
applied
sciences

Article

Predicting Heating Load in Energy-Efficient Buildings
Through Machine Learning Techniques

Hossein Moayedi 1,2,* , Dieu Tien Bui 3,4,* , Anastasios Dounis 5, Zongjie Lyu 6 and
Loke Kok Foong 7

1 Department for Management of Science and Technology Development, Ton Duc Thang University,
Ho Chi Minh City 758307, Vietnam

2 Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
3 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
4 Geographic Information System Group, Department of Business and IT, University of South-Eastern

Norway, N-3800 Bø i Telemark, Norway
5 University of West Attica, Dept. of Industrial Design and Production Engineering, Campus 2, 250 Thivon &

P. Ralli, 12244 Egaleo, Greece; aidounis@uniwa.gr
6 State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology,

Xi’an 710048, China; lvzj960608@163.com
7 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor,

Malaysia; kfloke2@live.utm.my
* Correspondence: hossein.moayedi@tdtu.edu.vn (H.M.); buitiendieu@duytan.edu.vn (D.T.B.);

Tel.: +84-(47)96677678 (H.M.)

Received: 5 September 2019; Accepted: 11 October 2019; Published: 15 October 2019
����������
�������

Abstract: The heating load calculation is the first step of the iterative heating, ventilation, and air
conditioning (HVAC) design procedure. In this study, we employed six machine learning techniques,
namely multi-layer perceptron regressor (MLPr), lazy locally weighted learning (LLWL), alternating
model tree (AMT), random forest (RF), ElasticNet (ENet), and radial basis function regression (RBFr)
for the problem of designing energy-efficient buildings. After that, these approaches were used to
specify a relationship among the parameters of input and output in terms of the energy performance
of buildings. The calculated outcomes for datasets from each of the above-mentioned models were
analyzed based on various known statistical indexes like root relative squared error (RRSE), root mean
squared error (RMSE), mean absolute error (MAE), correlation coefficient (R2), and relative absolute
error (RAE). It was found that between the discussed machine learning-based solutions of MLPr,
LLWL, AMT, RF, ENet, and RBFr, the RF was nominated as the most appropriate predictive network.
The RF network outcomes determined the R2, MAE, RMSE, RAE, and RRSE for the training dataset to
be 0.9997, 0.19, 0.2399, 2.078, and 2.3795, respectively. The RF network outcomes determined the R2,
MAE, RMSE, RAE, and RRSE for the testing dataset to be 0.9989, 0.3385, 0.4649, 3.6813, and 4.5995,
respectively. These results show the superiority of the presented RF model in estimation of early
heating load in energy-efficient buildings.

Keywords: energy-efficient buildings; smart buildings; machine learning; random forest; optimization

1. Introduction

In recent decades, artificial intelligence-based methods have been dramatically applied by scientists
in different fields of study, particularly in energy systems engineering (such as in Nguyen et al. [1]
and Najafi et al. [2]). In this regard, scientific applications of machine learning-based techniques
were considered to be a proper alternative in order to forecast the quantity of energy in constructions.
Consequently, an appropriate inspection of the particular energy performance for buildings and optimal

Appl. Sci. 2019, 9, 4338; doi:10.3390/app9204338 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5625-1437
https://orcid.org/0000-0001-5161-6479
http://dx.doi.org/10.3390/app9204338
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/20/4338?type=check_update&version=2

Appl. Sci. 2019, 9, 4338 2 of 17

contriving of the heating, ventilation, and air-conditioning (HVAC) system will help in pushing further
sustainable consumption related to energy. The world’s energy consumption is still maintained at a
high value and even though many countries have taken some reasonable measures it is expected that
energy consumption will increase in future. Many believe that this is because of the rapid expansion
of economy and the improvement of living requirements. Currently, energy required for buildings
accounts for almost 40% of all energy use in Europe [3]. Some reports have indicated that in countries
such as United States and China, this value accounts for about 39% of the whole energy demand
along with 27.5% of nationally consumed energy. As a novel idea, most recently, intelligent predictive
tools have been utilized for the field of energy consumption calculation. In fact, the problem of
heating load calculation in energy-efficient buildings is an established concern. For realizing the best
artificial intelligence (AI) model to meet this goal, this study provides and compares five well-known
models that are widely used by researchers [4–8]. Similar to other research in the fields of science and
technology, AI techniques have widespread application in order to put forward reasonable evaluation
in many engineering problems [9–17] of the energy consumption in buildings. In numerous types
of artificial intelligence-based solutions, artificial neural network (ANN) is known as a recognized
method that is largely employed for many prediction-based examples [18–22]. Similar studies are
performed in regard to hybrid metaheuristic optimization approaches [23–29]. Also, in the field of
energy management, neural networks have emerged as one of the effective prediction tools [30–33].

Zemella et al. [34] investigated the design optimization of energy efficient buildings by employing
several evolutionary neural networks. The methods were applied to drive the design of a typical facade
module (i.e., play a key role in the definition of the energy performance of buildings) for an office
building. Chou and Bui [35] employed various data mining-based solutions in order to predict the
energy performance of buildings and to facilitate early designs of energy conserving buildings. These
techniques include support vector regression (SVR), ANN, regression and classification tree, ensemble
inference model, general linear regression, and chi-squared automatic interaction detector. Yu et al. [22]
studied the challenges and advances in data mining applications for communities concerning
energy-efficient buildings. Hidayat et al. [36] employed a neural network model in an energy-efficient
building to achieve proper smart lighting control. Kheiri [20] reviewed different techniques of
optimization applied to the energy-efficient building. Malik and Kim [37] investigated smart buildings
and their efficient energy consumption. In this regard, various prediction-learning algorithms including
particle-based hybrid optimization algorithm were employed and their performances were evaluated.
Ngo [18] explored the excellent capacity of machine learning to assess early predicting cooling loads.
The main objective of such prediction was prediction of cooling loads in the office buildings through
machine learning-based solutions. His study successfully achieved the objective by providing some
neural network-based equations. Mejías et al. [38] employed both of the linear regression and neural
network to predict three conceptions associated with energy consumption, cooling, and heating energy
demands. The results of their studies proved that the neural network was superior to other models.
Deb et al. [39] explored the potential of neural network-based solutions in forecasting the diurnal
cooling energy load; this study used recorded data of the five days before the day of the experiment
to estimate the energy consumption; the outcomes demonstrated that the ANN approach is very
effective. Moreover, Li et al. [40] performed a comparative analysis between different machine learning
techniques such as radial basis function neural network (RBFNN), general regression neural network
(GRNN), traditional backpropagation neural network (BPNN), and support vector machine (SVM) in
predicting the hourly cooling load of a normal residential building.

There are few studies (e.g., Kolokotroni et al. [41] and Nguyen et al. [42]) on the machine
learning-based modeling application on the prediction of heating load. Nevertheless, using machine
learning paradigms for optimizing the answers determined by the best artificial intelligence-based
models is the chief aim of the actual study. To help engineers obtain an optimized design of
energy-efficient buildings without any further experiments, this knowledge gap should be addressed.
Hence, the basic purpose of this work is to estimate the amount of heating load in energy-efficient

Appl. Sci. 2019, 9, 4338 3 of 17

buildings by various new machine learning-based approaches. In the following, several machine
learning techniques such as multi-layer perceptron regressor (MLPr), lazy locally weighted learning
(LLWL), alternating model tree (AMT), random forest (RF), ElasticNet (ENet), and radial basis function
regression (RBFr) are employed to estimate the amount of heating load (HL) in energy-efficient buildings.

2. Database Collection

The required initial dataset was obtained from Tsanas and Xifara [43]. The obtained records
include eight inputs (i.e., conditional factors) and a separate output of heating load (i.e., response
factors or dependent outputs). Based on a residential building main conditional design factors, the
inputs were X1 (Relative Compactness), X2 (Surface Area), X3 (Wall Area), X4 (Roof Area), X5 (Overall
Height), X6 (Orientation), X7 (Glazing Area), and finally, X8 (Glazing Area Distribution). Likewise,
parameters of the heating load of the suggested building were presented to be forecasted by the inputs.
In addition, in this study the heating loads, as the main outputs, were simplified as heating load.
The characteristics of the analyzed building and fundamental assumptions are properly detailed in
the [43]. A total of 768 buildings were modelled considering twelve distinct buildings, five distribution
scenarios, four orientations, and four glazing areas. The obtained data is analyzed through Ecotect
computer software. A graphical view of this process is illustrated in Figure 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

Figure 1. Graphical view of data preparation.

Figure 1. Graphical view of data preparation.

Statistical Details of the Dataset

As stated earlier, the amount of the heating load was applied as the main target of the
energy-efficient buildings, while the main influential parameters were roof area, wall area, relative
compactness, surface area, overall height, glazing area, glazing area distribution, and orientation.
The statistical explanation of energy-efficient residential buildings including conditional variables
is tabulated in Table 1. In addition, Figure 2 shows the variables of relative compactness, wall area,
surface area, overall height, roof area, glazing area, orientation (i.e., north, northeast, east, southeast,
south, southwest, west, northwest), heating load, and glazing area distribution on the x-axis, against a
heating load (Figure 3) on the y-axis.

Appl. Sci. 2019, 9, 4338 4 of 17

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

2.1. Statistical Details of the Dataset

As stated earlier, the amount of the heating load was applied as the main target of the energy-efficient
buildings, while the main influential parameters were roof area, wall area, relative compactness, surface area,
overall height, glazing area, glazing area distribution, and orientation. The statistical explanation of energy-
efficient residential buildings including conditional variables is tabulated in Table 1. In addition, Figure 2
shows the variables of relative compactness, wall area, surface area, overall height, roof area, glazing area,
orientation (i.e., north, northeast, east, southeast, south, southwest, west, northwest), heating load, and glazing
area distribution on the x-axis, against a heating load (Figure 3) on the y-axis.

