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Abstract: In this paper mathematical modelling of a vehicle crash test based on a single mass is studied.
The models under consideration consists of a single mass, a spring and/or a damper and are constructed
according to the measured vehicle speed before the collision and measured vehicle accelerations in three
directions at the centre of gravity. The objective of this paper is to compare different methods on es-
tablishing a simple model of a car crash and compare the results against real life crash data.
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1 Introduction

When car manufacturers design and build cars,
they need to consider the safety of the occupant
in the car. In order to test how a car will react to
a crash, one could do a real life crash test. To do
such a test requires good measurements, a locale,
trained employees and a car. Instead of crashing
a designed car many times to look for results, it’s
much more cost effective to crash one car and make
a model that fits the crash. In order to make a
model of the vehicle, there are generally two cat-
egories; Lumped Parameter Modeling (LPM) and
Finitie Element Model (FEM) using CAD software
to model the car. The first category LPM, uses
up to several masses connected to each other with
springs and dampers in between. The parameters
of the springs and dampers are determined in or-
der to match a vehicle crash. Jonsén et al. [1] used
a lumped parameter model based on results from
a crash test to identify the parameters to describe
the crash. Another way to identify the parameters
is to optimize a model versus the crash data using
computational power. Kim et al. [2] used a lumped
parameter model together with crash data to iden-
tify parameters using an optimization routine.

Pawlus et al. [3] presented a model with one
mass, a spring and a damper to model the crash.
This model is purely analytic, and the parameters
can be calculated without using advanced programs

or computational power. Pawlus et al. [4] presented
a model with one mass and a spring. This model
was used to explain the plastic deformation of the
car in the crash. In order to do that, two models
were used; one model for the crash at a time before
maximum dynamic crush, and a different model for
the crash after the time of maximum crush. The
plasticity of the spring made sure the car wouldn’t
have a large rebound displacement, but rather os-
cillate around the maximum displacement. It was
also shown that a Maxwell model could also prove
to be a good model for the crash as it is suitable
for material responses that exhibit relaxation and
creep [5]. Finite element analysis, or FEA, is also
widely used in crashworthiness research to make
a model of a vehicle crash. Its upside compared
to LPM are that FEM analysis gives much more
detailed results about the deformation of the vehi-
cle during the crash. However, making a model of
the car and simulate the crash is a time consum-
ing and computational heavy task. Zaouk et al. [6]
made a finite element model of a pick-up truck and
compared the model with multiple impact data set.
They concluded that the simulation were consistent
with the dataset, but some of the problems could
be resolved by modeling more components in the
cabin interior. A second reason to use FEM mod-
els is to look at the damage of the human body in a
crash. Voo et al. [7] made a FE model of a human
head to look for damage in the head during various

1



load conditions.

Three models will be tested against each other
to prove their accuracy compared to the crash test
data. The aim of this paper is to investigate what
kind of models shows promising results in a time in-
terval and which models that shows good potential
for further work.

2 Crash test data

The crash test data that are used in the models are
collected from a calibration test done using a Ford
Fiesta in a pole [8]. The car was equipped with an
accelerometer in its center of gravity that measured
the acceleration signals in x, y and z direction. The
models in this paper uses the acceleration in the
x-direction for computation. This acceleration is
used to find the displacement and velocity of the
car during the crash by using a forward-euler time
integration algorithm. The parameters and the ini-
tial values for the crash are:

• m = 873 kg

• s(t=0) = 0cm

• v(t=0) = 35 km
h

The time t = 0 shows the time of impact, s is the
displacement of the car and v is the velocity of the
car. The results can be seen in Fig. 2.
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Figure 2: Crash test data

The red line shows the acceleration in x-
direction in g (-9.81 m

s2 ), the blue line shows dis-
placement in cm, and the green line shows velocity
in km/h.

3 Mathematical Models

3.1 Spring-mass model

m

s, v, a

k

Figure 3: Spring-mass model

The model shown in Fig. 3 is based on the Kelvin
model in [3] and [5]. In order to find the constant
spring coefficient, some terms need to be defined
and found in the crash test data:

tm - Time of maximum dynamic crush, v(tm) = 0.

C - Vehicle dynamic crush at time tm, s(tm)

tc - The time at the geometric center of the crash
pulse from time zero to tm.

