutions. They have
introduced various machine learning-based solutions in flood prediction in order to give insight into
the most appropriate models.

However, few scholars have attempted to present comparative research for slope failure
assessment [26]; no prior study was found to evaluate the effectiveness of the models mentioned above,
simultaneously. Therefore, this study aims to assess and compare the efficiency of various machine
learning-based methods for slope stability modelling. Furthermore, due to the previously stated
constraints of traditional methods, another novelty of this work can be highlighted by presenting
an operational formula for appraising the FS of similar slopes. In this sense, we developed five
conventional soft computing approaches including Gaussian process regression (GPR), multi-layer
perceptron (MLP), simple linear regression (SLR), support vector regression (SVM), and multiple
linear regression (MLR), to calculate the safety factor of a single-layered slope (i.e., modelled based on
cohesive materials). To do so, four influential factors affecting the risk of slope failure were considered
for this study. Undrained shear strength (Cu), slope angle (β), setback distance ratio (b/B), and applied
surcharge on the shallow foundation installed over the slope (w) opted. To prepare the required
dataset, respecting to the mentioned variables, 630 different analyzed stages of the purposed soil slope
were performed in the Optum G2 software and the safety factor obtained for each corresponding input
conditions were taken to be the output. In the following, 80% of the whole dataset was specified
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for training the GPR, MLR, MLP, SLR, and SVR models. The remained 20% was used to assess the
performance of models. Note that different statistical indices were employed to calculate the error and
correlation between the real and predicted safety factor.

2. Machine Learning and Multilinear Regression Algorithms

2.1. Gaussian Processes Regression (GPR)

Gaussian processes regression (GPR) is one of the appropriate, and newly-proposed methods
that have been employed for may machine learning examples [27]. The probabilistic solution that is
developed by GPR model leads to discerning generic regression problems with kernels. The training
process of the applied regressor can be classified within a Bayesian framing, and it has been supposed
that the model relations follow a Gaussian distribution to encode the former information about the
output function [28]. The Gaussian process is specified by a series of variables that there is a joint
Gaussian allocation for each one of them [29]. The following equation describes the overall structure of
the Gaussian process:

g(x) ∼ GP(w(x), k(x, x′)) (1)

where w(x) designates, the Gaussian process mean function and k(x, x′) indicates the kernel function.
Consider a learning dataset that is built by N pairs in the form of S =

{
(xi, yi)|i = 1, 2, . . . , N

}
where in this dataset, x is defined as an N-dimensional input vector where corresponding target is
taken as y. The GPR model helps the below formulation to discover the relationship between the given
inputs and targets taking xj as a test sample [29].

w j = kT
j .
[
K(X, X) + σ2

nI
]
.y (2)

σ2
j = k

(
x j, x j

)
− kT

j .[K(X, X) + σ2
nI]
−1

.k j (3)

where wj defines mean value representing the most compatible predicted outputs for the test input
vector (xj). Also, K(X, X), kj, σ2

n, and y stand for the covariance matrix, the kernel distance between
training and testing data, the noise variance, and training observation, respectively. As well as this,
the produced variance by Equation (3) (σ2

j ), represents a confidence measure related to the obtained
results. Note that, this variance is adversely proportional to the confidence associated with the wj [30].

The above formulas can be gathered in the form of a linear combination of the s kernel function and
the mean estimation for f (xj) can be expressed as follows:

f
(
x j

)
=

s∑
i = 1

(
K(X, X) + σ2

nI
)−1

yk
(
x j, x j

)
(4)

2.2. Multiple Linear Regression (MLR)

The focal goal of multiple linear regression (MLR) model is to establish a linear equation to the
data samples to reveal the relationship between two or more independent (explanatory) variables and a
dependent (response) variable. The overall structure of the MLR formula is shown by Equation (5) [31]:

y = α0 + α1x1 + α2x2 + . . .+ αsxs + ε (5)

