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Abstract: In this paper, the authors investigated the applicability of combining machine-learning-based
models toward slope stability assessment. To do this, several well-known machine-learning-based
methods, namely multiple linear regression (MLR), multi-layer perceptron (MLP), radial basis
function regression (RBFR), improved support vector machine using sequential minimal optimization
algorithm (SMO-SVM), lazy k-nearest neighbor (IBK), random forest (RF), and random tree (RT),
were selected to evaluate the stability of a slope through estimating the factor of safety (FOS). In the
following, a comparative classification was carried out based on the five stability categories. Based
on the respective values of total scores (the summation of scores obtained for the training and testing
stages) of 15, 35, 48, 15, 50, 60, and 57, acquired for MLR, MLP, RBFR, SMO-SVM, IBK, RF, and
RT, respectively, it was concluded that RF outperformed other intelligent models. The results of
statistical indexes also prove the excellent prediction from the optimized structure of the ANN and
RF techniques.
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1. Introduction

The stability of local slopes is a critical issue that needs to be meticulously investigated due
to their great impact on the adjacent engineering projects (excavation and transmission roads, for
instance). In addition to that, slope failures cause great psychological damage (e.g., the loss of property
and human life) all over the world every year. In Iran, for example, based on a rough estimation
announced by the Iranian Landslide Working Party (2007), 187 people have been killed every year by
slope failure in this country [1]. The saturation degree, as well as other intrinsic properties of the soil,
significantly affect the likelihood of slope failure [2,3]. Up to now, many scientists have intended to
provide effective modeling for slope stability problems. Some drawbacks of traditional methods, such
as the necessity of using laboratory equipment and the high level of complexity prevent them from
being a simply used solution [4]. Moreover, they cannot be used as a comprehensive solution due
to their limitation in investigating a specific slope condition (e.g., slope angle, height, groundwater
level, soil properties, etc.). Different types of limit equilibrium methods (LEMs), finite element model
(FEM), and numerical solutions have been extensively employed for the engineering problem [5–8].
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Development of design charts has been investigated for years in order to provide a reliable tool for
slope stability assessment [9]. However, this approach is not devoid of defects either. Generating
an efficient design chart requires consuming a lot of time and cost. Furthermore, determining the
precise mechanical parameters is a difficult task [10,11]. Hence, the application of artificial intelligence
techniques is more highlighted due to their quick performance and sufficient accuracy. The prominent
superiority of these approaches is that they are able to detect the non-linear relationship between
the target parameter(s) and its key factors. Also, ANN can be implemented using any determined
number of hidden nodes [12,13]. For example, the suitable efficiency of an artificial neural network
(ANN) [14–16] and a support vector machine (SVM) [17] has been proven in many geotechnical studies.
After reviewing the literature, the complexity of the slope stability problem is evident. What makes the
issue even more complicated and critical is constructing various structures in the vicinity of slopes
(i.e., indicating a noticeable number of loads applied on a rigid footing). The amount of surcharge
and the distance from the slope’s crest are two parameters influencing the stability of the purposed
slope [18]. This encouraged scholars to present an equation to calculate the factor of safety (FOS) of
pure slopes or the slopes receiving a static load [19–23]. Prior to this study, Chakraborty and Goswami
estimated the FOS for 200 slopes with different geometric and shear strength parameters using the
multiple linear regression (MLR) and ANN models. They also compared the obtained results with an
FEM model, and an acceptable rate of accuracy was obtained for both applied models. In this research,
ANN outperformed MLR. Also, Pei et al. [23] effectively used the random forest (RF) and regression
tree predictive models in functional soil-landscape modeling for regionalizing the depth of the failure
plane and soil bulk density. They developed a classification for detecting the safe and hazardous slopes
by means of FOS calculations. In some cases, the random forest and logistic regression techniques
were implemented for a susceptibility modeling of a shallow landslide phenomena. They found that
applied models have an excellent capability for this work. The SVM model synthesized by a minimal
sequential optimization (SMO) algorithm has been used for surface grinding quality [24] and many
medical classifications [25]. Also, a radial basis function regression (RBFR) has been successfully
employed in genetics for predicting quantitative traits [26], and in agriculture for the discrimination
of cover crops in olive orchards [27]. Another machine learning method that is used in the current
paper is lazy k-nearest neighbor (IBK) tool. As the name implies, the lazy learning is the essence of this
model and has shown good performance for many fields, such as spam e-mail filtering [28] and land
cover assessment [29].

Though plenty of effort has been carried out to employ various soft computing tools for evaluating
the stability of slopes [30,31], no prior study was found to address a comprehensive comparison of the
applicability of the mentioned models within the same paper. Therefore, in this paper, we investigated
the efficiency of seven machine-learning models (i.e., in their optimal structure), namely multiple linear
regression (MLR), multi-layer perceptron (MLP), radial basis function regression (RBFR), improved
support vector machine using sequential minimal optimization algorithm (SMO-SVM), lazy k-nearest
neighbor (IBK), random forest (RF), and random tree (RT), for appraising the stability of a cohesive soil
slope. Furthermore, since the authors did not find any former application of IBK, RBFR, or SMO-SVM
for estimating the FOS of the slope, the further novelty of the current study can be announced as
applying the mentioned models for the first time in this field. In this regard, the Optum G2 software
was used to give the FOS of 630 different slopes. Four conditioning factors that affected the values of
FOS were chosen: undrained shear strength (Cu), slope angle (β), setback distance ratio (b/B), and
applied surcharge on the shallow foundation installed over the slope (w). The utilized models were
implemented in Waikato Environment for Knowledge Analysis (WEKA) software (stable version,
Waikato, New Zealand) using the training dataset (i.e., 80% of the entire dataset). Then, the performance
of each model was evaluated using testing samples (i.e., 20% of the entire dataset). The results were
presented by means of several statistical indices. In the end, a new classification was carried out based
on different degrees of stability to evaluate and compare the results of the models used. In addition,
the design solution charts were developed using the outputs of the most efficient model.
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2. Data Collection and Methodology