Table 1. The statistical description details in term of energy-efficient design.

Data Layers Used as Input
Main

Output

Relative

Compactness

Surface

Area (m

2)

Wall

Area (

m2)

Roof

Area (

m2)

Overall

Height (

m)

Orient

ation

(-)

Glazing

Area (m2

)

Glazing Area

Distribution (m2

)

Heating

Load (kW

/h)

Used label X1 X2 X3 X4 X5 X6 X7 X8 Y1

No. of data 768

Minimum 0.6 514.5 245.0 110.3 3.5 2.0 0.0 0.0 6.0

Maximum 1.0 808.5 416.5 220.5 7.0 5.0 0.4 5.0 43.1

Average 0.8 671.7 318.5 176.6 5.3 3.5 0.2 2.8 22.3

(a) (b) Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

(c) (d)

(e) (f)

(g) (h)
Figure 2. Schematic view of some of the input data layers (X1–X8 as shown in Table 1) in predicting heating load.
(a) X1 (Relative Compactness); (b) X2 (Surface Area); (c) X3 (Wall Area); (d) X4 (Roof Area); (e) X5 (Overall Height);
(f) X6 (Orientation); (g) X7 (Glazing Area); (h) X8 (Glazing Area Distribution).

Figure 2. Schematic view of some of the input data layers (X1–X8 as shown in Table 1) in predicting
heating load. (a) X1 (Relative Compactness); (b) X2 (Surface Area); (c) X3 (Wall Area); (d) X4 (Roof Area);
(e) X5 (Overall Height); (f) X6 (Orientation); (g) X7 (Glazing Area); (h) X8 (Glazing Area Distribution).

Appl. Sci. 2019, 9, 4338 5 of 17

Table 1. The statistical description details in term of energy-efficient design.

Data Layers Used as Input Main
Output

Relative
Compactness

Surface
Area
(m2)

Wall
Area
(m2)

Roof
Area
(m2)

Overall
Height
(m)

Orientation
(-)

Glazing
Area
(m2)

Glazing Area
Distribution
(m2)

Heating
Load
(kW/h)

Used label X1 X2 X3 X4 X5 X6 X7 X8 Y1
No. of data 768
Minimum 0.6 514.5 245.0 110.3 3.5 2.0 0.0 0.0 6.0
Maximum 1.0 808.5 416.5 220.5 7.0 5.0 0.4 5.0 43.1
Average 0.8 671.7 318.5 176.6 5.3 3.5 0.2 2.8 22.3Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

Figure 3. Schematic view of some of the output data layers (i.e., heating load).

3. Model Development

An acceptable predict approach that is utilized with different artificial intelligence-based systems like
MLPr, LLWL, AMT, RF, ENet, and RBFr models to predict heating load in energy-efficient buildings requires
several steps. After that, the best fit model is then selected. Firstly, the initial database should be separated to
the datasets of training (80% of the whole dataset) and testing (20% of the whole dataset). In the current study
and because of the size of the testing dataset, the predictability of generated networks is considered to be as a
proof of their validations. Therefore, a greater percentage of the dataset is considered for the testing dataset to
be reliable for testing the trained network. Secondly, in order to obtain the best predictive network,
appropriate machine learning-based solutions have to be introduced. Lastly, the outcome of the trained
network should be validated and verified for selected testing datasets, randomly. The dataset utilized in this
work is generated by some of the most influential input layers, such as surface area, roof area, relative
compactness, wall area, glazing area, glazing area distribution, overall height, and orientation, which are the
effective parameters influencing the heating load value in energy-efficient buildings. Note that the employed
dataset was obtained from a recent study conducted by Tsanas and Xifara [43].

All six machine learning analyses provided in the current study were performed using Waikato
Environment for Knowledge Analysis (WEKA). WEKA is a java-based open-source machine learning analyzer
software that was developed in University of Waikato, New Zealand. Each of the proposed techniques were
performed in optimized settings as explained in this section.

3.1. Multi-Layer Perceptron Regressor (MLPr)

The MLP is a widely-used and well-known predictive network. Accordingly, MLPr aims to coordinate
the best potential of regression between a set of data samples (shown here in terms of S). The MLPr divides
the S into both of the set training and testing databases. An MLP involves several layers of computational
nodes. Similar to many previous MLPr-based studies, a single hidden layer was used. This is because even
with a single hidden layer and increasing the number of nodes in the hidden layer an excellent rate of
prediction can be achieved. Figure 4 shows a common MLP structure. The optimum number of neurons in
each of the hidden layer are obtained after a series of trial and error processes (i.e., sensitivity analysis) as
shown in Figure 5. Noteworthily, only one hidden layer was selected since the accuracy of a single hidden
layer was found to be high enough to not make the MLP structure more complicated.

0

10

20

30

40

50

60

0 200 400 600 800

He
at

in
 lo

ad

Dataset number

Figure 3. Schematic view of some of the output data layers (i.e., heating load).

3. Model Development

An acceptable predict approach that is utilized with different artificial intelligence-based systems
like MLPr, LLWL, AMT, RF, ENet, and RBFr models to predict heating load in energy-efficient buildings
requires several steps. After that, the best fit model is then selected. Firstly, the initial database should
be separated to the datasets of training (80% of the whole dataset) and testing (20% of the whole dataset).
In the current study and because of the size of the testing dataset, the predictability of generated
networks is considered to be as a proof of their validations. Therefore, a greater percentage of the
dataset is considered for the testing dataset to be reliable for testing the trained network. Secondly,
in order to obtain the best predictive network, appropriate machine learning-based solutions have
to be introduced. Lastly, the outcome of the trained network should be validated and verified for
selected testing datasets, randomly. The dataset utilized in this work is generated by some of the
most influential input layers, such as surface area, roof area, relative compactness, wall area, glazing
area, glazing area distribution, overall height, and orientation, which are the effective parameters
influencing the heating load value in energy-efficient buildings. Note that the employed dataset was
obtained from a recent study conducted by Tsanas and Xifara [43].

All six machine learning analyses provided in the current study were performed using Waikato
Environment for Knowledge Analysis (WEKA). WEKA is a java-based open-source machine learning
analyzer software that was developed in University of Waikato, New Zealand. Each of the proposed
techniques were performed in optimized settings as explained in this section.

3.1. Multi-Layer Perceptron Regressor (MLPr)

The MLP is a widely-used and well-known predictive network. Accordingly, MLPr aims to
coordinate the best potential of regression between a set of data samples (shown here in terms of S).
The MLPr divides the S into both of the set training and testing databases. An MLP involves several
layers of computational nodes. Similar to many previous MLPr-based studies, a single hidden layer

Appl. Sci. 2019, 9, 4338 6 of 17

was used. This is because even with a single hidden layer and increasing the number of nodes in the
hidden layer an excellent rate of prediction can be achieved. Figure 4 shows a common MLP structure.
The optimum number of neurons in each of the hidden layer are obtained after a series of trial and
error processes (i.e., sensitivity analysis) as shown in Figure 5. Noteworthily, only one hidden layer
was selected since the accuracy of a single hidden layer was found to be high enough to not make the
MLP structure more complicated.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

Figure 4. Multi-layer perceptron regressor (MLPr) neural network typical architecture.

Each node generates a local output. In addition, it sets the local output to the subsequent layer (the next
nodes in a further hidden layer) until reaching the nodes of output, i.e., the nodes placed in the layer of output.
Equation (1) shows the normal operation carried out considering a dataset of N groups of records by the jth
neuron to compute the predicted output: 𝑂 = 𝐹 (∑ 𝐼 𝑊 + 𝑏), (1)

where I symbolizes the input, b denotes the bias of the node, W is the weighting factor, and F signifies the
activation function. Tansig (i.e., the tangent sigmoid activation function) is employed (Equation (2)). Note that
we can have several types of activation functions (e.g., (i) sigmoid or logistic; (ii) Tanh—Hyperbolic tangent;
(iii) Relu—rectified linear units) and that their performances are best suitable for different purposes. In the
specific case of the sigmoid, this function (i) is real-valued and differentiable (i.e., to find gradients); (ii) has
analytic tractability for the differentiation operation; and (iii) is an acceptable mathematical representation
biological neuronal behavior. 𝑇𝑎𝑛𝑠𝑖𝑔(𝑥) = 21 + 𝑒 − 1 (2)

(a) (b)

Figure 5. Sensitivity analysis based on number of neurons in a single hidden layer.

0.950

0.960

0.970

0.980

0.990

1.000

0 2 4 6 8 10

R²

Number of nodes in hidden layer

Train
Test
Average

0.000

0.040

0.080

0.120

0.160

0.200

0 2 4 6 8 10

RM
SE

Number of nodes in hidden layer

Train
Test
Average

Figure 4. Multi-layer perceptron regressor (MLPr) neural network typical architecture.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

Figure 4. Multi-layer perceptron regressor (MLPr) neural network typical architecture.

Each node generates a local output. In addition, it sets the local output to the subsequent layer (the next
nodes in a further hidden layer) until reaching the nodes of output, i.e., the nodes placed in the layer of output.
Equation (1) shows the normal operation carried out considering a dataset of N groups of records by the jth
neuron to compute the predicted output: 𝑂 = 𝐹 (∑ 𝐼 𝑊 + 𝑏), (1)

where I symbolizes the input, b denotes the bias of the node, W is the weighting factor, and F signifies the
activation function. Tansig (i.e., the tangent sigmoid activation function) is employed (Equation (2)). Note that
we can have several types of activation functions (e.g., (i) sigmoid or logistic; (ii) Tanh—Hyperbolic tangent;
(iii) Relu—rectified linear units) and that their performances are best suitable for different purposes. In the
specific case of the sigmoid, this function (i) is real-valued and differentiable (i.e., to find gradients); (ii) has
analytic tractability for the differentiation operation; and (iii) is an acceptable mathematical representation
biological neuronal behavior. 𝑇𝑎𝑛𝑠𝑖𝑔(𝑥) = 21 + 𝑒 − 1 (2)

(a) (b)

Figure 5. Sensitivity analysis based on number of neurons in a single hidden layer.