In the above formula, y and x represent the dependent and independent variables, respectively.
The terms α0, α1, . . . αs are indicative of MLR unknown parameters. Also, the normally distributed
random variable is shown by ε in MLR generic formula.
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The main task of MLR is to approximate the unknown terms (i.e., α0, α1, . . . αs) of Equation (5).
After applying the least-square technique, the practical form of the statistical regression method is
given by [31]:

y = a0 + a1x1 + a2x2 + . . .+ asxs + e (6)

where a0, a1, . . . as are the approximated regression coefficients of α0, α1, . . . αs, respectively. Also,
term e describes the approximated error for the sample. Assuming the term e as the difference between
the actual and predicted y, the estimate of y is as follows:

ŷ = a0 + a1x1 + a2x2 + . . .+ asxs (7)

2.3. Multi-Layer Perceptron (MLP)

Artificial neural networks (ANNs) are capable of predictive tools that were introduced by [32],
mimicking the biological neural network. multi-layer perceptron (MLP) is a common type of ANNs
that have shown a satisfying performance dealing with many engineering simulations [33–37]. This is
due to their ability in generating non-linear equations between the set of inputs and outputs [38,39].
Figure 1 denotes the general structure of MLP. A simple MLP neural network is constructed from three
layers containing computational nodes (mostly known as neurons).
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Figure 1. Typical architecture of multi-layer perceptron (MLP) neural network.

The initial data are received by the nodes in the input layer. In the following, hidden neurons
(i.e., the neurons in the hidden layer) attempt to discover the relationship between the inputs and
the corresponding targets, through assigning and adjusting the MLP weights and biases. After that,
the output is produced by the neurons performing in the last layer (i.e., output layer). More particularly,
assume the S and W, respectively as the input and weight vectors. Then the performance of each
neuron is formulated as follows:

U =

j∑
i = 1

(SiW1,i + b) (8)

Output = F(U) (9)

where j is the number of neurons, and b indicates the bias. Also, F(x) stands for the activation function
(AF). Note that, a feed-forward back-propagation (FFBP) method is considered for this study, which
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aims to minimize the error performance by adjusting the MLP parameters (i.e., weights and biases).
The FFBP method is well-discussed in other works [40].

2.4. Simple Linear Regression (SLR)

The main objective of simple linear regression (SLR) is to investigate the effect of a predictor
variable on a specific output. As the name demonstrates, the relationship between input-target samples
is described by a linear dependency in this model. The formulation of a simple linear regression is
generically presentable in the form of Equation (10):

y = α+ βx + κ (10)

where x and y are the independent and dependent variables, respectively, the terms α and β indicate
the structural parameters (intercept on the y-axis and the slope of the regression line, respectively).
In addition, the random error is defined by κ, which is supposed to be uncorrelated with a mean of zero
and fixed variance. Furthermore, in order to obtain a higher competency in prediction, the analyses are
often associated with the assumption of the normal distribution of errors [41]. Note that, transformation
process may be carried out to achieve desired normality of data [42].

Considering a population of samples like S =
{
(xi, yi)|i = 1, 2, . . . , N

}
the SLR method

applies the ordinary least square (OSL) method to approximate the structural parameters (i.e., α and
β). Having a normal distribution is not essential, but it helps the regression model to have more
accuracy [41]. With this in mind, the developed regression model aims to find its parameters such that
the lowest value of the sum of squared error (i.e., the difference between the actual and estimated data)
is obtained [43]. Finally, after determining the proper values of α (intercept) and β (slope regression
parameter), the fitted output (yi) can be calculated at any given x value (xi).

2.5. Support Vector Regression (SVR)

Support vector machine (SVM) is one of the widely-employed machine learning algorithms
which aimed to detect the decision boundary in order to separate different classes. Due to their
outstanding presentation to deal with examples of the non-separable and high-dimensional data
sets, SVMs have been effectively applied as a reliable solution for many classification problems [44].
Theoretically, the training process of SVM techniques is evinced by the statistical theories [45].
Therefore, the mechanism of SVMs is mainly based on the transformation from non-linear to future
linear spaces [46]. A well-known type of SVMs is support vector regression (SVR). As the name implies,
the main application of SVRs is to solve the complex regression problems. During SVR learning, it is
assumed that there is a unique relationship between each set of input-target pairs. Grouping and
classifying the relation of these predictors will conduce to produce the system outputs (e.g., slope
safety factor in this study) [47]. Unlike many predictive models that try to minimize the calculated
error (i.e., the difference between the target and system outputs), SVR aims to improve its performance
by optimizing and altering the generalization bounds for a regression. In this subject, a predetermined
error value can be ignored by a ε-insensitive loss function (LF) [48]. If we assume a training dataset
that is formed by N pairs of samples, represented by S =