To acquire a reliable dataset, the use of a single-layer slope was proposed. It was supposed that a
purely cohesive soil, which only had undrained cohesive strength (Cu), comprises the body of this
slope (see Figure 1). The main factors that affect the strength of the slope against the failure (i.e., FOS)
were considered to be the slope angle (β), setback distance ratio (b/B), and applied surcharge on the
footing installed over the slope (w). These parameters are illustrated in Figure 1. To calculate the FOS,
Optum G2 software, which is a comprehensive finite element program for geotechnical stability and
deformation analysis, was used [32]. Regarding the possible values for the strength of the soil (Cu) and
applied surcharge (w), different geometries of the slope (β), and displacements of the rigid foundation
(b/B), 630 possible stages were modelled and analyzed in Optum G2 to calculate the FOS of each stage
as the output. In the modeling process, the mechanical parameters of Poisson’s ratio, soil unit weight,
and internal friction angle were assigned to be 0.35, 18 kN/m3, and 0◦, respectively. Also, Young’s
modulus (E) was varied for every value of Cu. In this sense, E was set to 1000, 2000, 3500, 5000, 9000,
15,000, and 30,000 kPa for the following respective values of Cu: 25, 50, 75, 100, 200, 300, and 400 kPa.
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Figure 1. A view of the geometry of the slope.

The graphical relationship between the FOS and its influential factors is depicted in Figure 2a–d.
In these charts, Cu, β, b/B, and w are each placed on a horizontal (x) axis versus the obtained FOS (i.e.,
from Optum G2 analyses) on the vertical (y) axis. The FOS ranges within [0.8, 28.55] for all graphs.
Not surprisingly, as a general view, the slope experienced more stability when a higher value of Cu

was assigned to the soil (see Figure 2a). As Figure 2b,d illustrate, the parameters β (5◦, 30◦, 45◦, 60◦,
and 75◦) and w (50, 100, and 150 KN/m2) were inversely proportional to the FOS. This means the slope
was more likely to fail when the model was performed with higher values of β and w. According to
Figure 2c, the FOS did not show any significant sensitivity to the b/B ratio changes (0, 1, 2, 3, 4, and 5).
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Figure 2. The relationship between the input parameters (a) strength of the soil (Cu), (b) slope angle
(β), (c) setback distance ratio (b/B), and (d) applied surcharge on the footing installed over the slope (w)
versus the obtained factor of safety (FOS).

Table 1 provides an example of the dataset used in this paper. The dataset was randomly divided
into training and testing sub-groups, with the respective ratios of 0.8 (504 samples) and 0.2 (126
samples), based on previous studies [33]. Note that the training samples were used to train the MLR,
MLP, RBF, SMO-SVM, IBK, RF, and RT models, and their performance was validated by means of the
testing dataset. The 10-fold cross-validation process was used to select the training and test datasets
(Figure 3). The results achieved were based on the best average accuracy for each classifier using
10-fold cross-validation (TFCV) based on the 20%/80% training/test split. In short, TFCV (which is a
specific operation of k-fold cross-validation) divided our dataset into 10-partitions. In the first fold, a
specific set of eight partitions of the data was used to train each model, whereas two partitions were
used for testing. The accuracy for this fold was then indicated. This complied with using a various
20%/80% combinations of the data for training/testing, whose accuracy is also indicated. In the end,
after all 10 folds were finished, the overall average accuracy was calculated [34,35].
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Table 1. Example of inputs and output dataset used for training and validating the applied models.

No. Cu β b/B w FOS Stability Description No. Cu β b/B w FOS Stability Description

1 25 15 0 50 1.872 Moderate 26 100 60 1 150 2.682 High
2 25 15 0 100 1.196 Low 27 100 60 2 50 4.671 Very high
3 25 15 0 150 0.8154 Unstable 28 100 60 2 100 3.674 High
4 25 15 1 50 1.852 Moderate 29 100 60 2 150 2.904 High
5 25 15 1 100 1.324 Low 30 100 60 3 50 4.72 Very high
6 25 15 1 150 0.8981 Unstable 31 100 60 3 100 3.753 High
7 25 15 2 50 1.834 Moderate 32 100 60 3 150 3.017 High
8 25 15 2 100 1.354 Low 33 100 60 4 50 4.833 Very high
9 25 15 2 150 0.9133 Unstable 34 100 60 4 100 3.904 High
10 25 15 3 50 1.824 Moderate 35 100 60 4 150 3.152 High
11 25 15 3 100 1.356 Low 36 100 60 5 50 4.996 Very high
12 25 15 3 150 0.9169 Unstable 37 100 60 5 100 4.059 Very high
13 25 15 4 50 1.825 Moderate 38 100 60 5 150 3.297 High
14 25 15 4 100 1.356 Low 39 100 75 0 50 4.227 Very high
15 25 15 4 150 0.9171 Unstable 40 100 75 0 100 2.425 High
16 25 15 5 50 1.832 Moderate 41 100 75 0 150 1.68 Moderate
17 25 15 5 100 1.357 Low 42 100 75 1 50 4.154 Very high
18 25 15 5 150 0.9179 Unstable 43 100 75 1 100 3.174 High
19 25 30 0 50 1.597 Moderate 44 100 75 1 150 2.344 High
20 25 30 0 100 1.035 Low 45 100 75 2 50 4.065 Very high
21 25 30 0 150 0.8 Unstable 46 100 75 2 100 3.185 High
22 25 30 1 50 1.581 Moderate 47 100 75 2 150 2.545 High
23 25 30 1 100 1.229 Low 48 100 75 3 50 4.116 Very high
24 25 30 1 150 0.8449 Unstable 49 100 75 3 100 3.272 High
25 25 30 2 50 1.556 Moderate 50 100 75 3 150 2.655 High
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In the following, the aim was to evaluate the competency of the applied models through a novel
procedure based on the classification. In this sense, the actual values of the safety factor (i.e., obtained
from the Optum G2 analysis) were stratified into five stability classes. The safety factor values varied
from 0.8 to 28.55. Hence, the classification was carried out with respect to the extents given below
(Table 2):

Table 2. Description of stability classification.