0.950

0.960

0.970

0.980

0.990

1.000

0 2 4 6 8 10

R²

Number of nodes in hidden layer

Train
Test
Average

0.000

0.040

0.080

0.120

0.160

0.200

0 2 4 6 8 10

RM
SE

Number of nodes in hidden layer

Train
Test
Average

Figure 5. Sensitivity analysis based on number of neurons in a single hidden layer.

Each node generates a local output. In addition, it sets the local output to the subsequent layer
(the next nodes in a further hidden layer) until reaching the nodes of output, i.e., the nodes placed in
the layer of output. Equation (1) shows the normal operation carried out considering a dataset of N
groups of records by the jth neuron to compute the predicted output:

O j = F (
∑N

n=1
InWnj + b j), (1)

where I symbolizes the input, b denotes the bias of the node, W is the weighting factor, and F
signifies the activation function. Tansig (i.e., the tangent sigmoid activation function) is employed
(Equation (2)). Note that we can have several types of activation functions (e.g., (i) sigmoid or logistic;
(ii) Tanh—Hyperbolic tangent; (iii) Relu—rectified linear units) and that their performances are best
suitable for different purposes. In the specific case of the sigmoid, this function (i) is real-valued and

Appl. Sci. 2019, 9, 4338 7 of 17

differentiable (i.e., to find gradients); (ii) has analytic tractability for the differentiation operation; and
(iii) is an acceptable mathematical representation biological neuronal behavior.

Tansig(x) =
2

1 + e−2x − 1 (2)

3.2. Lazy Locally Weighted Learning (LLWL)

Similar to the K-star technique (i.e., an instance-based classifier), locally-weighted learning
(LWL) [44] is one of the common types of lazy learning-based solutions. Lazy learning approaches
provide valuable training algorithms and representations for learning about complex phenomena
during autonomous adaptive control of complex systems. Commonly, there are disadvantages in
employing such methods. Lazy learners create a considerable delay during the network simulation.
More explanations about this model are provided by Atkeso, et al. [44].

The key options we have in LLWL include number of decimal places (numDecimalPlaces), batch
size (batchSize), KNN (following the k-nearest neighbors algorithm), nearest neighbor search algorithm
(nearestNeighborSearchAlgorithm), and weighting Kernel (weightingKernel). More explanations are
provided below for each of the above influential parameters.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

3.2. Lazy Locally Weighted Learning (LLWL)

Similar to the K-star technique (i.e., an instance-based classifier), locally-weighted learning (LWL) [44] is

one of the common types of lazy learning-based solutions. Lazy learning approaches provide valuable training

algorithms and representations for learning about complex phenomena during autonomous adaptive control

of complex systems. Commonly, there are disadvantages in employing such methods. Lazy learners create a

considerable delay during the network simulation. More explanations about this model are provided by

Atkeso, et al. [44].

The key options we have in LLWL include number of decimal places (numDecimalPlaces), batch size

(batchSize), KNN (following the k-nearest neighbors algorithm), nearest neighbor search algorithm

(nearestNeighborSearchAlgorithm), and weighting Kernel (weightingKernel). More explanations are

provided below for each of the above influential parameters.

 numDecimalPlaces—The number of decimal places. This number will be implemented for the output

of numbers in the model.

 batchSize—The chosen number of cases to process if batch estimation is being completed. A normal

value of the batch size is 100. In this example we also consider it to be constant as it did not have

significant impact on the outputs.

 KNN—The number of neighbors that are employed to set the width of the weighting function (noting

that KNN <= 0 means all neighbors are considered).

 nearestNeighborSearchAlgorithm—The potential nearest neighbor search algorithm to be applied

(the default algorithm that was also selected in our study was LinearNN).

 weightingKernel—The number that determines the weighting function. (0 = Linear; 1 = Epnechnikov;

2 = Tricube; 3 = Inverse; 4 = Gaussian; and 5 = Constant. (default 0 = Linear)).

A good example of k-nearest neighbors algorithm is shown in Figure 6. The test sample (red dot) should

be classified either as blue squares or as green triangles. If k = 3 (i.e., depicted in solid line circle) it is depicted

by the green triangles as there are two triangles (reversed in shape) and only one rectangle through the inner

(i.e., continuous line) circle. If k = 5 (dashed line circle) it is assigned to the blue rectangles (three blue rectangles

vs. two green triangles inside the outer circle). Variation of the correlation coefficient (R²) versus number of

used KNN neighbors is shown in Figure 7. It can be seen that changing the KNN could significantly enhance

the correlation coefficient. For the cases of KNN = −1, KNN = 2, KNN = 4, KNN = 6, KNN = 8, and KNN =10,

the training correlation coefficients were 0.9025, 0.9579, 0.9861, 0.9916, 0.9937, and 0.9943, respectively. In the

case of our study we proposed the KNN = −1 as it considers all neighbors.

Figure 6. Example of k-nearest neighbors (KNN) regression/classification.

numDecimalPlaces—The number of decimal places. This number will be implemented for the
output of numbers in the model.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

3.2. Lazy Locally Weighted Learning (LLWL)

Similar to the K-star technique (i.e., an instance-based classifier), locally-weighted learning (LWL) [44] is

one of the common types of lazy learning-based solutions. Lazy learning approaches provide valuable training

algorithms and representations for learning about complex phenomena during autonomous adaptive control

of complex systems. Commonly, there are disadvantages in employing such methods. Lazy learners create a

considerable delay during the network simulation. More explanations about this model are provided by

Atkeso, et al. [44].

The key options we have in LLWL include number of decimal places (numDecimalPlaces), batch size

(batchSize), KNN (following the k-nearest neighbors algorithm), nearest neighbor search algorithm

(nearestNeighborSearchAlgorithm), and weighting Kernel (weightingKernel). More explanations are

provided below for each of the above influential parameters.

 numDecimalPlaces—The number of decimal places. This number will be implemented for the output

of numbers in the model.

 batchSize—The chosen number of cases to process if batch estimation is being completed. A normal

value of the batch size is 100. In this example we also consider it to be constant as it did not have

significant impact on the outputs.

 KNN—The number of neighbors that are employed to set the width of the weighting function (noting

that KNN <= 0 means all neighbors are considered).

 nearestNeighborSearchAlgorithm—The potential nearest neighbor search algorithm to be applied

(the default algorithm that was also selected in our study was LinearNN).

 weightingKernel—The number that determines the weighting function. (0 = Linear; 1 = Epnechnikov;

2 = Tricube; 3 = Inverse; 4 = Gaussian; and 5 = Constant. (default 0 = Linear)).

A good example of k-nearest neighbors algorithm is shown in Figure 6. The test sample (red dot) should

be classified either as blue squares or as green triangles. If k = 3 (i.e., depicted in solid line circle) it is depicted

by the green triangles as there are two triangles (reversed in shape) and only one rectangle through the inner

(i.e., continuous line) circle. If k = 5 (dashed line circle) it is assigned to the blue rectangles (three blue rectangles

vs. two green triangles inside the outer circle). Variation of the correlation coefficient (R²) versus number of

used KNN neighbors is shown in Figure 7. It can be seen that changing the KNN could significantly enhance

the correlation coefficient. For the cases of KNN = −1, KNN = 2, KNN = 4, KNN = 6, KNN = 8, and KNN =10,

the training correlation coefficients were 0.9025, 0.9579, 0.9861, 0.9916, 0.9937, and 0.9943, respectively. In the

case of our study we proposed the KNN = −1 as it considers all neighbors.

Figure 6. Example of k-nearest neighbors (KNN) regression/classification.

batchSize—The chosen number of cases to process if batch estimation is being completed.
A normal value of the batch size is 100. In this example we also consider it to be constant as it did
not have significant impact on the outputs.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

3.2. Lazy Locally Weighted Learning (LLWL)

Similar to the K-star technique (i.e., an instance-based classifier), locally-weighted learning (LWL) [44] is

one of the common types of lazy learning-based solutions. Lazy learning approaches provide valuable training

algorithms and representations for learning about complex phenomena during autonomous adaptive control

of complex systems. Commonly, there are disadvantages in employing such methods. Lazy learners create a

considerable delay during the network simulation. More explanations about this model are provided by

Atkeso, et al. [44].

The key options we have in LLWL include number of decimal places (numDecimalPlaces), batch size

(batchSize), KNN (following the k-nearest neighbors algorithm), nearest neighbor search algorithm

(nearestNeighborSearchAlgorithm), and weighting Kernel (weightingKernel). More explanations are

provided below for each of the above influential parameters.

 numDecimalPlaces—The number of decimal places. This number will be implemented for the output

of numbers in the model.

 batchSize—The chosen number of cases to process if batch estimation is being completed. A normal

value of the batch size is 100. In this example we also consider it to be constant as it did not have

significant impact on the outputs.

 KNN—The number of neighbors that are employed to set the width of the weighting function (noting

that KNN <= 0 means all neighbors are considered).

 nearestNeighborSearchAlgorithm—The potential nearest neighbor search algorithm to be applied

(the default algorithm that was also selected in our study was LinearNN).

 weightingKernel—The number that determines the weighting function. (0 = Linear; 1 = Epnechnikov;

2 = Tricube; 3 = Inverse; 4 = Gaussian; and 5 = Constant. (default 0 = Linear)).

