
www.usn.no

FMH606 Master’s Thesis 2019
Industrial IT and Automation

State Space Model Based PID Controller

Tuning

Preben Sandve Solvang

Faculty of Technology, Natural Sciences and Maritime Sciences

Campus Porsgrunn

http://www.usn.no

www.usn.no

Course: FMH606 Master’s Thesis 2019
Title: State Space Model Based PID Controller Tuning

Pages: 171
Keywords: PID and PI controllers, tuning, process control, robustness, performance

Student: Preben Sandve Solvang
Supervisor: David Di Ruscio

External partner: None
Availability: Confidential

Summary:
Advances in digital computing over the last years have resulted in new and powerful tools for
obtaining process models. An example of such a tool is the dsr toolbox, which gives a state
space model based on measured input/output data. Also, new control strategies based on
these models have developed, usually involving optimization techniques. Despite this, the
classical PID controller still has advantages and remain the most used control technique.

The goal of the thesis was to compare different methods for tuning PID controllers. The
advantages and disadvantages of the different methods should be explained and suggestions
of how the methods could be used with state space models should be discussed. The Matlab
pidtune function and the delta tuning rules should be explained and evaluated in relation
to state space models.

The tuning methods Ziegler Nichols, SIMC, Cohen-Coon, and optimization tuning in addi-
tion to δ -tuning and pidtune, was chosen to examine in detail. To obtain model parameters
for controller tuning from state space models, a graphical method, an optimization method
and the Matlab function procest was used. Pidtune, mftune, megatuner, and optimization
based tuning is used directly with SSM and was also tested. For method comparison, both
commonly known process models and random models were used.

The methods which can be used directly on state space models give the best results in terms
of successful tuning attempts. For many higher order SSM, process describing variables such
as K, θ , T, R, and L can be found successfully by graphical estimation or optimization.
These variables are then used for PID controller tuning. The graphical method is the fastest
and gives the highest success-rate, while optimization estimation results in higher closed-loop
performance.

The University of South-Eastern Norway accepts no responsibility for the results and
conclusions presented in this report.

http://www.usn.no

Preface

This report presents an answer to the master thesis titled ”State Space Model Based PID
Controller Tuning”, and is a partial fulfillment of Master of Science in Industrial IT and
Automation. The project was conducted during the 4th semester of the masters’ program,
at the University of Southeast Norway.

The reader should possess basic knowledge in the field of control engineering and Matlab,
which have been extensively used in this work. However, the report gives a short intro-
duction to the topics system identification, state space models, PID controllers, and PID
controller tuning methods. The thesis aims to further connect classical control theory
and PID tuning methods to state space models. Many of the experiments conducted dur-
ing this work are based on simulating large amounts of randomly generated state space
models.

I would like to express my sincere gratitude to my supervisor, Associate Professor David
Luigi Di Ruscio for always being available and providing me with his guidance. His
published articles on the delta tuning method, as well as his lecture notes have been a
great help during my work with this thesis. Finally, I would like to thank my friends
and fellow students who have helped me during this period, especially Jonas Nilsen, who
provided his help with proofreading.

The following tools and software were used during the project:

– TeXmaker

– Matlab

– MS Office

– MS Visio

Porsgrunn, 14th June 2019

Preben Sandve Solvang

5

6

Contents

Preface

Contents

List of Figures .
List of Tables .

Introduction

. Background .

. Objectives and goals .

. Report structure .

Background theory on state space models and system identification

. State space models .
. . State space model conversion .
. . Numeric simulation of a state space model

. System identification .
. . Manual system identification .
. . System identification using Matlab
. . System validation and simulation .

. Common process models used for control .

. Estimating process characteristics from SSM,
. . Estimating process values graphically from an input step response curve

. . Model fitting using optimization .

. . Comparison of estimation methods

Background theory on control engineering

. History of control and current use of PID controllers

. PID controller parameters .

. PID controller formulations .

. Control structures .
. . Cascade loop .
. . Feedforward loop .
. . Two degrees of freedom PID controller

. PID tuning goals .

7

Contents

. Performance and robustness .
. . Performance measures .
. . Robustness measures .

. Other types of controllers .

PI and PID controller tuning methods

. Matlab pidtune .
. . Mathworks PID tuning algorithm .
. . Use of pidtune Matlab function .
. . Graphical interface .
. . Cases where pidtune fail .
. . DIPTD systems and pidtune .
. . Summary pidtune .

. Delta tuning rules .
. . PI controller for integrating plus time delay
. . PD and PID controller for double integrating plus time delay
. . Delta tuning PRC method .
. . Approximating processes as (D)IPTD using optimization
. . Mftun and megatuner .
. . Summary delta tuning rules .

. Ziegler and Nichols tuning rules .
. . Ultimate gain method .
. . PRC method .

. Cohen-Coon tuning rules .

. Internal model control methods .
. . SIMC .

. Optimization based tuning .
. . Optimization tuning, using transfer functions
. . Optimization tuning, based on SSM
. . Pareto optimal controller .

. Auto-tuning .

Comparison of tuning methods

. Comparison of tuning methods based on first order plus time delay model . . .

. Comparison of tuning methods based on integrating plus time delay model . .

. Comparison of tuning methods based on double integrating plus time delay

model .
. Comparison between pidtune, mftune, and megatuner
. Comparison of PI controller tuning methods based on randomly generated SSM

. . Description of the experiment used for method comparison

. . Results for tuning methods using estimated model parameters

. . Results for methods using SSM directly

8

Contents

. . Summary of PI controller tuning results
. Comparison of PID controller tuning methods based on randomly generated SSM

. . Results for methods using estimated model parameters

. . Results for methods using SSM directly

. . Summary of PID controller tuning results

Discussion and further work

Conclusions

Bibliography

A Task description

B Results from PI controllers tuned based on randomly generated SSM

C Results from PID controllers tuned based on randomly generated SSM

D Matlab code

E Survey results

9

10

List of Figures

1.1 Workflow which forms the basis for the thesis, tuning a PID controller
based on a state space model . 20

2.1 Block diagram representation of a state space model 25
2.2 The identification problem . 27
2.3 SISO air-heater dataset used for system identification example, y and u . . 29
2.4 SSM matrices A, B, C obtained using different SID tools: ssest, n4sid, and

dsr . 30
2.5 The simulation problem . 30
2.6 Comparison between output, y, for identified models and measurement

from the real process . 31
2.7 Open loop step response for FOPTD, SOPTD, IPTD and DIPTD systems 31
2.8 Suggested decision tree for tuning PID controllers based on SSM 34
2.9 Lag, L, and Reaction rate, R, identified in a step response 35
2.10 Time constant, T and time delay, θ identified in a unit step response . . . 36
2.11 Comparison between model estimation methods in terms of median MSE,

and the number of attempts with MSE>10, with increasing model order,
based on 100 SSM per model order . 39

3.1 The control problem . 41
3.2 Feedback control loop, block diagram . 41
3.3 Survey result, controller tuning rules used in the industry 43
3.4 PID controller principle, a control signal, u, is calculated based on past,

present and future value of the error, e . 44
3.5 Standard negative feedback control loop, including input disturbance, v . . 48
3.6 Cascade control loop, block diagram . 48
3.7 Feedforward control loop, block diagram 49
3.8 2 degree of freedom controller principle . 49
3.9 Feedback control loop with a 2DOF controller, block diagram 49
3.10 Step response, 2DOF controller compared to PID controller (left:SP track-

ing, right:disturbance rejection) . 50
3.11 Performance measures read from step response 52
3.12 Gain and phase margin explanation using a Bode plot 53

4.1 Flowchart for the pidtune algorithm, from patent [25] 59

11

List of Figures

4.2 Comparison of SP tracking and disturbance rejection with different design
focus, using pidtune . 61

4.3 Comparison of SP tracking and disturbance rejection when specifying PM,
using pidtune . 62

4.4 Comparison of SP tracking and disturbance rejection when specifying dif-
ferent ωc . 63

4.5 Matlab pidtuner graphical interface . 64
4.6 Examples of open loop step responses from systems where pidtune al-

gorithm does not give a stabilizing controller 66
4.7 Step responses for SP tracking and disturbance rejection, comparing dif-

ferent settings for pidtune, delta tuning for reference 67
4.8 Graphically obtaned process describing variables obtained from step re-

sponse and used by mftune [32] . 71
4.9 Evolution of Megatuner time usage for tuning PI controllers when model

order gets higher . 72
4.10 Input step response comparison between Cohen-Coon and ZN tuning, plant

with large T to the left, plant with large θ to the right 76
4.11 IMC control loop structure, block diagram 76

5.1 Evolution of controller parameters for different tuning methods when using
FOPTD model, with an increasing time constant, T 84

5.2 Comparison of Ms and TV for different tuning methods based on FOPTD
model, with an increasing time constant, T 84

5.3 Trade-of plots between robustness and performance, comparing different
methods based on a FOPTD model with T=1 and T=10 85

5.4 Comparison of IEA for SP tracking and disturbance rejection using differ-
ent tuning methods for FOPTD model, with an increasing time constant,
T . 86

5.5 Comparison of step response for SP tracking and disturbance rejection
using different tuning methods for a FOPTD model with T=2 86

5.6 Evolution of Kp and Ti using different tuning methods for a IPTD model
with increasing θ . 88

5.7 Comparison of Ms and TV for different tuning methods based on a IPTD
model with increasing θ . 89

5.8 Trade-off plot between robustness and performance, comparing different
methods based on a IPTD model with θ=1 and K=1 89

5.9 Comparison of IEA for SP tracking and disturbance rejection using differ-
ent tuning methods for a IPTD model with increasing θ 90

5.10 Comparison of step response for SP tracking and disturbance rejection
using different tuning methods for a IPTD model with K=1 and θ = 3 . . 90

5.11 Evolution of controller parameters using different tuning methods and a
DIPTD process with increasing θ . 91

12

List of Figures

5.12 Comparison of Ms and TV for different tuning methods based on a DIPTD
model with increasing θ . 92

5.13 Comparison of IEA for SP tracking and disturbance rejection using differ-
ent tuning methods for DIPTD model with increasing θ 93

5.14 Comparison of step response for SP tracking and disturbance rejection
using different tuning methods for a DIPTD model with k=1 and θ = 1.5 . 93

5.15 Comparison of mftun and pidtune, percentage of stabilized closed loops
versus model order . 94

5.16 Success rate plotted against model order, comparison between mftun,
megatuner and pidtune (no integrating models) 95

5.17 Performance vs robustness trade-off curves, comparison between pidtune,
mftun, and megatuner . 96

5.18 Summary of performance and stability measures for optimization-based PI
tuning, 4 different settings . 99

5.19 Summary of performance and stability measures for mftun, using different
values for ρ , based on all models . 100

5.20 Mean performance and stability measures for PI controller tuning methods,
tuned using all 500 random SSM . 101

5.21 Summary of performance and stability measures for optimization based
PID tuning, 4 different settings . 104

5.22 MeanSummary of performance and stability measures for PID controllers
tuned using different methods based on random SSM 105

13

14

List of Tables

2.1 Comparison of model estimation methods, based on 50 random 15th order
SSM . 38

4.1 Comparison of controller parameters when specifying design focus 61
4.2 Comparison of controller parameters when specifying PM 62
4.3 Comparison of controller parameters when specifying ωc 63
4.4 Pidtune performance with DIPTD systems, using different settings 66
4.5 Delta DIPTD tuning rules, using suggested settings 69
4.6 Ziegler and Nichols ultimate gain tuning rules 74
4.7 Ziegler and Nichols PRC method, using R and L 74
4.8 Ziegler and Nichols PRC method, using FOPTD approximation [12] 75
4.9 Cohen-Coon tuning rules [12] . 75
4.10 SIMC tuning rules . 77
4.11 iSIMC tuning rules . 78

5.1 Mean measurements of performance and robustness, FOPTD 87
5.2 Mean measurements of performance and robustness, IPTD 91
5.3 Mean measurements of performance and robustness, DIPTD 94
5.4 Optimization tuning settings . 99
5.5 Average robustness and performance values for all PI tuning methods . . . 102
5.6 Average robustness and performance values for all PID tuning methods . . 105

15

16

Nomenclature

Symbols and abbreviations used in the report

Abbreviation

2DOF 2 Degree Of Freedom
CC Cohen and Coon tuning
DIPTD Double Integrating Plus Time Delay
DS Direct Synthesis
FOIPTD First Order Integrating Plus Time Delay
FOPTD First Order Plus Time Delay
IAE Integrated Absolute Error
IAEr IAE for SP step response
IAEv IAE for disturbance step response
IMC Internal Model Control
IPTD Integrating Plus Time Delay
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
MIMO Multiple Input Multiple Output
MPC Model Predictive Control
MSE Mean Square Error
PID Proportional, Integral, Derivative
PM Phase Margin
PRC Process Reaction Curve
RHP Right Half Plane
SID System Identification
SIMC Simple/Skogestad Internal Model Control
SISO Single Input Single Output
SOPTD Second Order Plus Time Delay
SP Set Point
SSM State Space Model
SVD Singular Value Decomposition
TF Transfer Function
UC Ultimate Cycle
UG Ultimate Gain
ZN Ziegler and Nichols

17

List of Tables

Symbol Description

A, B, C, D System matrices
dt Sampling time
e Error signal
h0 Loop transfer function
hc Controller transfer function
hp Plant transfer function
J Performance index, cost function
k Discrete time
K Process gain
Kp Proportional gain
Ki Integral gain
Kd Derivative gain
Ku Ultimate gain
L Ziegler’s Lag
Ms Maximum sensitivity peak
Pu Ultimate period
r Reference variable
R Reaction rate
s Transfer function operator
T time constant
Ti Integral time
Td Derivative time
u Control signal
v Disturbance signal
W Weighting coefficient
x State
y Output signal
ωc Gain crossover frequency
ω180 Phase crossover frequency
θ time delay

18

Introduction

The main goal in the field of control engineering is to design a system which behaves in
a certain manner with little to no human interaction. Today, various control techniques
are applied in all industries and fields, from simple thermostats to medical applications
and large process plants. This makes control an important part of people’s lives, even
though it may not be noticed, a sign that it works well. Even humans themselves are
performing control operations in everyday life when adjusting something based on what
is being experienced. Examples of this are adjusting the water temperature while taking
a shower or adjusting the force applied to the gas pedal while driving a car. This is what
is known as closed-loop control, based on feedback.

In closed-loop control, the process output is measured with a sensing device, and based on
what the desired value of the output is, a process input is applied to the system. One way
of deciding the magnitude of the process input is to use a PID controller, and this is also
the most commonly applied technique. Because of the PID controllers popularity, it is
interesting to examine various tuning methods and compare them to uncover differences
in performance and robustness.

. Background

The field of system identification has its roots in statistical methods in the 1950s, but
it is reckoned that the theory of system identification had its beginning in the 1960s [1].
With advances in digital computing in the 1980s, the methods for system identification
became more powerful, and today various algorithms for creating state space, and other
models based on measured input and output data are common. These models can be of
any order and contain important information about the system, such as gain, zeros, and
poles. One of the most important uses for such models is the design of controllers, as
stated by Ljung [2]. Common PID tuning methods such as SIMC and Ziegler Nichols, are
based on lower order transfer function models. When the model is of a higher order, steps
must be taken to approximate a model. This might be difficult in some cases, and for that
reason it is interesting to investigate methods which can be used for tuning based directly
on state space models. One method that can do this is the Matlab pidtune function. The
described workflow for tuning controllers is illustrated in figure 1.1.

19

1 Introduction

Figure 1.1: Workflow which forms the basis for the thesis, tuning a PID controller based on a state space
model

. Objectives and goals

Specific goals and objectives for the thesis, based on the task description given in appendix
A:

– Give an overview of the process of tuning a controller based on SSM

– Describe how system identification can be used to obtain a SSM

– Describe properties of SSM and how they can be used to tune a controller

– Give an overview of methods for tuning PID controllers

– Give background information on PID controllers

– Select different tuning methods to examine more closely

– Identify the advantages and disadvantages of the different tuning methods

– Discuss how the methods can be used with state space models

– Give a more detailed user-specific description of MATLAB pidtune

– Explain how the method is used

– Examine the different options which can be specified by the user

– Evaluate the performance of the tuning method

– Evaluate the possibility to extend the δ tuning rules to be based on state space
models

– Give an overview and explanation of the δ tuning rules

– Evaluate how they can be used with SSM

– Compare the different methods by using simulation experiments

– Use randomly generated SSM to compare different methods

– Evaluate the robustness and performance of the different methods

– Evaluate the performance of different approaches for tuning from SSM

20

1.3 Report structure

Tuning of controllers for unstable processes and the effects of signal noise was not included
in the scope of this thesis. Extra PID controller functionality, such as anti-windup and
limited derivative action using filtering has not been included in the testing presented in
this thesis. Signal noise has not been considered when evaluating controllers either.

. Report structure

The structure of the report is as follows:

– Chapter 1 is the introduction, containing the background and the objectives for the
thesis.

– Chapter 2 contains background theory on system identification and SSM, as well as
how to obtain process parameters for controller tuning from them

– Chapter 3 gives background information on PID controllers, different formulations
and structures, as well as measures for robustness and performance used in the
thesis

– Chapter 4 presents different methods for tuning PID controllers, with advantages,
disadvantages and possibility for use with state space models

– Chapter 5 compares different tuning methods using common system models, as well
as randomly generated state space models. This is where the results of the thesis
is presented and the reader should have appendix B and C available while reading
this chapter

– Chapter 6 contains the discussion and suggestions for further work

– Chapter 7 gives a short conclusion to the thesis

21

22

Background theory on state space models

and system identification

This chapter describes the state space representation of dynamic systems and how such
models can be obtained. State space methods for system representation and controller
design has some advantages over frequency domain methods. They are better suited for
digital implementations, makes MIMO systems easier to handle, describe the internal state
of the system and gives information about the initial state of the system [3]. SSM is also
the cornerstone of modern control theory. The classical transfer functions are limited to
represent the amount of Laplace transform at the output relative to the Laplace transform
of the input [4]. State space models can be used to represent any system, whereas transfer
functions are only valid for LTI systems.

. State space models

A state space model is a type of dynamic model, used to describe a physical system.
Characteristic for the SSM is that it can only consist of 1st order differential equations. A
k-order system is then described by k number of differential equations on the form shown
in equation 2.1 [3]. The state variables, x, does not have to be physical quantities that are
related to the system [3], which can make the term ”state” challenging to comprehend.

ẋ1 =
dx1

dt
= f1(x1,x2, ..,xk,u1,u2, ..,ul, t)

ẋ2 =
dx2

dt
= f1(x1,x2, ..,xk,u1,u2, ..,ul, t)

...................

ẋk =
dxk

dt
= f1(x1,x2, ..,xk,u1,u2, ..,ul, t)

(2.1)

By placing the states and inputs in vectors, called state vector and input vector, as shown
in equation 2.2, the SSM can be formulated as shown in equation 2.3, which is a non-linear
model.

23

2 Background theory on state space models and system identification

x =

x1
x2
.
.

xk

 u =

u1
u2
.
.

ul

 (2.2)

ẋ =
dx
dt

= f (x,u, t) (2.3)

The state space differential equations for linear systems are on the form seen in 2.4. For
time-variant systems, coefficients a and b are functions of time.

ẋ1 =
dx1

dt
= a11x1 + ..+a1kxk +b11u1 + ..+b1lul

ẋ2 =
dx2

dt
= a21x1 + ..+a2kxk +b21u1 + ..+b2lul

...................

ẋk =
dxk

dt
= ak1x1 + ..+akkxk +bk1u1 + ..+bklul

(2.4)

As with the non-linear model, the model can be made more compact by using vector
notation. Equation 2.5 shows the linear time-invariant, state equation. This is the form
used for control purposes.

ẋ =
dx
dt

= Ax+Bu (2.5)

A and B in equation 2.4 are matrices given by 2.6 and with the following properties:

• A - State or system matrix, always square kxk, the eigenvalues of A equals the poles
of the system

• B - Input matrix, k x l, where l is the number of inputs. In most cases, when the
number of inputs is less than the number of states, B is a thin, tall matrix. If there
is one input B is a column vector

A =

a1,1 a1,2 · · · a1,k
a2,1 a2,2 · · · a2,k
...

ak,1 ak,2 · · · ak,k

 B =

b1,1 b1,2 · · · b1,l
b2,1 b2,2 · · · b2,l
...

bk,1 bk,2 · · · bk,l

 (2.6)

24

2.1 State space models

The output equation has the same structure as the state equation, with y in compact
vector form. This equation is given by 2.7.

y =Cx+Du (2.7)

Where C and D are matrices with the following properties:

• C - Output matrix, mxk, where m is the number of outputs. If the state is measured
directly, C is 1

• D - Feed trough matrix, m x 1, means that there is a direct connection between the
output and the input, u, and the output, y. D is usually 0, and for control purposes,
it is desired that D is 0. For this reason, the D matrix set to 0 in all experiments
conducted in this thesis.

The discrete form of the SSM is given by:

xk+1 = Axk +Buk

yk =Cxk

The state space model structure represented in a block diagram is shown in figure 2.1.
This representation makes it easier to see how the SSM is structured.

Figure 2.1: Block diagram representation of a state space model

. . State space model conversion

Classical control theory, together with most methods for tuning PID controllers rely on
transfer functions. This makes converting state space models to transfer functions an
important tool when tuning controllers. This can be done using the procedure described
here. Consider the transfer function and state space model formulas:

25

2 Background theory on state space models and system identification

ẋ = Ax+Bu, y =Cx, hp(s) =
Y (s)
U(s)

Taking the Laplace transform on the state space model gives:

sX(s) = AX(s)+BU(s)
sY (s) =CX(s)

Solving for X in the state equation and then inserting the expression in the output equation
results in:

Y (s) =C[Is−A]−1BU(s)

This gives 2.8, which is used for conversion between state space models and transfer func-
tions. This conversion can also be done in Matlab by using the function ss2tf. Nonlinear
models must be linearized before converting to transfer function.

hp(s) =
Y (s)
U(s)

=C[Is−A]−1B (2.8)

The half rule

When using system identification tools, as presented in section 2.2, the obtained model
may be of a higher order. In many cases, these higher order models can be approximated
to a 1st or 2nd order model. One way of doing this is by using the half rule, where T1 and
θ for a FOPTD plant are given by:

T1 = T1 +
1
2

T2

θ = θ +
1
2

T2 +T3 + ...+Tn

The time constants and dead time for a SOPTD model are given by:

26

2.2 System identification

T1 = T1

T2 = T2 +
1
2

T3

θ = θ +
1
2

T3 +T4 + ...+Tn

. . Numeric simulation of a state space model

A SSM can be simulated numerically using the formulas presented in this section. This is
done by using a modified version of the state equation in 2.5 and the output equation, 2.7.
The step size, initial states, and input, u, must be specified to perform the simulation.
Equation 2.9 is used to simulate a SSM in open loop. For closed loop simulation with a
PID controller, u is found using a discrete representation of the controller.

yk =Cxk

xk+1 = xk +dt(Ax+Bu)
For k = 0...N

(2.9)

A way of implementing time delay is using a vector of length = θ/dt. For each iteration
all the values in the array are shifted by one, the calculated value for y is inserted into
index 1, and finally, the value of the last index is used as the actual output.

. System identification

When tuning a PID controller, the first step is often to obtain a model of the system. This
is known as the identification problem and is illustrated in figure 2.2. One way of creating
a dynamic model of the system is to log the inputs and corresponding outputs over a time-
period and use this information to estimate a model. This method is known as system
identification and has the advantage that it is not necessary to know the underlying system
dynamics in detail, which makes SID a black box method. Another way is to derive a
model based on first principles, using laws as mass balance and heat equations.

Figure 2.2: The identification problem

27

2 Background theory on state space models and system identification

. . Manual system identification

In SID, realization theory can be used to find the matrices A, B, C and the system order,
n. The first step is to calculate impulse responses Hk from the measured inputs and
outputs, and organize these in Hankel matrices H1|L and H2|L, as shown in 2.11. Equation
2.10 is the impulse response matrices for SISO systems [5].

Hk =
yk

u0
(2.10)

H1|L =

H1 H2 · · · HJ
H2 H3 · · · HJ+1
...

HL HL+1 · · · HL+J−1

 , H2|L =

H2 H3 · · · HJ+1
H3 H4 · · · HJ+2
...

HL+1 HL+2 · · · HL+J

 (2.11)

The Hankel matrices are related to the observability and controllability matrices OL and
CJ in 2.12, by the equations 2.13. This relationship is used in realization theory to find
the state space matrices.

OL =

D

DA
...

DAL−1

 , CJ =
[
B AB A2B · · · AJ−1B

]
(2.12)

H1|L = OLCJ

H2|L = OLACJ
(2.13)

Using SVD on H1|L, and output realization gives the equations in 2.14, where U2S2V−
2 1

can be neglected. B and C can be found from OL and CJ. The number of non-zero values
in the diagonal matrix S1, is the system order, n.

SV D(H1|L) =U1S1V T
1 +U2S2V T

2

OL =U1

CJ = S1V T
1

(2.14)

A is found by performing SVD on H2|L, and equation 2.15.

SV D(H2|L) =U1AS1V T
1 +U2S2V T

2

A =UT
1 H2|LV1S−1

1

(2.15)

28

2.2 System identification

. . System identification using Matlab

SID using Matlab or other computer tools are a simple way of obtaining models when the
input/output data for the process is available. Inputs can also be variables that are not
controllable. 3 methods for creating state space models from the system identification
toolbox and the dsr toolbox have been tested for demonstration purposes. This demon-
stration shows that state space models can be obtained using very few lines of code. The
following system identification methods are used:

• n4sid (system identification toolbox) - Estimates a SSM using the subspace method
[6]

• ssest (system identification toolbox) [7]

• dsr (dsr toolbox) - Uses subspace identification [8]

The data for a simple SISO heating process, shown in figure 2.3 has been used to estimate
the models. The data-set consists of 1000 samples, taken at an interval of 0.08 seconds.
The input is the voltage applied to a heater, and the output is voltage measured from a
thermocouple. The first 500 samples are used for system identification, and the rest is
used for verification.

Figure 2.3: SISO air-heater dataset used for system identification example, y and u

When using n4sid and ssest, the data is structured using the ”iddata” function which
takes the inputs U, Y, and dt. The dsr function takes the input/output data directly.
U is a Nxl matrix, where N is the number of observations and l is the number of input
variables. Y is a N x m matrix, where m is the number of output variables. Feature
standardization should be used to make the data zero mean.

Figure 2.4 shows the resulting system matrices using ssest, n4sid, and dsr functions,
respectively. The matrices from ssest and n4sid are almost identical, while the result

29

2 Background theory on state space models and system identification

from dsr differs more, which shows that the same system can be represented in several
ways.