Class Number Stability Description FOS Range Class Value

1 Unstable (FOS < 1) 1
2 Low (1 < FOS < 1.5) 2
3 Moderate (1.5 < FOS < 2) 3
4 High (2 < FOS < 4) 4
5 Very high (4 < FOS) 5

As previously expressed, this study aimed to appraise the applicability of the seven most-employed
machine learning models, namely multiple linear regression (MLR), multi-layer perceptron (MLP),
radial basis function regression (RBFR), improved support vector machine using sequential minimal
optimization algorithm (SMO-SVM), lazy k-nearest neighbor (IBK), random forest (RF), and random
tree (RT), toward evaluating the stability of a cohesive slope. For this purpose, the factor of safety
(FOS) of the slope was estimated using the above-mentioned methods. Four slope stability effective
factors that were chosen for this study were the undrained shear strength (Cu), slope angle (β), setback
distance ratio (b/B), and applied surcharge on the footing installed over the slope (w). To prepare the
input target dataset, 630 different stages were developed and analyzed in Optum G2 finite element
software. As a result of this process, a FOS was derived for each performed stage. To create the required
dataset, the values of Cu, β, b/B, and w were listed with the corresponding FOS. In the following,
80% of the prepared dataset (training phase consisting of 504 samples) was randomly selected for
training the utilized models (MLR, MLP, RBFR, SMO-SVM, IBK, RF, and RT), and the effectiveness of
them was evaluated by means of the remaining 20% of the dataset (testing phase consisting of 126
samples). The training process was carried out in WEKA software, which is an applicable tool for
classification utilization and data mining. Note that many scholars have employed WEKA before
for various simulating objectives [36,37]. To evaluate the efficiency of the implemented model, five
statistical indices, namely the coefficient of determination (R2), mean absolute error (MAE), root mean
square error (RMSE), relative absolute error (RAE in %), and root relative squared error (RRSE in %),
were used to develop a color intensity ranking and present a visualized comparison of the results.
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It should be noted that these criteria have been broadly used in earlier studies [38]. Equations (1)–(5)
describe the formulation of R2, MAE, RMSE, RAE, and RRSE, respectively.

R2 = 1−

∑s
i=1 (Yipredicted −Yiobserved)

2∑s
i=1 (Yiobserved −Yobserved)

2 (1)

MAE =
1
N

s∑
I=1

∣∣∣∣Yiobserved −Yipredicted

∣∣∣∣ (2)

RMSE =

√√
1
N

s∑
i=1

[(
Yiobserved −Yipredicted

)]2
(3)

RAE =

∑s
i=1

∣∣∣∣Yipredicted −Yiobserved

∣∣∣∣∑s
i=1

∣∣∣Yiobserved −Yobserved
∣∣∣ (4)

RRSE =

√√√√ ∑s
i=1 (Yipredicted −Yiobserved)

2∑s
i=1 (Yiobserved −Yobserved)

2 (5)

In all the above equations, Yi observed and Yi predicted stand for the actual and predicted values of the
FOS, respectively. The term S is the indicator of the number of data points and Yobserved is the average
of the actual values of the FOS. The outcomes of this paper are presented in various ways. In the next
part, the competency of the applied models (i.e., MLR, MLP, RBFR, SMO-SVM, IBK, RF, and RT) for
the approximation of FOS is extensively presented, compared, and discussed.

2.1. Machine Learning Techniques

The present research outlines the application of various machine-learning-based predictive
models, namely multiple linear regression (MLR), multi-layer perceptron (MLP), radial basis function
regression (RBFR), improved support vector machine using sequential minimal optimization algorithm
(SMO-SVM), lazy k-nearest neighbor (IBK), random forest (RF), and random tree (RT), in slope
stability assessment. Analysis was undertaken using WEKA software [39]. The mentioned models are
described below.

2.1.1. Multiple Linear Regression (MLR)

Fitting a linear equation to the data samples (Figure 4) is the essence of the multiple linear
regression (MLR) model. It tries to reveal the generic equation between two or more explanatory
(independent) variables and a response (dependent) variable. Equation (6) defines the general equation
of the MLR [40]:

y = ρ0 + ρ1x1 + ρ2x2 + . . .+ ρsxs + χ (6)

where x and y are the independent and dependent variables, respectively. The terms ρ0, ρ1, ..., ρs

indicate the unknown parameters of the MLR. Also, χ is the random variable in the MLR generic
formula that has a normal distribution.
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Figure 4. A simple view of linear fitting.

The main task of MLR is to forecast the unknown terms (i.e., ρ0, ρ1, ..., ρs) of Equation (6).
By applying the least-squares technique, the practical form of the statistical regression method is
represented as follows [40]:

y = p0 + p1x1 + p2x2 + . . .+ psxs + µ (7)

In the above equation p0, p1, ..., ps are the approximated regression coefficients of ρ0, ρ1, ..., ρs,
respectively. Also, the term µ gives the estimated error for the sample. Assuming the µ is the difference
between the real and modelled y, the estimation of y is performed as follows

ŷ = p0 + p1x1 + p2x2 + . . .+ psxs (8)

2.1.2. Multi-Layer Perceptron (MLP)

Imitating the human neural network, an artificial neural network (ANN) was first suggested by
McCulloch and Pitts [41]. The non-linear rules between each set of inputs and their specific target(s) can
be easily revealed using ANN [42]. Many scholars have used different types of ANN to model various
engineering models [14,16,20,38,43,44]. Despite the explicit benefits of ANNs, the most significant
disadvantages of them lie in being trapped in their local minima and overfitting. A highly connected
pattern forms the structure of an ANN. A multi-layer perceptron is one of the most prevalent types of
this model. A minimum of three layers is needed to form the MLP structure. Every layer contains a
different number of so-called computational nodes called “neurons.” Figure 5a illustrates the schematic
view of the MLP neural network that was used in this study. This network had two hidden layers
comprising 10 neurons each. Every line in this structure is indicative of an interconnection weight (W).
A more detailed view of the performance of a typical neuron is shown in Figure 5b:



Appl. Sci. 2019, 9, 4638 9 of 26

Appl. Sci. 2019, 9, 4638 9 of 26 

 

 

(a) (b) 
Figure 5. The schematic view of (a) the proposed model for the multilayer perceptron and (b) the 
operation of computational neurons. 

Note that, in Figure 1b, the parameter hj is calculated as follows: 

ℎ௝ =෍ ௝ܹ௜ ௜ܺ + ௝ܾ௦
௜ୀଵ  (9) 

where the terms W, X, and b stand for the weight, input, and bias of the utilized neuron. Also, the 
function f denotes the activation function of the neuron that is applied to produce the output. 