A good example of k-nearest neighbors algorithm is shown in Figure 6. The test sample (red dot) should

be classified either as blue squares or as green triangles. If k = 3 (i.e., depicted in solid line circle) it is depicted

by the green triangles as there are two triangles (reversed in shape) and only one rectangle through the inner

(i.e., continuous line) circle. If k = 5 (dashed line circle) it is assigned to the blue rectangles (three blue rectangles

vs. two green triangles inside the outer circle). Variation of the correlation coefficient (R²) versus number of

used KNN neighbors is shown in Figure 7. It can be seen that changing the KNN could significantly enhance

the correlation coefficient. For the cases of KNN = −1, KNN = 2, KNN = 4, KNN = 6, KNN = 8, and KNN =10,

the training correlation coefficients were 0.9025, 0.9579, 0.9861, 0.9916, 0.9937, and 0.9943, respectively. In the

case of our study we proposed the KNN = −1 as it considers all neighbors.

Figure 6. Example of k-nearest neighbors (KNN) regression/classification.

KNN—The number of neighbors that are employed to set the width of the weighting function
(noting that KNN ≤ 0 means all neighbors are considered).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

3.2. Lazy Locally Weighted Learning (LLWL)

Similar to the K-star technique (i.e., an instance-based classifier), locally-weighted learning (LWL) [44] is

one of the common types of lazy learning-based solutions. Lazy learning approaches provide valuable training

algorithms and representations for learning about complex phenomena during autonomous adaptive control

of complex systems. Commonly, there are disadvantages in employing such methods. Lazy learners create a

considerable delay during the network simulation. More explanations about this model are provided by

Atkeso, et al. [44].

The key options we have in LLWL include number of decimal places (numDecimalPlaces), batch size

(batchSize), KNN (following the k-nearest neighbors algorithm), nearest neighbor search algorithm

(nearestNeighborSearchAlgorithm), and weighting Kernel (weightingKernel). More explanations are

provided below for each of the above influential parameters.

 numDecimalPlaces—The number of decimal places. This number will be implemented for the output

of numbers in the model.

 batchSize—The chosen number of cases to process if batch estimation is being completed. A normal

value of the batch size is 100. In this example we also consider it to be constant as it did not have

significant impact on the outputs.

 KNN—The number of neighbors that are employed to set the width of the weighting function (noting

that KNN <= 0 means all neighbors are considered).

 nearestNeighborSearchAlgorithm—The potential nearest neighbor search algorithm to be applied

(the default algorithm that was also selected in our study was LinearNN).

 weightingKernel—The number that determines the weighting function. (0 = Linear; 1 = Epnechnikov;

2 = Tricube; 3 = Inverse; 4 = Gaussian; and 5 = Constant. (default 0 = Linear)).

A good example of k-nearest neighbors algorithm is shown in Figure 6. The test sample (red dot) should

be classified either as blue squares or as green triangles. If k = 3 (i.e., depicted in solid line circle) it is depicted

by the green triangles as there are two triangles (reversed in shape) and only one rectangle through the inner

(i.e., continuous line) circle. If k = 5 (dashed line circle) it is assigned to the blue rectangles (three blue rectangles

vs. two green triangles inside the outer circle). Variation of the correlation coefficient (R²) versus number of

used KNN neighbors is shown in Figure 7. It can be seen that changing the KNN could significantly enhance

the correlation coefficient. For the cases of KNN = −1, KNN = 2, KNN = 4, KNN = 6, KNN = 8, and KNN =10,

the training correlation coefficients were 0.9025, 0.9579, 0.9861, 0.9916, 0.9937, and 0.9943, respectively. In the

case of our study we proposed the KNN = −1 as it considers all neighbors.

Figure 6. Example of k-nearest neighbors (KNN) regression/classification.

nearestNeighborSearchAlgorithm—The potential nearest neighbor search algorithm to be applied
(the default algorithm that was also selected in our study was LinearNN).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

3.2. Lazy Locally Weighted Learning (LLWL)

Similar to the K-star technique (i.e., an instance-based classifier), locally-weighted learning (LWL) [44] is

one of the common types of lazy learning-based solutions. Lazy learning approaches provide valuable training

algorithms and representations for learning about complex phenomena during autonomous adaptive control

of complex systems. Commonly, there are disadvantages in employing such methods. Lazy learners create a

considerable delay during the network simulation. More explanations about this model are provided by

Atkeso, et al. [44].

The key options we have in LLWL include number of decimal places (numDecimalPlaces), batch size

(batchSize), KNN (following the k-nearest neighbors algorithm), nearest neighbor search algorithm

(nearestNeighborSearchAlgorithm), and weighting Kernel (weightingKernel). More explanations are

provided below for each of the above influential parameters.

 numDecimalPlaces—The number of decimal places. This number will be implemented for the output

of numbers in the model.

 batchSize—The chosen number of cases to process if batch estimation is being completed. A normal

value of the batch size is 100. In this example we also consider it to be constant as it did not have

significant impact on the outputs.

 KNN—The number of neighbors that are employed to set the width of the weighting function (noting

that KNN <= 0 means all neighbors are considered).

 nearestNeighborSearchAlgorithm—The potential nearest neighbor search algorithm to be applied

(the default algorithm that was also selected in our study was LinearNN).

 weightingKernel—The number that determines the weighting function. (0 = Linear; 1 = Epnechnikov;

2 = Tricube; 3 = Inverse; 4 = Gaussian; and 5 = Constant. (default 0 = Linear)).

A good example of k-nearest neighbors algorithm is shown in Figure 6. The test sample (red dot) should

be classified either as blue squares or as green triangles. If k = 3 (i.e., depicted in solid line circle) it is depicted

by the green triangles as there are two triangles (reversed in shape) and only one rectangle through the inner

(i.e., continuous line) circle. If k = 5 (dashed line circle) it is assigned to the blue rectangles (three blue rectangles

vs. two green triangles inside the outer circle). Variation of the correlation coefficient (R²) versus number of

used KNN neighbors is shown in Figure 7. It can be seen that changing the KNN could significantly enhance

the correlation coefficient. For the cases of KNN = −1, KNN = 2, KNN = 4, KNN = 6, KNN = 8, and KNN =10,

the training correlation coefficients were 0.9025, 0.9579, 0.9861, 0.9916, 0.9937, and 0.9943, respectively. In the

case of our study we proposed the KNN = −1 as it considers all neighbors.

Figure 6. Example of k-nearest neighbors (KNN) regression/classification.

weightingKernel—The number that determines the weighting function. (0 = Linear; 1 =

Epnechnikov; 2 = Tricube; 3 = Inverse; 4 = Gaussian; and 5 = Constant. (default 0 = Linear)).

A good example of k-nearest neighbors algorithm is shown in Figure 6. The test sample (red dot)
should be classified either as blue squares or as green triangles. If k = 3 (i.e., depicted in solid line
circle) it is depicted by the green triangles as there are two triangles (reversed in shape) and only one
rectangle through the inner (i.e., continuous line) circle. If k = 5 (dashed line circle) it is assigned to
the blue rectangles (three blue rectangles vs. two green triangles inside the outer circle). Variation
of the correlation coefficient (R2) versus number of used KNN neighbors is shown in Figure 7. It
can be seen that changing the KNN could significantly enhance the correlation coefficient. For the
cases of KNN = −1, KNN = 2, KNN = 4, KNN = 6, KNN = 8, and KNN =10, the training correlation
coefficients were 0.9025, 0.9579, 0.9861, 0.9916, 0.9937, and 0.9943, respectively. In the case of our study
we proposed the KNN = −1 as it considers all neighbors.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

3.2. Lazy Locally Weighted Learning (LLWL)

Similar to the K-star technique (i.e., an instance-based classifier), locally-weighted learning (LWL) [44] is
one of the common types of lazy learning-based solutions. Lazy learning approaches provide valuable training
algorithms and representations for learning about complex phenomena during autonomous adaptive control
of complex systems. Commonly, there are disadvantages in employing such methods. Lazy learners create a
considerable delay during the network simulation. More explanations about this model are provided by
Atkeso, et al. [44].

The key options we have in LLWL include number of decimal places (numDecimalPlaces), batch size
(batchSize), KNN (following the k-nearest neighbors algorithm), nearest neighbor search algorithm
(nearestNeighborSearchAlgorithm), and weighting Kernel (weightingKernel). More explanations are
provided below for each of the above influential parameters.

 numDecimalPlaces—The number of decimal places. This number will be implemented for the output
of numbers in the model.

 batchSize—The chosen number of cases to process if batch estimation is being completed. A normal
value of the batch size is 100. In this example we also consider it to be constant as it did not have
significant impact on the outputs.

 KNN—The number of neighbors that are employed to set the width of the weighting function (noting
that KNN <= 0 means all neighbors are considered).

 nearestNeighborSearchAlgorithm—The potential nearest neighbor search algorithm to be applied
(the default algorithm that was also selected in our study was LinearNN).

 weightingKernel—The number that determines the weighting function. (0 = Linear; 1 = Epnechnikov;
2 = Tricube; 3 = Inverse; 4 = Gaussian; and 5 = Constant. (default 0 = Linear)).

A good example of k-nearest neighbors algorithm is shown in Figure 6. The test sample (red dot) should
be classified either as blue squares or as green triangles. If k = 3 (i.e., depicted in solid line circle) it is depicted
by the green triangles as there are two triangles (reversed in shape) and only one rectangle through the inner
(i.e., continuous line) circle. If k = 5 (dashed line circle) it is assigned to the blue rectangles (three blue rectangles
vs. two green triangles inside the outer circle). Variation of the correlation coefficient (R²) versus number of
used KNN neighbors is shown in Figure 7. It can be seen that changing the KNN could significantly enhance
the correlation coefficient. For the cases of KNN = −1, KNN = 2, KNN = 4, KNN = 6, KNN = 8, and KNN =10,
the training correlation coefficients were 0.9025, 0.9579, 0.9861, 0.9916, 0.9937, and 0.9943, respectively. In the
case of our study we proposed the KNN = −1 as it considers all neighbors.