The time of dynamic crush is found in Fig. 2 where
the velocity is 0. The centroid time can be found by
either integrating the acceleration to find the area
center, or use the following formula:

tc =
C

v0

=
s(tm)

v(0)
(1)

The normalized centroid time and angular position
at dynamic crush is defined as [3]:

τc = tcωe =
(

αm

v0

)

ωe = e−ζτm (2)

τm = tmωe =
1√

1 − ζ2
arctan

√
1 − ζ2

ζ
(3)

where ωe is the natural frequency of the system,
αm is the maximum dynamic crush and ζ is the
damping factor. By combining Eqs. (2) and (3),
the following relation is found:

τc

τm

=
tc

tm

=

√
1 − ζ2

arctan

√
1−ζ2

ζ

e

[

−ζ√
1−ζ2

arctan

√
1−ζ2

ζ

]

(4)
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By solving Eq (4) with respect to ζ, the damping
of the system is determined. The eigenfrequency
of the system (fe) is found by using the time of
maximum crush:

τm = 2πfetm (5)

fe =
1

2πtm

√
1 − ζ2

arctan

√
1 − ζ2

ζ
(6)

If ζ is 0 or tc

tm
> π

2
, Huang [5] explains a method

for undamped systems. The system is reduced to
a mass-spring model, and a new time of maximum
crush is calculated:

tm =
πtc

2
(7)

The spring and damper constants (k and c respec-
tively) can be found by using ζ and fe in two
second-order system equations respectively as fol-
lows:

k = 4π2f 2
e m (8)

c = 4πfeζm (9)

Results

The crash test data shown in Fig. 2 is used in order
to produce the results. The data extracted from the
plot is:

tm = 0.0749s

tc = 0.0520s

C = 0.5063m

tc/tm = 1.5730

The relation between tm and tc gives a number
larger than π/2 and therefore the system is reduced
to a mass-spring system as shown in Fig. 3. The
new time of dynamic crush is calculated:

tm =
tcπ

2
= 0.818s (10)

Since the damping ζ is zero, the eigenfrequency is
calculated as:

fe =
1

tm2π
arctan(∞) (11)

fe =
1

tm2π
· π

2
= 3.0544Hz (12)

The spring coefficient can finally be determined by
using Eq. (8):

k = 4π2f 2
e m = 321.53

kN

m
(13)

The results of a time integration using the spring
constant determined in Eq. (13) and a comparison
with the crash data can be seen in Fig. 4.
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Figure 4: Results and comparison between Kelvin
model and crash data

The crash data from Fig. 2 are shown as sta-
pled lines in Fig. 4, while the results from the time
integration is shown as continuous lines.

3.2 Elasto-plastic spring
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m

Figure 5: Elasto-plastic model

The model shown in Fig. 5 is based on an elasto-
plastic model in [4]. kE stands for elastic spring
constant and kP is used for the plastic deformation
in the spring. In order to find the two spring con-
stants that fits the crash data, some terms need to
be defined and located in the crash data:

dc - Maximum dynamic crush at t = tm

v′ - Maximum rebound velocity
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Based on energy consideration, the following equa-
tions can be set up:

∆E =
1

2
kEd2

c =
1

2
mv2

o (14)

∆E ′ =
1

2
kP d2

e =
1

2
mv′2 (15)

Where ∆E is the energy before the crash and ∆E ′

is the energy after the crash. Although the deflec-
tion energy should include the elastic spring coef-
ficient kE, it has been neglected because the plas-
tic spring constant is much larger than the elastic
spring constant. The maximum force on the car
makes a relationship between the elastic and plas-
tic spring coefficients:

F = kEdc = kP de (16)

de

de

=
kL

kU

(17)

COR (Coefficient Of Restitution) is defined as the
percentage of the initial energy that is restored af-
ter the crash. This ratio can be found by:

COR2 =
∆E ′

∆E
=

(

v′

v

)2

(18)

COR2 =
∆E ′

∆E
=

kP d2
e

kEd2
c

(19)

The elastic spring coefficient can be found by us-
ing Eq. (14) and the plastic spring coefficient is
determined by substitution Eq. (17) into Eq. (19):

kE = m
v2

0

d2
c

(20)

kP =
kE

COR2
(21)

Results

Using the crash data shown in Fig. 2, these data
were extracted:

dc = 0.5063m (22)

v′ = 0.9183
m

s
(23)

The COR is calculated from equation (18):

COR =

(

v′

v

)

=
(

0.9183

10

)

= 0.0945 (24)

Since the COR is known, the next step is to deter-
mine the different spring coefficients by using Eqs.
(20) and (21) in the following:

kE = 873 · 102

0.50632
= 321.9

kN

m
(25)

kP =
321.9

0.09452
= 59458

kN

m
(26)

Results and comparison between the crash data and
the simulated crash can be seen in Fig. 6.
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Figure 6: Results and comparison elasto-plastic
model

The stapled lines are the crash data and the
continuous lines are the simulated response.