2.1.3. Radial Basis Function Regression (RBFR) 

Th radial basis function (RBF) approach (shown in Figure 6) was first presented by Broomhead 
and Lowe [45] for exact function interpolation [46]. The RBF regression model attempts to fit a set of 
local kernels in high-dimensional space to solve problems [45,47,48]. The position of noisy instances 
is considered for executing the fitting. The number of purposed kernels is often estimated using a 
bath algorithm. 

The RBF regression performs through establishing an expectation function with the overall form 
of Equation (10): 

(ݔ)ܨ =෍݇(‖ݔ − ௜‖)௭ݔ
௜ୀଵ  ௜ (10)ݎ	

where ‖ݔ‖ represents the Euclidean norm on x and ሼ݇(‖ݔ − ݅|(‖௜ݔ = 1,2, . . . , ݉ሽ is a set of m RBFs, 
which are characterized by their non-linearity and being constant on x. Also, the regression coefficient 
is denoted by ri in this formula. Every training sample (i.e., xi) determines a center of the RBFs. In 
other words, the so-called function “radial” is impressively dependent on the distance (ψ) between 
the center (xi) and the origin (x) (i.e., ߰ = ݔ‖ − (ݎ)݇ ௜‖). The Gaussianݔ = )݌ݔ݁ − ߰	for			ଶ),߰ߪ ≥ 0 
[49,50]; the multi-quadric ݇(ݎ) = ඥߜଶ + ߰ଶ,			for	ߜ ≥ 0  [51]; and the thin-plate-spline ݇(ݎ) =߰ଶ  functions are three extensively applied examples of the function k(x) following the [52,53] ߰݃݋݈
RBF rules. 

Figure 5. The schematic view of (a) the proposed model for the multilayer perceptron and (b) the
operation of computational neurons.

Note that, in Figure 1b, the parameter hj is calculated as follows:

h j =
s∑

i=1

W jiXi + b j (9)

where the terms W, X, and b stand for the weight, input, and bias of the utilized neuron. Also,
the function f denotes the activation function of the neuron that is applied to produce the output.

2.1.3. Radial Basis Function Regression (RBFR)

Th radial basis function (RBF) approach (shown in Figure 6) was first presented by Broomhead
and Lowe [45] for exact function interpolation [46]. The RBF regression model attempts to fit a set of
local kernels in high-dimensional space to solve problems [45,47,48]. The position of noisy instances
is considered for executing the fitting. The number of purposed kernels is often estimated using a
bath algorithm.
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The RBF regression performs through establishing an expectation function with the overall form
of Equation (10):

F(x) =
z∑

i=1

k(‖x− xi‖) ri (10)

where ‖x‖ represents the Euclidean norm on x and
{
k(‖x− xi‖)|i = 1, 2, . . . , m

}
is a set of m RBFs, which

are characterized by their non-linearity and being constant on x. Also, the regression coefficient is
denoted by ri in this formula. Every training sample (i.e., xi) determines a center of the RBFs. In other
words, the so-called function “radial” is impressively dependent on the distance (ψ) between the
center (xi) and the origin (x) (i.e., ψ = ‖x− xi‖) The Gaussian k(r) = exp (−σψ2), for ψ ≥ 0 [49,50]; the
multi-quadric k(r) =

√
δ2 +ψ2, for δ ≥ 0 [51]; and the thin-plate-spline k(r) = ψ2logψ [52,53] functions

are three extensively applied examples of the function k(x) following the RBF rules.

2.1.4. Improved Support Vector Machine using Sequential Minimal Optimization Algorithm
(SMO-SVM)

Support Vector Machine (SVM)

Insulating different classes is the pivotal norm during the performance of the support vector
machine (SVM). This happens through detecting the decision boundaries. SVMs have been shown
to have a suitable accuracy in various classification problems when dealing with high-dimensional
and non-separable datasets [54–56]. Theoretically, SVMs act according to statistical theories [57] and
aim to transform the problem from non-linear to linear future spaces [58]. More specifically, assessing
the support vectors that are set at the edge of the module descriptors will lead to locating the most
appropriate hyperplane between the modules. Note that guiding cases that could not be a support
vector are known as neglected vectors [59]. The graphical description of the mentioned procedure is
depicted in Figure 7:
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In the SVMs, the formulation of the hyperplane (i.e., the decision surface) is as follows:

V∑
j=1

l j· f j·K
(
x, x j

)
= 0 (11)

where lj, x, and fj represent the Lagrange coefficient, the vector that is drawn from the input space, and
the jth output, respectively. Also, K(x, xi) is indicative of the inner-product kernel (i.e., the linear kernel
function) and operates as given in Equation (12):

K
(
x, x j

)
= x·x j (12)

where x and xj stand for the input vector and input pattern related to the jth instance, respectively.
The vector w and the biasing threshold b are obtained from Equations (13) and (14) [60]:

w =
V∑

i=1

l j· f j·x j (13)

b = w·xk − fk (14)

Also, Q(l), which is a quadratic function (in li), is given using the following formula:

minQ(l) = min 1
2

V∑
j=1

V∑
h=1

f j fhK
(
x j, xh

)
l jlh −

V∑
j=1

l j

where,
0 ≤ l j ≤ C
V∑

j=1
l j· f j = 0

(15)

Sequential Minimal Optimization (SMO)

Sequential minimal optimization (SMO) is a simple algorithm that was used in this study to
improve the performance of the SVM. When corresponding the linear weight vector to the optimal
values of li using SMO, adding a matrix repository and establishing a repetitive statistical is not
required. Every pair of Lagrange multiplier, such as l1 and l2 (l1 < l2), vary from 0 to C. During the SMO
performance, the l2 is first computed. The extent of the transverse contour fragment is determined
based on the obtained l2 [60]. If the targets f 1 and f 2 are equal, the subsequent bounds apply to l1
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(Equation (10)); otherwise, they apply to l2. Equation (16) defines the directional minimum along with
the contour fragment acquired using SMO:

l2′ = l2 +
f2(E1 − E2)

λ
(16)

where Ej is the difference between the jth SMV output and the target. The parameter λ stands for an
unbiased function and is given by the following equation:

λ = K(x1, x1) + K(x2, x2) − 2K(x1, x2) (17)

In the following, the l2′ clipped to the range [A, B]:

A = max(0, l2 − l1) B = min(C, C + l2 − l1) (18)

A = max(0, l2 + l1 −C) B = min(C, l2 + l1) (19)

l2′′ =


B if l2′ ≥ B
l2′ if A < l2′ < B
A if l2′ ≤ A

(20)

l1′ = l1 + υ(l2 − l2′′ ), υ = f1 f2 (21)