Figure 2.4: SSM matrices A, B, C obtained using different SID tools: ssest, n4sid, and dsr

. . System validation and simulation

To simulate a system is referred to as the simulation problem, illustrated in figure 2.5.
Solving this problem gives information about how the known system responds given a set
of input signals. System simulation is useful for validating the identified model, as well
as investigating the behavior of the system and tuning a controller.

Figure 2.5: The simulation problem

Figure 2.6 shows the simulated output from the 3 identified state space models, together
with the actual recorded data. The simulation is performed using the sim Matlab function,
and the last 500 samples from the data set. This data was not used in the identification.
The curves follow the original data closely and demonstrate the power of system identi-
fication. A way of validating models is to use the mean square error, MSE, given by 2.16.
In this example, dsr performed best, with an MSE value of 0.03. Ssest and n4sid scored
0.05 and 0.06, respectively.

MSE =
1
N

N

∑
t=1

(y− ŷ)2 (2.16)

where:

N = Number of samples
y = Real process output
ŷ = Simulated process output

30

2.3 Common process models used for control

Figure 2.6: Comparison between output, y, for identified models and measurement from the real process

. Common process models used for control

This section gives a short description of common model types that are essential in control
engineering, as many tuning methods is based on these models. Transfer function and
SSM representation of the models is given, as well as practical examples. Figure 2.7 shows
the open loop step response for these characteristic process models.

Figure 2.7: Open loop step response for FOPTD, SOPTD, IPTD and DIPTD systems

31

2 Background theory on state space models and system identification

First order plus time delay

This is a common type of model that can be used to describe a variety of processes, one
example is temperature. The model contains 3 parameters; gain, time constant, and dead
time. Many PID tuning rules are based on this type of model, which makes it crucial for
control, examples of this are ZN PRC, SIMC PI, and the Cohen-Coon tuning rules. The
transfer function is given by 2.17 and the state space representations, with K = 1 and
T = 1, by 2.18.

hp = K
1

(T s+1)
e−θs (2.17)

A =−1, B = 1, C = 1 (2.18)

Second order plus time delay

The SOPTD model is like the FOPTD model used to represent a self-regulating process.
In addition to the parameters used in the FOPTD model, it contains a second time
constant and can be used to represent under-damped systems which have overshoot. The
SIMC PID tuning rule is based on a SOPTD model, which are given by the transfer
function 2.19. The state space representation with K = 1, T1 = 2 and T2 = 1 is given by
2.20.

hp = K
1

(T1s+1)(T2s+1)
e−θs (2.19)

A =

[
−2 −1
1 0

]
, B =

[
1
0

]
, C =

[
0 1

]
(2.20)

Integrating plus time delay

This type of plant is another common process type, representing for example level control.
This process is not self-regulating, and the output continues to grow or shrink if proper
control is not applied. The δ PI tuning rules are based on an IPTD model. 2.21 is the
transfer function representations, and 2.22 is the SSM.

hp = K
1
s

e−θs (2.21)

A = 0, B = 1, C = 1 (2.22)

32

2.4 Estimating process characteristics from SSM,

Double integrating plus time delay

The DIPTD plant is not uncommon and is difficult to control. The DIPTD models have
2 poles at the origin, and the output grows exponentially. Concrete examples of DIPTD
processes are two large tanks in series or a system converting force to position. ZN and
CC tuning rules cannot be used for this type of system, and the controller needs to have
derivative action to control this type of process. The DIPTD TF is 2.23, and the state
space representation is given by 2.24.

hp = K
1
s2 e−θs (2.23)

A =

[
0 0
1 0

]
, B =

[
1
0

]
, C =

[
0 1

]
(2.24)

. Estimating process characteristics from SSM,

One of the goals for the thesis is to discuss how various PID tuning methods can be used
together with SSM. This section suggests how to obtain values that are commonly used
for tuning. As stated in chapter 1, classical control theory based on transfer functions is
widely used as a basis for PID tuning. Variables such as gain, time constants, and time
delay can be found from the models presented in section 2.3, and can then be used to
tune a controller. Other process describing variables used for tuning are reaction rate, lag,
ultimate gain, and ultimate period. A suggested decision tree for tuning a PID controller
based on SSM is presented in figure 2.8, and the alternatives are also listed below:

• Convert SSM to transfer function as described in section 2.1.1, if necessary use
model reduction (half rule) to arrive at a 1st or 2nd order model

• Simulate SSM as described in section 2.1.2, to obtain the vectors U, Y, and t. This
data can then be used in the following ways to get the desired models.

– Read R, L, and K from step response

– Read K, T1, and θ from step response

– Use optimization to fit a low order transfer function to the data

– Use Matlab function procest to estimate a transfer function

• Find margins from SSM or approximated lower order model, then obtain ultimate
gain and ultimate period

33

2 Background theory on state space models and system identification

Figure 2.8: Suggested decision tree for tuning PID controllers based on SSM

. . Estimating process values graphically from an input step response

curve

By estimating process values graphically from an input step response curve, it is meant
to plot vector, Y, after a input step and read the values from the graph.

Reaction rate and lag from an input step response curve

The measures reaction rate, R, and lag, L, was introduced by Ziegler and Nichols and is
used to describe a process. R and L describes FOPTD and IPTD processes well. R is
the steepest gradient of Y, i.e., the tangent line with the steepest slope. The lag, L, is
an approximation of the time delay and is found by locating the intersection between the
x-axis and the tangent to Y at the point where the R was found. These properties are
shown graphically in 2.9.

Lag can be found using the following formula:

L = tR −
YR −Y0

R

where:

tR = Time instant when R occurs
YR = Value of Y, at tR
Y0 = Value of Y, at t0

34

2.4 Estimating process characteristics from SSM,

Figure 2.9: Lag, L, and Reaction rate, R, identified in a step response

FOPTD from step response

Time delay is found graphically from the step response data in the same way as L. The
first order time constant is the time it takes y to reach 63.2 % of the final value, and can
be found using formula 2.26. Gain is the change in y, relative to u, and for a unit step
response is given by ∆y. Matlab function dcgain or 2.25 is used to find K. The values are
illustrated in figure 2.10.

K =
Yn −Y0

Un −U0
= Yn (2.25)

Where:

Yn = Final value of Y
Y0 = Initial value of Y
Un = Final value of U
U0 = Initial value of U

35

2 Background theory on state space models and system identification

Figure 2.10: Time constant, T and time delay, θ identified in a unit step response

T =
Yn −Y0

R
= t0.632 −L (2.26)

Where:

t0.632 = Time instant when Y is 63.2% of final value

SOPTD from step response

For a second-order process, it is more difficult to find the parameters graphically. For
under-damped models it is possible to find damping coefficient, ζ and second-order time
constant, Ts, and then using the following relationship between second-order model for-
mulations:

hp = K
1

(T1s+1)(T2s+1)
e−θs = K

1
T 2

s s2 +2ζ Tss+1
e−θs

T1T2 = T 2

T1 +T2 = 2ζ T

To find ζand Ts from a step response, the overshoot ratio, and the period is found graph-
ically and then applied in formulas:

36

2.4 Estimating process characteristics from SSM,

ζ =

√
ln(OS)2

π2 + ln(OS)2

Ts =

√
1−ζ 2

2π
P

Where:

OS =Overshoot ratio
P = Period

This only works with underdamped systems, with ζ < 1, as other models do not give
overshot or period. For this reason, this method has not been used in this thesis, and are
only briefly explained here.

. . Model fitting using optimization

Another way of estimating time constants, gain and time delay is to use an optimization
algorithm. This is done by choosing the values of x in 2.27, which minimizes the value
of J in 2.28. The structure of x is chosen according to the desired model type. For
each iteration of the optimization process, a step response is simulated, and the output is
compared with the original model, using MSE. The values of x which give the best fit are
chosen. The optimization is done using fmincon in Matlab. The optimization problem is
given by:

x̂ = min J(x) s.t

{
lb ≤ x ≤ ub

T2 < T1

where:
x = [K, T1, θ], x = [K, T1, T2, θ], x = [K, θ] (2.27)

J = MSE =
1
N

N

∑
n=1

(y− yest)
2 (2.28)

lb =

− inf
0.01
0.01

 , ub =

inf
inf
20

37

2 Background theory on state space models and system identification

A third way of estimating a lower order model is to use Matlab function procest. This
function also uses inputs Y, U, and t, the estimate a transfer function on a specified form.
This function uses a combination of different search methods in sequence at each iteration
for parameter estimation.

. . Comparison of estimation methods

This section gives a comparison of the estimation methods described in 2.4.1 and 2.4.2.
The model fit and time usage for the different methods are compared and presented in
table 2.1. For the comparison, 50 random 15th order SSM with 1 second time delay was
used. The MSE value stated is the median of the 50 calculated MSE values. The graphical
method stands out as the fastest, while the SOPTD optimization method is the slowest.
The difference in MSE between FOPTD and SOPTD approximations are small.

Table 2.1: Comparison of model estimation methods, based on 50 random 15th order SSM
Time(s) MSE MSE < 10

Optimization FOPTD 93.9 0.0108 45
procest FOPTD 94.5 0.0106 44

Graphical FOPTD 1.7 0.1099 39
Optimization SOPTD 186.8 0.0106 45

procest SOPTD 151.2 0.0095 43

Figure 2.11 shows the result of an experiment comparing the 5 different methods in terms
of MSE values and the number of cases with MSE larger than 10, with increasing model
order. 100 random models for each model order was used, and the MSE value in the plot is
the median. The graphical estimation gives the worst fit but is close to the other methods
until model order 8. The other methods give similar values for MSE. The exception
is the SOPTD estimation using optimization, which gives a slightly higher value. The
bottom plot is the number of systems where the MSE value is above 10, here the SOPTD
optimization method is best. The graphically estimated models stand out as worst, with
a maximum of 29 estimations with MSE larger than 10, for 15th order systems.

38

2.4 Estimating process characteristics from SSM,

Figure 2.11: Comparison between model estimation methods in terms of median MSE, and the number
of attempts with MSE>10, with increasing model order, based on 100 SSM per model order

39

40

Background theory on control

engineering

Figure 3.1: The control problem

This chapter introduces the PID controller, control loops, and various measures used to
determine the performance and robustness of these control loops. The field of control
engineering aims to solve a control problem, illustrated in 3.1. One way of achieving this
is to use a PID controller, which continuously updates u as a function of e, where e is
defined by 3.1. ”Acceptable limits” mean that e should go towards zero as time goes
towards infinity, as formulated in 3.2 [9]. The block diagram in figure 3.2 shows the basic
negative feedback control loop used in PID control.

e = r− y (3.1)

lim
t→inf

e(t) = 0 (3.2)

Figure 3.2: Feedback control loop, block diagram

. History of control and current use of PID controllers

An estimated 95% of process control applications are of PI or PID type [10]. This is
due to low cost and usability, as there are only 3 parameters to adjust. The formal

41

3 Background theory on control engineering

control law known as the PID controller has been around since 1922 [11], and due to its
popularity, hundreds of different tuning rules have emerged. In the ”Handbook of PI and
PID Controller Tuning Rules” from 2009, 1731 different tuning rules are presented [12].

Classical control theory emerged in the 1930s and 1940s and was documented by Bode and
others. It deals with LTI SISO systems using the Laplace transform and the s operator,
utilizing the frequency domain. Tools in classical control theory for analyzing systems and
design controllers include Nyquist plots, Bode plots, and root locus. Many methods for
PID controller design relies on the frequency domain, and thus the classical control theory.
Modern control theory, which had its beginning around 1960, is based on the state space
representation of systems, in the time domain. With the modern control theory came
new control strategies and different methods for synthesizing controllers, with a focus on
optimal control. The modern control theory also deals with MIMO systems. However,
the rise of modern control theory does not make the classical control theory obsolete; on
the contrary, they fulfill each other. This makes it interesting to investigate how the tools
of the classical control theory for tuning PID controllers can be utilized when the system
is modeled using state space representation.

Despite the relative simplicity and few tuning parameters, it is believed that there is
a fair amount of poorly tuned PID controllers operating in the industry. In an article
published in 1993, it was found that 30 % of the control loops performed so badly that
manual operation would be better. Another finding was that 25% of the controllers
were operating at default factory settings [13]. Other problems with the control loops
were poorly sized actuators and measurement problems like inadequate filtering. This
illustrates that there is a lot to be gained by properly tuning the control loops and that
it might be a neglected area of interest in many companies.

To further examine the state of the PID controllers in the industry today, a short ques-
tionnaire was sent to a selection of sizeable Norwegian process plants. They were asked
how their control loops were tuned, by who and if they have a clear strategy for tuning.
Although the number of answers was limited, the trend is the same. Ziegler Nichols or
auto-tuning performed by technicians without any parent strategy is the most common
method. Other methods that are mentioned are various approaches which are more or
less guesswork. These methods are referred to as SWAG (Scientific Wild Ass Guess) and
field tuning and are a collection of approaches used to adjust parameters manually until
the closed loop response is within seemingly acceptable limits, as judged by the person
performing the tuning. The complete results from the survey is in appendix E.

In an article from 2009 by Skogestad [14], it is argued that the advantages of simple
feedback control need to be rediscovered periodically. It is claimed that feedback control
may be discarded in many cases because of its simplicity, and the notion that since it
is based on past measurements, it is not good enough. To contradict this, Skogestad
points out 3 fundamental advantages for feedback control, being; it is the only way to
fundamentally change the dynamics of a system; it is required for a system to adapt

42

3.2 PID controller parameters

Figure 3.3: Survey result, controller tuning rules used in the industry

to new conditions; and it makes it possible to obtain tight control without an accurate
model.

All of these points outline the importance of controller tuning and why it should be
connected to the modern state space models.

. PID controller parameters

The PID controller consists of 3 parts, the proportional term, integral term, and deriv-
ative term, which gives the abbreviation PID. The PID controller is the simplest form of
controller which updates the control signal based on both past, current, and predicted
future error. The proportional term contributes to the total output with a factor propor-
tional to the current error. The integral term contributes with a factor proportional to
the integral of the error, which is the sum of past errors. The derivative term contributes
with a factor proportional to the derivative of the error, which is the predicted future
error. This concept is illustrated in figure 3.4.

Tuning a PID controller is the process of adjusting how much each of the terms should
contribute to the total control signal. This is done by using weighting coefficients, known
as controller gains, which can be formulated in different ways, shown in section 3.3.

In many cases, it is not necessary to include all three terms of the controller, as they might
reduce performance. When, for example excluding the derivative term, the controller is
referred to as a PI-controller. Some common controller types and characteristics follow:

• P controller, pure proportional controllers are slightly more complex than an on/off
controller and are not very common. A pure P controller always produces a steady
state error and require high gain to reduce it. Too high gain may cause oscillations.
This means that it can only be used in processes where a static offset can be ac-
cepted; in these cases, P controllers have an advantage due to simplicity and speed
of response. In a control system with a cascade architecture, a P controller can be

43

3 Background theory on control engineering

Figure 3.4: PID controller principle, a control signal, u, is calculated based on past, present and future
value of the error, e

used in the inner control loop, as the offset is counteracted by the outer control
loop.

• PI controllers are the most commonly used form of the controller. The integral term
eliminates the steady state error but also makes the overall response slower. Used
for pressure, level, and flow control.

• PID controllers are less used because the derivative term is sensitive to noise. Adding
derivative action makes faster responses possible, as proportional and integral gain
can be increased. This type of controller has an advantage in processes which are
slow, with a high degree of inertia and non-linearity. An example of this is temper-
ature control and conventional autopilot. Processes that are double integrating or
oscillating needs derivative action to be stabilized.

• PD controller, well insulated thermal processes act as integrators, which makes the
need for integral action disappear. This kind of processes allows for large propor-
tional gain, eliminating the problem with steady state error and the need for integral
action. PD controllers are also used for control of flying or underwater objects such
as missiles or ships.

The following list gives some general statements about the effect of adjusting the controller
gains, but might not be accurate in all cases. This is important to know when performing
manual adjustments. A parallel controller is considered.

• P term - increase tuning parameter Kp

– Faster tracking

– More overshoot

– Less stability

– Decrease steady state error

• I term - increasing tuning parameter Ki

44

3.3 PID controller formulations

– Faster tracking

– More overshoot

– Less stability

– Decrease steady state error

• D term - increasing tuning parameter Kd

– Faster tracking

– Less overshoot

– More stability

. PID controller formulations

The PID controller can be formulated in a variety of ways, in both the continuous, discrete
and Laplace domains. It is essential to know which formulation is being used when tuning
and implementing the controller, as increasing Ki and Ti has the opposite effect. The choice
of controller formulation has less importance and has little influence on the performance
[15]. The different formulations are presented in this section.

In addition to the formulas presented here, it is common to implement some constraints,
like anti-windup and bumpless transfer. The purpose of anti-windup is to prevent integral
error to build up when the output saturates. Bumpless transfer is related to the switch
between manual and automatic operating modes.

Equation 3.3 is the PID controller on standard form in the time domain. Another name
used for this formulation is the ideal form. In this form, the gain, Kp, affects all the 3
controller terms.

u(t) = Kpe(t)+
Kp

Ti

∫ t

0
e(t)dτ +KpTd

de
dt

(3.3)

By substituting Kp/Ti = Ki and KpTd = Kd, the PID controller on parallel form in 3.4 is
obtained. The parallel form is more intuitive to work with if the gains are to be adjusted
manually, as they are independent of each other as the name suggests.

u(t) = Kpe(t)+Ki

∫ t

0
e(t)dt +Kd

de
dt

(3.4)

45

3 Background theory on control engineering

The standard and parallel forms are mathematically equivalent, unlike the series form seen
in 3.5, which resembles a pneumatic controller more closely. A series controller without
derivative action is equivalent to the parallel form.

u(t) = Kp(e(t)+
1
Ti

∫ t

0
e(t)dt)(1+Td

d
dt
) (3.5)

Transfer functions The transfer function of the PID controller is found by performing
the Laplace transformation of the time domain equations. The operator s is used, where
s = jω . Equation 3.6 shows a PID controller on standard form in the Laplace domain.

u(s) = Kp(1+
1

Tis
+Tds) (3.6)

The parallel form of the controller is found by inserting Ki and Kd, as in 3.4, and is shown
in equation 3.7.

u(s) = Kp +
Ki

s
+Kds (3.7)

Equations 3.8 are the series form formulations, also called cascade formulation. The SIMC
tuning rules give a controller on this form.

u(s) =
kp(Tis+1)(Tds+1)

Tis
= Kp(1+

1
Tis

)(1+Tds) (3.8)

If the process contains noise, and a controller with derivative action is used, it is often
good practice to use a low pass filter on the derivative term. The noise gives a high
derivative of the error signal e, which causes too much compensation from the controller.
The filter helps with this problem and is added by replacing the derivative term with the
following, for standard form:

Tds
Td
N s+1

Where N is the filter constant, which needs to be chosen for each case.

46

3.4 Control structures

Discrete form All electronic devices operate in the discrete time domain, and therefore
the discrete time PID controller is important. Equation 3.9 shows the discrete time PID
controller on the absolute form. The derivative term is discretized using forward Euler.

ui(k) = ui(k−1)+
TsKp

Ti
e(k)u(k) = Kpe(k)+ui(k)+KpTd

e(k)− e(k−1)
dt

(3.9)

Another discrete representation is given by 3.10. This is a controller on standard form and
is the formulation that was used when performing simulations in this thesis. The controller
state, z, needs to be initialized. These formulas are used together with equation 2.9, to
simulate a closed-loop system with a SSM.

ek = r− yk

uk = zk +Kpek −KpTd
yk − yk−1

dt

zk+1 = zk +dt
Kp

Ti
ek

(3.10)

Conversions The relationship between the parallel and ideal forms are given in the intro
to section 3.3. When converting from serial to ideal form, the factor f = 1+Td/Ti, and
the following formulas are used:

Kideal
p = Kp f , T ideal

i = Ti f , T ideal
d = Td/ f (3.11)

. Control structures

Figure 3.5 shows the standard control loop, including input disturbance v, and all the
symbolic names which are used when discussing control loops in this thesis. In some cases,
it is beneficial to use different structures for the control system. This is useful if there
is more than one measurement available. Two common control structures are cascade
control and feedforward control. These control structures can also be combined in various
ways.

47

3 Background theory on control engineering

Figure 3.5: Standard negative feedback control loop, including input disturbance, v

. . Cascade loop

Figure 3.6 shows the block diagram for a cascade control loop. This type of set up can
be useful when the system has large time constants or dead time. A cascade control loop
consists of nested control loops, where the inner loop is referred to as the secondary loop.
The inner loop acts as the actuator to the outer/primary control loop. This setup may
give tighter control.

Figure 3.6: Cascade control loop, block diagram

. . Feedforward loop

In feedforward control loops, the process disturbance is measured and used to compensate,
using a feedforward compensator, denoted hc f f . The goal of feedforward control is to
compensate for the process disturbance before it creates a control error. An example of
how a feedforward control loop can look is given in figure 3.7.

. . Two degrees of freedom PID controller

In 2 degree of freedom controllers r and y have different signal paths, as see in figure 3.8.
This gives more flexibility to satisfy design compromises, like fast disturbance rejection
without increased overshoot in setpoint tracking [16].

48

3.4 Control structures

Figure 3.7: Feedforward control loop, block diagram

Figure 3.8: 2 degree of freedom controller principle

Equation 3.12 is the transfer function for the 2DOF PID controller on standard form.
The parameters b and c are adjustable weight coefficients.

u(s) = Kp(be+
1

Tis
e+

Tds
Td
N s+1

ce) (3.12)

Figure 3.9: Feedback control loop with a 2DOF controller, block diagram

Equations 3.13 are the closed loop transfer function equations for setpoint tracking and
disturbance rejection based on block diagram in figure 3.9 [17]. These transfer functions
show how the extra flexibility is added, as the controller is divided into hcr and hcy.

y
r
=

hphcr

1−hphcy
,

y
v
=

hp

1−hphcy
(3.13)

49

3 Background theory on control engineering

Figure 3.10 shows a comparison between a PID controller on standard form and a 2DOF
PID controller. Both are tuned using pidtune and 3rd order plant model. The 2DOF
controller has better setpoint tracking while maintaining the same disturbance rejection
as the standard PID controller.

Figure 3.10: Step response, 2DOF controller compared to PID controller (left:SP tracking, right:disturb-
ance rejection)

. PID tuning goals

One of the reasons why there exist so many different methods for PID tuning, despite
the low number of tuning parameters, is the fact that the choice depends on the desired
characteristics of the system. A range of tuning parameters can be used to stabilize the
system, but still give very different behavior. This means that there is not one choice of
parameters which can be said to be correct. Different tuning methods can help to achieve
different system behavior, and some tuning methods also have tuning parameters that
can be chosen for this purpose. The main trade-off is between high controller gains for
performance and low gains for robustness and less input usage. The following properties
are desired to obtain in the tuned control loop:

• Setpoint tracking - This is the controller’s ability to track a changing setpoint

• Disturbance rejection - The controller’s ability to keep the output at the setpoint
despite disturbances to the process

• Robustness - The ability to handle uncertainty

50

3.6 Performance and robustness

• Low input usage - High performance might demand a high degree of input usage,
which can be expensive and wear out or damage the actuator

The transfer functions in 3.14 are used to simulate setpoint tracking, disturbance rejection,
and controller effort. These transfer functions describe the feedback control loop in figure
3.5. Setpoint tracking is often used for testing, as changing the setpoint and observing the
response is easy to do. However, good disturbance rejection is usually more important,
as many processes operate at a fixed setpoint. Section 3.6 explains how tuning goals can
be measured and quantified.

y
r
=

hphc

1+hphc
,

y
v
=

hp

1+hphc
,

u
r
=

hc

1+hphc
(3.14)

. Performance and robustness

Robustness and performance are contradictory qualities in a system, and high performance
generally gives less robustness. Therefore it is important to quantify these terms, in
order to tune a controller which satisfies both. There are numerous ways of quantifying
robustness and performance, and the measures used in this report are explained here.

Robustness is the system’s ability to handle uncertainties, i.e. how much the controlled
process can vary from the nominal. Robustness is important because the models used
to tune controllers do not always represent the real process accurately. Components
degradation can also cause a change in process behavior over time.

Performance in control engineering is to make the output, y, behave in a desired manner.
What the desired system behavior is, must be determined for each case. An ideal control
loop has a fast response and no overshoot, requiring little controller effort.

. . Performance measures

Performance measurements based on a step response is explained in the list below and
illustrated in figure 3.11. Settling time and rise time quantify the speed of response, while
overshoot and steady state error give the quality of the response.

• Settling time - The time it takes the output, y, to settle within 5% of the final,
steady state value

• Rise time - The time it takes the output, y, to travel from 10% to 90% of the final,
steady state value

51

3 Background theory on control engineering

• Overshoot - The peak value of the step response divided by the final, steady state
value. Given in percent

• Steady state error - The difference between the final steady state value and the
desired final value

Figure 3.11: Performance measures read from step response

A performance measure which is extensively used in the report is the integrated absolute
error, defined in 3.15. It is the sum of the error, e, over a time interval. A low value of
IAE is desired [18]. The IAE value is calculated for step responses at both r and v, to
measure SP tracking and disturbance rejection.

IAE =
∫

∞

0
|e|dt (3.15)

To measure input usage/controller effort, the total value defined by 3.16, is used. A high
value of TV means that the controller uses more input to adjust the process, making it
more aggressive. A high value of TV may also cause more stress on the actuator and be
expensive in economic terms.

TV =
∞

∑
k=1

|∆uk| (3.16)

where ∆uk = uk −uk−1

52

3.6 Performance and robustness

. . Robustness measures

Robustness can be measured using margins, which says something about how much un-
certainty in different parameters, the control loop can withstand without going unstable.
Gain margin is the amount of gain the loop can be increased with before the system goes
unstable. Typically, it is desired to have GM > 2. Phase margin is the amount of phase
lag that can be added to the loop before the system goes unstable, and generally it is
desired to have PM > 30o [19]. RHP zeros and time delays cause phase lag, and therefore
PM is related to the maximum time delay error, dθmax, defined by 3.17. dθmax is the
maximum time delay that can be added to the system before causing instability.

dθmax =
PM
ωc

(3.17)

Gain and phase margins are found from the bode plot of the loop transfer function, as
shown in figure 3.12. If the magnitude is zero when the phase is −180o, the closed loop
is unstable. The gain margin is the distance between the actual magnitude and zero
magnitude when the phase is −180o, and the phase margin is the distance between the
phase and −180o when the magnitude of the gain is zero. The frequency when the gain
is zero is called gain crossover frequency, ωc, and the frequency when the phase is −180o

is called phase crossover frequency, ω180.

Figure 3.12: Gain and phase margin explanation using a Bode plot

Another robustness measure is Ms, which is the maximum peak of the sensitivity function,
defined in 3.18. The magnitude of Ms should be less than about 2 (6dB). The smallest
distance between hchp and the -1 point is M−1

s and therefore smaller value of Ms gives
more robustness [19]. A good value for Ms is 1.59, and this is around the point where

53

3 Background theory on control engineering

IAE values are the lowest [20]. Ms also says something about the performance. Another
variant is Mst , which is given by Mst = max(Ms, Mt), and 3.18.

