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Abstract: The heating load calculation is the first step of the iterative heating, ventilation, and air
conditioning (HVAC) design procedure. In this study, we employed six machine learning techniques,
namely multi-layer perceptron regressor (MLPr), lazy locally weighted learning (LLWL), alternating
model tree (AMT), random forest (RF), ElasticNet (ENet), and radial basis function regression (RBFr)
for the problem of designing energy-efficient buildings. After that, these approaches were used to
specify a relationship among the parameters of input and output in terms of the energy performance
of buildings. The calculated outcomes for datasets from each of the above-mentioned models were
analyzed based on various known statistical indexes like root relative squared error (RRSE), root mean
squared error (RMSE), mean absolute error (MAE), correlation coefficient (R2), and relative absolute
error (RAE). It was found that between the discussed machine learning-based solutions of MLPr,
LLWL, AMT, RF, ENet, and RBFr, the RF was nominated as the most appropriate predictive network.
The RF network outcomes determined the R2, MAE, RMSE, RAE, and RRSE for the training dataset to
be 0.9997, 0.19, 0.2399, 2.078, and 2.3795, respectively. The RF network outcomes determined the R2,
MAE, RMSE, RAE, and RRSE for the testing dataset to be 0.9989, 0.3385, 0.4649, 3.6813, and 4.5995,
respectively. These results show the superiority of the presented RF model in estimation of early
heating load in energy-efficient buildings.

Keywords: energy-efficient buildings; smart buildings; machine learning; random forest; optimization

1. Introduction

In recent decades, artificial intelligence-based methods have been dramatically applied by scientists
in different fields of study, particularly in energy systems engineering (such as in Nguyen et al. [1]
and Najafi et al. [2]). In this regard, scientific applications of machine learning-based techniques
were considered to be a proper alternative in order to forecast the quantity of energy in constructions.
Consequently, an appropriate inspection of the particular energy performance for buildings and optimal
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contriving of the heating, ventilation, and air-conditioning (HVAC) system will help in pushing further
sustainable consumption related to energy. The world’s energy consumption is still maintained at a
high value and even though many countries have taken some reasonable measures it is expected that
energy consumption will increase in future. Many believe that this is because of the rapid expansion
of economy and the improvement of living requirements. Currently, energy required for buildings
accounts for almost 40% of all energy use in Europe [3]. Some reports have indicated that in countries
such as United States and China, this value accounts for about 39% of the whole energy demand
along with 27.5% of nationally consumed energy. As a novel idea, most recently, intelligent predictive
tools have been utilized for the field of energy consumption calculation. In fact, the problem of
heating load calculation in energy-efficient buildings is an established concern. For realizing the best
artificial intelligence (AI) model to meet this goal, this study provides and compares five well-known
models that are widely used by researchers [4–8]. Similar to other research in the fields of science and
technology, AI techniques have widespread application in order to put forward reasonable evaluation
in many engineering problems [9–17] of the energy consumption in buildings. In numerous types
of artificial intelligence-based solutions, artificial neural network (ANN) is known as a recognized
method that is largely employed for many prediction-based examples [18–22]. Similar studies are
performed in regard to hybrid metaheuristic optimization approaches [23–29]. Also, in the field of
energy management, neural networks have emerged as one of the effective prediction tools [30–33].

Zemella et al. [34] investigated the design optimization of energy efficient buildings by employing
several evolutionary neural networks. The methods were applied to drive the design of a typical facade
module (i.e., play a key role in the definition of the energy performance of buildings) for an office
building. Chou and Bui [35] employed various data mining-based solutions in order to predict the
energy performance of buildings and to facilitate early designs of energy conserving buildings. These
techniques include support vector regression (SVR), ANN, regression and classification tree, ensemble
inference model, general linear regression, and chi-squared automatic interaction detector. Yu et al. [22]
studied the challenges and advances in data mining applications for communities concerning
energy-efficient buildings. Hidayat et al. [36] employed a neural network model in an energy-efficient
building to achieve proper smart lighting control. Kheiri [20] reviewed different techniques of
optimization applied to the energy-efficient building. Malik and Kim [37] investigated smart buildings
and their efficient energy consumption. In this regard, various prediction-learning algorithms including
particle-based hybrid optimization algorithm were employed and their performances were evaluated.
Ngo [18] explored the excellent capacity of machine learning to assess early predicting cooling loads.
The main objective of such prediction was prediction of cooling loads in the office buildings through
machine learning-based solutions. His study successfully achieved the objective by providing some
neural network-based equations. Mejías et al. [38] employed both of the linear regression and neural
network to predict three conceptions associated with energy consumption, cooling, and heating energy
demands. The results of their studies proved that the neural network was superior to other models.
Deb et al. [39] explored the potential of neural network-based solutions in forecasting the diurnal
cooling energy load; this study used recorded data of the five days before the day of the experiment
to estimate the energy consumption; the outcomes demonstrated that the ANN approach is very
effective. Moreover, Li et al. [40] performed a comparative analysis between different machine learning
techniques such as radial basis function neural network (RBFNN), general regression neural network
(GRNN), traditional backpropagation neural network (BPNN), and support vector machine (SVM) in
predicting the hourly cooling load of a normal residential building.