Finally, l1 and l2 are moved to the bound with the lowest unbiased function.
After optimizing the Lagrange multipliers, SVM is eligible to give the output f 1 using the threshold

b1, if 0 < l1 < C [60]. Equations (22) and (23) show the way that b1 and b2 are calculated:

b1 = E1 + f1(l1′ − l1)K(x1, x1) + f2(l1′′ − l2)K(x1, x2) + b (22)

b2 = E1 + f1(l1′ − l1)K(x1, x2) + f2(l1′′ − l2)K(x2, x2) + b (23)

2.1.5. Lazy k-Nearest Neighbor (IBK)

In the lazy learning procedure, the generalization of the training sample commences with
producing a query and learners do not tend to operate until the classification time. Generating the
objective function through a local estimation can be stated as the main advantage of the models
associated with lazy learning. One of the most prevalent techniques that follow these rules is the
k-nearest neighbor algorithm [61]. Multiple problems can be simulated with this approach due to
the local estimation accomplished for all queries to the system. Moreover, this feature causes the
capability of such systems to work, even when the problem conditions change [62,63]. Even though
lazy learning has been shown to have a suitable quickness for training, validation takes place over
longer time. Furthermore, since the complete training process is stored in this method, a large space is
required for the k-nearest neighborhood (IBK) classifier as a non-parametric model that has a good
background for classification and regression utilization [61]. The number of nearest neighbors can be
specified exactly in the object editor or set automatically through applying cross-validation to a certain
upper bound. IBK utilizes various search algorithms (that are linear by default) to expedite finding the
nearest neighbors. Also, the default function for evaluating the position of samples is the Euclidean
distance, which can be substituted by Minkowski, Manhattan, and Chebyshev distance functions [64].
As is well-discussed in References [62,65], the distance from the validation data can be a valid criterion
to weight the estimations from more than one neighbor. Note that altering the oldest training data with
new possible samples takes place by determining a window size. It helps to have a constant number of
samples [66].
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2.1.6. Random Forest (RF)

The random forest (RF) is a capable tool used for classification problems [67]. RF follows the
ensemble learning rules by employing several classification trees [68]. In this model, showing better
results than entire individual trees (i.e., the better performance of an ensemble of classification trees)
entails a greater than random accuracy, as well as the variety of the ensemble members [69]. During
the FR implementation, it aims to change the predictive relations randomly to increase the diversity of
trees in the utilized forest. The development of the forest necessitates the user to specify the values
of the number of trees (t) and the number of variables that cleave the nodes (g). Note that either
categorical or numerical variables are eligible for this task. The parameter t needs to be high enough
to guarantee the reliability of the model. The unbiased estimation of the generalization error (GE),
called the out-of-bag (OOB) error is obtained, when the random forest is being formed. Breiman [67]
showed that a limiting value of GE is produced by RF. The OOB error is computed using the ratio of
the misclassification error over the total out-of-bag elements. RF attempts to appraise the prominence
of the predictive variables through considering the increase of the OOB error. This increment is caused
by permuting the OOB data for the utilized variable, while other variables are left without any change.
It must be noted that the prominence of the predictive variable rises as the OOB error increases [70].
Since each tree is counted as a completely independent random case, the affluence of random trees can
lead to reducing the likelihood of overfitting. Note that this can be considered a key advantage of RF.
This algorithm can automatically handle the missing values due to its suitable resistance against the
outliers when making predictions.

2.1.7. Random Tree (RT)

Random trees (RT) symbolize a supervised classification model first introduced by Leo Breiman
and Adele Cutler [67]. Similar to RF, ensemble learning forms the essence of RT. In this approach,
many learners who operate individually are involved. To develop a decision tree, a bagging idea is
used to provide a randomly chosen group of samples. The pivotal difference between a standard
tree and random forest (FR) is found in the splitting of the node. In RF, this is executed using the
best among the subgroup of predictors, while a standard tree uses the elite split among all variables.
The RT is an ensemble of tree forecasters (i.e., forest) and can handle both regression and classification
utilizations. During the RT execution, the input data are given to the tree classifier. Every existing
tree performs the classification of the inputs. Eventually, the category with the highest frequency is
the output of the system. This is noteworthy because the training error is calculated internally; none
of cross-validation and bootstraps are needed to estimate the accuracy of the training stage. Note
that the average of the responses of the whole forest members is computed to produce the output of
the regression problems [71]. The error of this scheme is a proportion of the number of misclassified
vectors to all vectors in the original data.

3. Results and Discussion

The calculated values of R2, MAE, RMSE, RAE, and RRSE for estimating the FOS are tabulated in
Tables 3 and 4 for the training and testing datasets. Also, the total ranking obtained for the models
is featured in Table 5. A color intensity model is given to denote the quality of results graphically.
A red collection is considered for particular results. A higher value of R2 and lower MAE, RMSE, RAE,
and RRSE are represented using a more intense red color. In the last column, the intensity of a green
collection is supposed to be inversely proportional to the ranking gained by each model.
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Table 3. Total ranking of the training dataset in predicting the factor of safety.

Proposed
Models

Network Results Ranking the Predicted Models Total Ranking
Score

Rank
R2 MAE RMSE RAE (%) RRSE (%) R2 MAE RMSE RAE (%) RRSE (%)

MLR 0.9586 1.2527 1.7366 25.0515 28.4887 2 1 2 1 2 8 6
MLP 0.9937 0.494 0.7131 9.8796 11.6985 3 3 3 3 3 15 5
RBFR 0.9948 0.3976 0.6231 7.9522 10.2221 4 4 4 4 4 20 4

SMO-SVM 0.9529 1.161 1.9183 23.2182 31.4703 1 2 1 2 1 7 7
IBK 1.0000 0 0 0 0 7 7 7 7 7 35 1
RF 0.9997 0.1063 0.1486 2.1254 2.4385 5 5 5 5 5 25 3
RT 0.9998 0.0811 0.1111 1.622 1.8221 6 6 6 6 6 30 2

Note: It is a ranking system based on colures. The one with higher intensity has better value. R2: correlation coefficient; MAE: mean absolute error; RMSE: root mean squared error; RAE:
relative absolute error; RRSE: root relative squared error.