Ms = maxω |S(jω)|, Mt = maxω |T (jω)| (3.18)

Where S = 1/(1+hphc) and T = hphc/(1+hphc)

. Other types of controllers

Despite its popularity, PID controllers have some limitations. They are generally not
suitable for MIMO control, and since they rely on fixed parameters, control of non-linear
systems can be challenging. This section briefly mentions some of the alternative control
strategies. It is worth mentioning that it is possible to use PID controllers for non-linear
systems as well, if utilizing gain scheduling. The PID controller can be used with MIMO
systems if the degree of interaction between the various inputs and outputs are low.

Pole placement A simple method for designing a controller in the state space domain is
pole placement. If all state variables are known to the controller at all times, it is possible
to place the closed-loop poles at any desired location. In practice, there are limits to how
much the process dynamics can be changed. This means that unrealistic pole placement
can cause the actuator to saturate. This can be done in Matlab using the place function
to find k when u =−kx. The closed loop poles are equal to the eigenvalues of the matrix
(A-Bk). Pole placement techniques can also be used in the frequency domain and can
also be modified to produce a PI or PID controller [21].

LQR The LQR controller is optimal in the sense that it minimizes the cost function in
3.19. The cost function is used to find an optimal gain matrix, k, which minimizes J when
u =−kx. Q and R are weights, used to favor performance or input usage. The state and
input values are squared, which makes J a quadratic function with an absolute minimum.
This type of controller works well with MIMO systems. [22].

J =
∫

∞

0
(xT Qx+uT Ru)dt (3.19)

54

3.7 Other types of controllers

MPC The MPC uses a plant model to predict the best choice of u over a finite time
period to reach the desired state. This controller also uses optimization to determine the
best choice of u. When the algorithm has determined the best u for each time step in the
prediction horizon, the first value for u is applied to the system. For each discrete time
step, the optimal values for u over the horizon are predicted, then only the first value is
applied. This controller works with MIMO systems, nonlinear systems and it is possible
to impose constraints on both x and u.

Fuzzy controller The fuzzy controller utilizes fuzzy logic, where values are tied to lin-
guistic variables. Each input is given a degree of membership to different properties, for
example, ”70% warm” based on their value and predefined membership functions. A set
of powerful if then statements are then used to determine output values. This controller
can deal with MIMO and nonlinear systems [23].

55

56

PI and PID controller tuning methods

This chapter presents some commonly used methods of tuning PID controllers. If nothing
is specified, the plant models used in the examples are randomly generated state space
models. Each section presents a set of tuning rules and contain a summary of the main
advantages and disadvantages, as well as outlining how they can be applied to SSM. In
many cases, tuning rules are controller parameters given as a function of the process
describing variables. Suggestions for obtaining these variables from SSM are given in
section 2.4. One goal for a set of tuning rules can be to give stable closed-loop systems for
all processes. This is hard to achieve, but some methods are very versatile, for example,
Matlab pidtune and mftun. A methods ability to work with many processes has been one
of the main focuses when evaluating and comparing tuning rules.

The tuning rules can be categorized as in ”PID control in the third millennium” [10].
It is possible that some tuning rules fall under several of these categories. The rules
in all categories generally require a process model of some sort, except ultimate cycle
methods.

PRC tuning rules PRC methods uses a step response to identify process parameters, as
explained in section 2.4.1. Examples of such tuning rules are the ZN PRC method in
section 4.3.2 and the Cohen-Coon rules in section 4.4. These process parameters can be
found from SSM, as suggested in section 2.4.

Ultimate cycle tuning rules These methods are based on recording process parameters
when the system is brought to marginal stability. The closed-loop system is brought to
marginal stability by using a P-controller and increasing the gain until the system starts
to oscillate. The ZN closed loop method in section 4.3.1 uses the UC parameters, and
auto-tuning explained in section 4.7 usually utilizes UC. When a system is marginally
stable, the poles are on the imaginary axis.

Optimization based tuning rules These kinds of methods are used to find controller gains
that minimize different performance and robustness criteria. This requires initial tuning
parameters and an optimization algorithm. A weakness is that numerical optimization
cannot guarantee to find a global minimum.

57

4 PI and PID controller tuning methods

Direct synthesis tuning rules Controller design based on a process model and some specific
closed loop criteria. These criteria might be pole placement, GM, and PM. DS design
can, for example be used to favor SP tracking or disturbance rejection [24]. Note that this
type of controller design does not always produce a controller with a PI or PID structure.
IMC methods and DS methods are closely related and in many cases, identical.

Tuning rules for robustness Tuning rules that are formulated to achieve robust perform-
ance and/or robust stability.

. Matlab pidtune

The Matlab function pidtune uses Mathworks own patented PID tuning algorithm [25].
The algorithm is very robust and can handle any type of discrete or continuous time
model. The model can be both stable or unstable, integrating and contain any type of
time delay. The function can also be used to tune multiple controllers at a time, by
inputting an array of models. A graphical tool exists as well, utilizing the same tuning
algorithm, which can be opened with the command pidTuner.

. . Mathworks PID tuning algorithm

The algorithm aims to stabilize the loop while balancing two measures of performance,
set-point tracking, and disturbance rejection. The idea behind the algorithm is to make
it easy for the user to specify known measures of stability and performance and tune
the controller based on that. These are terms that can be difficult to relate directly to
the controller gains. Another aspect is that many modeling applications let users create
system models that are not restricted to a particular order. These higher order models
may be difficult to work with, and Mathworks aims to make this easy.

Figure 4.1 is a flowchart found in the patent [25], describing the main steps used to obtain
parameters. The flowchart is general, and all steps do not apply to all situations. For
example, the linearization steps when working with transfer functions. The figure also
shows that if the specification from the user cannot be met, the algorithm modifies the
specification. Based on information in the patent, the following can be said about the
process of tuning, which is step 6 in figure 4.1. To be able to determine the controller
parameters based on specified PM and ωc, the parameterization of the controller in 4.1 is
used. ωc is either user-specified or selected based on the natural frequency of the plant.

C(s) =
ωc

s
(
sinφzs+ωccosφz

ωc
)(

sinβ s+ωccosβ

sinαs+ωccosα
) (4.1)

58

4.1 Matlab pidtune

Figure 4.1: Flowchart for the pidtune algorithm, from patent [25]

Where crossover frequency ωc and phase margin θm are fixed values and α and β are free
variables in the range:

0 < α < β < 90
∆φ −90 < β −α

At first, an initial guess for α and θ are used, then a plurality of the free parameters
are identified. Gridding technique is used to discard values of α and β that violates the
constraint or fail a Nyquist stability test. The patent states that gradient descent optimiz-
ation technique is used to search through the free parameters, and choose the parameters
that produce the smallest value of an objective function that includes a sensitivity func-
tion and a complementary sensitivity function. A known robustness measure based on

59

4 PI and PID controller tuning methods

these transfer functions is the Mst value in 3.18. The optimization problem given in the
patent is stated as:

min F = maxωmax(|S(s)|−2, |T (s)|−Tmax,Tmin −|T (s)|)

Subject to:

Tmin(ω) =
1

max(1,ω/ω0/1.5))

Tmax(ω) =
1

max(1,ω0/ω/1.5))

Based on this it can be said that the algorithm uses TF to tune controllers which minimizes
a performance criteria related to Mst , which satisfy a stability test and gives prescribed
PM.

. . Use of pidtune Matlab function

C = pidtune(sys, type/C0, (wc), (opts))

There are two mandatory arguments, sys, which is the plant model, and ”type” or c0,
which is the specification of the desired controller. The controller can be specified with
a text string, for example, ’PI’, or by passing an object, c0, which is an initial controller
on the desired form. C0 can be a transfer function or a pid object, created using Matlab
functions pid or pidstd. Pidtune can also be used to tune 2DOF controllers. By only
specifying plant and controller the default settings are ”balanced” design focus and phase
margin of 60 degrees.

To specify additional options, the pidtuneOptions function is used to create the object,
opts. 3 options can be specified by the user:

• PhaseMargin - Used to specify the desired phase margin

• DesignFocus - Used to specify the desired design focus, ’reference-tracking’,
’disturbance-rejection’ or ’balanced’ which is the default setting

• NumUnstablePoles - Used to specify the number of RHP unstable poles in the plant

Besides, the desired crossover frequency, ω0, can be specified directly in the pidtune
handle. The following sections provide examples of different characteristics obtained using
different options.

60

4.1 Matlab pidtune

Design focus

Using the design focus option enables the user to prioritize reference tracking or disturb-
ance rejection while keeping the same crossover frequency. Figure 4.2 shows the closed
loop response using different design focus. The plant is a 5th order process, and a PID
controller is used. The margins and controller parameters for the tuned controllers can
be seen in table 4.1. The largest phase margin is obtained by favoring SP tracking.

Figure 4.2: Comparison of SP tracking and disturbance rejection with different design focus, using pidtune

Table 4.1: Comparison of controller parameters when specifying design focus
Setting Kp Ti T d ωc PM GM

”Balanced” -2.32 0.511 0.0365 2.3750 69.2156 ∞

”SP tracking” -2.56 0.819 4.21e-05 2.3750 78.4312 ∞

”Disturbance rejection” -2.01 0.343 0.0858 2.3750 60.0 ∞

Phase margin

Figure 4.3 shows the closed loop step responses when specifying different phase margin.
Specifying a lower phase margin gives more aggressive controllers with higher controller
gains. Resulting margins and parameters are given in table 4.2.

61

4 PI and PID controller tuning methods

Figure 4.3: Comparison of SP tracking and disturbance rejection when specifying PM, using pidtune

Table 4.2: Comparison of controller parameters when specifying PM
Setting Kp Ti ωc PM GM
”PM 60” 17.8 3.31 2.73 60.0 8.71
”PM 70” 12.5 3.26 2.72 70.0 12.33
”PM 80” 11.7 4.14 2.81 80.0 13.93
”PM 90” 11.3 5.47 2.89 90.0 15.15

Crossover frequency, ωc

Crossover frequency can be specified directly in the pidtune handle, shown in section 4.1.2.
The gain crossover frequency, ωc, is related to the control bandwidth of the system, which
is the highest frequency where the system output tracks an input sinusoid in a satisfactory
manner [26]. This means that bandwidth measures the speed of response and that higher
ωc gives a quicker response, while low ωc favor robustness. The following example is with
a PID controller tuned based on a 3rd order process. Figure 4.4 shows the closed loop
step responses of 4 different systems with different crossover frequencies. Table 4.3 shows
all margins and parameters for the systems. As expected the system with the highest ωc
has the highest gains and thus lowest margins.

62

4.1 Matlab pidtune

Figure 4.4: Comparison of SP tracking and disturbance rejection when specifying different ωc

Table 4.3: Comparison of controller parameters when specifying ωc

ωc setting Kp Ti T d ωc PM GM
0.5 0.236 10.3 0.16 0.5 74.2 ∞

0.8 0.403 6.02 0.207 0.8 74.3 ∞

1.2 0.659 5.35 0.0687 1.2 69.2 ∞

1.5 0.878 5.08 0.056 1.5 69.5 ∞

. . Graphical interface

Matlab also has a graphical tool for tuning PID controllers based on the same algorithm,
the tool can be opened with the ”pidTuner” command. If the app is launched without
arguments, a plant model must be imported later. Type of controller can be specified in
the handle or the user interface. If a controller is passed as an argument when opening
the app, this controller is used as a baseline. This means that the controller design is
compared to hc, as shown in figure 4.5b. The layout of the pidTuner app can be seen in
figure 4.5.

When opening the app, a controller is automatically tuned. This controller can be mod-
ified by manipulating 2 ”sliders”, response time and transient response. Adjusting the
response time towards faster response gives larger Kp and more overshoot. The response
time setting uses seconds as a unit and is approximately the time the system uses to
reach 90% of the final value. Transient means that a system’s response to an input signal
is temporary before the system reaches steady state [4]. This means that adjusting the
transient response changes how the system reacts to changes in inputs or disturbances.

63

4 PI and PID controller tuning methods

(a) The graphical interface layout
(b) The graphical interface when passing hc

argument

Figure 4.5: Matlab pidtuner graphical interface

The transient behavior can be adjusted to become more robust or more aggressive. The
settings response time, and transient behavior are interconnected and changes in one
might affect the other, and there are also limitations to what responses are possible. For
example, with a first-order system with a PI controller, if the response time is set slow
(10sec), the transient behavior setting barely changes the system dynamics.

. . Cases where pidtune fail

A test was performed to find models where pidtune fail to give a stabilizing controller.
A loop generating different random stable state space models were used for this purpose.
For each model, a PI controller was tuned using pidtune, and then allmargin was used
to test for stability. This process was repeated until 30 unstable systems were found, for
both 2nd, 3rd, 4th and 5th order systems. A total of 70 213 different systems was tested
to find these 120 unstable plant models. Some characteristics of these plants are given
here:

• 2nd order plants

– 27 double integrating

– 3 with large value complex poles close to the imaginary axis

– All can be stabilized with pidtune, using PID controller

• 3rd order plants

– 26 has a double integrator

– 2 has an integrator and complex poles close to the imaginary axis

– 2 has complex poles close to the imaginary axis

– 2 can be stabilized with pidtune using PID controller

– 1 can be stabilized with PI controller, using optimization tuning

64

4.1 Matlab pidtune

• 4th order plants

– 18 has a double integrator

– 11 has a double integrator and complex poles

– 1 has an integrator and complex poles

– 3 with large value complex poles

– 0 can be stabilized with pidtune and PID controller

– 1 can be stabilized with PI controller, using mftun

• 5th order plants

– 11 has a double integrator

– 1 has a double integrator

– 18 has a double integrator and complex poles

– 1 can be stabilized with pidtune and PID controller

– 1 can be stabilized with PI controller using mftun, delta tuning, Cohen coon,
SIMC or ZN PRC

– 2 can be stabilized with PI controller, using optimization tuning

Figure 4.6 shows the open loop step responses for 3 of these systems, as seen they have
integrating and/or oscillating behavior. This test was performed to find weaknesses in
pidtune, and it seems that integrating systems cause the most problems. However, a large
amount of systems had to be tested to find these, making pidtune a very robust tuning
method.

65

4 PI and PID controller tuning methods

Figure 4.6: Examples of open loop step responses from systems where pidtune algorithm does not give a
stabilizing controller

. . DIPTD systems and pidtune

As seen in section 4.1.4, pidtune may struggle with systems containing integrators and
double integrators. When using pidtune with default settings on a DIPTD process the
performance is less than that of other methods, as for example δ -tuning. Figure 4.7 shows
setpoint tracking and disturbance rejection, for the default controller as well as attempts
to increase performance by adjusting PM and ωc. The plant has K=1 and θ = 2, and the
δ controller has default settings. As seen the performance can be improved but does not
match δ -tuning.

Table 4.4 shows the results of the simulation. Lowering ωc gives better disturbance
rejection and high margins. The PM was set to 30, but the algorithm does not allow a
lower PM than 48, which gives the best performance.

Table 4.4: Pidtune performance with DIPTD systems, using different settings
PM GM Ms IAEr IAEv

Default settings 60 3.2972 1.5596 9.6188 1.2742e+05
PM 30 48 2.5315 1.8529 8.2691 7.7737e+03
ωc 0.15 60 5.1940 1.3307 12.2790 8.2612e+04

delta tuning 30 2.1988 2.2790 9.3715 444.9121

66

4.1 Matlab pidtune

Figure 4.7: Step responses for SP tracking and disturbance rejection, comparing different settings for
pidtune, delta tuning for reference

. . Summary pidtune

• Advantages

– Simple to use, little knowledge required

– Robust/flexible

– Fast, despite optimization

• Disadvantages

– A proprietary algorithm, requires a Matlab license

– Require model

– Bad performance with DIPTD processes, and other integrating systems

• Use with SSM

– Pidtune works directly with state space models. The algorithm uses TF but
pidtune has built-in capability for conversion and linearization

67

4 PI and PID controller tuning methods

. Delta tuning rules

The δ -tuning rules are presented in papers [27]–[30] by Di Ruscio and Dalen. The tuning
rules ensure a prescribed maximum time delay error to time delay ration, denoted δ as
in 4.2. The delta tuning rules contain two tuning parameters that must be specified, δ

and c̄. Method product parameter c̄ = αβ , is chosen based on desired robustness. Using
values suggested in papers for δ and c̄, gives tuning rules that are simple to use and
remember, while still giving flexibility for more experienced users.

δ =
dθmax

θ
(4.2)

The first paper from 2010 [27] presents tuning rules for a PI controller for IPTD processes,
which has been extended to include tuning rules for PD/PID controllers for DIPTD
processes [28]. Later, a PRC approach to the δ -tuning rules was presented [29], [30].

. . PI controller for integrating plus time delay

In the paper from 2010 where the delta tuning rules for IPTD are introduced, it is shown
that all tuning rules for this type of plant can be formulated as in 4.3. An approach to
obtain α and β , based on parameters δ and c̄, are then presented.

Kp =
α

Kθ
, Ti = βθ (4.3)

The following formulas are used to find α and β :

f =
1+

√
1+ 4

(c̄)2

2
=

1+
√

1+ 4
c̄2

2

a =
arctan(

√
f c̄)√

f
=

arctan(
√

f c̄)√
f

β =
c̄
a
(δ +1)

α =
a

δ +1

where:

68

4.2 Delta tuning rules

f = Factor used to find a
a = Factor used to find β and α

c̄ = Tuning parameter 1.5 ≤ c̄ ≤ 4
δ = Prescribed delay margin 1.1 ≤ δ ≤ 3.4

Choosing c̄= 2 and δ = 1.6 as suggested by Di Ruscio, the PI controller for IPTD processes
are given by 4.4.

Kp =
0.4
Kθ

, Ti = 4.995θ (4.4)

. . PD and PID controller for double integrating plus time delay

In 2017 the δ tuning rules were extended to include PD and PID controllers for DIPTD
systems [28]. As seen in 4.5, a new parameter, γ , is included.

Kp =
α

KθTd
, Ti = γTd, Td = βθ (4.5)

Where γ is the relative integral derivative time ratio. γ should be chosen such that
1 ≤ γ ≤ inf. Choosing c̄ = 2.5 and γ = 2.1, gives the tuning rules in table 4.5.

In addition, there are 2 different ways of specifying the tuning parameter, δ :

• DM = dθmax = δθ , the delay margin varies relative to the time delay, and the tuning
parameter δ should be chosen in each case to get acceptable responses. The margins
PM, GM, and Ms are constant when using this option.

• DM = dθmax = δ , the second option is to specify a fixed DM, independent of the
dead time, which gives varying margins. This is achieved by choosing δ = δ/θ .

Table 4.5: Delta DIPTD tuning rules, using suggested settings
kp Ti Td

PD 0.549
kθTd

4.551θ

PID 0.549
kθTd

2.1Td 4.551θ

69

4 PI and PID controller tuning methods

. . Delta tuning PRC method

The delta PRC tuning rules were introduced in 2018 [30], and uses metrics R and L,
explained in section 2.4.1, to approximate a DIPTD model. The δ -tuning rules in section
4.2.2 are then used to obtain a PID controller. The gain and time delay in the DIPTD
model are found using the following formulas:

K = ζ
R
L

θ = ηL

where ζ and η are chosen to be:

ζ = 1 or 6
η = 1/2 π

In most cases, choosing ζ = 1 gives the best results.

. . Approximating processes as (D)IPTD using optimization

Dalen and Di Ruscio also present an optimization-based approach for approximating a
IPTD or DIPTD model based on a step response [31]. This approximation method is
referred to as δ -optimization in this report. This model is then used to obtain PID
parameters, based on the δ -tuning rules. Matlab optimization function, fmincon, is used
to find ρ = [K θ Tf] which minimizes the objective function J:

J =
1
N
(y− ŷ)T I(y− ŷ)

With the constraints Aρ ≤ b and lb ≤ ρ ≤ ub, and the following parameters:

lb =

 c1
−in f
−in f

 , ub =

 c2
in f
in f

 , A =

1 0 0
0 −1 0
0 1 1

 , b =

c2
1
1

c1 and c2 are the lower and upper bound for the gain and must be selected for each
case. In the implementation used in this thesis, the bounds are chosen by checking R, to
automate the method. If R < 0, c1 =−10 and c2 =−0.1, in all other cases c1 = 0.1 and
c2 = 10. These bounds are close to the ones used in the paper presenting the method.

70

4.2 Delta tuning rules

. . Mftun and megatuner

Mftun and megatuner are extensions to the δ -tuning rules that have been developed by Di
Ruscio and Dalen. The methods are relatively new, and no papers have been published
on them at this time. Mftun is a PRC method whereas the megatuner source code is
closed to the public, and the basis is therefore unknown. Both of these functions aim to
stabilize a large number of process models, thus competing with Matlabs pidtune.

Mftun has 2 ”paths”, and the first step is to check if any of the model’s eigenvalues
are zero. This implies an integrator in the system, and the PI controller is calculated
using the delta rules for integrating processes in section 4.2.1. If else, a set of process
describing variables based on a step response is calculated. The values obtained from the
step response can be seen in figure 4.8.

Figure 4.8: Graphically obtaned process describing variables obtained from step response and used by
mftune [32]

The PI controller is then calculated using the following formulas:

Kp =
1

ρR1T1

Ti =
R1ts

R1 −R2

Where ρ is a tuning parameter, and since there are no recommended values for ρ , a range
of values are tested. A lower value of ρ gives more aggressive tuning.

71

4 PI and PID controller tuning methods

Megatuner is currently available online in ver. 0.1, for Matlab [33]. The details of how
the method work is not publicly available, but some assumptions can be made. As the
method uses more time computing the controller parameters, with higher order models it
can be assumed that it is not a PRC method. The time usage is displayed in figure 4.9.
It is claimed that the method has been successfully tested on a million different random
SSM, which gave rise to the name. The available version of Megatuner does not handle
processes which contain integrators and can be seen as an alternative to the part of the
mftun algorithm that handles the systems without integrators.

Figure 4.9: Evolution of Megatuner time usage for tuning PI controllers when model order gets higher

. . Summary delta tuning rules

The basis for the delta tuning rules is the PI controller for IPTD systems and PID/PD
controller for DIPTD systems. In addition, 2 methods for approximating these types of
systems based on step response data are suggested. One uses R and L to approximate a
DIPTD model, the other uses optimization to approximate an IPTD or DIPTD model.

• Advantages

– Simple and easy to remember if default tuning parameters are used

– Tuning rules for integrating systems which can be hard to control

– Gives good performance for DIPTD systems

– mftun is very robust and only has one tuning parameter which makes it easy
to use

• Disadvantages

72

4.3 Ziegler and Nichols tuning rules

– Many approaches for implementation, can be hard to get an overview of the
rules

– Describing higher order systems using 2 parameters might not work in all cases

• Use with SSM

– The SSM can be simulated in open loop to obtain Y, which then can be used
with the δ -PRC method or the δ -optimization method

– A IPTD model can be approximated using all 3 methods in section 2.4

– A DIPTD model can be approximated using optimization described in 2.4

. Ziegler and Nichols tuning rules

The Ziegler and Nichols tuning rules were published in the paper ”Optimum Settings
for Automatic Controllers”, in 1942. 2 different methods for PID tuning was purposed,
an ultimate gain method and a PRC method. These are some of the most popular
tuning methods today, despite well-known disadvantages. There have been numerous
suggestions to update the ZN tuning rules by for example Hegglund and Åstrøm [34],
Tyreus and Luyben [35], and by Haugen [36]. The ZN tuning methods use two parameters
to describe the process and provides simple formulas to calculate the parameters based
on this. This makes the tuning simple, but it is not always enough to describe the
process characteristics. ZN defined acceptable closed-loop stability using the amplitude
ratio between peaks in y, following an input step. The ratio between the first and second
overshoot/undershoot should be 1/4. This results in a controller with poor damping and
robustness.

• Advantages

– Simple and easy to remember

– Useful when overshoot is no problem

• Disadvantages

– No tuning parameter

– Results in rather aggressive closed-loop response

– Cannot be used for all processes, like DIPTD

• Use with SSM

– Perform open loop simulation of SSM to obtain PRC values

– For the closed loop method, find GM and ω180 to compute UG and UP

73

4 PI and PID controller tuning methods

. . Ultimate gain method

The UG method is performed by bringing the closed-loop system to marginal stability
and timing the oscillations. The procedure is to use a pure P controller and increase the
gain until the system has sustaining oscillations. The gain required to make this happen
is called ultimate gain. The ultimate period is the time of one period. These metrics are
then used to calculate controller gains according to table 4.6.

Table 4.6: Ziegler and Nichols ultimate gain tuning rules
kp Ti Td

P Ku
2

PI Ku
2.2

Pu
1.2

PID Ku
1.7

Pu
2

Pu
8

In Matlab, the ultimate gain method can be implemented by finding the GM and ω180
by using margins. Ultimate gain and period are then:

Ku = GM

Pu =
2π

ω180

. . PRC method

The original ZN PRC method uses the variables R and L to describe the process, but
later the method has been converted to an alternative which use, gain, time constant and
time delay instead i.e. a FOPTD approximation. The alternative using R and L has the
advantage that it can be used to describe integrating processes. For self-regulating plants
the FOPTD approximation may give a better description of the dynamics. The ZN PRC
tuning rules for these two alternative methods are presented in tables 4.7 and 4.8.

Table 4.7: Ziegler and Nichols PRC method, using R and L
Kp Ti Td

P 1
LR

PI 0.9
LR 3.3L

PID 1.2
LR 2L 0.5L

74

4.4 Cohen-Coon tuning rules

Table 4.8: Ziegler and Nichols PRC method, using FOPTD approximation [12]
Kp Ti Td

P T
kΘ

PI 0.9 T
kθ

3.33θ

PID 1.2 T
kθ

2θ 0.5θ

. Cohen-Coon tuning rules

The Cohen-Coon tuning rules was published in 1953 [37], 11 years after Ziegler and Nichols
published their rules and are still used today. As with the ZN tuning rules, the Cohen-
Coon rules are aimed to achieve a quarter decay ration. The Cohen-Coon tuning rules
are a PRC method, which uses a FOPTD approximation. The controller is given by the
formulas in table 4.9. Compared to ZN, this tuning method gives a faster response and
works better on processes with long dead time compared to time constant. This difference
is illustrated in figure 4.10.