3.3 Maxwell Spring-Damper model

m
m'

x'
x

k c

Figure 7: Maxwell Spring-Damper model

This model is based on the Maxwell Spring-Damper
model shown by Huang in [5]. The mass is con-
nected to the wall with a spring and a damper in
series. This model is suitable for material responses
that exhibit relaxation and creep, a time dependent
phenomena. In vehicle impact modeling, it is suited
for the localized impact where the vehicle effective
stiffness is low [5]. The system can be described
with the following differential equations:

m′ẍ′ = −x′k − (ẋ′ − ẋ) · c (27)

mẍ = (ẋ′ − ẋ) · c (28)
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Where x and x′ are the displacement by the masses
m and m′ respectively, see Fig. 7. By differenti-
ating Eqs. (27) and (28) with respect to time and
setting m′ = 0, one has:

0 = −ẋ′k − (ẍ′ − ẍ) · c (29)

m
dẍ

dt
= (ẍ′ − ẍ) · c (30)

(31)

From Eqs. (29) and (30), we obtain:

ẋ′ = −m

k
· dẍ

dt
(32)

By inserting Eq. (32) into (28), a differential equa-
tion without the displacement is formed:

mẍ =

(

−m

k
· dẍ

dt
− ẋ

)

· c (33)

Or
dẍ

dt
= −k

c
ẍ − k

m
ẋ (34)

Solving this solution analytically gives the follow-
ing characteristic equation:

r3 +
k

c
r2 +

k

m
r = 0 (35)

Eq. (35) can be solved in order to find the roots of
the equation. However, the coefficients k and c are
unknown, and therefore one can’t tell whether the
roots contain imaginary numbers. Two solutions
are therefore proposed; one for real roots and one
for imaginary roots. For the real roots, the roots
are defined as:

r1 = 0

r2 = a + b

r3 = a − b

Where a = − k

2c
(36)

b =

√

√

√

√

(

k

2c

)2

− k

m
(37)

The equation for b clearly state that
(

k
2c

)2
> k

m

in order for the roots to be real. If the roots are

imaginary, the following roots are defined:

r1 = 0

r2 = a + ib

r3 = a − ib

Where a = − k

2c
(38)

b =

√

√

√

√

k

m
−
(

k

2c

)2

(39)

The solution for the displacement of the mass
can be written as two equations, each depends
on whether the roots are real or imaginary:
Real roots:
x(t) = C1 + C2e

(a+b)t + C3e
(a−b)t

Imaginary roots:
x(t) = C1 + eat [C2Cos(bt) + C3Sin(bt)]

Now that the shapes of the different solutions are
known, one can fit the equation to the displace-
ment of the crash data to determine the unknown
variables C1, C2, C3, a and b. Once these variables
are found, the spring and damper coefficients can
be found by using the equations for a and b.

Results

The crash data were time integrated to find the
displacement of the real crash. This displacement
were used in a Curve Fit Toolbox in Matlab in order
to find the unknown coefficients C1, C2, C3, a and b.
The Curve fit for the real roots can be seen in Fig.
8 and the curve fit for the imaginary roots in Fig.
9.

Figure 8: Curve fit with real roots
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Figure 9: Curve fit with imaginary roots

Tab. 1 shows the results from the curve fitting
and their corresponding damper and spring coeffi-
cients:

Table 1: Damper and spring constants for Maxwell
Model.

Real roots Imaginary roots
a -14.5 -33.42
b -14.6 39.02

k -2540 N
m

2304 kN
m

c -87.6 Ns
m

34.47 kNs
m

Obviously, the values for k and c extracted from
the real roots curve fit are wrong because they’re
negative. On the other hand, the damper and
spring coefficient found using the curve for imagi-
nary roots are valid. The result of the time integra-
tion using the spring and damper and a comparison
to the crash data can be seen in Fig. 10.
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Figure 10: Results and comparison Maxwell Model

In Fig. 10, the crash data are shown as sta-
pled lines, while the simulation is shown in con-
tinuous lines. The simulated displacement is not
close to the real crash data, however, the shape of
it matches the crash data quite well.

3.4 Non-linear spring and damper

m

s, v, a
k(x)

c(ẋ) 

Figure 11: Non-linear spring and damper model

The model shown in Fig. 11 represents the car
with a non-linear spring and damper that crashes
into an obstacle. The purpose of using non-linear
spring and damper coefficients is to make the sim-
ulated crash act non-linear based on the speed and
position of the car. To justify the use of non-linear
coefficients in the crash, Fig. 2 shows a velocity
curve that matches a mass-spring system before
the time of maximum crush. However, right af-
ter the crash, the system is damped critically to
almost a tenth of the initial velocity. With a lin-
ear damper, the velocity of the simulated system
would decrease rapidly because of the high initial
velocity. But with a nonlinear damper, the shape
of the damping coefficient can be controlled in or-
der to dampen the car less during high velocities,
and critically dampen it when the velocity is small.