Figure 6. Example of k-nearest neighbors (KNN) regression/classification.

Figure 6. Example of k-nearest neighbors (KNN) regression/classification.

Appl. Sci. 2019, 9, 4338 8 of 17

Figure 7. Variation of the correlation coefficient (R²) versus number of used KNN neighbors in lazy locally
weighted learning (LLWL) technique.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

-1 0 1 2 3 4 5 6 7 8

Co
rre

la
tio

n
co

ef
fic

ie
nt

 (R
²)

number of neighbours employed

Figure 7. Variation of the correlation coefficient (R2) versus number of used KNN neighbors in lazy
locally weighted learning (LLWL) technique.

3.3. Alternating Model Tree (AMT)

Alternating model tree (AMT) [45] is supported by ensemble learning. In this technique, a single
tree will form the structure of AMT. Therefore, it can be compared with the M5P tree algorithm (i.e.,
a reconstruction of Quinlan’s M5 algorithm for developing trees of regression models). It is well known
that the M5P combines a conventional decision tree with the possibility of linear regression functions at
the nodes. This model has been successfully employed in different subjects [46,47]. As the most similar
technique with the AMT, alternating decision trees (ADT) provide the predictive power of decision
tree ensembles in a single tree structure. Existing approaches for growing alternating decision trees
focus on classification problems. In this paper, to find a relationship between the inputs and output
layer we have proposed the AMT for regression, inspired by work on model trees for regression. As in
most machine learning-based solutions, there are different parameters that can directly influence the
accuracy of the prediction; we have run sensitivity analysis for different influential parameters. Since
the highest variations in the results obtained stemmed from the term‘number of iterations’ we ran the
analysis with different iteration numbers. To have a different data validation system, a new system of
10 k-fold selection was used here. It can be seen that the R2 reduces when the number of iterations
increases. Therefore, the number of iterations equal to 10 was used as the default in the Weka software.

Some of the influential terms that can influence the accuracy of the regression are
number of iterations (numberOfIterations), batch size (batchSize), and number of decimal places
(numDecimalPlaces).

NumberOfIterations—Sets the number of iterations to perform. A sensitivity analysis is provided
to select a proper number of iterations for the proposed AMT structure (as shown in Table 2 and
Figure 8).

Table 2. Evaluation metrics calculated for the alternating model tree (AMT) method varied based on
number of iterations.

Number of Iterations
Evaluation metrics 10 20 30 40 50

Correlation coefficient 0.9984 0.9971 0.9974 0.9975 0.9972
Mean absolute error 0.4349 0.7527 0.7051 0.6464 0.6666

Root mean squared error 0.5752 0.9566 0.8936 0.8495 0.8995
Relative absolute error (%) 4.75 7.94 7.43 6.82 7.0341

Root relative squared error (%) 5.69 8.94 8.35 7.93 8.4062

Appl. Sci. 2019, 9, 4338 9 of 17

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

Root mean squared error 0.5752 0.9566 0.8936 0.8495 0.8995

Relative absolute error (%) 4.75 7.94 7.43 6.82 7.0341

Root relative squared error (%) 5.69 8.94 8.35 7.93 8.4062

Figure 8. Variation of the correlation coefficient (R²) versus number of iterations, in alternating model tree
(AMT) technique.

3.4. Random Forest (RF),

The random forest (RF) technique [48] is well known as an ensemble-learning solution that can be applied
to regression as well as classification trees [49]. To improve the performance of classification trees, RF
randomly alters the relations dealing with predictions. For providing the forest, some parameters (for
example, the number of variables that split the nodes (g) and the number of trees (t)) need to be determined
by the user. In this regard, the settings that were chosen for performing the RF techniques were as follows:
seed = 1; number of execution slots = 1; number of decimal places = 2; the batch size = 100; the number of
iterations = 100; the maximum depth = 0; should RF compute attribute importance = False; the number of
features = 0. This technique has been employed and recommended as a good solution in numerous studies
(Ho [50], Svetnik et al. [51], Diaz-Uriarte and de Andres [52], and Cutler et al. [53]).

3.5. ElasticNet (ENet)

To understand how ENet finds a solution, we need to make some assumptions. Consider a set of samples
{(xi, yi), i = 1, 2, … N}, where each xi ∈ Rp and yi ∈ R. Also, consider y = (y1, y2, …, yn)T and X ∈ Rn×p as denoting
the vector that is called “response vector” and the set design matrix, respectively. During the model analyzing,
ENet (as described in Zou and Hastie [54]) establishes a linear program of two parameters (K1 and K2) to
estimate the target. To do this, ENet should minimize the squared loss with K2-regularization and K1-norm
constraint, 𝑚𝑖𝑛∈ ‖𝑋𝛽 − 𝑦‖ + 𝜇 ‖𝛽‖ such that |𝛽| ≤ 𝑔, (3)

where β = [β1, β2, …, βZ]T ∈ Rp denotes the weight vector, μ2 ≥ 0 is the P2-regularization factor, and g > 0 represents
by P1-norm budget. The K1 constraint encourages the method to be sparse. The presence of the K2 regularization
factor causes the acquisition of a unique solution by making the problem severely convex, and if 𝑃 ≫ 𝑁 the
optimization continues as stable for noticeable values of g. Furthermore, it helps the solution to be more stable
when there is a high correlation between the features. For the number of the models (i.e., the set length of the
lambda sequence to be generated), the value of 100 was used. For the number of decimal places (i.e., the
number of decimal places to be used for the output of numbers in the model), as usual, the value of 2 was

0.997

0.9972

0.9974

0.9976

0.9978

0.998

0.9982

0.9984

0.9986

0 10 20 30 40 50 60

Co
rre

la
tio

n
co

ef
fic

ie
nt

 (R
²)

Number of iterations

Figure 8. Variation of the correlation coefficient (R2) versus number of iterations, in alternating model
tree (AMT) technique.

NumDecimalPlaces—Is as described in LLWL. Based on the required accuracy, up to two decimals
are considered for final outputs.

BatchSize—The preferred number of instances to process. In the current study the default batch
size of 100 is considered.

3.4. Random Forest (RF)

The random forest (RF) technique [48] is well known as an ensemble-learning solution that can be
applied to regression as well as classification trees [49]. To improve the performance of classification
trees, RF randomly alters the relations dealing with predictions. For providing the forest, some
parameters (for example, the number of variables that split the nodes (g) and the number of trees (t))
need to be determined by the user. In this regard, the settings that were chosen for performing the RF
techniques were as follows: seed = 1; number of execution slots = 1; number of decimal places = 2; the
batch size = 100; the number of iterations = 100; the maximum depth = 0; should RF compute attribute
importance = False; the number of features = 0. This technique has been employed and recommended
as a good solution in numerous studies (Ho [50], Svetnik et al. [51], Diaz-Uriarte and de Andres [52],
and Cutler et al. [53]).

3.5. ElasticNet (ENet)

To understand how ENet finds a solution, we need to make some assumptions. Consider a set of
samples {(xi, yi), i = 1, 2, . . . N}, where each xi ∈ Rp and yi ∈ R. Also, consider y = (y1, y2, . . . , yn)T and X
∈ Rn×p as denoting the vector that is called “response vector” and the set design matrix, respectively.
During the model analyzing, ENet (as described in Zou and Hastie [54]) establishes a linear program
of two parameters (K1 and K2) to estimate the target. To do this, ENet should minimize the squared
loss with K2-regularization and K1-norm constraint,

min
β∈Rp
‖Xβ− y‖22 + µ2‖β‖

2
2 such that |β|1 ≤ g, (3)

where β = [β1, β2, . . . , βZ]T
∈ Rp denotes the weight vector, µ2 ≥ 0 is the P2-regularization factor, and g >

0 represents by P1-norm budget. The K1 constraint encourages the method to be sparse. The presence of
the K2 regularization factor causes the acquisition of a unique solution by making the problem severely
convex, and if P� N the optimization continues as stable for noticeable values of g. Furthermore, it

Appl. Sci. 2019, 9, 4338 10 of 17

helps the solution to be more stable when there is a high correlation between the features. For the
number of the models (i.e., the set length of the lambda sequence to be generated), the value of 100
was used. For the number of decimal places (i.e., the number of decimal places to be used for the
output of numbers in the model), as usual, the value of 2 was selected. The batch size was considered
to be 100. The values of alpha and epsilon were set to be 0.001 and 0.0001, respectively. Along with the
above-mentioned structure, a unique linear regression equation can also be found from the ENet as
shown in Equation (4):

HL = −0.049 × X2 + 0.100 × X3 + −0.075 × X4 + 0.144 × X5 + −0.003 × X6 + 0.051 × X7 +

0.161 × X8 + 35.597.
(4)

3.6. Radial Basis Function Regression (RBFr)

Radial basis function network (RBFr) has a unique structure, as explained in Figure 9. Equation (5)
illustrates the basis function of this network [55]. For solving the issue, radial basis function regression
can be used by fitting a collection of kernels for the dataset. In addition, this method attends the
position of noisy samples.

Oi = K

‖x− xi‖

τ2
i

 (5)

Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

selected. The batch size was considered to be 100. The values of alpha and epsilon were set to be 0.001 and
0.0001, respectively. Along with the above-mentioned structure, a unique linear regression equation can also
be found from the ENet as shown in Equation (4):

HL = -0.049 × X2 + 0.100 × X3 + -0.075 × X4 + 0.144 × X5 + −0.003 × X6 + 0.051 × X7 +
0.161 × X8 + 35.597.