There are few studies (e.g., Kolokotroni et al. [41] and Nguyen et al. [42]) on the machine
learning-based modeling application on the prediction of heating load. Nevertheless, using machine
learning paradigms for optimizing the answers determined by the best artificial intelligence-based
models is the chief aim of the actual study. To help engineers obtain an optimized design of
energy-efficient buildings without any further experiments, this knowledge gap should be addressed.
Hence, the basic purpose of this work is to estimate the amount of heating load in energy-efficient
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buildings by various new machine learning-based approaches. In the following, several machine
learning techniques such as multi-layer perceptron regressor (MLPr), lazy locally weighted learning
(LLWL), alternating model tree (AMT), random forest (RF), ElasticNet (ENet), and radial basis function
regression (RBFr) are employed to estimate the amount of heating load (HL) in energy-efficient buildings.

2. Database Collection

The required initial dataset was obtained from Tsanas and Xifara [43]. The obtained records
include eight inputs (i.e., conditional factors) and a separate output of heating load (i.e., response
factors or dependent outputs). Based on a residential building main conditional design factors, the
inputs were X1 (Relative Compactness), X2 (Surface Area), X3 (Wall Area), X4 (Roof Area), X5 (Overall
Height), X6 (Orientation), X7 (Glazing Area), and finally, X8 (Glazing Area Distribution). Likewise,
parameters of the heating load of the suggested building were presented to be forecasted by the inputs.
In addition, in this study the heating loads, as the main outputs, were simplified as heating load.
The characteristics of the analyzed building and fundamental assumptions are properly detailed in
the [43]. A total of 768 buildings were modelled considering twelve distinct buildings, five distribution
scenarios, four orientations, and four glazing areas. The obtained data is analyzed through Ecotect
computer software. A graphical view of this process is illustrated in Figure 1.
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Figure 1. Graphical view of data preparation.

Statistical Details of the Dataset

As stated earlier, the amount of the heating load was applied as the main target of the
energy-efficient buildings, while the main influential parameters were roof area, wall area, relative
compactness, surface area, overall height, glazing area, glazing area distribution, and orientation.
The statistical explanation of energy-efficient residential buildings including conditional variables
is tabulated in Table 1. In addition, Figure 2 shows the variables of relative compactness, wall area,
surface area, overall height, roof area, glazing area, orientation (i.e., north, northeast, east, southeast,
south, southwest, west, northwest), heating load, and glazing area distribution on the x-axis, against a
heating load (Figure 3) on the y-axis.
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Figure 2. Schematic view of some of the input data layers (X1–X8 as shown in Table 1) in predicting heating load. 
(a) X1 (Relative Compactness); (b) X2 (Surface Area); (c) X3 (Wall Area); (d) X4 (Roof Area); (e) X5 (Overall Height); 
(f) X6 (Orientation); (g) X7 (Glazing Area); (h) X8 (Glazing Area Distribution). 

 

Figure 2. Schematic view of some of the input data layers (X1–X8 as shown in Table 1) in predicting
heating load. (a) X1 (Relative Compactness); (b) X2 (Surface Area); (c) X3 (Wall Area); (d) X4 (Roof Area);
(e) X5 (Overall Height); (f) X6 (Orientation); (g) X7 (Glazing Area); (h) X8 (Glazing Area Distribution).
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Table 1. The statistical description details in term of energy-efficient design.