Table 4.9: Cohen-Coon tuning rules [12]
kp Ti Td

P 1.03
k (θ

T +0.34)

PI 1
k (0.9

T
θ
+0.083) T (3.33(θ/T)+0.31(θ/T)2

1+2.22(θ/T))

PD 1.24
k (θ

T +0.129) 0.27T θ−0.324T
θ+0.129T

PID 1
k (1.35T

θ
+0.25) T (2.5(θ/T)+0.46(θ/T)2

1+0.61(θ/T)) 0.37θ

1+0.19(θ/T)

Summary of properties for Cohen-Coon tuning rules:

• Advantages

– Useful when overshoot is no problem

– Good in systems where θ is large compared to T

– Tuning rule for a PD controller

• Disadvantages

– No tuning parameter

– Results aggressive closed loop response

– Cannot be used for integrating processes

– Complicated formulas

• Use with SSM

75

4 PI and PID controller tuning methods

Figure 4.10: Input step response comparison between Cohen-Coon and ZN tuning, plant with large T to
the left, plant with large θ to the right

– Simulate model and approximate values

. Internal model control methods

IMC is a systematic method control system design. The IMC structure was introduced by
Garcia and Morari in 1982 [38] and is sometimes referred to as lambda tuning. The IMC
method uses a specific control structure to synthesize a controller mathematically, this
structure is shown in figure 4.11. For most SISO systems the IMC methods lead to a PID
controller [39]. Using the IMC method enables the user to specify the sensitivity function
and the complementary sensitivity function, which directly determines the nature of the
closed loop response.

Figure 4.11: IMC control loop structure, block diagram

76

4.5 Internal model control methods

The first step is to factor the model h̃p into two parts. One containing all the non
minimum phase elements, being RHP zeros and time delays, denoted h̃p+. The other is
minimum phase and invertible, denoted h̃p−. An IMC controller can then be specified
as:

h̃c = h̃p−1
−

Step 2 is to add a filter, f(s), to h̃c, such that hc = h̃c f (s), this is done to make the
controller proper. The sensitivity function and complementary sensitivity function can
now be express as functions of h̃p, hc, and f. A common choice for f is:

f =
1

(λ s+1)n

Depending on the factorization of hp and the choice of f, the resulting controller paramet-
ers won’t change for a given plant transfer function. For this reason, it is not necessary
to do the math every time, and there are tables expressing controller gains as functions
of λ , T, θ and other values, depending on process type [40].

. . SIMC

The simple internal model control tuning rules was presented by Skogestad in 2001[41]
and has its roots in the IMC method from 1982. The motivation for developing SIMC
was the poor margins given by the widely used Ziegler Nichols methods. This method
has since become popular [42]. The SIMC tuning requires a FOPTD or a SOPTD plant
model, which gives a PI controller or a PID controller, respectively. SIMC has later been
extended for IPTD and DIPTD processes, and the iSIMC rules, presented in the following
sections. The original SIMC rules for PI and PID controllers are given in table 4.10.

Table 4.10: SIMC tuning rules
Kp Ti Td

PI 1
K

T1
Tc+θ

min[T1,4(Tc +θ)]

PID 1
K

T1
Tc+θ

min[T1,4(Tc +θ)] Td = T2

Where Tc, the closed-loop time constant is the tuning parameter in the range: −θ < Tc <
inf. Small values of Tc gives a fast response and disturbance rejection, while large values
favor stability, robustness, and small input usage. In most cases, Tc = θ is a good choice,
which gives a fast response with good stability margins. The SIMC rules give controllers
on the series form.

77

4 PI and PID controller tuning methods

iSIMC

In a paper from 2018 Skogestad suggest an improvement to the original SIMC rules, called
iSIMC [15]. There are two suggested improvements in this paper, for a FOPTD process
iSIMC suggests adding derivative action. For delay dominant processes, updated tuning
rules for a PI controller is suggested. For processes where T > θ/2 the benefits of iSIMC
are marginal, and in some cases negative.

Table 4.11: iSIMC tuning rules
Kp Ti Td

PI 1
K

T+θ/3
Tc+θ

min[T +θ/3,4(Tc +θ)]

PID 1
K

T1
Tc+θ

min[T1,4(Tc +θ)] Td = θ/3

SIMC for double integrating processes

In 2016 Skogestad presented SIMC tuning rules for double integrating processes [43].
These rules for a PID controller are given by:

Kp =
1
K

1
4(Tc +θ)2

Ti = 4(Tc +θ)

Td = 4(Tc +θ)

SIMC summary

• Advantages

– Simple formulas to obtain controller parameters

– Gives a controller with good performance and reasonable robustness

– Tuning parameter for adjustment

• Disadvantages

– Rely on FOPTD or SOPTD approximations and cannot be used for all systems

• Use with SSM

– Convert SSM to TF, then use model reduction if needed and obtain parameters

78

4.6 Optimization based tuning

– Gain, time constants and θ can be obtained by simulating a step response
from the SSM and then using techniques in section 2.4

. Optimization based tuning

PID parameters can be chosen based on optimization. Two different methods are used
in this thesis, and they are explained in 4.6.1 and 4.6.2. When tuning a PID controller
based on optimization, the PID parameters are adjusted in such a way that an objective
function is minimized. The objective function can be chosen freely to favor a certain
type of system behavior. The optimization algorithm used in this thesis is fmincon in
Matlab.

• Advantages

– Can be made to work with any model

– Closed loop characteristics can be determined by choosing an objective function
and/or weights

• Disadvantages

– Computational expensive

– Global minimum of the cost function cannot be guaranteed

– Optimization algorithm can fail

– May require manual tuning of weights in each case to get good results

– Require an accurate process model

– Initial controller parameters must be guessed or found using a secondary tuning
method

• Use with SSM

– If the objective function is based on measures such as IAE and input usage,
which can be found from a numeric simulation of SSM, this method can be used
directly with SSM. In other cases, there might be a need to do conversions, for
example if Ms is used.

79

4 PI and PID controller tuning methods

. . Optimization tuning, using transfer functions

The first optimization technique tested in this thesis is referred to as Opt 1 or TF Opt.
This implementation requires the SSM to be converted to a transfer function, as it uses
the Ms value. It uses the Matlab step function to calculate IAE values. Defining x =
[Kp, Ti, Td], the optimization problem can be stated as:

x̂ = min J(x) s.t lb ≤ x ≤ ub (4.6)

where:
J = W1IAEr + W2IAEv + W3Ms

lb =

− inf
0.001

0

 , ub =

inf
inf
inf

W1 =Weight for SP tracking
W2 =Weight for disturbance rejection
W3 =Weight for robustness

. . Optimization tuning, based on SSM

In order to eliminate the use of transfer functions a second optimization approach, referred
to as Opt 2 or SSM Opt, was tested. It was discovered during testing that TV and Ms
values have a positive correlation. So in the second optimization method TV was used to
improve robustness. The optimization problem is stated as in 4.6, but with the objective
function:

J = W1IAEr + W2IAEv + W3TV

Another approach to increase the robustness could be to minimize the overshoot given by
4.7. This can also be calculated without involving TF.

OS = ymax −1 = ||y||∞ −1 (4.7)

80

4.7 Auto-tuning

. . Pareto optimal controller

A ”Pareto-optimal” controller is often used as a reference controller. Pareto-optimality
is used for multiobjective problems, performance, and robustness in this case, and means
that no improvement can be made in performance without sacrificing robustness [20]. The
optimization problem is given by:

x̂ = min J(x) s.t

{
lb ≤ x ≤ ub

Ms(x)−Mo
s = 0

where:
J(x) = 0.5(

IAEr(x)
IAEro +

IAEv(x)
IAEvo) (4.8)

x = Controller parameters, [Kp,Ti]
Mo

s = Prescribed Ms (1.59)
IAEro = Reference value from IAEr optimal controller
IAEvo = Reference value from IAEv optimal controller

. Auto-tuning

Most commercial controllers have some sort of auto-tune capability. This is a ”1 button
push” approach to obtain controller parameters. This method requires the controller to
be connected to the process. The auto-tuning algorithm executes some experiment to
gain information on the process and then calculates the controller parameters.

A commonly used method used by auto-tuning algorithms is the relay tuning, as presented
by Åström and Hägglund [44]. This method replaces the PID controller by an on/off
controller, which will induce oscillations in the output. These oscillations have roughly
the same period as in the Ziegler Nichols closed loop method, and ultimate gain can be
calculated. This method is less time consuming than the Ziegler Nichols approach and
thus, more suitable in an auto-tuning algorithm.

• Advantages

– Easy to perform

• Disadvantages

– Gives the user none, or very little information about the process, or the closed
loop performance and robustness

81

4 PI and PID controller tuning methods

• Use with SSM

– Not applicable. This method is used on-line, with the real process

– Relay tuning might be used with SSM by simulation, and switching between
setting u=0 and u=1

82

Comparison of tuning methods

This chapter gives a comparison of the different tuning methods presented in chapter 4.
Sections 5.1, 5.2, and 5.3 presents a comparison based on common system types, which are
described in section 2.3. The values for K, θ , and T are taken directly from the transfer
functions. This is done to give precise tuning based on the models and to illustrate
the differences between the methods accurately. The optimization method used in these
experiments is based on TF and is described as Opt 1 in section 4.6.1, the W3 weight is
set to zero. The results obtained from these tests can be compared to the results from
sections 5.5 and 5.6, where random state space models are used.

. Comparison of tuning methods based on first order plus

time delay model

This section compares PI tuning rules based on the FOPTD model given by equation
2.17. Figure 5.1 shows the evolution of the tuning parameters Kp and Ti when the time
constant, T, is increased, while K and θ are 1. These graphs demonstrate how differently
controllers can be tuned for the same plant, while still giving a stable closed loop system.
This illustrates why controller tuning is such a debated topic with numerous tuning rules.
The most notable difference is that mftune and pidtune results in small values for Kp,
which does not vary much when T is increased. The more aggressive setting for mftun
shifts Kp higher but does not affect Ti. The other methods give increasing values for Kp
as T are increasing. CC and ZN PRC method provide the highest, and also the same
values for Kp. The values for Ti are steady for most of the methods, the exception being
pidtune, mftun and megatuner which gives higher values for Ti with increasing T. The
Kp curve for megatuner strengthens the notion that it is based on an iterating algorithm.
The optimization tuning also results in nonlinear curves.

Figure 5.2 shows the Ms and TV values of the controllers. The methods with the steepest
slope for Kp provides decreasing robustness. The graph also shows that the ZN UGmethod
results in better robustness than the PRC method when T is more than 2. For faster
systems, the ZN PRC method is best. The Ms graph shows that there are differences
to which methods give the best robustness for systems with small time constants and
larger time constants. Another key point from this graph is that SIMC offers a steady

83

5 Comparison of tuning methods

Figure 5.1: Evolution of controller parameters for different tuning methods when using FOPTD model,
with an increasing time constant, T

value of Ms, which is close to the desired 1.59. The choice of ρ for mftune has less effect
on robustness for systems with larger time constants. Comparing the graphs reveal a
correlation between the input usage and the Ms value. They also show that megatuner is
not designed to prescribe a specific value for Ms.

Figure 5.2: Comparison of Ms and TV for different tuning methods based on FOPTD model, with an
increasing time constant, T

A common way of comparing tuning methods is to plot the performance, J, against the

84

5.1 Comparison of tuning methods based on first order plus time delay model

robustness, Ms, where J is given by 4.8. Figure 5.3 shows the trade for some of the
methods tested in this section. The SIMC curve is obtained by adjusting Tc between 0
and 3, and the default value of T c= θ is marked. Optimization gives the best performance
while keeping Ms less than 2 in both cases, while SIMC is second best. The optimization
curve is obtained by adjusting the Ms weight between 0 and 4. The plot also shows how
ZN PRC changes characteristics from being robust and slow to being aggressive.

Figure 5.3: Trade-of plots between robustness and performance, comparing different methods based on a
FOPTD model with T=1 and T=10

Figure 5.4 shows that the high robustness scores of pidtune and mftun come at the cost
of performance, as both present higher values for IAE. The more aggressive setting for
mftune give better performance without sacrificing robustness, especially with high values
of T. The rest of the controllers give a similar performance for both disturbance rejection
and SP tracking.

Figure 5.5 shows the step response from r to y and v to y for the different tuning methods
for a FOPTD model with T=2. Cohen-Coon and both the Ziegler Nichols methods give
aggressive dynamics, with oscillations. SIMC provides good balance between robustness
and performance, with good responses for both SP tracking and disturbance rejection.
Mftune give the best disturbance rejection in a sense that it is the fastest without giving
any oscillations.

Table 5.1 contains the mean values of the calculated scores presented in this section. The
main point here is that pidtune and mftune, favors a high level of robustness, while ZN
PRC and Cohen-Coon give a Ms value higher than recommended. The SIMC settings
results in a controller which balances all the measures, which explains its popularity.

85

5 Comparison of tuning methods

Figure 5.4: Comparison of IEA for SP tracking and disturbance rejection using different tuning methods
for FOPTD model, with an increasing time constant, T

Figure 5.5: Comparison of step response for SP tracking and disturbance rejection using different tuning
methods for a FOPTD model with T=2

86

5.1 Comparison of tuning methods based on first order plus time delay model

Table 5.1: Mean measurements of performance and robustness, FOPTD
GM PM Ms IAEr IAEv TV

pidtune 19.4 60 1.25 9.45 5.91 1.23
mftune ρ = 3 39.1 72 1.09 15.73 12.42 0.56
mftune ρ = 1 13.0 66 1.21 7.50 4.90 1.30
megatuner 8.8 59 1.33 5.85 3.11 3.57

SIMC 3.1 56 1.63 2.85 1.21 9.59
ZN UG 1.9 31 2.62 3.24 0.48 30.93
ZN PRC 1.6 26 3.45 3.75 0.48 54.56

Cohen-Coon 1.5 21 3.93 4.32 0.45 62.72
Optimization 2.0 39 2.32 2.75 0.60 24.53

87

5 Comparison of tuning methods

. Comparison of tuning methods based on integrating plus

time delay model

In this section, tuning rules for an IPTD model are compared. The Cohen-Coon tuning
rules cannot be applied to this type of system and mftun is equal to the δ -PI rules, and
therefore not included. In this section, θ is increased from 1 to 5, while K is kept constant
at 1.

Figure 5.6 shows how controller parameters Kp and Ti change when θ is increasing. The
Kp values are small and close together, suggesting that there is little room for adjustment
before the system goes unstable. Larger values for θ gives smaller gains, as this makes
the system more difficult to control. ZN and optimization results in the most aggressive
controllers. The ZN UG method fails when θ > 3.5.

Figure 5.6: Evolution of Kp and Ti using different tuning methods for a IPTD model with increasing θ

The same correlation between TV and Ms as for the FOPTD test are seen in figure 5.7.
In this case, the robustness of the different methods is more steady than for the FOPTD
example. Pidtune gives the most robust controller with the lowest input usage, while
SIMC and delta provide similar controllers. The trade-off plot in 5.8 also shows that
delta and SIMC are similar but that the default choice of delta favors robustness over
performance compared to SIMC. The δ -tuning curve is obtained by adjusting δ between
1.1 and 2.1. The other methods give good performance but poor robustness.

88

5.2 Comparison of tuning methods based on integrating plus time delay model

Figure 5.7: Comparison of Ms and TV for different tuning methods based on a IPTD model with increas-
ing θ

Figure 5.8: Trade-off plot between robustness and performance, comparing different methods based on a
IPTD model with θ=1 and K=1

The IAE values for SP tracking show that the different methods give similar perform-
ance, with SIMC and optimization at the lower end and pidtune at the higher end. The
differences are more significant regarding disturbance rejection, where pidtune performs
considerably worse than the other methods. ZN and optimization produce the lowest IAE
values.

Figure 5.10 shows the step responses for SP tracking and disturbance rejection for the dif-
ferent methods. This example shows the difference between the more aggressive methods
being ZN and optimization, with Ms larger than 2, and the slower methods like pid-
tune. The aggressive tuning methods give much faster rise time but also shows oscillating

89

5 Comparison of tuning methods

Figure 5.9: Comparison of IEA for SP tracking and disturbance rejection using different tuning methods
for a IPTD model with increasing θ

behavior.

Figure 5.10: Comparison of step response for SP tracking and disturbance rejection using different tuning
methods for a IPTD model with K=1 and θ = 3

Table 5.2 summarizes the results from the tests in this section. Note that the values for
the ZN UG method is only the mean values for θ between 1 and 3.5, as the method fails
with larger values for θ .

90

5.3 Comparison of tuning methods based on double integrating plus time delay model

Table 5.2: Mean measurements of performance and robustness, IPTD
GM PM Ms IAEr IAEv TV

pidtune 5.0 60 1.34 15.4 438.8 0.1465
delta 3.5 40 1.65 13.5 141.9 0.2867
SIMC 2.96 47 1.70 11.7 163.2 0.2921

ZN UG* 1.8 25 2.86 8.8 313 1.0986
ZN PRC 1.5 18 4.19 14.3 54.5 1.7078

Optimization 1.6 23 3.40 11.7 51.1 1.2121

. Comparison of tuning methods based on double

integrating plus time delay model

The DIPTD model requires a PID controller to be stabilized and for that reason mftun
are not included in this test. ZN and CC tuning rules are also unable to stabilize a DIPTD
process. Like in section 5.2, K is kept constant, and θ is increased from 1 to 5. Figure
5.11 shows how the controller parameters are chosen based on different methods. The
differences in Kp are small, with the optimization method standing out when θ is small.
For higher readability, the pidtune parameters are left out of the plots displaying Ti and
Td, as the values are very high.

Figure 5.11: Evolution of controller parameters using different tuning methods and a DIPTD process
with increasing θ

Figure 5.12 presents the Ms values for the different methods. Both pidtune, SIMC, and
δ -tuning gives good robustness based on this measure. The optimization method gives

91

5 Comparison of tuning methods

poor robustness for small θ , but acceptable values when dead time reaches 3 seconds.
The reason for this might be that when θ is small, there is more room to increase gains to
obtain low IAE values, while for high θ , this introduces instability. The TV plot in figure
5.12 shows that the performance of the optimization controller comes at the cost of very
high input usage and that when θ is larger than 3, the difference between the controllers
is small. Looking at figure 5.13, which compares IEA shows that the optimization method
achieves the lowest values for both SP tracking and disturbance rejection. In this case,
pidtune stands out as considerably worse than the other methods and is left out of the
disturbance rejection plot. When using the setting δ -tuning with varying Ms, superior
performance for models with high dead time is achieved.

Figure 5.12: Comparison of Ms and TV for different tuning methods based on a DIPTD model with
increasing θ

92

5.3 Comparison of tuning methods based on double integrating plus time delay model

Figure 5.13: Comparison of IEA for SP tracking and disturbance rejection using different tuning methods
for DIPTD model with increasing θ

Figure 5.14 shows an example of step responses for a DIPTD plant and the different
tuning methods. These plots show that pidtune gives slow SP tracking and bad disturb-
ance rejection compared to the other methods. The responses from SIMC and delta are
similar, with SIMC favoring SP tracking and delta favoring disturbance rejection. The
optimization algorithm sacrifices SP tracking for disturbance rejection and increasing W1
should be considered.

Figure 5.14: Comparison of step response for SP tracking and disturbance rejection using different tuning
methods for a DIPTD model with k=1 and θ = 1.5

93

5 Comparison of tuning methods

Figure 5.3 summarizes the results of the current section.

Table 5.3: Mean measurements of performance and robustness, DIPTD
GM PM Ms IAEr IAEv TV

pidtune 3.3 60 1.57 240.3 1 068 500 0.0026
delta, varying Ms 2.0 51.8 1.52 52.9 15 152 0.0168
delta, constant Ms 3.31 41.5627 1.65 30.8 6 699 0.0303

SIMC 3.6 39.2 1.65 29.3 9 900 0.0320
Optimization 0.8 23.3 4.25 29.4 5 205 0.5480

. Comparison between pidtune, mftune, and megatuner

To investigate the robustness of pidtune and mftun, they were used to tune 1000 control-
lers of order 1 until 70, a total of 70 000, to see how many that could be stabilized. Tuning
PID controllers for 70th order models are not common, and the reason for this high num-
ber is to illustrate the trend in the data. A time delay of 1 second is added to each model.
A modified version of mftun was also included. This version uses the δ -optimization to
approximate a DIPTD model and tune a PID controller when the model has poles at the
origin. The results of this experiment are shown in figure 5.15, and the dotted lines are
the straight lines which fit the data best. Pidtune can stabilize most systems of order 1
until 10 before the success rate starts dropping, ending up at 90% stable systems at order
70. The success rate of mftun starts dropping from the beginning, ending up at about
60% at order 70, with the modified version performing worse. A comparison of speed was
also made between the two methods, using 100 6th order SSM. Pidtune uses 3.1 seconds
and mftun 1.5, which are impressive as pidtune uses iterations to find a controller that
suits a set of constraints.

Figure 5.15: Comparison of mftun and pidtune, percentage of stabilized closed loops versus model order

94

5.4 Comparison between pidtune, mftune, and megatuner

A test like the one performed on mftun and pidtune was conducted to test megatuner. In
this test, only models without integrators were used. The result is displayed in 5.16, and
as seen, megatuner does not fail a single time, while pidtune fails two times. By comparing
the results in figure 5.16 and 5.15, it becomes clear that the models with integrators are the
most challenging systems to tune controllers for. Taking this into account, mftun method
stabilizes slightly fewer processes than megatuner but uses a fraction of the time.

Figure 5.16: Success rate plotted against model order, comparison between mftun, megatuner and pidtune
(no integrating models)

Figure 5.17 shows the trade-off between the methods compared in this section. The PO-
optimal controller described in section 4.6.3 is used for reference. Mftun is close to optimal
in all cases, while megatuner gives less performance than the other methods. To make
the pidtune curves, ωc is used as the tuning parameter, and the graph shows that it is
possible to achieve close to optimal performance when Ms is between 1.7 and 2.2 for the
2 first systems. The graph also shows that the default pidtune controller is not the best
choice in these cases. For the IPTD model mftune (δ −PI) is best, while for the DIPTD
system they are similar in the region with Ms between 1.5 and 2. For the FOIPTD system
in equation 5.1, pidtune is slightly better, but both are close to optimal. However, the
default choice of pidtune gives high robustness at the cost of performance.

hp = K
1

s(T s+1)
e−θs (5.1)

95

5 Comparison of tuning methods

Figure 5.17: Performance vs robustness trade-off curves, comparison between pidtune, mftun, and mega-
tuner

. Comparison of PI controller tuning methods based on

randomly generated SSM

This section presents the results from tuning PI controllers based on randomly gener-
ated SSM, using the Matlab function rss. The controllers are tuned using the different
methods explained in chapter 4, and the Matlab code in appendix D. 2 different aspects
are compared; the success rate, performance, and robustness of the methods; and the
performance of the different methods for obtaining process parameters. The 3 different
methods for calculating model parameters from SSM are explained in section 2.4. This
experiment generated a large amount of data, which are provided in appendix B. This
section gives a discussion of the results, some examples, and a summary.

. . Description of the experiment used for method comparison

To compare the different tuning and estimation methods to each other, 100 random SSM
of order 3, 6, 9, 12, and 15 were generated, a total of 500 models. All the models have a
dead time of 1 second. It is the same 500 models that are used for all testing in section
5.5, and 5.6. All methods were used to tune PI controllers based on these models, using
the 3 methods for parameter estimation. For example, this means that the SIMC method
has been tested 3 times for each model, a total of 3∗100∗5 = 1500 times. The methods
pidtune, mftun, megatuner, δ -optimization, and optimization tuning does not rely on the
model estimation methods, as they are used directly on the SSM. This means that they
have been used once for each of the models. The performance and robustness measures

96

5.5 Comparison of PI controller tuning methods based on randomly generated SSM

presented are the median values based on the tuning attempts that gave a stable closed
loop system, i.e. the successful tuning attempts. The standard deviation of the Ms value
is included in all cases to illustrate the consistency of the method. The Ziegler Nichols
PRC tuning rules which rely on R and L has only been used once for each model.

Abbreviations used in plots:

• ZN UG - Ziegler Nichols Ultimate Gain method used directly on the generated SSM

• ZN UG est - Ziegler Nichols Ultimate Gain method used on the estimated model

• ZN PRC L and R - Ziegler Nichols PRC method using reaction rate R and Lag, L

• ZN PRC - Ziegler Nichols PRC method using time constant, gain and time delay

• Opt 1 - Optimization tuning which minimizes IAEr, IAEv and Ms, i.e. it uses
transfer functions see section 4.6.1

• SSM Opt - Optimization tuning using SSM exclusively, minimizes IAEr, IAEv and
TV. See section 4.6.2

About the models:

• 3rd Order, 12 has a pole at the origin

• 6th Order, 15 has a pole at the origin

• 9th Order, 15 has a pole at the origin

• 12th Order, 29 has a pole at the origin

• 15th Order, 11 has a pole at the origin

. . Results for tuning methods using estimated model parameters

The δ tuning rules for the IPTD system was included in the test, but only for models
with an integrator, which is the reason for the low success rate. δ tuning works best with
parameters from the optimization method, which give margins and Ms closest to the ones
obtained with a pure IPTD in section 5.2. The exception is for the 3rd order models
where the graphical parameter estimation is best. This test also shows that for higher
order models with integrators, it might be insufficient to use an IPTD approximation.
For the 30, 12th order models with an integrator, half could be stabilized using optimiz-
ation estimation. The measures for performance and robustness are inconsistent between
estimation methods, with Ms above 2 in many cases.

The SIMC and the iSIMC tuning rules produces the highest number of stable closed loops
when used together with graphical estimation. In general, the differences between iSIMC
and SIMC is small. iSIMC used together with procest stands out as the least effective

97

5 Comparison of tuning methods

combination in terms of success rate, but the best in terms of IAE measures. In general,
SIMC results in low values for IAE compared to the other methods in most cases.

The best overall combination in terms of success rate is ZN PRC together with graphical
estimation, which is a surprising result given that it is a method which results in small
margins. This combination also gives a small standard deviation of Ms compared to the
other methods. The ZN PRC method which uses the R and L values, provide similar
robustness but succeed far less than the rules based on K, T and, θ , which illustrates
the problem with using only 2 variables to describe the process. Using ZN UG based
on estimated data produce poor results for both performance and robustness, for all
estimation methods, this indicates that ZN UG needs an accurate model. The CC tuning
gives controllers with the lowest margin and middle to large values of IAE. Similar to
what was seen in section 5.1.

. . Results for methods using SSM directly

The first optimization tuning approach, Opt 1, works well with lower order models but
starts to fail when the model order is larger than 9. For the 15th order models, it only
succeeds 25 times. The problem is not that the closed loop becomes unstable, but instead
that the method fails. This error is caused because the SSM is converted to a TF, and
then a large amount of simulations is carried out to find the best parameters. For the
more complex TF, the chance of one of the simulations to fail becomes high. The other
optimization based tuning approach does not have this problem. The method gives good,
consistent values for performance and robustness.

Matlab pidtune with default settings only fail 4 times and are by that criteria the best
of all tuning methods considered. This number can be lowered to 2, by changing the PM
setting. For the lower order models, this method is among the best for SP tracking and
disturbance rejection. When increasing ωc for increased performance, the success rate
drops and the standard deviation of the results increase.