{
(xi, yi)|i = 1, 2, . . . , N

}
the SVR model

containing the mentioned LF (i.e., ε-SVR) attempts to find the optimum hyperplane that it has the
minimum distance from all sample points. More specifically, ε-SVR seeks a function g(x) that has the
highest ε deviation from the target data (i.e., yi) [49]. As explained in previous sentences, the linear
regression is implemented in high dimensional feature space using ε-LF. Moreover, the lower value for
‖w‖2, the less complex model [50]. As for the non-linear problems, the input data are transformed into
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high-dimensional space by means of a kernel mapping function indicated by γ(xi). After that, a linear
approach is applied to data in the future space by a convex optimization problem [45,51].

Minimize
1
2
‖w‖2 + C

z∑
i = 1

φi + φ∗i (11)

subject to


yi −w·γ(xi) − b ≤ ε+ φi
w·γ(xi) + b− yi ≤ ε+ φ∗i
φi,φ∗i ≥ 0

(12)

where the terms w and C are indicative of weight vector (i.e., in the future space) and penalty parameter,
respectively. This must be noted that the trade-off between the performance error and the complexity
of the model is ascertained by C constant. Also, b defines the bias and the parameters φi and φi

* stand
for the slack variables measuring the deviation of training data outside ε-LF zone. The precision factor
is also shown by ε in the above formula [52]. In other words, only samples with a deviation value
more than ε will be considered for error function [51]. Eventually, to calculate the SVR results, a linear
combination is established associated with introducing Lagrange multiplier of ρi and ρi

*:

f (xi) = w·γ(xi) + b =
z∑

i = 1

(ρi − ρi
∗)γ(xi)·γ(x) + b (13)

3. Data Collection

The main motivation of the present research is to evaluate the applicability of various machine
learning-based tools to the subject of slope stability assessment. Several regression methods namely,
Gaussian process regression (GPR), multiple linear regression (MLR), multi-layer perceptron (MLP),
simple linear regression (SLR), support vector regression (SVR) were implemented in WEKA software.
A purely cohesive soil layer constructs the slope geometry that only has undrained cohesive strength
(see Figure 2a). In order to estimate the safety factor of the purposed slope, four effective parameters
including undrained shear strength (Cu), slope angle (β), setback distance ratio (b/B), and applied
surcharge on the footing installed over the slope (w) opted in this work. To create the required dataset,
Optum G2 computer software [53,54] was used, which follows a comprehensive finite element method
(FEM) (see Figure 2b). Considering the mentioned influential variables, 630 different stages were
analyzed, and the safety factor was derived as the output. During the model development, the elastic
parameter of Young’s modulus (E) was supposed to be different for each value of Cu. In this regard,
E was 1000, 2000, 3500, 5000, 9000, 15,000 and 30,000 kPa for respective Cu values of 25, 50, 75, 100, 200,
300 and 400 kPa. As well as this, the numbers 0.35, 18 KN/m3, and 0◦ were allocated to the mechanical
parameters Poisson’s ratio, soil unit weight, and internal friction angle, respectively. For more details,
the relationship between the computed F safety factor S and its conditioning factors (i.e., Cu, β, b/B,
and w) is demonstrated in Figure 3a–d, showing the safety factor featured on the vertical axis versus
the respective parameters of Cu, β, b/B, and w, on the horizontal axis. In all diagrams, the slope safety
factor varies from 0.8 to 28.55. As is expected, a proportional distribution can be found for the Cu (25,
50, 75, 100, 200, 300, and 400 kPa) and obtained safety factor (see Figure 3a). Adversely, in a general
view, when the values of β (15◦, 30◦, 45◦, 60◦, and 75◦) and w (50, 100, and 150 KN/m2) are increased,
more instability is observed (see Figure 3b,d). In addition, according to Figure 3c, different values of
safety factor have been reported as the purposed foundation takes more distance from the edge of
slope (b/B is determined by 0, 1, 2, 3, 4, and 5 values).
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4. Results and Discussion