Table 4. Total ranking of the testing dataset in predicting the factor of safety.

Proposed
Models

Network Results Ranking the Predicted Models Total Ranking
Score

Rank
R2 MAE RMSE RAE (%) RRSE (%) R2 MAE RMSE RAE (%) RRSE (%)

MLR 0.9649 1.1939 1.5891 24.1272 26.4613 1 1 2 1 2 7 7
MLP 0.9939 0.5149 0.7093 10.4047 11.8116 4 4 4 4 4 20 4
RBFR 0.9955 0.3936 0.5667 7.9549 9.4376 6 5 6 5 6 28 2

SMO-SVM 0.9653 1.0360 1.6362 20.9366 27.247 2 2 1 2 1 8 6
IBK 0.9837 0.8184 1.1066 16.5388 17.247 3 3 3 3 3 15 5
RF 0.9985 0.2152 0.3312 4.3498 5.5145 7 7 7 7 7 35 1
RT 0.9950 0.3492 0.6033 7.0576 10.047 5 6 5 6 5 27 3
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Table 5. Total ranking of both training and testing datasets in predicting the factor of safety.

Proposed
Model

Network Result
Total
Score

Total
RankTraining Dataset Testing Dataset

R2 MAE RMSE RAE (%) RRSE (%) R2 MAE RMSE RAE RRSE

MLR 2 1 2 1 2 1 1 2 1 2 15 6
MLP 3 3 3 3 3 4 4 4 4 4 35 5
RBFR 4 4 4 4 4 6 5 6 5 6 48 4

SMO-SVM 1 2 1 2 1 2 2 1 2 1 15 6
IBK 7 7 7 7 7 3 3 3 3 3 50 3
RF 5 5 5 5 5 7 7 7 7 7 60 1
RT 6 6 6 6 6 5 6 5 6 5 57 2

At a glance, RF could be seen to be the outstanding model due to its highest score. However,
based on the acquired R2 for the training (0.9586, 0.9937, 0.9948, 0.9529, 1.000, 0.9997, and 0.9998,
calculated for MLR, MLP, RBFR, SMO-SVM, IBK, RF, and RT, respectively) and testing (0.9649, 0.9939,
0.9955, 0.9653, 0.9837, 0.9985, and 0.9950, respectively) datasets, an acceptable correlation could be
seen for all models. Referring to the RMSE (28.4887, 1.7366, 0.7131, 0.6231, 1.9183, 0.00, 0.1486, and
0.1111) and RRSE (11.6985%, 10.2221%, 31.4703%, 0.0000%, 2.4385%, and 1.8221%) obtained for the
training dataset, the IBK predictive model presented the most effective training compared to other
models. Also, RT and RF could be seen as the second- and third-most accurate models, respectively, in
the training stage. In addition, RBFR outperformed MLP, MLR, and SMO-SVM (as shown in Table 3).

The results for evaluating the performance of the models used are available in Table 4. Despite
this fact that IBK showed an excellent performance during the training phase, a better validation was
achieved using the RF, RBFR, RT, and MLP methods in this part. This claim can be proved by the
obtained values of R2 (0.9649, 0.9939, 0.9955, 0.9653, 0.9837, 0.9985, and 0.9950), MAE (1.1939, 0.5149,
0.3936, 1.0360, 0.8184, 0.2152, and 0.3492) and RAE (24.1272%, 10.4047%, 7.9549%, 20.9366%, 16.5388%,
4.3498%, and 7.0576%) for MLR, MLP, RBFR, SMO-SVM, IBK, RF, and RT, respectively. Respective
values of 0.9985, 0.2152, 0.3312, 4.3498%, and 5.5145% computed for R2, MAE, RMSE, RAE, and RRSE
indices show that the highest level of accuracy in the validation phase was achieved by RF. Similar to
the training phase, the lowest reliability was achieved by the SVM and MLR models, compared to the
other utilized techniques.

Furthermore, a comprehensive comparison (regarding the results of both the training and testing
datasets) of applied methods is conducted in Table 5. In this table, considering the assumption of
individual ranks obtained for each model (based on the R2, MAE, RMSE, RAE, and RRSE in Tables 3
and 4), a new total ranking is provided. According to this table, the RF (total score = 60) was the most
efficient model in the current study due to its good performance in both the training and testing phases.
After RF, RT (total score = 57) was the second-most reliable model. Other employed methods including
IBK (total score = 50), RBFR (total score = 48), and MLP (total score = 35) were the third-, fourth-, and
fifth-most accurate tools, respectively. Also, the poorest estimation was given by the SMO-SVM and
MLR approaches (total score = 15 for both models).

Application of multiple linear regression (MLR), multi-layer perceptron (MLP), radial basis
function regression (RBFR), improved support vector machine using sequential minimal optimization
algorithm (SMO-SVM), lazy k-nearest neighbor (IBK), random forest (RF), and random tree (RT) was
found to be viable for appraising the stability of a single-layered cohesive slope. The models that
use ensemble learning (i.e., RF and RT) outperformed the models that are based on lazy-learning
(IBK), regression rules (MLR and RBFR), neural learning (MLP), and statistical theories (SMO-SVM).
Referring to the acquired total scores (the summation of scores obtained for the training and testing
stages) of 15, 35, 48, 15, 50, 60, and 57 for MLR, MLP, RBFR, SMO-SVM, IBK, RF, and RT, respectively,
shows the superiority of the RT algorithm. After that, RT, IBK, and RBFR were shown to have an
excellent performance when estimating the FOS. Also, satisfying reliability was found for the MLP,
SMO-SVM, and MLR methods. Based on the results obtained for the classification of the risk of failure,
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the closest approximation was achieved using the RF, RT, IBK, and SMO-SVM methods. In this regard,
14.60% of the dataset was assorted as hazardous slopes (i.e., “unstable” and “low stability” categories).
This value was estimated as 18.25%, 12.54%, 12.70%, 14.76%, 14.60%, 13.81%, and 14.13% by the MLR,
MLP, RBFR, SMO-SVM, IBK, RF, and RT models, respectively.