Megatuner gives stable closed-loop systems in all cases where there are no integrators.
The results show that megatuner provides a PM close to 51.6 in all cases, making it likely
that it is using a similar approach as pidtune to obtain controller parameters. Megatuner
gives average results for SP tracking and disturbance rejection compared to the other
methods.

ZN UG used directly on the SSM works well for lower order systems, but fail in the
majority of attempts when the model order is 9 or higher. This method results in poor
performance measured by IAE.

The δ -optimization based IPTD approximation cannot be said to work well in this test,
with the implementation used. The method is successful approximately half of the cases,

98

5.5 Comparison of PI controller tuning methods based on randomly generated SSM

Table 5.4: Optimization tuning settings
Wsp Wdr Wtv Goal

Set 1 1 1 1 Balance
Set 2 1 1 2 Robustness
Set 3 2 2 1 Performance
Set 4 1 2 1 Disturbance rejection

and the results are varying. The method seems to give tuning with high margins, and Ms
below 2.

The optimization based tuning method based on SSM was tested using 4 different settings
for the weight coefficients, these are listed in table 5.4. Figure 5.18 shows how the different
settings affect the performance and robustness, these are the mean values for all 500
models. Judging by this, the settings push the controller towards the intended goal
stated in table 5.4. In general, this method works well, but need improvement to compete
with pidtune, mftun, and megatuner in terms of success rate.

Figure 5.18: Summary of performance and stability measures for optimization-based PI tuning, 4 different
settings

Since there are no suggested value for the tuning parameter ρ for mftun, a plurality of
values was tested. The total averages for robustness and performance for these values are
shown in figure 5.19. The large spread in values indicates that adjusting ρ is an effective
way of getting desired closed loop characteristics. For the lower order models, ρ can be
selected as low as 1 without affecting the success rate but overall, a value ρ = 2 seems
like a good starting point.

99

5 Comparison of tuning methods

Figure 5.19: Summary of performance and stability measures for mftun, using different values for ρ, based
on all models

. . Summary of PI controller tuning results

This section summarizes the results for the PI controller tuning experiments. Figure 5.20
and table 5.5 contains the mean values for all tuning methods. This mean is calculated
using the median values for each tuning experiment and then calculating the average of all
these median values. The data basis for the methods using estimation is more extensive,
as each experiment with 100 random SSM of a given order is carried out 3 times. This is
because there are 3 different estimation methods, as explained in section 2.4.

The summary shows that the methods which present the most stable systems are pidtune,
mftun, SSM optimization, and megatuner. Of these methods, mftune gives the highest
margins and lowest value for Ms. SSM optimization is best for disturbance rejection and
pidtune is best for SP tracking. The SIMC methods and ZN PRC also work with a
large number of models but SIMC gives higher GM and lower IAE values than ZN PRC.
Pidtune, δ -optimization and ZN PRC RL provide the mean Ms values closest to 1.59.

There are tables with mean values per estimation method in appendix B. The simple
graphical method from estimating process parameters gives a higher success rate for all
the methods except for delta. The two other methods are similar to each other in terms
of success rate and seem to result in better controllers. A likely reason for this is that
the graphical method results in reasonable values, also for processes which cannot be
approximated well by a FOPTD model. This results in a stable closed loop but might not
give the desired performance. The other methods seem to produce ”unusable” numbers
when a model can’t be approximated well enough, this results in model parameters which

100

5.5 Comparison of PI controller tuning methods based on randomly generated SSM

Figure 5.20: Mean performance and stability measures for PI controller tuning methods, tuned using all
500 random SSM

are far from the real process and then instability. However, in the cases where they succeed
the model is closer to the original process. It is hard to draw any conclusions based on
the standard deviation of Ms, for the different estimation methods and all methods give
varying results.

101

5 Comparison of tuning methods

Table 5.5: Average robustness and performance values for all PI tuning methods
Stable PM GM Ms IAEr IAEv TV

pidtune 99 60 2.79 1.66 4.57 8.12 1.28
mftun(ρ1.5) 91.6 68.72 3.625 1.4621 5.3854 10.2371 1.0577
mftun(ρ2) 92.2 74.0499 4.7920 1.3241 6.4158 13.0460 0.8566
Opt 1 (TF) 72 53.332 2.356 1.917 4.867 7.222 2.009

SSM Opt (Set 1) 88 53.623 2.401 1.934 4.8842 6.789 1.354
Megatuner 83.4 51.587 3.323 1.71 5.017 8.185 1.511

Delta, IPTD approx 47.2 79.607 4.645 1.653 14.232 11.567 2.838
Delta 6.6 34.70 3.078 2.713 13.338 81.701 2.272
SIMC 72.667 59.948 2.96165 1.71885 3.365 7.8799 0.9775
iSIMC 69.533 62.394 2.7377 1.724 3.3501 7.8533 1.038

Cohen-Coon 59.4 38.184 1.785 2.773 4.484 6.9697 2.915
ZN PRC RL 49.4 89.644 3.028 1.656 17.73 16.116 1.427

ZN PRC K T θ 70.53 84.95 2.5178 1.852 9.999 13.486 1.5673
ZN UG 56.6 79.953 2.08579 1.985 21.759 23.8988 1.662

ZN UG est 39.5 74.6502 2.0134 2.2457 58.1964 30.9186 2.1631

. Comparison of PID controller tuning methods based on

randomly generated SSM

In this section, PID controller tuning methods have been tested on randomly generated
SSM. The setup for the experiment is the same as explained in section 5.5.1. A difference
worth mentioning is that the SIMC PID tuning rules use the T2 time constant, so a
2nd order model must be estimated. The graphical method for the 2nd order parameter
estimation is not used, meaning there is no SIMC tuning attempt in those cases. The
complete results of the tests are provided in appendix C.

. . Results for methods using estimated model parameters

For PID controllers the iSIMC method, using graphical estimation presents the highest
number of stable closed-loop systems, for all model orders. The difference between SIMC
and iSIMC for PID controllers is that iSIMC uses a FOPTD approximation while SIMC
uses SOPTD. For the two other estimation methods, optimization and procest, the SIMC
method is more successful than iSIMC. With a few exceptions iSIMC give controllers with
higher values of Ms and TV, which mean that it is more aggressive than SIMC. The SIMC
methods are the only approach which gives Ms below 2 in all cases except for 15th order

102

5.6 Comparison of PID controller tuning methods based on randomly generated SSM

models using procest. In that case, ZN PRC results in Ms = 1.5, but also very high IAE
compared to SIMC.

ZN UG is the least effective method when used on estimated models, also for PID con-
trollers. As in section 5.5, the 2 variable ZN PRC method is less successful than the
one using 3 variables. The CC method gives the controllers with the highest input usage
and high IAE values, which indicate aggressive responses with significant overshoot and
oscillations.

The parameter estimation based methods are in general more effective when using PI
controllers than PID controllers. However, the PID controllers give lower IAE values in
most cases for both SP tracking and disturbance rejection.

. . Results for methods using SSM directly

Pidtune fails 4 times in total using default settings, making it the best method in that
regard. Regarding disturbance rejection, pidtune produces higher IAE values than most of
the other methods. Attempting to specify a lower PM than 60, is not possible in all cases
and the median value only drops slightly. This is also the case for PI tuning and is likely
due to the parameter selection criteria of the algorithm. MathWorks pidtuning algorithm
uses a gridding technique and the system must satisfy a Nyquist stability criterion. If this
is not possible with the desired PM, the settings are changed.

Both the δ PRC and the δ -optimization method were tested. The PRC method does not
score well in these tests. The success rate is low, and the results have a high variance.
The optimization approach to the delta PID controller is better and it succeeds fare more
often than in the case with a PI controller based on this approach. It works especially
well with the lower order models, up to 6. On the downside, it provides a conservative
controller with too high margins and low Ms. This can likely be improved using the tuning
parameters available in the δ PID rules.

ZN UG fails often and shows high TV and IAE values. For models of order 9 and lower
it gives consistent margins.

The TF optimization method is successful for many models but gives high Ms and TV
values. The balance between SP tracking and disturbance rejection is good. For PID
controllers, this method does not produce the same large amount of errors as it does for
PI controllers.

For the SSM optimization method, the same 4 settings as used for PI controllers and are
listed in table 5.4 was used. The overall mean results are given in figure 5.21. For the
PID controller setting 1 is the best for almost all measures. The exception is that the
robustness setting, provides higher GM and lower Ms, but both measures are acceptable
for setting 1. The method also gives a reasonable success rate for all model orders.

103

5 Comparison of tuning methods

Figure 5.21: Summary of performance and stability measures for optimization based PID tuning, 4 dif-
ferent settings

. . Summary of PID controller tuning results

This section summarizes the results for the PID controller tuning experiments. The results
in figure 5.22 and table 5.6 are calculated as in section 5.5.4. In terms of the number of
stable closed-loop systems, pidtune is best, followed by the optimization methods. The
delta DIPTD optimization approximation also gives decent success. The plot shows that
ZN UG provides the best SP tracking and disturbance rejection, but also small margins
and high TV. The ZN PRC methods give the highest IAE values together with Cohen-
Coon.

For the methods using parameter estimation, the success rate is lower for PID controllers
than for PI controllers.

104

5.6 Comparison of PID controller tuning methods based on randomly generated SSM

Figure 5.22: MeanSummary of performance and stability measures for PID controllers tuned using dif-
ferent methods based on random SSM

Table 5.6: Average robustness and performance values for all PID tuning methods
Stable PM GM Ms IAEr IAEv TV

pidtune 99.2 60 2.7198 1.7026 4.4371 8.1752 1.3179
opt 1 (TF) 90.4 52.185 1.9157 2.1607 3.3499 3.9486 3.7509

SSM Opt (set 1) 88.4 54.8963 2.1726 1.9838 2.9945 3.6648 1.6622
DeltaOpt 64.4 90.8102 4.4273 1.5636 76.043 105.187 0.3133
DeltaPRC 23 64.6578 1.7877 2.8503 9.6553 9.2436 3.1964
ZN R L 40 78 1.65 2.68 43.5 200 4.96
SIMC 60.3 60.46959 2.55117 1.80733 3.09 6.37241 1.41635
iSIMC 60.3 62.349 2.377 1.904 3.0473 7.631 1.624
CC 44.93 53.333 1.640 3.063 4.3197 11.539 5.0658

ZN prc 49.27 79.407 1.933 2.699 13.121 10.453 3.805
ZN UG 25.2 54.31092 1.550 2.847 3.115 3.169 6.3987

ZN UG est 15.8 52.981 1.554 2.924 2.415 2.438 5.985

105

106

Discussion and further work

The possible weaknesses that have been discovered in this thesis are explained in this
paragraph. Input usage, TV, have only been calculated for SP tracking and it could have
been beneficial also to calculate TV for disturbance rejection. δ -PID tuning for DIPTD
systems were not tested for PID controllers based on SSM. When testing with random
SSM, the performance and robustness measures are based on stable results only. This
means that the methods with a high success rate, have a better data basis. It is possible
that this makes the performance of the less successful methods seem better or worse than
in reality. In the total average results presented in chapter 5, using values for just one
of the estimation methods might have been better. Using average instead of the median
for PM would have been a better choice. Another approach to solving the project goals
might have been to test fewer tuning methods more thoroughly, i.e. finding the best
tuning parameters for the methods. In general, it might have been better to produce less
data, in order to be able to examine the results more closely. In many cases, it would
have been better to use the PID controller on parallel form, especially when comparing
parameters between controllers. There is also some decimal point round off inconsistencies
in the report.

Most of the testing in this report is done using the recommended settings for method
tuning variables. In some cases, the stated performance might be improved by adjusting
the tuning variables. This has not been extensively examined, as it was prioritized to
cover a broader scope of methods, as well as the fact that simplicity is vital. By this, it
is meant that for a method to be widely implemented in industry, it should be easy to
use.

Since most of the results in the report are based on a large amount of randomly generated
SSM, the focus of the work has been to use tuning and estimation methods which are
possible to automate. This means that some analytic methods for tuning, such as IMC,
has been left out. Another strategy that falls under this category is to covert the SSM to
TF and use model reduction to obtain model parameters for controller tuning.

When generating random SSM in Matlab, the resulting models might may have a non
zero D matrix. This is problematic for control, and therefore all D matrices are set to
zero. The time delay was also added after the generation of the SSM. This is to specify
that the models used are slightly modified from the generated model.

107

6 Discussion and further work

The optimization based controller tuning method which uses TF and Ms in the objective
function often fails for higher order models. It is possible that this problem can be solved,
but due to time limitations, this was not investigated thoroughly. The problem might lie
in the step size of the simulations of in the constraints. The δ -optimization approach to
estimating a DIPTD model works well on the lower order models. Using more aggressive
values for c̄ and δ would likely make this an interesting approach to investigate further.

It was presented in this thesis that many of the control loops in the industry are poorly
tuned. Many of the control loops are tuned by lower level technicians with insufficient
training in the topic. One way of bringing more complex tuning methods to the industry
would be an application for phones and tablets. This tool should be based on computer
vision techniques to convert a picture of a graph to discrete time data points, which
then can utilize the model estimation techniques tested in this thesis. This is possible
by marking some points on the graph, and manually assigning x and y values, the data
points along the entire graph can them be labeled. This again should be used to provide
the user with controller parameters. These parameters could be based on several different
methods, and estimated step responses using different methods could be presented to the
user, who can decide which to use. This app could also save the plant model together
with controller parameters and relevant loop data such as margins and performance in a
database, helping the user to keep track and document the control loops. A search on
Google play store shows that no are apps incorporating this functionality.

If the goal of mftun and megatuner is to be able to work with all kinds of processes,
support for derivative action should be added. The results in this thesis show that the
plant which contains integrators is the weakness for both mftune and pidtune, while
megatuner does not work with these systems at all. This is where work needs to be done
to create a tuning method which can stabilize all LTI stable systems.

108

Conclusions

Controllers can be tuned based on SSM in a variety of different ways, outlined in figure
2.8. The methods tested in this thesis are tuning methods that work directly on SSM
and different methods of parameter estimation to obtain a lower order model. The para-
meter estimation methods utilize that an open loop simulation of the SSM always can be
performed.

• Conclusion about tuning methods based directly on state space models

– Pidtune, mftun, megatuner and optimization tuning can be used directly with
SSM and give good results, also for higher order models

– TV can be used in the objective function of optimization methods to increase
robustness, however, it does not give the same flexibility as Ms

– ZN UG can also be used directly on SSM by finding GM and ω180, this method
works well for lower order models

– The tuning methods that work directly on SSM gives better results than the
methods that use approximations

– The standard deviation of the results in terms of robustness and performance
are low for these methods

• Conclusion about model parameter estimation methods

– Process describing variables K, θ , T, R, L can be found from SSM using
graphical estimation or optimization

– The Graphical method gives the highest number of successful tuning attempts
for all tested PI and PID tuning methods

– The Optimization method gives the best results in terms of performance for
the resulting closed loop systems

• Conclusion about tuning methods based on estimated model parameters

– In many cases, the higher order SSM can be approximated well with a lower
order model, making it possible to use tuning methods based on these

109

7 Conclusions

– SIMC stands out as the method which gives the best trade-off between robust-
ness and performance

– SIMC and ZN PRC gives the highest amount of stable systems

– The results from controllers tuned based on model estimation generally have
a high standard deviation

• Delta tuning rules

– δ -PI/PD/PID can be used with SSM by estimating an IPTD or DIPTD model
from a step response, as indicated in section 2.4. A zero eigenvalue in system
matrix A indicates an integrator in the system, and that such models can give a
good fit. These model types can also be approximated by using δ -optimization
described in 4.2.4. δ -optimization work with non integrating systems as well,
and the DIPTD approximation is best. δ -PRC can also be used directly with
a SSM since it only requires open loop step response data.

– Mftun is the second best method in terms of success rate, behind pidtune.
Mftune generally gives more robustness than pidtune. 2 is a good initial choice
for tuning parameter ρ . values for ρ that give Ms = 1.59 for some example
systems are given in figure 5.16

– Megatuner does not seem to fail at all with stable systems without poles at
the origin. This method gives less performance than mftune and pidtune, for
the same value of Ms.

• Matlab pidtune

– Is easy to use and rarely fails

– ωc is the best tuning parameter for adjusting the trade-off between performance
and robustness

– When tuning for systems with integrators, some manual adjustment might be
necessary to get tight control

– The default settings do not always give the best trade-off between robustness
and performance

110

Bibliography

[1] T. Katayama, Subspace methods for system identification. Springer Science & Busi-
ness Media, 2006, pp. 7–9.

[2] L. Ljung, System Identification: Theory for the User, ser. Prentice Hall information
and system sciences series. Prentice Hall PTR, 1999, isbn: 9780136566953. [Online].
Available: https://books.google.no/books?id=nHFoQgAACAAJ.

[3] B. Friedland, Control system design: an introduction to state-space methods,
ser. McGraw-Hill series in electrical engineering: Control theory. McGraw-Hill, 1986,
isbn: 9780070224414. [Online]. Available: https://books.google.no/books?id=
2M1SAAAAMAAJ.

[4] J. R. Carstens, Automatic Control Systems and Components. Prentice-Hall inc.,
1990, pp. 205–227, isbn: 0130542970.

[5] D. D. Ruscio, ‘Subspace system identification theory and applications’, Telemark
Institute of Technology, pp. 13–23, Jan. 2014.

[6] MathWorks, Estimate state-space model using subspace method, Webpage. [Online].
Available: https://se.mathworks.com/help/ident/ref/n4sid.html.

[7] ——, Estimate state-space model using time or frequency domain data, Webpage.
[Online]. Available: https://se.mathworks.com/help/ident/ref/ssest.html.

[8] D. D. Ruscio, D-sr toolbox for matlab, Webpage. [Online]. Available: http : / /
davidr.no/d-sr/d-sr_e.html (visited on 10/04/2019).

[9] F. Haugen, PID control. Tapir academic press Trondheim, 2004, vol. 238.
[10] R. Vilanova and A. Visioli, PID Control in the Third Millennium: Lessons Learned

and New Approaches, ser. Advances in Industrial Control. Springer London, 2012,
isbn: 9781447124252. [Online]. Available: https://books.google.no/books?id=
1uB73y89NagC.

[11] N Minorsky, ‘Directional stability of automatic steered bodies’, Journal of the Amer-
ican Society for Naval Engineers, vol. 34, May 1922. doi: 10 . 1111 / j . 1559 -
3584.1922.tb04958.x.

[12] A. O’Dwyer, Handbook of PI and PID Controller Tuning Rules. Imperial College
Press, 2009, isbn: 9781848162426. [Online]. Available: https://books.google.no/
books?id=zivrLUbIMgUC.

111

https://books.google.no/books?id=nHFoQgAACAAJ
https://books.google.no/books?id=2M1SAAAAMAAJ
https://books.google.no/books?id=2M1SAAAAMAAJ
https://se.mathworks.com/help/ident/ref/n4sid.html
https://se.mathworks.com/help/ident/ref/ssest.html
http://davidr.no/d-sr/d-sr_e.html
http://davidr.no/d-sr/d-sr_e.html
https://books.google.no/books?id=1uB73y89NagC
https://books.google.no/books?id=1uB73y89NagC
https://doi.org/10.1111/j.1559-3584.1922.tb04958.x
https://doi.org/10.1111/j.1559-3584.1922.tb04958.x
https://books.google.no/books?id=zivrLUbIMgUC
https://books.google.no/books?id=zivrLUbIMgUC

Bibliography

[13] D. B. Ender, ‘Process control performance: Not as good as you think’, Control
Engineering, pp. 180–190, 1993.

[14] S. Skogestad, ‘Feedback: Still the Simplest and Best Solution’, Modeling, Identific-
ation and Control, vol. 30, no. 3, pp. 149–155, 2009. doi: 10.4173/mic.2009.3.5.

[15] C. Grimholt and S. Skogestad, ‘Optimal pi and pid control of first-order plus delay
processes and evaluation of the original and improved simc rules’, Journal of Process
Control, vol. 70, pp. 36–46, Oct. 2018. doi: 10.1016/j.jprocont.2018.06.011.

[16] V. Alfaro and R. Vilanova, Model-Reference Robust Tuning of PID Controllers. Apr.
2016, pp. 7–19, isbn: 978-3-319-28211-4. doi: 10.1007/978-3-319-28213-8.

[17] MathWorks, Analyze design in pid tuner, Webpage. [Online]. Available: https :
//se.mathworks.com/help/slcontrol/ug/analyze-the-design-in-the-pid-
tuner.html.

[18] K. Åström and T. Hägglund, ‘Pid controllers : Theory, design, and tuning / karl j.
astrom and tore hagglund’, SERBIULA (sistema Librum 2.0), Mar. 2019.

[19] S. Skogestad and I Postlethwaite, ‘Multivariable feedback control: Analysis and
design’, in. Jan. 2005, vol. 2.

[20] S. Skogestad and C. Grimholt, ‘The simc method for smooth pid controller tuning’,
in PID Control in the Third Millennium, Springer, 2012, pp. 147–175.

[21] G. C. Goodwin, S. F. Graebe, M. E. Salgado et al., Control system design. Prentice
Hall New Jersey, 2001, vol. 240.

[22] C. Chin, Computer-Aided Control Systems Design: Practical Applications Using
MATLAB® and Simulink®. Taylor & Francis, 2012, isbn: 9781466568518. [Online].
Available: https://books.google.no/books?id=dL3ITAO6V0sC.

[23] W. Pedrycz, Fuzzy control and fuzzy systems, ser. Electronic & electrical engineering
research studies: Control theory and applications studies series. Research Studies
Press, 1993, isbn: 9780863801310. [Online]. Available: https://books.google.no/
books?id=uupSAAAAMAAJ.

[24] D. Chen and D. E. Seborg, ‘Pi/pid controller design based on direct synthesis and
disturbance rejection’, Industrial & engineering chemistry research, vol. 41, no. 19,
pp. 4807–4822, 2002.

[25] P. G. C. Eryilmaz, ‘Automated pid controller design’, pat. US8467888B2, (to
appear), 2013. [Online]. Available: https : / / patents . google . com / patent /
US8467888.

[26] Feedback Control of Dynamic Systems. Pearson Education, 2008, isbn:
9788131721421. [Online]. Available: https : / / books . google . no / books ? id =
EFgOQABEBjIC.

[27] D. Ruscio, ‘On tuning pi controllers for integrating plus time delay systems’, Mod-
eling, Identification and Control, vol. 31, Oct. 2010. doi: 10.4173/mic.2010.4.3.

112

https://doi.org/10.4173/mic.2009.3.5
https://doi.org/10.1016/j.jprocont.2018.06.011
https://doi.org/10.1007/978-3-319-28213-8
https://se.mathworks.com/help/slcontrol/ug/analyze-the-design-in-the-pid-tuner.html
https://se.mathworks.com/help/slcontrol/ug/analyze-the-design-in-the-pid-tuner.html
https://se.mathworks.com/help/slcontrol/ug/analyze-the-design-in-the-pid-tuner.html
https://books.google.no/books?id=dL3ITAO6V0sC
https://books.google.no/books?id=uupSAAAAMAAJ
https://books.google.no/books?id=uupSAAAAMAAJ
https://patents.google.com/patent/US8467888
https://patents.google.com/patent/US8467888
https://books.google.no/books?id=EFgOQABEBjIC
https://books.google.no/books?id=EFgOQABEBjIC
https://doi.org/10.4173/mic.2010.4.3

[28] D. Di Ruscio and C. Dalen, ‘Tuning PD and PID Controllers for Double Integrating
Plus Time Delay Systems’, Modeling, Identification and Control, vol. 38, no. 2,
pp. 95–110, 2017. doi: 10.4173/mic.2017.2.4.

[29] C. Dalen and D. Di Ruscio, ‘A Semi-Heuristic Process-Reaction Curve PID Control-
ler Tuning Method’, Modeling, Identification and Control, vol. 39, no. 1, pp. 37–43,
2018. doi: 10.4173/mic.2018.1.4.

[30] ——, ‘A Novel Process-Reaction Curve Method for Tuning PID Controllers’, Mod-
eling, Identification and Control, vol. 39, no. 4, pp. 273–291, 2018. doi: 10.4173/
mic.2018.4.4.

[31] ——, ‘PD/PID controller tuning based on model approximations: Model reduction
of some unstable and higher order nonlinear models’, Modeling, Identification and
Control, vol. 38, no. 4, pp. 185–197, 2017. doi: 10.4173/mic.2017.4.3.

[32] D. Di Ruscio, private communication, 2019.
[33] C. Dalen, Megatuner, Webpage. [Online]. Available: http://megatuner.no/ (vis-

ited on 16/05/2019).
[34] T. Hägglund and K. Åström, ‘Revisiting the ziegler‐nichols tuning rules for pi con-

trol’, Asian Journal of Control, vol. 4, pp. 364 –380, Dec. 2002. doi: 10.1111/j.
1934-6093.2002.tb00076.x.

[35] M. L. Luyben and W. L. Luyben, Essentials of process control. McGraw-Hill, 1997.
[36] F. Haugen and B. Lie, ‘Relaxed ziegler-nichols closed loop tuning of pi controllers’,

2013.
[37] G. H. Cohen and G. A. Coon, ‘Theoretical consideration of retarded control’, Trans-

actions of the ASME, vol. 75, pp. 827–834, May 1953.
[38] C. E. Garcia and M. Morari, ‘Internal model control. a unifying review and some

new results’, Industrial & Engineering Chemistry Process Design and Development,
vol. 21, no. 2, pp. 308–323, 1982.

[39] D. E. Rivera, M. Morari and S. Skogestad, ‘Internal model control: Pid controller
design’, Industrial & engineering chemistry process design and development, vol. 25,
no. 1, pp. 252–265, 1986.

[40] D. E. Rivera, ‘Internal model control: A comprehensive view’, Arizona State Uni-
versity, 1999.

[41] S. Skogestad, ‘Probably the best simple pid tuning rules in the world’, in AIChE
Annual Meeting, Reno, Nevada, vol. 77, 2001.

[42] E. FLADBERG, ‘Prof. skogestad er vår internasjonale kybernetiker’, Teknisk
ukeblad, pp. 180–190, 2014. [Online]. Available: https://www.tu.no/artikler/
prof-skogestad-er-var-internasjonale-kybernetiker/218878.

113

https://doi.org/10.4173/mic.2017.2.4
https://doi.org/10.4173/mic.2018.1.4
https://doi.org/10.4173/mic.2018.4.4
https://doi.org/10.4173/mic.2018.4.4
https://doi.org/10.4173/mic.2017.4.3
http://megatuner.no/
https://doi.org/10.1111/j.1934-6093.2002.tb00076.x
https://doi.org/10.1111/j.1934-6093.2002.tb00076.x
https://www.tu.no/artikler/prof-skogestad-er-var-internasjonale-kybernetiker/218878
https://www.tu.no/artikler/prof-skogestad-er-var-internasjonale-kybernetiker/218878

Bibliography

[43] C. Grimholt and S. Skogestad, ‘Optimal pid control of double integrating processes’,
IFAC-PapersOnLine, vol. 49, pp. 127–132, Dec. 2016. doi: 10.1016/j.ifacol.
2016.07.228.