Data Layers Used as Input Main
Output

Relative
Compactness

Surface
Area
(m2)

Wall
Area
(m2)

Roof
Area
(m2)

Overall
Height
(m)

Orientation
(-)

Glazing
Area
(m2)

Glazing Area
Distribution
(m2)

Heating
Load
(kW/h)

Used label X1 X2 X3 X4 X5 X6 X7 X8 Y1
No. of data 768
Minimum 0.6 514.5 245.0 110.3 3.5 2.0 0.0 0.0 6.0
Maximum 1.0 808.5 416.5 220.5 7.0 5.0 0.4 5.0 43.1
Average 0.8 671.7 318.5 176.6 5.3 3.5 0.2 2.8 22.3Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 19 
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Figure 3. Schematic view of some of the output data layers (i.e., heating load).

3. Model Development

An acceptable predict approach that is utilized with different artificial intelligence-based systems
like MLPr, LLWL, AMT, RF, ENet, and RBFr models to predict heating load in energy-efficient buildings
requires several steps. After that, the best fit model is then selected. Firstly, the initial database should
be separated to the datasets of training (80% of the whole dataset) and testing (20% of the whole dataset).
In the current study and because of the size of the testing dataset, the predictability of generated
networks is considered to be as a proof of their validations. Therefore, a greater percentage of the
dataset is considered for the testing dataset to be reliable for testing the trained network. Secondly,
in order to obtain the best predictive network, appropriate machine learning-based solutions have
to be introduced. Lastly, the outcome of the trained network should be validated and verified for
selected testing datasets, randomly. The dataset utilized in this work is generated by some of the
most influential input layers, such as surface area, roof area, relative compactness, wall area, glazing
area, glazing area distribution, overall height, and orientation, which are the effective parameters
influencing the heating load value in energy-efficient buildings. Note that the employed dataset was
obtained from a recent study conducted by Tsanas and Xifara [43].

All six machine learning analyses provided in the current study were performed using Waikato
Environment for Knowledge Analysis (WEKA). WEKA is a java-based open-source machine learning
analyzer software that was developed in University of Waikato, New Zealand. Each of the proposed
techniques were performed in optimized settings as explained in this section.

3.1. Multi-Layer Perceptron Regressor (MLPr)

The MLP is a widely-used and well-known predictive network. Accordingly, MLPr aims to
coordinate the best potential of regression between a set of data samples (shown here in terms of S).
The MLPr divides the S into both of the set training and testing databases. An MLP involves several
layers of computational nodes. Similar to many previous MLPr-based studies, a single hidden layer
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was used. This is because even with a single hidden layer and increasing the number of nodes in the
hidden layer an excellent rate of prediction can be achieved. Figure 4 shows a common MLP structure.
The optimum number of neurons in each of the hidden layer are obtained after a series of trial and
error processes (i.e., sensitivity analysis) as shown in Figure 5. Noteworthily, only one hidden layer
was selected since the accuracy of a single hidden layer was found to be high enough to not make the
MLP structure more complicated.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 19 
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Figure 5. Sensitivity analysis based on number of neurons in a single hidden layer.

Each node generates a local output. In addition, it sets the local output to the subsequent layer
(the next nodes in a further hidden layer) until reaching the nodes of output, i.e., the nodes placed in
the layer of output. Equation (1) shows the normal operation carried out considering a dataset of N
groups of records by the jth neuron to compute the predicted output:

O j = F (
∑N

n=1
InWnj + b j), (1)

where I symbolizes the input, b denotes the bias of the node, W is the weighting factor, and F
signifies the activation function. Tansig (i.e., the tangent sigmoid activation function) is employed
(Equation (2)). Note that we can have several types of activation functions (e.g., (i) sigmoid or logistic;
(ii) Tanh—Hyperbolic tangent; (iii) Relu—rectified linear units) and that their performances are best
suitable for different purposes. In the specific case of the sigmoid, this function (i) is real-valued and
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differentiable (i.e., to find gradients); (ii) has analytic tractability for the differentiation operation; and
(iii) is an acceptable mathematical representation biological neuronal behavior.

Tansig(x) =
2

1 + e−2x − 1 (2)

3.2. Lazy Locally Weighted Learning (LLWL)

Similar to the K-star technique (i.e., an instance-based classifier), locally-weighted learning
(LWL) [44] is one of the common types of lazy learning-based solutions. Lazy learning approaches
provide valuable training algorithms and representations for learning about complex phenomena
during autonomous adaptive control of complex systems. Commonly, there are disadvantages in
employing such methods. Lazy learners create a considerable delay during the network simulation.
More explanations about this model are provided by Atkeso, et al. [44].