It is well established that the best relationship between the data shown on the horizontal and
vertical axis is demonstrated using the line x = y, in the regression chart. According to Figures 8
and 9, the IBK produced the closest outputs to the actual values of the safety factor in the training
phase (R2 = 1). Also, the highest correlation was achieved by the RF outputs for the testing data
(R2 = 0.9985). A higher scattering in samples, observed for MLR (R2 = 0.9586 and 0.9649) and SMO-SVM
(R2 = 0.9529 and 0.9653) predictions indicates a lower sensitivity of these models in both the training
and testing datasets.

Appl. Sci. 2019, 9, 4638 16 of 26 

 

Table 5. Total ranking of both training and testing datasets in predicting the factor of safety. 

Proposed 
Model 

Network Result 
Total 
Score 

Total 
Rank 

Training Dataset Testing Dataset 

R2 MAE RMSE 
RAE 
(%) 

RRSE 
(%) 

R2 MAE RMSE RAE RRSE 

MLR 2 1 2 1 2 1 1 2 1 2 15 6 

MLP 3 3 3 3 3 4 4 4 4 4 35 5 

RBFR 4 4 4 4 4 6 5 6 5 6 48 4 

SMO-SVM 1 2 1 2 1 2 2 1 2 1 15 6 

IBK 7 7 7 7 7 3 3 3 3 3 50 3 

RF 5 5 5 5 5 7 7 7 7 7 60 1 

RT 6 6 6 6 6 5 6 5 6 5 57 2 

 
a 

 
b 

Figure 8. Cont.



Appl. Sci. 2019, 9, 4638 17 of 26Appl. Sci. 2019, 9, 4638 17 of 26 

 

 
c 

 
d 

 
e 

Figure 8. Cont.



Appl. Sci. 2019, 9, 4638 18 of 26Appl. Sci. 2019, 9, 4638 18 of 26 

 

 
f 

 
g 

Figure 8. The network result for the training dataset in (a) multiple linear regression (MLR), (b) multi-
layer perceptron (MLP), (c) radial basis function regression (RBFR), (d) improved support vector 
machine using sequential minimal optimization algorithm (SMO-SVM), (e) lazy k-nearest neighbor 
(IBK), (f) random forest (RF), and (g) random tree (RT). 

 

a 

Figure 8. The network result for the training dataset in (a) multiple linear regression (MLR), (b)
multi-layer perceptron (MLP), (c) radial basis function regression (RBFR), (d) improved support vector
machine using sequential minimal optimization algorithm (SMO-SVM), (e) lazy k-nearest neighbor
(IBK), (f) random forest (RF), and (g) random tree (RT).

Appl. Sci. 2019, 9, 4638 18 of 26 

 

 
f 

 
g 

Figure 8. The network result for the training dataset in (a) multiple linear regression (MLR), (b) multi-
layer perceptron (MLP), (c) radial basis function regression (RBFR), (d) improved support vector 
machine using sequential minimal optimization algorithm (SMO-SVM), (e) lazy k-nearest neighbor 
(IBK), (f) random forest (RF), and (g) random tree (RT). 

 

a 

Figure 9. Cont.



Appl. Sci. 2019, 9, 4638 19 of 26
Appl. Sci. 2019, 9, 4638 19 of 26 

 

 
b 

 
c 

 

d 

Figure 9. Cont.



Appl. Sci. 2019, 9, 4638 20 of 26
Appl. Sci. 2019, 9, 4638 20 of 26 

 

 
e 

 

f 

 

g 

Figure 9. The network result for the testing dataset in (a) multiple linear regression (MLR), (b) multi-
layer perceptron (MLP), (c) radial basis function regression (RBFR), (d) improved support vector 

Figure 9. The network result for the testing dataset in (a) multiple linear regression (MLR), (b)
multi-layer perceptron (MLP), (c) radial basis function regression (RBFR), (d) improved support vector
machine using sequential minimal optimization algorithm (SMO-SVM), (e) lazy k-nearest neighbor
(IBK), (f) random forest (RF), and (g) random tree (RT).



Appl. Sci. 2019, 9, 4638 21 of 26

The percentage of each stability class (i.e., the number of safety factor values in the utilized class
over the whole number of data points) was calculated. The results of this part are depicted in the form
of a column chart in Figure 10.
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In addition, the regression between the actual and estimated values of FOS is depicted in Figures 6
and 7 for the training and testing data.

Based on this chart, more than half of the safety factor values indicated a safe condition for the
examined slope. Almost all employed models showed a good approximation for the classification of
the risk of failure. Considering the categories “unstable” and “low stability” as the dangerous situation
of the slope (i.e., the slope was more likely to fail with these safety factors), a total of 14.60% of the
dataset was assorted as being dangerous. This value was estimated as 18.25%, 12.54%, 12.70%, 14.76%,
14.60%, 13.81%, and 14.13% by the MLR, MLP, RBFR, SMO-SVM, IBK, RF, and RT models, respectively.

FOSMLR = 0.042 × Cu − 0.0525 × β + 0.1718 × b/B − 0.0395 ×w + 5.9289 (24)

FOSSMO-SVM = + 0.5385 × Cu − 0.0685 × β + 0.0213 × b/B − 0.0925 ×w + 0.0825 (25)

FOSMLP = −0.2956 × Z1 + 0.0456 × Z2 + 0.9411 × Z3 + 1.3988 × Z4 + 0.1028 × Z5

− 0.0499 × Z6 + 0.0303 × Z7 − 0.1266 × Z8 − 0.7543 × Z9 − 0.0020 × Z10 − 1.0782
(26)

where the parameters Z1, Z2, . . . , Z10 are shown in Table 6 and weight and biases tabulated in Table 7:
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Table 6. Weight and biases of the ANN model.