[44] K. J. Åström and T. Hägglund, ‘Automatic tuning of simple regulators with spe-
cifications on phase and amplitude margins’, Automatica, vol. 20, no. 5, pp. 645–
651, 1984.

114

https://doi.org/10.1016/j.ifacol.2016.07.228
https://doi.org/10.1016/j.ifacol.2016.07.228

Appendix A

Task description

The original task description upon which the thesis is based.

115

Appendix B

Tuning PI controllers, results

Results from tuning PI controllers based on SSM. These results are discussed in section
5.5.

119

Tuning PI controllers using SSM, results
Preben Sandve Solvang

June 12, 2019

This documents was created as an appendix to the master thesis ”State Space Model Based PID Con-
troller Tuning”, by Preben Sandve Solvang. The document contains measurements of performance
and robustness for PI controllers tuned using a selection of different methods. The PI controllers
are tuned based on randomly generated state space models of order 3, 6, 9, 12 and 15. 100 models
of each order was used, and the values represented here are median values. The median gives the
best measure, as some measurements contain outliers which gives inaccurate mean values. Table 1
contains the different values for the tuning weights for the optimization method.

Table 1: Optimization tuning settings
Wsp Wdr Wtv

set 1 1 1 1
Set 2 1 1 2
Set 3 2 2 1
Set 4 1 2 1

1

1 3rd order SSM, PI controller
This section gives the result from tuning controllers based on random 3rd order SSM.

2

Table 2: Median robustness and performance values, no estimation
Stable PM GM Ms IAEr IAEv TV std dev Ms

pidtune (PM=60) 99.0 60.0 2.678 1.710 2.467 2.063 2.449 0.24
pidtune (PM=50) 99.0 50.0 2.902 1.717 3.050 1.805 2.723 0.18
pidtune (PM=40) 99.0 55.6 3.265 1.675 5.566 4.683 2.689 0.22
pidtune (ωc = 0.5) 94.0 60.0 2.905 1.631 2.345 2.083 2.422 15.15
pidtune (ωc = 0.8) 91.0 60.0 1.841 2.305 2.509 2.498 6.507 39.44
pidtune (ωc = 1) 84.0 60.0 1.548 3.012 3.570 4.386 10.195 3.48
mftun (ρ = 0.5) 79.0 31.9 1.459 3.451 4.227 1.196 9.617 6.85
mftun (ρ = 1) 97.0 61.3 2.533 1.770 3.053 2.082 3.085 0.94
mftun (ρ = 1.5) 98.0 70.7 3.766 1.424 3.836 3.083 1.600 0.74
mftun (ρ = 2) 98.0 75.1 5.022 1.294 4.717 4.015 1.347 0.30
mftun (ρ = 2.5) 99.0 78.0 6.277 1.226 5.822 5.098 1.419 0.19
mftun (ρ = 3) 98.0 80.3 7.532 1.186 6.823 5.977 1.505 0.15
mftun (ρ = 3.5) 98.0 81.7 8.788 1.160 7.913 6.924 1.553 0.12

Opt 1 99.0 55.4 2.567 1.783 3.180 1.875 2.867 0.76
SSM Opt (Set 1) 96.0 62.2 2.928 1.722 3.429 1.981 1.874 0.60
SSM Opt (Set 2) 96.0 65.6 3.183 1.620 3.796 2.306 1.663 0.55
SSM Opt (Set 3) 96.0 59.3 2.819 1.750 3.363 1.915 2.510 0.68
SSM Opt (Set 4) 95.0 61.3 2.858 1.729 3.427 1.634 2.133 0.74

Megatuner 88.0 51.6 3.382 1.709 3.506 2.175 2.554 0.20
ZN UG 82.0 98.5 2.149 1.870 13.090 5.567 2.914 0.23

Delta tuning, IPTD approx 65.0 88.0 9.685 1.211 13.965 6.231 3.466 3.18

Table 3: Median robustness and performance values, graphical estimation, 3 order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 8.0 52.1 2.672 1.748 3.739 5.967 1.667 1.01
SIMC 90.0 61.1 3.067 1.600 2.478 2.344 2.175 2.21
iSIMC 90.0 64.3 2.784 1.652 2.345 2.386 1.722 5.39

Cohen Coon 87.0 41.3 1.748 2.572 2.943 1.517 4.879 2.80
ZN prc R L 48.0 87.8 2.270 1.838 5.516 2.291 4.552 1.01

ZN prc k T theta 97.0 87.2 2.284 1.846 4.807 2.835 3.616 0.87
ZN UG est 77.0 100.1 2.200 1.833 14.138 6.829 2.558 1.15

Table 4: Median robustness and performance values, optimization estimation, 3rd order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 6.0 29.5 3.953 2.389 11.732 8.744 2.880 1.05
SIMC 80.0 61.6 2.973 1.618 2.311 1.664 2.221 2.82
iSIMC 81.0 65.1 2.649 1.693 2.324 2.122 2.116 1.88

Cohen Coon 71.0 32.8 1.619 3.150 3.324 1.902 6.649 4.54
ZN prc k T theta 77.0 75.2 1.990 2.192 4.213 2.673 4.116 2.87

ZN UG est 72.0 Inf 2.188 1.853 167.996 11.831 2.907 5.94

Table 5: Median robustness and performance values, procest, 3rd order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 3.0 16.4 1.980 3.663 6.517 2.460 9.134 1.01
SIMC 83.0 60.7 3.042 1.617 2.293 2.008 1.835 10.06
iSIMC 73.0 64.9 2.654 1.701 2.071 1.389 2.270 0.68

Cohen Coon 67.0 34.4 1.641 2.916 2.867 0.974 7.007 4.31
ZN prc k T theta 74.0 86.5 2.228 1.887 4.597 3.095 3.580 3.84

ZN UG est 34.0 71.0 1.925 2.205 3.412 1.207 8.473 2.38

3

2 6th order SSM, PI controller
This section gives the result from tuning controllers based on random 6th order SSM.

4

Table 6: Median robustness and performance values, no estimation, 6th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

pidtune (PM=60) 100.0 60.0 2.836 1.618 3.795 3.904 1.277 0.25
pidtune (PM=50) 100.0 50.0 2.855 1.696 3.988 3.727 1.542 0.19
pidtune (PM=40) 100.0 55.7 3.174 1.703 6.804 7.685 1.627 0.25
pidtune (ωc = 0.5) 86.0 60.0 2.491 1.794 2.718 3.760 1.945 35.19
pidtune (ωc = 0.8) 77.0 60.0 1.655 2.701 3.178 4.456 3.780 15.77
pidtune (ωc = 1) 72.0 60.0 1.414 3.667 5.515 9.498 6.833 20.05
mftun (ρ = 0.5) 61.0 36.1 1.458 3.479 4.556 5.926 3.956 16.34
mftun (ρ = 1) 91.0 60.7 2.191 1.970 3.603 4.257 1.762 1.20
mftun (ρ = 1.5) 97.0 70.3 3.138 1.540 4.714 5.749 1.230 3.31
mftun (ρ = 2) 97.0 77.2 4.099 1.369 5.788 6.824 1.047 0.48
mftun (ρ = 2.5) 97.0 79.7 5.124 1.280 7.198 9.073 1.060 0.27
mftun (ρ = 3) 97.0 81.5 6.134 1.225 8.285 11.301 1.032 0.19
mftun (ρ = 3.5) 97.0 82.7 7.142 1.189 9.665 13.404 1.064 0.15

Opt 1 97.0 53.3 2.329 1.938 4.222 3.136 2.034 0.76
SSM Opt (Set 1) 90.0 57.5 2.351 1.841 4.189 3.018 1.541 0.77
SSM Opt (Set 2) 91.0 60.6 2.449 1.805 4.231 3.264 1.450 0.81
SSM Opt (Set 3) 91.0 52.4 2.458 1.939 4.047 3.275 1.752 0.83
SSM Opt (Set 4) 91.0 54.2 2.417 1.911 4.222 3.399 1.733 0.87

Megatuner 85.0 51.6 3.072 1.730 4.127 3.638 1.684 0.22
ZN UG 72.0 80.9 2.092 1.939 7.725 6.959 1.325 0.49

Delta tuning, IPTD approx 46.0 87.6 5.681 1.333 15.215 9.738 1.526 1.77

Table 7: Median robustness and performance values, graphical estimation, 6th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 6.0 44.2 3.390 1.601 5.220 17.522 1.526 1.71
SIMC 76.0 61.1 2.859 1.687 3.015 3.966 0.970 9.11
iSIMC 77.0 63.6 2.678 1.742 2.967 5.067 0.930 6.23

Cohen Coon 65.0 41.4 1.823 2.552 3.367 3.663 2.352 19.13
ZN prc R L 53.0 89.8 2.270 1.875 6.697 6.986 1.492 1.44

ZN prc k T theta 84.0 82.1 2.324 1.861 6.438 6.742 1.549 2.21
ZN UG est 60.0 74.7 2.198 1.927 5.602 8.061 1.358 7.66

Table 8: Median robustness and performance values, optimization estimation, 6th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 7.0 40.7 5.921 1.553 10.883 67.820 0.455 0.13
SIMC 76.0 60.8 2.531 1.752 3.025 3.584 1.331 8.75
iSIMC 75.0 63.8 2.350 1.821 2.795 4.117 1.421 5.91

Cohen Coon 57.0 38.8 1.675 2.791 3.764 4.224 3.449 20.83
ZN prc k T theta 68.0 93.2 2.480 1.744 9.168 8.804 1.881 6.31

ZN UG est 55.0 86.3 2.019 2.107 10.071 10.140 2.012 1.81

Table 9: Median robustness and performance values, procest, 6th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 4.0 26.9 1.638 2.658 5.216 9.402 9.632 0.98
SIMC 73.0 60.5 2.787 1.739 2.900 4.393 0.966 2.94
iSIMC 63.0 64.8 2.435 1.809 2.521 3.922 1.220 2.84

Cohen Coon 49.0 41.0 1.692 2.852 3.420 3.542 3.621 8.11
ZN prc k T theta 62.0 93.0 2.837 1.579 12.976 12.308 1.170 4.52

ZN UG est 25.0 80.0 1.734 2.553 3.815 2.767 3.039 1.93

5

3 9th order SSM, PI controller
This section gives the result from tuning controllers based on random 9th order SSM.

6

Table 10: Median robustness and performance values, no estimation, 9th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

pidtune (PM=60) 98.0 60.0 2.824 1.662 5.062 9.204 0.774 0.25
pidtune (PM=50) 98.0 50.0 3.017 1.703 5.340 9.255 1.018 0.21
pidtune (PM=40) 98.0 56.4 4.867 1.552 9.444 20.895 0.880 0.23
pidtune (ωc = 0.5) 74.0 60.0 2.728 1.719 2.777 7.443 1.003 7.21
pidtune (ωc = 0.8) 62.0 60.0 1.785 2.408 3.637 6.615 2.146 7.36
pidtune (ωc = 1) 61.0 60.0 1.485 3.251 8.648 18.858 3.840 20.29
mftun (ρ = 0.5) 65.0 35.5 1.593 2.985 5.465 7.617 5.516 57.22
mftun (ρ = 1) 87.0 60.7 2.620 1.733 4.706 9.105 0.836 5.33
mftun (ρ = 1.5) 89.0 69.6 3.820 1.420 6.124 12.651 0.464 2.65
mftun (ρ = 2) 89.0 74.2 5.006 1.297 7.146 16.567 0.443 0.37
mftun (ρ = 2.5) 91.0 77.8 6.179 1.234 9.246 20.590 0.476 0.99
mftun (ρ = 3) 91.0 80.0 7.415 1.191 10.321 24.600 0.438 0.42
mftun (ρ = 3.5) 92.0 81.0 8.616 1.166 12.087 28.479 0.481 4.22

Opt 1 83.0 51.4 2.242 2.011 6.810 12.040 1.785 1.51
SSM Opt (Set 1) 87.0 49.3 2.171 2.078 6.669 9.830 1.131 2.89
SSM Opt (Set 2) 87.0 53.3 2.316 2.020 4.958 9.099 1.078 2.62
SSM Opt (Set 3) 87.0 48.5 2.024 2.174 5.346 8.215 1.415 2.87
SSM Opt (Set 4) 87.0 47.6 2.033 2.196 5.389 7.020 1.366 2.81

Megatuner 85.0 51.4 3.514 1.675 5.605 12.080 1.009 0.21
ZN UG 49.0 85.5 2.142 1.956 56.367 76.095 1.107 0.92

Delta tuning, IPTD approx 44.0 66.8 2.541 2.093 13.691 13.272 3.811 9.26

Table 11: Median robustness and performance values, graphical estimation, 9th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 4.0 18.0 2.368 2.447 25.397 114.901 1.177 6.54
SIMC 76.0 58.9 3.636 1.544 3.934 9.843 0.450 1.92
iSIMC 77.0 63.9 3.066 1.591 3.855 10.666 0.426 0.81

Cohen Coon 71.0 45.5 2.111 2.192 4.892 8.725 1.194 4.09
ZN prc R L 48.0 90.2 2.958 1.542 10.815 20.045 0.426 2.32

ZN prc k T theta 85.0 86.7 2.703 1.696 6.372 12.598 0.765 9.72
ZN UG est 41.0 72.0 2.200 1.963 15.062 11.370 1.073 3.30

Table 12: Median robustness and performance values, optimization estimation, 9th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 7.0 40.3 3.910 1.580 25.690 290.297 0.305 0.09
SIMC 67.0 58.3 2.848 1.706 3.146 8.223 0.607 3.85
iSIMC 64.0 60.8 2.584 1.724 3.008 8.364 0.615 5.75

Cohen Coon 53.0 28.2 1.562 3.225 4.523 5.860 2.422 4.58
ZN prc k T theta 63.0 64.2 2.001 2.390 6.469 11.477 1.527 8.03

ZN UG est 47.0 81.0 2.087 2.084 174.861 69.766 1.197 5.51

Table 13: Median robustness and performance values, procest, 9th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 0
SIMC 70.0 60.7 3.173 1.640 3.354 10.135 0.361 3.39
iSIMC 60.0 63.3 2.668 1.709 2.849 8.259 0.487 9.00

Cohen Coon 52.0 36.1 1.609 2.898 5.279 5.982 1.655 2.93
ZN prc k T theta 62.0 90.4 2.431 1.902 6.979 11.106 0.652 1.43

ZN UG est 18.0 59.6 1.890 2.442 2.679 4.594 1.483 1.57

7

4 12th order SSM, PI controller
This section gives the result from tuning controllers based on random 12th order SSM.

8

Table 14: Median robustness and performance values, no estimation, 12th order model
Stable PM GM Ms IAEr IAEv TV std dev Ms

pidtune (PM=60) 99.0 60.0 2.890 1.648 6.470 11.701 0.852 0.26
pidtune (PM=50) 100.0 50.0 2.909 1.720 6.433 13.107 0.942 0.22
pidtune (PM=40) 100.0 54.5 2.996 1.739 9.525 22.403 0.807 0.25
pidtune (ωc = 0.5) 69.0 60.0 2.615 1.781 3.624 11.894 0.881 15.14
pidtune (ωc = 0.8) 60.0 60.0 1.713 2.580 4.527 15.531 2.370 12.94
pidtune (ωc = 1) 60.0 54.9 1.384 3.773 16.685 41.458 6.136 20.70
mftun (ρ = 0.5) 59.0 31.2 1.562 3.693 7.768 11.286 5.740 15.67
mftun (ρ = 1) 75.0 55.9 2.588 1.824 5.187 12.227 1.466 3.45
mftun (ρ = 1.5) 80.0 66.3 3.584 1.491 5.949 14.424 0.819 1.13
mftun (ρ = 2) 82.0 71.9 4.765 1.346 7.280 17.927 0.615 2.66
mftun (ρ = 2.5) 83.0 75.8 5.952 1.271 8.244 21.482 0.624 2.27
mftun (ρ = 3) 84.0 78.0 7.132 1.222 8.680 23.983 0.606 0.67
mftun (ρ = 3.5) 83.0 79.7 8.310 1.195 9.870 25.879 0.624 0.41

Opt 1 56.0 52.1 2.175 1.936 5.569 9.962 1.678 1.63
SSM Opt (Set 1) 88.0 47.6 2.272 2.030 5.373 10.489 1.140 5.47
SSM Opt (Set 2) 85.0 49.5 2.363 1.974 5.738 10.413 1.112 8.12
SSM Opt (Set 3) 85.0 48.6 2.261 2.092 5.706 10.415 1.274 4.25
SSM Opt (Set 4) 87.0 47.2 2.259 2.133 5.351 9.053 1.324 5.86

Megatuner 70.0 51.7 3.141 1.735 5.544 10.628 1.026 0.24
ZN UG 39.0 64.6 2.038 2.090 21.598 13.122 1.767 2.03

Delta tuning, IPTD approx 47.0 78.6 3.063 1.735 13.330 12.127 1.389 2.49

Table 15: Median robustness and performance values, graphical estimation, 12th order models
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 10.0 21.8 3.178 2.327 22.041 63.358 0.325 11.16
SIMC 68.0 56.5 3.077 1.689 4.274 15.836 0.519 8.86
iSIMC 72.0 62.4 3.216 1.623 4.751 16.587 0.385 8.97

Cohen Coon 66.0 40.5 2.253 2.302 4.371 11.265 0.887 4.62
ZN prc R L 41.0 85.7 3.508 1.538 35.121 24.286 0.374 2.11

ZN prc k T theta 80.0 79.0 2.819 1.637 7.372 17.393 0.658 1.48
ZN UG est 29.0 74.5 2.200 1.846 173.878 59.701 0.902 0.92

Table 16: Median robustness and performance values, optimization estimation, 12th order models
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 15.0 39.8 3.132 1.621 25.946 198.932 0.431 5.09
SIMC 59.0 59.4 2.690 1.770 3.266 9.431 0.862 2.47
iSIMC 59.0 62.5 2.511 1.791 3.537 10.031 0.899 2.10

Cohen Coon 49.0 34.4 1.696 2.731 4.829 10.185 2.431 3.03
ZN prc k T theta 56.0 86.4 2.512 1.809 13.833 24.355 1.233 5.40

ZN UG est 30.0 57.8 2.196 2.112 117.036 94.774 1.455 6.52

Table 17: Median robustness and performance values, procest, 12th order model
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 4 1.8 61991 338.7 33926 4.5e+14 2.5661
SIMC 69.0 58.3 2.986 2.049 3.875 12.460 0.519 3.34
iSIMC 54.0 62.9 2.405 1.873 3.267 8.394 1.110 4.08

Cohen Coon 41.0 34.9 1.768 2.861 4.058 8.620 2.555 3.67
ZN prc k T theta 51.0 93.9 2.866 1.616 17.283 24.303 0.709 14.13

ZN UG est 13.0 54.0 2.017 2.158 2.945 4.243 1.903 1.35

9

5 15th order SSM, PI controller
This section gives the result from tuning controllers based on random 15th order SSM.

10

Table 18: Median robustness and performance values, no model estimation, 15th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

pidtune (PM=60) 100.0 60.0 2.724 1.665 5.075 13.707 1.063 0.25
pidtune (PM=50) 100.0 50.0 2.915 1.672 6.285 13.825 1.042 0.18
pidtune (PM=40) 100.0 56.4 4.055 1.562 8.831 19.424 0.946 0.22
pidtune (ωc = 0.5) 72.0 60.0 2.282 1.890 4.015 14.533 1.370 2.11
pidtune (ωc = 0.8) 60.0 60.0 1.544 3.003 5.519 23.520 3.067 5.56
pidtune (ωc = 1) 54.0 60.0 1.479 3.319 15.225 57.672 5.162 9.07
mftun (ρ = 0.5) 62.0 37.9 1.563 3.242 5.586 9.908 4.286 65.04
mftun (ρ = 1) 87.0 58.3 2.582 1.734 7.012 15.243 1.442 4.50
mftun (ρ = 1.5) 94.0 66.7 3.817 1.437 6.305 15.278 1.177 1.72
mftun (ρ = 2) 95.0 71.9 5.068 1.315 7.147 19.898 0.831 0.80
mftun (ρ = 2.5) 95.0 75.7 6.334 1.247 8.460 24.260 0.684 0.34
mftun (ρ = 3) 95.0 78.2 7.601 1.205 10.126 24.450 0.630 0.23
mftun (ρ = 3.5) 95.0 79.9 8.868 1.175 11.808 27.885 0.642 0.18

Opt 1 25.0 54.5 2.316 1.913 4.554 9.096 1.683 0.95
SSM Opt (Set 1) 79.0 51.4 2.283 1.997 4.761 8.627 1.084 0.78
SSM Opt (Set 2) 78.0 53.7 2.489 1.909 4.835 8.576 0.970 0.74
SSM Opt (Set 3) 79.0 51.8 2.154 2.118 4.831 8.761 1.168 1.15
SSM Opt (Set 4) 78.0 50.4 2.025 2.133 4.655 8.523 1.202 1.19

Megatuner 89.0 51.6 3.506 1.701 6.301 12.404 1.280 0.22
ZN UG 41.0 70.3 2.008 2.068 10.015 17.751 1.200 2.38

Delta tuning, IPTD approx 34.0 77.0 2.254 1.892 14.960 16.469 3.998 3.38

Table 19: Median robustness and performance values, graphical estimation, 15th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 5.0 56.9 2.667 1.647 4.773 27.467 0.405 0.58
SIMC 80.0 59.4 3.469 1.566 4.461 14.565 0.389 4.03
iSIMC 83.0 61.3 3.194 1.591 6.046 18.041 0.375 3.21

Cohen Coon 72.0 46.6 2.339 2.100 7.318 15.691 0.752 19.62
ZN prc R L 57.0 94.6 4.136 1.424 30.500 26.973 0.292 2.40

ZN prc k T theta 86.0 91.5 3.108 1.506 8.177 18.388 0.532 2.00
ZN UG est 38.0 80.7 2.051 2.041 14.996 24.416 0.928 3.85

Table 20: Median robustness and performance values, optimization estimation, 15th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 8.0 35.7 3.438 1.881 21.683 246.489 0.205 0.90
SIMC 57.0 60.8 2.513 1.815 3.745 7.601 0.911 2.45
iSIMC 57.0 62.2 2.300 1.969 4.150 11.155 0.870 8.59

Cohen Coon 46.0 31.0 1.584 3.086 5.282 8.945 2.015 14.45
ZN prc k T theta 55.0 75.6 2.293 1.934 13.598 19.142 1.095 10.48

ZN UG est 38.0 86.1 1.873 2.408 161.545 142.859 1.241 3.43

Table 21: Median robustness and performance values, procest 15th order
Stable PM GM Ms IAEr IAEv TV std dev Ms

delta 3.0 28.6 1.772 3.768 4.554 8.756 1.391 1.05
SIMC 66.0 61.1 2.772 1.841 4.406 12.144 0.548 7.64
iSIMC 57.0 63.6 2.418 1.856 4.064 12.464 0.698 2.89

Cohen Coon 46.0 42.9 1.649 3.108 7.249 14.168 1.946 5.01
ZN prc k T theta 58.0 90.6 2.891 1.778 27.695 27.390 0.707 22.41

ZN UG est 15.0 43.2 1.430 4.127 4.917 11.222 1.919 4.64

11

6 Average values by estimation method

Table 22: Mean robustness and performance values, using graphical parameter estimation
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 6.6 38.6126 2.855 3.106 12.234 45.843 1.02 4.2
SIMC 78 59.3824 3.2216 1.6228 3.6322 9.311 0.9006 5.2
iSIMC 79.8 63.088 2.9878 1.6454 3.9926 10.5494 0.7676 4.9
CC 72.2 43.0632 2.055 2.3606 4.5782 8.172 2.0128 10.1

ZN prc 86.4 85.3066 2.6476 1.7172 6.6332 11.5912 1.424 3.3
ZN UG est 49 80.3908 2.1698 1.9244 44.7354 22.0754 1.36366 3.4

12

Table 23: Mean robustness and performance values, using optimization parameter estimation
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta 8.6 37.2149 4.07088 1.8048 19.18704 162.45636 0.85518 1.5
SIMC 67.8 60.19294 2.71112 1.73422 3.09834 6.10066 1.18634 4.1
iSIMC 67.2 62.87174 2.47884 1.80936 3.16274 7.15776 1.18422 4.8
CC 55.2 33.03716 1.62706 2.99708 4.34422 6.22324 3.39318 9.5

ZN prc 63.8 78.8979 2.25494 2.02156 9.45622 13.29008 1.97052 6.6
ZN UG est 48.4 82 2.07242 2.11282 126.3018 65.87382 1.7623 4.6

Table 24: Mean robustness and performance values, using procest for parameter estimation
Stable PM GM Ms IAEr IAEv TV std dev Ms

Delta* 3.33 23.9717 1.7965 3.5716 5.4289 6.8724 6.7193 1.0
SIMC 72.2 60.26874 2.95224 1.79954 3.36548 8.22802 0.84584 5.5
iSIMC 61.6 63.90064 2.51404 1.79214 2.95938 6.90982 1.16026 3.9
CC 50.8 38.45222 1.67248 2.96144 4.52914 6.51378 3.33978 4.8

ZN prc 61.4 90.64662 2.65062 1.81844 13.90612 15.576 1.30736 9.3
ZN UG est 21 61.572 1.7993 2.701 3.5537 4.5067 3.3634 2.3

13

134

Appendix C

Tuning PID controllers, results

Results from tuning PID controllers based on SSM. These results are discussed in section
5.6.

135

Tuning PID controllers using SSM, results
Preben Sandve Solvang

June 12, 2019

This documents was created as an appendix to the master thesis ”State Space Model Based PID
Controller Tuning”, by Preben Sandve Solvang. The document contains measurements of perfor-
mance and robustness for PID controllers tuned using a selection of different methods. The PID
controllers are tuned based on randomly generated state space models of order 3, 6, 9, 12 and 15.
100 models of each order was used, and the values represented here are median values. The median
gives the best measure, as some measurements contain outliers which gives inaccurate mean values.
Table 1 contains the different values for the tuning weights for the optimization method.

Table 1: Optimization tuning settings
Wsp Wdr Wtv

set 1 1 1 1
Set 2 1 1 2
Set 3 2 2 1
Set 4 1 2 1

1

1 3rd order SSM, PID controller
This section gives the result from tuning controllers based on random 3rd order SSM.