The key options we have in LLWL include number of decimal places (numDecimalPlaces), batch
size (batchSize), KNN (following the k-nearest neighbors algorithm), nearest neighbor search algorithm
(nearestNeighborSearchAlgorithm), and weighting Kernel (weightingKernel). More explanations are
provided below for each of the above influential parameters.
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weightingKernel—The number that determines the weighting function. (0 = Linear; 1 =

Epnechnikov; 2 = Tricube; 3 = Inverse; 4 = Gaussian; and 5 = Constant. (default 0 = Linear)).

A good example of k-nearest neighbors algorithm is shown in Figure 6. The test sample (red dot)
should be classified either as blue squares or as green triangles. If k = 3 (i.e., depicted in solid line
circle) it is depicted by the green triangles as there are two triangles (reversed in shape) and only one
rectangle through the inner (i.e., continuous line) circle. If k = 5 (dashed line circle) it is assigned to
the blue rectangles (three blue rectangles vs. two green triangles inside the outer circle). Variation
of the correlation coefficient (R2) versus number of used KNN neighbors is shown in Figure 7. It
can be seen that changing the KNN could significantly enhance the correlation coefficient. For the
cases of KNN = −1, KNN = 2, KNN = 4, KNN = 6, KNN = 8, and KNN =10, the training correlation
coefficients were 0.9025, 0.9579, 0.9861, 0.9916, 0.9937, and 0.9943, respectively. In the case of our study
we proposed the KNN = −1 as it considers all neighbors.
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Figure 7. Variation of the correlation coefficient (R2) versus number of used KNN neighbors in lazy
locally weighted learning (LLWL) technique.

3.3. Alternating Model Tree (AMT)

Alternating model tree (AMT) [45] is supported by ensemble learning. In this technique, a single
tree will form the structure of AMT. Therefore, it can be compared with the M5P tree algorithm (i.e.,
a reconstruction of Quinlan’s M5 algorithm for developing trees of regression models). It is well known
that the M5P combines a conventional decision tree with the possibility of linear regression functions at
the nodes. This model has been successfully employed in different subjects [46,47]. As the most similar
technique with the AMT, alternating decision trees (ADT) provide the predictive power of decision
tree ensembles in a single tree structure. Existing approaches for growing alternating decision trees
focus on classification problems. In this paper, to find a relationship between the inputs and output
layer we have proposed the AMT for regression, inspired by work on model trees for regression. As in
most machine learning-based solutions, there are different parameters that can directly influence the
accuracy of the prediction; we have run sensitivity analysis for different influential parameters. Since
the highest variations in the results obtained stemmed from the term‘number of iterations’ we ran the
analysis with different iteration numbers. To have a different data validation system, a new system of
10 k-fold selection was used here. It can be seen that the R2 reduces when the number of iterations
increases. Therefore, the number of iterations equal to 10 was used as the default in the Weka software.

Some of the influential terms that can influence the accuracy of the regression are
number of iterations (numberOfIterations), batch size (batchSize), and number of decimal places
(numDecimalPlaces).

NumberOfIterations—Sets the number of iterations to perform. A sensitivity analysis is provided
to select a proper number of iterations for the proposed AMT structure (as shown in Table 2 and
Figure 8).

Table 2. Evaluation metrics calculated for the alternating model tree (AMT) method varied based on
number of iterations.

Number of Iterations
Evaluation metrics 10 20 30 40 50

Correlation coefficient 0.9984 0.9971 0.9974 0.9975 0.9972
Mean absolute error 0.4349 0.7527 0.7051 0.6464 0.6666

Root mean squared error 0.5752 0.9566 0.8936 0.8495 0.8995
Relative absolute error (%) 4.75 7.94 7.43 6.82 7.0341

Root relative squared error (%) 5.69 8.94 8.35 7.93 8.4062
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Figure 8. Variation of the correlation coefficient (R2) versus number of iterations, in alternating model
tree (AMT) technique.

NumDecimalPlaces—Is as described in LLWL. Based on the required accuracy, up to two decimals
are considered for final outputs.

BatchSize—The preferred number of instances to process. In the current study the default batch
size of 100 is considered.