Neuron
(i)

Zi = Tansig (Wi1 × Y1 +Wi2 × Y2 + . . . +Wi10 × Y10 + bi)

Wi1 Wi2 Wi3 Wi4 Wi5 Wi6 Wi7 Wi8 Wi9 Wi10 bi

1 0.8014 0.2141 −0.9739 0.3018 −1.0577 0.3676 0.0819 0.0814 0.1832 −0.2797 −0.1420
2 0.7150 −1.0819 2.6119 1.4173 −1.7753 −0.6882 −0.3629 −0.3758 0.3733 3.8024 −0.8470
3 0.0539 −0.4013 −0.0124 −0.1376 1.5404 −0.1659 −0.1569 0.0965 0.1123 −1.0206 0.7256
4 0.0975 0.2092 −0.2620 −0.0167 −0.2081 0.1904 0.0662 0.0342 −0.0256 1.3529 0.6269
5 0.3407 −0.2303 0.6002 0.7437 −0.0743 0.2708 0.6381 −0.4040 −0.2603 1.6380 0.0664
6 0.2808 −1.1512 1.6090 0.0751 −0.9023 1.0409 −0.1826 1.3060 −0.0688 −0.6791 −0.8171
7 −1.4209 −1.3960 −0.6175 0.0115 0.4415 1.3083 −0.3546 1.1381 −0.5560 −1.3212 −0.4100
8 −0.8622 −1.4606 1.0247 −1.4288 −2.0929 0.8496 0.1114 0.1647 −0.4303 −0.4968 −0.1472
9 0.0532 −0.0747 −0.5253 0.0773 −1.0538 −0.1710 −0.1178 −0.0304 0.0095 −0.7900 −1.2037
10 1.6879 −1.7526 −0.5477 2.4484 −0.1138 −1.9688 0.5682 2.5085 −4.1707 −0.5766 −0.5541

where the parameters Y1, Y2, . . . , Y10 are in Table 7.

Table 7. Weight and biases of the ANN model.

Neuron (i)
Yi = Tansig (Wi1 × Cu +Wi2 × β +Wi10 × (b/B) +Wi2 × w + bi)

Wi1 Wi2 Wi3 Wi4 bi

1 1.1179 2.1216 −0.9307 −1.9126 −3.1819
2 −1.6540 0.7670 0.5226 0.5905 1.9420
3 −1.7577 0.1682 1.0751 −0.8448 1.5533
4 −1.1786 −1.2008 1.5102 −1.4182 1.2264
5 0.3132 0.0403 0.0188 −0.0171 −0.0729
6 0.3103 −0.1702 0.8267 −2.1844 0.1736
7 −0.2284 −1.6277 1.7207 1.2254 −0.0037
8 1.9007 −1.8777 0.9780 2.9271 1.4079
9 0.1767 −1.2933 −1.2124 −0.5631 1.4512
10 0.5156 −0.3139 −0.0902 −0.3256 −1.2137

Cu—undrained cohesion strength (kPa), β—slope angle (◦), b/B—setback distance ratio, and w—applied surcharge
on the footing.

4. Conclusions

In the past, many scholars have investigated the slope failure phenomenon due to its huge impact
on many civil engineering projects. Due to this, many traditional techniques offering numerical and
finite element solutions have been developed. The appearance of machine learning has made these
techniques antiquated. Therefore, the main incentive of this study was to evaluate the proficiency
of various machine-learning-based models, namely multiple linear regression (MLR), multi-layer
perceptron (MLP), radial basis function regression (RBFR), improved support vector machine using
sequential minimal optimization algorithm (SMO-SVM), lazy k-nearest neighbor (IBK), random forest
(RF), and random tree (RT), in estimating the factor of safety (FOS) of a cohesive slope. To provide
the required dataset. Optum G2 software was effectively used to calculate the FOS of 630 different
slope conditions. The inputs (i.e., the slope failure conditioning factors) chosen were the undrained
shear strength (Cu), slope angle (β), setback distance ratio (b/B), and applied surcharge on the shallow
foundation installed over the slope (w). To train the intelligent models, 80% of the provided dataset
(i.e., 504 samples) was randomly selected. Then, the results of each model were validated using
the remaining 20% (i.e., 126 samples). Five well-known statistical indices, namely coefficient of
determination (R2), mean absolute error (MAE), root mean square error (RMSE), relative absolute error
(RAE in %), and root relative squared error (RRSE in %), were used to evaluate the results of the MLR,
MLP, RBFR, SMO-SVM, IBK, RF, and RT predictive models. A color intensity rating along with the
total ranking method (i.e., based on the result of the above indices) was also developed. In addition to
this, the results were compared by classifying the risk of slope failure using five classes: unstable, low
stability (dangerous), moderate stability, good stability, and safe. The outcomes of this paper are as
follows:
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• Application of multiple linear regression (MLR), multi-layer perceptron (MLP), radial basis function
regression (RBFR), improved support vector machine using sequential minimal optimization
algorithm (SMO-SVM), lazy k-nearest neighbor (IBK), random forest (RF), and random tree (RT)
were viable for appraising the stability of a single-layered cohesive slope.

• A good level of accuracy was achieved by all applied models based on the obtained values of R2

(0.9586, 0.9937, 0.9948, 0.9529, 1.000, 0.9997, and 0.9998), RMSE (28.4887, 1.7366, 0.7131, 0.6231,
1.9183, 0.0000, 0.1486, and 0.1111), and RRSE (11.6985%, 10.2221%, 31.4703%, 0.0000%, 2.4385%,
and 1.8221%) for the training dataset, and R2 (0.9649, 0.9939, 0.9955, 0.9653, 0.9837, 0.9985, and
0.9950), MAE (1.1939, 0.5149, 0.3936, 1.0360, 0.8184, 0.2152, and 0.3492), and RAE (24.1272%,
10.4047%, 7.9549%, 20.9366%, 16.5388%, 4.3498%, and 7.0576%) for the testing dataset obtained for
MLR, MLP, RBFR, SMO-SVM, IBK, RF, and RT, respectively.

• The models that use ensemble-learning (i.e., RF and RT) outperformed the models that are based
on lazy-learning (IBK), regression rules (MLR and RBFR), neural-learning (MLP), and statistical
theories (SMO-SVM).

• Referring to the acquired total scores (the summation of scores obtained for the training and
testing stages) of 15, 35, 48, 15, 50, 60, and 57 for MLR, MLP, RBFR, SMO-SVM, IBK, RF, and
RT, respectively, the superiority of the RF algorithm can be seen. After that, RT, IBK, and RBFR
showed an excellent performance in estimating the FOS. Also, satisfactory reliability was achieved
for the MLP, SMO-SVM, and MLR methods.

• Based on the results obtained for the classification of the risk of failure, the closest approximation
was achieved by the RF, RT, IBK, and SMO-SVM methods. In this regard, 14.60% of the dataset
was assorted as being hazardous slopes (i.e., “unstable” and “low stability” categories). This value
was estimated as 18.25%, 12.54%, 12.70%, 14.76%, 14.60%, 13.81%, and 14.13% by the MLR, MLP,
RBFR, SMO-SVM, IBK, RF, and RT models, respectively.
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