(4)

3.6. Radial Basis Function Regression (RBFr)

Radial basis function network (RBFr) has a unique structure, as explained in Figure 9. Equation (5)
illustrates the basis function of this network [55]. For solving the issue, radial basis function regression can be
used by fitting a collection of kernels for the dataset. In addition, this method attends the position of noisy
samples. 𝑂 = 𝐾 ‖𝑥 − 𝑥 ‖𝜏 (5)

Oi stands for the output of the neuron, and xi shows the center of kernel K. in addition, the term 𝜏 stands
for the width of the ith RBF unit.

Figure 9. Typical architecture of radial basis function regression (RBFr) neural network.

The model of RBFr utilizes a bath algorithm for predicting the number of developed kernels. This
prediction is performed by bath algorithms. The specific function of expectation that is utilized in RBFR model
is as below: 𝐹(𝑥) = ∑ 𝑘(‖𝑥 − 𝑥 ‖) 𝜑 . (6) ‖𝑥‖ stands to symbolize the Euclidean norm on 𝑥. 𝑘(‖𝑥 − 𝑥 ‖)| 𝑖 = 1,2, . . . , 𝑧 stands as a group of 𝑧
non-linear along with constant RBFr. In addition, the term 𝜑 shows the coefficient of regression.

3.7. Model Assessment Approaches

To evaluate the reliability of early estimated heating load in energy-efficient residential buildings, five
well-known (as used mostly in academic studies) statistical indices including root mean square error (RMSE,
relative absolute error (RAE in %, mean absolute error (MAE), root relative squared error (RRSE in %) and

Figure 9. Typical architecture of radial basis function regression (RBFr) neural network.

Oi stands for the output of the neuron, and xi shows the center of kernel K. in addition, the term τi
stands for the width of the ith RBF unit.

The model of RBFr utilizes a bath algorithm for predicting the number of developed kernels. This
prediction is performed by bath algorithms. The specific function of expectation that is utilized in
RBFR model is as below:

F(x) =
z∑

i=1

k(‖x− xi‖) ϕi. (6)

Appl. Sci. 2019, 9, 4338 11 of 17

‖x‖ stands to symbolize the Euclidean norm on x.
{
k(‖x− xi‖)| i = 1, 2, . . . , z

}
stands as a group of

z non-linear along with constant RBFr. In addition, the term ϕi shows the coefficient of regression.

3.7. Model Assessment Approaches

To evaluate the reliability of early estimated heating load in energy-efficient residential buildings,
five well-known (as used mostly in academic studies) statistical indices including root mean square
error (RMSE, relative absolute error (RAE in %, mean absolute error (MAE), root relative squared error
(RRSE in %) and coefficient of determination (R2) are used to help to rank the network performances.
The outputs of these statistical indexes are also used for color intensity ranking. Equations (7)–(11)
designate the equations of R2, MAE, RMSE, RAE, and RRSE, respectively.

R2 = 1−

∑s
i=1 (Yipredicted −Yiobserved)

2∑s
i=1 (Yiobserved −Yobserved)

2 , (7)

MAE =
1
N

∑s

I=1

∣∣∣∣Yiobserved −Yipredicted

∣∣∣∣, (8)

RMSE =

√
1
N

∑s

i=1

[(
Yiobserved −Yipredicted

)]2
, (9)

RAE =

∑s
i=1

∣∣∣∣Yipredicted −Yiobserved

∣∣∣∣∑s
i=1

∣∣∣Yiobserved −Yobserved
∣∣∣ , (10)

RRSE =

√√√√ ∑s
i=1 (Yipredicted −Yiobserved)

2∑s
i=1 (Yiobserved −Yobserved)

2 , (11)

where, Yiobserved and Yipredicted , represented in Equations (6) to (10), are the actual and estimated values of
heating load in energy-efficient buildings, respectively. The term S in the above equations stands for
the number of instances and Yobserved denotes the mean of the real amounts of the heating load. Weka
software environment was employed to perform the machine learning models.

4. Results and Discussion

The present research aimed to provide a reliable early estimation of the heating load in
energy-efficient building systems through several machine learning solutions, namely MLPr, LLWL,
AMT, RF, ENet, and RBFr models. These approaches are well known. After running all these
machine learning techniques, the best outputs can be selected as the most trustworthy solutions in the
early estimation of heating load in energy-efficient residential buildings. Therefore, to find the most
appropriate predictive networks, the proposed AI models (e.g., MLPr, LLWL, AMT, RF, ENet, and
RBFr models) are evaluated and compared. The results of employed machine learning-based solutions
proposed here, and their performances are evaluated through Tables 3 and 4. The overall scoring for
the performances of the proposed technique is provided further in Table 5.

As is illustrated Figures 10 and 11, AMT, RF, and MLPr models provided significant accuracy in
predicting heating load in energy-efficient buildings, however, the RF-based model can be nominated
as more reliable than other developed estimations of machine learning-based techniques. The values
10, 25, 30, 5, 20, and 15 were calculated as the total scores for the LLWL, ATM, RF, ENet, MLPr, and
RBFr techniques, respectively. These scores prove the superiority of the RF when compared with
other nominated models. The amounts of R2, MAE, RMSE, RAE (%), and RRSE (%) in the RF model
for the training dataset were 0.9997, 0.19, 0.2399, 2.078, and 2.3795, respectively. The amounts of R2,
MAE, RMSE, RAE (%), and RRSE (%) in the RF model for the testing dataset were 0.9989, 0.3385,
0.4649, 3.6813, and 4.5995, respectively. This indicates the higher reliability of the generated RF method

Appl. Sci. 2019, 9, 4338 12 of 17

compared to other techniques. The weakest estimation model results were from ENet solution where
the R2, MAE, RMSE, RAE (%), and RRSE (%) were 0.8915, 3.2332, 4.5678, 35.3566, and 45.2993 in the
training dataset, respectively, and the R2, MAE, RMSE, RAE (%), and RRSE (%) were 0.896, 3.2585,
4.4683, 35.4392, and 44.2052 for the testing dataset, respectively. According to the total scoring, the
best performance from Table 4 was found to be RF. Right after RF model, the next best estimation
network was obtained for the AMT technique. The R2, MAE, RMSE, RAE (%), and RRSE (%) for
the AMT training dataset were 0.9985, 0.4096, 0.5449, 4.4788, and 5.4036, respectively. The R2, MAE,
RMSE, RAE (%), and RRSE (%) for the AMT testing dataset were 0.9981, 0.4869, 0.6236, 5.2956, and
6.1693, respectively.

Table 3. The performance of selected machine learning techniques in the prediction of heating load
through several statistical indexes (training dataset).

Proposed Models
Network Results Ranking the Predicted Models Total

Ranking
Score

RankR2 MAE RMSE RAE
(%)

RRSE
(%) R2 MAE RMSE RAE

(%)
RRSE
(%)

lazy.LWL 0.903 3.2838 4.3335 35.9104 42.9757 2 1 2 1 2 8 5
Alternating Model
Tree 0.9985 0.4096 0.5449 4.4788 5.4036 5 5 5 5 5 25 2

Random Forest 0.9997 0.19 0.2399 2.078 2.3795 6 6 6 6 6 30 1
ElasticNet 0.8915 3.2332 4.5678 35.3566 45.2993 1 2 1 2 1 7 6
MLP Regressor 0.9915 0.9795 1.3156 10.7117 13.0465 4 4 4 4 4 20 3
RBF Regressor 0.9647 1.8226 2.6555 19.9307 26.3348 3 3 3 3 3 15 4

Table 4. The performance of selected machine learning techniques in the prediction of heating load
through several statistical indexes (testing dataset).

Proposed Models
Network Results Ranking the Predicted Models Total

Ranking
Score

RankR2 MAE RMSE RAE
(%)

RRSE
(%) R2 MAE RMSE RAE

(%)
RRSE
(%)

lazy.LWL 0.9049 3.2345 4.2752 35.1778 42.2953 2 2 2 2 2 10 5
Alternating Model
Tree 0.9981 0.4869 0.6236 5.2956 6.1693 5 5 5 5 5 25 2

Random Forest 0.9989 0.3385 0.4649 3.6813 4.5995 6 6 6 6 6 30 1
ElasticNet 0.896 3.2585 4.4683 35.4392 44.2052 1 1 1 1 1 5 6
MLP Regressor 0.9868 1.12 1.6267 12.1811 16.0934 4 4 4 4 4 20 3
RBF Regressor 0.9693 1.9109 2.4647 20.7827 24.3837 3 3 3 3 3 15 4

Table 5. Total ranking of proposed machine learning solutions.

Proposed Models
Training Dataset Testing Dataset

Total Rank
R2 MAE RMSE RAE

(%)
RRSE

(%) R2 MAE RMSE RAE RRSE

lazy.LWL 2 1 2 1 2 2 2 2 2 2 10

Alternating Model Tree 5 5 5 5 5 5 5 5 5 5 25

Random Forest 6 6 6 6 6 6 6 6 6 6 30

ElasticNet 1 2 1 2 1 1 1 1 1 1 5

MLP Regressor 4 4 4 4 4 4 4 4 4 4 20

RBF Regressor 3 3 3 3 3 3 3 3 3 3 15

RMSE: root mean squared error; R2: correlation coefficient; RRSE: root relative squared error; MAE: mean absolute
error; RAE: relative absolute error.

The results of network reliability based on the R2 performance of all proposed models, for both
training and testing, are provided in Figures 10 and 11. As stated earlier, both of the RF models could
provide a more reliable predictive network with higher accuracy when compared to other proposed
techniques. The results of network output for the proposed RF are illustrated in Figures 10d and 11d.
Having the provided information, the predictive network of RF proved to be slightly better than other
proposed techniques and was superior in making a better regression relationship among the estimated
and actual values.