3.4. Random Forest (RF)

The random forest (RF) technique [48] is well known as an ensemble-learning solution that can be
applied to regression as well as classification trees [49]. To improve the performance of classification
trees, RF randomly alters the relations dealing with predictions. For providing the forest, some
parameters (for example, the number of variables that split the nodes (g) and the number of trees (t))
need to be determined by the user. In this regard, the settings that were chosen for performing the RF
techniques were as follows: seed = 1; number of execution slots = 1; number of decimal places = 2; the
batch size = 100; the number of iterations = 100; the maximum depth = 0; should RF compute attribute
importance = False; the number of features = 0. This technique has been employed and recommended
as a good solution in numerous studies (Ho [50], Svetnik et al. [51], Diaz-Uriarte and de Andres [52],
and Cutler et al. [53]).

3.5. ElasticNet (ENet)

To understand how ENet finds a solution, we need to make some assumptions. Consider a set of
samples {(xi, yi), i = 1, 2, . . . N}, where each xi ∈ Rp and yi ∈ R. Also, consider y = (y1, y2, . . . , yn)T and X
∈ Rn×p as denoting the vector that is called “response vector” and the set design matrix, respectively.
During the model analyzing, ENet (as described in Zou and Hastie [54]) establishes a linear program
of two parameters (K1 and K2) to estimate the target. To do this, ENet should minimize the squared
loss with K2-regularization and K1-norm constraint,

min
β∈Rp
‖Xβ− y‖22 + µ2‖β‖

2
2 such that |β|1 ≤ g, (3)

where β = [β1, β2, . . . , βZ]T
∈ Rp denotes the weight vector, µ2 ≥ 0 is the P2-regularization factor, and g >

0 represents by P1-norm budget. The K1 constraint encourages the method to be sparse. The presence of
the K2 regularization factor causes the acquisition of a unique solution by making the problem severely
convex, and if P� N the optimization continues as stable for noticeable values of g. Furthermore, it
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helps the solution to be more stable when there is a high correlation between the features. For the
number of the models (i.e., the set length of the lambda sequence to be generated), the value of 100
was used. For the number of decimal places (i.e., the number of decimal places to be used for the
output of numbers in the model), as usual, the value of 2 was selected. The batch size was considered
to be 100. The values of alpha and epsilon were set to be 0.001 and 0.0001, respectively. Along with the
above-mentioned structure, a unique linear regression equation can also be found from the ENet as
shown in Equation (4):

HL = −0.049 × X2 + 0.100 × X3 + −0.075 × X4 + 0.144 × X5 + −0.003 × X6 + 0.051 × X7 +

0.161 × X8 + 35.597.
(4)

3.6. Radial Basis Function Regression (RBFr)

Radial basis function network (RBFr) has a unique structure, as explained in Figure 9. Equation (5)
illustrates the basis function of this network [55]. For solving the issue, radial basis function regression
can be used by fitting a collection of kernels for the dataset. In addition, this method attends the
position of noisy samples.

Oi = K

‖x− xi‖

τ2
i

 (5)
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Figure 9. Typical architecture of radial basis function regression (RBFr) neural network.

Oi stands for the output of the neuron, and xi shows the center of kernel K. in addition, the term τi
stands for the width of the ith RBF unit.

The model of RBFr utilizes a bath algorithm for predicting the number of developed kernels. This
prediction is performed by bath algorithms. The specific function of expectation that is utilized in
RBFR model is as below:

F(x) =
z∑

i=1

k(‖x− xi‖) ϕi. (6)
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‖x‖ stands to symbolize the Euclidean norm on x.
{
k(‖x− xi‖)| i = 1, 2, . . . , z

}
stands as a group of

z non-linear along with constant RBFr. In addition, the term ϕi shows the coefficient of regression.

3.7. Model Assessment Approaches

To evaluate the reliability of early estimated heating load in energy-efficient residential buildings,
five well-known (as used mostly in academic studies) statistical indices including root mean square
error (RMSE, relative absolute error (RAE in %, mean absolute error (MAE), root relative squared error
(RRSE in %) and coefficient of determination (R2) are used to help to rank the network performances.
The outputs of these statistical indexes are also used for color intensity ranking. Equations (7)–(11)
designate the equations of R2, MAE, RMSE, RAE, and RRSE, respectively.