Table 2: Median robustness and performance values, No model estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

pidtune (PM=60) 100.0 60.0 2.486 1.777 2.352 2.023 2.585
pidtune (PM=50) 100.0 59.3 2.448 1.809 2.436 1.984 2.701
pidtune (PM=40) 100.0 58.6 2.372 1.849 2.395 2.046 3.031
pidtune (ωc = 0.5) 92.0 60.0 3.052 1.614 2.340 2.083 2.410
pidtune (ωc = 0.8) 88.0 60.0 2.009 2.087 2.350 1.656 5.364
pidtune (ωc = 1) 82.0 60.0 1.699 2.470 2.866 1.977 10.056

Opt 1 91.0 57.5 2.121 1.920 2.110 0.944 5.212
SSM Opt (Set 1) 96.0 63.2 2.627 1.682 2.454 1.880 2.043
SSM Opt (Set 2) 96.0 66.0 2.874 1.597 2.900 2.227 1.922
SSM Opt (Set 3) 96.0 62.4 2.501 1.726 2.695 1.471 3.507
SSM Opt (Set 4) 97.0 61.3 2.538 1.760 2.859 1.417 3.034

ZN UG 36.0 58.8 1.619 2.621 2.755 0.684 11.952
Delta PRC 36.0 90.9 2.137 1.880 16.242 7.230 2.355

Delta tuning, DIPTD approx 87.0 90.5 10.505 1.136 81.454 40.814 0.273

2

Table 3: Median robustness and performance values, graphical estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

iSIMC 91.0 63.2 2.649 1.665 2.157 1.901 2.637
Cohen Coon 79.0 51.4 1.459 3.239 2.763 1.078 10.197
ZN prc R L 43.0 71.0 1.500 3.039 3.375 1.071 15.889

ZN prc k T theta 87.0 69.4 1.536 2.875 2.993 1.561 10.618
ZN UG est 33.0 58.2 1.612 2.699 2.320 0.769 16.113

Table 4: Median robustness and performance values, optimization estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

SIMC 81.0 61.3 2.985 1.609 2.105 1.621 2.891
iSIMC 74.0 63.8 2.444 1.762 2.050 1.594 3.710

Cohen Coon 47.0 46.2 1.423 3.501 2.520 1.182 12.149
ZN prc k T theta 49.0 65.9 1.470 3.198 2.729 1.883 10.470

ZN UG est 21.0 48.6 1.581 2.731 2.692 0.762 10.553

Table 5: Median robustness and performance values, procest, PID controller
Stable PM GM Ms IAEr IAEv TV

SIMC 74.0 60.8 2.989 1.614 2.151 1.282 2.424
iSIMC 70.0 62.8 2.535 1.722 1.910 1.012 4.079

Cohen Coon 56.0 50.9 1.499 3.139 2.529 0.700 14.713
ZN prc k T theta 60.0 85.0 1.638 2.694 3.043 1.642 9.086

ZN UG est 22.0 59.5 1.631 2.617 1.975 0.537 14.902

3

2 6rd order SSM, PID controller

Table 6: Median robustness and performance values, no model estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

pidtune (PM=60) 99.0 60.0 2.688 1.706 3.496 3.659 1.471
pidtune (PM=50) 100.0 59.3 2.541 1.778 3.603 3.882 1.597
pidtune (PM=40) 100.0 58.5 2.458 1.813 3.575 4.008 1.656
pidtune (ωc = 0.5) 78.0 60.0 2.691 1.701 2.558 2.987 1.499
pidtune (ωc = 0.8) 67.0 60.0 1.926 2.162 2.907 2.630 2.845
pidtune (ωc = 1) 66.0 60.0 1.612 2.731 3.796 4.606 5.107

Opt 1 92.0 56.5 2.024 2.014 2.757 2.172 3.556
SSM Opt (Set 1) 92.0 57.9 2.238 1.862 2.700 2.470 1.729
SSM Opt (Set 2) 90.0 60.3 2.387 1.802 3.298 3.008 1.680
SSM Opt (Set 3) 90.0 56.9 2.101 1.972 3.687 2.804 3.031
SSM Opt (Set 4) 91.0 55.8 2.098 1.954 3.836 2.816 2.876

ZN UG 38.0 60.2 1.650 2.548 2.644 2.342 3.198
Delta PRC 34.0 86.6 1.836 2.330 8.077 6.359 2.396

Delta tuning, DIPTD approx 73.0 90.8 3.273 1.551 77.473 56.937 0.520

4

Table 7: Median robustness and performance values, graphical estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

iSIMC 72.0 63.5 2.429 1.830 2.846 4.287 1.315
Cohen Coon 52.0 50.5 1.457 3.228 3.252 3.710 3.992
ZN prc R L 45.0 72.4 1.526 3.054 4.544 4.685 3.593

ZN prc k T theta 64.0 64.5 1.450 3.303 3.356 4.038 4.471
ZN UG est 28.0 49.7 1.487 3.109 2.661 2.318 5.486

Table 8: Median robustness and performance values, optimization estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

SIMC 64.0 60.9 2.532 1.805 2.560 3.011 1.355
iSIMC 56.0 63.4 2.243 1.990 2.150 3.201 1.983

Cohen Coon 38.0 57.1 1.512 3.090 2.901 2.686 4.940
ZN prc k T theta 43.0 93.9 1.650 2.553 4.831 5.912 4.176

ZN UG est 22.0 55.9 1.510 3.097 2.632 1.591 5.328

Table 9: Median robustness and performance values, procest, PID controller
Stable PM GM Ms IAEr IAEv TV

SIMC 64.0 61.1 2.595 1.715 2.460 3.933 1.204
iSIMC 53.0 62.7 2.309 1.849 2.188 3.037 1.485

Cohen Coon 43.0 65.3 1.622 2.840 3.121 3.430 3.927
ZN prc k T theta 49.0 91.1 2.151 2.280 7.168 9.381 1.438

ZN UG est 22.0 54.1 1.520 2.947 2.625 1.601 5.545

5

3 9th order SSM, PID controller

Table 10: Median robustness and performance values, no model estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

pidtune (PM=60) 98.0 60.0 2.811 1.685 4.822 8.355 0.743
pidtune (PM=50) 99.0 59.3 2.548 1.753 5.288 8.784 1.049
pidtune (PM=40) 99.0 58.5 2.605 1.789 5.352 9.609 0.937
pidtune (ωc = 0.5) 71.0 60.0 2.833 1.652 2.802 7.207 0.914
pidtune (ωc = 0.8) 55.0 60.0 1.904 2.153 2.764 5.730 1.736
pidtune (ωc = 1) 49.0 60.0 1.597 2.712 3.314 6.588 2.780

Opt 1 97.0 49.3 1.832 2.285 3.768 4.468 3.491
SSM Opt (Set 1) 86.0 51.6 2.033 2.092 2.990 4.042 1.525
SSM Opt (Set 2) 85.0 54.4 2.171 1.968 3.450 5.120 1.598
SSM Opt (Set 3) 84.0 49.0 1.825 2.258 3.906 5.402 2.968
SSM Opt (Set 4) 85.0 48.6 1.874 2.237 4.008 5.289 2.747

ZN UG 24.0 58.2 1.551 2.822 3.005 3.862 3.694
Delta PRC 21.0 62.2 1.731 2.368 6.239 5.437 2.217

Delta tuning, DIPTD approx 60.0 91.0 3.307 1.526 67.690 126.412 0.285

6

Table 11: Median robustness and performance values, graphical estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

iSIMC 74.0 62.1 2.736 1.698 3.495 8.987 0.736
Cohen Coon 63.0 56.3 1.654 2.748 4.785 5.983 2.815
ZN prc R L 39.0 90.0 1.654 2.530 10.746 28.263 1.212

ZN prc k T theta 62.0 80.5 1.556 2.899 4.194 7.090 2.040
ZN UG est 19.0 53.8 1.458 3.221 2.406 3.415 4.327

Table 12: Median robustness and performance values, optimization estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

SIMC 57.0 59.2 2.561 1.802 3.798 6.380 0.780
iSIMC 47.0 63.0 2.317 1.874 2.680 6.791 1.008

Cohen Coon 32.0 42.2 1.364 4.077 3.432 4.455 4.359
ZN prc k T theta 32.0 65.9 1.414 3.762 3.488 4.858 3.063

ZN UG est 12.0 53.3 1.464 3.236 2.218 2.823 4.330

Table 13: Median robustness and performance values, procest, PID controller
Stable PM GM Ms IAEr IAEv TV

SIMC 59.0 62.0 2.898 1.628 3.120 8.052 0.549
iSIMC 52.0 63.6 2.584 1.761 2.881 8.060 0.711

Cohen Coon 42.0 51.1 1.565 2.999 4.388 6.790 2.600
ZN prc k T theta 49.0 90.0 1.850 2.317 25.390 8.570 1.496

ZN UG est 12.0 51.5 1.472 3.184 2.243 2.751 4.304

7

4 12th order SSM, PID controller

Table 14: Median robustness and performance values, no model estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

pidtune (PM=60) 99.0 60.0 2.790 1.659 5.951 13.512 0.800
pidtune (PM=50) 99.0 59.3 2.619 1.741 6.050 12.390 0.928
pidtune (PM=40) 99.0 58.5 2.649 1.749 6.659 13.524 0.888
pidtune (ωc = 0.5) 60.0 60.0 2.696 1.716 3.292 11.299 0.781
pidtune (ωc = 0.8) 49.0 60.0 1.951 2.146 3.033 7.967 1.958
pidtune (ωc = 1) 45.0 60.0 1.639 2.665 3.616 11.916 2.658

Opt 1 89.0 47.3 1.735 2.420 3.730 5.891 3.460
SSM Opt (Set 1) 87.0 49.1 1.938 2.201 3.246 5.125 1.563
SSM Opt (Set 2) 88.0 51.9 2.113 2.000 4.789 7.403 1.725
SSM Opt (Set 3) 87.0 47.1 1.881 2.273 5.429 8.624 2.662
SSM Opt (Set 4) 86.0 47.3 1.875 2.278 5.524 8.110 2.609

ZN UG 13.0 46.7 1.520 2.924 2.379 2.955 5.097
Delta PRC 11.0 70.4 1.823 2.222 4.156 3.580 2.439

Delta tuning, DIPTD approx 56.0 90.7 2.593 1.808 72.072 176.261 0.234

8

Table 15: Median robustness and performance values, graphical estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

iSIMC 66.0 61.3 2.657 1.808 4.648 15.753 0.789
Cohen Coon 53.0 45.1 1.480 3.204 4.393 10.951 3.243
ZN prc R L 32.0 69.4 1.656 2.704 99.383 184.537 2.217

ZN prc k T theta 60.0 65.8 1.545 3.062 6.812 10.387 3.625
ZN UG est 8.0 47.8 1.732 2.421 2.483 2.379 4.140

Table 16: Median robustness and performance values, optimization estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

SIMC 48.0 59.4 2.237 1.899 3.183 8.082 1.051
iSIMC 44.0 61.5 1.868 2.167 2.890 6.900 1.467

Cohen Coon 29.0 51.0 1.476 3.216 3.696 5.661 4.837
ZN prc k T theta 30.0 93.0 1.588 2.708 7.221 10.458 2.029

ZN UG est 8.0 55.1 1.710 2.455 2.124 2.495 3.559

Table 17: Median robustness and performance values, procest, PID controller
Stable PM GM Ms IAEr IAEv TV

SIMC 49.0 58.9 2.137 2.153 3.448 9.945 1.116
iSIMC 45.0 60.7 2.230 2.116 2.943 8.895 1.488

Cohen Coon 33.0 51.5 1.684 2.840 3.795 7.455 3.620
ZN prc k T theta 37.0 91.4 2.057 2.188 12.383 14.069 1.085

ZN UG est 8.0 53.7 1.705 2.468 2.137 2.460 3.618

9

5 15rd order SSM, PID controller

Table 18: Median robustness and performance values, no model estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

pidtune (PM=60) 100.0 60.0 2.824 1.686 5.564 13.326 0.991
pidtune (PM=50) 100.0 59.2 2.583 1.760 4.800 12.307 1.108
pidtune (PM=40) 100.0 58.5 2.770 1.719 4.985 12.345 1.140
pidtune (ωc = 0.5) 69.0 60.0 2.318 1.876 3.760 12.814 1.232
pidtune (ωc = 0.8) 53.0 60.0 1.763 2.366 4.917 15.626 2.337
pidtune (ωc = 1) 46.0 60.0 1.576 2.842 6.041 18.045 3.729

Opt 1 83.0 50.3 1.867 2.164 4.386 6.269 3.036
SSM Opt (Set 1) 81.0 52.7 2.028 2.082 3.583 4.806 1.450
SSM Opt (Set 2) 82.0 54.7 2.205 1.924 4.408 6.597 1.426
SSM Opt (Set 3) 81.0 51.5 1.929 2.223 4.945 7.108 2.250
SSM Opt (Set 4) 81.0 51.4 1.948 2.144 4.961 7.133 2.281

ZN UG 15.0 47.6 1.431 3.321 4.792 6.003 8.052
Delta PRC 13.0 13.1 1.412 5.451 13.563 23.612 6.575

Delta tuning, DIPTD approx 46.0 91.1 2.457 1.798 81.527 125.509 0.254

10

Table 19: Median robustness and performance values, graphical estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

iSIMC 75.0 61.3 2.559 1.777 5.243 17.434 0.707
Cohen Coon 55.0 55.6 1.732 2.689 6.849 13.198 1.510
ZN prc R L 41.0 88.9 942640.266 2.193 100.01 687 042 2.03e-7

ZN prc k T theta 59.0 73.6 1.609 2.741 9.121 16.784 1.282
ZN UG est 10.0 53.3 1.606 2.747 2.452 3.991 2.179

Table 20: Median robustness and performance values, optimization estimation, PID controller
Stable PM GM Ms IAEr IAEv TV

SIMC 53.0 59.7 2.188 2.041 4.135 9.744 1.763
iSIMC 39.0 61.0 1.756 2.629 3.511 11.893 1.172

Cohen Coon 19.0 40.6 1.663 2.928 3.124 6.104 2.138
ZN prc k T theta 21.0 70.0 1.743 2.371 5.228 10.187 1.667

ZN UG est 6.0 50.7 1.409 3.470 2.623 4.380 2.641

Table 21: Median robustness and performance values procest, PID controller
Stable PM GM Ms IAEr IAEv TV

SIMC 54.0 61.5 2.390 1.808 3.941 11.675 1.029
iSIMC 47.0 61.4 2.343 1.909 4.117 14.718 1.078

Cohen Coon 33.0 85.1 3.015 2.208 13.247 99.704 0.946
ZN prc k T theta 37.0 91.1 5.730 1.534 98.854 49.977 0.523

ZN UG est 6.0 49.5 1.411 3.453 2.638 4.300 2.757

11

6 Average values by estimation method

Table 22: Mean robustness and performance values, using graphical parameter estimation
Stable PM GM Ms IAEr IAEv TV

iSIMC 75.6 62.27896 2.60588 1.75552 3.678 9.6724 1.23686
CC 60.4 51.77164 1.55648 3.0218 4.40848 6.9839 4.35132

ZN prc 66.4 70.76612 1.53912 2.97612 5.2952 7.97186 4.40722
ZN UG est 19.6 52.5668 1.57916 2.83926 2.46432 2.57442 6.44898

12

Table 23: Mean robustness and performance values, using optimization parameter estimation
Stable PM GM Ms IAEr IAEv TV

SIMC 60.6 60.09046 2.50058 1.83122 3.1561 5.76756 1.56802
iSIMC 52 62.53788 2.12532 2.08432 2.65606 6.07586 1.86776

CC 33 47.43622 1.48754 3.3621 3.13464 4.01748 5.6847
ZN prc 35 77.72956 1.57314 2.91838 4.69948 6.65974 4.2809

ZN UG est 13.8 52.72878 1.53478 2.99762 2.45764 2.41014 5.28208

Table 24: Mean robustness and performance values, using procest for parameter estimation
Stable PM GM Ms IAEr IAEv TV

SIMC 60 60.84872 2.60176 1.78344 3.0239 6.97726 1.26468
iSIMC 53.4 62.2303 2.40028 1.87164 2.8081 7.14452 1.768

CC 41.4 60.79156 1.87692 2.8053 5.41594 23.61602 5.1614
ZN prc 46.4 89.72512 2.68542 2.20252 29.36764 16.72802 2.7258

ZN UG est 14 53.64636 1.54762 2.93382 2.32378 2.3299 6.22516

13

150

Appendix D

Matlab code

The Matlab code used for tuning, comparison and calculating performance are attached
in this appendix. The code used to obtain the results presented in this thesis might be
slight variations of the code presented here. The code used for delta tuning, comes from
the papers written by Di Ruscio and Dalen, which are referred to in the thesis. The
code given in these papers might also have been altered in ways that would not effect the
calculation of the controller parameters.

• Functions for estimating model parameters from SSM to use for controller tuning

– GRAPH_ hp_ Est(Y,t,hpType)

– OPT_ hp_ Est(Y,t,hpType)

– Model_ red_ dalenruscio2017(hp,hpType)

• Functions used for tuning controllers based on obtained model parameters

– ZNpidtuneUG(hp,hcType)

– ZNpidtunePRC(k,T,theta,R,hcType,tunType)

– SIMCpidtune2(k,T1,T2,theta,Type)

– CCpidtune2(K,T,theta,hcType)

• Functions used for tuning controllers directly from SSM

– OPTpidtune3(hp,hcType,t,dt,n,Wsp,Wdr,Wtv) (SSM Opt)

– OPTpidtune2(hp,hcType,Wsp,Wdr,Wms) (TF Opt)

• Functions used for closed loop simulation and to calculate performance and robust-
ness values from tuned controllers

– CL_ step_ pid(A,B,C,hc,theta,t,dt,n)

• Other

151

Appendix D Matlab code

– OPTweights(hp,t,dt)

– PO_ pidtune(hp,hcType,IAEryW,IAEvyW,t,dt,MsP)

152

Matlab methods for controller tuning
Preben Sandve Solvang

June 9, 2019

1 Methods for model estimation
function [hp,R,k,T1,T2,theta] = GRAPH_hp_Est(Y,t,hpType)
% Graphical model parameter estimation tool - Preben Solvang Master thesis 2019
% Inputs:
% Y: Output vector from SSM or measured from process
% t: Time vector
% hpTtype: Plant type 1 = FOPTD, 2 = SOPTD, 3 = IPTD

s = tf('s'); % Laplace operator s
dt = t(2)-t(1); %stepsize
dy = diff(Y); %Change in y
[R,i] = max(abs(dy)/dt); % Steepest slope
L = t(i)-abs(Y(i)-Y(1))/R; % Lag
T2=0;
theta = L;
if theta <= 0 %Lag cant be less than zero -> =stepsize

theta = dt;
end
switch hpType

case 1 % FOPTD
k = Y(end)-Y(1);
T1 = abs(Y(end)-Y(1))/R;
hp = k*(1/(T1*s+1))*exp(-theta*s);

case 2 % SOPTD, not used

case 3 % IPTD
A = diff(Y)/dt; %difference from step to step
k=A(end);
hp = k*(1/s)*exp(-theta*s);

end
end

function [hp,k,T1,T2,theta] = OPT_hp_Est(Y,t,hpType)
% Optimization based model parameter estimation tool - Preben Solvang Master thesis 2019
% Inputs:
% Y: Output vector from SSM or measured from process
% t: Time vector
% hpTtype: Plant type 1 = FOPTD, 2 = SOPTD, 3 = IPTD, 4 = DIPTD

s=tf('s'); % Laplace operator
opt = optimset('display','off','TolX',1e-5,'TolFun',1e-

5,'LargeScale','off','MaxIter',500);
switch hpType

case 1 % FIT FOPTD
x = [1 1 1]; % x = [K T theta]
cost = @(x) FOPTDcost(x, Y, t); %define cost function
[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-1000 0.1 0.1],[1000 1000 20],[],opt);
k = x(1); T1=x(2); T2=0; theta=x(3); % assign model parameters to function output
hp = k*(1/(T1*s+1))*exp(-theta*s); % estimated TF plant model

1

case 2 % FIT SOPTD
x = [1 1 1 1]; % x = [K T1 T2 theta]
cost = @(x) SOPTDcost(x, Y, t); %define cost function
A=[0 0 1 0];b=x(2); % T1 > T2
[x,fval,flag]=fmincon(cost,x,A,b,[],[],[-inf 0.1 0.1 0.1],[inf inf inf 20],[],opt);
k = x(1); T1=x(2); T2=x(3); theta=x(4); % assign model parameters to function output
hp = k* (1/((T1*s + 1)*(T2*s + 1))) *exp(-theta*s); % estimated TF plant model

case 3 % 3 = IPTD,
x = [1 1]; % x = [K theta]
cost = @(x) IPTDcost(x, Y, t);
[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-inf 0.1],[inf 20],[],opt);
k = x(1); T1=0; T2=0; theta=x(2); % assign model parameters to function output
hp = k*(1/s)*exp(-theta*s); % estimated TF plant model

case 4 % 4 = DIPTD
x = [1 1]; % x = [K theta]
cost = @(x) DIPTDcost(x, Y, t);
[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-inf 0.1],[inf 10],[],opt);
k = x(1); T1=0; T2=0; theta=x(2); % assign model parameters to function output
hp = k*(1/s^2)*exp(-theta*s); % estimated TF plant model

end
end

% Cost functions
function J = FOPTDcost(x,Y,t)

% x = [K T theta]
s=tf('s');
FOPTD = x(1)*(1/(x(2)*s + 1))*exp(-x(3)*s);
Yest = step(FOPTD,t); % Y for estimated model
J = (Y - Yest).^2; % Squared error
J = mean(J); % MSE performance index

end

function J = SOPTDcost(x,Y,t)
% x = [K T1 T2 theta]
s=tf('s');
SOPTD = x(1)* (1/((x(2)*s + 1)*(x(3)*s + 1))) *exp(-x(4)*s);
Yest = step(SOPTD,t);
J = (Y - Yest).^2;
J = mean(J);

end

function J = IPTDcost(x,Y,t)
% x = [K theta]
s=tf('s');
IPTD = x(1)* (1/s) *exp(-x(2)*s);
Yest = step(IPTD,t);
J = (Y - Yest).^2;
J = mean(J);

end

function J = DIPTDcost(x,Y,t)
% x = [K theta]
s=tf('s');
DIPTD = x(1)* (1/s^2) *exp(-x(2)*s);
Yest = step(DIPTD,t);
J = (Y - Yest).^2;
J = mean(J);

end

function [hp,k,theta,tfin] = Model_red_dalenruscio2017(hp,hpType)

2

% Optimization based model approximation tool - Preben Solvang Master thesis 2019
% Implementation from Dalen, Di Ruscio 2017: PD/PID controller tuning based on model
% approximations: Model reduction of some unstable and higher order nonlinear models
%
% Inputs:
% hp: Plant model
% hpTtype: Plant type 1 = IPTD, 2 = DIPTD

s=tf('s');
dt=0.01;
[Y,T]=step(hp);h=T(2)-T(1);
A=diff(Y)/h;
if Y(end)<0 % Choose lb and ub based on gain fortegn

[R1, i] = min(A);
c2=-0.01;c1=-10;

elseif Y(end)>0
[R1, i] = max(A);
c1=0.01;c2=10;

end
y1=Y(i);t1=T(i);
L=t1-y1/R1;
if L<=0

L=dt;
end
A=[1 0 0; 0 -1 0; 0 1 -1]; b=[c2; -dt/2; -2*dt;]; % COnstraints
lb = [c1; dt/2; 2*dt]; ub=[c2; L/2; L/2];
opt = optimset('display','off','TolX',1e-7,'TolFun',1e-

7,'LargeScale','off','MaxIter',500);
x = [1 1 1]; % x = [K T tf] %initial guess for x
switch hpType

case 1 % FIT IPTD
cost = @(x) IPTDcost(x,hp,dt);
[x,fval,flag]=fmincon(cost,x,A,b,[],[],lb,ub,[],opt); %,opt
k = x(1); theta=x(2); tfin=x(3);
hp = (k/s)*exp(-theta*s);

case 2 % FIT DIPTD
cost = @(x) DIPTDcost(x,hp,dt);
[x,fval,flag]=fmincon(cost,x,A,b,[],[],lb,ub,[],opt); % ,opt
k = x(1); theta=x(2); tfin=x(3);
hp = (k/s^2)*exp(-theta*s);

end
end

% Cost functions
function J = IPTDcost(x,hp,dt)

% x = [K theta tf]
s=tf('s');
t=0:dt:x(3);
hpest = x(1)*(1/s)*exp(-x(2)*s);
Y=step(hp,t);Yhat=step(hpest,t);
J = (Y-Yhat)'*eye(length(Y))*(Y-Yhat);
J = J/length(t);

end

function J = DIPTDcost(x,hp,dt)
% x = [K theta tf]
s=tf('s');
t=0:dt:x(3);
hpest = x(1)*(1/s^2)*exp(-x(2)*s);
Y=step(hp,t);Yhat=step(hpest,t);
J = (Y-Yhat)'*eye(length(Y))*(Y-Yhat);

3

J = J/length(t);
end

2 Functions used for tuning controllers based on obtained
model parameters

function [hc,Kp,Ti,Td] = ZNpidtuneUG(hp,hcType)
% Ziegler Nichols Ultimate gain PID tuning tool - Preben Solvang Master thesis 2019
% Inputs:
% hp: Plant model
% hcTtype: controller type 1 = P, 2 = PI, 3 = PID

if nargin == 1;hcType=2;end
[Gm,Pm,Wcg]=margin(hp); %stability margins
if Wcg <=0 %To prevent crash

Wcg=0.01;
end
ku=Gm; %ultimate gain
pu=2*pi/Wcg; %ultimate periode
switch hcType % Controller type

case 1
Kp = ku/2;
Ti = 0;
Td = 0;
hc = pidstd(Kp);

case 2
Kp = ku/2.2;
Ti = pu/1.2;
Td = 0;
hc = pidstd(Kp,Ti);

case 3
Kp = ku/1.7;
Ti = pu/2;
Td = pu/8;
hc = pidstd(Kp,Ti,Td);

end
end

function [hc,Kp,Ti,Td] = ZNpidtunePRC(k,T,theta,R,hcType,tunType)
% Ziegler Nichols PRC PID tuning tool - Preben Solvang Master thesis 2019
% Inputs:
% k: Plant gain
% T: Plant time constant
% theta: Plant dead time
% R: Reaction rate (only for tunType 1)
% hcTtype: controller type 1 = P, 2 = PI, 3 = PID
% tunType: Tuning method 1 = L and R, 2 = k, theta, T

if nargin == 3;tunType=2;hcType=2; R=0;end
if tunType == 1

L = theta;
switch hcType

case 1
Kp = 1/(L*R);
Ti = 0;
Td = 0;
hc = pidstd(Kp);

case 2
Kp = 0.9/(L*R);
Ti = 3.3*L;