The main objective of the present study is to investigate the feasibility of five common machine
learning-based methods, namely, GPR, MLR, MLP, SLR, and SVR for slope stability assessment.
This work carried out by means of the factor of safety estimation. To this purpose, four conditioning
parameters affecting the stability of a single-layered cohesive slope opted to be Cu, β, b/B, and w.
Referring to the various possible quantities for these parameters, 360 different stages were defined
and analyzed in Optum G2 finite element software, and the safety factor was taken as the output.
The required data set was gathered for training the purposed models in WEKA software. The results
of this part have been reported by various validation indices such as relative absolute error (RAE in%),
coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and root
relative squared error (RRSE in%). A colour intensity rating is also generated to display a hued ranking
of the implemented models. The quality of results is adversely proportional to the intensity of the
colour (green) in the last column of each table. In contrast, more intense colour (red) indicates a more
proper performance for all other columns. This is noteworthy that these criteria have been widely used
in earlier studies (e.g., Moayedi and Hayati [37], Vakili, et al. [55] and Moayedi and Armaghani [56]).
Equations (14)–(18) presented the formulation of R2, MAE, RMSE, RAE, RRSE, respectively.

R2 = 1−

∑s
i = 1 (Yipredicted −Yiobserved)

2∑s
i = 1 (Yiobserved −Yobserved)

2 (14)

MAE =
1
N

s∑
I = 1

∣∣∣∣Yiobserved −Yipredicted

∣∣∣∣ (15)
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RMSE =

√√
1
N

s∑
i = 1

[(
Yiobserved −Yipredicted

)]2
(16)

RAE =

∑s
i = 1

∣∣∣∣Yipredicted −Yiobserved

∣∣∣∣∑s
i = 1

∣∣∣Yiobserved −Yobserved
∣∣∣ (17)

RRSE =

√√√√ ∑s
i = 1 (Yipredicted −Yiobserved)

2∑s
i = 1 (Yiobserved −Yobserved)

2 (18)

where in all the above relationships Yi observed and Yi predicted indicates the actual measurement and
estimated slope safety factor, respectively. The term S is the defined of the number of data; Yobserved is
the mean of the real values of safety factor. The obtained values of R2, MAE, RMSE, RAE, RRSE for
safety factor estimation are tabulated in Tables 1 and 2, respectively, for the training and testing phases.
In a glance, MLP is qualified as the first ranking model for both tables. For the training results, based
on the R2 (0.9467, 0.9586, 0.9937, 0.9019, and 0.9529), RMSE (1.9957, 1.7366, 0.7131, 2.6334, and 1.9183),
and RRSE (32.7404%, 28.4887%, 11.6985%, 43.2016%, and 31.4703%), respectively for GPR, MLR, MLP,
SLR, and SVR models, the MLP outputs have shown the best accommodation with the actual values
of safety factor. After that, SVR and MLR have also presented a high level of accuracy. In addition,
GP (4th ranking) and SLR (5th ranking) have shown an acceptable rate of accuracy concerning the
calculated MAE (1.5598 and 1.7013, respectively) values. The sole distinction for the final results (i.e.,
last column) in Tables 1 and 2 refers to the ranking gained by MLR and SVR predictive models. As is
clear, SVR as the second-accurate model has shown more sensitivity for the testing stage compared
to the MLR. In addition, the obtained results for the testing dataset confirms the higher capability of
MLP. Considering the respective values of R2 (0.9509, 0.9649, 0.9939, 0.9265, and 0.9653), MAE (1.5291,
1.1949, 0.5155, 1.5387, and 1.0364), and RAE (30.9081%, 24.1272%, 10.4047%, 31.0892%, and 20.9366%),
it can be concluded that SVR is the second-precise model, and MLR has outperformed GP and SLR.