R2 = 1−

∑s
i=1 (Yipredicted −Yiobserved)

2∑s
i=1 (Yiobserved −Yobserved)

2 , (7)

MAE =
1
N

∑s

I=1

∣∣∣∣Yiobserved −Yipredicted

∣∣∣∣, (8)

RMSE =

√
1
N

∑s

i=1

[(
Yiobserved −Yipredicted

)]2
, (9)

RAE =

∑s
i=1

∣∣∣∣Yipredicted −Yiobserved

∣∣∣∣∑s
i=1

∣∣∣Yiobserved −Yobserved
∣∣∣ , (10)

RRSE =

√√√√ ∑s
i=1 (Yipredicted −Yiobserved)

2∑s
i=1 (Yiobserved −Yobserved)

2 , (11)

where, Yiobserved and Yipredicted , represented in Equations (6) to (10), are the actual and estimated values of
heating load in energy-efficient buildings, respectively. The term S in the above equations stands for
the number of instances and Yobserved denotes the mean of the real amounts of the heating load. Weka
software environment was employed to perform the machine learning models.

4. Results and Discussion

The present research aimed to provide a reliable early estimation of the heating load in
energy-efficient building systems through several machine learning solutions, namely MLPr, LLWL,
AMT, RF, ENet, and RBFr models. These approaches are well known. After running all these
machine learning techniques, the best outputs can be selected as the most trustworthy solutions in the
early estimation of heating load in energy-efficient residential buildings. Therefore, to find the most
appropriate predictive networks, the proposed AI models (e.g., MLPr, LLWL, AMT, RF, ENet, and
RBFr models) are evaluated and compared. The results of employed machine learning-based solutions
proposed here, and their performances are evaluated through Tables 3 and 4. The overall scoring for
the performances of the proposed technique is provided further in Table 5.

As is illustrated Figures 10 and 11, AMT, RF, and MLPr models provided significant accuracy in
predicting heating load in energy-efficient buildings, however, the RF-based model can be nominated
as more reliable than other developed estimations of machine learning-based techniques. The values
10, 25, 30, 5, 20, and 15 were calculated as the total scores for the LLWL, ATM, RF, ENet, MLPr, and
RBFr techniques, respectively. These scores prove the superiority of the RF when compared with
other nominated models. The amounts of R2, MAE, RMSE, RAE (%), and RRSE (%) in the RF model
for the training dataset were 0.9997, 0.19, 0.2399, 2.078, and 2.3795, respectively. The amounts of R2,
MAE, RMSE, RAE (%), and RRSE (%) in the RF model for the testing dataset were 0.9989, 0.3385,
0.4649, 3.6813, and 4.5995, respectively. This indicates the higher reliability of the generated RF method
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compared to other techniques. The weakest estimation model results were from ENet solution where
the R2, MAE, RMSE, RAE (%), and RRSE (%) were 0.8915, 3.2332, 4.5678, 35.3566, and 45.2993 in the
training dataset, respectively, and the R2, MAE, RMSE, RAE (%), and RRSE (%) were 0.896, 3.2585,
4.4683, 35.4392, and 44.2052 for the testing dataset, respectively. According to the total scoring, the
best performance from Table 4 was found to be RF. Right after RF model, the next best estimation
network was obtained for the AMT technique. The R2, MAE, RMSE, RAE (%), and RRSE (%) for
the AMT training dataset were 0.9985, 0.4096, 0.5449, 4.4788, and 5.4036, respectively. The R2, MAE,
RMSE, RAE (%), and RRSE (%) for the AMT testing dataset were 0.9981, 0.4869, 0.6236, 5.2956, and
6.1693, respectively.

Table 3. The performance of selected machine learning techniques in the prediction of heating load
through several statistical indexes (training dataset).

Proposed Models
Network Results Ranking the Predicted Models Total

Ranking
Score

RankR2 MAE RMSE RAE
(%)

RRSE
(%) R2 MAE RMSE RAE

(%)
RRSE
(%)

lazy.LWL 0.903 3.2838 4.3335 35.9104 42.9757 2 1 2 1 2 8 5
Alternating Model
Tree 0.9985 0.4096 0.5449 4.4788 5.4036 5 5 5 5 5 25 2

Random Forest 0.9997 0.19 0.2399 2.078 2.3795 6 6 6 6 6 30 1
ElasticNet 0.8915 3.2332 4.5678 35.3566 45.2993 1 2 1 2 1 7 6
MLP Regressor 0.9915 0.9795 1.3156 10.7117 13.0465 4 4 4 4 4 20 3
RBF Regressor 0.9647 1.8226 2.6555 19.9307 26.3348 3 3 3 3 3 15 4

Table 4. The performance of selected machine learning techniques in the prediction of heating load
through several statistical indexes (testing dataset).