4

Td = 0;
hc = pidstd(Kp,Ti);

case 3
Kp = 1.2/(L*R);
Ti = 2*L;
Td = 0.5*L;
hc = pidstd(Kp,Ti,Td);

end
else

switch hcType
case 1

Kp = T/(k*theta);
Ti = 0;
Td = 0;
hc = pidstd(Kp);

case 2
Kp = 0.9*(T/(k*theta));
Ti = 3.33*theta;
Td = 0;
hc = pidstd(Kp,Ti);

case 3
Kp = 1.2*(T/(k*theta));
Ti = 2*theta;
Td = 0.5*theta;
hc = pidstd(Kp,Ti,Td);

end
end
end

function [hc,Kp,Ti,Td] = SIMCpidtune2(k,T1,T2,theta,Type)
% SIMC PID tuning tool - Preben Solvang Master thesis 2019
% Inputs:
% k: Plant gain
% T1: Plant time constant
% T2: Plant time constant (for PID)
% theta: Plant dead time
% Ttype: 1 = FOPTD PI, 2 = SOPTD PID, 3 = IPTD, 4 = DIPTD PID, 5 = iSIMC
% PI, 6 = iSIMC PID
s=tf('s');
switch Type

case 1 %FOPTD, PI controller
tc = theta;
Kp = (1/k)*(T1/(tc+theta));
Ti = min([T1 4*(tc+theta)]);
hc = pidstd(Kp, Ti);
Td = 0;

case 2 %SOPTD, PID controller
tc = theta;
Kps = (1/k)*(T1/(tc+theta)); %Kp for serial controller
Tis = min([T1 4*(tc+theta)]); %Ti for serial controller
Tds = T2; %Td for serial controller
hc = (Kps*(Tis*s+1)*(Tds*s+1))/(Tis*s); %serial PID controller
f = 1 + (Tds/Tis);
% PID parameters for standard PID formulation
Kp = Kps*f;
Ti = Tis*f;
Td = Tds/f;

case 3 % IPTD, PI controller
Kp = 1/(2*k*theta);
Ti = 8*theta;

5

hc = pidstd(Kp, Ti);
Td = 0;

case 4 % DIPTD, PID controller, no need for conversion in this case since f=1
tc = 1.5*theta;
Kp = (1/k)*(1/(4*(tc+theta)^2));
Ti = 4*(tc+theta);
Td = 4*(tc+theta);
hc = (Kp*(Ti*s+1)*(Td*s+1))/(Ti*s);

case 5 % iSIMC PI
Kp = (1/k) * ((T1+(theta/3)) / (2*theta)); %Kp for serial controller
Ti = min([T1+(theta/3) 8*theta]);
hc = pidstd(Kp, Ti);
Td = 0;

case 6 % iSIMC PID
tc = theta/2;
Kps = (1/k)*(T1/(tc+theta));
Tis = min([T1 4*(tc+theta)]);
Tds = theta/3;
hc = (Kps*(Tis*s+1)*(Tds*s+1))/(Tis*s); %serial PID controller
% PID parameters for standard PID formulation
f = 1 + (Tds/Tis);
Kp = Kps*f;
Ti = Tis*f;
Td = Tds/f;

end
end

function [hc,Kp,Ti,Td] = CCpidtune2(K,T,theta,hcType)
% Cohen-Coon PID tuning tool - Preben Solvang Master thesis 2019
% Inputs:
% k: Plant gain
% T1: Plant time constant
% theta: Plant dead time
% hcTtype: controller type 1 = P, 2 = PI, 3 = PID
if nargin == 3;hcType=2;end

switch hcType
case 1 % P-controller

Kp = (1/K)* (1 + (0.35*theta)/(1-theta));
Ti = 0;
Td = 0;
hc = pidstd(Kp);

case 2 % PI-controller
Kp = (1/K)* (0.9*(T/theta) + 0.083);
Ti = T*((3.33*(theta/T) + 0.31*(theta/T)^2) / (1 + 2.22*(theta/T)));
Td = 0;
hc = pidstd(Kp,Ti);

case 3 % PID-controller
Kp = (1/K)*(1.35*(T/theta) + 0.25);
Ti = T*((2.5*(theta/T) + 0.46*(theta/T)^2) / (1 + 0.61*(theta/T)));
Td = (0.37*theta)/(1 + 0.19*(theta/T));
hc = pidstd(Kp,Ti,Td);

end
end

3 Functions used for tuning controllers directly from SSM
function [hc,Kp,Ti,Td]=OPTpidtune3(hp,hcType,t,dt,n,Wsp,Wdr,Wtv)
% Optimization based PID tuning tool, using SSM - Preben Solvang Master thesis 2019
% Inputs:

6

% hp: Plant model
% hcTtype: controller type 2 = PI, 3 = PID
% Wsp: Weight for SP tracking
% Wdr: Weight for Disturbance rejection
% Wtv: Weight for input usage TV
if nargin == 5;Wsp=1;Wdr=1;Wtv=1;end

% Initial controller found with pidtune
opt = pidtuneOptions('PhaseMargin', 40); % lower PM than default to get closer to the optimal settings
if hcType==2 %Initial PI controller

c0=pidstd(1,1);
hc = pidtune(hp,c0,opt);
x = [hc.Kp, hc.Ti];

elseif hcType==3 %Initial PID conntroller
c0=pidstd(1,1,1);
hc = pidtune(hp,c0,opt);
x = [hc.Kp, hc.Ti hc.Td];

end
theta = hp.inputdelay;
opt=optimset('display','off','TolX',1e-5,'TolFun',1e-5,'LargeScale','off','MaxIter',700);
% Optimization to find controller parameters
if hcType==2 % PI controller

cost = @(x) costfuncPI(x, hp, theta, t, dt,n, Wsp, Wdr, Wtv); % x = [Kp Ti]
[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-inf 0.0001],[inf inf],[],opt);

else % PID controller
cost = @(x) costfuncPID(x, hp, theta, t, dt,n, Wsp, Wdr, Wtv); % x = [Kp Ti Td]
[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-inf 0.0001 0],[inf inf inf],[],opt);

end
if hcType == 2

hc = pidstd(x(1),x(2));
Kp = hc.Kp;
Ti = hc.Ti;
Td = 0;

elseif hcType == 3
hc = pidstd(x(1),x(2),x(3));
Kp = hc.Kp;
Ti = hc.Ti;
Td = hc.Td;

end
end
% Cost functions
function J=costfuncPI(x, hp, theta, t, dt,n, Wsp, Wdr, Wtv)

A=hp.a; B=hp.b; C=hp.c; % State space matrices
[IAEr, IAEv, TV]= numric_steppi(A,B,C,x,theta,t,dt,n); % calc performance measures
J = Wsp*IAEr + Wdr*IAEv + Wtv*TV; % Weighted performance index

end

function J=costfuncPID(x, hp, theta, t, dt,n, Wsp, Wdr, Wtv)
A=hp.a; B=hp.b; C=hp.c;
[IAEr, IAEv, TV]= numric_steppid(A,B,C,x,theta,t,dt,n);
J = Wsp*IAEr + Wdr*IAEv + Wtv*TV;

end

function [IAEr, IAEv, TV]= numric_steppi(A,B,C,x,theta,t,dt,n)
Kp=x(1); Ti=x(2);% PI controller
r=1; % The reference signal
N=length(t);
nt=theta/dt; nt=round(nt); Delay=zeros(nt,1);
hc=dt*Kp/Ti; % Controller param. to save computing time
x=zeros(n,1);% Initial values for the states

7

z=0; y_old=0;
for k=1:N

yp=C*x; % The measurement output
y=Delay(nt); % the delayed process output Y=y(i-nt)
for id=nt:-1:2

Delay(id)=Delay(id-1);
end
Delay(1)=yp;
e=r-y; % The controller input
u=z+Kp*e; % The controller output PI controller
%u=z+Kp*e - Kp*Td*((y-y_old)/dt); y_old=y; % The controller output PID controller
z=z+hc*e; % Updating the controller state
Y1(k,1)=y; U(k,1)=u; E(k,1)=e;% Storing variables
%u = u+1; %input disturbance
x=x + dt*(A*x+B*u); % Puting the control to the process

end
IAEr = sum(abs(E)*dt);
TV = abs(diff(U));
TV = sum(TV);

Delay=zeros(nt,1);
x=zeros(n,1);% Initial values for the states
z=0; y_old=0;
r=0;
for k=1:N

yp=C*x; % The measurement output
y=Delay(nt); % the delayed process output Y=y(i-nt)
for id=nt:-1:2

Delay(id)=Delay(id-1);
end
Delay(1)=yp;
e=r-y; % The controller input
u=z+Kp*e; % The controller output PI controller
%u=z+Kp*e - Kp*Td*((y-y_old)/dt); y_old=y; % The controller output PID controller
z=z+hc*e; % Updating the controller state
Y2(k,1)=y; U(k,1)=u; E(k,1)=e;% Storing variables
u = u+1; %input disturbance
x=x + dt*(A*x+B*u); % Puting the control to the process

end
IAEv = sum(abs(E)*dt);

end

function [IAEr, IAEv, TV]= numric_steppid(A,B,C,x,theta,t,dt,n)
Kp=x(1); Ti=x(2); Td=x(3); % PID controller
r=1; % The reference signal
N=length(t);
nt=theta/dt; nt=round(nt); Delay=zeros(nt,1);
hc=dt*Kp/Ti; % Controller param. to save computing time
x=zeros(n,1);% Initial values for the states
z=0; y_old=0;
for k=1:N

yp=C*x; % The measurement output
y=Delay(nt); % the delayed process output Y=y(i-nt)
for id=nt:-1:2

Delay(id)=Delay(id-1);
end
Delay(1)=yp;
e=r-y; % The controller input
%u=z+Kp*e; % The controller output PI controller
u=z+Kp*e - Kp*Td*((y-y_old)/dt); y_old=y; % The controller output PID controller

8

z=z+hc*e; % Updating the controller state
Y1(k,1)=y; U(k,1)=u; E(k,1)=e;% Storing variables
%u = u+1; %input disturbance
x=x + dt*(A*x+B*u); % Puting the control to the process

end
IAEr = sum(abs(E)*dt);
TV = abs(diff(U));
TV = sum(TV);

Delay=zeros(nt,1);
x=zeros(n,1);% Initial values for the states
z=0; y_old=0;
r=0;
for k=1:N

yp=C*x; % The measurement output
y=Delay(nt); % the delayed process output Y=y(i-nt)
for id=nt:-1:2

Delay(id)=Delay(id-1);
end
Delay(1)=yp;
e=r-y; % The controller input
%u=z+Kp*e; % The controller output PI controller
u=z+Kp*e - Kp*Td*((y-y_old)/dt); y_old=y; % The controller output PID controller
z=z+hc*e; % Updating the controller state
Y2(k,1)=y; U(k,1)=u; E(k,1)=e;% Storing variables
u = u+1; %input disturbance
x=x + dt*(A*x+B*u); % Puting the control to the process

end
IAEv = sum(abs(E)*dt);

end

function [hc,Kp,Ti,Td]=OPTpidtune2(hp,hcType,Wsp,Wdr,Wms)
% Optimization based PID tuning tool, using TF - Preben Solvang Master thesis 2019
% Inputs:
% hp: Plant model
% hcTtype: controller type 2 = PI, 3 = PID
% Wsp: Weight for SP tracking
% Wdr: Weight for Disturbance rejection
% Wms: Weight for Robusness measure Ms
if nargin == 2;Wsp=1;Wdr=1;Wms=0;end
if nargin == 1;Wsp=1;Wdr=1;Wms=0;hcType=2;end

% Initial controller found with pidtune
opt = pidtuneOptions('PhaseMargin', 40); % lower PM than default to get closer to the optimal settings
if hcType==2 %Initial PI controller

c0=pidstd(1,1);
hc = pidtune(hp,c0,opt);
x = [hc.Kp, hc.Ti];

elseif hcType==3 %Initial PID conntroller
c0=pidstd(1,1,1);
hc = pidtune(hp,c0,opt);
x = [hc.Kp, hc.Ti hc.Td];

end
% closed-loop response of initial tuning to find t and dt. T final is extended by
% 50 percent
[y1,t1]=step(hc*hp/(hc*hp+1));
dt=(t1(2)-t1(1));
t=0:dt:t1(end)*1.5;
opt=optimset('display','off','TolX',1e-5,'TolFun',1e-5,'LargeScale','off','MaxIter',700);
% Cost function

9

if hcType==2 % PI controller
cost = @(x) costfuncPI(x, hp, t, dt, Wsp, Wdr, Wms); % x = [Kp Ti]
[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-inf 0.0001],[inf inf],[],opt);

else % PID controller
cost = @(x) costfuncPID(x, hp, t, dt, Wsp, Wdr, Wms); % x = [Kp Ti Td]
[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-inf 0.0001 0],[inf inf inf],[],opt);

end
if hcType == 2

hc = pidstd(x(1),x(2));
Kp = hc.Kp;
Ti = hc.Ti;
Td = 0;

elseif hcType == 3
hc = pidstd(x(1),x(2),x(3));
Kp = hc.Kp;
Ti = hc.Ti;
Td = hc.Td;

end
end

function J=costfuncPI(x,hp,t,dt,Wsp,Wdr,Wms)
hc = pidstd(x(1),x(2));
spLoop = hc*hp/(hc*hp+1);
DistLoop =hp/(hc*hp+1);
S = 1/(hc*hp+1); % Sensitivity function
F=logspace(-10,10,1e4); % Logaritmic scale
Ms = max(abs(freqresp(S,F))); % Ms, Robustness
eSP = 1-step(spLoop,t); %SP tracking error
eDist = 0-step(DistLoop,t); %Disturbance rejection error
% performance calculation
J = Wsp*(sum(abs(eSP)*dt)) + Wdr*(sum(abs(eDist)*dt) + Wms*Ms);

end

function J=costfuncPID(x,hp,t,dt,Wsp,Wdr,Wms)
hc = pidstd(x(1),x(2),x(3));
spLoop = hc*hp/(hc*hp+1);
DistLoop =hp/(hc*hp+1);
S = 1/(hc*hp+1); % Sensitivity function
F=logspace(-10,10,1e4); % Logaritmic scale
Ms = max(abs(freqresp(S,F))); % Ms, Robustness
eSP = 1-step(spLoop,t); %SP tracking error
eDist = 0-step(DistLoop,t); %Disturbance rejection error
% performance calculation
J = Wsp*(sum(abs(eSP)*dt)) + Wdr*(sum(abs(eDist)*dt) + Wms*Ms);

end

4 Functions used for closed loop simulation and to calculate
performance and robustness values from tuned controllers

%function [Y1,IAEr,IAEv,TV] = CL_step_pid(A,B,C,hc,theta,t,dt,n)
function [PM, GM, Ms, IAEr, IAEv, TV]= CL_step_pid(A,B,C,hc,theta,t,dt,n)

Ti=hc.Ti; Kp=hc.Kp; Td=hc.Td; % PID controller
s=tf('s');

[b,a] = ss2tf(A,B,C,0);
hp = tf(b,a)*exp(-theta*s);
L = series(hc,hp);
S = 1/(1+L); % Sensitivity function
F=logspace(-10,10,1e4); % Logaritmic scale

10

[GM,PM,Wcg,Wcp] = margin(L);
Ms = max(abs(freqresp(S,F))); % Ms, Robustness

r=1; % The reference signal
N=length(t);
nt=theta/dt; nt=round(nt); Delay=zeros(nt,1);
hc=dt*Kp/Ti; % Controller param. to save computing time
x=zeros(n,1);% Initial values for the states
z=0; y_old=0;
for k=1:N

yp=C*x; % The measurement output
y=Delay(nt); % the delayed process output Y=y(i-nt)
for id=nt:-1:2

Delay(id)=Delay(id-1);
end
Delay(1)=yp;
e=r-y; % The controller input
u=z+Kp*e - Kp*Td*((y-y_old)/dt); y_old=y; % The controller output PID controller
z=z+hc*e; % Updating the controller state
Y1(k,1)=y; U(k,1)=u; E(k,1)=e;% Storing variables
%u = u+1; %input disturbance
x=x + dt*(A*x+B*u); % Puting the control to the process

end
IAEr = sum(abs(E)*dt);
TV = abs(diff(U));
TV = sum(TV);

Delay=zeros(nt,1);
x=zeros(n,1);% Initial values for the states
z=0; y_old=0;
r=0;
for k=1:N

yp=C*x; % The measurement output
y=Delay(nt); % the delayed process output Y=y(i-nt)
for id=nt:-1:2

Delay(id)=Delay(id-1);
end
Delay(1)=yp;
e=r-y; % The controller input
u=z+Kp*e - Kp*Td*((y-y_old)/dt); y_old=y; % The controller output PID controller
z=z+hc*e; % Updating the controller state
Y2(k,1)=y; U(k,1)=u; E(k,1)=e;% Storing variables
u = u+1; %input disturbance
x=x + dt*(A*x+B*u); % Puting the control to the process

end
IAEv = sum(abs(E)*dt);

end

5 Other
function [Wry,Wvy] = OPTweights(hp,t,dt)
% Find IAE-optimal PI-controllers to obtain reference IAE values - Preben Solvang Master thesis 2019
% Inputs:
% hp: Plant model
% t: time vector
% dt: time step size

% Initial controller found with pidtune
opt = pidtuneOptions('PhaseMargin', 40); % lower PM than default to get closer to the optimal settings

11

c0=pidstd(1,1);
hc = pidtune(hp,c0,opt);
x = [hc.Kp, hc.Ti];

opt=optimset('display','off','TolX',1e-7,'TolFun',1e-7,'LargeScale','off','MaxIter',700);
cost = @(x) costfuncPIry(x, hp, t, dt); % x = [Kp Ti]
nonlcon = @(x) CalcCPI(x,hp);
%[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-inf 0.0001],[inf inf],[],opt);
[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-inf 0.0001],[inf inf],nonlcon,opt);
Wry=fval;
cost = @(x) costfuncPIvy(x, hp, t, dt); % x = [Kp Ti]
[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-inf 0.0001],[inf inf],nonlcon,opt);
Wvy=fval;
end

function J = costfuncPIry(x,hp,t,dt)
hc = pidstd(x(1),x(2));
RY = hc*hp/(hc*hp+1); % SP tracking
eRY = 1-step(RY,t); %SP tracking error
IAEry = (sum(abs(eRY)*dt));
% performance calculation
J = IAEry;

end

function J = costfuncPIvy(x,hp,t,dt)
hc = pidstd(x(1),x(2));
VY = hp/(hc*hp+1); % output disturbance
eVY = 0-step(VY,t); %SP tracking error
IAEvy = (sum(abs(eVY)*dt));
% performance calculation
J = IAEvy;

end

function [c,ceq] = CalcCPI(x,hp)
c=[];
MsPre = 1.59;
hc=pidstd(x(1),x(2));
F=logspace(-10,10,1e4);
Ms = max(abs(freqresp(1/(hp*hc+1),F)));
cs=Ms-MsPre;
ceq=cs;

end

function [hc,Kp,Ti,Td]=PO_pidtune(hp,hcType,IAEryW,IAEvyW,t,dt,MsP)
% PO optimal PI tuning tool - Preben Solvang Master thesis 2019
% Inputs:
% hp: Plant model
% hcTtype: controller type 2 = PI, 3 = PID

% Initial controller found with pidtune
opt = pidtuneOptions('PhaseMargin', 40); % lower PM than default to get closer to the optimal settings
%Initial PI controller

c0=pidstd(1,1);
hc = pidtune(hp,c0,opt);
x = [hc.Kp, hc.Ti];

opt=optimset('display','off','TolX',1e-6,'TolFun',1e-6,'LargeScale','off','MaxIter',700);
% Cost function
% PI controller

cost = @(x) costfuncPI(x, hp, t, dt, IAEryW, IAEvyW); % x = [Kp Ti Td]

12

nonlcon = @(x) CalcCPI(x,hp,MsP);
[x,fval,flag]=fmincon(cost,x,[],[],[],[],[-inf 0],[inf inf],nonlcon,opt);
hc = pidstd(x(1),x(2));
Kp = hc.Kp;
Ti = hc.Ti;
Td = 0;

end

function J=costfuncPI(x,hp,t,dt,IAEryW,IAEvyW)
hc = pidstd(x(1),x(2));
RY = hc*hp/(hc*hp+1); % SP tracking
VY = hp/(hc*hp+1); % input disturbance
eRY = 1-step(RY,t); %SP tracking error
eVY = 0-step(VY,t); %input disturbance error
IAEry = (sum(abs(eRY)*dt));
IAEvy = (sum(abs(eVY)*dt));
%IAEvyW=1;IAEvuW=1;
% performance calculation
J = 0.5*((IAEvy/IAEvyW) + (IAEry/IAEryW));

end

function [c,ceq] = CalcCPI(x,hp,MsP)
c=[];
MstPre = MsP;%1.59;
MksPre = 50;
hc=pidstd(x(1),x(2));
F=logspace(-10,10,1e4);
Ms = max(abs(freqresp(1/(hp*hc+1),F)));
Mt = max(abs(freqresp(hp*hc/(hp*hc+1),F)));
Mks=max(abs(freqresp(hc/(hp*hc+1),F)));
ct=Mks-MksPre;
Mst = Ms;%max(Ms, Mt);
cs=Mst-MstPre;
ceq=cs;

end

13

Appendix E

Survey results

All the answers from the survey is presented here.

167

5/13/2019 Spørreskjema Reguleringssløyfer og PID regulering

https://docs.google.com/forms/d/1_TUAqB_mctYqOKmS16upTXo-GB9kz5DVD4MJGnM6H8M/viewanalytics 1/3

Spørreskjema Reguleringssløyfer og PID
regulering
6 svar

Kan du anslå hvor mange reguleringssløyfer med en PI eller PID regulator
dere har?
6 svar

Har dere en overordnet strategi for hvordan disse reguleringssløyfene
tunes? (Identi�sering av spesielt viktige sløyfer, kursing/opplæring av
personell, skriftlige prosedyrer osv)
6 svar

10-100
100-200
200-500
500-1000
Flere enn 1000

16,7%

16,7%

16,7%

50%

5/13/2019 Spørreskjema Reguleringssløyfer og PID regulering

https://docs.google.com/forms/d/1_TUAqB_mctYqOKmS16upTXo-GB9kz5DVD4MJGnM6H8M/viewanalytics 2/3

Hvem tar seg av tuning av reguleringssløyfer?
6 svar

Hvilke metoder blir brukt for tuning av reguleringssløyfer?
6 svar

Bruker dere matematiske modeller i arbeidet med reguleringssløyfer?

Egne ansatte med høyere
utdanning innen relevante
fagområder som automasjo…
Egne ansatte med fagbrev
innen automasjon (eller
lignende)
Innleide/konsulenter med
spesialkompetanse på omr…
Automatikere og
Automasjonsingeniører

16,7%

33,3%

50%

0 1 2 3

Autotuning

Ziegler Nichols tuning

Skogestad tuning (SIMC)

Vet ikke

RBTM
SWAG, felttuning (øke P

til oscillering…

Ofte å prøve seg fram

3 (50 %)3 (50 %)3 (50 %)

3 (50 %)3 (50 %)3 (50 %)

0 (0 %)0 (0 %)0 (0 %)

0 (0 %)0 (0 %)0 (0 %)

1 (16,7 %)1 (16,7 %)1 (16,7 %)

1 (16,7 %)1 (16,7 %)1 (16,7 %)

1 (16,7 %)1 (16,7 %)1 (16,7 %)

1 (16,7 %)1 (16,7 %)1 (16,7 %)

5/13/2019 Spørreskjema Reguleringssløyfer og PID regulering

https://docs.google.com/forms/d/1_TUAqB_mctYqOKmS16upTXo-GB9kz5DVD4MJGnM6H8M/viewanalytics 3/3

6 svar

Andre kommentarer?
2 svar

VI har prosesser som normalt ikke

Generelt har vi veiledende parametersett for nye regulatorer avhengig av type, TIC, PIC ol. Normalt tas aksjon
kun hvis regulatorer ikke oppfører seg tilfredsstillende og da benyttes prøve og feile metoden hvor en skotter
til Ziegler Nichols, Skogestad ol. Har kun forsøksmessig benyttet autotuning. For noen prosessavsnitt med
spesielle behov er det gjort o�ine modellforsøk. For 2 PVC-autoklaver har et �rma Cybernetica levert en
installasjon hvor MPC med Kalman Filter og Moving Horizon Estimator er i bruk.
Ca antall PID regulatorer pr fabrikk:
Klor 360
VCM 340
PVC 174

Dette innholdet er ikke laget eller godkjent av Google. Rapportér misbruk - Vilkår for bruk

Ja
Nei

66,7%

33,3%

 Skjemaer

	State Space Model Based PID Controller Tuning
	Summary

	Preface
	Contents
	List of Figures
	List of Tables

	Introduction
	Background
	Objectives and goals
	Report structure

	Background theory on state space models and system identification
	State space models
	State space model conversion
	Numeric simulation of a state space model

	System identification
	Manual system identification
	System identification using Matlab
	System validation and simulation

	Common process models used for control
	Estimating process characteristics from SSM,
	Estimating process values graphically from an input step response curve
	Model fitting using optimization
	Comparison of estimation methods

	Background theory on control engineering
	History of control and current use of PID controllers
	PID controller parameters
	PID controller formulations
	Control structures
	Cascade loop
	Feedforward loop
	Two degrees of freedom PID controller

	PID tuning goals
	Performance and robustness
	Performance measures
	Robustness measures

	Other types of controllers

	PI and PID controller tuning methods
	Matlab pidtune
	Mathworks PID tuning algorithm
	Use of pidtune Matlab function
	Graphical interface
	Cases where pidtune fail
	DIPTD systems and pidtune
	Summary pidtune

	Delta tuning rules
	PI controller for integrating plus time delay
	PD and PID controller for double integrating plus time delay
	Delta tuning PRC method
	Approximating processes as (D)IPTD using optimization
	Mftun and megatuner
	Summary delta tuning rules

	Ziegler and Nichols tuning rules
	Ultimate gain method
	PRC method

	Cohen-Coon tuning rules
	Internal model control methods
	SIMC

	Optimization based tuning
	Optimization tuning, using transfer functions
	Optimization tuning, based on SSM
	Pareto optimal controller

	Auto-tuning

	Comparison of tuning methods
	Comparison of tuning methods based on first order plus time delay model
	Comparison of tuning methods based on integrating plus time delay model
	Comparison of tuning methods based on double integrating plus time delay model
	Comparison between pidtune, mftune, and megatuner
	Comparison of PI controller tuning methods based on randomly generated SSM
	Description of the experiment used for method comparison
	Results for tuning methods using estimated model parameters
	Results for methods using SSM directly
	Summary of PI controller tuning results

	Comparison of PID controller tuning methods based on randomly generated SSM
	Results for methods using estimated model parameters
	Results for methods using SSM directly
	Summary of PID controller tuning results

	Discussion and further work
	Conclusions
	Bibliography
	Task description
	Results from PI controllers tuned based on randomly generated SSM
	Results from PID controllers tuned based on randomly generated SSM
	Matlab code
	Survey results