Table 1. Total ranking of training dataset in predicting the factor of safety.

Proposed
Models

Network Results Ranking the Predicted Models Total
Ranking

Score
Rank

R2 MAE RMSE RAE (%) RRSE
(%) R2 MAE RMSE RAE (%) RRSE (%)

Gaussian
Processes 0.9467 1.5598 1.9957 31.1929 32.7404 2 2 2 2 2 10 4

Multiple Linear
Regression 0.9586 1.2527 1.7366 25.0515 28.4887 4 3 4 3 4 18 2

Multi-layer
Perceptron 0.9937 0.494 0.7131 9.8796 11.6985 5 5 5 5 5 25 1

Simple Linear
Regression 0.9019 1.7013 2.6334 34.0224 43.2016 1 1 1 1 1 5 5

Support Vector
Regression 0.9529 1.161 1.9183 23.2182 31.4703 3 4 3 4 3 17 3

Table 2. Total ranking of the testing dataset in predicting the factor of safety.

Proposed
Models

Network Results Ranking the Predicted Models Total
Ranking

Score
Rank

R2 MAE RMSE RAE (%) RRSE
(%) R2 MAE RMSE RAE (%) RRSE (%)

Gaussian
Processes 0.9509 1.5291 1.9447 30.9081 32.3841 2 2 2 2 2 10 4

Multiple Linear
Regression 0.9649 1.1949 1.5891 24.1272 26.4613 3 3 4 3 4 17 3

Multi-layer
Perceptron 0.9939 0.5155 0.7039 10.4047 11.8116 5 5 5 5 5 25 1

Simple Linear
Regression 0.9265 1.5387 2.2618 31.0892 37.6639 1 1 1 1 1 5 5

Support Vector
Regression 0.9653 1.0364 1.6362 20.9366 27.247 4 4 3 4 3 18 2
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Table 3 demonstrates the total efficiency ranking of developed models (i.e., the summation of R2,
MAE, RMSE, RAE, RRSE single ranking for training and testing dataset). Based on the obtained total
scores of 20, 35, 50, 10, and 35 (respectively for GPR, MLR, MLP, SLR, and SVR), the superiority of
MLP can be deduced (i.e., the most significant total rank). The multiple linear regression and support
vector regression methods have commonly been labelled as the second-accurate models. After these,
GPR and SLR have shown a good quality of safety factor estimation with respective total scores of 20
and 10. The remarkable point about Table 3 is that an equal individual score for all indices has featured
for MLP, GPR, and SLR predictive model. The MLP and SLR, for instance, had the highest (5) and
lowest (1) level of accuracy, based on the R2, MAE, RMSE, RAE, and RRSE indices simultaneously.

Table 3. Total ranking of both training and testing dataset in predicting the factor of safety.

Proposed
Models

Network Result
Total
Rank

Training Dataset Testing Dataset

R2 MAE RMSE RAE (%) RRSE (%) R2 MAE RMSE RAE RRSE

Gaussian
Processes 2 2 2 2 2 2 2 2 2 2 20

Multiple Linear
Regression 4 3 4 3 4 3 3 4 3 4 35

Multi-layer
Perceptron 5 5 5 5 5 5 5 5 5 5 50

Simple Linear
Regression 1 1 1 1 1 1 1 1 1 1 10

Support Vector
Regression 3 4 3 4 3 4 4 3 4 3 35

Notes: R2: Correlation coefficient; MAE: Mean absolute error; RMSE: Root mean squared error; RAE: “Relative
absolute error”. RRSE: Root relative squared error.