Proposed Models
Network Results Ranking the Predicted Models Total

Ranking
Score

RankR2 MAE RMSE RAE
(%)

RRSE
(%) R2 MAE RMSE RAE

(%)
RRSE
(%)

lazy.LWL 0.9049 3.2345 4.2752 35.1778 42.2953 2 2 2 2 2 10 5
Alternating Model
Tree 0.9981 0.4869 0.6236 5.2956 6.1693 5 5 5 5 5 25 2

Random Forest 0.9989 0.3385 0.4649 3.6813 4.5995 6 6 6 6 6 30 1
ElasticNet 0.896 3.2585 4.4683 35.4392 44.2052 1 1 1 1 1 5 6
MLP Regressor 0.9868 1.12 1.6267 12.1811 16.0934 4 4 4 4 4 20 3
RBF Regressor 0.9693 1.9109 2.4647 20.7827 24.3837 3 3 3 3 3 15 4

Table 5. Total ranking of proposed machine learning solutions.

Proposed Models
Training Dataset Testing Dataset

Total Rank
R2 MAE RMSE RAE

(%)
RRSE

(%) R2 MAE RMSE RAE RRSE

lazy.LWL 2 1 2 1 2 2 2 2 2 2 10

Alternating Model Tree 5 5 5 5 5 5 5 5 5 5 25

Random Forest 6 6 6 6 6 6 6 6 6 6 30

ElasticNet 1 2 1 2 1 1 1 1 1 1 5

MLP Regressor 4 4 4 4 4 4 4 4 4 4 20

RBF Regressor 3 3 3 3 3 3 3 3 3 3 15

RMSE: root mean squared error; R2: correlation coefficient; RRSE: root relative squared error; MAE: mean absolute
error; RAE: relative absolute error.

The results of network reliability based on the R2 performance of all proposed models, for both
training and testing, are provided in Figures 10 and 11. As stated earlier, both of the RF models could
provide a more reliable predictive network with higher accuracy when compared to other proposed
techniques. The results of network output for the proposed RF are illustrated in Figures 10d and 11d.
Having the provided information, the predictive network of RF proved to be slightly better than other
proposed techniques and was superior in making a better regression relationship among the estimated
and actual values.
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5. Conclusions

In the current study, several predictive networks were introduced and evaluated. The study aimed
to assess and compare several of the most well-known machine learning-based techniques in order to
introduce the most reliable predictive method in early estimation of heating load in energy-efficient
residential building systems. Machine learning-based solutions, namely, MLPr, LLWL, AMT, RF, ENet,
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and RBFr models were employed to estimate the heating load. The results of the best model from the
proposed techniques were presented. Based on the presented outcomes, it may be said that, except
for the ENet model, almost all models (i.e., MLPr, LLWL, AMT, RF, and RBFr) have good prediction
output results in estimating heating load in energy-efficient building systems. In this regard, the
RF machine learning technique could be suggested as the most reliable and accurate among other
predictive techniques provided in the present work. The learning approach is good in RF predictive
models when compared to other models concerning both the training and validation models. The
values of R2, MAE, RMSE, RAE (%), and RRSE (%) in the RF model training dataset, were 0.9997, 0.19,
0.2399, 2.078, and 2.3795, respectively. The values of R2, MAE, RMSE, RAE (%), and RRSE (%) in the
AMT model training dataset were 0.9985, 0.4096, 0.5449, 4.4788, and 5.4036, respectively. Validated
testing datasets from the selected techniques also showed appropriate accuracy as R2, MAE, RMSE,
RAE (%), and RRSE (%) in the testing output of the RF model were found to be 0.9989, 0.3385, 0.4649,
3.6813, and 4.5995, respectively; R2, MAE, RMSE, RAE (%), and RRSE (%) in the testing output of
the AMT model were found to be 0.9981, 0.4869, 0.6236, 5.2956, and 6.1693, respectively. The worst
validation was found for the ENet technique with R2, MAE, RMSE, RAE (%), and RRSE (%) equal to
0.896, 3.2585, 4.4683, 35.4392, and 44.2052, respectively.
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