Appl. Sci. 2019, 9, 4338 13 of 17

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

The results of network reliability based on the R2 performance of all proposed models, for both
training and testing, are provided in Figures 10 and 11. As stated earlier, both of the RF models could
provide a more reliable predictive network with higher accuracy when compared to other proposed
techniques. The results of network output for the proposed RF are illustrated in Figures 10 (d) and 11
(d). Having the provided information, the predictive network of RF proved to be slightly better than
other proposed techniques and was superior in making a better regression relationship among the
estimated and actual values.

(a) (b)

(c) (d)

(e) (f)
Figure 10 . The network outputs for the training dataset. (a) MLPr; (b) LLWL; (c) AMT; (d) RF; (e)
ENet; (f) RBFr.
Figure 10. The network outputs for the training dataset. (a) MLPr; (b) LLWL; (c) AMT; (d) RF; (e) ENet;
(f) RBFr.

Appl. Sci. 2019, 9, 4338 14 of 17Appl. Sci. 2019, 9, x FOR PEER REVIEW 2 of 19

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

(a) (b)

(c) (d)

(e) (f)
Figure 11. The network outputs for the testing dataset. (a) MLPr; (b) LLWL; (c) AMT; (d) RF; (e) ENet;
(f) RBFr.

5. Conclusions

In the current study, several predictive networks were introduced and evaluated. The study
aimed to assess and compare several of the most well-known machine learning-based techniques in
order to introduce the most reliable predictive method in early estimation of heating load in energy-
efficient residential building systems. Machine learning-based solutions, namely, MLPr, LLWL,

Figure 11. The network outputs for the testing dataset. (a) MLPr; (b) LLWL; (c) AMT; (d) RF; (e) ENet;
(f) RBFr.

5. Conclusions

In the current study, several predictive networks were introduced and evaluated. The study aimed
to assess and compare several of the most well-known machine learning-based techniques in order to
introduce the most reliable predictive method in early estimation of heating load in energy-efficient
residential building systems. Machine learning-based solutions, namely, MLPr, LLWL, AMT, RF, ENet,

Appl. Sci. 2019, 9, 4338 15 of 17

and RBFr models were employed to estimate the heating load. The results of the best model from the
proposed techniques were presented. Based on the presented outcomes, it may be said that, except
for the ENet model, almost all models (i.e., MLPr, LLWL, AMT, RF, and RBFr) have good prediction
output results in estimating heating load in energy-efficient building systems. In this regard, the
RF machine learning technique could be suggested as the most reliable and accurate among other
predictive techniques provided in the present work. The learning approach is good in RF predictive
models when compared to other models concerning both the training and validation models. The
values of R2, MAE, RMSE, RAE (%), and RRSE (%) in the RF model training dataset, were 0.9997, 0.19,
0.2399, 2.078, and 2.3795, respectively. The values of R2, MAE, RMSE, RAE (%), and RRSE (%) in the
AMT model training dataset were 0.9985, 0.4096, 0.5449, 4.4788, and 5.4036, respectively. Validated
testing datasets from the selected techniques also showed appropriate accuracy as R2, MAE, RMSE,
RAE (%), and RRSE (%) in the testing output of the RF model were found to be 0.9989, 0.3385, 0.4649,
3.6813, and 4.5995, respectively; R2, MAE, RMSE, RAE (%), and RRSE (%) in the testing output of
the AMT model were found to be 0.9981, 0.4869, 0.6236, 5.2956, and 6.1693, respectively. The worst
validation was found for the ENet technique with R2, MAE, RMSE, RAE (%), and RRSE (%) equal to
0.896, 3.2585, 4.4683, 35.4392, and 44.2052, respectively.

Author Contributions: H.M., D.T.B., A.D. wrote the manuscript, discussion and analyzed the data. H.M. and
A.D., Z.L., and L.K.F. edited, restructured, and professionally optimized the manuscript.

Funding: This study was funded by the Ton Duc Thang University and University of South-Eastern Norway.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nguyen, T.N.; Tran, T.P.; Hung, H.D.; Voznak, M.; Tran, P.T.; Minh, T.; Thanh-Long, N. Hybrid TSR-PSR
alternate energy harvesting relay network over Rician fading channels: Outage probability and SER analysis.
Sensors 2018, 18, 3839. [CrossRef]

2. Najafi, B.; Ardabili, S.F.; Mosavi, A.; Shamshirband, S.; Rabczuk, T. An intelligent artificial neural
network-response surface methodology method for accessing the optimum biodiesel and diesel fuel
blending conditions in a diesel engine from the viewpoint of exergy and energy analysis. Energies 2018, 11,
860. [CrossRef]

3. Nazir, R.; Ghareh, S.; Mosallanezhad, M.; Moayedi, H. The influence of rainfall intensity on soil loss mass
from cellular confined slopes. Measurement 2016, 81, 13–25. [CrossRef]

4. Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H.B. Ensemble machine-learning-based
geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat. Nat.
Hazards Risk 2017, 8, 1080–1102. [CrossRef]

5. Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A. Allocation of emergency response centres in response to pluvial
flooding-prone demand points using integrated multiple layer perceptron and maximum coverage location
problem models. Int. J. Disaster Risk Reduct. 2019, 101205. [CrossRef]

6. Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A. Urban object extraction using Dempster Shafer feature-based
image analysis from worldview-3 satellite imagery. Int. J. Remote Sens. 2019, 40, 1092–1119. [CrossRef]

7. Mezaal, M.; Pradhan, B.; Rizeei, H. Improving landslide detection from airborne laser scanning data using
optimized Dempster–Shafer. Remote Sens. 2018, 10, 1029. [CrossRef]

8. Aal-shamkhi, A.D.S.; Mojaddadi, H.; Pradhan, B.; Abdullahi, S. Extraction and modeling of urban sprawl
development in Karbala City using VHR satellite imagery. In Spatial Modeling and Assessment of Urban Form;
Springer: Cham, Switzerland, 2017; pp. 281–296.

9. Gao, W.; Wang, W.; Dimitrov, D.; Wang, Y. Nano properties analysis via fourth multiplicative ABC indicator
calculating. Arab. J. Chem. 2018, 11, 793–801. [CrossRef]

10. Aksoy, H.S.; Gör, M.; İnal, E. A new design chart for estimating friction angle between soil and pile materials.
Geomech. Eng. 2016, 10, 315–324. [CrossRef]

11. Gao, W.; Dimitrov, D.; Abdo, H. Tight independent set neighborhood union condition for fractional critical
deleted graphs and ID deleted graphs. Discret. Contin. Dyn. Syst. S 2018, 12, 711–721. [CrossRef]

http://dx.doi.org/10.3390/s18113839
http://dx.doi.org/10.3390/en11040860
http://dx.doi.org/10.1016/j.measurement.2015.11.007
http://dx.doi.org/10.1080/19475705.2017.1294113
http://dx.doi.org/10.1016/j.ijdrr.2019.101205
http://dx.doi.org/10.1080/01431161.2018.1524173
http://dx.doi.org/10.3390/rs10071029
http://dx.doi.org/10.1016/j.arabjc.2017.12.024
http://dx.doi.org/10.12989/gae.2016.10.3.315
http://dx.doi.org/10.3934/dcdss.2019045

Appl. Sci. 2019, 9, 4338 16 of 17

12. Bui, D.T.; Moayedi, H.; Gör, M.; Jaafari, A.; Foong, L.K. Predicting slope stability failure through machine
learning paradigms. ISPRS Int. Geo-Inf. 2019, 8, 395. [CrossRef]

13. Gao, W.; Guirao, J.L.G.; Abdel-Aty, M.; Xi, W. An independent set degree condition for fractional critical
deleted graphs. Discret. Contin. Dyn. Syst. S 2019, 12, 877–886. [CrossRef]

14. Moayedi, H.; Bui, D.T.; Gör, M.; Pradhan, B.; Jaafari, A. The feasibility of three prediction techniques of the
artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization
for assessing the safety factor of cohesive slopes. ISPRS Int. Geo-Inf. 2019, 8, 391. [CrossRef]

15. Gao, W.; Guirao, J.L.G.; Basavanagoud, B.; Wu, J. Partial multi-dividing ontology learning algorithm. Inf. Sci.
2018, 467, 35–58. [CrossRef]

16. Ince, R.; Gör, M.; Alyamaç, K.E.; Eren, M.E. Multi-fractal scaling law for split strength of concrete cubes. Mag.
Concr. Res. 2016, 68, 141–150. [CrossRef]

17. Gao, W.; Wu, H.; Siddiqui, M.K.; Baig, A.Q. Study of biological networks using graph theory. Saudi J. Biol.
Sci. 2018, 25, 1212–1219. [CrossRef]

18. Ngo, N.T. Early predicting cooling loads for energy-efficient design in office buildings by machine learning.
Energy Build. 2019, 182, 264–273. [CrossRef]

19. Jafarinejad, T.; Erfani, A.; Fathi, A.; Shafii, M.B. Bi-level energy-efficient occupancy profile optimization
integrated with demand-driven control strategy: University building energy saving. Sustain. Cities Soc. 2019,
48, 101539. [CrossRef]

20. Kheiri, F. A review on optimization methods applied in energy-efficient building geometry and envelope
design. Renew. Sustain. Energy Rev. 2018, 92, 897–920. [CrossRef]

21. Wang, W.; Chen, J.Y.; Huang, G.S.; Lu, Y.J. Energy efficient HVAC control for an IPS-enabled large space in
commercial buildings through dynamic spatial occupancy distribution. Appl. Energy 2017, 207, 305–323.
[CrossRef]

22. Yu, Z.; Haghighat, F.; Fung, B.C.M. Advances and challenges in building engineering and data mining
applications for energy-efficient communities. Sustain. Cities Soc. 2016, 25, 33–38. [CrossRef]

23. Zhang, H.; Yuan, C.; Yang, G.; Wu, L.; Peng, C.; Ye, W.; Shen, Y.; Moayedi, H. A novel constitutive modelling
approach measured under simulated freeze–thaw cycles for the rock failure. Eng. Comput. 2019. [CrossRef]

24. Bui, D.T.; Moayedi, H.; Anastasios, D.; Foong, L.K. Predicting heating and cooling loads in energy-efficient
buildings using two hybrid intelligent models. Appl. Sci. 2019, 9, 3543.