Many studies have revealed that the machine learning-based techniques are reliable methods
for approximating the engineering complex solutions [57–61]. Many of these learning systems
are available in Waikato Environment for Knowledge Analysis (Weka). Furthermore, the pictorial
correlation between the measured (on the horizontal axis) and predicted (on the vertical axis) safety
factor is shown in Figure 5a–e, for training dataset, and Figure 5a–e, for testing dataset, respectively
for GPR, MLR, MLP, SLR, and SVR models. Comparing the observed regression in Figures 5 and 6,
the trend line has been drawn for MLP and MLR results, have the most inclining to the line y = x (i.e.,
R2 = 1).

The graphical view of the computed error (the difference between the observed and predicted
slope safety factor) for all employed models is depicted in Figure 7. As is obvious in this chart, the less
distance from the y = 0 axis (i.e., the lowest error), results in higher accuracy. In this subject, the MLP
and SVR models have presented the most reliable prediction, due to the higher aggregation of their
results around the y = 0 axis, particularly for the first 350 data. In contrast, the maximum observed
error is obtained for the SLR estimation, which reaches more than ten units, for both negative and
positive error.
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Referring to the results, it can be concluded that MLP (R2 = 0.9937 and 0.9939, and RMSE = 0.7131
and 0.7039, respectively for training and testing phases) and MLR (R2 = 0.9586 and 0.9649,
and RMSE = 1.7366 and 1.5891, respectively for training and testing phases) predictive models
are eligible enough to provide an appropriate estimation for safety factor. In addition, the obtained
values of RRSE for training (11.6985% and 28.4887%, respectively for MLP and MLR) and testing
(11.8116% and 26.4613%, respectively for MLP and MLR) datasets prove a high level of accuracy for
these techniques. With this in mind, in this part of the current study, it was aimed to extract the
equation of developed MLR and MLP models to be used in stability assessment of similar slopes.
The MLR attempts to fit a linear relationship to data. The formula derived from the MLR and MLP
models is presented in Equations (19) and (20), respectively.

FSMLR = (0.042×Cu) + (−0.0525×β) + (0.1718×
b
B
) + (−0.0395×w) + 5.9289 (19)

FSMLP = (−1.12353500504828 × Y1) − (2.38866337313669 × Y2) + 1.77734928298793 (20)
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where terms Y1 and Y2 are calculated from the below equations:

Y1 = Sigmoid (−1.81050684690784×Cu− 0.12661562391622×β+ 0.00271932582608
×

b
B − 0.13113363668468×w− 2.07905580235550)

(21)

Y2 = Sigmoid (−1.22119497255619×Cu + 0.54492694570842×β− 0.08968494371324
×

b
B + 0.66112235556328×w + 2.03127180205695)

(22)ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 16 of 35 
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5. Design Charts

The last part of this paper deals with presenting a more detailed evaluation of the results obtained
by the most successful model, i.e., MLP. This was carried out through comparing the estimated and
real values of safety factor within design chart figures, generated for different values of effective factors
(i.e., Cu, β, b/B, and w). Moreover, having a more detailed presentation from the results of MLP (i.e.,
the most successful method), in the last part of this research, it was aimed to compare the actual and
MLP estimation of safety factor in several separate stages. To this purpose, Figures 8–12 were drawn
(for different values of β = 15◦, β = 30◦, β = 45◦, β = 60◦, and β = 75◦) showing the safety factor (on
the vertical axis) against the undrained shear strengths (Cu) (on the horizontal axis). Note that these
figures are provided as an appendix. Each single chart illustrates the comparison between the real (i.e.,
linear) and predicted (i.e., points) values of safety factors, for different values of b/B ratio ((a), (b), (c),
(d), (e), and (f), respectively for b/B = 0, b/B = 1, b/B = 2, b/B = 3, b/B = 4, and b/B = 5). Note that, in all
charts, the data have been divided into three parts concerning the w (applied surcharge on the rigid
foundation) values, which were 50, 100, and 150 kPa. Based on the coefficient of determination (i.e.,
R2) computed for each case, the effectiveness of estimation carried out in this study can be deduced.
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Figure 10. Comparison of the MLP estimation and real values of FS for the β = 45°, (a) b/B = 0, (b) b/B 
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Figure 10. Comparison of the MLP estimation and real values of FS for the β = 45◦, (a) b/B = 0,
(b) b/B = 1, (c) b/B = 2, (d) b/B = 3, (e) b/B = 4, (f) b/B = 5.
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Figure 11. Comparison of the MLP estimation and real values of FS for the β = 60◦, (a) b/B = 0,
(b) b/B = 1, (c) b/B = 2, (d) b/B = 3, (e) b/B = 4, (f) b/B = 5.