One way to determine the non-linear spring and
damper coefficients is to solve the non-linear ODE
analytically. That could be difficult and time con-
suming if the system is large. Instead of solving
it analytically, we can use computational power to
optimize a design that fits the crash data best.
Matlab is used to create an optimization routine
based on a predefined shape of the nonlinear spring
and damper coefficients, an objective and side con-
straints. Fig. 12 shows the predefined shape of the
nonlinear spring and damper.
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Figure 12: The predefined shape of the nonlinear
spring and damper

The unknown variables k1, k2, c1, c2, c3 and
vthresh are determined by the optimization routine
to fit the crash data best. An optimization rou-
tine’s intention is to minimize a given function by
adjusting the unknown variables shown in Fig. 12.
The function that is chosen to be minimized is the
error between the displacement of the simulated
crash and the crash data:

¯[Error] = |x̄ − s̄| (40)

Where x̄ is a vector containing displacement of the
simulated data and s̄ is a vector containing dis-
placement of the crash data. Since the error is a
vector, it cannot be minimized. To fix that, the
norm of the error is minimized instead by multi-
plying the transposed of the error with the error:

¯|Error|2 = ¯[Error]
T · ¯[Error] (41)

This will yield a single scalar function to minimize.
The last part of an optimization routine is to set
side-constraints for the program to follow. Side
constraints are split into two functions; functions
to keep smaller or equal to zero, and functions to
keep equal to zero. These side-contraints will help
the program to keep the unknown variables within
a threshold and to make the end result match sat-
isfactory. The side constraints that are used are:

k2 ≥ k1

c1 ≥ c2

c1 ≥ c3

c2 ≥ c3

vthresh ≤ v0

vthresh ≥ 0

x(t = tm) = C

ẋ(t = tm) = 0

k1, k2, c1, c2, c3 ≥ 0

Many of the side constraints are used to keep
the predefined shape of the nonlinear spring and
damper and to keep the damper and spring coeffi-
cients as positive values throughout the simulation.
The side constraints for x and ẋ are used to match
the time and displacement at maximum dynamic
crush in the crash data. When the objective func-
tion and the side constraints are determined, the
program can start and the optimization routine will
find the best value for the unknown variables that
fits the crash test data and stays within the con-
straint.

Results

After setting initial values for the guess a couple
of times, the program returned these values for the
unknown parameters:

c1 = 568.16[
kNs

m
]

c2 = 39.96[
kNs

m
]

c3 = 179.50[
Ns

m
]

vthresh = 0.7948[
m

s
]

k1 = 237.04[
N

m
]

k2 = 253.44[
kN

m
]

By using these values within a time integration and
comparing the results to the crash data, the follow-
ing graph is made:
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Figure 13: Results and comparison between crash
data and simulated data

The stapled lines are the data from the crash
test and the continuous lines are the results from
the time simulation. As seen on Fig. 13, the veloc-
ity of the simulated model at the time of maximum
dynamic crush is zero, which is satisfactory. The
results as a whole matches the crash data quite
good, but could also use some tweaking in order to
fit perfectly.

4 Conclusion

The Kelvin model in Section 3.1 that consisted of
a mass, a spring and a damper showed good results
prior to the time of maximum crush. The reason
for this is the model was reduced to a spring-mass
system since the damping was calculated to be zero
based on the crash test data. As there are no damp-
ing, the system will oscillate for infinite time with
the maximum crush displacement as the amplitude.
This infinite oscillation makes the time of interest
in this model be between t ∈ [0, tm].

The elasto-platic model in Section 3.2 shows
mixed but good results. The first part, the time
before maximum crush, shows similarities to the
Kelvin model. Both models are undamped and
therefore the curves are similar. However, right
after the time of maximum crush, the theory of
a plastic damaged spring kicks in and makes the
system oscillate around the maximum crush dis-
placement. This gives the system a relatively sta-
ble displacement after maximum crush, but like the
Kelvin model, the oscillation will never stop and
therefore the time of interest should be somewhere
around t ∈ [0, 0.1s].

The Maxwell model in Section 3.3 showed great
potential in its description that it would fit a phys-

ical car crash. The results however lacked good re-
sults. The damper kicked in too early and damped
the response. This makes the time integrated dis-
placement curve go halfway to the maximum crush.
However when looking at the shape of the simulated
displacement curve, one can see that it resembles
the shape of the crash data quite well. The possible
reasons for the bad results may come from inaccu-
rate curve fitting or other faults. Either way, the
Maxwell model shows potential for a crash test in
its shape.

The Non-linear spring and damper model shown
in Section 3.4 showed great results with small
amounts of error when comparing the simulated
data and the crash data. However, one problem
with dealing with such optimization are large num-
ber of local minima that exists. By testing different
initial conditions, one could find a global minima
that gives the best result, but this is very time con-
suming if done manually. A more robust algorithm
that searches a wider area of parameters is more
suitable to this kind of optimization.
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