25. Moayedi, H.; Nguyen, H.; Rashid, A.S.A. Comparison of dragonfly algorithm and Harris hawks optimization
evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer
foundation soils. Eng. Comput. 2019. [CrossRef]

26. Moayedi, H.; Aghel, B.; Abdullahi, M.A.M.; Nguyen, H.; Rashid, A.S.A. Applications of rice husk ash as
green and sustainable biomass. J. Clean. Prod. 2019, 237, 117851. [CrossRef]

27. Huang, X.X.; Moayedi, H.; Gong, S.; Gao, W. Application of metaheuristic algorithms for pressure analysis of
crude oil pipeline. Energy Sources Part A Recovery Util. Environ. Effects 2019. [CrossRef]

28. Gao, W.; Alsarraf, J.; Moayedi, H.; Shahsavar, A.; Nguyen, H. Comprehensive preference learning and feature
validity for designing energy-efficient residential buildings using machine learning paradigms. Appl. Soft
Comput. 2019, 84, 105748. [CrossRef]

29. Bui, D.T.; Moayedi, H.; Kalantar, B.; Osouli, A.; Pradhan, B.; Nguyen, H.; Rashid, A.S.A. Harris hawks
optimization: A novel swarm intelligence technique for spatial assessment of landslide susceptibility. Sensors
2019, 19, 3590. [CrossRef]

30. Biswas, M.R.; Robinson, M.D.; Fumo, N. Prediction of residential building energy consumption: A neural
network approach. Energy 2016, 117, 84–92. [CrossRef]

31. Fan, C.; Wang, J.; Gang, W.; Li, S. Assessment of deep recurrent neural network-based strategies for short-term
building energy predictions. Appl. Energy 2019, 236, 700–710. [CrossRef]

32. Ince, R.; Gör, M.; Eren, M.E.; Alyamaç, K.E. The effect of size on the splitting strength of cubic concrete
members. Strain 2015, 51, 135–146. [CrossRef]

33. Sayin, E.; Yön, B.; Calayir, Y.; Gör, M. Construction failures of masonry and adobe buildings during the 2011
Van earthquakes in Turkey. Struct. Eng. Mech. 2014, 51, 503–518. [CrossRef]

34. Zemella, G.; de March, D.; Borrotti, M.; Poli, I. Optimised design of energy efficient building facades via
evolutionary neural networks. Energy Build. 2011, 43, 3297–3302. [CrossRef]

http://dx.doi.org/10.3390/ijgi8090395
http://dx.doi.org/10.3934/dcdss.2019058
http://dx.doi.org/10.3390/ijgi8090391
http://dx.doi.org/10.1016/j.ins.2018.07.049
http://dx.doi.org/10.1680/macr.15.00070
http://dx.doi.org/10.1016/j.sjbs.2017.11.022
http://dx.doi.org/10.1016/j.enbuild.2018.10.004
http://dx.doi.org/10.1016/j.scs.2019.101539
http://dx.doi.org/10.1016/j.rser.2018.04.080
http://dx.doi.org/10.1016/j.apenergy.2017.06.060
http://dx.doi.org/10.1016/j.scs.2015.12.001
http://dx.doi.org/10.1007/s00366-019-00856-4
http://dx.doi.org/10.1007/s00366-019-00834-w
http://dx.doi.org/10.1016/j.jclepro.2019.117851
http://dx.doi.org/10.1080/15567036.2019.1661550
http://dx.doi.org/10.1016/j.asoc.2019.105748
http://dx.doi.org/10.3390/s19163590
http://dx.doi.org/10.1016/j.energy.2016.10.066
http://dx.doi.org/10.1016/j.apenergy.2018.12.004
http://dx.doi.org/10.1111/str.12127
http://dx.doi.org/10.12989/sem.2014.51.3.503
http://dx.doi.org/10.1016/j.enbuild.2011.10.006

Appl. Sci. 2019, 9, 4338 17 of 17

35. Chou, J.S.; Bui, D.K. Modeling heating and cooling loads by artificial intelligence for energy-efficient building
design. Energy Build. 2014, 82, 437–446. [CrossRef]

36. Hidayat, I.; Utami, S.S. Activity based smart lighting control for energy efficient building by neural network
model. In Astechnova 2017 International Energy Conference; Sunarno, I., Sasmito, A.P., Hong, L.P., Eds.; EDP
Sciences: Les Ulis, France, 2018; Volume 43.

37. Malik, S.; Kim, D. Prediction-learning algorithm for efficient energy consumption in smart buildings based
on particle regeneration and velocity boost in particle swarm optimization neural networks. Energies 2018,
11, 1289. [CrossRef]

38. Pino-Mejías, R.; Pérez-Fargallo, A.; Rubio-Bellido, C.; Pulido-Arcas, J.A. Comparison of linear regression and
artificial neural networks models to predict heating and cooling energy demand, energy consumption and
CO2 emissions. Energy 2017, 118, 24–36. [CrossRef]

39. Deb, C.; Eang, L.S.; Yang, J.; Santamouris, M. Forecasting diurnal cooling energy load for institutional
buildings using artificial neural networks. Energy Build. 2016, 121, 284–297. [CrossRef]

40. Li, Q.; Meng, Q.; Cai, J.; Yoshino, H.; Mochida, A. Predicting hourly cooling load in the building: A
comparison of support vector machine and different artificial neural networks. Energy Convers. Manag. 2009,
50, 90–96. [CrossRef]

41. Kolokotroni, M.; Davies, M.; Croxford, B.; Bhuiyan, S.; Mavrogianni, A. A validated methodology for the
prediction of heating and cooling energy demand for buildings within the Urban Heat Island: Case-study of
London. Sol. Energy 2010, 84, 2246–2255. [CrossRef]

42. Nguyen, H.; Moayedi, H.; Foong, L.K.; Al Najjar, H.A.H.; Jusoh, W.A.W.; Rashid, A.S.A.; Jamali, J. Optimizing
ANN models with PSO for predicting short building seismic response. Eng. Comput. 2019, 35, 1–15.
[CrossRef]

43. Tsanas, A.; Xifara, A. Accurate quantitative estimation of energy performance of residential buildings using
statistical machine learning tools. Energy Build. 2012, 49, 560–567. [CrossRef]

44. Atkeson, C.G.; Moore, A.W.; Schaal, S. Locally weighted learning for control. In Lazy Learning; Springer:
Dordrecht, The Netherlands, 1997; pp. 75–113.

45. Frank, E.; Mayo, M.; Kramer, S. Alternating model trees. In Proceedings of the 30th Annual ACM Symposium
on Applied Computing, Salamanca, Spain, 13–17 April 2015; pp. 871–878.

46. Hamilton, C.R. Hourly Solar Radiation Forecasting through Neural Networks and Model Trees. Ph.D. Thesis,
University of Georgia, Athens, GA, USA, 2016.

47. Rodrigues, É.O.; Pinheiro, V.; Liatsis, P.; Conci, A. Machine learning in the prediction of cardiac epicardial
and mediastinal fat volumes. Comput. Biol. Med. 2017, 89, 520–529. [CrossRef] [PubMed]

48. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
49. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth

International Group: Belmont, CA, USA, 1984.
50. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach.

Intell. 1998, 20, 832–844.
51. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification

and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43,
1947–1958. [CrossRef] [PubMed]

52. Diaz-Uriarte, R.; de Andres, S.A. Gene selection and classification of microarray data using random forest.
BMC Bioinform. 2006, 7, 3. [CrossRef]

53. Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T. Random forests for classification in ecology.
Ecology 2007, 88, 2783–2792. [CrossRef]

54. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat.
Methodol.) 2005, 67, 301–320. [CrossRef]

55. Buhmann, M.D. Radial Basis Functions: Theory and Implementations; Cambridge University Press: Cambridge,
UK, 2003; Volume 12.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.enbuild.2014.07.036
http://dx.doi.org/10.3390/en11051289
http://dx.doi.org/10.1016/j.energy.2016.12.022
http://dx.doi.org/10.1016/j.enbuild.2015.12.050
http://dx.doi.org/10.1016/j.enconman.2008.08.033
http://dx.doi.org/10.1016/j.solener.2010.08.002
http://dx.doi.org/10.1007/s00366-019-00733-0
http://dx.doi.org/10.1016/j.enbuild.2012.03.003
http://dx.doi.org/10.1016/j.compbiomed.2017.02.010
http://www.ncbi.nlm.nih.gov/pubmed/28318505
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1021/ci034160g
http://www.ncbi.nlm.nih.gov/pubmed/14632445
http://dx.doi.org/10.1186/1471-2105-7-3
http://dx.doi.org/10.1890/07-0539.1
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Database Collection
	Model Development
	Multi-Layer Perceptron Regressor (MLPr)
	Lazy Locally Weighted Learning (LLWL)
	Alternating Model Tree (AMT)
	Random Forest (RF)
	ElasticNet (ENet)
	Radial Basis Function Regression (RBFr)
	Model Assessment Approaches

	Results and Discussion
	Conclusions
	References