ISPRS Int. J. Geo-Inf. 2019, 8, 395 29 of 35

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 29 of 35 

 

 
(a) 

 
(b) 

Figure 12. Cont.



ISPRS Int. J. Geo-Inf. 2019, 8, 395 30 of 35

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 30 of 35 

 

 
(c) 

 
(d) 

Figure 12. Cont.



ISPRS Int. J. Geo-Inf. 2019, 8, 395 31 of 35
ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 31 of 35 

 

 
(e) 

 
(f) 

Figure 12. Comparison of the MLP estimation and real values of FS for the β = 75°, (a) b/B = 0, 
(b) b/B = 1, (c) b/B = 2, (d) b/B = 3, (e) b/B = 4, (f) b/B = 5. 

  

Figure 12. Comparison of the MLP estimation and real values of FS for the β = 75◦, (a) b/B = 0,
(b) b/B = 1, (c) b/B = 2, (d) b/B = 3, (e) b/B = 4, (f) b/B = 5.



ISPRS Int. J. Geo-Inf. 2019, 8, 395 32 of 35

6. Conclusions

Due to the inevitability and undeniable impacts of the slope failure phenomena on many
geotechnical projects, the main motivation of the current research was to evaluate the applicability
of various machine learning and regression-based models in predicting the factor of safety of slope.
In this purpose, GPR, MLR, MLP, SLR, and SVR models were developed. A single-layered cohesive
slope was assumed. Four influential parameters affecting the stability of the slope, namely Cu, β, b/B,
and w were considered in this study. To create the eligible dataset, referring to possible values that
can be received by mentioned effective parameters, 630 different stages were defined and analyzed
in Optum G2 software. The factor of safety was picked as the output of this operation. In the next
step, the acquired dataset was divided into training (80% of the entire dataset) and validation (20%
of the entire dataset) phases to train and validate the efficiency of GPR, MLR, MLP, SLR, and SVR
approaches. The implementation of models was carried out in WEKA software, which is a prominent
tool for machine learning and classification applications. For the training phase, the R2 (0.9467, 0.9586,
0.9937, 0.9019, and 0.9529), MAE (1.5598, 1.2527, 0.4940, 1.7013, and 1.161), RMSE (1.9957, 1.7366,
0.7131, 2.6334, and 1.9183), RAE (31.1929%, 25.0515%, 9.8796%, 34.0224%, and 23.2182%), and RRSE
(32.7404%, 28.4887%, 11.6985%, 43.2016%, and 31.4703%), were obtained, respectively for GPR, MLR,
MLP, SLR, and SVR. Similarly, for the testing phase, we acquired R2 (0.9509, 0.9649, 0.9939, 0.9265,
and 0.9653), MAE (1.5291, 1.1949, 0.5155, 1.5387, and 1.0364), RMSE (1.9447, 1.5891, 0.7039, 2.2618,
and 1.6362), RAE (30.9081%, 24.1272%, 10.4047%, 31.0892%, and 20.9366%), and RRSE (32.3841%,
26.4613%, 11.8116%, 37.6639%, and 27.2470%), respectively for GPR, MLR, MLP, SLR, and SVR.
Referring to the indices mentioned above, the advantage of MLP is deduced, compared to the other
applied machine learning methods. In addition, it can be seen that there is a slight difference between
the performance of MLR and SVR predictive models, and GPR outperforms SLR. In the next section,
the equation of implemented MLP and MLR (i.e., for their optimal condition) was derived to be used
in similar slope stability problems. In addition, due to the highest rate of success for MLP prediction,
in the last part, the outputs produced by this model were more particularly compared to the actual
values of safety factor within design charts generated for different values of Cu, β, b/B, and w.
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